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Evaluating Association Football Player Performances
Using Markov Models

Association football player performance evaluation is subject to cognitive bias and sub-
jective opinions. This may lead to undesired risk in the process of scouting and signing
new players for clubs at the professional level. A likely result is inaccurate player valua-
tions, and in turn financially expensive mistakes in the transfer market. This thesis seeks
to develop data driven player performance evaluations, which objectively rates player
performances in the Norwegian top division. The impact of each individual player in-
volvement is estimated using Markov models. The performance evaluations are thought to
be supportive in the process of scouting and evaluating players.





Preface

This Master’s thesis is written for the Department of Industrial Economics and Technol-
ogy Management at the Norwegian University of Science and Technology. It concludes
the authors’ Master of Science, specializing in Investment, Finance and Financial Man-
agement. Both authors specialized in Empirical and Quantitative Methods in Finance, and
in Computer Science. The thesis was produced in the spring of 2017.

The presented work applies empirical and quantitative methods to association football.
The thesis is a result of an initiative between Rosenborg Ballklub and the Department
of Industrial Economics and Technology Management. Rosenborg Ballklub has stated
that they want to explore the use of data driven tools and statistical analysis. This thesis
seeks to bring such tools closer to the operations of the club, which can potentially yield a
competitive advantage.

June 5, 2017

Haakon Haave Håkon Høiland
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Summary

Historically, association football player performance evaluation has been based on sub-
jective opinions and intuition, which is subject to cognitive bias. This thesis develops
data driven player ratings, argued to tend towards objectivity. Two Markov models are
developed, and used to derive player ratings. Markov modelling of football requires dis-
cretization of a dynamic sport, but contextual features are chosen to minimize the loss of
information.

In order to identify an accurate measure of player performance, different player ratings
are proposed and validated. The validation consists of measuring the predictive power of
the player ratings on match outcomes, the ratings’ correlation with benchmark ratings and
inter-season correlations. Based on the validation, one measure of player performance is
chosen for further analysis.

Lists of the top performing players in different positions in Eliteserien are produced
from the ratings. Furthermore, player performance profiles are constructed, which include
players’ measured performance across different types of involvements. In order to iden-
tify similar players, the distances between players’ performance profiles are calculated,
believed useful for scouting replacement players. The impact of team quality on player
performance is identified and measured. This enables a player’s estimated performance
in a new club to be calculated. The combination of player ratings, identification of simi-
lar players and estimated player performances can potentially be used as a framework for
scouting players in professional association football clubs.
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Sammendrag

Evaluering av fotballspilleres prestasjoner har historisk sett vært basert på subjektive
meninger og intuisjon. I denne masteroppgaven utvikles data-drevne spillerratinger som
hevdes å tendere mot en objektiv evaluering av spillere. To Markovmodeller er utviklet og
deretter brukt til å utlede spillerratinger. Markovmodellering av fotball krever diskretiser-
ing av en dynamisk sport, men kontekstuelle faktorer er valgt ut for å minimere tapet av
informasjon.

Ulike spillerratinger er foreslått og validert for å identifisere et presist mål av spiller-
prestasjoner. Valideringsprosessen består av å måle spillerratingenes prediktive kraft på
kamputfall, korrelasjon med referanseratinger og korrelasjon på tvers av sesonger. Ett
spillerprestasjonsmål er valgt for videre analyse, basert på valideringen.

Ratingene brukes til å liste de beste spillerne i ulike posisjoner i Eliteserien. Videre
konstrueres spillerprestasjonsprofiler som inneholder spilleres prestasjoner innenfor ulike
typer involveringer. Avstanden mellom spilleres prestasjonsprofiler kalkuleres for å iden-
tifisere lignende spillere, noe som kan være nyttig når spillere skal erstattes. Lagnivåets
påvirkning på spilleres prestasjoner er identifisert og målt. Dette muliggjør estimering
av en spillers prestasjon i en ny klubb. Kombinasjonen av spillerratinger, identifisering
av lignende spillere og estimering av spillerpresstasjoner kan potensielt bli brukt som et
rammeverk for å kartlegge spillere i profesjonelle fotballklubber.
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Chapter 1
Introduction

The prevalence of statistical analysis in sports has increased rapidly over recent decades.
As abundant data has become available, and the computing power has improved, new
possible applications for analytics in sports have emerged. The emerging field is known
as sports analytics, and introduce the application of statistics, mathematics, operation re-
search, economics and computer science to sports (Coleman, 2012). The purpose of sports
analytics is to help decision makers make better assessments, hence better decisions. The
objectives of sports clubs are twofold, the first relates to the sports performance on the
field, and the second relates to management and financial issues. Although not mutually
exclusive, these two areas represent the main areas to which sports analytics is applied
(Maxcy and Drayer, 2014).

The competition on the professional level is tough in all sports. Association football,
referred to as football in this thesis, is considered the biggest sport in the world, mea-
sured by media coverage, fan base and active players (Biggest Global Sports, 2017; Total
Sportek, 2017). Rising ticket prices, high player salaries and gigantic transfer fees prove
the sport’s popularity and the enormous amounts of money circulating around the sport
(The Football Forecast, 2016). In a highly competitive environment, where a small com-
petitive advantage could lead to on-field as well as financial success, the importance of
sports analytics is well established (Marr, 2015). All clubs in the English Premier League
have data analysts with technical backgrounds in their staff. As of 2014, Manchester City
employed 11 data analysts, while Brentford FC and the Danish club FC Midtjylland base
their operations heavily on data and statistics (Lewis, 2014; Ingle, 2015).

In football, the on-field performance depends largely on how the individual players
perform. Traditionally, the assessment of player performances have been qualitative and
conducted by humans, which introduce cognitive bias. Simple statistics, such as number of
goals scored, number of assists or key passes, and passing accuracy have been used to sup-
port the qualitative player performance evaluations. As sports analytics has emerged, it is
now possible to evaluate player performances using comprehensive, quantitative models.
Such models allow decision makers in sports clubs to monitor and assess the performances
of own players, but the models also play a substantial role in scouting and player recruit-
ment (Radicchi and Mozzachiodi, 2016).
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Chapter 1. Introduction

Sports analytics has aroused academic interest. While the practice of sports analytics
within sports clubs is kept unpublished and undisclosed, an increasing amount of academic
work is being published. Originating from the statistics in newspapers and on the back
of trading cards, sports analytics has grown as data and computing power have become
available, first moving into the decision-making process in sports clubs, and now into
universities and academic circles (Cochran, 2010).

1.1 Motivation

The Norwegian football club, Rosenborg Ballklub (RBK), wants to explore the sports an-
alytics field. RBK is the most successful Norwegian club, having won the national top di-
vision, currently named Eliteserien, 24 times, and having qualified 11 times for the group
stage of Europe’s most prestigious football competition, the UEFA Champions League.
The club has initiated cooperation with the Institute of Industrial Economics and Technol-
ogy Management at the Norwegian University of Science and Technology to pursue data
driven decision support. This master’s thesis, and the work on which the thesis is based,
results from this initiative. Few studies of Norwegian football and Eliteserien exist, and the
integration of analytics in Norwegian clubs appear minimal. This thesis adds to the lim-
ited academic work on sports analytics in Norway. The integration of analytics in football
clubs can reveal valuable competitive advantages, and an increasing amount of academic
work on sport analytics might increase the focus on analytics in Norwegian clubs.

Player evaluation is an area where intricate analysis can provide a competitive advan-
tage. Data driven player evaluation eliminates cognitive bias from the evaluation process.
Decision makers in football clubs may use data driven performance measures to monitor
and assess the performance of own players, and as a tool when scouting new players. Sub-
jective player evaluations may lead to undesired risk in the process of signing new players
in professional football clubs. Therefore, fair and precise player evaluations may help
avoid expensive mistakes in the transfer market.

Finding suitable players for a specific role or position require a large and proficient
scouting network. Data driven player evaluations may facilitate more effective disposal of
the scouting resources in professional clubs. In the presence of valid data driven player
performance evaluations, an initial screening of players can be done for several leagues
without actually watching the players. In turn, a shortlist of players can be identified, and
time and money can be saved in the process of further scouting the potential players.

1.2 Research Questions

This thesis considers data driven player performance evaluations in football. As such,
a data driven player rating must be developed. As the roles of goalkeepers and outfield
players are too different to be studied on the same premises, only outfield players are
considered. Furthermore, the possible applications and limitations of data driven ratings
need to be explored to determine the relevance for professional football clubs. To formalize
the aims of the thesis, three research questions are presented below. The work in this thesis

2



1.3 Report Structure

seek to answer these questions, and the questions will be evaluated at the end of Chapter
6, based on the results.

RQ1: Can outfield association football player performances be objectively and ac-
curately evaluated by data driven player ratings, derived from Markov models?

RQ2: Can data driven player evaluations be used to identify similar players?

RQ3: Is there a relationship between team quality and individual player perfor-
mances?

1.3 Report Structure
Chapter 1 serves as an introduction, and presents the motivation and the research ques-
tions which lay the foundation of the thesis.

Chapter 2 presents the underlying theory of the statistical and technical methods applied
in the thesis.

Chapter 3 gives an overview of the relevant literature, and an introduction to sports ana-
lytics.

Chapter 4 describes the definition and development of two different Markov models, used
to evaluate player involvements later in the thesis, and describes the data used to build the
models and evaluate players.

Chapter 5 describes the procedure for rating players, the validation tools, and the ap-
proaches for finding similar players and investigating team quality’s impact on player per-
formance.

Chapter 6 presents the results of the validation process and the highest rated players in
each position. An analysis of identified similar players and a discussion of how team qual-
ity impacts player performance follow.

Chapter 7 gives an overview of the important findings. Conclusions are presented, based
on the presented results in light of the motivation behind the thesis.

Chapter 8 presents ideas for extending the presented work in future research.

3
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Chapter 2
Basic Theory

The basic theory behind the methods applied in this thesis is presented in this chapter.
Markov chains are introduced first, followed by the extension named Markov games. The
theory behind ordinal logistic regression is presented next, followed by a description of
k-fold cross-validation, the Brier score and the k-nearest neighbours methodology.

2.1 Markov Chains
A Markov chain is a stochastic process which fulfills the Markovian property. A Markov
chain model consists of a defined state space where each state occurs with a certain prob-
ability. The Markovian property says that the next state, given the current state, only
depends on the current state (Hillier and Liebermann, 2015). Observable systems, such
as a football game, can be modelled as a Markov chain by defining a state space and ob-
serving the occurrences of states and state transitions. The Markov chain reward model is
an extension of the Markov chain model, which is used when a reward is associated with
certain states. It is natural to use the Markov chain reward model approach when modeling
football, where rewards can be used to model goals. Formal definitions of Markov chains
and Markov reward models are presented next.

2.1.1 Definitions
Adapting the notation from Littman (1994), a Markov reward model is defined by the tuple
〈S, T,R, β〉, where

• S = {s1, s2, ..., sm} is a finite set of states, where each state describes the current
state of the stochastic process.

• T : S → Π(S) is the transition function which defines the probability T (s, s′) of
ending in state s′ ∈ S given the initial state s ∈ S.

• R : S → R is the reward function, which gives the immediate reward, R(s), given
the state s.

5



Chapter 2. Basic Theory

• 0 ≤ β < 1 is an optional discount factor which can be used to make short term
rewards more valuable than long term rewards.

Algorithm 1 Markov Chain Value Iteration

Require: Maximum iterations M, convergence criterion c, Markov game model
lastV alue← 0
currentV alue← 0
converged← false
for i = 1; i ≤M ; i+ + do

if converged = false then
for all states s in Markov game model do

V (s)temp ← β 1
Occ(s)

∑
s′∈S Occ(s, s

′)(R(s′) + V (s′))

currentV alue← currentV alue+ |V (s)temp|
end for
for all states s in Markov game model do

V (s)← V (s)temp
end for
if currentV alue−lastV aluecurrentV alue < c then

converged← true
end if

end if
lastV alue← currentV alue
currentV alue← 0

end for

2.1.2 State Valuation and Transition Probabilities

A state s is valued based on the immediate reward and value of the possible successive
states. Formally, the value of a state s is given by

V (s) = β
∑
s′∈S

(T (s, s′)(R(s′) + V (s′)) (2.1)

where s′ is the state which directly follows s. The state and transition probabilities from
an observed system can be estimated from their actual occurrences. Following the notation
from Routley (2015), where

• Occ(s) is the number of occurrences of state s.

• Occ(s, s′) is the number of times state s lead directly to state s′.

Then

T (s, s′) =
Occ(s, s′)

Occ(s)
(2.2)

6



2.2 Markov Games

Equation 2.1 can then be written as

V (s) = β
∑
s′∈S

Occ(s, s′)

Occ(s)
(R(s′) + V (s′)) = β

1

Occ(s)

∑
s′∈S

Occ(s, s′)(R(s′) + V (s′))

(2.3)
Following (Hillier and Liebermann, 2015), an absorbing state is a state which the pro-

cess will never leave once it has been entered, meaning T (s, s′) = 0 for all s′ ∈ S when s
is absorbing. When absorbing states exist, and the transition probabilities are known from
the occurrences, each V (s) can be learnt iteratively through dynamic programming. The
dynamic programming algorithm iterates every state and state-transition repeatedly until
the state values converge. The pseudocode of the algorithm is shown in Algorithm 1.

2.2 Markov Games
The Markov game concept originates from game theory, and is an extension of the Markov
chain reward model described in Section 2.1. A Markov game model aims to model one
or more agents acting in a defined environment. The environment is described by a state
space, and each decision maker may perform an action from a defined action set. The
agents’ actions initiate a transition which brings the agents to the next state. Each agent
has a reward associated with each transition, and the goal for each agent is to maximize
its future reward. The zero-sum Markov game is a special case of a Markov game, where
two agents interact in an environment with diametrically opposite goals. This resembles a
football game, where one goal up for one team means one goal down for the other team.
Another special case of a Markov game is the Markov Decision Process (MDP). In the case
of an MDP, there is only one active agent, meaning a stationary environment is assumed.
A formal description of Markov games and MDPs is presented next.

2.2.1 Definitions
Using the notation from Littman (1994), an n-player Markov game is defined by the tuple
〈S,A1, . . . ,An, T,R1, . . . , Rn, β〉, where

• S = {s1, s2, . . . , sm} is a finite set of states which makes up the environment.

• Ai = {a1i , . . . , aki} is a finite set of actions available to agent i where ki is the
number of actions available to agent i.

• T : S ×A1 ×A2 × · · · × An → Π(S) is the transition function which defines the
probability T (s, a1, a2, . . . , an, s

′) of ending in state s′ ∈ S given the initial state
s ∈ S and actions a1 ∈ A1, . . . , an ∈ An by the agents.

• Ri : S ×A1×A2×· · ·×An → R is the reward function, which gives the expected
immediate reward of player i,Ri(s, a1, a2, . . . , an), given the initial state s ∈ S and
actions a1 ∈ A1, . . . , an ∈ An.

• 0 ≤ β < 1 is an optional discount factor which can be used to make short term
rewards more valuable than long term rewards.
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A two-player zero-sum Markov game simplifies the tuple to 〈S,A,O, T,R, β〉, where
A is the set of actions available to player one and O is the set of actions available to
player two, referred to as the opponent. Only one reward function, R, is needed, because
the players have diametrically opposite goals. One player seeks to maximize the reward,
while the other player seeks to minimize the reward. An MDP can be simplified further
to 〈S,A, T,R, β〉, as there is only one active decision making agent (Littman, 2001). The
remainder of Section 2.2 focus on two-player zero-sum Markov games MDPs, as that is
most relevant for this thesis.

2.2.2 State and Action Valuation
Following Littman (2001), a policy π describes the behaviour of an agent. π : S → Π(A)
defines the probability distribution over actions in A for an agent, given a state in S.
Specifically, π(s, a) is the probability of choosing action a in state s. Qπi (s, a, o), referred
to as a Q-value, denotes the expected future reward for agent i when the agents choose
actions a ∈ A and o ∈ O in state s ∈ S, and the game continues according to policy π.
V πi (s), referred to as a state value, denotes the expected future reward for player i in state
s, when the game continues according to policy π. When the game is zero-sum, the values
are simply Qπ(s, a, o) and V π(s), where higher values are desirable for the maximizing
agent and lower values are desirable for the minimizing agent.

The Q and state values regardless of policy are defined as Q(s, a, o) and V (s), respec-
tively, and correspond to the average values over all policies. In an MDP there is only
one active action maker, which makes Q(s, a) the expected value of the state-action pair
consisting of the performed action a in state s. Following Littman (2001), the Q-values
are found by solving

Q(s, a, o) = R(s, a, o) + β
∑
s′∈S

T (s, a, o, s′)
∑

a′∈A o′∈O
π(s′, a′)π(s′, o′)Q(s′, a′, o′)

(2.4)
In the case of an MDP, the equation is simplified to

Q(s, a) = R(s, a) + β
∑
s′∈S

T (s, a, s′)
∑
a′∈A

π(s′, a′)Q(s′, a′) (2.5)

The expected value of a state, V (s), is a function of the value of each possible action in
the state given by

V (s) =
∑
a∈A

π(s, a)Q(s, a) (2.6)

for an MDP. Equation 2.5 can then be written as

Q(s, a) = R(s, a) + β
∑
s′∈S

T (s, a, s′)V (s′) (2.7)

2.2.3 On Policy Learning and Value Iteration
Markov games are commonly used to learn optimal policies, hence learning the optimal
action in each state and maximizing Q(s, a). An alternative approach is to watch the
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policies carried out by the players, and the corresponding rewards, in order to compute
the expected Q and state values. This approach is called on policy learning (Poole and
Mackworth, 2010), and has been used by Bjertnes et al. (2016) and Routley (2015) in
similar theses.

Following the notation from Routley (2015)

• Occ(s) is the number of occurrences of state s.

• Occ(s, a) is the number of occurrences of action a in state s.

• Occ(s, a, s′) is the number of times action a in state s lead directly to state s′.

