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Abstract— In this paper, finite-time stability and finite-time
boundedness for nonlinear systems with polynomial vector fields
are investigated. Finite-time stability requires the states of the
system to remain in a given bounded set in a finite-time interval
and finite-time boundedness considers the same problem for the
system but with bounded disturbance. Sufficient condition for
finite-time stability and finite-time boundedness of nonlinear
systems as well as a computational method based on sum of
squares programming to check the conditions is given. Then,
we consider the problem of finite-time stability for a system
that consists of an interconnection of subsystems and we show
how to decompose the problem into subproblems for each
subsystem with coupling constraints. We show how we can
solve the problem using sum of squares programming and
dual decomposition. The method is demonstrated through some
examples.

I. INTRODUCTION

In many practical applications we are concerned with
the behavior of the system over a finite-time interval. For
example, consider the problem of transient stability of a
synchronous machine in a power system subject to a severe
fault such as a short circuit fault. The problem essentially
boils down to checking if the trajectories of the faulty
system (fault-on trajectories) lie in the region of attraction
of the post-fault system at the time of clearing the fault.
As another example, consider the problem of certifying that
in a chemical process the temperature or pressure stay in
given bounds in for a given period of time. These are finite-
time stability (FTS) problems since we are checking whether
the trajectories of the system remain in a given bounded set
in a finite-time. A system is said to be finite-time stable
if assuming that the initial states of the system are in a
given bounded set, then the trajectories of the systems would
remain in a prescribed bounded set for a given finite time
interval. It should be noted that the concept is different from
Lyapunov stability or asymptotic stability since in the later
concepts the behavior of the system over an infinite interval
of time is studied. Therefore, a system that is FTS might not
be asymptotically stable and a system that is asymptotically
stable might not be FTS.

Studies on finite-time stability date back to the 1950s
in the Russian literature e.g. [1], [2] and later in [3]. In
[4] the problem for linear systems subject to time-varying
parametric uncertainties and exogenous constant disturbance
is considered. The concept of FTS is extended to finite-time
boundedness (FTB) by considering external disturbances
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into account and sufficient conditions in terms of linear
matrix inequalities (LMIs) for FTB are given. Moreover,
sufficient conditions for state feedback stabilization of the
system using LMIs are provided. Using LMIs these results
are extended for different classes of linear systems, see [5]
for a survey. In [6] FTS for linear time-varying systems
using Lyapunov differential matrix equations is studied and
necessary and sufficient conditions for FTS are given. FTS
for some classes of switched systems is also studied. In [7]
sufficient conditions for FTS of impulsive linear dynamical
systems in terms of differential LMIs are given. In [8] FTB
of linear switched systems in discrete time is studied and
average dwell time of the switching signal to guarantee
FTB is obtained. There are very few work that considers
the problem for nonlinear systems. In [9] the problem of
FTS and finite time stabilziation for quadratic systems is
considered. Finally, we point out that in [10], [11] the authors
consider a finite-time stability problem which implies both
Lyapunov stability and finite-time convergence. The concept
investigated in [10], [11] is different from the notion studies
in this paper and references [1], [2], [3], [4].

In this work, we consider the problem of FTS and FTB
for nonlinear systems. We drive sufficient conditions for
FTS and FTB of nonlinear systems and then we show
how we can check these conditions for nonlinear systems
with polynomial vector fields using sum of squares (SOS)
programming. Moreover, we show how we can compute
the minimum time that guarantees that the trajectories of
the system initiated from an initial set would remain in a
bounded set. Then, we consider the problem for a systems
given as an interconnection of subsystems. We give com-
positional conditions for FTB where the overall problem is
decomposed to subproblems for each subsystems with some
coupling constraints. We shows how to use SOS and dual
decomposition to check the conditions.

This paper is organized as follows..

II. PRELIMINARIES

In this section we give the basic definitions and concept
that are used throughout the paper.

Definition 1: monomial A monomial mα is a function
mα : Rn → R which is defined as: mα(x) = xα :=
xα1

1 xα1
2 . . . xα1

n . The degree of a monomial is defined as
deg mα = Σni=1αi.

Definition 2: [12] Polynomial: a polynomial p(x) is a
linear combination of a finite number of monomials: p(x) :=∑k
j=1 cjmαj

(x). The degree of a polynomial is defined as
p := maxj(deg mαj

).



