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ABSTRACT 
Present investigation is based on a numerical study using a 
time-domain Rankine panel method. The effort and novelty is 
to extend the applicability of the solver to shallower waters and 
to steeper waves by including additional non-linear effects, but 
in a way so to limit the increase in computational costs. The 
challenge is to assess the improvement with respect to the basic 
formulation and the recovery of linear theory in the limit of 
small waves.  
The wave theories included in the program are Airy, Stokes 5th 
order and Stream function. By their comparison the effect of 
the incoming-wave non-linearities can be investigated. 
For the free-surface boundary conditions two alternative 
formulations are investigated, one by Hui Sun [1] and one 
developed here.  
The two formulations combined with the above-mentioned 
wave theories are applied to two relevant problems. The first 
case is a fixed vertical cylinder in regular waves, where 
numerical results are compared with the model tests by Grue & 
Huseby [2]. The second case is a freely floating model of a 
LNG carrier (with zero forward speed) in regular waves, where 
computations are compared with the experimental results from 
the EC project “Extreme Seas”. This comparison revealed 
several challenges such as how to interpret/post process the 
experimental data. Some of these are described in the paper. 
After careful handling of both computed and measured data the 
comparisons show reasonable agreement. It is proven that 
including more non-linear effects in the free-surface boundary 
conditions can significantly improve the results. The 
formulation by Hui Sun gives better results compared to the 
linear condition, but the present formulation is shown to 
provide a further improvement, which can be explained through 
the nonlinear terms included/retained in the two approaches. 

 
INTRODUCTION 
The basic solver is a well established method for seakeeping 
problems in finite and deep water conditions with classical 
corrections for non-linear load terms. The restoring and Froude-
Krylov pressures are computed at the instantaneous wetted 
body surface defined by the rigid body motions and the incident 
waves. The radiation/diffraction effects are estimated within 
linear theory, with the corresponding pressures integrated along 
the mean wetted surface, with the quadratic term in the 
Bernoulli equation included.  
The performance of this method has been investigated in 
several papers, e.g. [3] and [4]. 
In order to extend the solver to shallow waters and steeper 
waves, two additional non-linear effects have been included 
and examined:  
 

- A non-linear incoming-wave 
- Some non-linear terms in the kinematic and dynamic 

free-surface boundary conditions 

For the incoming wave, Stokes 5th order waves (using Fenton’s 
formulation [5]) and Stream function (using Dalrymple’s 
formulation [6]) have been included. In this study Stream 
function waves will be used since this has a wider applicability 
range than the Stokes waves. 
In addition to the non-linearity of the incoming wave, other 
non-linear terms may be included in the free-surface elevation 
of the wave-body interaction problem. The issue in this context 
is consistency of the resulting solution method. A proposal in 
this direction is represented by the formulation in a previous 
work by Hui Sun [1]. An alternative strategy has been 
developed here as part of this work. 
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THE FREE-SURFACE BOUNDARY CONDITIONS 
In a coordinate system moving with the steady velocity of the 
body, the exact free-surface boundary conditions may be 
written as 
 
𝜕𝜕�𝜙𝜙𝑏𝑏 + 𝜙𝜙𝑠𝑠 + 𝜙𝜙𝑖𝑖�
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at 𝜕𝜕 =ζ + ζ𝑖𝑖 (kinematic condition) 
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at 𝜕𝜕 =ζ + ζ𝑖𝑖 (dynamic condition) 
 
Here 𝑊𝑊���⃗  is the steady velocity of the vessel, 𝜙𝜙𝑏𝑏 is the steady 
velocity potential, 𝜙𝜙𝑖𝑖 and ζ𝑖𝑖 are the velocity potential and wave 
elevation of the incoming wave, respectively, 𝜙𝜙𝑠𝑠 is the radiation 
and scatter velocity potential and ζ is the wave elevation due to 
the radiation/scatter and steady velocity potentials. 
Since the steady speed may be large, the steady flow velocity 
potential can be assumed of order 1. Assuming all other 
quantities to be small and expanding the boundary conditions 
around the mean free surface, z=0, gives the linear boundary 
conditions used in the original solver. 
 