Then

T (s, a, s′) =
Occ(s, a, s′)

Occ(s, a)
(2.8)

and

π(s, a) =
Occ(s, a)

Occ(s)
(2.9)

The following equation is obtained by substituting Equation 2.8 into Equation 2.7

Q(s, a) = R(s, a) + β
∑
s′∈S

Occ(s, a, s′)

Occ(s, a)
V (s′)

= R(s, a) + β
1

Occ(s, a)

∑
s′∈S

Occ(s, a, s′)V (s′)

(2.10)

Let R(s) be the actual immediate reward of state s, then

Q(s, a) = β
1

Occ(s, a)

∑
s′∈S

Occ(s, a, s′)(R(s′) + V (s′)) (2.11)

and by substituting Equation 2.9 into Equation 2.6, the following is obtained

V (s) =
1

Occ(s)

∑
a∈A

Occ(s, a)Q(s, a) (2.12)
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Algorithm 2 Markov Game Value Iteration

Require: Maximum iterations M, convergence criterion c, Markov game model
lastV alue← 0
currentV alue← 0
converged← false
for i = 1; i ≤M ; i+ + do

if converged = false then
for all state-action pairs (s, a) in Markov game model do

Q(s, a)← β 1
Occ(s,a)

∑
s′∈S Occ(s, a, s

′)(R(s′) + V (s′))

currentV alue← currentV alue+ |Qi(s, a)|
end for
for all states s in Markov game model do

V (s)← 1
Occ(s)

∑
a∈AOcc(s, a)Q(s, a)

end for
if currentV alue−lastV aluecurrentV alue < c then

converged← true
end if

end if
lastV alue← currentV alue
currentV alue← 0

end for

The concept of learning the state and Q-values on policy is known as reinforcement
learning. Value iteration is a reinforcement learning algorithm which iterates through all
states and actions in the Markov game repeatedly. State and Q-values are computed using
Equations 2.10 and 2.6 until the values converge. Value iteration was used by Bjertnes
et al. (2016) and Routley (2015), reviewed in Chapter 3. The pseudocode of the value
iteration is shown in Algorithm 2.

2.3 Ordinal Logistic Regression: The Proportional Odds
Model

Ordinal logistic regression is applicable when the dependent variable is discrete and or-
dered (Benoit, 2012). Following Benoit (2012), let the data set consist of n observations
on the form 〈Yi, X1i, X2i, . . . , Xki〉 for observations i = 1, 2, . . . , n. The dependent vari-
able, Y , takes one ofC ordered values j = 1, 2, . . . , C with probability π(j) = P (Y = j).
X1, . . . , Xk denotes the k explanatory variables. The set of observed Yi values are as-
sumed statistically independent of each other.

Let

γ(j) = P (Y ≤ j) = π(1) + π(2) + · · ·+ π(j) for j = 1, 2, . . . , C − 1 (2.13)

be the C − 1 cumulative probabilities. γ(C) = P (Y ≤ C) = 1, thus it does not need to be
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modelled. The following holds for each observation i in each category j = 1, 2, . . . , C−1

log

(
γ

(j)
i

1− γ(j)
i

)
= log

(
P (Yi ≤ j)
P (Yi > j)

)
= α(j) − β1X1i + β2X2i + · · ·+ βkXki (2.14)

The C − 1 intercept terms are denoted α(1), . . . , α(C−1) and the k variable coefficients
are denoted β1, . . . , βk. The intercept terms and variable coefficients are estimated using
maximum likelihood. The proportional odds model assumes that the relationship between
each pair of outcomes is the same. This means that only one coefficient, β, is computed for
eachX , and that the γ(1), γ(2), . . . , γ(j) curves are parallel. Equation 2.14 can be rewritten
to get the following expression for the cumulative probabilities

γ(j) = P (Y ≤ j) =
exp

(
α(j) − (β1X1 + β2X2 + · · ·+ βkXk)

)
1 + exp

(
α(j) − (β1X1 + β2X2 + · · ·+ βkXk)

) (2.15)

Each intercept term must be α(1) < α(2) < · · · < α(j), to guarantee that γ(1) <
γ(2) < · · · < γ(j). The probabilities of each category is

P (Y = 1) = γ(j) for j = 1

P (Y = J) = γ(j) − γ(j−1) for j = 2, . . . C − 1

P (Y = C) = 1− γ(C−1) for j = C

(2.16)

2.4 k-fold Cross-Validation
Cross-validation is a technique used to measure the predictive performance of a statistical
model. The model can be trained and fitted to a data set, but may not be able to predict
new independent data on which the model is not trained. This is called overfitting, and a
trade-off between a good fit and good predictive power is introduced. The model should fit
the data, but overfitting the model will reduce its predictive power. Cross-validation aims
to limit the problems of overfitting by leaving out a portion of the data when fitting the
model, and testing the model against this portion.

k-fold cross-validation is one variation of cross-validation where the data is randomly
partitioned into k equally sized subsamples, referred to as folds. In each iteration, one of
the k folds are used as test data while the remaining k − 1 folds are used as training data.
A statistical model, e.g. a regression model, is built on the training data, and then tested
on the test data to measure the predictive power of the model. The process is repeated k
times until all k folds are used as test data exactly once. k is an unfixed parameter, but
10-fold cross-validation is commonly used (Geoffrey et al., 2004).

2.5 Brier Score
The Brier score measures the accuracy of probabilistic predictions. The set of possible
outcomes can either be binary or categorical, and the assigned probabilities must sum to
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one. Following Wilks (2011), the Brier score is essentially the mean squared error of the
predictions, where observation o(j) = 1 if event j occurred, and o(j) = 0 if event j did not
occur. Letting γ(j) denote the probability that event j occurs, the Brier score is given by

BS =
1

C

C∑
j=1

(γ(j) − o(j))2 (2.17)

where C is the number of possible outcomes. The Brier score takes values in the range
0 ≤ BS ≤ 1. A perfect prediction receives BS = 0, and less accurate predictions receive
higher Brier scores.

The Brier skill score is often computed to evaluate a Brier score. The Brier skill score
is given by

BSS = 1− BS

BSref
(2.18)

where BSref is the Brier score of a reference prediction, often given by the long term
probabilities or a benchmark prediction. The Brier skill score describes the relative skill
of a prediction over that of the reference prediction. The Brier skill score takes values
in the range −∞ < BSS ≤ 1, where negative values mean that the prediction is less
accurate than the reference, BSS = 0 means no skill compared to the reference, and a
positive value means a better prediction than the reference prediction.

2.6 k-Nearest Neighbours
The k-nearest neighbours is an instance-based learning algorithm used for classification,
meaning no model is built and the instances represent all the knowledge. The algorithm
assumes that all instances correspond to points in the p-dimensional space Rp, and is
commonly based on the Euclidean distances between a test instance and the instances in
a specified training sample (Mitchell, 1997). Let X be an input sample consisting of n
instances with p features.

X =


x1

x2

...
xn

 =


x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp

 ,xi ∈ Rp (2.19)

The Euclidean distance between a test instance, xt, and an instance in the training sample,
xs, is then given by

d(xt,xs) =

√√√√ p∑
j=1

(xtj − xsj)2 (2.20)

Each instance in the training sample belongs to a class ω = ω1, ω2, . . . , ωm, where m
is the number of different classes. Following the k-nearest neighbour rule, the k near-
est neighbours of a test instance are found by calculating the Euclidean distance to all
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instances in the training sample. By majority voting, the test instance is assigned to the
class to which the majority of the k nearest neighbours belong to (Peterson, 2009). In the
special case where number of instances equals the number of different classes, n = m,
the algorithm identifies the k instances which are most similar to the test instance. If the
features have different scales, the values have to be normalized to ensure that the distance
measure is not dominated by features with a large scale.
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Chapter 3
Literature Review

The use of data analysis, aimed at decision support in sports, has increased rapidly in re-
cent years, and is commonly referred to as sports analytics. As the field is considered
premature, and might be unfamiliar, a general introduction to sports analytics is presented
in the first section of this chapter. The remaining sections concern literature directly rel-
evant to this thesis. To the authors knowledge, no research is published on identifying
similar players nor the impact of team quality on individual performances. As such, the
reviewed literature concerns data driven player performance evaluation and applications of
Markov models in sports. Following the introduction to sports analytics, previous works
on player performance evaluation in football is presented. Studies that apply Markov mod-
els to football is presented next, followed by a review of Markov models in other sports.

3.1 Introduction to Sports Analytics

The purpose of sports analytics is to unveil competitive advantages through the use of
data analysis. Today, most professional sports teams have their own analytics department
(Steinberg, 2015). The increased attention towards sports analytics was sparked by the
book Moneyball, written by Michael Lewis, released in 2003. Moneyball is the story of
the baseball team Oakland Athletics, who successfully built a competitive player squad,
based on statistics, despite spending noticeably less on player salaries than their competi-
tors. Coleman (2012) reviews 140 journals, and states that sports analytics research has
been published for over 50 years. It is found that the number of sports analytics publica-
tions, in proportion to other research areas, has increased rapidly during the last 20 years.
Furthermore, it is argued that the field is maturing, based on refereed journal articles.

Data is readily available from the professional leagues themselves and third-party
providers. This enables sophisticated, statistical analysis. Analytics can be applied in
many domains, including game and player performance, player selection, customer re-
lationships, business management and injury prevention (Davenport, 2014). Baseball is
considered an early adapter of analytics, and the baseball analytics organization Society
for American Baseball Research was founded in 1972 (Neese, 2015). The nature of base-
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ball facilitates the identification and analysis of key performance indicators (KPIs). The
flow of the game can be simplified to discrete events with low loss of information, com-
pared to most major team sports. Most baseball situations can be modelled as one versus
one situations, whereas several players often interact simultaneously in other team sports.
In addition to baseball, several other sports have been studied by academics, including ice
hockey, basketball, football and others.

Benjamim Reep is dubbed the father of football analytics by Anderson and Sally
(2014), and his work on scoring probability and directness of play introduced the sta-
tistical approach to football. Football analytics has increased along with analytics in other
sports, and several aspects of the sport have been studied. Physical aspects such as energy
demand (Mohr et al., 2011), injury prevention (Caraffa et al., 1996) and physical output
(Nørregaard et al., 1991) has received attention from academics. A much discussed metric
is expected goal, which is a measure of the probability of a shot ending in goal, given input
parameters such as distance, angle and others. One such study is Bjertnes et al. (2016),
where 10 significant shot outcome variables are identified. Several studies look at KPIs,
and the number of shots, shooting accuracy, possession percentage and passing accuracy
seem to be important determinants of match outcome (Bjertnes et al., 2015; Oberstone,
2009; Lago-Peñas et al., 2010).

3.2 Data Driven Player Performance Evaluations
The evaluation of player performances has traditionally been carried out by humans,
through the staff in sports clubs, experts or journalists in the media. The rise of sports
analytics has introduced data driven sports rating systems, which are supposed to remove
cognitive bias and tend towards objectivity.

McHale et al. (2012) describe the development of The EA Sports Player Performance
Index. The index evaluates football player performances, and was the official player rating
system in the English Premier League, the English Championship and the Scottish Premier
League for several seasons. The rating system is based on six separately constructed and
calculated subindices, each capturing different aspects of the game. The captured aspects
are match contribution, winning performance, match appearance, goals scored, assists and
clean sheets. A player’s match contribution subindex is a measure of how many points the
player won for his team during the game. A Poisson model is used to estimate the number
of goals a team will score, given their number of shots, their shot accuracy, the opponent’s
blocking capability and the opponent’s goalkeeping capability. A linear regression on
how much each player’s actions improve the team’s likelihood of a shot is then used to
estimate the player’s match contribution in terms of points. Data from seasons 2002-2003
and 2003-2004 was used in the development of the index. The data was event-based and
followed the actions on the ball. The final index is a weighted sum of the six subindices,
and was the first index to rate individual players in a team sport using a single common
score, regardless of playing position (McHale et al., 2012).

Brooks et al. (2016) describe a player rating system based entirely on the value of
completed passes. These values are derived by looking at the relationship between pass
locations and generated shot opportunities. Event-based data from the 2012-2013 La Liga
season is used. A supervised machine learning model is used to learn the relative proba-
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bilities of generating a shot later in the possession. By mapping these values to the player
who performed the passes, the authors rank all players with more than 200 passes. The au-
thors claim that the derived rankings are largely consistent with general perceptions. The
ranking receive high correlations with offensive score metrics such as number of goals
scored and number of assists.

Sæbø (2015) and Sæbø and Hvattum (2015) evaluate match contributions of football
players by applying an adjusted plus-minus model. The plus-minus statistic of a player is
given by the number of goals his team scores minus the number of goals his team concedes,
while the player is on the pitch. Regression-based player ratings are derived, based on the
plus-minus statistic. The player ratings are used as input in a regression model, along with
other variables, for analyzing transfer fees and evaluating the efficiency of the transfer
market. To measure the predictive power of the plus-minus statistic, Sæbø (2015) uses the
statistic to forecast the outcome of football matches. All matches in the 2013-2014 Premier
League season are simulated, which results in a simulated league table. The derived ratings
manage to identify top players in European football and a player’s rating is identified as
important when determining the transfer fee. Bjertnes et al. (2016) develop player ratings
based on the estimated value of each players’ individual involvements. As this work uses
Markov models to estimate involvement values, it is discussed in the next section.

3.3 Markov Models in Football
Bjertnes et al. (2016) use Markov reward models to model football, based on data from
Eliteserien. Two different Markov reward models, referred to as Model 1 and Model 2 in
this section, are built and validated. States and state transitions are constructed from event
based data from the 2014 and 2015 seasons. Possible actions are defined, such as pass,
shot and tackle, which lead to state transitions. By counting the occurrences of each state
and each state transition, the probability of ending in a certain state, given the current state,
is computed. Goals are defined as absorbing states, yielding a reward of 1 and −1 for the
home and away team, respectively. As such, the home team seek to maximize the reward,
while the away team seek to minimize the reward. The expected values of states, V (s),
and state-action pairs, Q(s, a), are estimated using value iteration.

Bjertnes et al. (2016) define the state in Model 1 as which team had the ball, which
zone the ball was in, the current score, and the manpower difference. Model 2 adds event
type to the state definition, as well as a binary outcome variable and the zone in which
the ball ended. This means that Model 2’s state space is larger. However, Model 1 has
more complex state transitions as actions are incorporated in the transitions. Model 1 re-
sembles a Markov game, while Model 2 resembles a Markov chain. The expected values
of states and state-action pairs are used to rate individual players. This is done by map-
ping every action of each player to the corresponding state-action pair in Model 1 and
the corresponding state in Model 2. The ratings are normalized per 90 minutes in order to
compare players. In Model 1, the involved player is rewarded the valueQ(s′, a′)−Q(s, a)
for each performed involvement, where Q(s′, a′) is the expected value of the state-action
pair which directly follows the player’s involvement. The argument for looking at the
next state-action pair is that this captures how a player involvement actually influenced the
game. However, a drawback of this method is that the player performing the next action
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may choose an action with a low Q(s′, a′) value. In this case a player can be punished
for the next player’s poor decision. Model 2 rewards the players the value V (s) for each
performed involvement. This means that the players are not punished for the next player’s
action, but it also means that a player may be rewarded too heavily in certain cases.

Bjertnes et al. (2016) compare the player ratings from Model 1 and Model 2 using
inter-season correlations. The correlation between seasons in Model 2 is 0.90, meaning
that the players are rated similarly in one year compared to another. The correlation is 0.19
in Model 1. It is argued that player performances are expected to be consistent between
seasons, meaning Model 2 evaluates players more reliably than Model 1. The models’
evaluations are also compared to player ratings by journalists. The journalist ratings are
susceptible to cognitive bias, but it is argued that valid player ratings should resemble the
media ratings to some extent. Both models yield correlation coefficients of approximately
0.5 with respect to the media ratings. A drawback, admitted by the authors, is that de-
fenders appear to receive lower ratings than offensive players. It seems like the models
are struggling to reward tackles and interceptions, typical actions for defenders. Goals are
heavily rewarded in both models, which means the strikers score the highest values.

Hirotsu and Wright (2002) model football as a Markov process with four states. These
states are team A scores, team A is in possession of the ball, team B scores and team
B is in possession of the ball. The probability distribution of the final score from any
position in a match is estimated, and used to estimate the optimal time to change tactics and
make substitutions. The work is continued in Hirotsu and Wright (2003a) and Hirotsu and
Wright (2003b), where the same type of model is used to evaluate and visualize offensive
and defensive strengths of teams in the English Premier League. Dynamic programming
is used to derive the optimal substitution strategy and to determine how many of each type
of player should start a match.

3.4 Markov Models in Other Sports
Routley (2015) models ice hockey as a Markov game, and the work resembles that of
Bjertnes et al. (2016). The state context is defined by goal differential, manpower differ-
ence, game period and the action history. The addition of action history creates a more
complex state space, compared to Bjertnes et al. (2016). A larger state space implies that
more data is needed to achieve reliable results. The model is built on seven years of data,
which is significantly more than Bjertnes et al. (2016), meaning a more complex state
space might be viable. The complexity is mitigated by a small set of actions, and ending
sequences frequently. The average sequence consists of 4.87 states, which limits the length
of the action histories in the states. Routley (2015) use the model to derive player ratings.
The players are rewarded the value Q(s, a)− V (s) for each of their involvements, where
Q(s, a) is the expected value of performing action a in state s, and V (s) is the expected
value of the state in which the action was performed. The model yields player ratings with
a correlation of 0.71 between seasons, argued to support the validity.

Several studies have used Markov chains to model basketball. A two-state model is
presented in Kvam and Sokol (2006), used to predict the winner of college basketball
matches. The team’s previous performances were used to estimate the transition probabil-
ities. The resulting predictions are described as better than standard and subjective ranking
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systems. Shirley (2007) builds a more extensive Markov chain model, defining a state by
the team in possession, how the team won possession and how many points were scored
in the last possession. All possible ways of winning position is captured by the five in-
corporated values, namely inbound pass, steal, offensive rebound, defensive rebound and
free throw. 0, 1, 2 or 3 points were scored in the last possession and one of two teams
has possession. Consequently, 5 × 4 × 2 = 40 states are defined. However, if possession
is won by a steal, no points were scored in the last position, meaning only 30 states are
actually possible. Data from professional basketball games is used to estimate the the ex-
pected number of points scored in each state. In order to estimate win probabilities, 1000
games were simulated for each team. The author questions some of the results, argued to
relate to the the limited data set of 4.5 games. Nevertheless, the predicted win probabili-
ties are described as close to the actual win percentages. Strumbelj and Vracar (2012) use
the same state definition as Shirley (2007), but build the model from one whole season of
play-by-play data. Transition probabilities for each team are observed in the data. Monte
Carlo simulation is then used to predict game outcomes, based on the involved teams’
transition probabilities. The quality of the predictions are described as inferior to implied
betting probabilities, but comparable to other statistical methods.

