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Abstract—Image quality assessment has become a meaningful
research field due to the explosive growth of image processing
technologies in imaging industries. It is becoming more usual to
quantify the quality of an image using image quality metrics,
rather than carrying out time-consuming psychometric experi-
ments. However, there is little research on the performance of
image quality metrics on quality enhanced images. In this paper,
we focus on images that have been enhanced by sharpening.
A psychometric experiment was designed with observers giving
scores to different images enhanced by sharpening on a display
in a controlled dark environment. The results showed that full
reference image quality metrics performed well when sharpening
did not improve the visual image quality, while in images where
sharpening increased the visual quality the performance was
lower. No reference image quality metrics show better predictions
than full reference image quality metrics in most cases.

I. INTRODUCTION

Recently, our daily life depicts a situation that we are
surrounded by a tremendous amount of images. Images be-
come a vital information carrier compared with graphics and
words [1], [2]. Image quality (IQ) is used to describe how
good the image is, which can be understood as the amount of
distortion referred to original image (deemed as the highest
quality image). However, even without comparison to the
original image, human observers still can distinguish objects,
background, foreground, contour, texture and so on in the
image, and then give a perceptual quality score to it.

Image enhancement has been widely applied in image
processing to improve the appearance of images. The principal
objective of image enhancement is modifying image attributes
to get a more pleasing output in a given case [3]. However,
the effects of image enhancement have not been studied in
detail so far. This is a challenge in objective IQ assessment, as
discussed in [4], [5]. As shown by Zhang et al. [6], observers
in general prefer a sharpened image to the original image
since the average level of preferred sharpness is consistently
higher than the detection threshold across image contents and
subjects. Traditionally, the way to improve sharpness is with
respect to the edges of images [7], [8], [9].

There are generally two methods of evaluating IQ: objec-
tive and subjective. Objective methods are using IQ metrics to
evaluate the quality of images, while subjective methods are
based on human observers giving scores to or rank the images
according to a specific guideline. Since humans are the final
receiver of images, the correlation between objective results

and psychometric results has been used as a performance
evaluation of the objective methods.

In this paper, we designed a psychometric experiment
where observers are giving scores to images with different
sharpness levels on a display in a controlled environment.
The goal is to compare the results of the human observers
with the results of state-of-the-art IQ metrics. This is done by
calculating the correlation between the psychometric scores
and the scores from IQ metrics.

This paper is organized as follows; Section II summarizes
the basic method of image enhancement on sharpness and a
selection of existing IQ metrics. Section III introduces the ex-
perimental setup including the selection of test images, viewing
condition and experimental method. Section IV provides the
subjective and objective results and an analysis and discussion
of the results. Lastly, in Section V, conclusions and future
works are presented.

II. BACKGROUND

A. Sharpness enhancement

Image enhancement aims to improve the perceptual IQ
or to get a better output for future image processing, such
as image analysis, image detection, image segmentation and
image recognition. In a given situation, image enhancement
can reach its objective by modifying IQ attributes. There are
many IQ attributes used to describe the quality of an image
[10], [11], such as sharpness, contrast, color, lightness, and
artifacts. Sharpness is an important attribute, which usually
relates to the definition of edges and visibility of details [10].

The basic method of sharpening images is by using Un-
sharp Masking (USM) [6]. As the name implies, USM en-
hances edges through subtracting an unsharp version of image
(since edges can be treated as the high frequency signal, so
the unsharp version of image can be found by applying a low-
pass filter) by the original image, then adds this part back to
original image. USM has many advantages such as it is a linear
space-invariant filter, which can be easily implemented as a
spatial-domain convolution. It is computationally inexpensive
and robust. However, it may also have some drawbacks. It can
result in overshoot and undershoot to the edges, which can
produce halo artifacts. Since it cannot recognize noise, which
may amplify the background noise in smooth regions. Last,
it cannot sharpen all edges since it uses a fixed sharpening
strength.



B. Image quality metrics

IQ metrics have three main categories depending on ac-
cessibility of the original image [12]. Metrics that are using
the original image in addition to the distorted image are com-
monly referred to as full reference (FR) IQ metrics. Reduced
reference (RR) metrics uses only partial information about the
images. The last category is no reference (NR) IQ metrics,
which uses only the distorted image to determine IQ. Many of
these IQ metrics are based on the human visual system (HVS),
and they have the ultimate goal of predicting perceived IQ.

