
Security Infrastructure for Service Oriented
Architectures at the Tactical Edge

Vasileios Gkioulos1 and Stephen D. Wolthusen1,2

1 Norwegian Information Security Laboratory, Norwegian University of Science and
Technology, Norway

{vasileios.gkioulos,stephen.wolthusen}@ntnu.no
2 School of Mathematics and Information Security, Royal Holloway, University of London,

United Kingdom

Abstract. The requirement for enabling network centric warfare through the ac-
commodation of network-enabled capabilities, promoted the use of service ori-
ented architectures (SOA) within military networks. The initial response of the
academic and industrial communities was to utilize standard enterprise SOA. The
developed solutions were well adjusted to the strategic domain, where node and
network constraints were minimal. Yet, experience gained from the battlefields
of the last decade, has proven that the tactical domain imposes a set of unique
constraints, that render such solutions inefficient for the tactical edge.
The project TACTICS, supported by the European Defense Agency, focuses on
the study and development of a SOA dedicated to tactical networks. In this paper
we present the designed security service architecture, as developed in accordance
to the requirements identified in our earlier studies. Each service is presented as
an architectural element within the TACTICS TSI (Tactical Service Infrastruc-
ture), aiming to highlight the distinct functionalities of the security infrastructure
towards the efficient enforcement of security controls at the tactical edge.

Keywords: Ad-Hoc · Security · Service Oriented Architectures · Tactical net-
works. · Tactical Service Infrastructures

1 Introduction

The introduction of SOA across the strategic domain of military networks has been
promoted by the increasing requirement for the integration of Network Enabled Ca-
pabilities (NEC), within the developed C2 (Command and Control) and C4I (Com-
mand, Control, Communications, Computers and Intelligence) systems. Extending this
paradigm to the tactical domain, is expected to allow the widespread incorporation of
Network Centric Warfare (NCW), by improving situational awareness and increasing
network flexibility, adaptability and responsiveness at the tactical edge.

However, standard enterprise SOA have been proven across the AoO (Areas of Op-
erations) of recent conflicts to be unsuitable for tactical networks, due to their rapidly
evolving nature and constrained resources. The project TACTICS [1] is oriented to-
wards the theoretical and experimental analysis of contemporary tactical networks, in
respect to the feasibility and required adaptations for the deployment of SOA. Conse-
quently, and in accordance to these studies, a Tactical Service Infrastructure (TSI) has



been defined and experimentally demonstrated. The TSI architecture [2] was developed
according to the NATO Architecture Framework 3.1, including twenty discrete archi-
tectural perspectives.

Focusing on the security aspects of such an architecture, our study was initiated
by analysing system specific constraints and requirements, arising due to terminal and
network characteristics across the three mission stages (Preparation, Execution, De-
brief). This allowed the identification of fine-grained security requirements and protec-
tion goals, maintaining the necessary distinction between the communication [3] and
service domains [4].

Accordingly, these requirements have been translated into corresponding functional
characteristics, for a security policy framework and service infrastructure, that would
be suitable for the investigated environment. Furthermore, an extended state of the
art review, revealed the weaknesses of existing mechanisms but also suitable adapta-
tions that would satisfy the identified requirements under the imposed constraints [5].
These initial studies, allowed us to analyse, define and develop a suitable security pol-
icy framework [6], along with the corresponding distribution [7], reconciliation [8] and
QoS (Quality of Service) interoperability [9] mechanisms.

In this article we present the core security service infrastructure, as developed within
the TACTICS TSI in accordance to the aforementioned studies. These components are
suitably adjusted towards satisfying the identified requirements, by facilitating the op-
eration of the developed security policy framework and supporting mechanisms. The
remainder of this paper is structured as follows: Section 2 presents the functionalities
and interactions of each developed service, as an architectural element towards the ex-
traction of valid policy decisions. Subsequently, section 3 includes a discussion over
the operational complexity of the security service infrastructure, in accordance to early
results from the ongoing field and laboratory experiments/demonstrations.