The approach by Hui Sun. 
In this formulation, all terms including the incoming wave are 
retained and evaluated at the instantaneous free surface. This 
gives the free-surface boundary conditions in the form 
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If the right hand sides are set to 0, the linear free-surface 
conditions are recovered. 
An attractive feature of this extension of the linear formulation 
is that the implementation is relatively straight forward since 
the new terms are computed directly from the incoming wave. 
A disadvantage of this formulation is that it is not consistent, 
because Taylor expansion about z=0 is only performed on the 
left hand side retaining terms of the order of the wave 
steeepness, say ε, and only 𝜙𝜙𝑏𝑏 is assumed O(1). The terms in 
the right hand side, which only include 𝜙𝜙𝑖𝑖and ζ𝑖𝑖 without 
coupling with other variables, are retained and evaluated at the 
instantaneous free surface. 
 
Present modified approach. 
In this formulation we assume that 𝑂𝑂(𝜙𝜙𝑠𝑠) = 𝑂𝑂(ζ) = 𝑂𝑂(𝜖𝜖) and 
that 𝑂𝑂(𝜙𝜙𝑏𝑏) = 𝑂𝑂(𝜙𝜙𝑖𝑖) = 𝑂𝑂�ζ𝑖𝑖� = 𝑂𝑂(1). Expanding the exact 
equations and keeping the terms up to order ε gives 
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The left hand side of each condition is the same as in the Hui 
Sun’s approach (and as in the linear conditions). Compared to 
that formulation, this one has a more consistent perturbation 
scheme since the whole equation is Taylor expanded and 
evaluated at z=0.  This formulation also includes more non-
linear terms in the form of coupling terms as both 𝜙𝜙𝑖𝑖/ζ𝑖𝑖 and 𝜙𝜙𝑏𝑏 
are assumed O(1), i.e. all coupling terms between  𝜙𝜙𝑖𝑖/ζ𝑖𝑖 and 
𝜙𝜙𝑠𝑠/ζ are retained and we no longer assume small incoming 
wave amplitude. 

WAVE LOADS ON A FIXED CYLINDER 
 
The first case we study is a fixed cylinder with a radius R of 
3cm in 60cm water depth. This case was investigated 
experimentally by Huseby & Grue [2]. 
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Figure 1. The mesh for the fixed cylinder case. 

 
Computations of the horizontal force on the cylinder were 
performed for a wave with kR=0.245, with k the wavenumber, 
and with wave amplitude A of 0.03cm plus a sequence of 
amplitudes A ranging from 0.3cm to 3 cm with a step of 0.3 cm. 
The first 5 harmonic components of the force were extracted by 
using a least-square fit. Five different types of computations 
were performed: 
 

• A linear analysis (green) 
• A “classical” non-linear analysis with Airy wave (yel-

low) 
• A “classical” non-linear analysis with Stream function 

wave (turquoise) 
• Analysis with Stream function wave and the free-

surface conditions by Hui Sun (red) 
• Analysis with Stream function wave and the more 

consistent non-linear free-surface conditions (blue) 

By “classical” non-linear analysis we mean an analysis 
including non-linear restoring and Froude-Krylov forces, but 
with linear free-surface conditions. In principle the list above 
contains the methods in increasing order of accuracy. The 
colors refer to the curves in figures 2-8. 
The same problem has also been investigated by Ferrant [7] 
using a fully non-linear solution. His results are also included 
for comparison. 
The water depth in this study is comparable with the wave 
length, meaning that we are basically studying infinite depth. 
Figures 2 and 3 show the amplitude of the first and second 
harmonic component, respectively. 
 

 
Figure 2. The first harmonic component of the 

dimensionless horizontal force, |F1|/(ρgAR2),  as a function 
of kA. 

 
From figure 2 we see that all the non-linear computations 
converge to the linear solution in the limit of very small waves. 
We also see that all the non-linear runs give very similar results. 
The trend is in good agreement with the experiments, but there 
seems to be a more or less constant difference. One may be 
tempted to assume that this difference is due to viscous forces, 
but this is not the case. The KC number in the experiments is in 
the range 1-3.6 and the Reynolds number is around 20000. 
Thus viscous forces can be assumed to be small. 