1) Full reference metrics: More and more IQ metrics have
been applied for IQ (surveys can be found in [13], [14], [15]),
and FR metrics become increasingly mature. FR metrics can
be divided into two groups: Pixel-based and HVS-based. For
the former, the earliest IQ metrics are the Mean squared error
(MSE) and Peak Signal to Noise Ratio (PSNR), which are
computing the distance between corresponding pixels in the
reference and distorted images. In these cases, the assessment
is usually not correlated with perceptual IQ. For the other
group, there are two kinds of framework [16]. First is the
bottom-up framework, which needs to simulate the processes
of the HVS. For example, S-CIELAB is a spatial extension
to the CIELAB color metric, which applied a spatial filtering
operation to simulate the spatial blurring of the HVS, at
the same time consistent with the basic CIELAB calcula-
tion for large uniform areas [17]. Adaptive Bilateral Filter
(ABF) is used for color image difference evaluation, which
avoided the undesirable loss of edge information introduced
by filtering using contrast sensitivity functions [18]. Spatial
Hue Angle MEtric (SHAME) took into account the HVS
by incorporating information about region of interest [19].
The Total Variation of Difference (TVD) metric [20] removes
information imperceptible to the observer, and then calculates
the difference between the original and reproduction. The
other framework is the top-down framework, which models
the overall function of the HVS given a special condition.
For example, Structure SIMilarity (SSIM) index [21] is based
on the degree of structure similarity in the reference and
distorted images. Visual Information Fidelity (VIF) [22], [23]
depicts the connection between image information and IQ
depending on natural scenes statistical (NSS). Visual Signal-
to-Noise Ratio (VSNR) [24] employs a wavelet-based model
to determine distortions compared to the threshold of visual
detection. Feature Similarity (FSIM) Index [25] uses phase
congruence and gradient magnitude as features to characterize
the image local quality. Gradient Magnitude Similarity Devia-
tion (GMSD) [16] computes a local quality map by comparing
the gradient magnitude maps of the reference and distorted
image, and uses standard deviation to obtain the final IQ score.
Amirshahi et al. [26] proposed an IQ metric based on features
extracted from Convolutional Neural Networks (CNNs), which
produced good results on different databases. Zhao et al. [27]
evaluated IQ metrics for perceived sharpness of projection
displays, where the images were blurred, and found that SSIM,
FSIM and VIF produced good results.

2) No reference metrics: Recent NR metrics are based on
the assumption that the distortion types are known (such as
blocking artifacts [28], blur and noise [29], [30], [31], JPEG
[32] or JPEG2000 compression [33], [34], and others [35],
[36]). There is an important notion proposed by Ferzli and

Karam: Just-Noticeable Blur (JNB) [37], [38], which takes
into account the response of the HVS to sharpness at different
contrast levels. The derived HVS-based sharpness perception
model is used to predict the relative perceived sharpness in
images with different content [39]. Later more and more
research is based on the JNB [40], [41], [42], [43], [44]. The
other way to predict a certain distortion is transform-based,
such as Discrete cosine transform (DCT) [45] and Discrete
wavelet transform (DWT) [46], [47]. Local Phase Coherence -
Sharpness Index (LPC-SI) proposed by Hassen et al. [48], [49],
which identifies sharpness as strong local phase coherence
(LPC) near distinctive image features evaluated in the complex
wavelet transform domain.

