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ABSTRACT 13 

Technological solutions regarding automated sorting of food according to their quality 14 

parameters are of great interest to food industry. In this regard, automated sorting of fish rest 15 

raw materials remains as one of the key challenges for the whitefish industry. Currently, the 16 

sorting of roe, milt, and liver in whitefish fisheries is done manually. Automated sorting could 17 

enable higher profitability, flexibility in production and increase the potential for high value 18 

products from roe, milt and liver that can be used for human consumption. In this study, we 19 

investigate and present a solution for classification of Atlantic cod (gadus morhua) roe, milt 20 

and liver using visible and near-infrared hyperspectral imaging. Recognition and classification 21 

of roe, milt and liver from fractions is a prerequisite to enabling automated sorting. 22 

Hyperspectral images of cod roe, milt and liver samples were acquired in the 400 – 2500 nm 23 

range and specific absorption peaks were characterized. Inter- and intra-variation of the 24 
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materials were calculated using spectral similarity measure. Classification models operating 25 

on one and two optimal spectral bands were developed and compared to the classification 26 

model operating on the full VIS/NIR (400 – 1000 nm) range. Classification sensitivity of 70% 27 

and specificity of 94% for one-band model, and 96% and 98% for two-band model 28 

(sensitivity and specificity respectively) were achieved. Generated classification maps showed 29 

that sufficient discrimination between cod liver, roe and milt can be achieved using two 30 

optimal wavelengths. Classification between roe, milt and liver is the first step towards 31 

automated sorting. 32 

Keywords: Automation, Atlantic cod, roe, milt, liver, raw material, industrial, sorting. 33 

 34 

1. Introduction 35 

The whitefish industry in Norway is a growing industry with small profit margins. The total 36 

quantity of whitefish catch in 2013 was 0.775 million metric tons measured in live round 37 

weight (Olafsen et al., 2014).  From this amount, there were generated 0.34 million metric 38 

tons (44% of the total catch) of rest raw material (by-products). Rest raw material is the raw 39 

material that is generated after the fish are gutted and processed. The most known rest raw 40 

materials are heads, tongues, liver, roe and milt. The amount of rest raw material that is 41 

utilized is only 113 800 tons, meaning that 226 000 tons of rest raw material are not utilized at 42 

all. Thus, there is a large potential in increased utilization of rest raw material, which may 43 

enable a more sustainable and profitable whitefish industry.  44 

One of the main reasons for the absence of the higher utilization of rest raw material from 45 

white fish are the lack of technological solutions regarding automated sorting and handling 46 

on-board the vessels. After gutting, the rest raw materials from white fish are piled randomly 47 

in fractions and there is a need to physically separate them before they can be utilized or 48 

stored. The separation of fractions or sorting of whitefish roe, milt, and liver, is done manually 49 

due to the lack of technology solutions for automated sorting.  The manual sorting is a 50 
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laborious and costly process. Annually, the total available quantum of roe, milt, and liver 51 

combined is ca 95000 tons (Richardsen et al., 2014, Norwegian Directorate of Fisheries 52 

2015). From a technical point of view, it is very challenging to handle such large amount of 53 

roe, milt, and liver manually, to sort these fractions and to preserve them in a cost-efficient 54 

manner without automated solutions. Currently, a small amount of roe, milt, and liver are used 55 

for human consumption and majority goes to flour and oil products that are used as feed for 56 

fish and domestic animals.  Automated sorting could make possible for a general increase in 57 

utilization of these rest raw materials and contribute in a higher bio-resource efficiency of the 58 

whitefish catch and reduction of waste. Specifically, it would enable higher flexibility for 59 

production and increase the potential for high value products that can be used for human 60 

consumption instead for feed. For example, liver is used for oil production, while roe and milt 61 

can be sold as whole fractions, preserved, salted or used for extraction of omega-3 (Rustad et 62 

al., 2011). Because roe, milt, and liver have different chemical composition, enzymatic 63 

activity and behave differently during storage and in order to keep the best quality they need 64 

to be sorted and treated accordingly to the intended use. Therefore, the effect of automated 65 

