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Abstract 

Target costing is a modern approach applied during product development that defines cost 
targets for products and its components. These cost targets are driven by customer 
requirements and achievable revenues. The intention of this paper is the integration of 
target costing with modern concepts of modeling uncertainty and management of risk based 
on optimization. Contrary to the traditional focus of target costing on cost targets this paper 
prefers a strategy for achieving a target profit. Moreover, in this paper target costing is 
understood as a continuous process with incremental changes of cost drivers, product and 
component design as well as product prices. Therefore, the change in costs and profit with 
respect to aforementioned control parameters is modeled by linear approximations. Hence, 
improved decisions concerning design and prices are derived by linear programming 
models. In practice, information concerning product and component costs, demand or 
customer preferences are not given with certainty. Therefore, we apply a stochastic 
programming approach to manage the risk inherent in the target costing process. After a 
general presentation we apply our approach to the provision of an information and 
communication technology service where the level of uncertainty is considerable. 
Keywords: Cost Management, Optimization, Risk Management, Product Design, Target 
Costing.  
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1 Introduction 
Target costing has been a successful methodological framework that aims at setting product 
costs during the product development and design stage such that a sufficient profit margin 
can be achieved once the product enters the production. This methodology departs from a 
competitive market price of the product and defines the target costs of the product by 
subtracting the required profit margin. If the target costs are different from what is 
presently achievable with the available product design and production processes then the 
product design and production processes need to be restructured and improved accordingly. 
Target costing is principally carried out with a strong focus on customer needs and 
requirements. Therefore target costing is often integrated with Quality Function 
Deployment (QFD) that translates customer requirements into engineering and production 
characteristics (see for example Hauser and Clausing, 1988). One of the main principles 
applied in target costing and QFD is that the costs of a component or engineering 
characteristic should be proportional to its contribution to the customer’s requirements.  
During the last decade, considerable literature has been dedicated to the study of different 
aspects of target costing including economic and organizational perspectives as well as the 
implementation and adoption in different industrial branches (Cooper and Slagmulder, 
1997; Ansari and Bell, 1997; Ellram, 2002 and 2006; Everaert et al., 2006; Ibusuki and 
Kaminski, 2007; Yazdifar and Askarany, 2012).  
The contribution of this paper arises from the following two issues. Conventional target 
costing mostly departs from a defined product with given customer requirements and 
achievable price. However, during the product design stage engineers often have the 
opportunity to change the design in order to fulfill different customer requirements which 
allows for different pricing. Therefore this paper extends the target costing framework to 
allow for alternative customer requirements and prices. The second issue is related to 
uncertainties present in the early stages of the product’s life cycle. In order to implement 
the target costing methodology and to set the correct cost targets already in the 
development stage, it is necessary to have substantial information about the acceptance of 
the product or service in the market, the relation between engineering characteristics and 
customer requirements, achievable market prices and potential cost reductions in the future. 
In the case of innovative industries this information can be affected by substantial 
uncertainty. In such situations there will be the risk that the cost management techniques 
will not guarantee the targeted costs or profit. Therefore the application of target costing in 
such industries should be supplemented with appropriate risk management methods. 
Indeed, the importance of environmental uncertainty for the adoption of target costing is 
recognized in the literature, although with conflicting findings: Dekker and Smidt (2003) 
argue that the adoption of this management tool is highest among firms in an unpredictable 
environment while Ax et al. (2008) reason that its adoption is negatively correlated with the 
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environmental uncertainty. Particularly the latter study drives our suspicion that firms in an 
unpredictable environment reluctantly use a deterministic target costing approach without 
explicit considerations of uncertainty and possibilities for controlling risk.  
We address these issues by associating target costing with an appropriate optimization 
model. Since target costing can be understood as a continuous process with incremental 
changes of cost drivers, product and component design as well as product prices we model 
the change of costs and profit with respect to aforementioned control parameters by linear 
approximations. Hence, design and price decisions towards the goal of profitability are 
represented by a linear programming model. 
In order to incorporate uncertainties concerning product and component costs as well as 
demand and  customer preferences, we apply quantitative decision support models for risk 
management based on the recent advances in optimization under uncertainty that proved to 
be successful in other domains like finance and investment analysis (see Birge and 
Louveaux, 1997; Gaivoronski and Pflug, 2005; Kall and Wallace, 1994; Zenios, 2007). 
Furthermore, this paper draws from modern portfolio theory of finance (Markowitz, 1991). 
More precisely, the target costing process is guided by the optimal choice of product design 
and price changes in order to achieve the expected cost reduction or profit improvement on 
one hand and the reduction of risk of ex-post non-profitability on the other hand. 
Our reference application is the development of an ICT (information and communication 
technology) service. The environmental uncertainty in this domain is substantial due to a 
high pace of innovation, relatively short lifetimes of services, changing usage patterns, and 
the entrance of new actors. There is also an increasing need for quantitative decision 
support tools due to the development of electronic marketplaces.  
The rest of the paper is organized as follows. Section 2 sets the stage for further discussion 
by describing the main stages of target costing and identifying the key quantitative 
relationships that are required for the development of optimization based target costing 
strategies and risk management tools. Section 3 introduces the optimization framework for 
incremental target costing in case of deterministic data. The risk management framework is 
integrated with the target costing in Section 4. How an integrated approach of target costing 
and risk management can be adopted in the ICT environment is shown in Section 5 where a 
numerical example is considered. Section 6 concludes the paper. 
 