The set of all polynomials with n variables is denoted byRn.
The set of positive semidefinite polynomials denoted by Pn
are the set of polynomials that are nonnegative on all Rn
which is defined by: Pn := {p ∈ Rn : p(x) ≥ 0,∀x ∈ Rn}.

Definition 3: A polynomial p is said to be sum of squares
(SOS) if it can be decomposed to a sum of squared of some
polynomials p1, . . . , pM i.e p =

∑M
i=1 pi(x)2.

The set of all SOS polynomials in n variables is denoted by
Σn which is defined as: Σn := {s ∈ Rn : ∃M, ∃{pi}Mi=1 ⊂
Rn such that s =

∑M
i=1 p

2
i }.

Proposition 1: A polynomial p(x) ∈ Rn of degree 2d is
SOS if and only if there exist a positive semidefinite matrix
Q ≥ 0 and a vector of monomials z(x) in n variables up to
degree d such that p(x) = zT (x)Qz(x).

Theorem 1: [12] The existence of a SOS decomposition
of a polynomial system in n variables of degree 2d can be
formulated as a linear matrix inequality (LMI) feasibility
problem test.
The following lemma is used to check conditions of the form
g0(x) ≥ 0 whenever g1(x), · · · , gm(x) ≥ 0 by converting
them into sum of square programming.

Lemma 1: (Generalized S-procedure) [13] Given func-
tions g0(x), g1(x), · · · , gm(x) ∈ Rn, if there exists
s1, s2, · · · , sm ∈ Σ[x] such that g0 − Σmi=1sigi ∈ Σ[x] then,
it holds that:

{x ∈ Rn : g1(x) ≥ 0, · · · , gm(x) ≥ 0} ⊆
{x ∈ Rn : g1(x) ≥ 0} (1)

For a given set D its complement is denoted by Dc, its
closure is denoted by D̄, and its boundary is denoted by
∂D.

III. PROBLEM STATEMENT

Here we consider the following autonomous system:

ẋ = f(x), (2)

x ∈ D ⊆ Rn and f : D → Rn is Lipschitz on D.
Definition 4: The nonlinear system ẋ = f(x), t ∈

[0, T ] is said to be finite-time stable (FTS) with respect to
[D1, D2, T ], where D1 ⊂ D2 ⊆ D iff:

x(0) ∈ D1 ⇒ x(T ) ∈ D2 for all t ∈ [0, T ], (3)

where D1 and D2 are given sets.
In the following we assume that D,D1 and D2 are given as
two semi-algebraic sets:

D = {x ∈ Rn : g0(x) ≥ 0} (4)
D1 = {x ∈ Rn : g1(x) ≥ 0} (5)
D2 = {x ∈ Rn : g2(x) < 0} (6)

Remark 1: The definition that we use is more general than
the definition used in most of the available literature since
the sets D1 and D2 are semi-algebraic sets. To the best of
our knowledge in all of the works that are based on using
LMIs the sets D1 and D2 are restricted to ellipsoids e.g. [4],
[6] or polytopes [9].

Theorem 2: The system (2) is finite time stable with
respect to (D1, D2, T ) if there exist a continuously differ-
entiable function B(x) and a positive scalar α such that the
following conditions are satisfied:

B(x) ≤ ε ∀x ∈ D1 (7)
B(x) ≥ 1 ∀x ∈ Dc

2 (8)

Ḃ(x)− αB(x) ≤ 0 ∀x ∈ D̄2 (9)

α < − 1

T
ln ε (10)

Proof: (By contradiction) Assume that x(t) is a tra-
jectory of the system whose initial point is x(0) such that
x(0) ∈ D1. Suppose there exist a t1 ∈ [0, T ] such that
x(t1) ∈ Dc

2. Moreover, assume that t1 is the first time that
x(t) enters Dc

2 i.e x(t0) ∈ D2 for all t0 < t1. Due to the
continuity of the solution, x(t1) must be on ∂D2 since D2

is an open set. Because Ḃ(x)− αB(x) ≤ 0 in D̄2, then we
have :

Ḃ(x)

B(x)
≤ α. (11)

Integrating Ḃ(x)/B(x) from along x(t) we have:∫ t1

0

Ḃ(x)

B(x)
dt ≤

∫ t1

0

αdt,

which yields:

lnB(x(t1))− lnB(x0) ≤ αt1.

Hence the following bound is obtained:

B(x(t1)) ≤ B(x0)eαt1 .

