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ABSTRACT

A Domain-Decomposition (DD) strategy is proposed for

problems involving regions with slow variations of the flow (A)

and others where the fluid features undergo rapid changes (B),

like in the case of steady current past bodies with pronounced

local unsteadiness connected with the vortex shedding from the

structures. For an efficient and accurate solution of such prob-

lems, the DD couples a Finite Difference solver of the Navier-

Stokes equations (FD-NS) with a Multiple Relaxation Time Lat-

tice Boltzmann method (MRT-LBM). Regions A are handled by

FD-NS, while zones B are solved by MRT-LBM and the two

solvers exchange information within a strong coupling strategy.

Present DD strategy is able to deal with a dynamic change of the

sub-domains topology. This feature is needed when regions with

vorticity shed from the body vary in time for a more flexible and

reliable solution strategy. Its performances in terms of accuracy

and efficiency have been successfully assessed by comparing the

hybrid solver against a full FD-NS solution and experimental

data for a 2D circular cylinder in an impulsively started flow.

INTRODUCTION

Computational fluid dynamics (CFD) is becoming more and

more popular for hydrodynamics studies because of its poten-

tialities in terms of capabilities and limitation of computational

costs with respect to experiments. However there is no method

able to solve any generic problem efficiently and accurately (see

e.g. discussion in [1]). This is why there is an important effort in

developing Domain-Decomposition (DD) strategies where dif-

ferent solvers are used in time-space zones of the flow evolution

so to optimize the simulation outcomes in terms of reliability,

flexibility and costs.

The authors have already contributed to this research attempt

by developing various DD strategies, in the context of violent

water-structure interactions involving slamming and other non-

linear phenomena, such as breaking and fragmentation of the air-

water interface, entrapment of gas cavities (see e.g. [2], [3], [4]

and [5]). Here this approach is proposed for studying problems

associated with multiple time-scale phenomena. In the present

implementation, the framework is a body in a single-phase un-

bounded or bounded fluid domain under the action of a steady
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current which has practical applications, for instance, for sub-

sea structures. In this case, depending on the body geometry

and the involved Reynolds number Re, the current-structure in-

teraction leads to local rapid changes in the flow features due to

vortex shedding from the body. As the vortical structures leave

the body they tend to diffuse due to viscosity and the flow varia-

tions tend to become less strong and slower. To properly estimate

the current induced loads on the body it is necessary to properly

describe both the injection of vorticity in the fluid and the further

development of the wake. Present DD proposes to examine the

slowly varying regions with a classical Finite Difference (FD)

approximation of the Navier-Stokes (NS) equations and to treat

small unsteady regions with Multiple Relaxation Time-Lattice

Boltzmann method (MRT-LBM). The latter solves the discrete

Boltzmann equation from the statistical mechanics and has been

used more and more commonly in the last decades to simulate

fluid dynamic problems. Examples of applications for marine

problems are for instance [6], [7]. This method has shown high

suitability for problems associated with large Knudsen numbers

(Kn), where the Kn is the ratio between Mach and Reynolds (Re)

numbers. It means that it represents a valuable tool of analysis

for microfluids. Moreover, the explicit time marching scheme,

based on an advection and a collision step, makes it much more

efficient when dealing with unsteady problems with respect to

the classical CFD solvers that have to solve algebraic systems re-

sulting from the discretization of the NS equations (see [8]). On

the other hand, the method has a weakly-compressible nature and

so it is more computationally expensive for almost steady fluid

problems. In those cases the weakly compressibility effects have

to exit the computational domain, requiring longer times of simu-

lation and numerical strategies have to be used to filter out those

effects at the boundaries. This makes the classical CFD meth-

ods more efficient. Differently from [9] here the DD strategy is

able to deal with a dynamic change of the sub-domains topology,

allowing a much more flexible tool for bodies moving freely in-

side the whole computational domain. This numerical feature is

needed when the sub-domains, with different time-scale, modify.

For example at high Re the regions where the LBM contribute is

needed, i.e. those with relevant shed vorticity, change in time.