2 Quantitative Formulation of the Traditional Target Costing Model 
This section sets the stage for the development and integration of risk management tools in 
the context of target costing under uncertainty. It contains a description of the main 
components of the traditional target costing model and its phases as described in the 
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literature. This will serve as departing point for the incremental target costing and profit 
model introduced in Section 3 and the risk management approach developed in Section 4.  
At first suppose a firm that attempts to maximize the profit  from producing and selling a 
single product to the customers. The demand for this product depends on the price  and 
the product quality that is composed of  product attributes (customer requirements) 
perceived by the customer. These attributes are quantified by the vector = , , … , . 
The dependence of the demand on the price  and the product attributes  is expressed by 
the demand function , . The firm controls several variables = , , … ,  that 
govern the design of the product and its components as well as the costs of the product. Let 
the dependence of the product attributes be expressed by an attribute function , 

: ℝ → ℝ . This is often a complex and multilayered system. Approaches referred to as 
quality function deployment (Hauser and Clausing, 1988; Zengin and Ada, 2010) and 
function deployment analysis (Prasad, 1994) attempt to operationalize this complexity. The 
total costs are expressed by the cost function C ,  with : ℝ → ℝ . The total costs 
depend on the control variables  and the production volume. For simplicity we assume 
that the production volume is equivalent to the demand . Note that the demand itself 
depends on the price and the product quality as described above. Finally, the maximization 
of the profit can be stated by the following optimization model: 

maximize,  = , ∙ − C ,  (1) 
 where ≡  (2) 
Subject to ≥ 0, ≥  (3) 