However, human observers do not know exactly what
the distortions are in the images. Therefore, more and more
NR metrics based on statistic characteristics are proposed.
Moorthy and Bovik [50] proposed a two-step framework for
NR IQ assessment based on natural scene statistics (NSS):
the blind image quality index (BIQI) [51]. The first stage
is a classification stage, which is based on a description of
distorted image statistics to classify an image into a particular
distortion category. In their demonstration, this set consists
of JPEG, JPEG2000 (JP2K), white noise (WN), Gaussian
Blur (Blur) and Fast fading (FF) and it can be extended
to any number of distortions. The second stage evaluates
the IQ along the amount or probability of each of these
distortions, so the quality score is expressed as a probability-
weighted summation. Mittal et al. [52], [53] designed a NSS
based Blind/Referenceless Image Spatial QUality Evaluator
(BRISQUE), which extracts the point wise statistics of local
normalized coefficients of luminance signals in the spatial
domain, as well as pairwise products of adjacent normalized
luminance coefficients which provide distortion orientation in-
formation. These coefficients can be used as statistical features
that correlate well with human judgments of IQ. Saad et al.
[54] introduced the BLIINDS index (BLind Image Integrity
Notator using DCT Statistics), which is based on predicting
IQ through observing the statistics of local DCT coefficients
of a number of features (contrast, structure, sharpness and
orientation anisotropies). Mittal et al. derived the Natural
Image Quality Evaluator (NIQE) [55], [56], which is based
on the construction of a quality aware collection of statistical
features based on a simple and successful space domain NSS
model. Besides, there are also some machine learning methods.
Li et al. [57] developed a general regression neural network
(GRNN), which is trained by related perceptual features (as
phase congruency, entropy and image gradient), to estimate
IQ by approximating the functional relationship between these
features and subjective scores.

C. Performance measures for image quality metrics

In order to assess the performance of IQ metrics, it is
common to calculate the correlation between the observer
results and the IQ metrics. There are commonly two different
correlation coefficients used for this:

1) Pearson’s correlation coefficient: Pearson’s correlation
coefficient r assumes linear relationship between two random
samples X and Y :

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (1)



where, x1, ..., xn belong to sample X and xi represents one
of them. y1, ..., yn belongs to sample Y and yi represents one
of them. n is the number in the samples. x̄ = 1

n

∑n
i=1 xi and

similar for ȳ. The range of value r is [−1, 1]. If the value is
higher than 0, then X and Y have positive association; if the
value is lower than 0, then X and Y have negative association;
while value equals to 0, X and Y have no association.

2) Spearman’s rank correlation coefficient: Spearman’s
rank correlation coefficient ρ assumes monotonic relationship
between samples X and Y :

ρ = 1 −
6
∑n

i=1 d
2
i

n(n2 − 1)
, (2)

where, x1, ..., xn belongs to sample X and xi represents one
of them. y1, ..., yn belong to sample Y and yi represents one
of them. n is the number in the samples. di = xi − yi, is the
difference between ranks. Spearman’s ρ is a non-parametric
coefficient. When X and Y have strictly monotone increasing
relationship, the value of ρ is 1; When X and Y has strictly
monotone decreasing relationship, the value of ρ is −1; while
ρ equals to 0, Y tends to be flat when X is increasing.

III. EXPERIMENTAL SETUP

In our experiment, six test images (Fig. 1) from the
Colourlab Image Database: Image Quality [58] were selected.
These images are selected since they contain different charac-
teristics; such as fine details, sharp edges, lines, texture and so
on. We generate five different levels of sharpness by using the
Matlab function imsharpen altering the radius parameter as 0
(the original image), 1, 5, 20, and 50.

22 naive human observers (10 men and 12 women, age 20-
27), following the recommendation of minimum 15 observers
by CIE [59] and ITU [60], were invited to give perceptual
ratings to the different levels sharpness of images using a
five force-choice based category judgment. The five categories,
bad, poor, fair, good, and excellent, were represented by
numbers from 1 to 5. A higher value means the higher quality.
The raw data from the experiment was processed into Z-scores
[61] using the Colour Engineering Toolbox [62].

We have followed the CIE guidelines [59] with regards to
viewing conditions on display. The chromaticity of the white
displayed on colour monitor has been set to CIE standard
illuminant D65 and the luminance level of the white displayed
on the monitor has been set to 80 cd/m2. The two steps were
calibrated by using Eye-one device before the experiment. The
experiment was conducted in a dark environment. The viewing
distance was approximately 54 cm and the images were shown
in real size on the display, calibrated to sRGB.

Before the experiment, the visual acuity of the observers
was evaluated. In order to show those different sharpness levels
of each image randomly to get more accurate judgment from
human observers, we designed a Matlab GUI to present the
images to the observers. Once the observer gave score to one
image, he/she continued to the next image. The observers were
not informed about the changes done to the images.

