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Abstract

This thesis is the fruit of the master degree. An open question regarding the electromag-
netic forces on a neutron star is the foundation. The electromagnetic forces are strong
on a neutron star, yet they seem to be neglected compared to the force of gravity when
describing the star. Neutron stars are assumed to have a very spherical shape, but if the
electromagnetic forces cannot be neglected, could the shape be transformed? Being out-
side the area of expertise of my supervisor, the task became very exploratory, trying to get
an understanding of what neutron stars are. Using a simple model for the magnetic field,
an oscillating magnetic dipole, the forces on a test particle at the surface of the star was
found. Using the values found the next challenge is to find the charge distribution giving
rise to the strong electromagnetic fields. Due to the open and vague problematic and time
lost on technical difficulties with the simulations the results found in this thesis are limited.
The work done may open for the possibility of future work within the subject as neutron
stars has become familiar to the graduate student.



Sammendrag

Denne oppgaven er avslutningen på en masteroppgave. Motivasjonen bak oppgaven lå
i de elektromagnetiske kreftene i en nøytronstjerne. Disse kreftene kan bli veldig sterke.
Likevel blir disse neglisjert i forhold til de gravitasjonelle kreftene. Hensikten med opp-
gaven var å finne ut i om dette var forsvarlig. I og med at nøytronstjerner er utenfor
fagområdet til min veileder ble oppgaven en utforskningsoppgave, både for studenten og
for veilederen, samt veldig vagt definert. Ved å lage en enkel modell på magnetfeltet, en
oscillerende dipol, regner oppgaven påkreftene påladede partikler på overflaten. Etter å
ha funnet feltet på overflaten var målet å regne ut ladningsfordelingen. Denne oppgaven
viste seg å bli vanskelig, med tekniske problemer med programeringa samt en ulœselig
ligning. Sammen med den utforskende og vage naturen til oppgaven medførte dette til en
resultatmessig begrenset avhandling. Til gjengjeld har arbeidet utført tillatt studenten å bli
godt kjent med nøytronstjerner, som kan åpne veier for fremtidig arbeid i det fagfeltet.
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Introduction

A neutron star is a compact object formed in a core-collapse supernova explosion or in
an accretion process of a white dwarf. Its radius is of the order of tens of kilometers
and its mass on the order of one solar mass. These values indicate an extremely dense
composition. The innermost matter can reach values significantly exceeding the atomic
nuclei density. The gravitational energy reaches 20% of the rest mass energy. Neutron stars
also exhibit enormous angular momentum and electromagnetic fields. Such conditions are
unavailable on Earth, hence neutron stars are unique laboratories to test theories of gravity
in the strong field regime. Binary systems composed of neutron stars or black holes may
be the source of new physics in the emission of gravitational waves. In other words,
neutron stars are excellent subjects for unveiling more about the physical laws in nature.
This paper will give a brief introduction to neutron stars, with the physics present in such
compact objects and look at the electromagnetic field and its implication on charges.
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Chapter 1
An introduction to Neutron Stars

1.1 A historical discovery

Two years after the discovery of the neutron1, the possibility of a compact star predom-
inantly made out of neutrons as resulting core of a supernova, defined in section 1.2.2,
was postulated by Walter Baade and Fritz Zwicky in 1934. According to their hypothesis,
all the neutrons would fall down to the center of the star due to the strong gravitational
force. However, due to the small size and therefore highly unlikely detection, the neutron
star model was not pursued for decades. This changed dramatically in 1967, thanks to
the serendipity and the diligence of an Irish graduate student by the name of Jocelyn Bell.
Bell and her advisor, Anthony Hewish, were working on radio observations of quasars,
which had been discovered in 1963. Bell and her fellow graduate students had constructed
a scintillation array for the observations. She went on to analyze the charts of data pro-
duced. One day she noticed a bit of ”scruff” that appeared on the charts every second and a
third. The scruff was so regular that she first thought it must be artificial. However, careful
checking showed that indeed the signal was extraterrestrial, and in fact that it must be from
outside the solar system. This source, CP 1919, named a pulsar for its radio pulses, was
the first to be discovered2.

The discovery initiated a storm of activity that has still not abated. A number of other
pulsars were discovered, including one in the Crab Nebula, site of a famous supernova in
the year 1054 that was observed by Chinese, Arabic, and North American-astronomers3.
Within a year or so of the initial discovery, it became clear that:

• pulsars are fast, with periods known in 1968 from 0.033 seconds: the Crab pulsar,
to about 2 seconds,

1Discovered in 1932 by James Chadwick, which earned him the Nobel Prize in Physics in 1935.
2In 1974, A. Hewish was awarded the Nobel Prize ”for his decisive role in the discovery of pulsars”, without

J. Bell. Bell was a critical part in the system yet did not participate in the award, which led to the saying ”no-Bell
prize”.

3But not recorded by Europeans.
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Chapter 1. An introduction to Neutron Stars

• the pulsations are very regular, with a typical rate of change of only a second per ten
million years,

• over time, the period of a pulsar always increases slightly.

With this data, it was realized quickly that pulsars had to be rotating neutron stars. With
certain exceptions that do not apply in this case, if a source varies over some time t, then its
size must be less than the distance light can travel in that time, or ct (otherwise the variation
would be happening faster than the speed of light). Thus, these objects had to be less than
300 000 km/s times 0.033 seconds, or 10 000 km, in size. This restricts us to white dwarfs,
neutron stars, or black holes. A periodic signal from such objects can be achieved via
pulsation, rotation, or a binary orbit. White dwarfs are large enough that their maximum
pulsational, rotational, or orbital frequencies are more than a second, so this is ruled out.
Black holes do not have solid surfaces to which to attach a beacon, so rotation or vibration
of black holes is eliminated. Black holes or neutron stars in a binary could produce the
required range of periods, but the binary would emit gravitational radiation, the stars would
get closer together, hence the period would decrease, not increase. Pulsations of neutron
stars typically have periods of milliseconds, not seconds. The only thing left is rotating
neutron stars, and this fits all of the observations admirably.

There have now been more than 1000 pulsars discovered, with periods from about 1.4
milliseconds to more than 5 seconds. Their discovery is considered one of the three most
important astronomical discoveries in the latter half of the twentieth century4. Neutron
stars show a wide variation of characteristics, divided into different categories :

• radio pulsars, explained in section 2.1,

• accreting X-ray pulsars, explained in section 2.2,

• rotating radio transients(RRTs), a pulsar which emits short moderately bright radio
pulses, which will not be explained,

• magnetars, explained in section 2.3,

• isolated neutron stars, briefly explained in section 1.2.2.

Theoretical stellar evolution models combined with observational population studies indi-
cate the existence of 108 − 109 neutron stars in the Milky Way.

1.2 The birth of a neutron star

1.2.1 The association between pulsar and supernova remnant
The leading theory explaining the creation of neutron stars is the core collapse leading to a
supernova. However, this implies a reliable association between a pulsar and a SNR, which
requires a similarity between ages and location5. Two cases were quickly found: the Crab
pulsar and Vela pulsar were quickly associated with their respective supernova remnant.

4Along with quasars and the microwave background.
5Another source is the collapse of an accreting white dwarf.
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1.2 The birth of a neutron star

But it would take another 14 years to find a new pair. Searches were made inside known
SNRs for radio pulsars, but produced no positive result in spite of the growing number
of known pulsars found in surveys. In 1982 (PSR 1509-58, Seward & Harden) and 1984
(PSR 0540-69, Seward et al.) two new pulsating sources were detected in SNRs using the
Einstein Observatory. PSR 1509-58 was immediately identified as a radio pulsar, with the
highest spin down rate Ṗ known at the time. However, PSR 0540-69 could at first only be
studied through X-rays and optical wavelengths. Its radio detection came in 1993, making
it a radio quiet pulsar for ten years.

The different lifetimes is part of the reason SNR-PSR pairs are not often observed.
SNRs emit radiation for several thousands of years, while neutron stars are active for
millions. Another reason, pulsar kicks, will be explained in section 1.2.2.

1.2.2 The supernova process

During the fusion process in a star, heavier and heavier elements fuse together until reach-
ing iron and nickel, where no energy is released when fused. The star separates into
different layers dominated by an element, increasing in mass when going further into the
star, with hydrogen and helium at the surface and iron and nickel in the core. The core
becomes bigger, heavier and more compact as time goes on. The gravity is supported by
electron degeneracy pressure. If the star has a mass between 8M� and 20-30M�6 the core
reaches the Chandrasekhar limit[6]7 of 1.44M�, having a radius of ∼ 106 m, becoming
too compact to support the pressure and collapse, leading to an implosion. During the col-
lapse the fall velocity will reach up to 23% of the light velocity, generating temperatures
up to 1011K. In the core the threshold for inverse β-decay is reached, creating neutrons
and neutrinos in large amounts:

e− + p→ n+ νe

Approximately 99% of the radiated energy is radiated through neutrinos, correspond-
ing to 3.0 · 1046 J. The total number of 1058 neutrinos were radiated in the supernova
SN1987A. Even though neutrinos have such a small probability to react, having a mean
free path in lead of half a light year, the enormous amount is able to exert a massive force
on the falling matter. The core will become very rich in neutrons and the combination of
neutron degeneracy pressure and neutrino wind will be able to stop the collapse. If the star
mass is above the treshold of 20-30 M�, the core will surpass the Tolman-Oppenheimer-
Volkoff limit8, the neutron degeneracy pressure will not be able to stop and support the
pressure. The star will then collapse even further to an exotic star as mentioned earlier or
a black hole. The degeneracy pressure and the massive neutrino wind will in turn be able
to repel and push away all the infalling matter leading them to be shot from the star and
creating a massive explosion, a supernova. The core survives the supernova, inheriting
most of the magnetic field and angular momentum of the progenitor star. The expelled

6The upper limit depends on the EoS and is much more uncertain than the lower limit. Stars with lower mass
burn out and become white dwarfs, and stars with higher mass become black holes or postulated, but unseen,
stars like quark star, strange stars etc...

7The maximum mass for a stable core supported by electrons.
8The maximum mass for a stable core supported by neutrons[6].

5



Chapter 1. An introduction to Neutron Stars

 

Figure 1.1: Pulsar kick velocities: The distribution of the pulsar’s kick velocity and that derived
from a theoretical model. The solid step line is the observed kick distribution. The line with squares
is the modeled kick distribution derived from the theoretical model. Graph taken from Astronomy
and Astrophysics[7].

matter will create a visible halo which is called the supernova remnant. During the ex-
ploding part of the process, the matter may not be isotropically distributed. This will give
the neutron star momentum which can reach high values. As indicated by figure 1.1 the
velocities can reach above 1000 km s−1. With such kick velocities the pulsar can escape
the SNR, as illustrated in figure 1.2, whose expansion is slowed down by the interstellar
medium, and even the galaxy itself. Neutron stars which have been ejected away from
other mass concentrations become isolated neutron stars. The high velocity is one of the
reasons pulsars are found without their corresponding SNRs.