sorting is not only economical; i.e. higher profitability and capacity compared to manual 66 

labour; but also environmental as more by-products would be used for human consumption 67 

and less would go to waste.  68 

 69 

In order to enable physical automated sorting of roe, milt and liver, one should be able to 70 

recognize and classify these fractions in separate classes (Falch et al., 2006). Classification of 71 

roe, milt, and liver, due to the similarities in the appearance manifested in colour and texture, 72 

is a challenging research task. Firstly, it is necessary to be able to discriminate between liver, 73 

roe and milt effectively by use of a non-destructive on-line sensor technology. Recently, 74 

image based sensor technologies (Mathiassen, 2009; Balaban et al., 2012; Mathiassen et al., 75 
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2011; Jackman et al., 2011; Misimi et al., 2014) as well as visible and near infrared (VIS–76 

NIR) spectroscopy have been successfully proved to be efficient and advanced tools for non-77 

destructive analysis and control for food quality for both external and internal parameters and 78 

features (Wu & Sun, 2013; Kamruzamman et al., 2015; Cheng & Sun, 2014; ElMasry & Sun, 79 

2010; Heia et al., 2007; Sivertsen et al, 2011; Måge et al., 2013; Iqbal et al., 2013, Huan et al., 80 

2014 ).  81 

 82 

In particular, Iqbal et al., 2013 developed a hyperspectral imaging system in the near infrared 83 

(NIR) region (900–1700 nm) to predict the class category in cooked, pre-sliced turkey hams 84 

based on spectral characterization of colour. Spectral data were extracted and analyzed using 85 

partial least-squares (PLSs) regression, and nine wavelengths were identified for colour (a – 86 

redness) prediction with a correlation coefficient R2=0.74. Xiong et al. 2015 investigated the 87 

potential of hyperspectral imaging (HSI) for quantitative determination of total pigments in 88 

red meats, including beef, goose, and duck. The models they developed yielded good results 89 

with the coefficient of determination (R2) of 0.953, indicating that hyperspectral system had 90 

the capability for predicting total pigments in red meats.  91 

 92 

Balaban et al. (2012a) developed a method for weights prediction of Pollock roes based on 2D 93 

images. Balaban et al. (2012b) reported that evaluation and quantification of colour of Pollock 94 

roe based on digital images is a difficult and complicated operation due to colour variations 95 

on the surface area of the roe. They developed methods based on image analysis to quantify 96 

colour defects on Pollock roe such as green spots, dark strips, dark colour, and uneven, 97 

colouring due to “freezer burn”. These defects were identified in the CIELab colour space (L-98 

lightness, a-redness, b-yellowness).  99 

 100 
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Bekhit et al. (2009) characterized colour parameters (Lightness L, redness a, yellowness b, 101 

hue H, and chroma C) and spectral surface reflectance of raw and processed roes from six 102 

commercial New Zealand fish species such as chinook salmon, hoki, southern blue whiting, 103 

hake, blue warehou, and barracouta. The spectral reflectance of the roe surfaces reflected the 104 

differences found among the raw roes and the impact of the processing. From all colour 105 

parameters, the redness (a-channel in CIELab colour space) was the major contributor in the 106 

separation of the different roe products. 107 

Kurnianto et al. 1999 used a machine vision system for grading of herrings roes according to 108 

weight and colour. The weight prediction was based on shape and contour analysis of the 109 

herring roes. They also showed a subsystem for ultrasonic imaging for firmness measurement. 110 

The colour of the roes was analyzed in R-red channel of the RGB images acquired with the 111 

JVC CCD camera of 512x512 resolution. The total grading of 82-88% accuracy was acquired 112 

with the validation tests in the developed system. Beatty et al. (1993) used shape descriptors 113 

for automated herring roe grading. Croft et al. 1996 report an "intelligent" decision system 114 

based on shape, firmness/texture and colour to determine the final grade of the roe product 115 

using fuzzy-logic and model-matching procedures reaching a classifier accuracy of 95%. 116 