In this formulation any restrictions concerning production or sales capacities, technical 
constraints or financial budgets are neglected but can be easily added if needed. An 
overview on the components of the target costing model for the purpose of this paper is 
given in Figure 1. 
There are a couple of models related to the optimization of product design (Prasad, 1993; 
Moskowitz and Kim, 1997; Fung et al., 2002; Chen and Weng, 2003; Lai et al., 2004; Chen 
and Weng, 2006; Chen and Ko, 2009; Delice and Güngör, 2009).  The objective functions 
of all of these models aim at the maximization of customer utility in one or another way. 
Some of these studies explicitly treat the effect of the design on the product’s cost by 
budgetary constraints (Fung et al., 2002; Weng and Cheng, 2003; Lai et al., 2004; Chen et 
al., 2005; Chen and Ko, 2009; Delice and Güngör, 2009). The only work that considers 
costs in the objective function is Chen and Weng (2006) who apply a goal programming 
approach with the three objectives: maximization of customer satisfaction, minimization of 
costs and minimization of technical difficulty. The uncertainty inherent in the relationships 
between customer requirements and product requirements or relationships between costs 
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and product design are treated in Fung et al., 2002; Chen and Weng (2003 and 2006), Chen 
and Ko, (2009) in form of fuzzyness. In contrast, in our paper the optimization of the 
product design is guided by the objective of profit maximization. Uncertainty in the 
parameters of the functions involved (see Figure 1) will be quantified by means of a 
probabilistic framework. For differences of a fuzzy versus probabilistic representation of 
data see for example Gaines (1978). Finally yet importantly, the work of Hoque et al. 
(2005) deserves attention. They represent a compromising framework for conflicting 
weights concerning customer, engineering, and cost requirements as stated by the 
merchandizing, development and production departments. This is an interesting and 
complementary approach to the framework represented in our study. 

 
Figure 1: Components of the Target Costing Model 

Knowing the specifications of the demand function , , cost function C ,  and 
attribute function  one will attempt to find the optimal price ∗ and design/cost drivers 

∗. Depending on the properties of this optimization problem one can actually obtain these 
optimal decisions, otherwise, one will try to find an improved or near optimal solution. 
However, practically the straight forward implementation of such an optimization model is 
not possible because there exists limited or imprecise knowledge on the demand function 

, cost function C, and attribute function . For the design stage of new services and 
products cost management practitioners and researchers have therefore developed the 
concept of target costing (See Feil et al. (2004) or Burrows and Chenhall (2012) for a 
historical perspective on target costing). In what follows we apply the notation from above 
and give an overview on the target costing phases similarly to Cooper and Slagmulder 
(1997), Ellram (2006), Everaert et al. (2006) or Ax et al. (2008). 
Phase 1 – Identifying the product and service attributes: Target costing starts with the 
identification of the customer needs and the selection of product attributes that are required 
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to meet these needs. This phase will yield the description of a service by a vector of 
quantified attributes = , … , . These attributes define the service features that are 
important from the point of view of consumers, like functionality and quality, and they are 
measured in appropriate units. This is a crucial step because target costing is a market-
driven approach and its results will be used throughout the whole target costing process. 
Different means are used to extract this information like market assessments, customer 
surveys, focus groups, product prototype tests, and organized interviews with key 
customers. Based on market research the target values = ̂ , … , ̂  can be defined. A 
number of factors are considered here, not all of them possible to formalize like the position 
of the product in the firm's product matrix, the dependence of the sales volume on these 
attributes, the product's quality and functionality compared to competitive offerings, the 
characteristics of anticipated customers, or the firm's strategy as well as competitors' 
strategies. In section 3 we will consider the product attributes as dependent on the price and 
the product specifications. 
Phase 2 – Establishing the target price: In this phase the target selling price ̂ is 
established. In addition to above mentioned factors the following aspects may play an 
important role in this phase: firm's long-term sales and profit objectives, the perceived 
value of the product to the customers, the desired market share of the product and the 
dependence of the sales volume on this price. Like the product requirements, the price 
becomes a control variable in Section 3. 
Phase 3 – Establishing target demand and revenues: Marked research now focuses on 
the projection of the demand  for the service with attributes  and unit price ̂. Having an 
estimate for the target demand, we can also calculate the value for the revenues . In our 
analysis we suppose an undifferentiated price per unit such that the revenues become: =