Because B(x) ≤ ε ∀x ∈ D1 is satisfied and since x(0) ∈ D1

then we have:

B(x(t1)) ≤ εeαt1 ≤ εeαT < 1.

But since x(t1) ∈ Dc
2, we have B(x(t1)) ≥ 1 which is

a contradiction. This means that there does not exist any
t1 ∈ [0, T ] such that x(t1) ∈ Dc

2.
Finding the function B(x) which satisfies the conditions

of theorem 2 is in general very hard. In the following we use
the generalized S-procedure to find B(x) algorithmically by
solving a SOS programming problem. Using the generalized
S-procedure (Lemma 1), we get the following proposition.

Proposition 2: The system (2) is finite time stable with
respect to (D1, D2, T ) if there exist a polynomial B(x), sum
of squares polynomials s1, s2 and a positive scalar α such
that the following conditions are satisfied:

−B(x) + ε− s1g1(x) ∈ Σn (12)
(B(x)− 1)− s2g2(x) ∈ Σn (13)

−∂B(x)

∂x
f(x) + αB(x) + s3g2(x) ∈ Σn (14)

α < − 1

T
ln ε. (15)

where 0 ≤ ε ≤ 1 .
The proof of the proposition is straightforward using the
generalized S-procedure. We can think of B(x) as a function
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Fig. 1. Upper bound on the value of B(x) for different chooses of α.

that maps trajectories of the system such that that mappings
of the trajectories of the system emanating from D1 are
bounded by εeαt. This is shown in Figure 1. Depending on
the value of α three cases are possible: if α > 0 then the
values of B(x(t)) increase over time but never surpasses the
bound εeαt. This means that the trajectories are guaranteed
to remain in D2 for a finite interval of time. If α = 0 the
values B over time become never bigger than ε which means
that the trajectories would remain in D2 for an infinite time.
If α < 0 the values of B over time decreases and in this case
also the trajectories would remain in D2 for an infinite time.
Note that we have not excluded the possibility of B(x) ≤
for x ∈ D2 \D1. If the conditions are satisfied with ε = 0,
then the system’s trajectories would always remain in D2.

The conditions given in the proposition form a nonlinear
SOS programming since we have the nonlinear relation T ≤
− 1
α ln ε. In case T is given and we want to check FTS with

respect to (D1, D2, T ), by fixing the value of ε, then the
maximum acceptable value for α is given by the relation
α < − 1

T ln ε. Therefore, by checking the feasibility of the
rest of conditions, we can check FTS of the system. The
feasibility test can be completed by performing a line search
over ε.

For some applications, it is interesting to find the max-
imum value of T such that given D1, D2, we can certify
that all trajectories initiated in D1 would remain in D2. In
other words we want to find the maximum T such that the
systems is FTS w.r.t (D1, D2, D3). We can find a solution to
this problem by searching for the minimum of α that satisfies
the following conditions:

min
B∈Rn,s1,s2,s3∈Σn

α

s.t.


−B(x) + ε− s1g1(x) ∈ Σn

(B(x)− 1)− s2g2(x) ∈ Σn

−∂B(x)
∂x f(x) + αB(x) + s3g2(x) ∈ Σn

(16)

Then, the system is stable for all T such that T ≤ − 1
α ln ε.

For a given ε, the above problem is bilinear in its variables
since we have the term αB(x) in the constraints. But because
α is a scalar term, the problem can be solved by bisection on
α. Therefore, to find the minimum of the α we perform a line
search on ε where for each ε a bisection on α is performed.
The detail of the method is not reported here for the sake of
space.

Instead of using a exponential bound on B(x(t)), we
can use a linear bound. A linear bound yields a more

conservative solution but with less computational complexity.
The following theorem gives the sufficient conditions for a
linear bound.

Theorem 3: The system (2) is finite-time stable with re-
spect to (D1, D2, T ) if there exist a continuously differen-
tiable function B(x) and a positive scalar α such that the
following conditions are satisfied:

B(x) ≤ 0 ∀x ∈ D1 (17)
B(x) ≥ 1 ∀x ∈ Dc

2 (18)

Ḃ(x) ≤ α ∀x ∈ D̄1 (19)

α <
1

T
(20)

Proof: Assume that x(t) is a trajectory whose initial
point is x(0) and x(0) ∈ D1. Assume there exist 0 ≤ t1 ≤ T
such that x(t1) ∈ Dc

2. Moreover, assume that t1 is the first
time that x(t) enters Dc

2 i.e x(t0) ∈ D2 for all t0 < t1.
Due to the continuity of the solution, x(t1) must be on ∂D2

since D2 is an open set. If the conditions of the theorem are
satisfied, we have:

B(x(t1)) = B(x(0)) +

∫ t1

0

Ḃ(x)dt ≤
∫ t1

0

αdt ≤ αT < 1.