 117 

Mathiassen (2009) used machine vision and a 5-DOF (Degree-Of-Freedom) robot arm to sort 118 

cod viscera based on stereo camera platform with digital images in the visual range by 119 

combination of colour and image texture. The main challenge was to identify the respective 120 

fraction in the digital image and it was concluded that detection and identification of fractions 121 

is a very challenging problem to solve based on only digital images (visual spectrum) without 122 

any prior spectral characterization. 123 

Therefore, based on the literature review, the operation of automated classification of roe, milt 124 

and liver appears to be challenging and complicated due to similarities of these fractions in 125 
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colour and uneven distribution of colour over the surface area. The objective of our research 126 

in this study was enable the first step towards automated sorting of roe, milt and liver by 127 

accomplishing these research subtasks: a) completely characterize roe, milt and liver from 128 

Atlantic cod by collecting reflectance spectra in the VIS/NIR (400-1000 nm) and SWIR (960 129 

– 2500 nm) wavelength range; b) establish a classification model for the most optimal 130 

wavelengths or combination of wavelengths across the VIS/NIR range (400-1000 nm); c) 131 

identify the most optimal wavelengths for the VIS/NIR range for particular wavelengths for 132 

which there are commercially available lasers; and finally d) test and develop 133 

classification/prediction maps. 134 

 135 

2. Materials and methods 136 

2.1. Sample preparation 137 

In this study, sixty samples of three different raw materials (liver, roe and milt) originated 138 

from Atlantic cod (gadus morhua) were prepared. The raw material was shipped from Nergård 139 

AS whitefish company (Nergård AS, Tromsø, Norway). Samples were cut to nearly the size 3 140 

cm x 2 cm x 1.5 cm (length x width x thickness). The samples were divided into 3 groups 141 

consisting of 20 samples of roe, 20 samples of liver and 20 samples of milt, group A, B and C 142 

respectively. Each sample was placed on a separate petri dish and labeled with corresponding 143 

group letter and sample number. The samples were used to extract spectral characteristics, 144 

establish and verify the classification models.  145 

 146 

2.2. Hyperspectral imaging system 147 

Hyperspectral images were acquired using two push-broom line scanning hyperspectral 148 

cameras HySpex VNIR-1600 and HySpex SWIR-320m-e (Norsk Elektro Optikk AS, 149 

Skedsmokorset, Norway). The working spectral range for the VNIR-1600 system is 400-150 
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1000nm with a spectral resolution of 3.7 nm, thus producing the total of 160 spectral bands. 151 

The size of instantaneous field of view (iFOV) is approximately 10cm, with a spatial 152 

resolution of 1600 pixels. The SWIR-320m-e system acquires hyperspectral images in the 153 

wavelength range of 960-2500 nm, producing the total of 256 spectral bands. The size of 154 

iFOV is approximately 9 cm, with a spatial resolution of 320 pixels. The working distance for 155 

both cameras was 30 cm. Constant broad band illumination across the iFOV was provided by 156 

two 150 W halogen lamps (Norsk Elektro Optikk AS, Skedsmokorset, Norway). Polarizers 157 

(VLR-100 NIR, Meadowlark Optics, Frederick, Colorado, USA) were mounted on the camera 158 

lens and on the light sources in order to avoid specular reflection from the samples. 159 

Translation stage (Motorized Linear Stage 8MT175, Standa Ltd, Vilnius, Lithuania) and 160 

stepper motor (8SMC1-RS232, Standa Ltd, Vilnius, Lithuania) were used to perform 161 

translation motion of the samples under iFOV of the cameras. 162 

Calibration parameters of each camera were acquired during calibration procedure performed 163 

prior to the experiment and stored in a form of calibration files. The calibration files contain 164 

information about sensor responsivity, pixel-to-pixel non-uniformities, band numbers and bad 165 

pixels. 166 

 167 

2.3. Hyperspectral imaging and image preprocessing 168 

Each sample was imaged individually. A petri dish with the sample was placed on the 169 

translation stage together with a standard teflon calibration tile (Spectralon, Labsphere Inc., 170 

