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Modelling work hardening of aluminium alloys containing dispersoids 
The influence of dispersoids on tensile deformation behaviour has been studied by comparison of aluminium alloys containing different dispersoid densities. It was found that a fine dispersion of non-shearable particles led to an increased work hardening at the initial plastic deformation, but the effect was opposite at higher strains. The reason has been attributed to the generation of geometrically necessary dislocations (GNDs). A new model has been proposed for the evolution of GNDs based on a balance of storage and dynamic recovery of GNDs. The model predicts a rapid saturation of GNDs and a reduced work hardening at small strains, consistent with the experimental results.
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1. Introduction
The work hardening of metals has been studied for decades, and is still a topic of interest, especially in solid solution or two-phase materials containing particles. Early research [1] reported that a small volume fraction of dispersoids in pure copper single crystals resulted in a parabolic hardening, as compared to a more linear initial hardening in single crystals without dispersoids. At higher strains the crystal shows a work hardening similar to the matrix material. Similar dispersoid effect on the work hardening is also found in commercial alloys 
 ADDIN EN.CITE 
[2]
. The initial parabolic hardening is related to a rapid increase in the dislocation density due to the presence of dispersoids [3-4], where dislocation loops form around the dispersoids [5]. The extra dislocations formed due to non-shearable particles are geometrically necessary dislocations (GNDs). Humphreys and Stewart [6] observed by TEM and described the configurations of GND loops in brass containing dispersoids. The GNDs are difficult to observe precisely, since they tend to anneal out by the electron beam. Theories for the work hardening based on the generation of GNDs in the form of shear loops or prismatic loops were proposed by Ashby [7-8] and summarized in [9] to explain the initial work hardening in tensile tests. Ashby provided an estimate for the largest strain, for which the prismatic loops remain stable. This might be interpreted as a cut off strain for the athermal storage of GNDs, but this was not explicitly included as a mathematical model. Brown and Stobbs [10-11] proposed a framework based on internal stress to describe work hardening including the Bauschinger effect. Recently Proudhon et al.[12] proposed a model of internal stress following the approach of Brown and Stobbs [10] to calculate the unrelaxed plastic strain, and assume that the number of Orowan loops around particles saturates at certain strains. This assumption is also used in other recent models, as in 
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[13-14]
 using the maximum number of Orowan loops around a particle as an input parameter that is fitted to the experimental curves of the specified alloy.
Only a few works 
 ADDIN EN.CITE 
[2, 15-16]
 consider the remaining part of the stress-strain curve subsequent to the initial steep hardening of aluminium alloys with dispersoids. The current authors investigated the influence of dispersoids on work hardening during tension and rolling [17]. It was found that the work hardening rate of the alloy with dispersoids decreased more rapidly than the alloy without dispersoids after the initial deformation. This is related to the storage and dynamic recovery of the GNDs during deformation at room temperature. The recovery of GNDs was first ascribed to the climb and annihilation of Orowan loops by pipe-diffusion [4, 18]. The detailed modelling of work hardening incorporating this recovery mechanism produced a too strong temperature dependency of work hardening compared to the experimental results [19]. In a recent model [16] it is assumed that the GND density increases athermally at small strains and saturates immediately at a specific critical strain. The GND saturation density was determined by a scaling relation with a reference alloy. Their modelling fitted the experiments well, but does not account for the fact that the solute content of the modelled alloy could be different from the reference alloy and therefore affect the dynamic recovery differently. 
The aim of the present paper is to establish a simple dislocation based model of monotonic work hardening incorporating a quantitative analysis of dispersoids. A set of Al-Mn alloys with controlled solute contents was used in this work, modelling the influence of dispersoids on work hardening. A new model for the recovery of GNDs is proposed and discussed, where the basic idea is a scaling between the saturation density of dislocations in the matrix and the local saturation density of GNDs. 