This contradicts the assumption that x(t1) ∈ Dc
2 since we

have B(x) ≥ 1 ∀x ∈ Dc
2. Therefore t1 /∈ [0, T ].

Now, we can check the conditions of theorem by searching
for B and the minimum α that satisfies the conditions 17-19.
This can be reformulated as the following SOS program:

min
B∈Rn,s1,s2,s3∈Σn

α

s.t.


−B(x)− s1g1(x) ∈ Σn

(B(x)− 1)− s2g2(x) ∈ Σn

−∂B(x)
∂x f(x) + s3g2(x) ∈ Σn

(21)

IV. FINITE TIME BOUNDEDNESS

The concept of finite-time boundedness considers the
behavior of the system when external disturbances are also
taken into account. The dynamic of the system is given as:

ẋ = f(x,w), (22)

where f : D → Rn is Lipschitz on D and w ∈W ⊆ Rm is
the disturbance and w ∈ L∞(R≥0,W ) .

Definition 5: The nonlinear system (22), t ∈ [0, T ] subject
to disturbance w ∈W is said to be finite-time bounded with
respect to (D1, D2,W, T ) if:

x(0) ∈ D1 ⇒ x(T ) ∈ D2 ∀ t ∈ [0, T ],∀w ∈W. (23)
The following theorem gives the sufficient condition for the
systems to be FTB.

Theorem 4: The system (22) is said to be finite-time
bounded with respect to (D1, D2, T ) if there exist a con-
tinuously differentiable function B(x) and positive scalars α



and ε such that the following conditions are satisfied:

B(x) ≤ ε ∀x ∈ D1 (24)
B(x) ≥ 1 ∀x ∈ Dc

2 (25)

Ḃ(x) ≤ αB(x) ∀x ∈ D̄1 ×W (26)

α < − 1

T
ln ε (27)

The proof is very similar to the proof of previous theorems
and is omitted here for the sake of space. It easy to see
that using the generalized S-procedure we can solve the
following SOS optimization program and check if to find the
maximum T such that the systems is FTS w.r.t (D1, D2, T ).
It is assumed that that w ∈ W where W is a given semi-
algebraic set: W = {w : gw(w) ≥ 0}.

min
B∈Rn,s1,s2∈Σn,sw∈Σ(n+m)

α

s.t.


−B(x) + ε− s1g1(x) ∈ Σn

(B(x)− 1)− s2g2(x) ∈ Σn

−∂B(x)
∂x f(x,w) + αB(x)− swgw + s3g2(x) ∈ Σ(n+m)

(28)

The problem can be solved as before by line search on ε and
bisection on α.

V. COMPOSITIONAL FINITE-TIME STABILITY

In this section, we consider the problem for a dynamical
system given as an interconnection of subsystems. Our goal
is to provide sufficient conditions for FTB of the overall
dynamical system. Consider N ≥ 2 subsystems given as:

ẋi = fi(xi,ui, wi), i = 1, · · · , N (29)

with xi,Rni , wi ∈ Rmi . We assume that the subsystems are
coupled as follows. For each i let uj = hj(xj) for j 6= i and
ui =

[
u1, · · · , uN

]
where the ith element ui is removed.

This does not mean that each subsystem is coupled with all
the other subsystems but it might be coupled to some of them
through uj = hj(xj). In case fi does not depend on uj the
subsystems i and j are not coupled. The composite system
is then given as:

ẋ = f(x,w) (30)

where x =
[
xT1 , · · · , xTN

]T
and w =

[
wT1 , · · · , wTN

]T
and

f(x,w) =


f1(x1, h2(x2), · · · , hN (xN )), w1)

f2(x2, h1(x1), h3(x3), · · · , hN (xN ), w2)
...

fN (xN , h1(x1), · · · , hN−1(xN−1), wN )


(31)

We assume that the sets D1 and D2 are given as Cartesian
products of D1,i and D2,i as:

D1 = D1,1 × · · ·D1,N (32)
D2 = D2,1 × · · ·D2,N (33)

where D1,i ⊆ D2,i ⊆ Rni . It is also assumed that W is
given as:

W = W1 × · · ·WN . (34)

These sets are given as:

D1,i = {x ∈ Rn : g1,i ≥ 0}, (35)
D2,i = {x ∈ Rn : g2,i < 0}, (36)
Wi = {w ∈ Rm : gw,i ≥ 0}. (37)

Theorem 5: The dynamical system (30) is finite-time
bounded with respect to (D1, D2,W, T ) with D1 and D2

defined as in (32),(33), and (34) respectively, if there exist
continuously differentiable functions Bi(xi), functions γi,
positive scalars εi’s and α’s such that:

Bi(xi) ≥ 0 ∀x ∈ Rni (38)
Bi(xi) ≤ εi ∀x ∈ D1,i, i = 1, · · · , N (39)
Bi(xi) ≥ 1 ∀x ∈ Dc

2,i, i = 1, · · · , N (40)
∂Bi(xi)

∂xi
fi(xi,ui, wi) ≤

αBi(xi) + γi(xi,ui) ∀xi ∈ D̄1,i, wi ∈Wi,
N∑
i=1

εi = ε < 1 (41)

N∑
i=1

γi(xi,ui) ≤ 0, i = 1, · · · , N (42)

α < − 1

T
ln ε (43)

Proof: Let us construct B(x) as B(x) =
∑N
i=1Bi(xi).

Then, if the conditions of (41) are satisfied, we have:

B(x) ≤ ε ∀x ∈ D1 (44)
B(x) ≥ 1 ∀x ∈ Dc

2 (45)

Moreover due to (50) and (5), we have:

Ḃ(x) ≤ αB(x) ∀x ∈ D̄1 ×W (46)

which proves that the system is FTB with respect to
(D1, D2,W, T ).
The above theorem puts an exponential bound on the map-
pings of trajectories of the systems through B(x). Similarly,
we can use a linear bound. This is shown in the following
theorem:

Theorem 6: The dynamical system (30) is finite-time
bounded with respect to (D1, D2,W, T ) with D1, D2, and
W defined as in (32) (33), and (34) respectively, if there exist
continuously differentiable functions Bi(xi), positive scalars
εi’s and αi’s such that:

Bi(xi) ≤ 0 ∀x ∈ D1,i, i = 1, · · · , N (47)
Bi(xi) ≥ 1 ∀x ∈ Dc

2,i, i = 1, · · · , N (48)
∂Bi
∂xi

(xi)(fi(xi, u1, · · · , uN , wi)) ≤ α+ γi(ui)

∀xi ∈ Rni , wi ∈Wi, ui ∈ Rni (49)∑
i

γi(xi,ui) ≤ 0 (50)

α <
1

T
(51)

In the following, we show how we can check the conditions
of the above theorem by solving a SOS program. The SOS



program is only shown for the case of exponential bound
on B (theorem 5). The case of linear bound can be solved
similarly.

Proposition 3: The dynamical system (30) is finite-time
bounded with respect to (D1, D2,W, T ) with D1, D2, and
W defined as in (32), (33), and (34) respectively, if there
exist continuously differentiable functions Bi(xi), positive
scalars εi’s and α’s such that:

−Bi(xi)− s1,ig1,i(xi) ∈ Σ, i = 1, · · · , N (52)
(Bi(xi)− 1)− s2,ig2,i(xi) ∈ Σ, i = 1, · · · , N (53)

−∂Bi(xi)
∂xi

(fi(xi, u1, · · · , uN , wi)) + αBi(xi) + γi(xi,ui)

−sw,igw,i(wi) + s3,ig2,i(xi) ∈ Σ (54)∑
i

γi(xi,ui) ≤ 0, i = 1, · · · , N (55)

where is α chosen as α < 1
T ln ε.

Therefore, we solve the following feasibility problem for a
fixed value of ε and choosing α < 1

T ln ε:

−Bi(xi)− s1,ig1,i ∈ Σ, i = 1, · · · , N (56)
(Bi(xi)− 1)− s2,ig1,i ∈ Σ, i = 1, · · · , N (57)

−∂Bi
∂xi

(xi)(fi(xi, u1, · · · , uN , wi)) + αBi + γi(xi,ui)

−sw,igw,i + s3,ig2,i ∈ Σ, i = 1, · · · , N (58)
N∑
i=1

γi(xi,ui) ≤ 0. (59)