2 TACTICS Security Architecture

The developed security architecture, consists of two distinct groups of services, namely
core and functional. The functional services are responsible for the enforcement of the
requisite protection goals, by instantiating the distinct mechanisms (e.g. encryption al-
gorithms, access control, intrusion detection), while the core security services are re-
sponsible for the governance of these mechanisms, in accordance to predefined security
policies. In this section we present these components (Figure 1), aiming to highlight
the processes involved in the extraction of suitable policy decisions (Figures 2 and 3).
It must be noted that the security policy framework developed within TACTICS for the
accommodation of the requirements imposed by contemporary tactical SOA, has been
presented earlier in detail [6] and is outside the scope of this article.

The main functionalities of each service as presented in figures 1, 2 and 3 can be
summarised as:

– Security Handling service
1. Initiate the internal policy decision extraction process.
2. Store and identify the applicability of precomputed policy decisions.

– Policy Management service



1. Control the policy decision extraction process.
2. Prioritize pending policy decision requests.

– Policy Decision Point service
1. Securely store the prioritized rule stacks that have been defined for each avail-

able policy decision request.
– Metadata Handling service

1. Accommodate the defined ontological knowledge base (Including both the
Terminological-box and Assertional-box) and the selected inference engines.

2. Extraction of policy decisions.
– Contextual Monitoring service

1. Monitoring and collection of dynamic attributes.
2. Generation of statistical and aggregated data.
3. Triggering of event driven policy decisions to the Security Handling service.
4. Update of Metadata Handling service A-box to current values.

– Policy Enforcement Point service
1. Translation and enforcement of extracted policy decisions.

Fig. 1. Interfaces of the developed core security services.

2.1 Security Handling Service

Description: The Security Handling (SH) service operates as the internal to the secu-
rity architecture action (policy decision) requester. The service can be invoked either
externally (By a predefined set of core and functional services, for which the required
interfaces have been established for the invocation of corresponding policy decisions)
or internally (By the Contextually Monitoring (CM) service, for event driven policy de-
cisions). The service accommodates precomputed policy decisions for the reduction of



Fig. 2. Sequence diagram for valid precomputed policy decisions.

Fig. 3. Sequence diagram for the on-line extraction of policy decision.

the computational overhead imposed by the security architecture. These are established
at the mission preparation stage, according to a statistical analysis of previous invoca-
tion logs and the use of computational intelligence methodologies. Thus, precomputed



policy decisions can be established for a constraint range of the required semantics, and
after local evaluation, be directly applied without the invocation of the complete secu-
rity service stack (Figure 2). When such precomputed policy decisions are not available
or applicable, the SHs must compose and forward a security decision request to the
subsequent security services, providing all the required information for the adaptation,
prioritization and successful extraction of valid policy decisions.
Invocation: Invocation Originator =⇒ Invocation Form
1. Set of core and functional services (RequestorID) =⇒ ActionRequest.
2. Contextual Monitoring (CM) service =⇒ Pre-established ActionRequest according

to attribute threshold alert.
Functionalities: Internal=*, Input=⇀, Output=↽
1-⇀ Receive ActionRequest
2-∗ Generate ActionRequest ID
3-∗ Identify existence of precomputed PolicyDecision. According to ActionRequest ID

a-∗ IF(TRUE)
i-∗ Identify required attributes
ii-∗ Generate AttributeValuesRequest
iii-↽ Send AttributeValuesRequest to CMs for timely values
iv-⇀ Receive AttributeValuesResponse from CMs
v-∗ Evaluate attributes of precomputed PolicyDecision

1-∗ IF(TRUE)
a-∗ Generate SecurityDecision
b-↽ Send SecurityDecision to PEPs for enforcement