Batting order is a widely discussed topic in baseball, and choosing the right batting
order is considered an important aspect of baseball strategy. Bukiet et al. (1997) use
a Markov chain to find optimal batting orders, run distributions and expected wins per
team. 25 Markov states are defined, describing the number of runners on the bases and
the number of missed batting attempts. Statistical information about the batters are used
to compute the set of transition probabilities for each batter. Using the batting order and
the transition probabilities, the number of expected runs for a team can be computed. In
a specific game, the distribution of expected runs for the two teams is used to produce
winning probabilities for each team. The process is repeated for many games, resulting
in expected wins per team. Asaro (2016) use a similar approach to find optimal batting
orders and expected wins, but extend the work by estimating the effect of trading players.
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Chapter 4
Markov Models

Two different Markov models are presented in this chapter. Markov models have previ-
ously been used to model team sports, including football, as described in Section 3.3 and
3.3. The presented models are inspired by Bjertnes et al. (2016), but several improvements
are proposed. Football games are modelled as a Markov chain in the first model, referred
to as Model 1, and modelled as a Markov game in the second model, referred to as Model
2. The Markov modelling approach implies that football games are divided into distinct
states, depending on the current environment of the game. Despite football being a dy-
namic game, the discretization required by a Markovian approach has shown promising
results (Bjertnes et al., 2016). The values of states and state-action pairs can be deducted
from the Markov models, learned through value iteration. With a large set of data, i.e. data
from many football games, the learned values are believed to closely resemble the actual
values of the modelled situations. Data from Opta Sports is used to build the models. To
make it easier to understand how the models are built, the data is introduced first. Model
1 is then presented, followed by Model 2.

4.1 Data

The Markov models are built on data collected by Opta Sports, which is a credible, in-
ternational sports data provider. The data set includes the Opta feeds for every match in
Eliteserien, seasons 2014, 2015 and 2016. The structure of the data follows Opta’s F24
data format. Each game has its separate XML file with a list of events in chronological
order. Most of the events are related to actions on the ball, and each file has approximately
1600 events. The events describe which player acts on the ball and the event type. Some
events are unrelated to the ball, such as substitutions, bookings, and end of a period. Each
event includes information about where the event occurred, whether it was successful or
not, and the ball’s end position. Figure 4.1 illustrates the structure of the data, where the
red box highlights a single event in the data. The data also includes separate data files
with squad lists and information about the players in Eliteserien, e.g. age, nationality and
playing position.
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Figure 4.1: Illustration of Opta’s F24 data structure. A single event is highlighted in the red box.

Three Opta expert analysts collect the data during each game, utilizing specialized
software. One expert collects home team data, one collects away team data, and the third
checks data consistency. In addition to the live data collection, there is a post-match data
check within 48 hours to ensure data accuracy (Opta Sports, 2016). Although rigorously
controlled by Opta, the data collection process may introduce some human collection er-
rors or inaccuracies.

The data is read, restructured and organized in a relational database. Every XML file is
read, using the Java Document Object Model interface, and all events and event attributes
are stored in the database. The event class in the database stores the data in an intelligible
and manageable format opposed to the XML files, and contains most of the information
needed to build the Markov models. The event feed, represented by the event class in the
database, is read when building the models and the associated states, further described in
the model descriptions.

4.2 Model 1
Model 1 resembles the second model presented by Bjertnes et al. (2016), reviewed in
Section 3.3. The games from Eliteserien seasons 2014, 2015 and 2016 are modelled as a
Markov chain reward model, following the theory introduced in Section 2.1. There are no
agents taking decision based actions to move from one state to another, which is why this
model is not considered a Markov game. A description of the state definition is presented
next, followed by how Model 1 was constructed and the value iteration process.

4.2.1 State Definition
As explained in Section 2.1, the state describes the environment which the stochastic pro-
cess is currently in. The state definition includes context variables and event type, illus-
trated in Figure 4.2. The context variables explain the circumstances in which an event
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Figure 4.2: Model 1’s Markov chain state definition.

occurred, and are summarized in Table 4.1 with their respective, possible values. The
event types are listed in Table 4.2.

Table 4.1: The context variables of Model 1 and their respective, possible values.

Variable Possible values
Team [Home, Away]
Match status [−1, 0, 1]
Period [1, 2, 3, 4]
Zone [1, . . . , 21]

Team tells which team performs the event described by the event type variable, and
takes one of two values, home or away. Match status takes the value 0 when the score
is even, −1 when the away team leads and 1 when the home team leads. The frequency of
different event types are believed to be influenced by the score. For instance, a team that
already leads may take fewer chances, leading to a lower frequency of shots. The expected
value of otherwise equal states may also be affected by the score, e.g. certain passes may
have a higher expected value if the team already leads. The opponent may push more
players forward, leaving them vulnerable in defence, in turn making a goal more likely.

The pitch is divided into 21 zones, illustrated in Figure 4.3. Zone is assigned to a state
from the perspective of the team given by the Team variable, where this team plays from
left to right. This means that zones 1-3 are the most defensive zones, and zones 18-21 are
the most offensive. A higher number of zones will result in more accurate modelling, but
also rapid state space growth. Too many states will lead to few occurrences of each state,
which is likely to cause unreliable state values. The difference between zones are thought
to be bigger in the offensive half. Therefore, the offensive half is divided into 12 zones,
which is three more than the defensive half. In comparison, Bjertnes et al. (2016) used
15 zones where only three were in the defensive half. The increased number of zones is
considered an improvement which is likely to result in more precise modelling.

Period distinguishes otherwise equal states at different points in time of the games.
The variable takes value 1 during the first 23 minutes, value 2 during the remaining time
of the first half, value 3 during the first 23 minutes of the second half and value 4 during
the remainder of the game. An otherwise equal state may have a different expected value
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Figure 4.3: Illustration of how the pitch is divided into zones. The active team plays from left to
right and Zone takes the value of the zone where the event happens.

in one period compared to another. Players are expected to be more tired towards the end
of the game. This might make otherwise equal states more likely to lead to a goal later,
compared to earlier, in the game.

The possible Event type values are shown in Table 4.2. Most of the event types are
given by Opta. Opta defines a long pass as a pass over 32 metres and a cross as a ball played
into the box from wide areas. These definitions are used in the model. Two variables are
added to the existing Opta feed by the authors, namely Ball carry and Ball received. Ball
carry is added because there are gaps between events in the data. Opta do not consider
simply moving the ball as an event unless the player takes on an opponent. However, it
is included in the model because bringing the ball into a more dangerous position can be
valuable. Ball received is included to fill another gap in the data. Opta includes if a pass
reaches a player on the same team or not, but does not actually note an event when the
ball is received. This led to some unintuitive event sequences where Pass was directly
followed by Tackle. This is solved by adding ball received. A similar ball carry event
type was introduced by Bjertnes et al. (2016), but ball received has not been used in the
previous work.

Table 4.2: The event types which the Event type variable can take in Model 1.

Pass Long pass Cross
Free kick pass Corner Throw in
Take on Ball carry Ball touch
Aerial duel Ball received Ball recovery
Shot Headed shot Shot blocked
Tackle Interception Clearance
Foul committed Fouled

States with the Aerial duel event type always appear in pairs, one for each team. The
second aerial duel state is then followed by a pass or shot state from the team that won
the duel. Another such pair is Fouled and Foul committed. Ball recovery occurs when
neither team was in control of the ball and usually occurs after a tackle, a clearance or a
blocked shot. Shots are split into two different variables, headed shot and shot. Shot is
used for every shot which is not a header, as classified by Opta. Distinguishing headers
from regular shots is considered an improvement on the models by Bjertnes et al. (2016).
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Figure 4.4: The absorbing Markov model states. The state values are set to 0 and the goal states
have reward 1 or −1.

The model considers the probability of scoring in a given state as the total number of goals
divided by the number of attempts. It is generally accepted that, all else equal, it is harder
to score from a header than from a regular shot. This is supported by the expected goal
models by Bjertnes et al. (2016) and Caley (2015). Consequently, headed shots will have
a too high expected value, while regular shots will have a too low expected value, when
headed and regular shots are considered equal. This leads to inaccurate, and sometimes
unfair, evaluation of shots, in turn leading to inaccurate player evaluations.

All shot and headed shot states that result in a goal lead to one of two artificial states,
Home goal or Away goal. Two separate goal states are necessary because they have dif-
ferent rewards. Home goal has reward R(s) = 1 and Away goal has reward R(s) = −1.
Every other possible state has reward R(s) = 0. The Home goal and Away goal states are
absorbing, meaning no transitions are made out of these states. A third absorbing state,
End of period, is used at the end of each half of each game. The absorbing states do not
have context variables, and are illustrated in Figure 4.4.

Shot blocked was not included by Bjertnes et al. (2016), but is included in an attempt
to better reward defenders. States with blocked shot as Event type will always follow
states with Shot or Headed shot as Event type. Interception and Ball touch are fairly
similar event types, and both represent events where players are not in control of the ball.
Interception is used when a player stops a pass from reaching its target, while ball touch
is used in every other situation where a player touches the ball without controlling it. The
remaining event types in Table 4.2 are self explanatory.

A manpower difference variable was applied in the Markov models by Bjertnes et al.
(2016). This variable would show the difference in number of players on the pitch for the
two teams, primarily affected by red cards. Red cards are rare in Eliteserien, which means
states with manpower difference different from zero have few occurrences. Consequently,
the state values are likely to be unreliable, and the manpower difference variable is not
used in this thesis.

A total of 2 × 3 × 4 × 21 = 504 combinations of Team, Match Status, Period
and Zone exists. Multiplied by the 20 different event types, 504 × 20 = 10080 states
are possible. Additionally, the three artificial absorbing states makes the total number of
theoretically possible states 10083. However, some states are very unlikely, such as shots
in the defensive zones. The actual observed number of states in seasons 2014, 2015 and
2016 in Eliteserien is 7738.
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4.2.2 Constructing the Markov Chain

In order to construct the state space of the model, the event feed in the database is read
in the order which the events occurred, game by game. The state definition of Model
1 allows each event in the database feed to map to exactly one state. However, several
different events may map to the same state. States are constructed the first time they
appear while reading the data. The attributes of each event are compared to the already
constructed states while iterating the events. If the event maps to an already constructed
state, the occurrence of that state, Occ(s), increments and the event is updated with the
state’s identifier in the database. If the event does not match an already constructed state,
a new state is constructed with Occ(s) = 1.

When all events in the database are updated with a state identifier, the complete state
space is constructed. Next, state transitions are constructed. The event feed is re-read,
focusing on each event’s newly added state identifier, which points to a specific state. Two
subsequent events are processed at a time. A state transition is defined by two states,
and represents a transition from one state, s, to another state, s′. For each pair of events,
the state identifier of the event that occurred first is treated as s, and the state identifier
of the following event as s′. State transitions are constructed the first time two events
corresponding to the states s and s′ occur consecutively. Each pair of events map to exactly
one state transition, but several event pairs may map to the same state transition. The event
pairs are compared to the existing state transitions. A new state transition is constructed
if none of the previously constructed state transitions has the identifier of s as start and
the identifier of s′ as end. The occurrence, Occ(s, s′), of new transitions is set to 1 and is
incremented if the state transition has already been constructed.

In addition to the states observed in the data, the three artificial states, representing
Home goal, Away goal and End of period, illustrated in Figure 4.4, are inserted into
the database. These states represent absorbing states, meaning that no state transition starts
in these states and the state values of these states will never be updated. The artificial goal
states are the only states which have rewards different from 0.

4.2.3 Value Iteration

The state values, V (s), can be learned from the observed states and state transitions, with
the respective occurrences, stored in the database. Algorithm 1, presented in Section 2.1,
is applied to learn the state values. A convergence criterion, which determines when the
algorithm terminates due to a small change in the state values, of 0.00001, and a maxi-
mum number of 10000 iterations is used. The values converge after 247 iterations. Each
iteration of the outermost loop in the algorithm runs through all state transitions listed in
the database. For each state transition, the state value of the start state is updated. In one
iteration, the state value of a state s, is updated for each end state, s′, where a transition
from s to s′ exists. As the value of a goal in football is independent of how many events
have occurred before the goal, an undiscounted model is used. Choosing the model to be
undiscounted, practically means the discount factor β is set to 1. Consequently, the state
values are updated according to the equation
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V (s) =
1

Occ(s)

∑
s′∈S

Occ(s, s′)(R(s′) + V (s′)) (4.1)

which is equivalent to Equation 2.3 with β = 1.
While within a specific iteration, the state values are stored temporarily. The state val-

ues are updated after each iteration is finished. Only the goal states has a reward different
from 0, and only the absorbing states has an initial state value, which is set to 0. Conse-
quently, the only state values updated in the first iteration are the values of the states where
a transition between the state and a goal state exists. Figure 4.5 illustrates the algorithm.
Figure 4.5a shows the states and the state values before running the algorithm. In order to
simplify the figure, the context variables Match status and Period are not shown. After
iteration one, the state values of states leading directly to a goal state have been updated,
as shown in Figure 4.5b. The red numbers in the figure illustrate the values that have been
updated in the last iteration. As more iterations are completed, more state values are up-
dated, until the algorithm eventually converges. The algorithm has not yet converged after
five iterations in the example, shown in Figure 4.5c. Occ(s, ∗) denotes the occurrence of
transitions from state s to any state not shown in the example. The intermediate iterations
are illustrated in Figure A.1 in Appendix A.
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Figure 4.5: Model 1 value iteration example, illustrating Algorithm 1.

(a) Before running the algorithm. No state values are set, except the goal states, which have a value
of 0 and reward of 1 or −1. States not illustrated explicitly in the figure are denoted ∗.
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(b) After iteration 1. The state values of the states leading directly to a goal are updated. The updated
values are highlighted in red. One state lead to a goal in one out of four occurrences. Another state
lead to a goal in one out of three occurrences. Thus, after iteration 1, these states are valued 0.250
and 0.333, respectively.
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(c) After iteration 5. The values of most states shown in the figure have been updated. The state value
updated in the current iteration is highlighted in red, while state values in bold have been updated in
previous iterations. As subsequent states not illustrated explicitly in the figure, denoted ∗, are yet to
be updated, the state values in the figure will be updated in later iterations. The algorithm converges
when the state values changes by less than the predetermined convergence criterion.
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4.3 Model 2
Model 2 resembles the first model presented in Bjertnes et al. (2016), reviewed in Section
3.3, but introduces several proposed improvements to the previous work. The games from
Eliteserien, seasons 2014, 2015 and 2016 are modelled as a zero-sum Markov game, intro-
duced in Section 2.2. The state definition and agent actions are presented next, followed
by how the Markov game was constructed and the value iteration process.

4.3.1 State Definition and Actions
As explained in Section 2.2, the state defines the current environment of the game. The
state definition is illustrated in Figure 4.6. Four context variables are shown in Table 4.3
with their respective possible values. The state definition differs from Model 1 by event
type not being included in the state definition. An event initiates a transition in Model
2, and maps to a Markov game action. Consequently, Model 2 is considered a Markov
game, while Model 1 is a Markov chain. The modelling approach translates each team
involved in a game to a Markov game agent. This means that two agents are playing a
zero-sum Markov game, as the two teams have diametrically opposite goals. Each team is
represented by its players, meaning that the players take actions on behalf of their team.
Because only one team makes an action at a time, the Markov game is considered a Markov
decision process, following the theory presented in Section 2.2.

Figure 4.6: Model 2’s Markov game state definition.

Zone is the same as in Model 1 and takes values between 1 and 21. Figure 4.3 in
Section 4.2 illustrates how the pitch is divided into zones. The zones are assigned to the
states from the perspective of the team who is in possession of the ball, given by the Team
variable, where the team plays from left to right.

Team is included to describe which team is in possession of the ball. This is different
from Model 1, where Team describes the team which performed the event. Figure 4.7
illustrates this difference by an example where a home team player tackles an away team
player and wins possession. Figure 4.7a shows the example in terms of Model 2. The
away team has possession, shown by the Team variable. The home team chooses the
tackle action, which initiates the transition. The tackle leads to the home team having
possession, meaning Team = Home in the next state. Figure 4.7b illustrates the same
example in terms of Model 1. The difference is that the team variable in Model 2 takes
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Table 4.3: The context variables of Model 2 and their respective, possible values.

Variable Possible values
Team [Home, Away, None]
Match status [−1, 0, 1]
Period [1, 2, 3, 4]
Zone [1, . . . , 21]

the value of the team who performs the tackle, i.e. the home team in the example. A
state transition is made to the state which corresponds to the next event in Model 1, where
Event type in the end state takes the value of the next event, which is a pass in the
example. The use of the team variable in Model 2 is believed to more closely model the
flow of football games, and to make the state transitions more intuitive, compared to Model
1.

(a) Model 2 tackle illustration. The tackle by a home team player initiates a transition from a state
where Team = Away to a state where Team = Home.

(b) Model 1 tackle illustration. A home team player performs the tackle, hence the first state has
Event type = Tackle and Team = Home. The next state has Team = Home because the tackle
was successful.

Figure 4.7: Illustration of how a sequence involving a tackle is modelled differently in Model 2
compared to Model 1. A home team player tackles an away team player and the home team player
wins the ball. The home team player then makes a successful pass. The important difference is the
value of the Team variable in the first state.