 
Figure 3. The amplitude of the second harmonic component 

of the dimensionless horizontal force, |F2|/(ρgA2R),   as a 
function of kA. 

 
For the second harmonic component (see figure 3) there is as 
expected a more significant difference among the various 
methods and the most consistent (and also most non-linear) 
formulation shows the best agreement with the experiments. 
However, all formulations give a nearly constant value in kA 
which is not in accordance with the measured data. Here the 
solution by Ferrant provides a more correct trend even though 
the level is a bit high relative to the model tests. 
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In summary, the results by Ferrant overpredict both 
components, except at low values of kA, which probably 
indicates that the total force is overpredicted. For the methods 
investigated in this paper the overall conclusion is that they 
seem to under predict the first harmonic component and to over 
predict the second one. This indicates that the computations 
have a more asymmetric behavior around the mean value than 
the experiments. In addition, we notice that both methods have 
one component with the correct trend, but the trend is wrong 
for the other component. This may indicate  that there is some 
uncertainty in the split between the two components. 
  
The phase angles for the first and second harmonic components 
of the horizontal force on the cylinder are shown in figures 4 
and 5. 
 

 
Figure 4. The phase angle of the first harmonic component 

of the horizontal force, Arg(F1), as a function of kA. 
 

 
Figure 5. The phase angle of the second harmonic 

component of the horizontal force, Arg(F2), as a function of 
kA. 

 
When we try to fit an asymmetric signal with a symmetric 
function by the method of least squares, the solution will not be 
unique due to more than one possible convergence direction 

(you may consider the non-square linear algebra problem Ax = 
b in a geometrical interpretation as to find the orthogonal 
projection of b on the range of A iteratively). An asymmetry in 
one direction may cause two symmetric functions with different 
amplitudes and phases but with the same least-square error. The 
oscillatory nature of the phase angle as shown in figure 4 may 
be an indication that we have such a problem here.  
A more robust comparison is thus to compare directly the 
measured horizontal force time history against the numerical 
evolution from the different formulations. This quantity is free 
from identification errors, because it is the variable recorded 
experimentally. Since both amplitudes and phase angles of the 
first 6 harmonics in the experiments are given in Huseby & 
Grue it is easy to reconstruct the force time history.  
 

 
Figure 6. The maximum value of the dimensionless 
horizontal force, Fmax/(ρgAR2),  as a function of kA. 

 

 
Figure 7. The minimum value of the dimensionless 
horizontal force, Fmin/(ρgAR2),  as a function of kA. 
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Figure 8. The amplitude of the dimensionless horizontal 

force, 0.5(Fmax-Fmin)/(ρgAR2),  as a function of kA. 
 
Figure 6 and 7 show the comparison of the minimum and 
maximum force. It confirms that the most consistent method 
gives the best agreement with the experiments. For this 
formulation the total-force comparisons are good both in terms 
of trends and quantitatively; this supports the idea that the 
disagreement for the first and second harmonic components 
could be partially due to problems in their identification 
procedure. The more simplified formulations over predict the 
maximum value of the force and under predict the minimum 
value. We also notice that the non-linear free-surface conditions 
have more influence on the results than the nonlinearity in the 
incoming wave. If we, however, examine the horizontal force 
amplitude (defined as half the difference between maximum 
and minimum values) the picture is somewhat different. Here 
the wave formulation has the most important influence on the 
results. This is shown in figure 8. 
 

SHIP MOTIONS IN STEEP REGULAR WAVES 
The next case to be studied is the wave induced motion of a 
LNG carrier, see figure 9. The investigation covers different 
wave steepnesses and different wave lengths. For the longest 
waves the effect of finite depth can be expected to be 
significant. The computations are done in full scale. The model 
tests are done as part of the EC project “Extreme waves”. The 
data for the vessel are given in table 1. 
 
Twenty-two different waves were analyzed. The wave 
parameters are listed in table 2. The waves fall into two groups: 
Waves 1-11 are waves of moderate amplitude. We will refer to 
them as series 1. These waves are just outside the validity range 
of the Airy wave theory. Waves 12-22 have much higher wave 
amplitudes and some of them are outside the validity range of 
the Stokes 5th order theory. This is illustrated in figure 10. We 
will refer to these waves as series 2. 