2-∗ IF(Not TRUE)
a-∗ Generate CMsSnapshot IDRequest
b-↽ Send CMsSnapshot IDRequest to CMs
c-⇀ Receive CMsSnapshot IDResponse from CMs
d-∗ Generate SecurityDecisionRequest
e-↽ Send SecurityDecisionRequest to PMs

b-∗ IF(Not TRUE)
i-∗ Generate CMsSnapshot IDRequest
ii-↽ Send CMsSnapshot IDRequest to CMs
iii-⇀ Receive CMsSnapshot IDResponse from CMs
iv-∗ Generate SecurityDecisionRequest
v-↽ Send SecurityDecisionRequest to PMs

2.2 Policy Management Service

Description: The Policy Management (PM) service operates as the controller of the se-
curity services that are involved in the policy decision extraction process. The PMs can
be explicitly invoked by the Security Handling (SH) service, or execute functionality
according to the input received from the Metadata Handling (MH) service. The invoca-
tion from the SHs includes all the required information for the management of a viable
policy decision extraction within a security decision request. In addition to the action
request related elements, an aggregated metric of the available local node resources (for



the prioritization of policy decision requests) and a refresh alert based on predefined
constraints (for the update of the MHs to the current state of dynamic semantics) are
also included. Upon receipt of a security decision request, the corresponding cycles
to live and priority are identified according to the received available resources metric.
Consequently, a corresponding entry is generated and included within a repository with
all the pending security decision requests. The repository entries are prioritized and a
bundle is created, including those requests that can currently be served. The cycles to
live of those requests is reduced and the bundle is forwarded to the Policy Decision
Point (PDP) service. It must be noted that the cycles to live metric is critical, since it
affects the maximum complexity of the policy rule that will be used for the resolution
of the security decision request.
Invocation: Invocation Originator =⇒ Invocation Form

1. Security Handling (SH) service =⇒ SecurityDecisionRequest.
2. Metadata Handling (MH) service =⇒ SecurityDecisionBundle.

Functionalities: Internal=*, Input=⇀, Output=↽

– For invocation type 1:
1-⇀ Receive SecurityDecisionRequest from SHs
2-∗ Extract RefreshAlert from SecurityDecisionRequest
3-∗ Extract ResourceAvailability from SecurityDecisionRequest
4-∗ Identify ActionIDCyclesToLive (For the received ActionID)
5-∗ Identify ActionIDPriority (For the received ActionID)
6-∗ Generate ActionRequest IDRepositoryEntry
7-∗ Update ActionRequest IDRepository (Enter new entry)
8-∗ Prioritize ActionRequest IDRepository (According to 3, 4, 5)
9-∗ Generate ActionRequest IDBundle
10-∗Update (Reduce by one) ActionIDCyclesToLive in ActionRequest IDRepository
(For those included in the ActionRequest IDBundle)
11-↽ Send ActionRequest IDBundle to PDPs
12-∗Update ActionRequest IDRepository (Remove entries with ActionIDCyclesTo-
Live equal to zero)

– For invocation type 2:
1-⇀ Receive SecurityDecisionRequest from MHs
2-∗ Extract PolicyDecision /s
3-∗ Extract ActionRequest ID /s

a-∗ IF(PolicyDecision TRUE)
i-∗ Generate SecurityDecision /s
ii-↽ Send SecurityDecision/s to PEPs for enforcement
iii-∗ Delete ActionRequest IDRepositoryEntry /s

b-∗ IF(PolicyDecision NotTRUE) OR IF(ActionRequest IDRepository
NotEMPTY)

i-∗ Prioritize ActionRequest IDRepository
ii-∗ Generate ActionRequest IDBundle
iii-∗ Update (Reduce by one) ActionIDCyclesToLive in ActionRe-

quest IDRepository (For those included in the ActionRequest IDBundle)
iv-↽ Send ActionRequest IDBundle to PDPs



v-∗ Update ActionRequest IDRepository (Remove entries with Ac-
tionIDCyclesToLive equal to zero)