The purpose of the team variable in Model 2 is to model who is in possession of the
ball. Therefore, the third variable value None is added, used when neither team controls the
ball. For instance, Opta’s ball recovery event is used when neither team was in control of
the ball. Consequently, whenever a ball recovery action occurs, it must initiate a transition
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Figure 4.8: Ball recovery illustration. The ball recovery happens after a shot which is blocked.
No-one controls the ball prior to a ball recovery, hence the state before the ball recovery has
Team=None. Team=Away in the next state as an away player recovered the ball.

from a state with Team = None to a state where Team is the team who performed the ball
recovery. This is illustrated by Figure 4.8, where the home team performs the ball recovery
action. In the example, the ball recovery follows a shot which was blocked. None as a
Team value has not been applied in previous work and is considered an improvement. By
introducing this value, the model will resemble the actual flow of the game more closely.
This is thought to result in more precise valuation of states and state-action pairs.

(a) Unsuccessful pass followed by non-offensive action. The transition initiated by the pass leads to
a state where Team=None because neither team had control of the ball after the pass.

(b) Unsuccessful pass followed by offensive action. The transition initiated by the pass leads to a
state where Team=Away because the away team captured and controlled the ball after the unsuc-
cessful pass.

Figure 4.9: Illustration of how unsuccessful passes are modelled in Model 2. The Team variable
in the second state depends on the second action.

None is also used when passes are unsuccessful, which is given by the data, unless
it leads to the other team performing an offensive action directly. Figure 4.9a illustrates
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an unsuccessful pass followed by an interception. A player is not in control of the ball
when he intercepts, hence the pass action must initiate a transition to a state with Team =
None, and the interception must initiate a second transition to a third state. The away team
takes control of the ball after the interception in the example. Figure 4.9b illustrates an
unsuccessful pass by the home team which is directly followed by a long pass by the away
team. In order for the away team to perform the long pass, the unsuccessful pass from the
home team must have lead to the away team having possession directly, as illustrated in
the figure. Team = None in the start state whenever a state transition is initiated by an
aerial duel. An aerial duel means the ball was in the air and neither team was in possession,
hence Team = None is appropriate.

The Period and Match status variables are similar to that of Model 1. Period takes
the value 1 during the first 23 minutes, value 2 during the remaining time of the first half,
value 3 during the first 23 minutes of the second half and value 4 during the remainder of
the game. Match status takes the value 1 when the home team leads, −1 when the away
team leads, and 0 when the game is even.

Table 4.4: The action set A in Model 2.

Pass Long pass Cross
Free kick pass Corner Throw in
Take on Ball carry Ball touch
Aerial duel Foul committed Ball recovery
Shot Headed shot Shot blocked
Tackle Interception Clearance

Table 4.4 shows the set of available actions, A. Both teams can choose from the same
set, but only one team will make an action at a time. However, when a certain state occurs,
the set available to each team is practically a subset of A and will be different for the two
teams. For instance, the team in possession will not choose to tackle, and the team not in
possession can not choose to pass. A largely resembles the set of event types in Model
1. Because of how Team behaves in Model 2, Ball received is redundant and therefore
not used. Fouled is also left out because it does not fit with how the flow of the game is
modelled. Instead, only Foul committed is included. For a more detailed explanation of
the actions, see the description of the different event types in Section 4.2.

The number of possible values of each context variable, shown in Table 4.3, means that
the number of possible states is 3 × 3 × 4 × 21 = 756. Additionally, the three artificial,
absorbing states, Home goal, Away goal and End of period, are included, making the
number of possible states 759. 18 different actions are available, meaning the number of
possible state-action pairs is 756 × 18 = 13608. All 759 states occur in the data, while
8085 different state-action pairs are observed.

4.3.2 Constructing the Markov Game
To construct the Markov game, the event feed is read from the database, game by game.
The events from each game are read in the order which they occurred. States, state transi-
tions and state-action pairs are built while iterating the events. The introduction of None
as a Team value makes the process of building state and state transitions more complex,
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compared to Model 1. For instance, before a ball recovery can be inserted, an additional
state must be inserted with Team = None, and the previous transition must be manipu-
lated to lead to this state. This is also the case for the different pass events which may lead
to an aerial duel. Furthermore, unsuccessful passes that initiate a transition to a state with
Team = None are separated from passes that initiate a transition to a state where Team
takes the value of the opposing team.

Each event maps to a state transition, and the start state and action is given by the event.
The end state is based on the context of the game and where the ball ends after the event.
Depending on the action type, the next state is either given by the end coordinates of the
current event or by the start coordinates of the next event. States and state transitions are
stored in the database with unique identifiers, and each event is marked with the identifier
of the corresponding state transition in the database. A state transition consists of a start
state s, an end state s′ and an action a. A new state is created and stored in the database the
first time it occurs as a start state. The occurrence, Occ(s), is set to 1. Similarly, new state
transitions and state-action pairs are created the first time they occur, with the respective
occurrences, Occ(s, a, s′) and Occ(s, a), set to 1. If an event corresponds to a start state,
a state transition or a state-action pair that already exists, the corresponding occurrence is
incremented by 1. The three absorbing states, Home goal, Away goal and End of period
are added manually. The goal states are the only states with rewards different from 0, and
the absorbing states have value V (s) = 0.

4.3.3 Value Iteration

Algorithm 2, presented in Section 2.2.3, is applied to learn the state values, V (s), and
the Q-values, Q(s, a). A convergence criterion, which determines when the algorithm
terminates due to a small change in the state values, of 0.00001, and a maximum number
of 10000 iterations is used. The values converge after 162 iterations. The outermost loop
iterates all state-action pairs in each iteration and updates the Q-values. Each Q-value is
updated according the equation

Q(s, a) =
1

Occ(s, a)

∑
s′∈S

Occ(s, a, s′)(R(s′) + V (s′)) (4.2)

which is equivalent to Equation 2.11, setting the discount factor β = 1. As the value
of a goal in football is independent of the number of prior events, β = 1 is appropriate.
The state values, V (s), are updated after each iteration, according to Equation 2.12. Figure
4.10 illustrates an example of running the value iteration algorithm for Model 2. As shown
in Figure 4.10a, only the absorbing home goal state has an initial value, set to 0, and reward
R = 1. To simplify the figure, the context variables Match status and Period are not
shown, and ∗ denotes any state or action not shown in the example. After iteration 3,
illustrated in Figure 4.10b, most of the state values and Q-values have been updated, but
the values will continue to change as long as there are other states and state-action pairs
being updated. The intermediate iterations are illustrated in Figure A.2 in Appendix A.
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Figure 4.10: Model 2 value iteration example, illustrating Algorithm 2.

(a) Before running the algorithm. No state values and Q-values are set, except the goal states, which
have a state value of 0 and reward of 1 or−1. Subsequent states and actions not explicitly illustrated
in the figure are denoted ∗.
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(b) After iteration 3. Most state values and Q-values shown in the figure are updated. Values updated
in the current iteration are highlighted in red, while values in bold have been updated in previous
iterations. Subsequent states and actions not explicitly illustrated in the figure are denoted ∗. As the
values of subsequent states and state-action pairs, are yet to be updated, the illustrated values will be
updated in later iterations.

4.4 Modelling Examples

The previous sections have presented and described the characteristics of the two Markov
models. As illustrated, Model 1 and Model 2 model the game differently. In order to
further clarify the differences between the models, the modelling of a longer sequence is
illustrated in this section. This is illustrated with two different figures, one representing
Model 1 and one representing Model 2. The sequence is taken from the match between
Lillestrøm and Rosenborg in Eliteserien 2016, Rosenborg being the away team. In the
modelled sequence, a Rosenborg player carries the ball from the right side of the pitch,
inwards across the halfway line. The ball is passed short, and then passed further forward
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into the penalty area. Here, the ball is passed short, before a shot is made. The shot is
blocked by a Lillestrøm player, another Lillestrøm player recovers the ball outside the
penalty area and then the player makes a pass.

Figure 4.11: An illustration of how the game sequence example is modelled according to Model 1.

Figure 4.11 illustrates how Model 1 models the sequence. Recall that Model 1 is a
Markov chain, and thus no agents are taking actions to move from one state to another.
The first state in the figure illustrates a state with Event type = Ball carry, which is one
of the event types added by the authors. A transition to the next state is made, where
Event type = Pass. The next state describes the away player receiving the ball in zone
11. This event type is the second event type added by the authors to make a more realistic
model of the game flow. Four states describing passes and players receiving the ball follow,
before a state with Event type = Shot occurs. The shot is blocked by the home team in
the next state, and then recovered in the following state. The home team then makes a pass
and receives the ball in the next states before the game continues beyond the illustration.
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Figure 4.12: An illustration of how the game sequence example is modelled according to Model 2.

Figure 4.12 illustrates the same sequence, modelled by Model 2. As Model 2 is a
Markov game, actions initiate transitions between states. Fewer states are needed to model
the sequence, compared to Model 1, because Model 1 requires states with Event type =
Ball received. Additionally, the team variable can take the value None in Model 2. The
first state in Figure 4.12, illustrates a home player in possession of the ball in zone 9. Then
an action, a = Ball carry, is made, moving the game into the next state in zone 12. The
figure illustrates two passes moving the game into zone 11 and then into zone 20. Another
pass is made, but the following state is the same as the previous state. Then a shot is made,
moving the game into a new state where Team = None. In this state, neither the home
nor the away team is in possession of the ball. A new action is made, taking the value
Blocked shot. In the following state, the team variable is still None. The next action is
a ball recovery, which moves the game into a state where the home team is in possession
of the ball in zone 5. A pass is made, and the home team possesses the ball in zone 4,
illustrated by the last state in the figure.
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Chapter 5
Experimental Setup

The experimental setup is described in this chapter. The experiment is designed to answer
the research questions presented in Section 1.2. First, four impact functions, measuring
the values of player involvements, are presented. The state and state-action values, V (s)
and Q(s, a), from the Markov models, presented in Chapter 4, are used to estimate player
impact. The impact functions are used to evaluate player performances, and aggregated
and normalized impact values are proposed as data driven player ratings. Next, the vali-
dation methods are presented. The player ratings must be carefully validated, in order to
ensure that player performance is described by the ratings. The goal of the validation is
to identify which of the four impact functions result in the most accurate player evalua-
tions. Next, an approach to identify similar players is presented. Similarity is measured
by utilizing the player ratings and the nearest neighbour methodology. Last, an approach
to measure teams’ impact on individual player performances is presented. Here, players
who have played for more than one team and players that have played for the same team
in successive seasons are studied independently.

5.1 Player Performance Evaluation

The proposed procedure for evaluating player performance is presented in this section.
The players are rated based on their individual involvements throughout the games which
they have played. The values of states, V (s), in Model 1 and the values of states and
state-action pairs, V (s) and Q(s, a), in Model 2 make up the foundation used to evaluate
individual player involvements. The value of an individual player involvement is referred
to as impact. Four different impact functions are proposed as measures of the value pro-
vided by a player towards his team through his involvement. The impact functions are
denoted Ii,j , where i = 1, 2 is the Markov model number, and j is the impact equation
number of model i. The states in Model 1 include theEvent type variable in the state def-
inition, meaning player involvements are represented by states in Model 1. Consequently,
Model 1 has only state values and no state-action values. Player involvements are repre-
sented by Markov game actions in Model 2. As such, the state values of Model 1 closely
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resemble the state-action values of Model 2.
Two impact functions are constructed from Model 1 and two from Model 2. Recall that

the two teams have diametrically opposite goals, meaning positive state and state-action
values are preferred for the home team, while negative state and state-action values are
preferred for the away team. As such, the impact functions presented below apply when a
home team player makes an involvement, while the impact functions must be negated for
away team players.

I1,1 = V (s) (5.1)
I1,2 = V (s′)− V (s) (5.2)
I2,1 = Q(s, a) (5.3)
I2,2 = V (s′)−Q(s, a) (5.4)

V (s) and Q(s, a) represent the values of the state and state-action pair corresponding
to the current player involvement, and V (s′) correspond to the value of the next state. The
general idea is that players are rewarded when their involvement has a positive expected
value and punished when their involvement has a negative expected value. A positive
expected value indicates that the player’s team has the highest probability of scoring the
next goal, while a negative expected value indicates that the opposing team has the highest
probability of scoring the next goal. As the reward of an away goal is −1, negative state
values are beneficial for the away team. The impact functions are thus negated when giving
impact to the away players. Following impact function I1,1, for instance, an away player
is given an impact of 0.25 if V (s) = −0.25 and −0.25 if V (s) = 0.25. For each event
that maps to a player involvement, the required state and state-action values are extracted
from the database, and the involved player receives the corresponding impact values. A
higher positive impact is always better for the involved player.

I1,1 rewards players the expected value of their involvement without looking at the
next state. A drawback of this method is that it does not distinguish between success-
ful and unsuccessful involvements. For instance, a specific pass, as defined by the state,
which reaches a teammate results in the same impact as if the pass went to an opponent.
However, the state values represent the expected value of the state, indicating fair values
in the long run. Furthermore, I1,1 is similar to the impact function concluded to result
in valid and reliable player ratings in Bjertnes et al. (2016). The second impact function
of Model 1, I1,2, takes the next state into account, and can be interpreted as how much
value the player adds above what is expected. The drawback of distinguishing successful
and unsuccessful involvements associated with I1,1 is limited, but the impact is dependent
on the next player’s involvement. I1,2 is believed to capture how the player involvement
influenced the flow of the game to a greater extent than that of I1,1. However, I1,2 may
lead to players being unfairly punished or rewarded for the next player’s involvement.

Model 2 separates the involvement from the environment, which lead to a more natural
modelling of football. This may in turn lead to more accurate measures of impact. I2,1
resembles I1,1, as the states in Model 1 capture the action of Model 2 in the Event type
variable. However, as there are important differences between the models, the impact
values are likely to be different. I2,1 suffers from the aforementioned drawback of not
distinguishing successful from unsuccessful involvements. Nevertheless, it resembles the
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Table 5.1: Example of player ratings from a single game, grouped by involvement type. Total
represents the aggregate of the N involvement types.

Player Game Total Type 1 Type 2 . . . Type N
1 1 0.7328 0.3513 0.0427 . . . 0.0715
2 1 0.6826 0.2871 0.0476 . . . 0.1142
3 1 0.7077 0.2511 0.0654 . . . 0.1585
4 1 0.0146 −0.0128 0.0313 . . . 0.0012
5 1 0.4219 0.1812 0.2811 . . . −0.1821

impact function argued to give reliable results in Bjertnes et al. (2016), and is expected to
yield fair values in the long run. I2,2 incorporates the outcome of an involvement through
the value of the next state. As actions and states are separated in Model 2, I2,2 does not
have the drawback of being dependent on the following player’s involvement. For instance,
for a player’s successful pass, V (s′) will be the value of a state where the player’s team
has the ball. For a player’s unsuccessful pass, V (s′) will be the value of a state where the
opponent has the ball. The former case is likely to yield higher impact.

The impact values of all involvements performed by a player during a game can be ag-
gregated, resulting in a total game impact value. This value can be interpreted as a player
rating, where players with higher ratings were the better players in the game. Similarly,
impact values of all involvements across a whole season can be aggregated and adjusted
for minutes played, which can be interpreted as a per season player rating. The ratings
per game and per season are considered data driven player performance measures, useful
for comparing players. The aggregated player impacts can be grouped by the type of in-
volvement, given by Event type in Model 1 and action in Model 2. An example of player
ratings per game, grouped by involvement type is illustrated in Table 5.1. The overall
impact per game is given by the column Total, which is the aggregate of all involvement
types. The aggregate of all involvement types is the natural player performance measure
and is proposed as a player rating. However, for other purposes, such as analyzing playing
style or finding similar players, it can be useful to consider subsets of involvement types or
direct comparison of individual involvement types. The set of ratings for each involvement
type constitute a player performance profile for each player. As different players score dif-
ferently across different involvements types, the performance profiles are different for each
player.

Figure 5.1 illustrates the same sequence as described and illustrated in Section 4.4,
modelled by Model 1. The value of each state is added to the figure, while the context
variables are removed. Combined with Table 5.2, the figure illustrates how players in-
volved in the sequence receive impact values, based on impact functions I1,1 and I1,2.
Each state is given a number which describes the state’s order in the sequence. This is to
be able to refer to the correct states for the sake of illustration. Recall that the impact func-
tions are negated for players in the away team. In the first state, the state value is−0.0044,
impact function I1,1 awards Jonas Svensson the impact of 0.0044. Using I1,2, Svensson
is given −(−0.0066 − (−0.0044)) = 0.0022. As the away team moves the ball closer to
goal, the state values get more negative, and both I1,2 and I1,2 yield positive impacts. In
the fifth state, however, I1,2 yields a negative impact. After the ball is received in zone
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Figure 5.1: Sequence example with state values, modelled by Model 1.

20 by the away team, the following state has a less negative value, and Fredrik Midtsjø
is given a negative impact by I1,2. As the value of the fifth state is negative, I1,1 yields
positive impact. The impacts given after the eighth state show an important difference in
the two impact functions. As shooting in zone 20 has high expected value, compared to
the other states, Pål André Helland is given a large positive impact by I1,1. I1,2 however,
takes the next state into account. Since Helland missed the shot, he is punished by the
impact function, receiving an impact of−(−0.0450− (−0.1885)) = −0.1435. If Helland
had scored, he would have received an impact of −(−1 − (−0.1885)) = 0.8115, based
on I1,2, as the away goal state gives a reward of −1. Helland would still receive the same
impact of 0.1885 by I1,1 if he had scored, as the function only considers the expected
value of the current state.

Figure 5.2 and Table 5.3 illustrate how the sequence is modelled by Model 2 and
how the impact functions I2,1 and I2,2 award players. The first impact is given to Jonas
Svensson as he carries the ball from zone 9 to zone 12. Because Svensson plays for the
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Table 5.2: Model 1 impact values from the sequence example. s is the state number from Figure 5.1

s Event type V (s) Player Team I1,1 I1,2
1 Ball carry −0.0044 Jonas Svensson Away 0.0044 0.0022
2 Pass −0.0066 Jonas Svensson Away 0.0066 0.0011
3 Ball received −0.0076 Christian Gytkjær Away 0.0076 0.0085
4 Pass −0.0161 Christian Gytkjær Away 0.0161 0.0709
5 Ball received −0.0870 Fredrik Midtsjø Away 0.0870 −0.0553
6 Pass −0.0317 Fredrik Midtsjø Away 0.0317 0.0553
7 Ball received −0.0870 Pål André Helland Away 0.0870 0.1015
8 Shot −0.1885 Pål André Helland Away 0.1885 −0.1435
9 Blocked shot −0.0450 Marius Amundsen Home −0.0450 0.0484

10 Ball recovery 0.0033 Bonke Innocent Home 0.0033 −0.0004
11 Pass 0.0030 Bonke Innocent Home 0.0030 −0.0001

away team, I2,1 gives the negated value of the state-action-pair. Svensson receives an
impact off −0.0007. I2,2 gives the value of the next state minus the value of the state-
action-pair. For Svensson, this is −(0.0003 − 0.0007) = 0.0010. I2,1 and I2,2 calculates
impact of the shot by Helland differently, as was also the case for the impact functions
from Model 1. I2,2 captures that the shot is missed, and punishes the player by giving
negative impact. I2,1 gives the expected value of shooting in state 20, which is positive.