2. Experimental results
The material was an Al-0.97 Mn-0.5 Fe-0.15 Si (wt%) direct chill cast billet. Heat treatments were designed to give two different dispersoid distributions with similar solute contents, a low density labelled “BL” and a high density labelled “BH”. BL was homogenized at 873K for 4 hours, and then slowly cooled (25 K/h) to 773K and held for 4 hours. BH was homogenized at 723K for 4 hours. The heating rate was 50 K/h. The solute contents after homogenization were measured by thermoelectric power. The coarse constituent particles, α-Al(Mn,Fe)Si and Al6(Mn,Fe), formed at dendrite and grain boundaries during casting. The particles became coarser and spheroidized during homogenization at a high temperature. Dispersoids, α-Al(Mn,Fe)Si and Al6(Mn,Fe) precipitated during the homogenization. The diameters and fractions of dispersoids and constituent particles are measured by backscattered electron imaging of scanning electron microscopy and listed in Table 1. Precipitate free zones (PFZs) around constituent particles were observed in BL. The area fraction of PFZs was estimated to be ~40% from the backscattered electron images. For details on the microstructure characterization refer to [17]. 
In Fig. 1 the influence of dispersoids on the work hardening is shown by the Kocks-Mecking plot. The offset of the yield stress is set as 0.2%. The work hardening rate of BH containing the high dispersoid density was higher at first, but decreased more at a later stage. The work hardening rate of BH is lower than that of BL at σ-σy larger than 45 MPa (Fig. 1). 
3. Modelling of work hardening at small strains
3.1 Stress contributions
The work hardening at small strains of materials containing particles is composed of isotropic hardening due to dislocation interactions and kinematic hardening caused by elastic inclusions, such as particles, as discussed in [17]. A linear superposition of the hardening components is used for the sake of simplicity. The flow stress σ is described as 
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The yield stress σy is contributed by the frictional stress of pure aluminium, solute strengthening, Orowan stress and Hall-Petch relation, which have been discussed in [17]. σi is the isotropic hardening, and σb is the kinematic hardening. σb can be measured as the internal stress from Bauschinger tests. Proudhon et al. [12] proposed a model of kinematic hardening where the storage of Orowan loops at particles saturates at certain strains. This model has been applied in 
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[13-14]
. It produces a Voce type saturation of the internal stress, and hence is formulated as 
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σb,s is the saturated internal stress, and kb is a constant. Eq. (2) is applied to fit the experimental results. The results are shown in Fig. 2, where the experimental results are well fitted. The internal stress increased with increasing strain, and started to saturate at a strain of 5%. The internal stress was stronger in BH than BL. As discussed in [17], the composition, size and morphology of the particles changed after long time homogenization. The larger and more spherical particles in BL were less efficient to induce internal stress.
A model of isotropic hardening is established to quantitatively explain the work hardening behaviour at small strains. The stress contribution of the dislocation interactions depends on dislocation density. The dislocations in materials containing dispersoids include (i) forest dislocations, ρ, which are formed in the same way as in single-phase metals, and (ii) GNDs formed around dispersoids, leading to a heterogeneous microstructure. In our model, the material is treated as a two-phase composite of GND zones and single-phase matrix. GND zones occupy a certain volume fraction of the material, fg, and are filled with a high density of GNDs. The total isotropic stress, including GNDs and forest dislocations, is modelled by
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σg and σf are the stress contributions of GNDs and forest dislocations, respectively. BL contains PFZs, so the calculation of fg should include the PFZ fraction, i.e. 
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, where fg’ is calculated using the measured volume fraction in the dispersoid-containing part of the alloy. The stress contribution from the GNDs is
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where α is a constant about 0.3, G=26 GPa is the shear modulus of aluminium and b is Burgers vector (0.286 nm). The Taylor factor M changes very little in tension tests due to the small deformations involved, hence it is taken as a constant equal to 3 for the random as-cast texture. 
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 is the local density of GNDs in GND zones (fg). The forest dislocations in GND zones are neglected, which will be further discussed in next section. The stress contribution of forest dislocations (ρ) in single-phase matrix is given by 
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Earlier TEM studies 
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[15, 20]
 reported no significant influence of dispersoids on forest dislocation densities. The forest dislocation densities were similar, in the order of 1013m-2, no matter the density of dispersoids are high [20], or low, like AA1050 and AA3207 [15].