2.3 Policy Decision Point Service

Description: The Policy Decision Point (PDP) service operates as a repository of the
predefined policy rules. Each ActionID is mapped at the mission preparation stage to a
set of ActorIDs, SubjectIDs and RequestorIDs in accordance to a corresponding set of
semantics (Referring to Services, Information, Networks, Radios, Nodes and Subjects).
These mappings constitute the predefined policy rules. Thus, a set of prioritized policy
rules of increasing granularity are defined for any given range of the allowed Action-
Request IDs. Furthermore, an escape rule of least priority is defined for each Action-
Request ID range, in order to allow the enforcement of security policy decisions under
heavily constrained local-node and radio resources. The received ActionIDCyclesTo-
Live indicator defines which of the prioritized rules should be utilized for the given
policy reasoning cycle. Accordingly, upon receipt of an ActionRequest IDBundle, the
individual ActionRequest IDs are separated and bound to the corresponding policy
rules (PolicyRule ID). This is achieved by the individual evaluation of their Action-
IDCyclesToLive and rule identification across their predefined rule-sets. The generated
PolicyDecisionRequest Bundle contains these ActionRequest ID/PolicyRule ID pairs
and the received RefreshAlert indicator.
Invocation: Invocation Originator =⇒ Invocation Form
1. Policy Management (PM) service =⇒ SecurityDecisionRequest.

Functionalities: Internal=*, Input=⇀, Output=↽
1-⇀ Receive ActionRequest IDBundle from PMs
2-∗ Extract RefreshAlert from ActionRequest IDBundle
3-∗ Extract individual ActionRequest ID / ActionIDCyclesToLive pairs
4-∗ Identify PolicyRule ID according to ActionIDCyclesToLive
5-∗ Generate PolicyDecisionRequest /s
6-∗ Generate PolicyDecisionRequest Bundle
7-↽ Send PolicyDecisionRequest Bundle to MHs

2.4 Metadata Handling Service

Description: A variety of semantic web frameworks can be used for the implementation
of the Metadata Handling (MH) service, such as CubicWeb, RDF4J(Sesame), Mulgara,
Open Semantic Framework and Jena. The MHs receives a bundle of policy decision
requests and updates the local ontology, if required so by the received RefreshAlert.
The value of the RefreshAlert originates from the Contextual Monitoring (CM) ser-
vice (From CMsSnapshot IDResponse), which bound to an ActionRequest initiation,
is used to update the local ontology through the MH UpdateRequest/ Response pro-
cess. After this update, the exact functionality order depends on the selected semantic
web framework. Yet, the required functionalities are: Structure ontological construct
> Invoke reasoner > Query local ontology (According to the received PolicyRule ID)
for policy decision. The result of this process is then matched with the corresponding



ActionRequest ID and transferred back to the Policy Management (PM) service.
Invocation: Invocation Originator =⇒ Invocation Form
1. Policy Decision Point (PDP) service =⇒ PolicyDecisionRequest Bundle.

Functionalities: Internal=*, Input=⇀, Output=↽
1-⇀ Receive PolicyDecisionRequest Bundle from PDPs
2-∗ Extract RefreshAlert

a-∗ IF RefreshAlert TRUE
i-↽ i. Send MH UpdateRequest to Contextual Monitoring service
ii-⇀ Receive MH UpdateResponse from CMs
iii-∗ Update local ontology

3-∗ Extract PolicyDecisionRequest/ s from PolicyDecisionRequest Bundle
4-∗ Create reasoner
5-∗ Insert ontological terminology and assertions

a-∗ For(all PolicyDecisionRequest/ s)
i-∗ Extract PolicyRule ID from PolicyDecisionRequest
ii-∗ Query local ontology according to PolicyRule ID
iii-∗ Extract PolicyDecision
iv-∗ Generate SecurityDecision

6-∗ Generate SecurityDecisionBundle
7-↽ Send SecurityDecisionBundle to Policy Management (PM) service