Figure 5.2: Sequence example with state and state-action values, modelled by Model 2.
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Table 5.3: Model 2 impact values from the sequence example. s is the state number from Figure 5.2

s V (s) a Q(s, a) Player Team I2,1 I2,2
1 0.0036 Ball carry 0.0007 Jonas Svensson Away −0.0007 0.0010
2 −0.0003 Pass 0.0001 Jonas Svensson Away −0.0001 0.0010
3 −0.0009 Pass −0.0004 Christian Gytkjær Away 0.0004 0.0738
4 −0.0741 Pass −0.0198 Fredrik Midtsjø Away 0.0198 0.0543
5 −0.0741 Shot −0.1614 Pål André Helland Away 0.1614 −0.1634
6 0.0021 Blocked shot −0.0140 Marius Amundsen Home −0.0140 0.0212
7 0.0072 Ball recovery 0.0067 Bonke Innocent Home 0.0067 −0.0001
8 0.0066 Pass 0.0066 Bonke Innocent Home 0.0066 −0.0002

5.2 Validation Methods

The purpose of the player evaluation is to objectively and accurately rate the players in
Eliteserien. Player ratings are derived from the impact functions I1,1, I1,2, I2,1 and I2,2,
introduced in Section 5.1. Three different methods for validating the player ratings are
presented in this section. k-fold cross-validation is presented first, followed by correlation
with benchmark ratings and inter-season correlations.

5.2.1 k-fold Cross-Validation

The first step in the validation process is k-fold cross-validation, introduced in Section 2.4.
k = 10 folds is used. For each player rating, derived from the impact functions, 10-fold
cross-validation is performed. The models are supposed to award the best players with the
best ratings. Consequently, the likelihoods of the possible outcomes of each game should
depend on the average ratings of the players involved for each team, because the better
team is expected to have a better chance of winning. In a game between two teams, A
and B, team A’s probability of winning is expected to be higher if the average rating of
their players is higher than that of team B, compared to if teams A and B had equally
rated players. This is tested through 10-fold cross-validation, where the 720 games from
Eliteserien seasons 2014, 2015 and 2016 are randomly split into 10 equally sized folds.

Ordinal logistic regression, introduced in Section 2.3, is applied to the training data
with the number of outcomes C = 3. The dependent variable, Y , takes the value Yi in
game i, and represents the outcome of game i defined as

Yi =


1 if the outcome is away victory in game i
2 if the outcome is draw in game i
3 if the outcome is home victory in game i

(5.5)

Following the notation introduced in Section 2.3, the cumulative probabilities are defined
as

γ(j) =


P (Y ≤ 1) = π(1) for j = 1

P (Y ≤ 2) = π(1) + π(2) for j = 2

P (Y ≤ 3) = 1 for j = 3

(5.6)
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Table 5.4: Structure of the ordinal regression input data.

Game Outcome
Rating

difference
Game 1 Y1 X1

Game 2 Y2 X2

...
...

...
Game n Yn Xn

One independent variable is used in the regression, denoted X . This variable measures
the difference in player ratings of the two participating teams. In each of the 10 cross-
validation iterations, each players’ average rating per game is computed over the 9 folds in
the training data, i.e. the players’ average impact per game over 90% of the games. Players
only receive ratings in the games which they start, i.e. players substituted in during a game
do not receive ratings for this specific game. For each game in the training data, let ZH
be the average rating of the ten outfield players starting the game for the home team, and
ZA be the average rating of the ten outfield players starting the game for the away team.
X = ZH − ZA is used in the regression, meaning X is the difference in average player
rating of the two teams. X > 0 indicates that the home team has the better players, X < 0
indicates that the away team has the better players and X = 0 indicates that the two teams
have equally good players in a given game. The structure of the regression input data is
illustrated in Table 5.4.

An ordinal logistic regression is run on the 9 folds in the training data in each of the
10 cross-validation iterations. Hence, a regression model is fitted to 648 games and tested
on the remaining 72 games in every iteration. Every game belongs to the test fold exactly
once and belongs to the training set exactly nine times. Recall Equation 2.14

log

(
γ

(j)
i

1− γ(j)
i

)
= log

(
P (Yi ≤ j)
P (Yi > j)

)
= α(j) − β1X1i + β2X2i + · · ·+ βkXki (2.14)

In the case of one independent variable, Equation 2.14 can be written as

log

(
γ

(j)
i

1− γ(j)
i

)
= log

(
P (Yi ≤ j)
P (Yi > j)

)
= α(j) − βXi (5.7)

The two intercept terms, α1 and α2, and the variable coefficient, β, are estimated from
Equation 5.7, using the training data. Recall the definition of the cumulative distribution
functions, given by Equation 2.15, expressed as γ(j) for j = 1, 2

γ(j) = P (Y ≤ j) =
exp

(
α(j) − (β1X1 + β2X2 + · · ·+ βkXk)

)
1 + exp

(
α(j) − (β1X1 + β2X2 + · · ·+ βkXk)

) (2.15)

which becomes

γ(j) = P (Y ≤ j) =
exp

(
α(j) − βX

)
1 + exp

(
α(j) − βX

) (5.8)
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with one independent variable. The outcome probabilities, P (Y = 1) = π(1),
P (Y = 2) = π(2) and P (Y = 3) = π(3), are then given by

π(1) = γ(1) (5.9)

π(2) = γ(2) − π(1) (5.10)

π(3) = 1− π(1) − π(2) (5.11)

Using α1, α2 and β, the probabilities of each outcome of the games in the test fold
is computed in each cross-validation iteration, based on the players starting the game for
each team. As mentioned, X represents the difference in player ratings obtained in the
training data. The test seeks to identify the predictive power of previously observed player
ratings on the outcomes of unobserved games. If the player ratings actually rate player
performance, the teams with the highest rated players should win the most games, and this
should be reflected by the predicted outcome probabilities.

The predictive power is evaluated by computing the average Brier score, described
in Section 2.5, over all predictions. For each player rating, every game is in the test set
exactly once. Consequently, 720 predictions are made for each rating, and evaluated by
the Brier score. The Brier scores of the different player rating methods can be compared,
where the lower Brier score indicates that the player ratings better predict game outcomes.
This in turn indicates that the rating with the lower Brier score more accurately measures
player performance. The Brier scores of the player ratings are compared to two reference
predictions, using the Brier skill score, introduced in Section 2.5. The first reference pre-
diction is based on the observed probabilities of the outcome being home victory, away
victory or draw, calculated from the actual frequencies of home victories, away victories
and draws in the 720 Eliteserien games. The second reference prediction is based on the
implied probabilities of betting odds for each game.

5.2.2 Benchmark Correlation
The correlations of the data driven player ratings with benchmark player ratings are inves-
tigated. A player’s average impact per 90 minutes within a specific season is considered the
player’s rating for this season, as defined in Section 5.1. Four proposed ratings are com-
puted for each player in every season, one based on each impact function. The correlations
between the benchmark ratings and the data driven ratings are computed for every season
in the data. Two benchmarks are chosen, namely Altomfotball (Altomfotball, 2014, 2015,
2016) and VG (VG, 2014, 2015, 2016). Altomfotball is a website owned by the Norwe-
gian broadcaster TV2, and presents statistics from most major football leagues, including
player ratings from Eliteserien. VG is the most read Norwegian newspaper, and player
ratings from Eliteserien are available at their website. Both sources present average player
ratings per season. Altomfotball’s and VG’s ratings are set by journalists, and are not to
be considered as a definitive. As the goal is to develop objective ratings, the goal is not
perfect correlation with journalist ratings. Nevertheless, a positive correlation would indi-
cate that the data driven ratings and the journalists ratings agree to some extent. Definitive
conclusions on the quality of the player ratings should not be based on correlations with
journalist ratings alone. However, the correlations may be useful when used in conjunction
with other validation metrics.
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5.2.3 Inter-Season Correlation
The correlation of player ratings across successive seasons is useful for validating the
player ratings. This correlation measures the similarity of each player’s ratings in two sea-
sons. A player’s per season rating is given by the player’s average impact per 90 minutes,
as defined in Section 5.1. For each data driven rating, based on the four impact functions,
the inter-season correlation is calculated. As data from three seasons is used, two pairs
of successive seasons exist, the first being 2014 and 2015, and the second being 2015 and
2016. Valid player evaluations are believed to have high inter-season correlation. This will
imply that the performance of most players do not change much between two successive
seasons. The quality of some players will improve and the quality of some players will
decline. However, the quality, hence the performance, of most players are expected to be
consistent from one season to the next.

5.3 Identifying Similar Players
Recall from Section 5.1 that the aggregated results from the player performance evalua-
tions result in ratings for each involvement type, which constitute a performance profile for
each player. As such, the involvement types form a multidimensional space, and each per-
formance profile can be represented by a point in this space. Different players will score
differently across the different involvement types, but the idea is that more similar players
have more similar performance profiles. To identify similar players, the k-Nearest Neigh-
bours algorithm, introduced in Section 2.6, is used to calculate the Euclidean distances
between each point in the multidimensional space. As the scale of the different involve-
ment type ratings varies, the ratings have to be normalized before running the algorithm.
A lower distance between two player performance profiles, indicates higher similarity be-
tween the two players. Looking at each player performance profile as a different class, the
algorithm will identify the k most similar players for each player.

5.4 Team Impact on Player Performance
The procedure for investigating the impact of a player’s team on the player’s performance
is described in this section. The ratings of individual players are expected to be influenced
by the players’ respective teams. A player rating is meant to rate a player’s performance,
but player performance does not necessarily equal player quality. For instance, two equally
good players playing for different teams may perform differently because the quality of the
other players in the respective teams is different. This is tested by looking at the players
who have played for more than one team in Eliteserien, throughout seasons 2014, 2015
and 2016. The following values are computed for each such player

• Pa: The player’s average rating while playing for team a.

• Pb: The player’s average rating while playing for team b.

• Ta: The average rating of the other players in team a while the player played for
team a.
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• Tb: The average rating of the other players in team b while the player played for
team b.

Per game average ratings are used in the above variables. ∆Pa,b is expressed as

∆Pa,b = Pa − Pb (5.12)

and ∆Ta,b as
∆Ta,b = Ta − Tb (5.13)

∆Pa,b is interpreted as the difference in player performance of player p in the two teams
a and b. ∆Pa,b > 0 indicates that the player performed better in team a, ∆Pa,b < 0 indi-
cates that the player performed better in team b, and ∆Pa,b = 0 indicates that the player
performed equally well in both teams. ∆Ta,b is interpreted as the difference in average
player performance between teams a and b, indicating the difference in team strength.
∆Ta,b > 0 indicates that team a is the better team, ∆Ta,b < 0 indicates that team b is the
better team, and ∆Ta,b = 0 indicates that the teams are equally good.

The correlation of ∆Pa,b and ∆Ta,b explains if the two values tend to move in the same
direction. Positive correlation indicates that players tend to perform better for better teams,
negative correlation indicates that players tend to perform worse for better teams, and
correlation close to zero indicates that player performance is independent of team quality.
Furthermore, a linear regression with ∆Pa,b as the independent variable and ∆Ta,b as the
dependent variable, may provide further insight into the magnitude of the effect of team
quality on individual player performances. The magnitude of such an effect, if it exists,
is useful when scouting players from different teams. It is then possible to estimate the
expected performance of a player in a new team, based on the quality of the two teams and
the player’s performance in the previous team.

As team quality might influence the performance of players, it is important to ensure
that individual player performances are actually measured rather than team performances.
This is investigated by considering the performances of the players who have played for
the same team in two consecutive seasons. The following values are computed for each
such player for each pair of consecutive seasons

• P1: The player’s average rating in the first season.

• P2: The player’s average rating in the second season.

• T1: The average rating of the other players in the player’s team in the first season.

• T2: The average rating of the other players in the player’s team in the second season.

In the remainder of this section, T1 and T2 is referred to as team performance. Per game
ratings are averaged when computing P1, P2, T1 and T2. A player’s performance, com-
pared to his team’s performance in seasons 1 and 2, is denoted S1 and S2, defined as

S1 = P1 − T1 (5.14)

and
S2 = P2 − T2 (5.15)
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A positive difference indicates the player performed better than the team average, a neg-
ative difference indicates the player performed worse than the team average, and zero
difference indicates the player performed similar to the team average.

Players’ performances compared to their team’s performances are expected to be con-
sistent between seasons. Some deviation is natural, but the best players in a team in one
season are generally expected to be the best also in the following season. The same rela-
tionship is expected for average and below average players. This is tested by computing
the correlation of S1 and S2. Positive correlation indicates that individual player perfor-
mance is consistent, compared to the team’s performance, between seasons. A correlation
close to zero indicates that there is no tendency for player performance to stay consis-
tent, compared to team performance, between seasons. Negative correlation indicates that
above average players in one season tend to perform below average in the following sea-
son, and vice versa. In turn, zero or negative correlation indicates that teams are rated
rather than individual players. This would mean that each team is rated, while the ratings
are split somewhat randomly between each teams’ players. As such, a positive correla-
tion is expected, as it would mean that the individual player performances are actually
evaluated.
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Chapter 6
Evaluating Results

The results of the experiment, described in Chapter 5, are presented and discussed in this
chapter. The validation of the four proposed player ratings is presented in the first section.
Based on the validation results, the four impact functions are narrowed down to one. The
chosen impact function is then used to produce player ratings, and the top ten rated players
in each position are presented in the following section. Next, the results of identifying
similar players is presented and discussed, followed by results and discussion of team’s
impact on player performance. The chapter ends with a discussion of the results in light
of the research questions, presented in Section 1.2.

6.1 Validation

The four player ratings are validated in this section. The k-fold cross-validation results
are presented and discussed first, followed by correlations with benchmark ratings and the
inter-season correlations. Impact functions are rejected throughout the validation process,
justified by the validation results. Lastly, the overall validity of the ratings are summarized,
and the most appropriate impact function is chosen to produce the results for the remainder
of the thesis.

6.1.1 k-fold Cross-Validation

Four player ratings are proposed, based on impact functions I1,1, I1,2, I2,1 and I2,2, pre-
sented in Section 5.1. Recall that I1,1 and I1,2 are based on Model 1, and I2,1 and I2,2
are based on Model 2. The player ratings are validated using k-fold cross-validation
with k = 10, following the setup in Section 5.2.1. Ten sets of regression coefficients,
α(1), α(2), β, are computed for each player rating, one set for each of the ten folds. Table
6.1 summarizes the regression results. Each player rating is represented by its underlying
impact function, and the average coefficient values are shown along with the average and
max p-values of each coefficient. For complete regression results, including all coefficients
and p-values, see Appendix B.
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Table 6.1: k-fold cross-validation results represented by coefficients and p-values.

Impact function Average coefficient values Average p-values Max p-values
α(1) α(2) β α(1) α(2) β α(1) α(2) β

I11 −0.941 0.233 −3.535 0.000 0.008 0.000 0.000 0.015 0.000
I12 −0.865 0.137 1.955 0.000 0.097 0.445 0.000 0.193 0.831
I21 −0.898 0.273 −6.488 0.000 0.002 0.000 0.000 0.005 0.000
I22 −0.948 0.168 −16.098 0.000 0.053 0.000 0.000 0.127 0.000

Recall that β is the independent variable coefficient, and that the independent variable,
X , represents the difference in average player ratings of the two teams in a specific match.
X > 0 means the home team has higher rated players, X < 0 means the away team
has higher rated players and X = 0 means the teams have equally rated players. The
p-value of β explain the statistical significance between the difference in player ratings
and the outcome of the game. Following the equations in Section 5.2.1, a negative β is
expected, because that would mean having higher rated players increase the chance of
winning. The threshold coefficients, α(1) and α(2), capture the base probabilities of the
three possible match outcomes. The home field advantage in football is well documented,
see for instance Carmichael and Thomas (2005) and Bjertnes et al. (2015). All else equal,
a home victory is always the most likely outcome in a a match between two equally good
teams. β is considered the most important coefficient when considering the quality of the
rating methods, but the threshold coefficients are important in the prediction step of k-fold
cross-validation.

I1,1 yields coefficients significant at p < 0.05 and β significant at p < 0.01 across
all folds. This indicates a relationship between the player ratings and match outcomes.
I1,2 results in less significant coefficients, and β is not significant at p < 0.10 in any
of the folds. The average β coefficient is positive, meaning that having the higher rated
players decrease the chance of winning. This suggests the ratings based on I1,2 poorly
describe player performances. I2,1 results in all coefficients being significant at p < 0.01,
suggesting that the player ratings help explain the match outcomes. For I2,2, β is found
significant at p < 0.01. This suggests a relationship between the player ratings and match
outcomes. However, the significance of α(2), considering I2,2, varies. As mentioned,
low significance of the threshold terms may result in less accurate predictions, despite the
information provided by X being useful.

The regression coefficients are used to predict the outcomes of the matches in the test
fold, and the accuracies of the predictions are measured by the Brier score. Table 6.2
shows the Brier scores of the player ratings, represented by the impact functions, and of
the reference predictions, denoted R1 and R2. R1 is based on the outcome frequencies.
Table 6.3 shows the outcome frequencies, and the implied probabilities, from the 720
matches in the data set. The implied probabilities are used in R1’s prediction. The second
reference prediction, R2, is made from the underlying probabilities of betting odds. The
underlying probabilities from the betting odds are normalized so that the sum equals one.
Historical odds are found at BetExplorer (BetExplorer, 2014, 2015, 2016), which provide
average odds from most online odds providers. The Brier scores of the player ratings are
compared to the Brier scores of the reference predictions, using the Brier skill score. The
Brier skill scores are shown in Table 6.4.
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Table 6.2: Brier scores of the predictions made from the impact functions and the two reference
predictions.