The supernova process is a complicated, and not yet fully understood concept. For
further details one has to go in more profound articles and books than the one used here[6],
which is more of an introduction, but enough for this thesis.

1.2.3 The connection between the neutron star and the SNR
SNRs are visible, indicating that they radiate energy. Indeed, the radiation corresponds to
synchrotron radiation, charged particles in motion radiating in the presence of magnetic
fields and the cooling of the hot relativistic matter. When colliding with the interstellar
matter, the shock front heats up, fueling the thermal radiation at the cost of its velocity. The
SNR can expand over tens of parsecs before its speed falls below the local sound speed.
The radiation from the nebula is partially powered by magnetic fields. These fields can be
weak interstellar magnetic fields, and the more powerful magnetic field of the neutron star,
core of the same progenitor star as the SNR. This energy transfer slows the pulsar in the
SNR down, explaining why their spin down rate is stronger than for isolated neutron stars,
which were shot out of the nebula.

6



1.3 The interior

Figure 1.2: A SNR with a pulsar, where the pulsar has been ejected out of the SNR. The SNR
as seen as the disc, with very radiating extremity near the pulsar which is fueled by the pulsar’s
magnetic field. The pulsar is the escaping source to the right, being zoomed at. Image taken from
Nature[9].

1.3 The interior

The interior of the neutron star is separated into three main regions: an outer layer of
plasma, called the atmosphere, a thick envelope with the mixture of atomic nuclei and free
neutrons, protons and electrons, called the crust and an inner region of ultra dense matter
which composition is unknown, called the core. The crust and core can be separated into
subregions, an inner and an outer layer as illustrated by figure 1.3. The atmosphere is
very thin, with thickness from several millimeters to several ten centimeters, depending
on the surface temperature. The hotter the surface the thicker the atmosphere. Most of the
radiation is emitted from the atmosphere. The top of the crust, with a thickness of a few
hundred meters, consists mainly of iron 56 ions and free electrons. The electrons are non-
degenerate in this layer, and become increasingly degenerate and ultra-relativistic with
increasing depth. Going deeper into the star the pressure is enough to rise the equilibrium
atomic weights so one might find very neutron rich elements such as Z=40, A=120, which
are nonexistent on earth and very unstable in more ordinary conditions. At densities of 106

g·cm−3 the electrons become noticeably degenerate, meaning that electrical and thermal
conductivities are huge since the electrons can travel great distances before interacting.

Deeper yet, at the bottom of the outer crust, corresponding to densities around 4×1011

g·cm−3, the neutron drip layer is reached. At this layer, it becomes energetically favorable
for neutrons to float out of the nuclei and move freely around: the electron Fermi energy
becomes high enough to allow inverse β-decay, so the neutrons ”drip” out. Even further
down, the neutrons are mainly free, with a 5%− 10% sprinkling of protons and electrons.
The Fermi energy of the electrons also allows µ production. As the density increases, a

7



Chapter 1. An introduction to Neutron Stars

phase known as the pasta-antipasta[12] sequence appears. At relatively low (about 1012

g·cm−3) densities, the nucleons are spread out like meatballs9 that are relatively far from
each other. At higher densities, the nucleons merge to form spaghetti-like strands, and at
even higher densities the nucleons look like sheets (such as lasagna). Increasing the den-
sity further brings a reversal of the above sequence, where mainly nucleons are present,
but the holes form (in order of increasing density) anti-lasagna, anti-spaghetti, and anti-
meatballs, also called Swiss cheese. Going even deeper, where the density exceeds the
nuclear density 2.8 × 1014 g·cm−3 by a factor of 2 or 3, exotic matter might form, like
pion condensates, lambda hyperons, delta isobars, and quark-gluon plasmas. These den-
sities are not available in the laboratory and therefore our knowledge is greatly restricted.
Different hypothesis exist, in form of the relation between density, pressure and tempera-
ture P (ρ, T ), called the equation of state. The EoS is the key element that sets a limit on
the range of possible masses to a neutron star and describes its composition. EoS’ are a
complicated subject and will not be further explained.

1.4 Spin history
Neutron stars rotate very rapidly, up to 600 times per second. A major question is how they
spin when they are born. They may be born rotating very fast, with periods comparable to
a millisecond, although evidence is ambiguous. They will then spin down due to magnetic
torques. This seems to be supported by the fact that some of the youngest pulsars, such as
the Crab pulsar (33 ms) and the Vela pulsar (80 ms) have unusually short periods. After
a pulsar is born, its magnetic field will exert a torque and slow it down, with typical spin
down rates of 10−13 s/s for a young pulsar like the Crab.

Although the overall tendency is for isolated pulsars to slow down, they can undergo
very brief periods of spin-up. These events are called glitches, and they can momentarily
change the period of a pulsar by up to a few parts in a million. The effects of glitches
decay away in a few days, and then the pulsar resumes its normal spin down. In current
models of glitches, the superfluid core and solid crust are presumed to couple impulsively,
and since the crust is spun down by the magnetic field while the superfluid keeps rotating
at its original rate, this coupling speeds up the crust, leading to the observed spin-up. It is
very difficult to treat this process from first nuclear principles, because the critical angular
velocity difference at which the crust and superfluid finally couple depends sensitively on
various ill-determined properties of neutron superfluids. Since these properties are not
directly accessible by experiments the current phenomenological description is the best
available. Incidentally, the glitch also heats up the crust, and late in the lifetime of the
neutron star, heating by rotational dissipation can actually become a significant source of
heat and affect the temperature evolution.

Assuming the most of the angular momentum is conserved in the transition to neutron
star one can find the crude relation between periods:

The angular momentum is defined as:

Iiωi = Ifωf ,

9Using the food language.
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1.4 Spin history

Figure 1.3: Neutron star structure showing the interior[14].
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CMiR
2
iωi = CMfR

2
fωf .

Moment of inertia for a sphere: I = CMR2. The C factor depends on the mass distribu-
tion in the sphere. ω is the rotational frequency.

ωf = ωi

(
Ri
Rf

)2

.

In terms of the rotation period P, this is:

Pf = Pi

(
Rf
Ri

)2

.

In the case of an iron core collapsing to form a neutron star the period becomes Pf . This
relation is more accurate in the case where a white dwarf accretes enough matter to col-
lapse into a neutron star.

PNS ≈ 3.8× 10−6Pcore, (1.1)

where Pcore is the rotational period of the core. The question of how fast the progenitor
core may be rotating is difficult to answer. As a star evolves, its contracting core is not
completely isolated from the surrounding envelope, so one cannot use the simple approach
to conservation of angular momentum described above. For purposes of estimation, the
observed rotation period for the white dwarf 40 Eridani B, Pcore=1350s, is chosen. In-
serting this into equation 1.1 results in a rotation period of about 5×10−3s. Thus neutron
stars rotate very rapidly when they are formed, with rotation periods on the order of a few
milliseconds.

Using the formula for electron degeneracy and switching the electron mass with the
neutron mass one gets the neutron star radius:

RNS ≈
(18π)2/3

10

~2

GM
1/3
NS

(
1

mH

)8/3

. (1.2)

Where mH is the mass of hydrogen[6]. A typical neutron star mass is 1.4M�, which ac-
cording to the formula equation 1.2 will have a radius of 4400m. However, more advanced
models show a typical radius larger by a factor of three.

Such a combination between mass and radius results in an incredibly compact star with
an average density of 6.65 × 1017kg·m−3, which is greater than the typical density of an
atomic nucleus, ρnucleus ≈ 2.3× 1017 kg·m−3.
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Chapter 2
Evolution of neutron stars

As seen in the calculations above, a young neutron star will have a high rotational fre-
quency of the order of 10−2 s−1. Two different paths exist. In some cases the angular
momentum will be transformed into magnetic energy through a dynamo effect. The re-
sulting star will have a very strong magnetic field of the order of 108 T and a period of
the order of 100 s. In the other, but most common one, the neutron star will slowly lose
angular momentum through meridional currents. It will become a typical radio pulsar.
The frequency of the observed pulsars range from 1.4 ms to 5 s, gradually slowing down.
A general connection between age and period exists: the longer period, the older the star.
Below a certain frequency they are no longer observable and they end in the graveyard
phase of the neutron star life cycle. For most neutron stars this is the end. However, some
wake up from their grave.

2.1 Radio pulsars
Radio pulsar is the most common form of neutron star, with a population exceeding 1700
objects out of 2000 known neutron stars. Realistic estimations predict a total galactic pop-
ulation of ∼ 105 active radio pulsars. Radio pulsars are observed through their emission
of broadband radio noise in the form of a periodic sequence of pulses. The periodicity
indicates the rotational frequency. The fastest pulsar spins at a frequency of 716 Hz, while
the slowest ones spin between 1 and 0.1 Hz. The pulse phenomenon is produced by a
beamed cone that is observed when pointing towards the Earth like a beacon. The radio
pulse generating mechanism is still not fully understood. Although it is known that the
energy source is the angular momentum, converted through the strong dipolar magnetic
field. This idea is founded in the observational fact that the pulsars slow down. When
plotting the pulse period and its derivative in a P− Ṗ diagram, as in figure 2.1, the pulsars
separate into two groups. A large population of slow pulsars that spin down rapidly (the
timescale P/Ṗ ∼ 106 − 107 yr) and a smaller population of fast pulsars called millisec-
ond pulsars that spin down more slowly (timescale P/Ṗ ∼ 108 − 109 yr). Assuming the
magnetic dipole radiation is the main energy radiation source sets a limit on the magnetic
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field strengt B ∝
(
PṖ
)1/2

. Slow radio pulsars have magnetic fields of the order of 108

T, while millisecond pulsars have fields of the order of 104 T. Most of the millisecond
pulsars (≥ 80%) are found in binaries, whereas only about 1% of slow pulsars are in bina-
ries. In figure 2.1 one identifies a large grey unpopulated area for large periods and small
period derivatives. It is thought that neutron stars inside this area, the pulsar graveyard,
have their radio emission switched off. Neutron stars inside the graveyard will only emit
thermal radiation from their cooling surfaces. All new born radio pulsars found in SNRs
have short periods and fast spin down timescales, while no millisecond pulsar has been
found near SNRs. This observation has led to the idea that young pulsars are born with
periods between 10−2 s and 10 s, while the fast millisecond pulsars are old and have their
short periods due to a different mechanism. This difference can be explained by analyzing
the case of a binary of two main sequence stars where one of them fills out the criteria
to form a neutron star. The most massive star will burn out faster than its companion,
and will explode as a type II supernova, leaving a neutron star remnant. If the binary is
not disrupted, accretion can start and the outer layers of the companion are ripped off by
gravitational pull exerted by the neutron star, see appendix A. If enough mass is accreted,
the added angular momentum will spin the neutron star up from periods of tens of seconds
to milliseconds (further details in section 2.2). If the accretion stops the neutron star will
become a regular radio pulsar. In figure 2.1 this transformation corresponds to moving
the neutron star from the graveyard to the bottom left corner. This process is called the
recycling scenario, where a dead radio pulsar is recycled into a millisecond radio pulsar.
Indeed, all of the observed pulsars in this region are in a binary system. The magnetic
field decays by four to five orders of magnitude during the spin up phase, a transformation
which currently has no explanation. The accretion is a possible candidate.