2.5 Contextual Monitoring Service

Description: The Contextual Monitoring (CM) service is not strictly bound to the secu-
rity architecture, since it serves multiple other actors and services including the quality
of service (QoS) architecture. The functionalities of CMs relate to the maintenance
of local awareness over the context under which the tactical nodes operate, including
local and remote dynamic information, related to services, information, networks, ra-
dios, nodes and subjects. These information are collected locally through other services
and by exploiting cross layer functionalities. Furthermore, entries in the CMs can be
updated globally utilizing policy administration processes. It must be noted that CMs
can also generate aggregated and statistical data for use within policy rules of limited
priority. This allows the definition of simplified policy rules of limited computational
complexity, for use under constrained network or local resources. For the two invo-
cation cases initiated by the Security Handling (SH) service, the CMs only returns
timely values of the corresponding attributes. Yet, for the invocation initiated by the
Metadata Handling (MH) service, the exact implementation of this process is system
specific and can vary significantly in terms of the syntax, context or both, regarding
the information transferred through the MH UpdateResponse. In this sense, the gener-
ated MH UpdateResponse may refer to a complete and updated policy copy or only the
timely values of the dynamic data and object properties (In which case their incorpo-
ration occurs at the MHs, during inserting the ontological terminology and assertions
Line 5 of MHs: functionalities).
Invocation: Invocation Originator =⇒ Invocation Form
1. Security Handling (SH) service =⇒ AttributeValuesRequest.



2. Security Handling (SH) service =⇒ CMsSnapshot IDRequest.
3. Metadata Handling (MH) service =⇒MH UpdateRequest.

Functionalities: Internal=*, Input=⇀, Output=↽
– For invocation type 1:

1-⇀ Receive AttributeValuesRequest from SHs
2-∗ Extract requested attributes
3-∗ Extract attribute values
4-∗ Generate AttributeValuesResponse
5-↽ Send AttributeValuesResponse to SHs

– For invocation type 2:
1-⇀ Receive CMsSnapshot IDRequest from SHs
2-∗ Extract timely value of ’ResourceAvailability’ semantic
3-∗ Extract timely value of ’RefreshAlert’ semantic
4-∗ Generate CMsSnapshot IDResponse
5-↽ Send CMsSnapshot IDResponse to SHs

– For invocation type 3:
1-⇀ Receive MH UpdateRequest from MHs
2-∗ Generate MH UpdateResponse
3-↽ Send MH UpdateResponse to MHs

2.6 Policy Enforcement Point Service

Description: The Policy Enforcement Point (PEP) service operates as the output of
the core security policy architecture towards the rest of the security or TSI services
deployed in the processing pipeline. The role of the PEPs is to identify the service that
provides the functionalities required for the enforcement of the policy decision, translate
it to a suitable format for enforcement, and communicate it to the initial RequestorID.
Invocation: Invocation Originator =⇒ Invocation Form
1. Security Handling (SH) service =⇒ SecurityDecision.
2. Policy Management (PM) service =⇒ SecurityDecision.

Functionalities: Internal=*, Input=⇀, Output=↽
1-⇀ Receive SecurityDecision from SHs or PMs
2-∗ Extract RequestorID from ActionRequestID
3-∗ Generate ActionResponse
4-↽ Send ActionResponse to RequestorID

2.7 Functional Security Services

Additionally to the aforementioned core security architecture components, a variety of
functional services can be incorporated in a modular manner through the TSI process-
ing pipeline. These services refer to the enforcement of all the predefined protection
goals (e.g. cryptography, management of digital certificates, access control, authenti-
cation, credential management, integrity protection, information labelling and filtering,
security token management, provenance assurance).

In addition to some non security related services (e.g. packet queue, service reg-
istry, message session management), these functional security services are expected to



invoke the extraction of policy decisions. Therefore, these services are assigned a Re-
questorID, and incorporate the appropriate interfaces towards the Security Handling
service and from the Policy Enforcement Point service (Denoted earlier as the singular
ActionRequest and ActionResponse interfaces). These services can be defined follow-
ing standardized processes. Yet, the developed architecture allows the incorporation of
national and tailored solutions, satisfying the requirement for modularity towards the
security enforcement mechanisms.