 
Figure 9. The LNG vessel. 

 
Scale = 70 Full scale  Model 

 Loa 197.13 m 2.816 m 
Lpp 186.90 m 2.670 m 
B 30.38 m 0.434 m 
D 18.20 m 0.268 m 
d 8.40 m 0.120 m 
M 35614.03 t 103.831 kg 
CGx 94.87 m 1.355 m 
CGy 0.00 m 0.000 m 
CGz 8.26 m 0.118 m 
RGx 11.27 m 0.161 m 
RGy 40.53 m 0.579 m 
RGz 40.18 m 0.574 m 
Water Depth 70 m 1 m 

Table 1. The dimensions of the LNG carrier. 
 
The interpretation of the measured ship-motion time histories 
poses some challenges as illustrated in figures 11 and 12. In 
particular the heave response has a rather unsteady behavior, 
whereas the pitch response seems to have better quality. It is 
also unclear why there is a significant mean displacement in 
heave.  
 
In the comparison between the computations and measurements 
we show the response amplitude. This is defined as half the 
difference between the maximum and minimum of the 
response. Thus the mean displacement in heave is not a part of 
this comparison. We have also computed the mean value and 
standard deviation of the amplitudes. The standard deviation is 
shown as the error band in the results in figures 13-16. 
Fifteen waves are applied in the results presented by figures 13-
16, where the numbers indicate the incoming-wave number in 
Table 2.The computations are done both with the fully linear 
solver (blue curve) and with the most non-linear solver which 
includes stream function wave and the consistent non-linear 
free-surface conditions (red curve). As expected the two 
solutions are almost identical for wave series 1. The pitch 
response is in perfect agreement with the measurements. For 
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heave there is a small deviation for waves 6 and 8, but the rest 
of the results are very good.  
 
 
 

Wave λ H T H/gT2 d/gT2 kA 

1 112.14 2 8.4664 0.00284 0.09955 0.05603 

2 149.52 2 9.8062 0.00212 0.07420 0.04202 

3 168.21 3 10.4204 0.00282 0.06571 0.05603 

4 186.90 3 11.0277 0.00251 0.05868 0.05043 

5 205.59 3 11.6243 0.00226 0.05281 0.04584 

6 224.28 4 12.2062 0.00274 0.04789 0.05603 

7 261.66 4 13.3867 0.00228 0.03982 0.04803 

8 299.04 5 14.5667 0.00240 0.03363 0.05253 

9 336.42 5 15.7731 0.00205 0.02868 0.04669 

10 373.80 6 16.9870 0.00212 0.02473 0.05043 

11 411.18 6 18.2304 0.00184 0.02147 0.04584 

12 112.14 8 8.2690 0.01193 0.10436 0.22412 

13 149.52 11 9.5532 0.01229 0.07819 0.23112 

14 168.21 12 10.1723 0.01182 0.06896 0.22412 

15 186.90 13 10.7714 0.01142 0.06150 0.21852 

16 205.59 14 11.3575 0.01106 0.05532 0.21393 

17 224.28 16 11.8956 0.01153 0.05043 0.22412 

18 261.66 18 13.0404 0.01079 0.04196 0.21612 

19 299.04 20 14.1784 0.01014 0.03550 0.21011 

20 336.42 22 15.3139 0.00956 0.03043 0.20544 

21 373.80 24 16.4456 0.00905 0.02638 0.20171 

22 411.18 25 17.6203 0.00821 0.02298 0.19101 

Table 2. The waves included in the analysis (full scale). 
 
For several waves in wave series 2 there is a significant 
difference between the linear and the non-linear result. For 
pitch the non-linear solution is clearly better. For heave the 
linear results actually seems to be better, but it should be kept in 
mind that there is a significant uncertainty in the measurements 
for heave. 

 
Figure 10. The waves to be studied plotted in the theory 

validity range diagram. In the horizontal axis: d/gT2; in the 
vertical axis: H/gT2. 