̂ ∙ . Again, we want to accentuate that Section 3 considers price and product 
specifications as control variables on which the satisfaction of customer, demand and 
revenues will depend. 
Phase 4 – Determining the target profit margin and the target profit: In this phase  the 
target profit rate ̂  needs to be determined. This decision will depend on different 
benchmarks like the profit levels for similar or preceding products, the relative strength of 
competitive offerings or the firm's long-term profit plan. The target profit is then 
determined as = ̂ ∙ . 
Phase 5 – Determining the product target costs: The target costs of the product are 
obtained by taking the difference between the target revenues  and profit , i. e. = −

. The target costs can also be determined through the target revenues  and the profit 
margin ̂  as follows: = ∙ = ∙ ̂ ∙ . 
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Phase 6 – Decomposition of target costs to components, materials and processes: This 
stage aims at the establishment of target costs for the product components, production 
processes, materials and external suppliers. The decomposition can be obtained by different 
methods, the most common one being the function-oriented method and the component-
allocation method (Everaert et al. 2006). In this paper we suppose that the product or 
service is composed of  cost and design drivers. These are for example product 
components, production activities, materials, etc. The vector = ,…,  contains a 
quantification of the quality or extent of these cost and design drivers. As mentioned above, 
an attribute function = Z  connects these drivers with the attributes of the product. The 
total costs of the product are dependent on the quality of these drivers and the demand, 
which is expressed by some cost function: C , . With this specification the problem of 
target costing becomes the following. Find the optimal product attributes and cost drivers  
such that the gap between the achievable costs C ,  and the target costs , ∙  will be 
reduced: 

minimize  C , − , ̂ ∙ ̂
1 −  (4) 

Subject to ≡  (5) 
 ≥ 0, ≥  (6) 

 
This problem is equivalent to solely minimizing costs since the target profit and target 
profit margin are fixed. Furthermore, this problem is also equivalent to problem (1) to (3) 
for fixed customer requirements  and price ̂. Since we will allow for changes in the price 
and satisfaction of customers we will later regress to problem (1) to (3) instead of (4) to (6). 
Phase 7 – Continuous improvements: Studies like the one by Ellram (2006) show that 
firms may introduce a product even if the target costs have not been achieved. In this case, 
efforts aim at a continuous improvement throughout the whole life cycle of the product. 
This process is often referred to as Kaizen costing (Modarress et al., 2005). 
 
3 Incremental Target Costing 
The process outlined in the previous section does not completely describe the engineering 
practice. More particularly, after stage 6 has been performed the target values of the 
product attributes (customer requirements) and target price can be adjusted in order to 
define the realistic cost reduction targets. This is due to the fact that the development of a 
new service or product will be subject to uncertainties concerning the cause-effect 
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relationships between product design, costs, satisfaction of customer requirements and 
demand shown in Figure 1. For this reason we consider target costing as an iterative 
process as indicated in Figure 2. This process starts from some initial design of the product 
or service and goes several times through the target costing phases described in the 
previous section. Each loop through these steps can bring some adjustment to the cost 
targets and cost decomposition.  

 
Figure 2: Incremental Target Costing 

In this section we shall be concerned with the upper left box on this figure. More 
particularly, we develop a model that will help the service or product designer to identify 
directions that will bring him closer to the cost target while maintaining the necessary level 
of customer’s response. Due to uncertainty inherent in this process, there is always the 
possibility that cost reductions will bring about undesirable effects on revenues and 
demand. In fact the objective of the service designer will be to find the acceptable trade-off 
between provision costs and the resulting revenues. Our purpose is to facilitate the 
identification of this trade-off by providing the designer with a set of the most effective 
directions of reaching the target costs and an estimate of accompanying risks for each 
direction. Having this information, the designer will choose which direction to pursue. 
For this we depart from model (1) to (3). Since, the incremental target costing process does 
not aim at the optimization of the product design in one immediate step like indicated by 
this model, but should be interpreted as an iterative process with relatively minor updates in 
price and design at each iteration, we will formally describe the changes in costs, revenues 
and profit with respect to a change in the control variables  and  as linear 
approximations. This will indicate what information is needed for an improvement towards 
the profit goal. The target costing stages will be extended as follows: 
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In phase 1 (identifying the product and service attributes) we suppose that we start from 
some initial design . The change in the satisfaction of the product requirements =
1, … ,  is defined as: 
 ∆ = ∙ ∆ + ⋯ + ∙ ∆    for all    = 1, … ,  (7) 
In phase 2 (establishing the target price) we suppose that we have some initial price 
estimate . In phase 3 (establishing of target demand and revenues) marked research 
defines the effect of changes in product attributes and price (∆  and ∆ ) on the demand: 
 ∆ = ∙ ∆ + ⋯ + ∙ ∆ + ∙ ∆  (8) 