3 Test case based validation

As presented earlier, the designed TSI is targeted to the tactical domain. Thus the test
cases used for the validation of the designed architecture were developed in accordance
to common tactical operations, the experience gained from recent battlefields and the
analysis of future requirements. The used tactical operations (e.g. Convoy, Reconnais-
sance Surveillance and Target Acquisition (RSTA), intervention patrol, medical Evacu-
ation (MEDEVAC), cordon and search, area denial) have been separated to specific use
cases (e.g. Blue force tracking, Common Operational Picture (COP) distribution, injec-
tion of high mobility nodes, improvised explosive device (IED) detection and report, in-
teroperability with police forces) and detailed episodes (Addressed request/reply, mul-
tihop service invocation, service discovery, transitive service delivery, node isolation).

The communication between the defined core security services is achieved using
SOAP (Simple Object Access Protocol) messages, allowing the remote procedure call
across the services. It is apparent that the service functionalities as presented earlier,
correspond mainly to simple message modifications or substitutions. In this case a ded-
icated process receives a SOAP message (request) that contains all the required param-
eters, and transforms it into an invocation of the corresponding method. The resulting
SOAP message (response) contains the required parameters for the continuation of the
policy decision extraction process. Following this model, as presented in figure 3, an
ActionRequest (according to its components) is mapped to a SecurityDecisionRequest
by the Security Handling service. Consequently, the SecurityDecisionRequest (accord-
ing to its components) is mapped to an ActionRequest IDRepositoryEntry by the Policy
Management service, while the process continues until the extraction of a valid Action-
Response towards the corresponding functional security service.

According to the results of our experiments, it is important to note that the complex-
ity and dynamic adaptability of the developed mechanism is situated at the structure of
the ontological knowledge base, the governing policy rules, the fine grained definition
of action requests and the detailed incorporation of the available semantics, as described
earlier [6, 5, 7, 8, 3]. Contrary to that, the functionalities of the presented core security
services are kept at a low complexity level aiming for clear separation of duties within
the policy decision extraction process. Thus, the identification of the appropriate Secu-
rityDecisionRequest by the Security Handling service is a low complexity matching/-
querying process, despite of the fine-grained definition of security actions as a conjunc-
tion of the security domains (e.g protection, detection, diligence, response) and network
capabilities (e.g. NCV-NATO Capability View).



The executed validation experiments highlighted the functionalities of the Metadata
Handling service, and more precisely the reasoning phase (See: Metadata Handling
Service /Functionalities/5.a.i to iv), as the process with most significant impact in terms
of computational complexity within the policy decision extraction process. Aiming to
counteract this obstacle and maintain the support of the required network functionali-
ties, under a constrained operational status or across low capacity nodes, a variety of
countermeasures have been deployed within the security policy mechanism, which are
visible in the functionalities of the presented services.

– The Security Handling service can incorporate precomputed policy decisions, when
this has been deemed necessary at the mission preparation stage.

– The Policy Management service utilises resource availability metrics at the priori-
tization of the ActionRequest IDRepositoryEntries.

– The Policy Decision Point service connects each ActionRequest ID to a PolicyRule ID
in accordance to resource availability metrics. Thus, for each reasoning cycle the
complexity of the utilised policy rule depends on the locally available computa-
tional capacity. Additionally, as presented earlier, a default policy escape rule must
be defined (Across the prioritized dedicated rule stack) for each possible Action-
Request ID for use under highly congested scenarios.

– The Metadata Handling service can incorporate supplementary reasoners (OWL,
OWL Mini, OWL Micro) and instances of the local ontological knowledge base,
for use under highly congested scenarios.

– Finally, a dedicated policy distribution mechanism has been developed [7], for the
purpose of allowing the core security service architecture presented in this article,
to be operable across the various platforms deployed within a tactical network.