On the other hand this represents a core numerical challenge es-

pecially because both solvers operate on a multi-blocks decom-

position of the domain with a local mesh refinement. The major

difficulties are in the FD-NS side because it is required the so-

lution of a Poisson equation for the pressure and the available

solvers have difficulties when applied on multi-blocks with vary-

ing cell sizes, changing in time within a dynamic grid algorithm.

In the next section the two methods are briefly outlined, then

an important part of the work is devoted to the description of the

developed DD strategy. More in detail, the adopted procedure for

the dynamic change of the domains sizes is examined, highlight-

ing the criteria for the choice of the solver, the tracking of the

sub-domains boundaries and the exchange of information across

the sub-domains interface. The hybrid method is then applied to

the problem of a current past a body and the results are verified

against other numerical solutions and experimental data.

METHODS USED IN THE DOMAIN-DECOMPOSITION
Here a fluid-dynamic problem involving fluid regions with

phenomena governed by different time scales is examined by

means of a Domain-Decomposition strategy. In order to opti-

mize the solution in terms of accuracy and efficiency two meth-

ods have been selected. Both solvers are accurate to the second

order in space and time and are briefly outlined in the following.

The Lattice Boltzmann method The first is a Multiple Re-

laxation Time-Lattice Boltzmann method (MRT-LBM), which

models the fluid as particles in lattice cells associated with an

evolving probability distribution, and so it is well suited to han-

dle small-scale spatial and temporal flow features. The relax-

ation time leads to a weak-compressible modelling of the fluid.

The distribution function f̄ (r̄, t) of each particle, at position r̄ and

time t, enables to represent the average macroscopic properties

of the flow. Here the number of components of f̄ are equal to the

possible directions of particle advection, including the rest state.

Following the work in [10], the molecular motion of real fluids

is simplified and represented through cubices. In each of them,

the evolution equation of f̄ at the center is formally written as

f̄ (r̄+ c̄α ∆t, t +∆t)− f̄ (r̄, t) =−S · [ f̄ (r̄, t)− f̄eq(r̄, t)] . (1)

Practically the problem is subdivided into two steps: 1) a Col-

lision step, where the right hand side of the equation is imple-

mented to take into account the viscous effects. Practically the

distribution function f̄ is updated as a function of its distance

from the equilibrium conditions f̄eq; 2) an Advection step, where

the new distribution functions are convected to the new position

with the velocity c̄α .

The speed c̄α expresses all possible advections of the par-

ticle in the lattice. In the present case, f̄ has 19 components

and the corresponding speeds include the zero value (α = 0) and

the speeds bringing the particle to any face (α = 1−6) and side

(α = 7−18) center of the cube. The adopted 3D Lattice arrange-

ment is shown in figure 1 together with the velocity directions.

The LBM is based on the Boltzmann equation, a molecular de-

scription of a fluid directly incorporating physical terms due to

the interaction between molecules. Its discrete formulation can

be handled numerically more easily than its Navier-Stokes coun-

terpart that, however, can be derived from the Boltzmann equa-

tion in the continuous limit and for small Kn numbers.

The method preserves the mass and linear momentum and

it can be seen as a finite difference method with central deriva-

tion and explicit time integration scheme, with a second order

accuracy.
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FIGURE 1. MRT-LBM SOLVER: ARRANGEMENT OF A LAT-

TICE FOR THREE-DIMENSIONAL PROBLEMS.

In the present MRT-LBM [10], the single relaxation time is

substituted with a collision matrix S, whose eigenvalues are cho-

sen so that the relaxation times of the non-conserved quantities

(e.g. energy for athermal fluids) are shorter than the hydrody-

namic time scale. The velocity moments are written as a linear

function of f̄ and introduced in equation (1). This leads to a

source term in the right-hand side with some coefficients directly

linked to the shear viscosity and others directly connected to the

bulk viscosity. In this way the two viscous terms can be decou-

pled in the solution algorithm leading to a larger stability with re-

spect to other classical Bhatnagar-Gross-Krook approaches [11].

To help reducing the round-off errors in the density calculations,

the density ρ is decomposed in its average part ρ and its fluctua-

tion δρ , where δρ = ∑i fi . At a body surface a no-slip condition

is implemented using the Bounce Back (BB) method [12], [13],

based on the idea that a particle incident to the wall is automat-

ically bounced back into the flow and its tangent component is

switched in the opposite direction. The BB method is quite easy

to implement; in case of curved bodies, it involves interpolations

and, in the present implementation, it preserves the second-order

accuracy of the solver.