2.2 Neutron stars in binaries

Some of the accreting neutron stars are born in binaries that survive the supernova ex-
plosion that created the neutron star. In dense stellar regions such as globular clusters
some lonely neutron stars may be able to capture companions. In either case, mass may
be transferred from the companion to the neutron star. As mass falls down angular mo-
mentum is transferred to the neutron star and gravitational energy is partially released in
form of radiation. The energy released in accretion is enormous. If all the energy is radi-
ated the expected accretion luminosity is : Laccretion = GMNSṀ/RNS , where G is the
gravitational constant, M the neutron star mass, Ṁ the accretion rate and R the neutron
star radius. Inserting regular neutron star values gives an efficiency close to 10% of the
rest mass energy. These radiations will be in the X-ray spectrum. If the magnetic field
is strong enough, accreted matter will be guided along the field lines and fall onto the
magnetic polar caps, as in figure 2.2. If the magnetic poles are inclined compared to the
rotational poles the observed radiation will have a pulse form, with the same frequency as
the rotation, and be shifted by the Doppler effect. The mass of the companion star will
separate the accreting neutron stars in three different subtypes:

12



2.2 Neutron stars in binaries

 

Figure 2.1: P-Ṗ diagram. The younger pulsars as the Crab and Vela indicate the start of the trajectory
a neutron star will follow along its life: going to the lower right where a big population lies before
fading out in the graveyard. The recycled ones in the millisecond section belong to binaries. The
white triangles, the SGR, or magnetars are separated from the rest. The ages, magnetic field strenght,
the spin and its spin down rate are read from the graph.
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Figure 2.2: Accretion along field lines. Once the matter falls beneath the magnetospheric radius
they follow the field lines onto the poles[13].

2.2.1 Low Mass X-Ray Binaries: LMXRB

If the companion star has less mass than the Sun, the mass transfer occurs via Roche lobe
overflow, as explained in appendix A. If part of the companion star’s envelope is close
enough to the neutron star, the neutron star’s gravitational attraction on that part of the
envelope is greater than the companion star’s attraction, with the result that the gas in the
envelope falls onto the neutron star. However, since the neutron star is tiny, astronomically
speaking, the gas has too much angular momentum to fall on the star directly and therefore
orbits around the star creating an accretion disk[14]. Within the disk, magnetic or viscous
forces operate to allow the gas in the disk to drift in slowly as it orbits, and to eventually
reach the stellar surface. If the magnetic field at the neutron star’s surface exceeds about
104 T, then the field can couple strongly to the matter before it reaches the surface. As
matter and field couple the field lines guide the infalling matter onto the magnetic poles.
The friction of the gas with itself as it spirals in towards the neutron star heats the gas
to millions of degrees, and causes it to emit X-rays. Once on the surface of the star the
accreted mass piles up on the magnetic poles until enough mass, and therefore pressure, is
present to trigger a thermonuclear fusion of accreted light material into iron. This process
is detailed in section 2.2.4.

2.2.2 Intermediate Mass X-Ray Binaries

If the companion has between one and ten solar masses the mass transfer is unstable and
does not last long. The Roche lobe overflow will be very large and the companion star
will quickly become a LMXRB. No IMXRB have been observed, which indicates that the
IMXRB-stage is very short on astrophysical timescales.
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2.2.3 High Mass X-Ray Binaries
If the companion has mass above 10 solar masses, mass transfer can occur through two
different ways when the star has reached its supergiant stage. Both of the stars are visible
in a HMXRB, the companion in optical wavelength and the neutron star in X-rays.

Supergiant Roche lobe Overflow X-Ray Binaries

When a massive star reaches the last stages of its life, after having consumed most of the
hydrogen in its core, the outer layers begin to expand and the star grows enormously. It
becomes a supergiant. As it grows the gravitational pull on its outer layers decreases.
The supergiant can then expand out of the Roche lobe and start to feed the neutron star.
However, the star does not need to expand out of the Roche lobe to feed the neutron star.

Supergiant Stellar Wind X-ray Binaries

High mass stars are very luminous, and matter in the atmosphere is continuously pushed
out by the high energetic photon wind. They push a stream of particles along with them.
These particles dissipate into the empty space around the star at very high velocities. This
is called a radiation-driven stellar wind. The neutron star will then pick up some of the
dissipated matter and start the accretion process, becoming a weak X-ray source.

Figure 2.3: An artist’s impression of the High Mass X-ray Binary Cygnus X-1. The Roche lobe
overflow is clearly visible as matter falls down. The compact object is a black hole, but the accreting
process is identical as in the neutron star case[1].

2.2.4 Accreting millisecond X-ray pulsar
In between the young radio pulsars and the old millisecond pulsars one expects to have
accreting millisecond X-ray pulsars. The accreting millisecond X-ray pulsars have strong
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enough fields to lead all the infalling matter onto the star’s poles as in figure 2.2. As the
matter falls onto the poles, two hotspots exist on the star surface. The pulsar emits X-ray
pulsations due to the rotation, the same oscillation as in radio pulsars.

After the accretion phase, the companion is destroyed by the powerful radiation or
winds, or leaves the pulsar or leaves a remnant (white or brown dwarf). Left is an isolated
pulsar or a pulsar in a binary, a rotation powered millisecond pulsar. Accreting millisecond
pulsars are therefore expected to be the link between the well observed young radio pul-
sars and the old millisecond pulsars. The first accreting millisecond pulsar was discovered
in 1998. The light mass accreting X-ray binary SAX J1808.4-3658 was the proof of ex-
istence. However there are still unresolved questions: the theory predicts periods ranging
from the seconds to sub-milliseconds, while the fastest observed spin at 1.4 ms, meaning
there is a gap in the populated periods[5].

Accretion theory

The accretion disc is cut off by the neutron magnetic field lines at the magnetospheric
radius rm ∼ rA, where

rA =

(
µ4

2GMṀ2

)1/7

,

is the Alfven radius, µ = B0R
3

2 is the magnetic moment of the neutron star B field, and
B0 is the magnetic field at the poles. Defining the co-rotation radius:

rco ≡
(
GM

ω2

)1/3

,

which is the radius at which the Keplerian gas velocity equals the star’s rotational velocity.
If the co-rotating radius is larger than the magnetospheric radius the accreted matter will
contribute with a positive torque on the neutron star, while if not it will absorb angular
momentum and slow down the star’s rotation.

Transfer of angular momentum

As matter falls down the total angular momentum is conserved. Given by

~L =

∫
~r × d~p,

As matter falls down on the star with higher angular velocity, the total angular momentum
is conserved through an increase in the star’s angular momentum. If the star spins fast
enough the centrifugal effect will deform the star into a momentum quadrupole, which in
turn will radiate gravitational waves and hence dissipate energy. The star will increase its
rotational velocity as long as the incoming rotational energy surpasses the energy radiated
through gravitational waves and electromagnetic radiation.
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X-ray burst

The accretion process is much more efficient than nuclear fusion, in terms of energy re-
leased: Hydrogen fusion liberates 5 MeV per fused atom, while accretion liberates 200
MeV per nucleus. The emitted radiation is black body radiation with peak in the soft
X-rays and therefore the fusion process is unobservable in the shadow of the accretion
radiation. However, if the nuclear radiation occurs over a smaller timescale than the accre-
tion it can dominate the radiation. Indeed, observed in many LMXBs are the Type I X-ray
bursts[14], a sudden release of nuclear energy, observed in the X-rays, with a sudden rise
of the order of seconds with exponential decay lasting of the order 10−103 s, correspond-
ing to the cooling of the burnt layer. The matter burnt can be composed in three different
ways:

• a mix of hydrogen and helium,

• pure helium,

• carbon,

where the released energy and duration of carbon fusion is two to three orders of magnitude
larger than for the other possibilities. The carbon fusion burst is known as superburst. In
2007 a detected burst lasted 20 minutes and radiated 6.5 · 1032 J, and the radiating zone
was no larger than a golf field.

A second type of burst exists: Believed to occur when a sudden increase of accretion
takes place. The increase in accretion means an equal increase in radiations. The burst
often decays equally fast. It is noteworthy, these burst have only been observed in two
sources. This type of burst is called Type II X-ray bursts.

2.2.5 Magnetic field
Neutron stars possess an extremely strong magnetic field. But where do these magnetic
fields come from? The traditional assumption is that they are inherited from the progenitor
star. All stars have weak magnetic fields, and those fields can be amplified simply by the
act of compression. According to Maxwell’s equations of electromagnetism, as a magne-
tized object shrinks, the field strengthens quadratically. If the core magnetic field started
with sufficient strength, this compression could explain pulsar magnetism. Unfortunately,
the magnetic field deep inside a star cannot be measured, so this simple hypothesis cannot
be tested. But it would seem it is only a part of the solution: Within a star, gas can circulate
by convection. Warm parcels of ionized gas rise, and cold ones sink. Because ionized gas
conducts electricity well, any magnetic field lines threading the gas are dragged with it
as it moves. The field can thus be changed and sometimes amplified. This phenomenon,
known as dynamo action, is thought to be the main process behind the magnetic field of
stars and planets. But for the dynamo action to operate the turbulent core has to rotate
rapidly enough. A brief period after the birth of a neutron star the convection is especially
violent. Computer simulations[11] found that temperatures in a newborn star exceeds 30
billion kelvins. Hot nuclear fluid convexes with period 10 milliseconds or less, carrying
enormous kinetic energy. After about 10 seconds, the convection ceases. For the dynamo

17



Chapter 2. Evolution of neutron stars

to operate globally (rather than in limited regions) the star’s rate of rotation has to be com-
parable to its rate of convection. Deep inside the sun, these two rates are similar, and the
magnetic field is able to organize itself on large scales. In the sun the convection gives
about 10% of its kinetic energy to the magnetic field. By analogy, a neutron star born
rotating as fast as, or faster, than the convective period of 10 milliseconds could develop a
widespread, extremely strong magnetic field. These hypothetical neutron stars have been
named magnetars. However an upper limit to neutron star magnetism exists, and is of the
order of 1011Tesla. Beyond this limit, the fluid inside the star will mix and the field dissi-
pate. No known objects in the universe can generate and maintain fields stronger than this
level. As a consequence of these results radio pulsars, with fields much weaker than the
one found, are neutron stars in which the large-scale dynamo action has failed to operate.
As example the newborn Crab pulsar rotated once every 20 milliseconds, much slower
than the rate of convection, so the dynamo action never acted.