North Sutton, USA) and then conveyed across the field of view of the camera. The frame 171 

period (22000 μs and 10101 μs for HySpex VNIR-1600 and HySpex SWIR-320m-e, 172 

respectively)   and integration time (21000 μs and 4500 μs for HySpex VNIR-1600 and 173 

HySpex SWIR-320m-e, respectively) were set in the image acquisition software (HySpex 174 

Ground, Norsk Elektro Optikk AS, Skedsmokorset, Norway) and remained the same for all 175 
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the samples. The dark current effect of the camera was corrected by subtracting the 176 

background signal in real time during image acquisition process. The calibration files were 177 

used to convert all images to “at sensor radiance” data followed by denoising procedure using 178 

the Minimum Noise Fraction (MNF) transformation (Green et al., 1988).  Denoised radiance 179 

data were then converted to reflectance according to the following equation: 180 

 181 

𝐼𝐼𝑖𝑖 = 𝑅𝑅𝑖𝑖∗𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖
𝑊𝑊𝑖𝑖

      (1) 182 

 183 

where I is reflectance image, R is noise-reduced hyperspectral image, Iref is known 184 

reflectance of the Spectralon calibration tile, W is white reference image, i is the band number 185 

i = 1, 2, 3,...,n and n is the total number of bands.  186 

 187 

2.4. Extraction and characterization of spectra 188 

After image acquisition and reflectance calibration, the ENVI software (Exelis Visual 189 

Information Solutions, Inc., Boulder, Colorado, USA) was used to extract reflectance spectra 190 

from the samples. For each sample, five random locations were selected and spectra were 191 

extracted by averaging over a 10 x 10 pixel window. In total, 200 spectra were extracted for 192 

material A (roe) and B (liver), and 95 spectra were extracted for material C (milt) (one image 193 

was corrupted during acquisition). Mean reflectance spectra of each tested raw material were 194 

calculated from the extracted spectra and transformed into an absorbance profile according to 195 

 196 

𝐴𝐴 =  −log10 𝑅𝑅     (2) 197 

 198 

where A is absorbance and R is mean reflectance spectra of the given raw material. 199 

The absorbance profile of each raw material was analyzed and the spectral features were 200 
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characterized. Inter- and intra-variation of each raw material were calculated using spectral 201 

similarity measure (Spectral Angle Mapper - SAM) (Schowengerdt, 1997).  202 

 203 

The SAM method is a spectral classification algorithm that operates in n-dimensional space. 204 

The method determines spectral similarity measure as an angle between two spectra, treating 205 

them as vectors in space with dimensionality equal to the number of spectral bands. This 206 

method is insensitive to illumination since the SAM algorithm uses only the 207 

vector direction and not the vector length (Kruse et al., 1993). SAM can be also used as image 208 

classification algorithm. Most common approach is pixel-wise classification, where spectra of 209 

each pixel are matched with reference spectra of the known material (Bac et al, 2013). The 210 

performance of SAM and other widely used supervised classification methods for food 211 

applications has been investigated by Park et al. (2003, 2007).  212 

 213 

2.5. Wavelengths selection 214 

Image classification is a decision process where each pixel of the image is assigned to a 215 

known cluster/class. Since hyperspectral imaging provides information of a very high spectral 216 

resolution, it is possible to construct the classifier that takes advantage of a nearly continuous 217 

spectrum. Such a classifier can provide detailed classification maps based on the full spectral 218 

profile. However this approach is not a practical solution in industrial applications, due to 219 

high complexity of the system.  Moreover, a system operating in the wavelength range above 220 