Predictor Brier score
I1,1 0.195
I1,2 0.213
I2,1 0.196
I2,2 0.220
R1 0.213
R2 0.197

Table 6.3: Match outcome distribution of the predicted matches.

Total Home victories Draws Away victories
No. 720 336 171 213
Probability 1.000 0.467 0.236 0.296

A perfect predictor will achieve a Brier score of 0. This is unrealistic when predicting
the outcome of football matches, as chance plays a big role (Anderson and Sally, 2014).
If no information about the involved teams is known, R1 would make the best predictions
in the long run. In reality, however, the better teams are expected to have a better chance
of winning, adjusted for the home field advantage. As such, a predictor based on an ac-
ceptable player rating system should outperformR1. This is not the case for the predictors
based on I1,2 and I2,2. It is not surprising that I1,2 performs poorly, as the regression
coefficients had high p-values. I1,2 is rejected as a measure of player impact suitable for
rating player performance. I2,2 is also rejected, due to the poor prediction. However, the
low significance of α(2) may be the reason of the poor prediction, rather than I2,2 being a
poor impact measure. More data may result in a more reliable threshold estimate, allowing
for more accurate predictions, based on I2,2 ratings. Nevertheless, with the data available,
I1,1 and I2,1 seem to be more valid measures of player impact, thus more suitable for eval-
uating player performances. I1,1 and I2,1 achieve similar Brier scores, and the Brier scores
are analogous to R2. Predictor performance close to that of betting odds strengthens the
validity of the player ratings, based on I1,1 and I2,1, as the bookmaker is dependent on
accurate probability estimates to survive.

Table 6.4: Brier skill scores of the impact functions against the two reference predictions.

R1 R2

I1,1 0.085 0.010
I1,2 0.000 −0.081
I2,1 0.080 0.005
I2,2 −0.033 −0.117
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6.1.2 Benchmark Correlation

In this section, the correlations between the data driven player ratings and journalists’
player ratings are presented and discussed. Impact functions I1,2 and I2,2 were rejected in
the k-fold cross validation, and only I1,1 and I2,1 are considered from this point forward.
Tables 6.5, 6.6 and 6.7 show the correlations between the different player ratings in seasons
2014, 2015 and 2016, respectively. The correlation between I1,1 and I2,1 is close to 1 in all
three seasons, meaning the resemblance between the two ratings is high. The correlations
with VG and Altomfotball (AOF) vary, but is positive for both I1,1 and I2,1 every season.
Journalist ratings are subject to cognitive bias, and the goal is to construct a data driven
player evaluations which tend towards objectivity. Under the assumption that journalist
ratings are not perfect, the goal is not perfect correlations. However, positive correlations
show that the data driven player evaluations agree to some extent with the journalists, and
is considered to strengthen the validity of the data driven ratings. Based on the correlations
with VG and AOF, no conclusion is made on whether I1,1 or I2,1 produce the most valid
ratings.

Table 6.5: Benchmark correlation of impact function I1,1 and I2,1, season 2014.

I1,1 I2,1 VG AOF
I1,1 1.000
I2,1 0.968 1.000
VG 0.413 0.456 1.000
AOF 0.434 0.466 0.803 1.000

Table 6.6: Benchmark correlation of impact function I1,1 and I2,1, season 2015.

I1,1 I2,1 VG AOF
I1,1 1.000
I2,1 0.958 1.000
VG 0.567 0.607 1.000
AOF 0.507 0.531 0.878 1.000

Table 6.7: Benchmark correlation of impact function I1,1 and I2,1, season 2016.

I1,1 I2,1 VG AOF
I1,1 1.000
I2,1 0.959 1.000
VG 0.261 0.282 1.000
AOF 0.294 0.351 0.801 1.000
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6.1.3 Inter-Season Correlation

The inter-season correlations of the ratings based on impact functions I1,1 and I2,1 are dis-
cussed in this section. A positive correlation means that players tend to be rated similarly
in the two seasons, and a negative correlation means that players tend to be rated differ-
ently. Similar ratings in two seasons mean that, if the actual player performance quality is
captured by the rating, players perform at a similar level in the two seasons. Player per-
formance is expected to be fairly stable across seasons, meaning that a high inter-season
correlation is expected.

Table 6.8: Inter-season correlations of impact functions I1,1 and I2,1 and the benchmark ratings.

2014/2015 Correlation 2015/2016 Correlation
I1,1 0.868 0.874
I2,1 0.766 0.758
VG 0.607 0.668
AOF 0.547 0.629

Table 6.8 shows the inter-season correlations for player ratings based on I1,1, I2,1, VG
and AOF. The journalist ratings are included as a reference. I1,1 and I2,1 have higher
inter-season correlations than VG and AOF, thus the data driven ratings seem more stable.
Journalist ratings are based on opinions, and different journalists may have rated a specific
player in the different games which might explain some of the variation. The high inter-
season correlations of the data driven ratings is considered to strengthen their validity.
Even though I1,1 has higher inter-season correlation than I2,1, the resemblance is too high
to conclude which impact function produces the most accurate player ratings, based solely
on inter-season correlations.

6.1.4 Overall Validity Assessment

An overall validity assessment of the ratings based on the four impact functions, I1,1,
I1,2, I2,1 and I2,2, is presented in this section. The ratings based on I1,2 and I2,2 were
rejected as appropriate player ratings in Section 6.1.1, and thus not investigated further in
Section 6.1.2 and 6.1.3. Ratings based on both I1,1 and I2,1 were positively correlated
with journalist ratings, and had high inter-season correlations. It is hard to separate impact
functions I1,1 and I2,1, based on the applied validation methods. However, as argued
in Section 4.3.1, Model 2 resembles the flow of football games in a more accurate and
intuitive way, compared to Model 1. Furthermore, one measure of player performance is
sufficient to answer the research questions presented in Section 1.2. Consequently, I2,1,
which is based on Model 2, is used to produce the results presented in the remaining
sections.
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6.2 Player Ratings
The highest rated players in Eliteserien 2016, evaluated by impact function I2,1 = Q(s, a),
is presented in this section. Player ratings are calculated as the sum of the impact of every
involvement by a player throughout the season, normalized per 90 minutes played. As
such, a player’s rating is interpreted as the player’s average impact per 90 minutes. Players
are grouped by their most played position, using the five groups central defenders, full
backs, central midfielders, wingers and strikers. The players’ total ratings are displayed,
as well as a subset of the involvements types in the player performance profiles. The
displayed subset of involvement types is based on which involvements are believed most
relevant for each position.

Table 6.9: Top 10 rated central defenders in Eliteserien 2016.

Player Team Total Pass Long pass Ball carry Tackle Aerial duel Clearance Blocked shot
G. Valsvik Strømsgodset 0.4846 0.2823 0.0631 0.0895 −0.0077 0.0076 −0.0249 −0.0101
T. Reginiussen Rosenborg 0.4761 0.2745 0.0228 0.0722 −0.0035 0.0025 −0.0180 −0.0092
F. Semb Berge Odd 0.4470 0.2503 0.0590 0.1022 −0.0021 −0.0022 −0.0167 −0.0112
M. Høibraten Strømsgodset 0.4394 0.3315 0.0297 0.0768 0.0005 0.0018 −0.0147 −0.0054
S. Hagen Odd 0.4137 0.2305 0.0612 0.1229 −0.0053 −0.0007 −0.0224 −0.0089
S. Larsen Vålerenga 0.3996 0.1850 0.0402 0.0595 −0.0022 0.0006 −0.0136 −0.0157
O. Heieren Hansen Sarpsborg 08 0.3964 0.1953 0.0447 0.0429 −0.0001 0.0084 0.0076 −0.0088
J. Gundersen Tromsø 0.3931 0.1614 0.0371 0.0666 −0.0091 0.0062 −0.0046 −0.0106
J. Grønner Brann 0.3316 0.1637 0.0723 0.0625 −0.0008 0.0004 −0.0089 −0.0218
H. O. Eyjolfsson Rosenborg 0.3172 0.2068 0.0145 0.0779 −0.0125 0.0009 −0.0090 −0.0084
Top 10 average 0.4045 0.2228 0.0452 0.0723 −0.0049 0.0027 −0.0105 −0.0107

Table 6.9 lists the ten highest rated central defenders. Pass, long pass and ball carry are
the involvement types which contribute the most to the total rating for all the listed players.
Intuitively, central defenders are expected to be good at defending actions, such as tackles
and blocking shots. However, most of the listed players have negative ratings in these
involvement types. Careful consideration of the impact function I2,1 = Q(s, a), helps
explain this result. A negative rating indicates that the involvements are expected to lead
to more goals against than for the player’s team. When a defender performs a defensive
involvement, the ball is usually closer to his goal than the opponent’s. Intuitively, this
makes a goal against more likely than a goal for, in turn resulting in negative impact. The
impact function seems to measure the offensive contribution of an involvement, rather
than the defensive. Incorporating the involvement’s effect on the opponent’s chance of
scoring might yield impact values for defensive involvements more comparable to those
of offensive involvements.

Concerning central defenders, avoiding goals against is generally considered more im-
portant than contributing to goals for. The top three teams in 2016, RBK, Odd and Brann,
are represented by five of the top ten central defenders. As these teams conceded the
least goals in Eliteserien 2016, this result is not surprising. However, as shown, offen-
sive involvements contribute more to the ratings than defensive involvements. Thus, the
proposed ratings might be a less accurate measure of performance for central defenders,
compared to offensive players. Central defenders in stronger teams are likely to be more
offensively involved than central defenders in weaker teams, which might explain why
the central defenders in stronger teams are higher rated. Superior teams generally have
more time on the ball, given by possession percentage, than weaker teams (Bjertnes et al.,

58



6.2 Player Ratings

2015; Oberstone, 2009), meaning that the players can make a higher number of offensive
involvements, in turn receiving higher ratings.

Table 6.10: Top 10 rated full backs in Eliteserien 2016.

Player Team Total Pass Long pass Crossing Ball carry Take on Tackle Shot
E. Ruud Odd 0.7328 0.3513 0.0427 0.0658 0.0917 0.0035 −0.0081 0.0715
A. Gersbach Rosenborg 0.7290 0.2763 0.0411 0.0794 0.1451 0.0423 −0.0038 0.0265
P. E. Flo Molde 0.7077 0.3651 0.0270 0.0493 0.0796 0.0108 −0.0114 0.0847
J. Parr Strømsgodset 0.6826 0.2871 0.0199 0.0729 0.0939 0.0096 −0.0079 0.1284
R. Lindkvist Vålerenga 0.6736 0.2688 0.0146 0.0849 0.0753 0.0102 −0.0113 0.1100
J. V. Nilsen Odd 0.6557 0.3669 0.0307 0.0217 0.0932 0.0065 −0.0123 0.0911
K. A. Antonsen Tromsø 0.6385 0.2016 0.0476 0.0543 0.0658 0.0110 −0.0105 0.0939
T. Grøgaard Odd 0.6197 0.3181 0.0145 0.0464 0.0485 0.0073 −0.0049 0.0283
J. Svensson Rosenborg 0.6114 0.3113 0.0379 0.0432 0.1100 0.0121 −0.0191 0.0656
L.C. Vilsvik Strømsgodset 0.6057 0.3089 0.0301 0.0643 0.0695 0.0136 −0.0010 0.0731
Top 10 average 0.6657 0.3055 0.0306 0.0582 0.0872 0.0127 −0.0091 0.0773

Table 6.10 lists the ten highest rated full backs. Pass is the involvement type contribut-
ing most to the total ratings, while the ratings in the remaining involvement types appear
to vary among the listed players. RBK and Odd are represented by two and three players
each, and Strømsgodset have both of their preferred full backs on the list. All players have
negative tackle ratings, as was the case for central defenders. As previously argued, this
is because the impact of tackles seem to be the offensive, rather than the defensive con-
tribution of the involvement. Defensive involvements make up an important part of full
backs’ duties, but full backs are generally expected to contribute more offensively than
central defenders. As such, the player ratings are likely a better representation of the per-
formances of full backs than that of central defenders, and particularly useful for assessing
the offensive capabilities of full backs.

Table 6.11: Top 10 rated central midfielders in Eliteserien 2016.

Player Team Total Shot Pass Long pass Crossing Ball carry Take on Tackle
M. Jensen Rosenborg 1.0289 0.3167 0.3837 0.0381 0.0312 0.1274 0.0093 0.0018
G. Thorarinsson Rosenborg 0.9092 0.1270 0.4785 0.0487 0.0242 0.1460 0.0086 −0.0025
B. Boateng Strømsgodset 0.8591 0.1735 0.4630 0.0359 0.0097 0.0988 0.0055 0.0004
A. Trondsen Sarpsborg 08 0.8566 0.1042 0.3981 0.0501 0.0173 0.1552 0.0169 0.0036
A. Konradsen Rosenborg 0.8456 0.2057 0.3565 0.0616 0.0055 0.1207 0.0227 −0.0045
F. Midtsjø Rosenborg 0.8291 0.1381 0.3740 0.0285 0.0372 0.1712 0.0341 0.0004
K. Barmen Brann 0.8236 0.1477 0.4215 0.0399 0.0153 0.0950 0.0015 −0.0018
J. Samuelsen Odd 0.8083 0.1671 0.3971 0.0474 0.0199 0.1382 0.0137 −0.0051
H. Singh Molde 0.7938 0.1770 0.3965 0.0735 0.0187 0.1321 0.0096 −0.0051
M. Abu Strømsgodset 0.7889 0.0336 0.5402 0.0847 0.0106 0.1302 0.0039 −0.0072
Top 10 average 0.8543 0.1591 0.4209 0.0508 0.0190 0.1315 0.0126 −0.0020

Table 6.11 lists the ten highest rated central midfielders. Pass is the dominant contribut-
ing involvement type towards the total ratings. This is unsurprising, as passing is generally
considered one of the most important skills of a central midfielder. Jensen has the highest
shot rating, noticeably higher than Konradsen, the second highest rated shooter. Jensen
was the highest scoring central midfielder in 2016, scoring eight goals, followed by Singh
with five and Konradsen with four. Unsurprisingly, the number of goals seem to influence
the shot ratings. The highest rated passer is Abu, who together with Thorarinsson and
Boateng appear noticeably higher rated than the rest. An interesting observation is that
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the three Rosenborg midfielders Jensen, Thorarinsson and Midtsjø are the highest rated
crossers, indicating that they push wide more often than most central midfielders. Rosen-
borg dominate the central midfielder list, while no other team has more than one player
among the top ten. It is worth mentioning that the central midfielder with the most assists
in 2016, Haugen from Brann with eight, is the eleventh highest rated, merely missing the
top ten list.

The average total ratings of the highest rated central midfielders are higher than those
of the defenders. This is most likely due to midfielders operating further up the pitch.
Intuitively, goals are more likely in more offensive positions. As such, a more offensively
positioned player is likely to receive higher impact values for his involvements, compared
to a more defensive player. The total ratings must be interpreted accordingly, and an
obvious interpretation is that a midfielder can not be said to have performed better than
a defender, based on the players’ total ratings. The reasonable application of the ratings
appear to be comparison of players in similar positions and roles.

Table 6.12: Top 10 rated wingers in Eliteserien 2016.

Player Team Total Shot Headed shot Pass Long pass Crossing Ball carry Take on
P. A. Helland Rosenborg 1.2226 0.4058 0.0117 0.3175 0.0251 0.0787 0.2130 0.0367
M. Keita Strømsgodset/Stabæk 1.1794 0.2414 0.0064 0.4486 0.0565 0.0655 0.2011 0.0444
G. Zahid Vålerenga 1.0734 0.2888 0.0138 0.4599 0.0235 0.0166 0.1829 0.0466
Y. E. de Lanlay Rosenborg 0.9987 0.3646 0.0059 0.2883 0.0141 0.0664 0.1898 0.0412
M. Elyounoussi Molde 0.9926 0.4392 0.0849 0.2835 0.0147 0.0238 0.1227 0.0335
S. Adegbenro Viking 0.9851 0.3107 0.0681 0.2310 0.0068 0.0481 0.1926 0.0832
T. Nguen Strømsgodset 0.9602 0.2852 0.0344 0.3147 0.0078 0.0206 0.1978 0.0477
Ø. Storflor Strømsgodset 0.9396 0.1524 0.0000 0.4346 0.0331 0.0701 0.1025 0.0264
A. Sigurdarson Tromsø 0.9091 0.3657 0.0127 0.2390 0.0118 0.0521 0.1692 0.0271
G. Koomson Sogndal 0.8824 0.2162 0.0135 0.3142 0.0169 0.0466 0.1597 0.0447
Top 10 average 1.0143 0.3070 0.0251 0.3331 0.0210 0.0489 0.1731 0.0432

Table 6.12 lists the ten highest rated wingers. Shot, pass and ball carry contribute the
most to the total ratings. Helland has the highest total rating, regardless of position, with
shots as the most contributing involvement type. Keita and Zahid, who were the most
scoring wingers in 2016 with seven and eight goals, respectively, are ranked second and
third. Elyounoussi has the highest headed shot rating, followed by Adegbenro, both rated
noticeably higher than the rest. Koomson, the player with most assists in 2016, is only the
sixth highest rated passer among the top ten.

The wingers appear to generally have higher total ratings than central midfielders,
strengthening the point that overall performance comparisons should not be made of play-
ers in different positions. However, for more detailed studies of isolated involvement types,
such comparisons may be appropriate. For instance, central midfielder Jensen is notice-
ably higher rated on shots than Storflor, implying that he impacts games more in terms of
shots. A natural assumption is then that Jensen is expected to score more than Storflor,
supported by their eight and four respective goals in 2016.