2.3 Magnetars
A magnetar is a neutron star characterized by an extremely powerful magnetic field.
This field powers emission of high-energy electromagnetic radiation. Magnetars are soft
gamma repeaters, objects which emit large bursts of gamma-rays and X-rays at irregular
intervals. A powerful gamma-ray burst was detected on March 5, 1979 by different detec-
tors in our solar system (Soviet and American probes and on Earth), and the origin was
triangulated to a near supernova remnant in the Large Magellanic Cloud. It soon became
clear that this burst was not a normal GRB1; the photons were less energetic, and several
bursts followed later from the same origin. According to the theory where magnetars are
the origin of these gamma-rays the burst would cause the object to slow down its rotation.
And indeed they do. Having a period of order seconds to tens of seconds they spin much
slower than ordinary neutron stars. Observation over five years of SGR 1806-20 showed
oscillations with a period of 7.47 seconds increase by two parts in 1,000. Such an increase
implies a magnetic field approaching 1011Tesla. As late 2012, 21 magnetars are known,
with several new candidates. Figure 2.1 clearly shows the magnetars as neutron stars with
high spindown rate and low frequency. For more information about the neutron stars, see
the article which was used as guide[14].

1A GRB is a flash of gamma rays, the brightest in the universe, lasting from milliseconds to several minutes.
GRBs are thought to come from the collapse phase of a supernova, or when compact objects in binaries merge.
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Chapter 3
Physics of neutron stars

3.1 Gravitation
Being so dense neutron stars exhibit enormous gravitational forces, only exceeded by black
holes. The gravitational forces at the surface of a neutron star with the standard radius and
mass, R = 104 m and m = 1.44 M�, on an object with mass m is

F = G
mM

R2

= 6.67 · 10−11m · 1.44 · 1.98 · 1030

(104)2

= 1.98 · 1012 ·m N,

which is equivalent to 2 · 1011 times stronger than the gravity at the surface of Earth.
To show the extreme force a simple example is taken: a (heavy) mug of coffee of 1.0

kg falling from 1.0 m. A casual situation on Earth. The relativstic energy is given by

E = mc2 ·

√
1− 2GM

Rc2√
1− v2

c2

.

Where the nominator is due to general relativistic corrections and the denominator, also
written as 1/γ, to special relativistic corrections. Using energy conservation the speed can
be found:

E = mc2 ·
√

1− 2GM

R1c2
= mc2 ·

√
1− 2GM

R2c2√
1− v22

c2

,

1− 2GM

R1c2
=

1− 2GM
R2c2

1− v2

c2

,
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1− v2

c2
=

1− 2GM
R2c2

1− 2GM
R1c2

.

Rearranging and omitting some details yields

v = c

√√√√1−
1− 2GM

R2c2

1− 2GM
R1c2

= 0.0086c

= 2.6 · 106m/s.

These simple calculations make it clear that the gravitational forces on the neutron star are
extreme. However, on charged particles it is a different story, as will be seen in section 4.

Not only are the forces extreme, but other effects, like lightbending becomes important.
Even though its relevance for the paper is minimal the next section takes a closer look on
lightbending, for the curiosity and fun.

3.1.1 Light bending in Schwarzschild geometry
The Schwarzschild metric dictates light bending around compact objects. In contrast to
Newtonian Geometry, light is affected by mass. In General Relativity it is ”just another”
test particle, on equal footing as the rest of them. The start point is the Lagrangian which
is equal to 0 since the photon is massless, written in the ρ coordinate, in the θ = π

2
plane, with Jz as the canonical momentum associated with φ, and −E as the canonical
momentum for t.

0 = L =
1

2

(
J2
z ρ

2 − E2ρ4 − ρ̇2

ρ4 (1− 2Mρ)

)
.

Rearranging yields:

ρ̇2

J2
z

= ρ4

(
E2

J2
z

− ρ2 + 2Mρ3

)
.

Switching to φ derivatives through ρ̇ = ρ′Jzρ
2 and employing the Lagrange equations one

gets:

ρ′′ = −ρ+ 3Mρ2.

The linear term in M is the difference between general relativity and Newtonian mechan-
ics. Employing perturbation and substituting again to ρ = sinφ

R + ερ̃ yields:

− 1

R
sinφ+ ερ̃′′ = −

(
1

R
sinφ+ ερ̃

)
+ 3M

(
1

R
sinφ+ ερ̃

)2

Associating the expansion parameter ε with the mass M of the gravity-producing object
yields the equation for ρ̃ to first order in ε ∼M :
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Figure 3.1: Lightbending near the neutron star. The thick line is the light trajectory, clearly deviated
by the neutron star’s gravitational field. The image shows how normally hidden parts in flat space-
time are visible due to lightbending.

ρ̃′′ = −ρ̃+
3

R2
sin2 φ,

with solution:

ρ(φ) =
sinφ

R
+M

(1 + cos2 φ)

R2
.

Using as initial value at infinite distance to the compact object ρ = 0:

0 = ρ(φ) ' 2M

R2
+
φ

R
,

⇒ φ = −2M

R
. (3.1)

Assuming that all emitted photons are emitted from the surface with an isotropic distribu-
tion one can calculate how much of the star’s surface is visible to an observer infinitely far
away.

In the classical Newtonian case, half of the star would be visible, corresponding to
π radians of the cross section. With light bending however, more will be visible and the
star will seem bigger, as illustrated by figure 3.1. Outgoing photons from point B on the
surface with tangential direction will be bent by the gravitational field of the star to arrive
at point E where the gravitational field practically does not affect any more, making it
visible to the observer. To the observer these photons will seem to come from point H, and
therefore indicate that the radius ends at point D.

The R used in the formulas above corresponds to the distance between the straight
line and the center of the star, that is, the distance from the center to the point D in the
figure, which corresponds to the apparent radius to the observer. The closest point along
the photon trajectory is defined by :
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rmin =
R2

M +R
= rNS .

Using as radius rNS = 104m one can find R:

R2 − rNSR−MrNS = 0,

⇒ R =
rNS ±

√
r2
NS + 4MrNS
2

.

Only the + sign gives physical meaning, thus R = 1.186 · 103m. Employing equation 3.1
yields

φ = 2
2.21 · 103

1.186 · 104
= 0.37. (3.2)

The observer will observe a portion p of the surface of the star:

4πR2 −
∫ ψ

0

2πR2 sin θdθ = 4πR2 − 2πR2 (1− cosψ)

= 2πR2 (1 + cosψ)

where ψ = π/2− φ
= 2πR2 (1 + sinφ) .

Written in term of proportion of the whole surface:

p =
1 + sinφ

2
. (3.3)

To find the proportion, the neutron star mass M has to be expressed in meters, such that φ
is dimensionless:

M = mNS ·G · c−2

= 1.44 · 1.989 · 1030 · 6.67 · 10−11 · 1

(3.00 · 108)
2

= 2.21 · 103m,

which in turn, combining the result 3.3 and 4.7 yields

p = 0.68

An increase of apparent radius of 1.186 means an increase of apparent volume of 1.1863 =
1.668. This effect is visible in figure 3.2, where a large percentage of the surface is visible.
Without the lightbending the poles would be at the extremity of the visible surface, but
with lightbending the poles are clearly visible and a substantial area beyond the poles is
visible.

For further details, read the lecture notes used as inspiration[4].
Another interesting effect is the emission of gravitational waves. A shallow description

of the effect follows in the next section.
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Figure 3.2: The visible star surface. In flat space-time only 6 × 6 cells would be visible, whereas
here two cells extra are visible at the horizon. Image taken from spacetimetravel.org[2].

3.1.2 Gravitational waves

According to GR and SR, gravity is mediated with the speed of light. As the source of
gravity changes in space a wave appears due to the difference in amplitude. In the case
of a rotating source this wave is sinusoidal. Looking at neutron stars the mass distribution
and shape is relevant. If the star is spherical, the gravitational attraction on an object is
independent of the rotational phase of the star, hence no gravitational wave is emitted.
On the other hand, if the star has an inertial quadrupole moment the amplitude of the
attraction is dependent of the phase. The simplified case of a binary system with identical
point masses shows the concept:

F ∝ 1

R2
1

+
1

R2
2

.

Finding the attraction on an observer a distance α from the center of mass in two different
cases: when the point masses and observer are aligned: R1 = α + β, R2 = α − β, and
a quarter of cycle later: R1 = R2 =

√
α2 + β2. The point masses are circulating at a

distance β around the center of mass.

F1 ∝
1

(α+ β)2
+

1

(α− β)2

∝ (α+ β)2 + (α− β)2

(α+ β)2(α− β)2

∝ 2
α2 + β2

(α+ β)2(α− β)2
,
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while
F2 ∝

2

α2 + β2
.

Inserting some test values α = 2 and β = 1 yields F1 = 10
9 and F2 = 2

5 which clearly are
not the same. This simple case shows that the attraction is not time independent. These
waves carry energy, hence energy is lost from the rotating system. The energy radiated
depends on the rotation frequency and the quadrupole moment. In the neutron star case
the shape is very close to spherical so the radiated energy is negligible, unless the star
spins very rapidly, which in turn can lead to deformations, or mountains confined by the
electromagnetic field appears.

3.2 Maxwell’s equations
The electromagnetic force is one of the four fundamental forces. It is described by the
electromagnetic fields and acts on magnetic or electric charged poles (monopole or higher
order poles). Classical electromagnetism is a classical approximation of quantum elec-
trodynamics valid in microscopic and higher scales, and can be described by Maxwell’s
equations, a set of partial differential equations (or by an equavilent set of integral equa-
tions):

Maxwell’s equations in differential form:

∇ · ~E =
ρ

ε0
which is called Gauss’ law, (3.4a)

∇ · ~B = 0, (3.4b)

∇× ~E = −∂
~B

∂t
, (3.4c)

∇× ~B = µ0
~J + µ0ε0

∂~E
∂t
. (3.4d)

3.2.1 Gauss’ law
Neutron stars are superconductors, and therefore there can be no electric field inside the
star. Hence the electric field must be canceled out by surface charges. Writing Gauss’s law
in integral form one gets:

Q

ε0
=

∮
S

~E · d ~A, (3.5)

Employing what is called a Gauss pillbox around the surface of the star where all walls
are either normal or parallel to the surface one can easily calculate the surface charge.
Placing the box where the field is entirely normal one gets:

σA

ε0
= ~E · ~A,

σ = ε0Enormal. (3.6)
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Figure 3.3: Gauss pillbox around the surface of the star, with sides either normal or parallel to the
surface. Image taken from lecture notes[17].