1000 nm would significantly increase the overall costs of the system. 221 

In our case, the classification algorithm should be able to distinguish three different raw 222 

materials liver, roe and milt, using a limited number of spectral bands, preferably in visible 223 

range of the spectrum. 224 

The extracted reflectance spectra were used in wavelength selection procedure. Two models 225 
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were investigated, Model I operating on a single spectral band and Model II that involves 226 

operation on two spectral bands. The optimal bands were selected using leave-one-out cross-227 

validation method (LOOCV). Cross validation methods are commonly used to compare the 228 

performance of two or more different algorithms and find the best algorithm for the available 229 

data, or alternatively to compare the performance of two or more variants of a parameterized 230 

model. In leave-one-out cross-validation, each iteration uses nearly all the data except for a 231 

single sample for training and the model is validated on that single sample. An accuracy 232 

estimate obtained using LOOCV is known to be almost unbiased, however it has high 233 

variance (Refaeilzadeh et al., 2011; Efron, 1983).  234 

 235 

2.5.1. Single band model 236 

To provide the reader with better understanding of the selection procedure we present the 237 

evaluation of a model on a one band. In total, 295 reflectance spectra were extracted from 59 238 

samples for material A – roe (100 spectra), B – liver (100 spectra), and material C – milt (95 239 

spectra) Spectral reflectance values for given band are split into a training group and a 240 

validation group. The training group consists of the 290 reflectance values from 58 samples 241 

and the validation group consists of 5 reflectance values from 1 sample. Mean reflectance μ 242 

and standard deviation σ for three raw materials are calculated using the values from the 243 

training group. Classification criteria are then calculated using μm ± σm as a cut-off, where m is 244 

the index corresponding to raw material A, B, or C. Reflectance values from validation group 245 

are compared to classification criteria and the number of correctly classified values is 246 

recorded. The process is cross-over in successive rounds such that each sample is held-out for 247 

validation. The total number of correctly classified values is used as an estimate of model 248 

performance on the particular band. After each band is evaluated, the band with the highest 249 

performance is selected as the optimal band. 250 
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2.5.2. Two bands model 251 

For two band model (Model II), the spectra were first processed according to the following 252 

equation:   253 

𝑌𝑌 =  (𝐼𝐼𝑏𝑏1+𝐼𝐼𝑏𝑏2)
(𝐼𝐼𝑏𝑏1−𝐼𝐼𝑏𝑏2)      (3) 254 

 255 

where I is reflectance image and b1,b2 are two selected spectral bands.  256 

LOO cross-validation was performed on all possible two-band combinations. Classification 257 

criteria were calculated using μ ± 2σ as a cut-off. The total number of correctly classified 258 

values is used as an estimate of model performance on the particular band combination. After 259 

all possible combinations are evaluated, the band with the highest performance is selected as 260 

the optimal combination.  Performance of 1 band model and 2 bands model was compared to 261 

SAM classification of the spectra based on the full visible spectrum (160 spectral bands). The 262 

performance was tested by sensitivity (Se) and specificity (Sp) which are measures of the 263 

performance of a diagnostic test and are intimately connected with probability calculations 264 

and are calculated as 265 

 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑆𝑆 = 𝑇𝑇𝐹𝐹
𝐹𝐹𝑇𝑇+𝑇𝑇𝐹𝐹

 , where TP-True Positives, TN-True Negatives, FP-False 266 

Positives, FN-False negatives (Vidakovic, 2011). 267 

 268 

2.6. Image classification   269 

For the purpose if image classification additional 4 images were acquired. Each image 270 

consisted of three samples (one sample of each raw material A – roe, B – liver, and material C 271 

– milt) None of the samples were previously used for spectra extraction and evaluation of the 272 

models. The images were classified using established classification models (Model I and 273 

Model II). The obtained classification maps were compared to the classification maps 274 

generated by pixel-wise SAM algorithm operation on the full spectral profiles from VIS/NIR 275 



12 
 

12 
 

range (160 spectral bands).  276 

  277 

3. Results and discussion 278 

Flexible automation, i.e. automation that is able to handle biological variation of raw material 279 

in shape, colour, texture, mechanical and optical properties is one of the most immediate 280 

needs of fisheries in Norway (Tveterås 2014, Balaban, Misimi & Alcicek 2015). Currently, 281 

the physical sorting of white fish roe, milt and liver remains a manual operation due to the 282 

lack of technological solutions for automated sorting. The first step towards automation of 283 

this operation is development of a method for robust discrimination and classification of roe, 284 

milt and liver from randomly piled fractions on-board vessels after manual handling. 285 