By substituting all ∆  in (8) by (7) we obtain the change in the demand dependent on a 
change in the component design and price: 
 ∆ = ∙ ∙ ∆ + ∙ ∆  (9) 
The effect on the revenues can now be approximated by: 
 ∆ = ∙ ∆ + ∙ ∆  (10) 

where ∆  is defined by (9). We again suppose an undifferentiated price per unit such that 
the underlying revenue function is = ∙ D , . 
Concerning phase 5 (determining the product target costs), information concerning the 
change in the costs need to be retrieved: 
 ∆ = ∙ ∆ + ⋯ + ∙ ∆ + ∙ ∆  (11) 

where ∆  is defined by (9).  
Finally, the change in the profit is ∆ = ∆ − ∆  with ∆  defined by (10) and ∆  by 
(11). Jointly, we obtain: 
 

∆ = − ∙ ∙ − ∙ ∆

+ − ∙ + ∙ ∆  
(12) 
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We, however, keep in mind that the derivatives used in the aforementioned equations 
cannot be derived from the “actual” functions  , , C ,  and  for the reason of  
limited or imprecise knowledge. Instead, these derivatives will be estimates based on 
knowledge from market research or engineering experience. Let us now state the 
optimization model that aims at an incremental improvement of the profit by changing 
price and cost/design drivers: 

maximize∆ ,∆  ∆  as defined in (12) (13) 
subject to: |∆ | ≤ ,       ‖∆ ‖ ≤  (14) 

 
Here |∆ | denotes the absolute change in the price and ‖∆ ‖ describes the absolute change 
(expressed by the Euclidian norm) in the vector of changes in the engineering 
characteristics;  and  denote the maximum allowable changes in the price and the 
engineering characteristics respectively. 
In the practical implementation of such a model there will be substantial uncertainty 
concerning the acceptance of the product or service in the market, the relation between 
engineering characteristics and customer requirements, the achievable market price and 
potential cost reductions in the future. The next section will therefore allow for stochastic 
parameters in the proposed model.    
 
4 Incremental Target Costing under Uncertainty and Risk Management 
It is inevitable that there is a great deal of uncertainty and imprecision in the parameters of 
the optimization problems associated with incremental target costing as presented in the 
previous section. In what follows we therefore include uncertainty in the data and the 
possibility of controlling risk into our target costing problem (13) and (14). We adopt here a 
probabilistic description of uncertainty with  indicating a random event that governs a 
particular outcome of the stochastic parameters of the target costing model. The demand 
function, the attribute and the cost function will be denoted by = D , , , =

Z ,  and C , ,  respectively. Again the revenues are supposed to be based on an 
undifferentiated unit price: = ∙ D , , . The expected revenues are = ∙

D , ,  where  is the mathematical expectation with respect to . The stochastic 
profit  and the expected profit ̅ are formally given by: 

= ∙ D , , − C , ,  
̅ = ∙ D , , − C , ,  
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There is a risk that the actual profit will differ from this estimate because it depends on the 
realization of the uncertain parameters . We shall measure the variation or deviation from 
the expectation by some risk measure ℝ. The most traditional and widely used measure is 
the standard deviation or variance. Modern risk management, however, has developed 
different other risk measures that represent a better alternative in specific risk management 
cases (see Artzner, et al. (1999), Uryasev and Rockafellar (1999), Jorion (2001), 
Gaivoronski and Pflug (2005)). In our approach we apply the expected shortfall below 
some benchmark or target profit : 