3.3 Dipole radiation
The magnetic field in a neutron star is simplified to a magnetic dipole. Employing this,
whilst observing the period and spin down torque, the magnetic field strength is not far
away. Dipole radiation states[6]:

Iω̇ = − 2

3c3
B2R6ω3 sin2 α, (3.7)

Where I is the moment of inertia, ω its spin frequency, B the polar field strength at the
surface, R the star’s radius and α the angle between the magnetic axis and the spin axis
of the star. Since there currently is no clear theoretical prediction of the dependence of
the spin down torque on α for a real neutron star with plasma filled magnetosphere (while
3.7 is only valid in vacuum) the α-dependence is omitted. This simplification is justifiable
since sin2 α ∈ [0, 1]. Rearranging the equation one gets

B =

(
3c3IP Ṗ

8π2R6

)1/2

= 3.2× 1015
(
PṖ
)1/2

T,

where P is the period and Ṗ is the spin down rate. Inserting the period of 0.0331 s and its
derivative 4.22 · 10−13 s/s yields a field of B = 3.78 · 108T.

3.4 The Lorentz force

3.4.1 Change of frame
In the inertial frame of reference observed from Earth the forces acting on a charged par-
ticle at the surface of the star are both electric and magnetic. The rotating reference frame
is not an inertial frame, hence a Lorentz transformation cannot transform between the two
frames. Fictitious forces appear in the rotating frame: the centrifugal force and if the object
of interest is in motion in the rotating frame the Coriolis force. Considering the fictitious
forces as real forces in the rotating system it can be considered as an inertial frame.

~FLorentz,1 + ~Fg = ~FLorentz,2 + ~Fg + ~FCoriolis + ~Fcentrifugal

where the Lorentz force is given by:
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~FLorentz = q
(
~E + ~v × ~B

)
The gravitational force is identical in both frames, the Coriolis force only acts on particles
in motion in the rotating frame, so for a particle at rest on the surface its contribution is
zero. In the case where the centrifugal fictitious force is negligible one gets:

~FLorentz,1 = ~FLorentz,2 + ~Fcentrifugal ' ~FLorentz,2

q
(
~E1 + ~v1 × ~B1

)
= q

(
~E2 + ~v2 × ~B2

)
where the subscript index 1 refers to the one observed from Earth and the index 2 refers to
the one corotating. In the corotating one the velocity is v = 0.

~E2 = ~E1 + ~v1 × ~B1 =
1

q
~FLorentz (3.8)

3.5 Magnetic flux

A good approximation in the case where the dynamo action fails is to only rely on the
conservation of magnetic flux through the equatorial plane inside the star throughout the
collapse. The flux is defined as the surface integral

Φ =

∫
S

~B · d ~A,

where ~B is the magnetic field vector. The total flux out of a closed surface is zero since
no magnetic monopole exists. Ignoring the geometry of the magnetic field one will get the
relation between the field strength and the radius:

BiπR
2
i = BfπR

2
f .

To find the value of the magnetic field strength of a neutron star one needs the one of
the original core. Using the strongest field strength observed in a white dwarf with value
B ≈ 5 × 104 T as an extreme case scenario, which is a lot stronger than a typical white
dwarf magnetic field of 10 T. Using the extreme case yields:

BNS ≈ BWD

(
RWD

RNS

)2

= 1.3× 1010 T.

The field is of the same order of magnitude as when calculated taking into account convections[6].
One might guess that the white dwarf also has let the dynamo action build up the field. This
field corresponds to the one from a magnetar.
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3.6 The Equation of State

3.6.1 The Fermi pressure

All fermions, particles with half integer spin, obey the Pauli exclusion principle. This prin-
ciple only allows one fermion per quantum state. When many non-thermal fermions are
together they fill up the lower energy orbitals. Taking electrons as examples: the two first
electrons, two since there are two different possible spins, up and down, occupy the lowest
energy states nearest the nucleus. As more and more electrons are added they fill up the
higher energy states. These higher energy shells support the electrons against the attractive
electric forces of the nucleus. This phenomena gives rise to the Fermi degeneracy pressure
when matter gets squeezed together and electrons are prohibited to take the same quantum
states: As matter gets compressed, the uncertainty in position ∆x becomes smaller. Then,
as dictated by the Heisenberg’s uncertainty principle, ∆x∆p ≥ ~

2 , the electron momenta
uncertainty ∆p becomes larger. Thus, even at zero temperature, the electrons travel at a
minimum speed which gives rise to the pressure. When this pressure exceeds the thermal
pressure the electrons are referred to as degenerate. In a white dwarf the gravitational
force is kept at bay by the electron degeneracy pressure. However, in a neutron star, where
this pressure did not suffice, the pressure preventing collapse is the neutron degeneracy
pressure.

Since neutrons exclude each other, a volume with characteristic size λ ∼ R
N1/3 can be

awarded to each one of them, where N is the total number of neutrons and R the neutron
star radius. The Fermi momentum, defined as the momentum of the highest filled quantum
state at zero temperature, is given as

pF ∼
~
λ
∼ N1/3 ~

R
. (3.9)

As the sphere is compressed, the radius R shrinks hence pF rises and work has to be done
to compress. Using a relativistic approximation the energy is

E =
√
p2
F c

2 +m2c4 ' pF c,

yielding a total energy

EF ' NpF c ' N4/3 ~c
R
.

In a neutron rich system these supply the most gravitational energy EG:

EG ∼ −G
(mnN)2

R
.

For large N the total energy will become negative and the energetically favorable state is
collapse. The critically particle number N is given by

Ncrit '
(

~c
Gm2

n

)
3/2 ' 2.2× 1057. (3.10)
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Assuming relativistic neutrons EF = pF c ≥ mc2, using equations 3.9 and 3.10 gives
the radius

R ≤ ~
mc

(
~c
Gm2

n

)1/2

' 2.75× 103 m.

Of course this is a very crude model. A more accurate model, but still simplified, is the
one of the star as a degenerate gas.

3.6.2 Degenerate gas
The exact EoS in a neutron star is unknown. However, since the EoS is of such importance
the ideal fermion gas is chosen obeying the Fermi-Dirac statistics at zero temperature. The
distribution function is as follows:

f(E) =
1

e(E−µ)/kT + 1
. (3.11)

For completely degenerate fermions µ becomes the Fermi energy EF and

f(E) =

{
1 if E ≤ EF
0 if E > EF

Which is a valid approximation for a cold gas, where the Fermi energy is much larger than
the thermal one: (

p2
F c

2 +m2
nc

4
)1/2 −mnc

2 � kT.

The number density of neutrons is given by:

nn =
2

~3

∫ pF

0

4πp2dp =
8π

3~3
p3
F =

1

3π2λn
x3,

where x = pF
mnc

is the dimensionless Fermi momentum and λn = ~
mnc

is the neutron
Compton wavelength. The index F is omitted from now on. The pressure per particle is
P = nk2

3ε , where ε is the energy, hence the total pressure is given by:

Pn =
1

3

2

~3

∫ pF

0

p2c2

(p2c2 +m2
nc

4)1/2
4πp2dp =

mnc
2

λ3
n

φ(x). (3.12)

where φ is a function of the variable x as follows:

φ(x) =
1

8π2

[
x
(
1 + x2

)1/2(2x2

3
− 1

)
+ ln

[
x+ (1 + x2)1/2

]]
→

{
x5

15π2 x� 1
x4

12π2 x� 1

To first order the mass is due to the neutrons:

ρ ' mnnn

=
mn

λ3
n

1

3π2
x3
n

= 6.107× 1018x3
nkg m−3. (3.13)
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The mass density is a function of the distance to the center and the mass dm inside a
spherical shell with radius r and thickness dr is dm = 4πρ(r)dr, hence

dm
dr

= 4πρ(r)r2, (3.14)

integrating the equation above:

m(r) = 4π

∫ r

0

dr′ρ(r′)r′2.

The gravitational pull exerted on a part of the shell with area dA from the massm(r) inside
the shell is given by Newton’s law of gravity:

dF = −Gm(r)dm
r2

= −Gm(r)ρ(r)drdA
r2

. (3.15)

The opposing force is due to the pressure:

dF = dA [P (r + dr)− P (r)]

= dAdP. (3.16)

The star is in hydrostatic equilibrium, meaning that the total force vanishes. Combining
equations 3.15 and 3.16 yields

dP
dr

= −Gm(r)ρ(r)

r2
. (3.17)

Which takes into account the force of gravity. However, this simplification does not take
account of relativity. And the neutron star is highly relativistic. Taking into account rel-
ativity, three new terms appear, transforming the equation above into what is called the
Tolman-Oppenheimer-Volkov equation, the correct equation for hydrostatic equilibrium.
The TOV equation is as follows

dP
dr

= −Gε(r)m(r)

r2

[
1 +

p(r)

ε(r)

] [
1 +

4πr3p(r)

M(r)

] [
1− 2GM(r)

r

]−1

. (3.18)

However, since the TOV does not have an analytic solution, the equation 3.17, which is not
relativistic, will be used instead. Since this explanation is only qualitative it is a justifiable
choice. Using equation 3.14 yields:

1

r2

d
dr

(
r2

ρ

dP
dr

)
= −G

r2

dm
dr

= −4πGρ(r). (3.19)
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The ideal degenerate gas has an EoS of the form P = P (ρ), where ρ can be expanded:
ρ = ρ0 + εn/c

2. Employing this while combining equations 3.12 and 3.13 yields an EoS
in a Newtonian polytropic form:

P = KρΓ
0 , (3.20)

where K and Γ are constants, two limiting cases appear:

• Non-relativistic neutrons, ρ� 6× 1018kg m−3, x� 1

Γ =
5

3
, K =

32/3π4/3

5

~2

m
8/3
n

= 2.134× 105.

• Extremely relativistic neutrons ρ� 6× 1018kg m−3, x� 1

Γ =
4

3
, K =

31/3π2/3

4

~c
m

4/3
n

= 7.747× 1010.