  286 

Due to the similarities in colour between roe, milt and liver, there has been difficult to 287 

recognize and classify these fractions by digital images in visible range (Mathiassen 2009) 288 

when they are piled up randomly. Spectral characterization was therefore performed in order 289 

to select the optimal wavelengths that maximize the class separability between roe, milt, and 290 

liver. It is known that reflectance spectra can reveal information about the differences in 291 

colour of roe (Bekhit et al., 2009). We performed a complete characterization by measuring 292 

spectral reflectance in visible (VIS), near-infrared (NIR) and short-wave infrared (SWIR) 293 

band. To the best of our knowledge, this is the first study to have performed complete spectral 294 

characterization of roe, milt and liver over such a broad spectral band. 295 

 296 

3.1. Spectral characteristics 297 

The average absorbance profiles of the tested raw materials in the whole spectral range of 298 

400-2500 nm were calculated from the extracted spectra. The spectral characteristics are 299 

presented in Fig.3. The absorption bands around 540-580 nm are related to hemoglobin 300 
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absorption (Sivertsen et al., 2011; Prahl 2010). Absorption peaks appearing at 760, 980 and 301 

1450 nm (O-H stretching third, second and first overtone) and 1938 nm (O-H bending second 302 

overtone) are due to water content in the materials (Wu, et al. 2013). Around 930 nm, 303 

absorption bands are related to the CH2 bond (Ortiz-Somovilla et al., 2007), which is 304 

characteristic of fat. Other bands corresponding to fat content are located around 1210 nm (C-305 

H stretching second overtone) (Fernandez-Cabanas et al., 2011), 1717 and 1760 nm (C-H 306 

stretching first overtone) (Ozaki, Morita, & Du 2007). Peaks at around 2304 and 2340 nm are 307 

associated with the C-H combination (Burns & Ciurczak, 2008). 308 

     309 

3.2. Intra- and inter- similarity 310 

Spectral similarity measure (Spectral Angle Mapper – SAM) was used to calculate intra- and 311 

inter-similarity of the raw materials in 400-1000 nm range. Intra- similarity was calculated 312 

between all extracted reflectance spectra and corresponding mean spectrum of the material. 313 

Obtained results are presented in Fig. 4. It can be clearly seen that all calculated SAM values 314 

are smaller than 0.20. The highest variation of the spectra has been observed for material A – 315 

roe, ranging from 0.03 to 0.19. Values obtained for material B – liver and C – milt didn’t 316 

exceed 0.15 and 0.10 respectively. Presented results indicate high intra-similarity of all three 317 

materials with material C being the most homogenous one.  318 

Inter- similarity of tested raw materials was calculated using mean reflectance spectra of the 319 

materials. Obtained results are presented in Table 1. The highest spectral difference (SAM = 320 

0.25) have been found between materials A and C, roe and milt, respectively. It can be also 321 

seen that material B is more similar to material A (SAM = 0.16) than to material C (SAM = 322 

0.19).   323 

 324 

3.3. Wavelength selection 325 
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By analyzing the LOO cross validation results the optimal spectral bands were selected for 326 

Model I and Model II. Statistical measures of the performance of the classification models are 327 

presented in Table 2. Five wavelengths were selected as optimal for Model I and twenty band 328 

combinations for Model II. The inspection of the obtained results reveals that for 329 

classification performed with wavelength 444 nm (Model I) the classification sensitivity 330 

would reach 74%, 71% and 65% for material A, B and C, respectively. The specificity for the 331 

selected wavelength would reach 91%, 92% and 98% for material A, B and C, respectively. 332 

The obtained values, especially sensitivity, are low as compared to the results obtained using 333 

full 400 – 1000 nm wavelength range (SAM). This is explained by a significant reduction of 334 

the number of bands from 160 to 1 for Model I. 335 

Classification statistics corresponding to Model II were superior to Model I. The 336 

mathematical pre-treatment of two spectral bands according to eq. 3 increased the sensitivity 337 

and specificity of the classification. Moreover, the performance of Model II using optimal 338 

wavelengths was similar to that of SAM utilizing full wavelength range (160 bands). 339 