Table 6.13 lists the top ten rated strikers. Unsurprisingly, shot is the most contributing
involvement type to the total ratings. Some strikers also have high headed shot ratings,
such as Gytkjær, Viljhálmsson, Moussa and Otoo. Otoo is the highest rated striker, with
nearly half of his total coming from shots, and pass being the second highest contributor.
This result is surprising, as Otoo only scored three goals in 2016. 97 players scored at
least as many goals as Otoo, and 70 players scored more. Only one of the five strikers who
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Table 6.13: Top 10 rated strikers in Eliteserien 2016

Player Team Total Shot Headed shot Pass Long pass Crossing Ball carry Take on
M. Otoo Sogndal 1.2146 0.5507 0.1002 0.3089 0.0215 0.0153 0.1470 0.0200
F. Friday Lillestrøm 1.0555 0.4939 0.0482 0.2640 0.0097 0.0098 0.1513 0.0411
S. Abdullahi Viking 0.8221 0.3990 0.0328 0.2133 0.0023 0.0368 0.0967 0.0349
O. Omoijuanfo Stabæk 0.8212 0.2060 0.0569 0.3240 0.0101 0.0218 0.1326 0.0220
M. Vilhjálmsson Rosenborg 0.8108 0.1230 0.1390 0.3845 0.0251 0.0046 0.0693 0.0060
S. Svendsen Molde 0.8039 0.2850 0.0436 0.2884 0.0189 0.0188 0.0870 0.0163
C. Gytkjær Rosenborg 0.8018 0.3235 0.1820 0.1983 0.0072 0.0023 0.0422 0.0041
D. Brown Vålerenga 0.7993 0.4606 0.0608 0.1546 0.0087 0.0076 0.0495 0.0128
P. A. Kirkevold Sarpsborg 08 0.7761 0.2735 0.0587 0.3037 0.0094 0.0103 0.0860 0.0225
S. Moussa Tromsø 0.7764 0.2967 0.1013 0.2728 0.0105 0.0003 0.0649 0.1340
Top 10 average 0.8680 0.3394 0.0722 0.2686 0.0120 0.0157 0.1018 0.0240

scored at least 10 goals in 2016, Gytkjær, appear on the top ten list, as Mos Abdellaoue,
Azemi, Occean and Agdestein are left out. As scoring goals is considered an important
task for strikers, this is a questionable result. Because the impact function, I2,1 = Q(s, a),
does not incorporate the outcome of an involvement, players can receive a high shot rating,
regardless of goals scored. If a player attempts many shots where the associated value
Q(s, a) is high, his impact from shots will be high. This in turn results in high shot
ratings, regardless of the shots ending in a goal or not. As Q(s, a) represents the expected
value of the action a in state s, it can be argued that Otoo were unlucky to score only
three goals, and that the number of goals will get closer to the expected number in the
long run. However, some players may need fewer shots per goal, which might explain
why some of the highest scoring strikers are not the highest rated. Shooting skills, and
better evaluations of when to shoot, is likely to influence the number of shots per goal.
As the presented shot ratings largely depend on the number of shots, this is not accounted
for. I2,2 would capture this better, compared to I2,1, as illustrated in Section 5.1, but this
impact function was rejected in Section 6.1.1. However, there is more to the striker role
than scoring goals. As such, the presented ratings might provide a valid overall evaluation
of strikers, taking the impact of other involvements than shots and goals into account.

The validation, presented in Section 6.1, indicate acceptable accuracy of the ratings
presented in this section. However, as discussed, offensive involvements seem more fairly
rewarded than defensive involvements. Furthermore, players in more offensive positions
are higher rated than defensive players. Thus, the ratings appear most applicable for com-
paring players in similar positions. It is worth mentioning that defensive contributions can
be important also for players in offensive positions, something which is not captured well
by the presented ratings. Consequently, an assessment of defensive contributions could be
considered as a supplement to the presented ratings. In the presented results, most teams
are represented by at least one player, meaning that players are recognized regardless of
team. However, in line with general expectations, the better teams have more highly rated
players than the weaker teams.

6.3 Similar Players
The k-Nearest Neighbours (kNN) algorithm, introduced in Section 2.6, is used to find the
k = 10 most similar players to the outfield players in RBK’s preferred starting eleven
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in Eliteserien 2016. k = 10 is chosen, which seems to result in an appropriate number
of similar players. If the range of the distances is small, a smaller k could mean that
similar players are not listed. On the other hand, the similarity diminishes with a larger
k. Although only RBK players are presented, the k most similar players can easily be
obtained for any outfield player in Eliteserien. Recall that a player performance profile
consists of a player’s rating for each involvement type. Matches from the 2016 season is
used in the calculation of the player performance profiles, and only players with more than
900 minutes played are included to ensure that the performance profiles are stabilized. The
performance profiles are calculated per 90 minutes played, representing the per season
ratings of the players. Furthermore, the scale of the different involvement types varies.
Therefore, the ratings for each involvement type are normalized, in order to avoid certain
involvement types dominating the distances.

Table 6.14: Explanation of position abbreviations

Abbreviation Position
CD Central Defender
FB Full Back
CM Central Midfielder
W Winger
ST Striker

The tables in this section presents the Euclidean distances between the performance
profile of the player in the first row and the performance profile of the player listed in a
respective row. All players are listed with their most played position. The position ab-
breviations are explained in Table 6.14, and the positions are illustrated in Figure C.1 in
Appendix C. A short Euclidean distance means that the similarity of the compared perfor-
mance profiles is high, and a long Euclidean distance means that the similarity is low. In
turn, a high similarity means that two players are rated similarly across all the involvement
types in the performance profiles. Both the distances and the range of the distances vary
for the different players, meaning some players have more unique performance profiles.
For players that are much better or worse than the k most similar players, the distances are
higher. Players who are rated similarly across all involvement types are likely to resemble
each other, meaning that one could potentially be a replacement of the other. Being able to
identify similar players is important in the process of scouting replacement players when
a player has been sold or gets injured. The presented approach is able to identify simi-
lar players, however, replacing a player with a better player is usually considered ideal.
The same set of involvement types may be the highest rated within two players’ perfor-
mance profiles, but if one is sufficiently higher rated than the other, this approach will
not consider the players similar. Consequently, a generally considered similar, but better
player may not be identified. Nevertheless, the presented similarity analysis may provide
valuable information, useful as an initial screening of replacement player candidates.

Table 6.15 presents the ten most similar players to RBK’s two central defenders Tore
Reginiussen and Hólmar Örn Eyjólfsson. The kNN-algorithm does not take playing po-
sition into account, and the lists in Table 6.15 consist of both defenders and midfielders.
Some of the listed players are similar to both Reginiussen and Eyjólfsson, and Eyjólfson is
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Table 6.15: 10 most similar players to RBK’s most playing central defenders season 2016.

Tore Reginiussen CD Distance Hólmar Örn Eyjólfsson CD Distance
Peter Orry Larsen CM 0.760 Christian Landu Landu CM 0.892
Marius Høibraten CD 0.768 Matti Lund Nielsen CM 0.903
Marius Lundemo CM 0.883 Ruben Gabrielsen CD 0.909
Vegard Skjerve CD 0.916 Jostein Gundersen CD 0.911
Ruben Gabrielsen CD 0.927 Vegard Skjerve CD 0.922
Hólmar Örn Eyjólfsson CD 0.997 Eirik Birkelund CM 0.923
Christophe Psyche CD 1.001 Oliver Berg CM 0.928
Joachim Jørgensen CD 1.031 Abdisalam Ibrahim CM 0.943
Enar Jääger CD 1.034 Luc Kassi CM 0.945
Claes Phillip Kronberg FB 1.054 Christophe Psyche CD 0.946

among the ten players most similar to Reginiussen. As pointed out in Section 6.2, offensive
involvements seem more fairly rewarded than defensive involvements. This is not ideal for
finding similar players to central defenders, as defensive duties are considered important
for such players. Nevertheless, 11 of 20 players similar to Eyjólfson and Reginiussen are
central defenders. As RBK dominated Eliteserien in 2016, most teams probably had a de-
fensive approach when playing against RBK. In turn, RBK’s central defenders are allowed
to push further forward than central defenders on most other teams. This might help ex-
plain why Eyjólfsson and Reginiussen are found similar to central midfielders, as well as
defenders. RBK’s central defenders are likely to often operate in a similar area of the pitch
to that of central midfielders on weaker teams, leading to ratings similar to midfielders.
Overall, the results do not seem very intuitive for RBK’s two central defenders, and the
proposed approach do not seem to identify replacement players for central defenders.

Table 6.16: 10 most similar players to RBK’s most playing full backs season 2016.

Jonas Svensson FB Distance Jørgen Skjelvik FB Distance
Hans Norbye FB 1.189 Henri Toivomäki FB 0.928
Bjørn Helge Riise CM 1.195 Claes Phillip Kronberg FB 0.943
Ruben Kristiansen FB 1.195 Thomas Jacobsen FB 0.961
Jørgen Skjelvik FB 1.223 Magnus Andersen W 1.029
Henri Toivomäki FB 1.282 Marius Lundemo CM 1.041
Amin Nouri FB 1.339 Abdisalam Ibrahim CM 1.130
Emil Jonassen FB 1.369 Vegard Skjerve CD 1.139
Henrik Robstad FB 1.391 Henrik Furebotn CM 1.153
Jukka Raitala FB 1.392 Riku Riski W 1.169
Joachim Thomassen FB 1.404 Lars Christian Kjemhus W 1.179

Table 6.16 presents the ten most similar players to the two full backs Jonas Svensson
and Jørgen Skjelvik. Although Svensson moved to the dutch club AZ Alkmaar in January
2017, and Skjelvik currently plays centre back, these two players are presented as they
were the regular full backs in 2016. The range of the distances to the most similar players
are different for the two players. For Skjelvik, the range goes from 0.928 to 1.179, while
the range is 1.189 to 1.404 for Svensson. This indicates that it may be more difficult to
find a player similar to Svensson in Eliteserien, than to find one similar to Skjelvik. An-
other observation is that few of the players similar to Svensson are similar to Skjelvik,
although Skjelvik is among Svensson’s most similar players. Whereas most players sim-
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ilar to Svensson are full backs, players in several different positions are found similar to
Skjelvik. Skjelvik played several matches as central defender and winger in 2016. Thus,
Skjelvik’s performance profile is not expected to represent a typical full back. This could
be a reason why Skjelvik is found similar to wingers as well as central defenders and full
backs.

Table 6.17: 10 most similar players to RBK’s most playing central midfielders season 2016.

Mike Jensen CM Distance Anders Kondradsen CM Distance Fredrik Midtsjø CM Distance
Fredrik Haugen CM 1.103 Harmeet Singh CM 1.192 Mohamed Ofkir W 0.738
Gudmundur Thorarinsson CM 1.190 Jone Samuelsen CM 1.198 Fredrik Nordkvelle CM 0.981
Herman Stengel CM 1.242 Bismark Boateng CM 1.250 Ghayas Zahid W 0.982
Anders Trondsen CM 1.282 Fredrik Aursnes CM 1.260 Mattias Moström W 1.016
Eirik Hestad CM 1.314 Björn Sverrisson CM 1.290 Francisco Junior CM 1.045
Øyvind Storflor W 1.380 Daniel Fredheim Holm W 1.319 Rafik Zekhnini W 1.048
Christian Grindheim CM 1.386 Mathias Antonsen Normann CM 1.376 Ohikhuaeme Omoijuanfo ST 1.052
Petter Strand W 1.407 Abdisalam Ibrahim CM 1.421 Jone Samuelsen CM 1.083
Gilbert Koomson W 1.490 Sander Berge CM 1.458 Chukwuma Akabueze W 1.099
Jonas Lindberg ST 1.508 Matti Lund Nielsen CM 1.483 Tokmac Nguen W 1.120

Table 6.17 presents the kNN results for RBK’s central midfield trio Mike Jensen, An-
ders Konradsen and Fredrik Midtsjø. The trio played regularly in 2016 and and has con-
tinued to do so in the first half of the 2017 season. Of the 30 players listed in the table,
there are 29 different players, and none of the three RBK players are on the lists of the
other two. This indicates that the RBK midfielders do not resemble each other. As all
three players were among the top ten rated central midfielders listed in Table 6.11, the lack
of similarity between the three RBK midfielders is unlikely to occur because of a differ-
ence in the quality of their total performance, but rather due to having different qualities.
Midtsjø is found similar to several wingers, indicating, as mentioned in Section 6.2, that
he tends to push wide. Konradsen has a more defensive role than Midtsjø and Jensen in
RBK’s 4-3-3 formation, and he appears to be similar to more CMs than the other two. The
list of Konradsen’s similar players largely consists of CMs playing in 4-4-2 systems, ar-
guably a similar role to Konradsen, or players in the same 4-3-3 role. Even though Jensen
and Midtsjø are found similar to wingers, several of the players categorized as wingers are
wide midfielders in 4-4-2 systems. The difference between 4-4-2 and 4-3-3, and the dif-
ference of the RBK midfielders’ roles, are illustrated in Appendix C. Arguably, the roles
of Midtsjø and Jensen resemble the wide midfielder role more than the CM role in 4-4-2
systems. As such, the lists of similar players can be argued more accurate than suggested
by the displayed playing positions, and may be useful for identifying replacement players.

Table 6.18 lists RBK’s forward line, represented by Yann-Erik de Lanlay, Christian
Gytkjær and Pål André Helland, and the ten most similar players to each. As Gytkjær
played striker and the other two are wingers, the results are expected to differ. The calcu-
lated distances from Pål André Helland to the the most similar players are high, ranging
from 1.542 to 2.086. The tables in Section 6.2 show that Helland achieved the highest
overall rating in 2016. As Helland accordingly receives high ratings in several involvement
types, one would expect the distances to the most similar players to be high. Furthermore,
it appears that the player performance profiles largely separate strikers and wingers from
players in other positions, as Gytkjær is only found similar to strikers, and de Lanlay and
Helland are mostly similar to wingers.
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Table 6.18: 10 most similar players to RBK’s most playing forwards season 2016.

Yann-Erik de Lanlay W Distance Christian Gytkjær ST Distance Pål André Helland W Distance
Aron Sigurdarson W 1.012 Fitim Azemi ST 1.121 Gilbert Koomson W 1.542
Erik Huseklepp W 1.104 Torbjørn Agdestein ST 1.379 Muhamed Keita W 1.594
Mohamed Ofkir W 1.105 Patrick Mortensen ST 1.394 Øyvind Storflor W 1.637
Tokmac Nguen W 1.152 Agon Mehmeti ST 1.421 Mike Jensen CM 1.696
Edwin Gyasi W 1.174 Mohammed Abdellaoue ST 1.440 Petter Strand W 1.824
Chukwuma Akabueze W 1.180 Mathias Bringaker ST 1.449 Deyver Vega W 1.978
Rafik Zekhnini W 1.185 Jakob Orlov ST 1.468 Anders Trondsen CM 1.995
Fredrik Midtsjø CM 1.285 Deshorn Brown ST 1.470 Aron Sigurdarson W 2.053
Mohammed Elyounoussi W 1.380 Runar Espejord ST 1.490 Yann-Erik de Lanlay W 2.063
Simen Juklerød W 1.400 Marcus Pedersen ST 1.496 Erik Huseklepp W 2.086

As seen in this section, the kNN algorithm for identifying similar players seems a
promising approach. The results regarding central defenders, however, are questionable,
as RBK’s central defenders were found similar to several midfielders. The kNN algorithm
may produce better results for central defenders if defensive involvements were evaluated
differently. As discussed, Svensson is found similar to other full backs, indicating that
replacement full backs may be successfully identified. Furthermore, the results regarding
RBK’s midfielders and offensive trio help establish the impression that the approach is
applicable for finding similar players. However, the similarity for players with defensive
duties could be supported by an assessment of defensive capabilities for more detailed
comparisons.

6.4 Team Impact on Player Performance
A player’s performance is expected to depend on the quality of the player’s team. Even
though the better teams are generally expected to have the better players, there might be a
complimentary effect when a player plays alongside higher quality players. A better team
is likely to create more goals and have a higher possession percentage (Bjertnes et al.,
2015; Oberstone, 2009), resulting in player ratings that are dependent on team quality.
This is investigated by considering the players who have played for more than one club
in Eliteserien throughout 2014, 2015 and 2016. Only players who have played more than
450 minutes for each team are considered. 63 players have played for two different teams,
and three players have played for three different teams. For each pair of teams, team a and
team b, for which player p has played, ∆Pa,b and ∆Ta,b are computed, as explained in
Section 5.4. Recall that ∆Pa,b represents the difference in player p’s average rating while
playing in teams a and b, and that ∆Ta,b represents the difference in average ratings of the
other players in teams a and b when player p played for each of the two teams.

Figure 6.1 shows the plot of ∆Pa,b against ∆Ta,b for every pair of clubs a and b
related to each of the 66 players. The correlation between ∆Pa,b and ∆Ta,b is 0.6238.
The positive correlation implies that players tend to receive higher ratings when playing
for a team where the average rating of the other players is higher, and vice versa. The
interpretation of this is that players tend to perform better when playing for a stronger
team, and perform worse when playing for a weaker team. Table 6.19 shows the results of a
linear regression where ∆Pa,b is the dependent variable and ∆Ta,b is the only independent
variable. The constant is not significant, which makes sense, logically. A player is not
expected to perform better or worse in a different team without accounting for factors that
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Figure 6.1: Scatter plot and correlation of change in player performance and change in team rating.

separate the two teams. The independent variable, however, is significant at p < 0.01. This
indicates that team quality significantly influence player performance. The coefficient of
0.774 indicates that the player performance changes by 77.4% of the change in average
team rating.

Table 6.19: Linear regression results using ∆Pa,b as the dependent and ∆Ta,b as the independent
variable.

Variable Coefficient Std. error t-value p-value
Constant −0.019 0.020 −0.951 0.345
β∆Ta,b

0.774 0.118 6.533 0.000

Players’ performances, compared to their team’s performances, is discussed next, based
on the approach explained in Section 5.4. The players who have played for the same team
in two consecutive seasons during 2014, 2015 and 2016 are used to compute S1 and S2.
Recall that S1 and S2 measure player performance compared to team performance in sea-
son 1 and 2, respectively. 199 pairs of S1 and S2 values exist in the data, and a single
player may be represented by two pairs of S1 and S2 values if he played for the same team
in all three seasons.
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Figure 6.2: Scatter plot and correlation of player performance in one season, S1, against the player
performance in the same team in the successive season, S2.