For practical purpose Γ will be expressed as: Γ = 1 + 1
n , where the n is known as the

polytropic index. Expanding equation 3.19 using equation 3.20 yields

K(1 + 1/n)

r2

d
dr

(
r2ρ1/n−1 dρ

dr

)
= −4πGρ(r). (3.21)

At the radiusR of the star the pressure is zero: P (R) = 0, hence the mass density vanishes
too. The next step is to introduce the dimensionless variables θ and ξ defines as:

θn =
ρ

ρc
, (3.22)

ξ =
r

a
, (3.23)

where ρc is the density at the center of the star ρc = ρ(r = 0) and

a =

[
(n+ 1)Kρ

1/n−1
c

4πG

]1/2

.

The new variables simplify equation 3.21 into the more elegant form

1

ξ2

d
dξ
ξ2 dθ

dξ
= −θn. (3.24)

Equation 3.24 is known as the Lane-Emden equation for a star of polytropic index n.
The inner boundary condition corresponds to the center of the star, where the mass

density is ρ(0) = ρc, hence θ = 1. The second boundary condition requires some light
manipulations: in the innermost layers of the star the mass inside the variable radius r is
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3.6 The Equation of State

m(r) ∼ 4/3πρcr
3. Combined with equation 3.17 yields dP

dr ∝ r. Hence dP
dr = dρ

dr = 0 for
r = 0, which in turn means that the second boundary condition θ′(0) = 0.

Equation 3.24 is in general analytically unsolvable and computer calculations are nec-
essary. The star radius is given by

R =

[
(n+ 1)Kρ

1/n−1
c

4πG

]1/2

ξ1, (3.25)

and the mass is given by

M = 4π

∫ R

0

r2ρdr

= 4πa3ρc

∫ ξ1

0

ξ2θndξ

= −4πa3ρc

∫ ξ1

0

d
dξ

(
ξ2 dθ

dξ

)
dξ, (3.26)

where the limit ξ1 corresponds to the radius of the star. Solving equation 3.25 with respect
to ρc and inserting the found value in equation 3.26 yields the mass-radius relation for
polytropes

M = 4πR(3−n)/(1−n)

[
(n+ 1)K

4πG

]n/(n−1)

ξ
(3−n)/(1−n)
1 ξ2

1‖θ′(ξ1)‖. (3.27)

Numerically one finds in the non-relativistic case ξ1 = 3.65375 and ξ2
1‖θ′(ξ1)‖ = 2.71406

whereas in the ultrarelativistic case ξ1 = 6.89685 and ξ2
1‖θ′(ξ1)‖ = 2.01824. In the

ultrarelativistic case (n = 3) the mass is independent of the radius. However, in the
neutron star case the neutrons are non-relativistic, letting the relativistic case irrelevant
and more of a fun fact. In the non-relativistic (n = 3/2) case the relation takes the form
M ∝ R−3. In the case of non-relativistic neutron stars the radius and mass are found to
be:

R = 14.64

(
ρc

1018kg/m3

)−1/6

km, (3.28)

M = 1.102

(
ρc

1018kg/m3

)1/2

M�, (3.29)

where ρc is the unknown variable.

Remarks

This simple model is of course very crude, as the nucleons interact stronger than an ideal
gas, where the strong forces are neglected.

31



Chapter 3. Physics of neutron stars

32



Chapter 4
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The magnetic field of a neutron star is simulated as a superposition of two oscillating
magnetic dipoles with a relative phase shift of a quarter of a cycle. Starting out with the
field for a single dipole ~m0 = m0ẑ[10], using the substitution t′ = t − r

c . The magnetic
dipole moment is given by ~m = ~m0 cos(ωt).

~A(r, θ, t) =
µ0m0

4π

sin θ

r

[
1

r
cos (ωt′)− ω

c
sin (ωt′)

]
φ̂.

The electric and magnetic fields are found via the A-field:

~E = −∂A
∂t
,

and
~B = ∇×A.

The curl will be separated into three different components:(
∇× ~A

)
r

=
1

r sin θ
(∂θ(sin θ Aφ)− ∂φAθ) ,(

∇× ~A
)
θ

=
1

r sin θ
(∂φAr − sin θ ∂r(rAφ)) ,(

∇× ~A
)
φ

=
1

r
∂r(rAθ)−

1

r
∂θAr,

(
∇× ~A

)
r

=
µ0m0

4π

1

r2 sin θ

[
1

r
cos (ωt′)− ω

c
sin (ωt′)

]
∂θ sin2 θ

=
µ0m0

2πr2
cos θ

[
1

r
cos (ωt′)− ω

c
sin (ωt′)

]
,
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(
∇× ~A

)
θ

= −µ0m0

4πr
sin θ

[
ω

cr
sin (ωt′) +

ω2

c2
cos (ωt′)− 1

r2
cos (ωt′)

]
.

Which yields:

~B =
µ0m0

2πr2
cos θ

[
1

r
cos (ωt′)− ω

c
sin (ωt′)

]
r̂

− µ0m0

4πr
sin θ

[
ω

cr
sin (ωt′) +

ω2

c
cos (ωt′)− 1

r2
cos (ωt′)

]
θ̂.

A combination of spherical and Cartesian coordinates is preferred in the sense that one
uses (r,x,y,z) to express the field. This choice will become clear later on, when the total
field will be the superposition from fields from different coordinate systems.

r =
√
x2 + y2 + z2,

ρ =
√
x2 + y2 = r sin θ,

z = r cos θ,

r̂ =
xx̂+ yŷ + zẑ

r
=
ρ

r
ρ̂+ cos θ ẑ

= sin θ ρ̂+ cos θ ẑ.

Using these equalities one can express θ̂ in a more suitable manner:

θ̂ ≡ 1

r

∂~r

∂θ
=
∂r̂

∂θ
= cos θ ρ̂− sin θ ẑ

=
cos θ

sin θ
(r̂ − cos θ ẑ)− sin θ ẑ

=
1

sin θ
(cos θ r̂ − ẑ) .

Alternatively one could find the unit vector from figure 4.1, where the relation between
Cartesian and spherical coordinates is clearly visible. Inserted gives

sin θ θ̂ =
z

r
r̂ − ẑ.

Arriving at the final expression for the magnetic field of an oscillating magnetic dipole:
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Figure 4.1: Relation between Cartesian and spherical coordinates

~B =
µ0m0

2πr2

z

r

[
1

r
cos (ωt′)− ω

c
sin (ωt′)

]
r̂

− µ0m0

4πr

[
ω

cr
sin (ωt′) +

ω2

c2
cos (ωt′)− 1

r2
cos (ωt′)

]
×
[z
r
r̂ − ẑ

]
=
µ0m0z

4πr2

[(
3

r2
− ω2

c2

)
cos (ωt′)− 3ω

rc
sin (ωt′)

]
r̂

+
µ0m0

4πr

[(
ω2

c2
− 1

r2

)
cos (ωt′) +

ω

rc
sin (ωt′)

]
ẑ.

The next step is to find the magnetic field of a rotating magnetic dipole. Adding a second
magnetic dipole perpendicular to the first one, with an angular phase shift of π

2 , letting
cos θ → sin θ and sin θ → − cos θ, will do the trick. Since rotations around the z-axis is
the norm the first dipole oscillates along the x-axis and the second one along the y-axis.
This will result in a positive rotation in the xy-plane. However, since not all neutron stars
have the magnetic axis perpendicular to the rotation axis a third magnetic static dipole in
the z-direction has to be included. This one will have a strength factor λ as a variable
which will allow to compute any angle between the two axes.
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~Btotal =
µ0m0

4πr

[(
3x

r3
− ω2x

c2r

)
cos (ωt′)− 3ωx

r2c
sin (ωt′)

]
r̂

+
µ0m0

4πr

[(
ω2

c2
− 1

r2

)
cos (ωt′) +

ω

rc
sin (ωt′)

]
x̂

+
µ0m0

4πr

[(
3y

r3
− ω2y

c2r

)
sin (ωt′) +

3ωy

r2c
cos (ωt′)

]
r̂

+
µ0m0

4πr

[(
ω2

c2
− 1

r2

)
sin (ωt′)− ω

rc
cos (ωt′)

]
ŷ

+
λ · µ0m0

4πr2

(
3z

r2
r̂ − ẑ

r

)
=
µ0m0

4πr

[(
3x

r3
− ω2x

c2r
+

3ωy

r2c

)
cos (ωt′)

+

(
3y

r3
− ω2y

c2r
− 3ωx

r2c

)
sin (ωt′) +

λ · 3z
r3

]
r̂

+
µ0m0

4πr

[(
ω2

c2
− 1

r2

)
cos (ωt′) +

ω

rc
sin (ωt′)

]
x̂

+
µ0m0

4πr

[(
ω2

c2
− 1

r2

)
sin (ωt′)− ω

rc
cos (ωt′)

]
ŷ

− λ · µ0m0

4πr3
ẑ.

The next step is to find the electric field generated by these dipoles. Using the same
procedure one starts with one dipole, oscillating along the z-axis. Recall the A-field stated
above:

~E = −∂
~A

∂t

= − ∂

∂t

(
µ0m0

4π

sin θ

r

[
1

r
cos (ωt′)− ω

c
sin (ωt′)

])
φ̂

=
µ0m0ω

4π

sin θ

r

[
1

r
sin (ωt′) +

ω

c
cos (ωt′)

]
φ̂.

The φ̂-vector is more practical in Cartesian coordinates. It is easier to transform Cartesian
coordinates than spherical ones when changing the axis (except for the radius, which is
kept intact).

φ̂ =
xŷ − yx̂√
x2 + y2

.

Using the relation sin θ = ρ
r yields

φ̂ sin θ =
xŷ − yx̂

r
.
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Inserting and transforming allows to get the rotating dipole. The electric field becomes:

~Etotal =
µ0m0ω

4πr2

[
1

r
sin (ωt′) +

ω

c
cos (ωt′)

]
× [yẑ − zŷ]

+
µ0m0ω

4πr2

[
−1

r
cos (ωt′) +

ω

c
sin (ωt′)

]
× [zx̂− xẑ] .

It is now possible to find the Lorentz force acting on a charged particle rotating with the
star. Its velocity term will be of the form:

~v = ρωφ̂ = ω (xŷ − yx̂) ,

where φ is given from the frame of the rotating dipole. The B-field is of the form αx̂ +
βŷ + σẑ + γr̂, which yields

~v × ~B = ω (xŷ − yx̂)× [αx̂+ βŷ + σẑ + γr̂]

= ωσxx̂+ ωσyŷ − ω (αx+ βy) ẑ + ρωγθ̂.