 
Figure 11. Measured time history (in seconds) of the 

heave motion (in meters) for wave 2. 
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Figure 12. Measured time history (in seconds) of the 

pitch motion for wave 2. 

 
Figure 13. The heave RAO, |η3,max-η3,min|/(2ζa) ( with ζa=A),  

for wave series 1 as a function of kA. 
 

 
Figure 14. The pitch RAO, |η5,max-η5,min|/(2ζa) ( with ζa=A),   

for wave series 1 as a function of kA. 
 

 
Figure 15. The heave RAO, |η3,max-η3,min|/(2ζa) ( with ζa=A),   

for wave series 2 as a function of kA. 
 

 
Figure 16. The pitch RAO, |η5,max-η5,min|/(2ζa) ( with ζa=A),   

for wave series 2 as a function of kA. 
 
For the most extreme wave, wave 22, additional runs have been 
done with different wave theories, but linear free-surface 
conditions. These results are shown by the green markers in 
figure 16 (pitch). The result for the Airy wave is almost the 
same as from the linear solution, whereas the results for the 
Stokes 5th order wave and Stream function wave are almost the 
same as for the most non-linear solution. Thus it is clear that 
the dominating non-linear effect is the non-linearity in the 
incoming wave. One should note that this wave corresponds to 
a quite shallow water condition, since the wave length is almost 
6 times the water depth (411.2m vs. 70m). 
For this wavelength a final set of computations were performed 
for different wave amplitudes. The purpose of this is to check 
that the most non-linear analysis converges to the linear results 
in the limit of small waves. This fact is confirmed by results in 
figures 17 and 18. 
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Figure 17. Comparison of heave RAOs, |η3,max-η3,min|/(2ζa)    
(with ζa=A),   from the linear and non-linear solution for 

the largest wave length examined with varying wave 
amplitude as a function of kA. 

 
Figure 18. Comparison of pitch RAOs, |η5,max-η5,min|/(2ζa) ( 

with ζa=A),   from the linear and non-linear solution for the 
largest wave length with varying wave amplitude as a 

function of kA. 

CONCLUSIONS 
A numerical investigation has been carried out based on a time-
domain Rankine panel method for wave-body interaction 
problems. The purpose of this study is to investigate the 
importance of non-linear wave theories and the importance of 
non-linear terms in the free-surface boundary conditions for 
steep waves. In addition to a previous implementation of some 
non-linear terms in the free-surface conditions, a new and more 
consistent formulation based on the assumption that the 
incoming wave is not small has been proposed. The main 
motivation for the development is to extend the applicability of 
the solver to shallower water conditions, but the non-linear 
free-surface conditions may be equally important for large 
waves in deep water. 
The latter statement is confirmed by the comparison for a fixed 
vertical cylinder. The water depth in this investigation (60 cm) 
is only slightly less than the wave length (77 cm) so this is a 

deep water case. In this case it is shown that the non-linear free-
surface conditions can give a significant improvement of the 
results, with the new and more consistent formulation as the 
best choice. The non-linearity in the incoming wave seems to 
be less important. 
The other case studied is a floating body in relatively shallow 
water. Here the non-linearity in the incoming-wave provides the 
dominant corrections of the results while the non-linear terms 
in the free-surface conditions seem to be of minor importance. 
But in this case, the waves are relatively long to the ship so we 
need to take into account that both wave diffractions and 
radiations are small. 
So from present studies, in general non-linearities in the 
incident waves and in the free-surface boundary conditions are 
both important in steep waves. It is hard to make a strong 
conclusion about which one is more important than the other 
because this depends on several factors. If we only consider the 
water depth, then the free-surface boundary conditions plays 
the major role in deep water while the non-linearities in the 
incident waves  become more important in shallower water. 
Present method extended the applicability of a basically linear 
solver to higher incident-wave steepness. However a kA limit 
exists in terms of results reliability. On the other hand we 
cannot identify this limit just on the basis of two validation 
studies, though relevant for our case. As a future step, a more 
comprehensive research investigation should be carried out for 
a complete assessment of the applicability limits. Identifying 
the responsible of these limitations could inspire a further 
improvement of the proposed formulation. 
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