The LBM method leads to uncoupled equations between the

cells describing the fluid domain, so that it is easy to parallelize

the algorithm and to nest and Adaptive Mesh Refinement algo-

rithm in it. In particular here, PARAMESH is used [14], [15],

[16]. This package builds a hierarchy of sub-grids to cover the

computational domain, with spatial resolution varying to satisfy

the local features of the problem. The sub-grid blocks form the

nodes of a tree data-structure (quad-tree in 2D or oct-tree in 3D).

The local refinement halves the mesh size, this means that the

local time step has to be halved as well as some of the relaxation

matrix components have to be modified consistently. Very briefly

Collision and Advection steps are performed 2re flev−1 times for

each re flev refinement level (re flev = 1 is the coarsest level and

the level increases as the mesh size is halved) and the new infor-

mation are exchanged and propagated to the levels with equal or

higher refinement.

The Finite-Difference Navier-Stokes method In this case the

fluid is assumed as incompressible, viscous and in laminar and

isothermal conditions. It means that the governing equations are

the conservation of fluid mass and of fluid momentum for the

unknowns velocity ū and pressure p i.e.











∇ · ū = 0

∂ ū

∂ t
+(ū ·∇)ū =−

∇p

ρ
+

2∇ · (µD)

ρ

(2)

using an Earth-fixed coordinate system. Here µ is the dy-

namic viscosity and D the strain tensor and ρ and ū are, re-

spectively, the fluid density and velocity. Equations 2 are solved

in time, for given initial and boundary conditions, by a Finite-

Difference Navier-Stokes solver based on an approximated Pro-

jection method and combined with a Predictor-Corrector scheme

for the time integration. No body force is present, because it has

been neglected also in the MRT-LBM formulation. The fixed

grid is staggered with the scalar variables (i.e. ρ and p) defined

at the cell center and the velocity components on the grid faces.

The method is accurate to the second order in time and space and

involves the solution of a pressure Poisson equation for each sub-

set of the time-integration algorithm. The details of the solver

can be found, for instance, in [17].

DOMAIN-DECOMPOSITION STRATEGY

The two solvers described in the previous section have been

strongly coupled within the developed Domain-Decomposition

(DD) strategy. Local information are provided through the com-

mon boundaries of their sub-domains which modify in time when

a suitable criterion is satisfied. These DD features are described

in detail next. To make the solution efficient in time, the problem

is solved in a multi-block grid using an adaptive mesh refinement

according to the strategy in [18].

Division of the domain between the two solvers The features

of the AMR algorithm are extensively used in the DD strategy.

First of all, because the LBM is used to describe the generation

of vorticity and its later evolution, it needs to be discretized on a

more refined grid. So the level of refinement is used to identify

the division between the two domains. In particular a thresh-

old level of refinement levtreshold defines the boundaries between

the two solvers. All the leaves blocks, blocks at the local high-

est refinement level, characterized by refinement level greater

than levtreshold are used for the LBM solution, those with level

of refinement equal to levtreshold +1 and whose neighbours have

a boundary shared with a block of lower level are considered
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boundary blocks. The parents of these boundary blocks and all

the leaves with refinement level less than levtreshold + 1 identify

the part of the domain where the NS algorithm is applied.

Information exchange between the solvers The two sub-

domains overlap on the parents of the boundary blocks so that

the solution can be enforced to smoothly go from the particle-

to the continuous-fluid solver description. This feature has been

found useful for hybrid-solver strategies. Figure 2 gives an exam-

ple of fluid domain decomposition for the flow around a circula

cylinder: the MRT-LBM portion contains the body and the flow

regions interested by relevant shed vorticity while the remaining

domain is described by the FD-NS solver. The two solvers have

different time steps satisfying their own stability requirements

and describe the fluid in a different manner. The time step of the

LBM solver has stricter constraints so that the ∆tLBM is obtained

dividing by an integer value α the outer time step ∆t. As already

N S

L B M

overlapping

FIGURE 2. SKETCH OF THE PROBLEM: DEFINITION OF DD

SUB-DOMAINS. FOR THE FLOW AROUND THE CYLINDER,

THE REGION CLOSE TO THE BODY IS MODELLED WITH A

MRT-LBM, THE OUTER REGION WITH A NS, WITH LARGE.