Rewriting the θ̂-vector

θ̂ =
1

sin θ

(z
r
r̂ − ẑ

)
=
z

ρ
r̂ − r

ρ
ẑ

=
z

ρr
(xx̂+ yŷ + zẑ)− r

ρ
ẑ

=
z

ρr
(xx̂+ yŷ)− r2 − z2

ρr
ẑ

=
z

ρr
(xx̂+ yŷ)− ρ

r
ẑ

Emplpoying the new θ̂-vector, the Lorentz force can be expressed:

~FLorentz = q
(
~E + ~v × ~B

)
= q

 Ex + ωxσ + zxωγ
R

Ey + ωyσ + zyωγ
R

Ez − ω (αx+ βy)− ρ2ωγ
R

 ,

where the components Ex, Ey , Ez , α, β, γ and σ are defined below:

Ex =
µ0m0ω

4πR2

(
ω

c
sin(ωt′)− 1

r
cos(ωt′)

)
z,

Ey = −µ0m0ω

4πR2

(
1

r
sin(ωt′) +

ω

c
cos(ωt′)

)
z,
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Ez =
µ0m0ω

4πR2

[(
1

r
sin(ωt′) +

ω

c
cos(ωt′)

)
y +

(
1

r
cos(ωt′)− ω

c
sin(ωt′)

)
x

]
,

α =
µ0m0

4πr

[(
ω2

c2
− 1

r2

)
cos (ωt′) +

ω

rc
sin (ωt′)

]
,

β =
µ0m0

4πr

[(
ω2

c2
− 1

r2

)
sin (ωt′)− ω

rc
cos (ωt′)

]
,

σ = −λ · µ0m0

4πr3
,

γ =
µ0m0

4πr

[(
3x

r3
− ω2x

c2r
+

3ωy

r2c

)
cos (ωt′) +

(
3y

r3
− ω2y

c2r
− 3ωx

r2c

)
sin (ωt′) +

λ · 3z
r3

]
.

The expanded force vector is a long equation, which does not give more insight than the
form above. The expanded version is given in appendix B.

Magnetic field on neutron stars is of the order 108T, and the magnetic field constructed
is of the order:

B ' µ0m0

2πr2

(
1

r
+
ω

c

)
' 108T.

Inserting the values R = 104m and ω ' 103 one obtains

µ0m0 ' 1021Tm3.

The order of magnitude of the force on an electron corotating on the equator of the star
becomes

‖~FLorentz(R, 0, 0)‖ ' qµ0m0ω

4πR2

' 10−4N.

For comparison the gravitational force on the same electron is

‖ ~Fg‖ = G
meMNS

R2

= 6.67 · 10−11 9.1 · 10−31 · 1.4 · 2.0 · 1030

108

= 1.7 · 10−18N.
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4.1 Numerical simulations

4.1 Numerical simulations

In order to simulate the Lorentz force on a charged particle, all star dependent variables
have to be set. The Crab pulsar is the second youngest pulsar in the universe, after Kes 75,
less than 1000 years old meaning it has more energy left than other older alternatives. It is
also one of the most studied and known pulsar. Hence it is an excellent candidate for the
simulations. The magnetic field is estimated to be B = 4 · 108 T, the radius is 1.00 · 104m
and the period 33 · 10−3s. The force on an electron is chosen. The strongest field is given
by:

‖ ~B‖ ≈ µ0m0

2πr3
= 4 · 108 T.

⇒ µ0m0 = 2π · 1012 · 4 · 108

= 8π · 1020

= 2.5 · 1021.

Using matlab simulations Lorentz force on the electron at the surface is found and
mapped. A spherical coordinate system (r, φ, θ) is used, as commonly used in physics,
with radius r, azimuth angle φ and polar angle θ. The polar angle θ has zero value at the
equator. All plots are made in phase. The normal force components are indicated with
colors while the tangential components correspond to the vector arrows. All forces are in
newton. The mapping does not conserve length as length along φ-direction is θ dependent.
Nevertheless, the vector arrows are all at scale to the felt force. Since the mapping does
not conserve length in the φ-direction, angles become distorted in the transformation from
the surface of the star to the plot. In order to compensate the direction of the vectors have
been altered: in the xy-plane, where the y-axis corresponds to the θ-axis and the x-axis to
the φ-axis, a vector ~v = ax̂+ bŷ transforms as:

~v ⇒ ~v′ = n · ax̂+ n
b

sin θ
ŷ,

where n is given as

n =

√
a2 + b2√

a2 + b2 sin2 θ
,

letting the vector transformation preserve length, but alter the angle such that the trans-
formed angle will correspond to the angle on the surface of the star. Only the Lorentz
force has been plotted, which is practically equal to the total force on the particle, as will
be seen later in section 4.2.

Until now only forces in the inertial frame have been examined. But since the rotat-
ing frame is not an inertial reference frame one cannot simply use a Lorentz transform.
Changing to a rotating field one has to take into account the fictitious centrifugal force and
the Coriolis force. However, since the test particle is at rest on the star surface the Coriolis
force does not affect it. The centrifugal force is expressed
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‖~Fcentrifugal‖ = ‖~ω × (~ω × ~r)me‖ ≤ ω2Rme

≤ 1902 · 104 · 9.1 · 10−31

≤ 3.29 · 10−22 N.

Hence all other forces are many orders of magnitude weaker than the Lorentz force in
the inertial frame. Since the centrifugal is negligible the Lorentz force is the same in both
the inertial frame and in the corotating frame.
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4.1 Numerical simulations

Figure 4.2: Lorentz force on a corotating electron with magnetic poles inclined at θ = 0 from the
equator.
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Figure 4.3: Lorentz force on a corotating electron with magnetic poles inclined at θ = π
12

from the
equator.

Figure 4.4: Lorentz force on a corotating electron with magnetic poles inclined at θ = π
6

from the
equator.
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Figure 4.5: Lorentz force on a corotating electron with magnetic poles inclined at θ = π
3

from the
equator.

Figure 4.6: Lorentz force on a corotating electron with magnetic poles inclined at θ = π
2

from the
equator.
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Figure 4.7: Lorentz force on a corotating electron with magnetic poles inclined at θ = − π
12

from
the equator.

Figure 4.8: Lorentz force on a corotating electron with magnetic poles inclined at θ = −π
6

from
the equator.
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Figure 4.9: Lorentz force on a corotating electron with magnetic poles inclined at θ = −π
3

from
the equator.

Figure 4.10: Lorentz force on a corotating electron with magnetic poles inclined at θ = −π
2

from
the equator.
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4.1.1 Discussions
As the Lorentz force is the same in both frames and the test particle is at rest in the rotating

frame only an effective electric field ~̃E = ~E + ~v × ~B will affect the test particle. A
contribution from the ~v × ~B means the two different electric fields are different, this does
not mean the charge is different in the frames, as charge is Lorentz invariant.

Magnetic poles along the equator

In figure 4.2 the effective normal electric field takes the form of a central symmetric
quadrupole, while the tangential field flows around several vortices. The field is anti-
symmetric with respect to a plane cutting through the star at the middle of the map, at
θ = 0, π, and anti-symmetric with respect to the equatorial plane. The tangential forces
follow a circular flow around two strong vortex on the equator, and two strong dipole vor-
tex on the rotational poles. The tangential and normal forces are of the same order and the
average normal force is zero.

Magnetic poles between the equator and the rotational poles

In figures 4.3, 4.4, 4.5, 4.7, 4.8 and 4.9 the magnetic poles are inclined between the rota-
tional poles and the equator. The more inclined the magnetic poles are compared to the
equator, the more the quadrupole landscape vanishes. The peaks move: in the case where
the inclination angle is positive the negative peaks move towards the equator while the
positive ones move towards the rotational poles. The average normal force also changes:
for positive inclination angles, the average force is negative, and if the inclination angle
is negative the average force is positive. The average normal force increases in absolute
value as the angle increases in absolute value. Which means the effective field is not only
constituted by a quadrupole but also at least a monopole. The peaks move relatively to
each other, the negative poles are closer to the equator in the case of positive inclina-
tion angles, meaning that the anti-symmetry mentioned in section 4.1.1 about the plane at
θ = 0, π is broken, but the one with respect to the equatorial plane is conserved. All of the
vortex become weaker as the inclination increases, with no vortex at all when the poles are
aligned.

Magnetic and rotational poles aligned

In figures 4.6 and 4.10 the magnetic poles are aligned with the rotational poles. Hence
there is no magnetic oscillation and the field is time independent in the inertial reference
frame. At the poles there is no net force, and the force increases as the particle closes to
the equator. In the case of positive inclination angle the equator is a negative peak, with
tangential flows flowing towards the nearest pole.

Changing the charge sign, equivalent to changing to a proton, changes the sign of the
force. Even though the proton mass is close to 2000 times the electron’s the electromag-
netic forces are still much stronger than the gravitational force, so one would expect a
very close similarity between the electron distribution and the proton distribution in the
strong electromagnetic fields. One would expect electrons to flow together and stack at
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4.2 Electric field inside the neutron star

the peaks, and protons to flow in the opposite direction. At the normal force peaks elec-
trons and protons will be either pushed or pulled off the surface, in opposite direction of
one another.

Remarks

This model is of course not very accurate since particles are assumed to be at rest on the
star’s surface, but assuming the motion of particles does not affect the forces significantly
it can still provide valuable information. Such strong forces would deform the spherical
shape of the star creating mountains on the order of meters around the poles. Indeed this
idea has already been explored[16]. If these mountains are high enough while the spin rate
is high, gravitational waves will be emitted due to the gained inertial quadrupole momen-
tum. Dissipating energy through gravitational waves will in turn reduce the spin energy
and slow down the spin of the star. Another possible implication is the stacking and flows
of charged particles will in turn counter the strong electromagnetic forces, creating oppo-
site electric and magnetic fields, taking the form of an opposite field as the one mapped.

4.2 Electric field inside the neutron star
The next step is to look at the forces on particles at rest in the corotating frame. Letting
the gravity term incorporate the centripetal force component, one gets one electric field
component and one gravity component. Only the presence of electrons, neutrons and
protons is assumed, and the Fermi sphere as Equation of State at zero temperature is used:

~g = −g~ez,

~E = E~ez.
Where the z-axis is the vertical axis with the unit vector pointing outwards. E is the electric
field strength, and must not be confused with ε0, which is the vacuum permittivity. Using
the identities:

∇ · ~g = −dg
dz

= −4πGρm,

∇ · ~E =
dE
dz

=
ρq
ε0
,

where ρm is the mass density and ρq the charge density. The mass is the number den-
sity times the mass of electrons, protons and neutrons, whereas the charge density is the
number density times charge for electrons and protons.

dg
dz

= 4πG(mpnp +mnnn +mene),

dE
dz

=
e

ε0
(np − ne),

where e is the elementary charge. The number density in a Fermi sphere is given by:

ne =
8π

3h3
p3
F .
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The density for protons and neutrons is similar, changing the electron index e to n or p.
The relativistic Fermi energy is given by:

EF =
√
m2c4 + p2

F c
2.