3.2 Forest dislocation evolution
To keep the theory as simple as possible, the modelling of the evolution of the forest dislocation density in single-phase matrix, follows the one-parameter Kocks-Mecking approach [21]:
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Here γ is shear strain, γ=εM, where ε is the plastic strain. k is a storage constant which can be evaluated as 2θII /(αbG), where θII is the work hardening rate of initial stage II 
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[21-22]
. In this simple one-parameter approach the dislocation density saturates towards
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, which is the only parameter related to the dynamic recovery. Still a good description can be obtained for small strains relevant for the first part of the stress-strain curve of a tensile test. The forest dislocation saturation density 
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 depends on the strain rate, temperature and the solute content. It has to be evaluated by fitting to the experimental results. For a prescribed constant strain rate and temperature, i.e. keeping 
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 constant, the analytical solution of Eq. (6) is:
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Here ρ0 is the initial dislocation density. The combination of Eq. (5) and Eq. (7) results in the Voce work hardening curve. The nominal strain rate and temperature remain constant here, and the solute contents of BH and BL are similar, so the parameters in Eq. (7) are the same for BH and BL. 
3.3 Storage of geometrically necessary dislocations due to the presence of dispersoids
The presence of non-shearable dispersoids leads to the formation of GNDs, which can be in the form of shear loops or prismatic loops. The shear loops around particles contribute as part of the internal stress σb. The volume fraction of dispersoids is much less than the coarse constituent particles, so their contribution to internal stress should be weaker than the coarse particles. The evolution of the internal stress is covered by Eq. (2). Prismatic loops can form in the vicinity of dispersoids by cross slip of shear loops as described in [5, 11]. In Ashby’s theory [7-8], the prismatic loops should be both interstitial and vacancy types, and without annihilations the number of each type around each dispersoid of radius r becomes n=2rγ/b. However, TEM observations [5-6] show that most of the prismatic loops are interstitial type, implying that the loops of vacancy type are less stable. According to Ashby’s theory [7] the total length of the GND loops formed around each dispersoid, counting both interstitial and vacancy type, equals 24ηr2γ/b, where η is a factor which takes the shape of particles and the type of loops into account. The value of η will be reduced if the shape of dispersoids is changed from cubic to spherical. The number of prismatic loops around the dispersoids will be reduced if the number of vacancy type prismatic loops is less than of interstitial type, also reducing η. Hence the value of η is expected to be smaller than unity. In absence of dynamic recovery, the total GND density formed around all the dispersoids equals 
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Here 
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 is the dispersoid size distribution (number of dispersoids per radius and per volume). ρg is the global GND density in total volume, which should be distinguished from the local GND density
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 in GND zones in Eq. (4). They are the densities of the same GNDs in different volumes, i.e.
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The geometric slip length is defined as
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The storage rate corresponding to Eq. (8) - (10) is
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Here fg is treated as a constant. The equation is applicable to the materials containing non-shearable particles. It is the case for the dispersoids in the present alloy, which are strong and incoherent with the matrix. If the particles are shearable, the dislocations can pass through the particles, leaving no loop. Hence the shearable particles are usually considered to contribute negligibly to the dislocation storage 
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[23-24]
. The calculation of λ requires the dispersoid size distribution. The slip length λ is usually formulated as a simple function of the mean radius and the volume fraction of dispersoids, assumed to be monodisperse. However, the measured distributions and Eq. (10) provide a better estimate. The dispersoid size distributions of BH fit a lognormal distribution well, while BL fit a Γ-distribution well [17]. The fitted distribution functions were used to calculate λ with a threshold diameter of 40 nm. The threshold diameter is chosen due to the limit resolution of SEM measurement, but it affects the calculation little. The values of λ are 2.3η-1 µm for BH and 3.5η-1 µm for BL.
3.4 Dynamic recovery of geometrically necessary dislocations
In Ashby’s theory [7-8], the density
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was treated as a global dislocation density, i.e. the sum of the GND lengths per total considered material volume. The GNDs will experience dynamic recovery as the number of prismatic loops increases, and their dynamic recovery rate should depend on the local GND density. In our work the dynamic recovery of the GNDs in the form of prismatic loops is treated in a simple approach, where the evolution equation of GND density is formulated similarly to Eq. (6):
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Here 
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is the local saturation density in GND zones, and is assumed to approximately equal the saturation density of forest dislocations, i.e.