SPATIAL DISCRETIZATION.

found stable for other DD strategies [3], the values of pressure

inside the FD-NS domain on the overlapping regions are used to

extrapolate the boundary pressure conditions for the MRT-LBM

at the n-th sub-time steps t + n∆t/α; vice versa, the values of

pressure and velocity at t +∆t/2 obtained from the LBM evo-

lution are given as boundary conditions to the NS solver (see

figure 3), that can thus calculate the velocity field at the t +∆t.

The two solvers equations are not written on the same variables,

FIGURE 3. EXCHANGE OF VARIABLES ACROSS THE OVER-

LAPPING REGION.

the FD-NS is based on pressure and velocity, the MRT-LBM on

the distribution function. The variables are then translated from

LBM to NS using the properties

∑18
i=0 fi = ρ

∑18
i=0 fic̄i = ρ ū

p = ρc2
s

(3)

where cs is the speed of sound. The pressure boundary condi-

tions from the NS to the LBM are written using the equilibrium

momentum

m̄ = m̄eq(ρ , ūbound) (4)

as described in [10] and where ūbound is the velocity in the cell

next to the considered boundary location.

Dynamic evolution of the two-solvers boundary As already

said, the MRT-LBM domain deals with the vorticity shed from

bodies and, for high Reynolds numbers, the regions where its

contribute is needed changes in time. Two threshold values of

vorticity ωl and ωu are associated to each refinement level higher

than levtreshold . If the minimum value of |∇× ū| inside the MRT-

LBM block is lower than ωl then the block is tagged for dere-

finement, if |∇ × ū| > ωu, the block is tagged for refinement,
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otherwise nothing happens. Once this operation has been per-

formed for each of the LBM blocks, the PARAMESH solver

is able to rearrange the blocks and refine/derefine the domain

and eventually change the boundary between the two solvers dy-

namically. Nonetheless it respects some properties in the refine-

ment/derefinement process, for example during the refinement

process, the refinement level is not allowed to jump by more than

1 refinement level at any location in the spatial domain. This pro-

cedure is computationally expensive so it is performed only every

N time steps, where N is to be assessed according to the dimen-

sions of the blocks, i.e. ensuring that, if the vorticity moves with

the reference velocity, it cannot travel for a length larger then the

minimum block size.

APPLICATION

The developed hybrid solver is applied here to the case of a

2D circular cylinder in an impulsively started flow. This choice

soon highlights the advantages of the DDD. In fact the NS solver

is applied on the coarsest refinement level on the whole fluid do-

main for the first time instants, when no vorticity is present in the

flow field. As soon as the vorticity develops, causing the detach-

ment of the flow from the cylinder, the LBM solution is initial-

ized. This allows a direct solution of the pressure impulse phase.

Pressure and velocity, calculated by the NS, are transformed in

distribution functions using the initial distribution weights and

the equations(3) [10]. Moreover, this shortens massively the time

to get almost to the steady state, in fact, in the MRT-LBM, the

impulsive start corresponds to the activation of shock waves that

propagate from the body and have to be filtered at the boundary

with the FD-NS.

Simulations of the flow around the cylinder have been per-

formed for five Reynolds numbers, respectively equal to Re =
10,20,40,100,200. For low Reynolds numbers, the time saving