 340 

3.4. Image classification   341 

Performance of the classification models (Model I and Model II) were compared using images 342 

of mixed raw materials. Obtained classification maps of three raw materials are presented in 343 

Fig. 5. The best performance was observed for pixel-wise SAM classification using the full 344 

wavelength range (Fig. 5b). The difference in performance between the Model I (Fig. 5c) and 345 

the Model II (Fig. 5d) is clearly visible. Classification map provided by Model II is more 346 

accurate, consists of less misclassified pixels, and is more similar to the one obtained using 347 

pixel-wise SAM for full 400 – 1000 nm wavelength range. Miss-classified pixels have their 348 

origin in high spectral similarity between raw materials, as shown in table 1. Similar problem 349 

was highlighted by Park et al. (2007). The overall performance of image classification can be 350 
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improved by optimizing the classification algorithm, e.g. by taking spatial content into 351 

account. Optimization of the image classification was out of the scope of this study and it will 352 

be subject to future work.    353 

 354 

3.5. Industrial relevance of results, economic and environmental advantages of automated 355 

sorting  356 

The method we have presented in this study has an immediate industrial relevance and there 357 

are several reasons why the method has potential for industrial application. Firstly, for most of 358 

the identified optimal wavelengths in classification Model I and II there are commercially 359 

available lasers or diffuse tube lights at precisely the identified wavelengths or adjacent to 360 

those. Given the smoothness of the absorbance spectra (Figure 3), following wavelengths 361 

from Table 2 can be substituted with commercially available lasers (Table 3). Secondly, the 362 

trade-off between cost and practicality of the imaging system on one hand vs specific 363 

wavelengths identified in Table 2 highlights that the hyperspectral system, which is costly for 364 

industrial use, in the current study can be easily downscaled to a practical image acquisition 365 

system with the identified commercially available lasers (Table 3) and a low cost camera that 366 

has a solid spectral response on the range highlighted in Table 2. Combination of two different 367 

wavelengths from Model II can also be solved by triggering two lasers (with respective 368 

wavelengths from Model II) alternately every second frame of the camera in order to generate 369 

almost simultaneously two images that can be used for analysis and image classification.  370 

 371 

The key economic advantage of automated sorting of roe, milt and liver for the whitefish 372 

fisheries is higher profitability. Since whitefish fisheries operate with very low margins, 373 

introducing a higher degree of automation is a question of their survival (Tveterås et al., 374 

2014). In Table 4 is shown an estimate to illustrate the economic advantage of automated 375 
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versus manual sorting based on the provided data from Richardsen et al. (2014) and Statistics 376 

Norway (SSB, 2015). We assume that by introducing automated sorting of roe, milt and liver 377 

one has to consider: 1) investment costs in new technology consisting of machine vision 378 

systems and robots to perform automated sorting; 2) operation costs for the new machinery; 379 

maintenance cost for the new machinery; and 4) salaries for personnel involved in operation 380 

and maintenance. The cost involving all these steps would still be lower than 1/3 of the totally 381 

estimated cost of 155 mil USD needed for manual labour (Table 4). Therefore, it is estimated 382 

that a direct implication of introducing automated sorting of roe, milt, and liver in whitefish 383 

fisheries would be annual savings up to 100 mil USD.  On the societal aspect, introduction of 384 

new ICT and automation technology would attract labour force with high education level to 385 

serve and maintain the new machinery. This is crucial for a sector that is struggling with 386 

recruitment of trained workforce. The environmental impact of introducing automated sorting 387 

is that the capacity is increased and larger quantities of roe, milt and liver will go to products 388 

for human consumption and the waste from these fractions would be considerably reduced. 389 

All of these aspects are crucial for a sector that is trying to become sustainable and bio 390 

economically efficient.  391 

    392 

4. Conclusions 393 

In this study, hyperspectral images of cod liver, roe and milt samples were acquired in the 400 394 