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. It is plausible that the local saturation level of dislocation storage depends on the alloy composition and temperature, not on the type or configuration of dislocations. This approach implies that the dynamic recovery of GNDs is assumed to follow a somehow similar mechanism as forest dislocations. Modelling based on the Kocks-Mecking-Estrin model 
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[13, 23-25]
 usually treats the dynamic recovery of GNDs similar to that for forest dislocations. The difference is that the volume GNDs occupy is distinguished in our model. An analytical solution of Eq. (12) is
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In Ashby’s theory the density
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is treated as a global dislocation density. A more detailed approach should take into account that the prismatic loops are stored in certain regions around each dispersoid. With octahedral slip the glide planes of the prismatic loops for a considered dislocation can only be those of the two co-directional slip systems of its Burgers vector. The glide plane of the loops will be parallel to the direction of the Burgers vector, i.e. the loops will ideally glide along a cylinder of radius approximately similar to the dispersoid radius and in the direction of the Burgers vector of the dislocation. This also holds if non-octahedral glide in the cube planes occurs, i.e. {100}<110> slip systems are activated locally. The prismatic loop formed first is the furthest from the dispersoid [6] and the distance it glides increases with strain and depends on how many loops that follows behind. Reaching a certain distance away from the dispersoid the loops start interacting with neighbouring dispersoids. Therefore the third dimension of the GND zones is not related directly to dispersoid dimensions but to this interaction distance, i.e. the GND zone volume for one prismatic loop direction equals
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, where fd is the volume fraction of dispersoids, in his stability estimate, assuming a pile up towards the first particle the chain of prismatic loops hits. An objection to Ashby’s estimate can be made, namely that the second particle at the other end of the cylinder of prismatic loops will be bypassed by other dislocations with the same slip system and consequently itself emit prismatic loops. These loops will have the same Burgers vector but glide in the opposite direction and with opposite dislocation direction. They may annihilate the loops from the first particle, and this will enhance dynamic recovery. Two opposite chains of loops will be emitted for each dislocation bypassing, and one of them will be of vacancy type, for which decohesion at the dispersoid surface has been reported to occur in some alloys [6]. In both cases the other dispersoid will not act entirely as a barrier but also as a dislocation annihilation source. Furthermore, Ashby’s estimate implies that the sum of the volumes occupied by the “cylinders” of prismatic loops will add up to a volume equal to the entire material volume when counting only one single set of interstitial type prismatic loops in one direction per particle. In multiple slip many “cylinders” of prismatic loops will then overlap, i.e. the prismatic loops emitted from one particle will interact with prismatic loops from one of the closest neighbouring particles much earlier than hitting another particle. The relevant length scale for this to occur is the average distance between neighbouring particles, which for uniformly dispersed spherical particles dimensionally depends on the number density per volume (NV), i.e. 
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Note that lp is the particle spacing in 3D space, which should be distinguished from the particle spacing for dislocations on a slip plane. If this limits the volume fraction of GND zones, then 
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is the maximum volume of GNDs corresponding to a dispersoid, where ns is the number of activated slip systems per grain, and nc is the number of GND columns for each activated slip system (nc=1 or 2). Then this volume is used as a constant for the evolution of GND density. For the case of spherical particles, the volume fraction of GNDs, fg, is 
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 when the number density of dispersoids per volume (NV) is considered. Then fg scales with the dispersoid volume fraction, fd, as follows
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By direct application of Eq. (14) to Eq. (15), the scaling relationship is derived as 
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Generally both vacancy and interstitial loops are formed in a slip system, i.e. two “cylinders” per slip system (nc=2), and the Taylor model predicts that at least five independent slip systems are activated (ns~5). Thus, 
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. However, ng will be tuned to fit the modelling curve to the experimental curve. 
3.5 Calibration of model parameters
There are now six parameters: σb,s and kb for the internal stress, k and ρs for the forest dislocations, ng for the GND storage, and one more parameter η related to the slip length restrictions. The initial dislocation density ρ0 was set as zero since it is negligible compared to ρs. The parameters σb,s and kb were estimated by fitting Eq. (2) to the experimental results, as shown in Fig. 2. The model, i.e. Eq. (1)-(5), (7), (13), and (16), was fitted to the experimental σ-σy curves of BH and BL. The 0.2% yield stress is used in experimental curves, and 0.2% is also used as the offset of the modelling curves. The fitted values of the parameters are listed in Table 2. The model is capable of fitting the experiments well, as shown in Fig. 3. The modelling is restricted to strains smaller than 0.1, because the Kocks-Mecking approach of isotropic hardening saturates, which leads to a much lower work hardening rate than the experimental curves at strains larger than 0.1. This simple model of the evolution of forest dislocations can be replaced by other models, but the principles of modelling the GNDs and scaling the saturation density of GNDs are shown to give a good approximation.