4 Conclusions

Our research within the security aspects of TACTICS is tripartite. The first completed
aspect was to analyse the requirements, validate, and recommend suitable controls and
mechanisms for their attainment (e.g. Recommendation of suitable solutions for the
enforcement of the identified protection goals through the functional services). Conse-
quently, the development of a suitable security policy framework, able to support and
govern the functionality of the aforementioned mechanisms was required, and has been
developed as presented earlier. The last major contribution towards a tactical SOA, has
been presented in this article and relates to the design of a core security service archi-
tecture, able to instantiate the functionalities of the other two elements. The developed
architecture provides configuration flexibility in a modular manner, while satisfying the
defined requirements dynamically under varying network conditions. Additional SOA
benefits include the information flow and performance improvement, maintaining the
capacity to integrate existing or tailored assets, with reduced development and man-
agement cost. In our future work we intent to utilize our existing experimental results
with the experience gained from the recent demonstration of the overall TACTICS TSI,
towards the fine-grained adaptation of the developed mechanisms to the realistic condi-
tions of contemporary areas of operations.



Acknowledgments

The results described in this work were obtained as part of the European Defence
Agency project TACTICS (Tactical Service Oriented Architecture). The TACTICS project
is jointly undertaken by Patria (FI), Thales Communications & Security (FR), Fraunhofer-
Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE (DE), Thales
Deutschland (DE), Leonardo (IT), Thales Italia (IT), Norwegian University of Science
and Technology (NO), ITTI (PL), Military Communication Institute (PL), and their
partners, supported by the respective national Ministries of Defence under EDA Con-
tract No. B 0980.

References

1. A. Aloisio, M. Autili, A. D’Angelo, A. Viidanoja, J. Leguay, T. Ginzler, T. Lampe, L. Spag-
nolo, S. D. Wolthusen, A. Flizikowski, and J. Sliwa, “TACTICS: tactical service oriented
architecture,” CoRR, vol. abs/1504.07578, 2015.

2. T. A. Lampe, C. Prasse, A. Diefenbach, T. Ginzler, J. Sliwa, and S. McLaughlin, “TACTICS
TSI Architecture,” International Conference on Military Communications and Information
Systems ICMCIS, 2016.

3. V. Gkioulos and S. D. Wolthusen, “Securing Tactical Service Oriented Architectures,” 2nd
International Conference on Security of Smart cities, Industrial Control System and Commu-
nications (SSIC), 2016.

4. V. Gkioulos and S. D. Wolthusen, “A Risk Analysis Approach Over Network Centric War-
fare and Tactical Service Oriented Architectures,” Submitted for review at: 7th International
Conference on Mathematical Methods, Models and Architectures for Computer Networks Se-
curity, 2017.

5. V. Gkioulos and S. D. Wolthusen, “Enabling Dynamic Security Policy Evaluation for Service-
Oriented Architectures in Tactical Networks,” Norwegian Information Security Conference
2015 (NISK-2015).

6. V. Gkioulos and S. D. Wolthusen, “A Security Policy Infrastructure for Tactical Service Ori-
ented Architectures,” 2nd Workshop on the Security of Industrial Control Systems and of
Cyber-Physical Systems (CyberICPS 2016), in conjunction with ESORICS 2016.

7. V. Gkioulos and S. D. Wolthusen, “Constraint Analysis for Security Policy Partitioning Over
Tactical Service Oriented Architectures,” Advances in Networking Systems Architectures, Se-
curity, and Applications - of Springer’s Advances in Intelligent Systems and Computing, 2016.

8. V. Gkioulos and S. D. Wolthusen, “Reconciliation of Ontologically Defined Security Policies
for Tactical Service Oriented Architectures,” International Conference on Future Network
Systems and Security-FNSS, 2016.

9. V. Gkioulos, A. Flizikowski, A. Stachowicz, D. Nogalski, K. Gleba, and J. Sliwa, “Interop-
erability of Security and Quality of Service Policies Over Tactical SOA,” IEEE Symposium
on Computational Intelligence for Security and Defense Applications (IEEE CISDA 2016) -
IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016), 2016.