S1 is plotted against S2 in Figure 6.2 and the correlation between the two is 0.7933.
This indicates that players perform consistently, compared to their team’s performances,
across seasons. As the team quality was shown to influence player performance, this is
particularly important. It could be that the ratings evaluated teams rather than players, and
that the team’s ratings where split randomly between a team’s players. It is expected that
the same players are among the best within the teams from one season to another, and the
positive correlation between S1 and S2 is a strong indication that this is reflected by the
ratings. Hence, the data driven player evaluation appear to distinguish individual players,
and therefore rate player performances rather than team performances.

In Section 6.2, the stronger teams were found to have more players on the top ten
lists of most positions, compared to weaker teams. As shown in this section, this may be
partly due to the complementary effect of playing with better players. Nevertheless, player
ratings were shown to distinguish players within teams, and thus, comparing players from
different teams is viable. A natural extension of the work is to attempt to adjust the player
ratings for team strength, but that is reserved for further research, discussed in Chapter 8.
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6.5 Evaluation of Research Questions
The research questions, presented in Section 1.2, are answered and evaluated in this sec-
tion, based on the results presented in this chapter.

RQ1: Can outfield association football player performances be objectively and accu-
rately evaluated by data driven player ratings, derived from Markov models?

Impact function I2,1, presented in Section 5.1, was used to produce data driven player
ratings. The impact function is based on Q-values from Markov Model 2, presented in
Chapter 4. Ratings can be produced per game and per season, by aggregating and nor-
malizing the impact of all involvements by each player. As the player ratings are based
on Markov game Q-values, learned through value iteration, it is a fair to assume that the
ratings tend towards objectivity. Furthermore, the ratings produced probability estimates
similar to the underlying probabilities of betting odds, which indicates accurate player
evaluation. The impression of accurate player evaluation was further established as the
correlation with benchmark ratings and inter-season correlation corresponded with the ex-
pected results. However, as discussed in Section 6.2, the ratings appear most applicable
for comparing players in similar positions. As goals are generally more likely in more
offensive areas of the pitch, offensive players tend to receive higher ratings than defensive
players. This could possibly be improved by looking into other ways of evaluating defen-
sive involvements, as offensive involvements seem more heavily rewarded.

RQ2: Can data driven player evaluations be used to identify similar players?

The evaluation of player performances resulted in a unique player performance profile for
each evaluated player. In order to identify similar players, the performance profiles were
used as input in the k-Nearest Neighbours algorithm. Presuming that more similar players
have more similar performance profiles, the approach presented in Section 5.3, identifies
players who resemble each other. The results from the approach were presented in Section
6.3, which lists the ten most similar players to RBK players in every playing positions.

The results were promising for players in most positions. The approach managed to
identify similar players in terms of playing position, but more interestingly, different play-
ers playing in the same position were found similar to different sets of players. This indi-
cates that the approach manages to identify similar players in terms of qualities and roles,
and may therefore be applicable for finding replacement players. However, a limitation is
that two players who are highly rated in the same involvement types, where one player is
sufficiently higher rated than the other player, might not be found similar. Consequently,
players at a similar level, which also possess similar qualities, are generally identified in
the analysis. The results appear less intuitive for central defenders than for offensive play-
ers. A possible explanation is that the player ratings are more influenced by offensive than
defensive contributions. Although better defensive evaluations may improve the overall
results, the approach seems to identify similar players and produce results applicable for
replacing current players and recruiting new talent.
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RQ3: Is there a relationship between team quality and individual player performances?

Using player ratings based on impact function I2,1 as the measure of player performance,
the relationship between team quality and individual player performances were investi-
gated in Section 6.4. The performances of players who had played for at least two different
teams, and the quality of these players’ respective teams were considered. It was found
that players tend to perform better while playing for a stronger team, and perform worse
while playing for a weaker team. This indicates a complimentary effect of playing with
better players. This is important for real-world applications, as it implies that the quality
of the teams must be taken into account when scouting players. A player’s rating might
not stand out initially, but if the player’s team is weaker than the potential new team, the
performance is likely to improve for the new team. The magnitude of the relationship
between team quality and player performance was identified by linear regression. This
means that a reasonable estimate of a player’s performance in a new team can be made,
based on the previous performance of the player, the quality of the player’s previous team
and the quality of the new team.
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Chapter 7
Conclusion

This thesis has described the development of data driven player performance ratings, and
potential applications of such ratings. Two Markov game models were developed by im-
proving the models presented in Bjertnes et al. (2016). The players’ ratings are based on
the expected values of the players’ individual involvements, obtained from the Markov
models. Offensive involvements appear to be higher rewarded than defensive involve-
ments. This results in lower ratings for defensive players, compared to offensive play-
ers. However, thorough validation indicates that the ratings accurately evaluate individual
player performances, and that the ratings are believed to tend towards objectivity.

Cognitive bias may lead to badly informed decisions and undesired risks in the transfer
market for professional football clubs. The presented, objective player evaluations elim-
inate cognitive bias, which may in turn reduce the risk associated with player transfers.
Furthermore, players who are rated similarly across different involvement types are be-
lieved to resemble each other. Similar players, in terms of position, were identified, which
is promising. More interestingly, however, different sets of players were found similar to
different players in the same position, indicating that similar players in terms of individual
qualities and roles are identified. The approach is limited to identifying similar players at a
somewhat similar level, and seems to work better for more offensive players. Nonetheless,
the results are promising and suggest that the approach can be useful in practice.

Objective evaluation, in combination with identification of similar players, can stream-
line the process of scouting players, resulting in lower costs and reduced risk. To further
increase the usefulness of the player ratings, the impact of team quality on the ratings is
investigated. Players are found to perform better while playing for better teams, and the
magnitude of this effect is identified. Although not further investigated in this thesis, this
allows for player ratings to be adjusted for team quality.

The work in this thesis, and the described approaches, can be used as a framework for
professional clubs operating in the transfer market. A club can select a particular player
and instantly receive his rating and identify his similar players. The ratings of the similar
players can be adjusted for team quality to investigate the expected performance compared
to the selected player. Only data from Eliteserien is used in this thesis, but similar data is
available from at least 30 other divisions. Data from any division can be used to analyze
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players from all over the world. Such a framework can be a valuable tool for Rosenborg
Ballklub, the initiator of this thesis. The club operates in a highly competitive sport, and
the smallest competitive advantage can be invaluable. The presented work extends the
limited sports analytics research in Norway, which brings data driven tools closer to the
operations of Norwegian clubs.
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Chapter 8
Recommendations for Further Research

This thesis explores how football modelled as Markov chains and Markov games can be
utilized in data driven player performance evaluation. The Markov models presented in
this thesis resemble the models introduced by Bjertnes et al. (2016). However, improve-
ments and new ways to utilize the results are introduced. In addition to produce player
ratings, the results from the player performance evaluation are used to find similar players.
This represents a new application of Markov models in football, and further research in
this direction may be worthwhile. Recommendations for further development of Markov
models in football, and suggestion for better utilization of such models, are made in this
chapter.

So far, the work on Markov models, used in player performance evaluation in football,
has shown that the developed models do not sufficiently evaluate defensive performances.
In this thesis, attempts were made to better evaluate defensive player involvements by
seeking a more realistic modelling of the game flow. The results however, show that play-
ers are often not rewarded positively for performing defensive involvements. This suggests
that adjustments have to be made to better evaluate such involvements. Using the same
impact function for both offensive and defensive involvements does not seem to produce
optimal results. Thus, further experiments regarding choice of impact functions should be
conducted. In order to evaluate defensive performances more accurately, a separate impact
function for evaluating defensive involvements should be considered.

Assuming future Markov models are based on event-based data only, there are still
limitations for modelling the state contexts. However, the event-based Opta data contains
information which is not included in the existing models. Every event in the data is reg-
istered with the angle the ball travels at during an event relative to the direction of play,
presented in radians. This makes it possible to categorize the passes into different groups
depending on the direction of the pass. Passes going forwards are different than passes
going backwards or sideways on the pitch. Making a pass forwards in a given state may
be more valuable than a pass backwards to the defender. Some impact functions may
catch this difference by looking at the next state, but categorizing passes and long passes
depending on the direction might improve the models.

The granularity of the models is increased by adding context variables or by increas-
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ing the number of possible variable values, actions or event types. As the granularity
increases, a more realistic modelling of the game may be achieved, but on the other hand,
you may end up with a too large number of possible states and state-action pairs. To ob-
tain accurate state and Q-values, the occurrences of each state and state-action pair have
to be sufficiently high, in order to account for irregular outcomes and to give a reasonable
representation of the real values. Hence, a trade-off between granularity and number of
occurrences is introduced. It is possible to determine an optimal state definition and the
optimal number of possible variable values. In this thesis, the pitch is divided into 21 dif-
ferent zones and four different time periods are used. The optimal numbers are not inves-
tigated, and it is not certain whether a larger or smaller number is beneficial, or how much
a change will improve the results. This could be investigated by running cross-validations
on different alternatives, similar to the approach presented in this thesis. If reducing the
possible values of a context variable to the minimum does not change the results for the
better, the variable should be considered removed from the state definition.

The analysis of similar players presented in this thesis is, to the best of the authors
knowledge, the first analysis where Markov models in football are used to identify sim-
ilar players. Similar players are identified entirely based on player involvements on the
ball. Physical data could be included in the analysis to reveal further similarity between
players. For instance, preferred foot, height, weight and age could be included to iden-
tify players which are physically similar to the player you want to replace. Number of
passes in different zones, number of passes forwards, backwards and sideways may also
be included to identify further similarity. Having tracking data available would make it
possible to include movement patterns and distance covered per game in the analysis. In-
cluding physical and tracking data in the analysis may require an adjusted and customized
implementation of the kNN-algorithm. Other distance measures has to be used to measure
the similarity, if categorical or ordinal variables are included. For instance, it may be pos-
sible to develop a distance measure combining Euclidean distance and Jaccard similarity.
A customized implementation also makes it possible to weigh each attribute differently,
but it may be difficult to determine what gives the best results and highest level of total
similarity.

The team impact on player performance was investigated in this thesis. A linear re-
gression model was built, and the model makes it possible to predict how a player will
perform in a different club, given the rating of the old and new club. This also makes it
possible to adjust all player ratings as if all players played for the same club, and thus
remove the team impact on the player ratings. Furthermore, it is possible to identify how
each involvement type is affected by team quality. In this thesis, the impact on the total
rating was identified, but different involvement types are likely to be affected differently.
A player may perform better on passes in a better club, but his performances on tackles
or aerial duels may be better for a weaker club. When the team impact is identified for
each involvement type, these ratings can be adjusted according to the team impact for ev-
ery player, resulting in player performance profiles which are team independent. In turn,
these player performance profiles can be used to identify similar players, using the kNN
algorithm. This approach may improve the similarity analysis and produce better results.
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Appendix A
Value Iteration Examples

The intermediate iterations of the value iteration examples, illustrated in Section 4.2.3 and
Section 4.3.3, are illustrated in this appendix. Figure A.1 illustrates the first five iterations
of running the Markov chain value iteration algorithm, Algorithm 1. Figure A.2 illustrates
the first three iterations of the Markov game value iteration algorithm, Algorithm 2. Each
iteration is explained in the caption of its respective subfigure.
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Figure A.1: Model 1 value iteration example, illustrating Algorithm 1.

(a) Before running the algorithm. No state values are set, except the goal states, which have a value
of 0 and reward of 1 or −1. States not illustrated explicitly in the figure are denoted ∗.
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(b) After iteration 1. The state values of the states leading directly to a goal are updated. The updated
values are highlighted in red. One state lead to a goal in one out of four occurrences. Another state
lead to a goal in one out of three occurrences. Thus, after iteration 1, the states are valued 0.250 and
0.333, respectively.

83



(c) After iteration 2. Two more state values, highlighted in red, are updated. One state leads to a
state with a value of 0.250 in one third of the occurrences and is thus valued 0.083. The other state
leads to a state with a value of 0.333 in two thirds of the occurrences and is valued 0.222. The state
values updated in iteration 1, highlighted in bold, are not updated in iteration 2.
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(d) After iteration 3. Two more states are updated in the third iteration. The states are updated
according to the occurrences and state values of the subsequent states.
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(e) After iteration 4. Only one state value is updated in the fourth iteration, where V (s) = 1
320
×

(140× 0.036 + 180× 0) = 0.016.
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(f) After iteration 5. The values of most states shown in the figure have been updated. The state value
updated in the current iteration is highlighted in red, while state values in bold have been updated in
previous iterations. As subsequent states not illustrated explicitly in the figure, denoted ∗, are yet to
be updated, the state values in the figure will be updated in later iterations. The algorithm converges
when the state values changes by less than the predetermined convergence criterion.
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Figure A.2: Model 2 value iteration example, illustrating Algorithm 2.

(a) Before running the algorithm. No state values and Q-values are set, except the goal states, which
have a state value of 0 and reward of 1 or−1. Subsequent states and actions not illustrated explicitly
in the figure are denoted ∗.
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(b) After iteration 1. Two state values and two Q-values are updated in the first iteration in this
example. The leftmost Q-value highlighted in red, representing a headed shot in zone 19, is valued
0.2500 as the state-action pair lead to a goal in one out of four occurrences. As headed shot is
performed in one tenth of the occurrences of the state, the state is valued 0.0250, until updated again
in later iterations. Following the same line of reasoning, the rightmost state and Q-value highlighted
in red, are valued 0.1667 and 0.3333 respectively.
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(c) After iteration 2. Two state values and two Q-values are updated in the second iteration, accord-
ing to the occurrences and values of subsequent states and state-action pairs. The values updated in
the current iteration are highlighted in red, while values updated in previous iterations are highlighted
in bold.
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(d) After iteration 3. Most state values and Q-values shown in the figure are updated. As the
values of subsequent states and action-action pairs not illustrated explicitly in the figure are yet to be
updated, the illustrated values will be updated again in later iterations.
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Appendix B
k-fold Cross-Validation Regression Results

The complete regression results from the k-fold cross-validation are presented in this ap-
pendix. Ten sets of regression coefficients are computed for each player rating, represented
by the underlying impact function. All regression coefficients and the associated p-values
are listed in the tables below. One table is presented for each impact function. The results
are discussed in Section 6.1.1.

Table B.1: I1,1 k-fold cross-validation regression results.

Fold α(1) pα(1) α(2) pα(2) β pβ
1 −0.983 0.000 0.204 0.016 −3.474 0.000
2 −0.933 0.000 0.289 0.001 −3.540 0.000
3 −0.910 0.000 0.237 0.005 −3.363 0.000
4 −0.967 0.000 0.225 0.008 −3.555 0.000
5 −0.923 0.000 0.220 0.009 −3.463 0.000
6 −0.923 0.000 0.220 0.009 −3.463 0.000
7 −0.986 0.000 0.207 0.015 −3.645 0.000
8 −0.961 0.000 0.213 0.012 −3.588 0.000
9 −0.885 0.000 0.273 0.001 −3.444 0.000

10 −0.940 0.000 0.243 0.004 −3.810 0.000
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Table B.2: I1,2 k-fold cross-validation regression results.

Fold α(1) pα(1) α(2) pα(2) β pβ
1 −0.908 0.000 0.103 0.193 3.787 0.223
2 −0.862 0.000 0.172 0.030 2.968 0.330
3 −0.840 0.000 0.141 0.074 4.036 0.189
4 −0.892 0.000 0.127 0.108 2.043 0.505
5 −0.824 0.000 0.172 0.030 2.369 0.436
6 −0.841 0.000 0.138 0.080 1.479 0.624
7 −0.894 0.000 0.112 0.155 0.666 0.831
8 −0.894 0.000 0.108 0.171 3.627 0.242
9 −0.834 0.000 0.163 0.039 1.237 0.672

10 −0.862 0.000 0.133 0.091 −2.666 0.400

Table B.3: I2,1 k-fold cross-validation regression results.

Fold α(1) pα(1) α(2) pα(2) β pβ
1 −0.949 0.000 0.239 0.005 −6.350 0.000
2 −0.897 0.000 0.322 0.000 −6.266 0.000
3 −0.872 0.000 0.266 0.002 −6.044 0.000
4 −0.926 0.000 0.259 0.002 −6.438 0.000
5 −0.858 0.000 0.313 0.000 −7.058 0.000
6 −0.883 0.000 0.252 0.003 −6.519 0.000
7 −0.938 0.000 0.237 0.005 −6.556 0.000
8 −0.916 0.000 0.243 0.004 −6.112 0.000
9 −0.844 0.000 0.310 0.000 −6.285 0.000

10 −0.892 0.000 0.289 0.001 −7.255 0.000

Table B.4: I2,2 k-fold cross-validation regression results.

Fold α(1) pα(1) α(2) pα(2) β pβ
1 −1.002 0.000 0.126 0.127 −16.219 0
2 −0.928 0.000 0.222 0.007 −16.198 0
3 −0.920 0.000 0.169 0.041 −14.913 0
4 −0.981 0.000 0.153 0.064 −16.328 0
5 −0.923 0.000 0.189 0.023 −16.232 0
6 −0.925 0.000 0.166 0.045 −16.183 0
7 −0.981 0.000 0.147 0.076 −16.585 0
8 −0.981 0.000 0.138 0.096 −16.367 0
9 −0.901 0.000 0.202 0.014 −15.440 0
10 −0.942 0.000 0.169 0.041 −16.519 0
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Appendix C
Formations and Positions

This appendix clarifies relevant formation and position terminology. Figure C.1 illustrates
the positions of players in the two most common football formations, namely 4-3-3 and
4-4-2. The position abbreviations are explained in table C.1. As argued in Section 6.3, the
two wider central midfielders in 4-3-3 resemble the wingers in the 4-4-2 formation. These
two roles are primarily occupied by Midtsjø and Jensen in RBK, and help explain why
they resemble both central midfielders and wingers. The most central midfielder in 4-3-3,
occupied by Konradsen in RBK, resemble the role of the two central midfielders in 4-4-2.

Table C.1: Position abbreviations.

Abbreviation Position
CD Central Defender
FB Full Back
CM Central Midfielder
W Winger
ST Striker
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Figure C.1: Player positions in different formations.

(a) 4-3-3 Formation (b) 4-4-2 Formation
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