ℝ = − min , , − , 0  
One possible candidate for the target   can be the break-even (profit of zero). Through an 
appropriate selection of the control parameters (decision variables)  (price) and  (design 
and cost drivers) the risk of a deviation from these targets can be controlled. We shall now 
discuss how price and cost/design drivers can be chosen in order to obtain the desired trade-
off between achieving targets and reducing the risk of failure. Let us therefore reformulate 
the problem (1) to (3) such that the risk exposure will be limited. More particularly, we 
constrain the hazard of having a high expected deviation from the benchmark  (for 
example high expected loss): 

maximize,  , ,  (15) 
subject to − min , , − , 0 ≤  (16) 
 ≥ 0, ≥  (17) 

Here  is some pre-specified level of risk. 
In the present form the objective function and the constraints are nonlinear and contain the 
expectation operator. This operator itself represents a challenge because it may be hard to 
compute. The problem becomes simpler if we assume that random parameters have finite 
support defined by a finite number of scenarios. These scenarios can be derived from the 
market research that shall yield demand projections. Suppose that we have S scenarios of 
uncertainty and each scenario is described by the value = 1, … ,  and its probability .  
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Then the problem (15) to (17) assumes the following form: 

maximize,  ∙ , ,  (18) 

 where = ,    for all = 1, … ,  (19) 
subject to ∙ − min 0,  , , ≤  

≥ 0, ≥  
(20) 

 
This problem can be further reformulated by introducing a composite objective function 
that will be the linear combination with weight  between the performance measure (18) 
and the risk value from the left hand side of expression (20) above. The problem becomes: 

maximize,  ∙ ∙ , , − 1 −  
(21)  

∙ ∙ −min 0,  , ,  

subject to ≥ 0, ≥  (22) 
In fact, one can prove that under mild technical assumptions any solution of problem (21) 
and (22) for any fixed ∈ 0,1  is also a solution of problem (18) to (20) for some specific 

 which depends on this solution. This relationship between the performance maximization 
problem under risk constraints of type (18) to (20) and the optimization of integrated 
performance/risk measure of type (21) and (22) holds for a wide variety of risk and 
performance measures. It is well known fact in the theory of financial portfolio 
management, where this transformation is widely used, see for example Zenios (2007: 
chapter 3). We provide a mathematical proof of this fact in Appendix for completeness of 
exposition. 
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Let us reformulate this problem further by introducing auxiliary variables = , … ,  : 
maximize,  ∙ ∙ , , − 1 − ∙ ∙  (23) 

subject to + , , ≥ 0 (24) 
 ≥ 0, ≥ 0, ≥  (25) 

Now we have to replace , , + ∆  by the linear approximation from 
(12):  

maximize∆ ,∆  ∙ ∙ ∆ + ∙ ∙ − 1 − ∙ ∙  (26) 

subject to + ∆ ≥ −  
≥ 0 (27) 

 − ≤ ∆ ≤  
− ≤ ∆ ≤  

(28) 

Note that ∙ ∑ ∙  is a constant that can be neglected in the objective function. 
This is a linear programming problem which can be solved by standard software. Let us 
now discuss how the solution to this problem can assist the service designer to select a 
desirable trade-off between moving towards the targets defined above and accompanying 
risks like reducing the appeal to customers and decreasing the resulting revenue. This can 
be achieved by the following two-stage process. 
1. Problem (26) to (28) can be solved for different values of the weighing factor  within a 

range from 0 to 1. Each such solution will consist of the following: 
 the portfolio of cost reduction activities ∆  that will indicate which components and 

which characteristics should be altered and at which rate; Possibly, this portfolio 
will include also the recommendation for the price change ∆ , 