– 2500 nm range and specific absorption peaks were characterized. Inter- and intra-variation 395 

of the materials were calculated using spectral similarity measure. One-band and two-band 396 

classification models were developed to differentiate between the three raw materials in 397 

VIS/NIR (400 – 1000 nm) range. Important wavelengths were identified using cross-398 

validation method, leading to the classification sensitivity of 70% and specificity of 94% for 399 

one-band model, and 96% and 98% for two-band model (sensitivity and specificity 400 
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respectively). Classification maps were generated using optimal wavelengths and compared to 401 

the classification maps generated from the full spectral profiles from VIS/NIR range. The 402 

results showed that discrimination of cod liver, roe and milt is possible using combination of 403 

two optimal bands and that hyperspectral system, which is costly for industrial use, can be 404 

easily downscaled to a practical image acquisition system with a camera having a solid 405 

spectral response and by triggering two lasers (at two optimal wavelengths) alternately every 406 

other camera frame.  407 
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 555 

TABLES 556 

Table 1 Inter- similarity of tested raw materials 557 

 

A - roe B - liver C - milt 

A - roe 0   

B - liver 0.16 0 

 C - milt 0.25 0.19 0 
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Table 2 Performance of the classification models 572 

Model Spectral band (nm) 

  A - roe   B - liver   C - milt   

  

Sensitivity 

[%] 

Specificity 

[%]    

Sensitivity 

[%] 

Specificity 

[%]    

Sensitivity 

[%] 

Specificity 

[%]    

Model I 444     74 91   71 92   65 98   

  448     71 95   72 94   64 98   

  441     74 90   72 91   64 98   

  451     70 96   73 96   62 98   

  480     69 100   73 95   63 97   

                          

Model II 462 604   97 96   94 94   96 98   

  466 604   97 96   95 96   95 98   

  470 604   97 98   94 97   96 98   

  473 604   97 99   93 99   96 98   

  477 604   96 100   93 98   97 98   

  477 829   97 94   95 94   97 98   

  481 600   97 100   94 97   97 98   

  481 847   97 95   94 95   97 98   

  484 604   97 100   95 97   96 98   

  484 843   97 95   94 96   97 98   

  488 600   97 100   95 96   95 96   

  488 836   97 96   94 96   97 98   

  491 600   97 100   95 96   95 94   

  491 843   98 96   94 97   97 96   

  495 600   97 100   95 96   95 94   

  495 850   97 97   94 97   97 95   

  499 600   97 100   94 97   95 94   

  499 847   96 97   94 98   97 94   

  502 854   97 97   94 98   97 94   

  506 847   97 97   94 98   97 94   
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SAM* 415  - 992   96 100   97 98   100 100   

*Classification performed using spectral angle mapper (SAM), classification thresholds: 0.125, 0.125 and 0.100 for material 573 

A, B and C, respectively.  574 
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Table 3. Available lasers and diffuse light tubes to for optimal wavelengths 598 

identified in Table 2 or for wavelengths adjacent to these 599 

Spectral band (nm) Commercially available laser/diffuse light (nm) 

415 405 

441,444, 448, 451 450 

462, 466, 473, 477, 481, 484, 488 470 

491,495,499, 502, 506 514 

600, 604 635 

829, 836 830 

843, 847, 850 850 

990 980 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 
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Table 4. Estimate of economic and profitability advantage of introducing automated sorting of roe, liver 616 

and milt. One operator is expected to sort 25 kg of fractions per hour, which for 95000 tons a year there is 617 

a need for 3,8 mil working hours to sort all fractions.  618 

Operation/Cost Measurement Unit 
Cost (NOK)/USD 

Sorting capacity one operator  25 kg/hour  

Amount of by-products to sort 95 000 000 kg/year  

Total hours for manual sorting 3 800 000 hours  

Man-Year 1950 hours  

Total Man-Years for sorting 1949 Man-Years  

Salary for one Man-Year - 659 660/79605* 

Total cost for manual sorting - 1 285 374 359/155 114 807* 

*Rate exchange from 29.09.2015 619 
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