with respect to the full Navier-Stokes solver is very limited be-

cause the grid does not need to be very fine to capture the details

of the flow. The time saving starts to be important for Re = 100

when the vorticity structures elongate and break up. There the

coarse discretization of the Navier-Stokes equation fails to cap-

ture this behaviour of the flow and the use of a finer mesh be-

comes expensive. With the DD strategy, the LBM allows to de-

scribe the evolution of the flow as shown in figure 4, where the

vorticity contours and the streamlines are displayed for the flow

at Re = 100. The mesh size of the coarsest level for the displayed

example is ∆x = R/5, where R is the radius of the cylinder and

there are four levels of refinement, this means that on the finest

level ∆x = R/40. The chosen ratio between FD-NS time step

and MRT-LBM time step is α = 10, to be sure that compress-

ible effects are limited. Despite this, the computational time to

simulate a period of oscillation of the wake with the full FD-NS

on the coarsest fine mesh is only 1.5 times smaller than that of

the DD with four levels of refinement and the details that can be

captured with the DD are way more than those that can be cap-

tured with a coarse FD-NS solver. An example of the accuracy

of the captured details can be appreciated in figure 5 where the

average detachment angle of the flow is plotted against a spectral

element method and experimental data form [19]. The present

hybrid solver fits well the other data and shows similar accuracy

as the numerical method by Wu and coauthors. For the largest

Re examined (Re=200), the DD overestimates the experimental

data while the full FD-NS solver underestimates them. It implies

a slightly lower drag force by the present solution. Moreover, the

good comparison with other numerical experimental data proves

that the initial condition does not influence the final-steady flow

regime but only the initial evolution of the wake.

FIGURE 4. FLOW BEHIND A CYLINDER AT RE=100 FOR TWO

DIFFERENT TIMES; THE DASHED LINE REPRESENTS THE

BOUNDARY BETWEEN THE MRT-LBM AND THE FS-NS.

Still some limitations of the present strategy can be spotted

in figure 4. There the MRT-LBM/FD-NS boundary is plotted at

two time steps with a bold dashed line. The highest vorticity

levels are in the MRT-LBM subdomain but a careful analysis of

the vorticity contours shows some local oscillations. It is easier

to spot them on the downstream vertical boundary that is kept

fixed throught the computation. There, it seems that a part of the

pressure signal is reflected back altering the local velocity field.

The same happens on all the boundaries impinged by the vor-

ticity but, because they are continuously changing in time, the

effects appear more limited and are, in a way, smoothed out by

the later evolution. This suggests that a suitable strategy must
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be identified in terms of the vorticity values ωl and ωu and of

the time-step ratio α so to minimize possible stability issues. To

perform an exhaustive investigation and to ensure solution insen-

sitivity from the numerical choices, different relevant problems

must be examined within the DD strategy.

FIGURE 5. DETACHMENT ANGLE OF THE FLOW AT DIFFER-

ENT REYNOLDS NUMBERS.

SUMMARY

An efficient and flexible Domain-Decomposition strategy

has been proposed for fluid dynamic problems involving quickly-

varying and slowly-varying flow regions. The hybrid solver

couples a Multiple Relaxation Time Lattice Boltzmann method

(MRT-LBM) with a classical Finite Difference approximation of

the Navier-Stokes equations (FD-NS). The MRT-LBM solves the

discrete Boltzmann equation from the statistical mechanics. It

has been used more and more commonly in the last decades to

simulate fluid dynamic problems. In particular, it has shown its

suitability to deal with low Knudsen numbers (Kn), where the

Kn is the ratio between Mach and Reynolds numbers; this has

made it a valuable tool of analysis for microfluids. Moreover,

the explicit time marching scheme, based on an advection and

a collision step, makes it much more efficient in respect to the

classical CFD solvers that have to solve algebraic systems for

unsteady problems. On the other hand, the weakly compressibil-

ity nature of the method makes it less efficient to deal with almost

steady fluid problems. Thus, within the DD, slowly varying re-

gions are solved by the FD-NS. Both the solvers operate on a

multi-blocks decomposition of the domain with a local mesh re-

finement. The DD strategy is able to deal with a dynamic change

of the sub-domains topology, allowing a much more flexible tool

for bodies moving freely inside the whole computational domain.

All features of the method have been described. These include

the adopted procedure for the dynamic change of the domains

sizes, criteria for the choice of the solver, the tracking of the

sub-domains boundaries and the exchange of information across

the sub-domains interface. The method was then applied to the

problem of a cylinder in an impulsively started current and its

performance was compared against another numerical solution

and experimental data. The choice of the application of the 3D

solver to a 2D problem was done to make the comparison with

other data easy and above all to visualize efficiently the dynamic

evolution of the solvers interface which represents the key ele-

ment of our proposed DD algorithm. Both the objectives were

achieved.
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