The problem is not still decomposed due to the coupling
of the constraints through function γi. To decompose the
problem we use dual decomposition [14], [15]. In order to
decompose the problem into subproblems, we constrain the
γi to have the following structure:

γi = Z(
[
xi ui

]
)TPiZ(

[
xi ui

]
), (60)

where Z(
[
xi ui

]
) is a vector of monomials in

[
xi ui

]
and Pi = diag(Γi) where Γi is a vector of constants with
an appropriate dimension. Therefore, the coupling constraint∑
i γi(xi,ui) ≤ 0 is reduced to

∑
i Γi ≤ 0. The Largrangian

is formed as: ∑
i

λT (
∑
i

Γi) =
∑
i

λTΓi) (61)

and the Lagrangian dual function is :

g(λ) =
∑
i

gi(λ) (62)

where

gi(λ) := min λTΓi

−Bi(xi)− s1,ig1,i ∈ Σ, i = 1, · · · , N (63)
(Bi(xi)− 1)− s2,ig1,i ∈ Σ, i = 1, · · · , N (64)

−∂Bi
∂xi

(xi)(fi(xi, u1, · · · , uN , wi)) + αBi(xi)− γi(xi,ui)

−sw,igw,i ∈ Σ (65)
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and the dual problem is given as:

max
λ≥0

g(λ). (66)

For a given λ we can find gi(λ)’s separately. If the coupling
constraint

∑
i Γi ≤ 0 is satisfied then the problem is solved,

otherwise, we need to update the value of the Lagrangian
multiplier λ. This is done by using the subgradient method
as shown in Algorithm V (see [14] or[15] for details.).

Algorithm 1 Dual Decomposition
k ← 0, Choose a λ0

repeat
Solve each subproblem (possibly in parallel) to find

α∗i and Γ∗i
λk+1 ← (λk −∆k(

∑
i Γ∗i ))+

until |λk − λk−1| ≤ ε

VI. EXAMPLE

A. Example 1
Consider the nonlinear system:{

ẋ1 = x2,

ẋ2 = (2− 0.5x2
1)x2 − x1

(67)

We want to to check finite-time stability of the system with
D1 = {x ∈ R2 : x2

1 + x2
2 ≤ 0.1} and D2 = {x ∈ R2 :

x2
1 + x2

2 < 1} To solve the optimization problem we use
YALMIP toolbox. B is chosen to be a polynomial of degree
6 and s1, s2, s3 are of degree 4. The problem is solved with
ε = 0.14. Th minimum α is obtained as 3.3301 which means
that the system is finite-time stable for all T < 0.5904. Using
extensive simulation, we find that T = 0.5935 which shows
the tightness of the bound obtained by our approach.

To test the sensivity of solution to the choice of ε we solve
the problem by performing a line search over ε. The values
of T for different choices of ε are shown in Figure 5.
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B. Example 2

In this example we consider the following systems which
consists of two coupled systems as follows:

S1 :

{
ẋ11 = x12 + x21,

ẋ12 = (2− 0.5x2
11)x12 − x11,

(68)

and

S2 :

{
ẋ21 = x22 + x11,

ẋ22 = (2− 0.5x2
21)x22 − x21,

(69)

The states of S1 are initiated in D11 = {x11, x12 :
x2

11 + x2
12 ≤ 0.1} and similarly states of S2 are

initiated in D12 = {x21, x22 : x2
21 + x2

22 ≤ 0.1}.
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Also, D21 = {x11, x12 : x2
11 + x2

12 ≤ 1} and
D22 = {x21, x22 : x2

21 + x2
22 ≤ 1} We want

to find the maximum T such that the systems
is FTS w.r.t (D1, D2, T ). We choose the γi =[
x11 x21 x2

11 x2
21

]
diag(Γi)

[
x11 x21 x2

11 x2
21

]T
and ε = 0.1. We want to check FTS of the system
with respect to D1, D2, 0.4. We choose ε1 = ε2 = 0.1
and therefore we must have α ≤ − 1

0.4 ln 0.2 = 0.4023.
We choose α = 4. Moreover, ∆k in the Algorithm V
is set as 0.01

10+k . The dual variables Γ0 are initialized

with
[
0 0 0 0

]T
. The algorithm is stopped as

soon as the constraint Γi ≤ 0 is satisfied. In this
example the constraint is satisfied in 3 iterations where
Γ3 =

[
−1.9626 −1.9237 −0.1841 −0.1839

]T
.

VII. CONCLUSION
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