4. Discussion
A crossover in the work hardening (σ-σy) curves was observed at small strains in Fig.3. A similar effect of grain size on stress-strain curves has been reported by Nes and Marthinsen [22], who explained the crossover effect in stress-strain curves from the Nes’s model. Their model accounts for a reduced slip length and enhanced athermal storage of dislocations during stage II. In stage III the model involves a book keeping of how the dislocations are stored in the subgrain interior, in new subgrains and as part of the old subgrain boundaries. It is assumed that the GNDs are mainly stored in the subgrain interior, where they are counted as part of the density of statistically stored interior dislocations. This dislocation density saturates to a constant level and does not contribute to work hardening in stage III. Furthermore, it follows from their book keeping of how the dislocations are stored, that the storage of dislocations as part of building new subgrain boundaries is comparatively decreased, leading to a reduced work hardening in stage III. Hence the crossover is, according to their model, directly related to the transition from stage II-III. The model proposed here is simpler and not directly related to this transition.
The modelling presented in section 3 fits well the work hardening curves at small strains, indicating that the model can describe the work hardening behaviour. Figure 4 shows that the predicted density of GNDs increases much faster than that of forest dislocations at the initial deformation, and they dominate before the saturation. After the saturation, the local density of GNDs can not increase any more. Thus, it is reasonable to neglect the forest dislocations in GND zones (fg) in the model. The generation of GNDs due to the presence of dispersoids results in a high work hardening rate at the very beginning but soon also a strong dynamic recovery. The GND density saturates at a small strain, and the work hardening rate subsequently depends approximately on the forest dislocation density as:
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After the saturation of GNDs, a large fg leads to a reduced work hardening rate according to Eq. (17). This explains the influence of dispersoids on work hardening. 
The storage of forest dislocations is assumed to be independent of the dispersoid density and depends only on the forest dislocation density, in the present model as in others 
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[13-14]
. The model without σb nor ρg, i.e. only Eq. (3) and (5), with the same parameters was applied to the experimental curve of an Al-Mn alloy containing a similar solute content by Ryen et al. [26]. Note that the solute content of Ref. [26] was recalculated based on the measured electrical conductivity, using the same procedure as here. The Al-Mn alloy in [26] contained coarse particles but very few dispersoids. Hence the storage of prismatic loops around the dispersoids can be neglected in the alloy. The experimental σ-σy curve is comprised of forest hardening but also a contribution from the internal stress due to the constituent particles. The difference between the two curves in Fig.5 should be identical to the internal stress. The modelling curve has a similar work hardening rate to the experimental curve at strains larger than 0.06, suggesting that the fitted parameters work reasonably well also for this case. 
6. Conclusions
It is found that a high density of non-shearable dispersoids causes an increased initial work hardening followed by a reduced work hardening at strains beyond 5%. The explanation of the reduced hardening beyond a certain strain is that the local dislocation density saturates and does not contribute to further work hardening in the volume fraction of the material containing the GNDs. A new mathematical model has been suggested with an additional evolution equation for the GND density using the measured particle distributions as input. In the model an estimate for the volume fraction of the GNDs is made on the fact that loops emitted from adjacent particles interact and enhance the dynamic recovery of prismatic loops so that their interaction distance scales with the average distance between the neighbouring particles. The model has been quantitatively tested for dispersoids in an Al-Mn alloy but should be applicable to other alloys containing non-shearable particles of similar size.
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Fig.1 Kocks-Mecking plots of BH (dashed line) and BL (solid line), showing that the work hardening rate of BH is initially higher than BL but lower at higher strains.

Fig.2 The evolution of the internal stress as a function of the plastic strains with fitting curves of Eq. (2) (symbols: experimental measurements from [17]). 

Fig.3 Modelled work hardening curves compared to the experimental curves with a strain offset of 0.2% (lines: modelled; dots: experimental). 

Fig. 4 The local densities of geometrically necessary dislocations (GNDs) and forest dislocations in BH from modelling.

Fig. 5 The modelled forest hardening compared to the experimental curve of an Al-Mn alloy from [26].
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