Based on the IQ metrics described in Section II, we choose
two FR metrics [63] (SSIM [21], VIF [22]) and four NR
metrics (JNBM [39], LPC-SI [48], BRISQUE [52], [53], NIQE

[55], [56]) to predict IQ. These metrics can be considered to
be state of the art, and has shown to perform well in existing
evaluation studies.

IV. RESULTS AND ANALYSIS

First we introduce the results from the psychometric ex-
periment, then the evaluation results of the IQ metrics.

A. Subjective Results

The Z-scores from the psychometric experiment are shown
in Fig. 2. For the turtle image, there is a tendency that the IQ
can be improved by a certain amount sharpening. For flowers
and buildings, the IQ tends to decrease as the sharpness level
increases. For mountain, sunflower and leaves, the IQ tends
to increase when the sharpness level is increasing. This is an
indication that the preferred amount of sharpening is dependent
on the image. For all images the results indicate that some
amount of sharpening is preferred among the observers.

B. Objective Results

We will assess the performance of the metrics by inves-
tigation of their correlation with the percept (in this case the
Z-scores). As we can see in Fig. 3, when we use FR metrics
to predict the IQ, it turns out that only those images which
were distorted (i.e. having a lower quality) after sharpening
have a high Pearson correlation coefficient. SSIM is good at
predicting the quality of the images flowers, buildings and
turtle. The VIF metric is good at predicting quality of the
images flowers and mountain. FR metrics using both reference
images and tested images as input, and they assume that
the original image is pristine. Therefore, when the quality is
increased by sharpening, FR metrics cannot predict perceived
IQ. The exception is that the VIF metric is giving a high
correlation for the mountain image, despite the fact that
the observers generally consider the original image (without
sharpening) having a lower quality compared to the sharpened
versions. The results for Spearman coefficients are very similar
to those of Pearson.

As for NR metrics when it comes to Pearson correlation,
JNBM provides equivalent results to BRISQUE and LPC-
SI for the sunflower image. LPC-SI metric is suitable for
mountain, sunflower and leaves. BRISQUE gives good results
for flower, sunflower and turtle. NIQE has a high correlation
metric for leaves. For Spearman the results are similar, but we
can notice that that BRISQUE has a lower rank correlation
coefficient in the flowers image than for Pearson, the same
can be seen for LPC-SI for the leaves image.

Overall it is interesting to notice that none of the metrics
perform well for in all six test images, but there is always one
IQ metric that produces acceptable results. This might indicate
that the selection of the IQ metric to be applied could be linked
to the content of the image.

V. CONCLUSION AND FUTURE WORK

In this work, we designed a psychometric experiment to
study the performance of existing image quality metrics for
enhanced images by using human observer evaluations as
references. The subjective results indicate that the preferred
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Fig. 1. Six selected test images from the Colourlab Image Database: Image quality [58] are used for the psychometric experiment. Each image has a resolution
800× 800 pixels. (a) Flowers, (b) Mountain, (c) Sunflower, (d) Turtle, (e) Buildings, (f) Leaves. They were sharpened in Matlab with imsharpen function with
the radius parameter varying from 1, 5, 20, to 50. This results in each image having five level of sharpness including the original image.
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Fig. 2. The Z-scores of perceptual ratings collected from 22 human observers based on 5 sharpening levels of 6 test images. All the figures’ horizontal axis
represent the increasing sharpness, where 0 refers to the original image, and 1, 5, 20, 50 represent the image sharpened from original image with corresponding
radius. The vertical axis represents the Z-score value, which has the range [-2.5, 2.5]. The cross markers are mean Z-scores for each images, and the red lines
through markers represent 95% confidence interval. The blue horizontal lines separate vertical area into five categories, i.e., excellent to bad from top to bottom.
(g) shows Z-scores of all test images.

amount of sharpness can be linked with content. Evaluation of
full reference metrics showed that they performed well when
sharpening did not improve the visual quality of the images,
while in images where sharpening increase the visual quality
the performance was lower. In most cases no reference metrics
showed better predictions than full reference metrics.

There are many future works to be included. For example,
additional test images and image quality metrics should be
added. Besides, choosing other image attributes to extend the
range of the evaluations.
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