In order to find the energy derivative:

E2
F = m2c4 + p2

F c
2,

⇒ 2EF
dEF
dz

= 2pF
dpF
dz

. (4.1)

The total energy variation is the contribution from the electric force and from the gravita-
tional force:

dEFp
dz

= −mpg + eE , (4.2)

dEFe
dz

= −meg − eE . (4.3)

The factor 8π
3h3 = 2.8 ·10100 J−3s−3 connecting the number density and Fermi momentum

is huge, meaning a small difference in momentum between pF,e and pF,p has enormous
consequences for the E-field. Hence the equality pF,e = pF,p holds to large orders of
accuracy. Inducing the equality dpFp

dz = dpFe

dz . Employing the last identity and using
equation 4.1 yields

EFp
dEFp

dz
= EFe

dEFe
dz

.

Inserting the formulas 4.2 and 4.3 yields

EFp (−mpg + eε) = EFe (−meg − eE) .

Rearranging and solving for eE :

eE =
EFpmp − EFeme

EFp + EFe
g

=
m2
pc

2 −m2
ec

2

mpc2 +mec2
g

= (mp −me) g,

where pF goes to zero since the surface is reached. where the energy is expanded to zeroth
order: pF → 0, hence

E =
mp −me

q
g

=
1.6 · 10−27kg
1.6 · 10−19C

· 2 · 1012m/s2

= 2 · 104V/m,
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4.2 Electric field inside the neutron star

is the electric field necessary to keep charge neutrality near the surface. Which is a very
unusual effect, as one is taught in every course in electromagnetism that conductors do
not allow electric fields inside. But this effect takes place due to the powerful gravitation,
which one never encounters in basic electromagnetism. The value of g combines the
centrifugal and gravitational forces:

F = mg = G
mMNS

R2
−mω2R

⇒ g = G
MNS

R2
− ω2R

= 6.67 · 10−11 1.44 · 1.99 · 1030

108
− 1902 · 104

= 1.91 · 1012 − 3.61 · 108

' GMNS

R2
= 1.91 · 1012,

which implies the centrifugal force can be neglected

4.2.1 Charge density near the surface
The aim of this section is to find the equation which will be computed in C++. Hence, the
angle of view will be a bit different from the previous section, but the general procedure
is identical. As found earlier the electric field around the stars is strong. As the neutron
star is a superconductor there can be no fields inside the star (except the one found in the
previous subsection keeping the charge neutrality). Hence the fields outside must come
from charges on, or very close to, the surface.

Assuming surface charges is the answer is the easiest. Recalling equation 3.6:

σ = ε0E ,

According to the previous sections the strongest forces acting on an electron are of the
order 2 · 10−5N.

σmax = ε0
Fmax
e

= 8.854 · 10−12 2 · 10−5

1.602 · 10−19

= 1.10 · 103 C/m2.

Which is a high charge concentration. To assume the charges are only at the surface is
a bold assumption. It is much more physical to assume the charges spread beneath the
surface. Using a degenerate gas as EoS in a sphere in a static situation in the sense that
particles are at rest yields: The total number of electrons:

Ne = 2 · v 4π

3
p3
Fe,
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where the 2 factor comes from both spin directions.

ne =
Ne
v

=
8π

3
p3
Fe. (4.4)

Expressing the relativistic momentum with the energy:

EFe =
√
m2

2c
4 + p2

Fec
2.

In order to gain accuracy in the computer simulations a transformation is needed:

E2
Fe −m2

ec
4 = (EFe −mec

2︸ ︷︷ ︸
Eke

)(EFe +mec
2)

= Eke(Eke + 2mc2).

where the subindex k stands for kinetic. Employing the transformation the momentum
becomes

pFe =

√
E2
Fe

c2
−m2

ec
2

=

√
Eke(Eke + 2mec2)

c2
. (4.5)

The region near the surface is the main area of interest meaning simplifications are
possible: gravity can be looked as linear. The system is now one dimensional with the
z-axis in radial direction.

EFe = E0
Fe −megz − qeφ(z). (4.6)

All of the formulas above have an equivalent version for protons.
According to Gauss’ law the field can be written:

∇ · ~E =
ρ

ε0

=
1

ε0
(qene + qpnp) ,

writing using the scalar potential instead ~E = −∇φ yields

∇2φ(z) = − 1

ε0
(qene + qpnp) (4.7)

Inserting equations 4.4, 4.5 and 4.6 into equation 4.7 yields the final expression

∇2φ =
[
(E0

e −megz − qeφ−mec
2)(E0

e −megz − qeφ+mec
2)
]3/2

−
[
(E0

p −mpgz − qpφ−mpc
2)(E0

p −mpgz − qpφ+mpc
2)
]3/2

.
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4.3 The electrosphere

Numerical simulations

Finding a φ satisfying the differential equation would give the electric field and hence the
charge distribution, which one expects should be very strong near the surface and decaying
exponentially going under the star surface. In order to find the solution to the differential
equation y′′ = f(x, y), the third order Runge-Kutta Method was employed in C++. With
boundary conditions E = −∂φ∂z = 0 at the bottom position of 50m under the star surface
and E = −∂φ∂z = 1

q10−5 ' 1014 V/m, found in the numerical simulations from section
4.1, where the electric force is of the order of 10−5 N, as top position, of 50m above the
surface.

However, this differential equation turned out to be unsolvable, it diverged very rapidly
due to the enormous factor 8π

3h3 . A slight difference between np and ne escalates into a
divergent E-field. The equation was a stiff differential equation. But the insolvability has
implications.

4.2.2 Remarks
One of the assumptions done in the simulations from section 4.1 is that this is a static
situation with no particle flux. With such strong electromagnetic forces acting on the
electrons they will be ripped out of the surface in an atmosphere of plasma, known as the
electrosphere.

4.3 The electrosphere
Due to the strong electromagnetic fields charged particles get ripped out of the surface
near the poles. These particles form a layer of plasma inside the magnetosphere called
the electrosphere. This low density layer (n = 1017 m−3) is dictated by the field lines,
with particles following the field lines from one pole to the other, creating a corotating
layer, even overrotating to a factor of three, layer of plasma. Some of the field lines are
open, since they leave the light cylinder as in figure 4.11. Particles following these field
lines get ejected as a jet. As particles follow the field lines they emit synchroton radiation,
which is observed in the X-rays spectrum. In figure 4.12, the jet, the electrosphere and the
surrounding matter of the Crab pulsar are visible as they emit radiation. For more details
see the the lecture notes from Jérôme Pétri[15].
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Figure 4.11: A neutron star inside the cylinder with radius r = c
ω

. The field lines are shown, both
the closed ones and the open ones going out of the cylinder.

Figure 4.12: The Crab pulsar observed in X-rays, taken by NASA’s Chandra X-ray Observatory[13].
The pulsar is visible as the bright dot in the center, with two outgoing jets. The surrounding plasma
is powered by the magnetic field of the pulsar.
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Chapter 5
Conclusion and outlook

Neutron stars show a large variety: between the young fast radio pulsars, the magnetically
strong magnetars and accreting pulsars to the millisecond pulsars that have stopped ac-
creting. All of them share a great gravitational force dominating their shape. However, in
the case of the fast and magnetically strong pulsars the electromagnetic forces dominate
over the gravity on the charged particles creating flows, an electrosphere and even possi-
bly magnetically confined mountains. Being the most compact objects observable in the
universe, while exhibiting different extreme characteristics, they are one of the most im-
portant laboratories for unveiling new physics: behavior in strong gravitational fields, the
nuclear physics in such high densities, gravitational waves etc... Indeed, it is a hot topic.
This thesis gave a short introduction to the vast topic of neutron stars before narrowing
down on a simple model of the magnetic field an its implication on charges. Difficult and
unresolved issues as the EoS are not encountered in the second part, as only classical elec-
tromagnetism and SR are used. The open and vague subject and technical difficulties with
the simulations slowed the work. The idea of an induced quadrupole working against the
ones found is an interesting idea, which unfortunately could not be included in this thesis
and thus paving the way for further research possibilities, belonging in the outlook section.
The idea of continuing to work on the subject after the thesis has been handed in has been
discussed with the supervisor, with the induced quadrupole as topic. Two other objectives
belong in the outlook section: The charge density near the surface, which the student was
not able to find, is a task which should be done. In order to do so a different procedure
should be employed, as the one used did not succeed. A possible approach would be to use
solid state physics. Another interesting point which could be characterized as outlook is a
model including particle motions. The problem immidiately becomes more complicated,
and in order to restrain the complexity the flows should only be at the surface, which will
let the difficult topic of the EoS be untouched.
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Appendix A
Roche Lobe

This appendix follows the thread of an article. For further details see the article[8]. In
a binary system there are two gravitational poles. The region of space around one of the
stars in this system where orbiting matter is gravitationally bound to that star is called the
Roche lobe. In a binary system with a neutron star and a companion star the companion
will often expand past its Roche lobe. At that point matter will escape the gravitational pull
of the companion and fall in through the inner Lagrangian point onto the accretion disc of
the neutron star. This process is referred to as mass transfer via Roche-lobe overflow. The
evolution of the mass transfer depends of the companion star’s mass.

The precise shape of the Roche lobe depends on the respective masses, and must be
evaluated numerically. It is however useful to approximate the Roche lobe as a sphere with
the same volume, with radius:

rr =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
,

where rr = r
A is the effective radius of a Roche lobe, r the studied star’s radius, A

the semi-major axis of the system and q = M1

M2
the mass ratio between the binaries two

masses with the studied mass as M1. This approximation is accurate up to 1% over the
entire range of q.
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Figure A.1: Roche lobe, as seen as the dotted surface around the companion star. As the Roche lobe
is full, mass will fall onto the neutron star through the Lagrange point[3].
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Appendix B
Expanded Lorentz force

~FLorentz = q

((
µ0m0ω

4π

1

r2

([
1

r
sin (ωt′) +

ω

c
cos (ωt′)

]
y

−
[
−1

r
cos (ωt′) +

ω
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sin (ωt′)

]
x

)
+
ωµ0m0

4πr2
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−
(
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) [(3x
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− ω2x

c2r
+

3ωy

r2c
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+
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3y
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− 3ωx

r2c

)
sin (ωt′) +

z

r3

]
+
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ω2r
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− 1

r
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ω

c
sin (ωt′)

)
x

+
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ω2r

c2
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r
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sin (ωt′)− ω

c
cos (ωt′)

)
y

])
ẑ

+
µ0m0ω

4π

1

r2
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ω

c
sin (ωt′)− 1
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)
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x

r
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c2r
+

3ωy
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3y
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− 3ωx

r2c

)
sin (ωt′) +
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