 the expected performance of this portfolio measured as improved expected profit, 
 the change in the risk associated with these activities measured as the expected 

negative deviation from some benchmark. 
By changing the value of  from 0 to 1 one will obtain the dependence of performance 
on risk as shown in Figure 3 in Section 5. Drawing on the analogy with the portfolio 
theory from finance and investment science one can refer to the curve in this figure as 
the efficient frontier (Markowitz, 1991). Each point on this frontier corresponds to a 
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portfolio of activities that a rational designer should prefer to any other portfolio of 
activities that generates a risk/performance point below or to the right of this frontier. 

2. Having the efficient frontier as in Figure 3 the designer can decide on his upper level of 
risk tolerance  and obtain the corresponding level of performance, i.e. cost reduction 
or profit improvement together with the portfolio of activities to undertake in the 
current iteration of incremental cost targeting. 

 
5 Target Costing with Controlled Risk for an Advanced Mobile Data 

Service 
In this section we consider the application of the incremental target costing framework 
under risk discussed in the previous sections for the design of a specific advanced mobile 
data service, namely a mobile tourist information service (MTIS). This service is a location 
based service that offers specific information about travel destinations (news and 
information in form of weather reports, emergency news, health support news, traffic 
conditions, general news bulletins and other useful tourist information). The description of 
the MITS is identical with a real case analyzed in Telenor Norway, one of the world's 
largest mobile telecommunications companies at this time. The data concerning customer 
preferences and costs are deteriorated for this paper. This, however, will not derogate the 
applicability of our approach, and the conclusions remain valid. For the MTIS seven ( =
1, . . . ,7) service functions or attributes have been specified: 

1. delivering information 
2. availability 
3. news precision 
4. easy usage 
5. attractiveness 
6. service security 
7. easy installation 

These attributes are quantified by , = 1, … , . One way to do this is to assign a number 
on the scale from 0 to 1, where 0 corresponds to "very bad" while 1 corresponds to 
"stellar". For some of the attributes other measures are possible. For example, availability 
and the corresponding  can be measured as the percentage of calls to the service that go 
through, easy installation ( ) can be measured in installation time, etc. Service attributes 
should reflect market and customer requirements, which are identified through market 
research.  
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In the context of the incremental target costing we assume that some current reference 
service design can be identified for obtaining the values  of the aforementioned service 
attributes and the reference price . Table 1 shows the results of this assessment where the 
values range from 0 (miserable) to 1 (excellent).   
Table 1: Initial Assessment of the Quality of the Service Attributes  

 (1) = 1 
(2) = 2 

(3) = 3 
(4) = 4 

(5) = 5 
(6) = 6 

(7) = 7 
Price 

 
 0.4 0.45 0.28 0.51 0.41 0.58 0.47 0.3 

 
With these values for quality realization and initial price a reference demand  of 
1,100,000 access times was projected. Hence, the expected revenues can be determined as 

= ∙ = 0.3 ∙ 1,100,000 = 330,000. These figures are partly based on conjoint 
analysis (Green and Srinivasan, 1990) and interactions with a selected number of key 
customers. This also provides the estimates and distribution of the sensitivity of the demand 
with respect to the quality of the service ( , = 1, … , ) and the price ( ). Table 2 
summarizes these results in form of expected values and standard deviations.  
Table 2: Sensitivity of the Demand on the Attributes of the Product and the Price 

  (1) (2) (3) (4) (5) (6) (7) Price 
 ̅  ̅  ̅  ̅  ̅  ̅  ̅  ̅ 

Expectation 510,000 320,000 450,000 310,000 180,000 240,000 100,000 −4,780,000 
Standard 
Deviation 77,000 45,000 64,000 44,000 24,000 37,000 16,000 650,000 

 
The design of a telecommunication service is often based on a multilayered architecture, 
i. e. the enablers of one architecture layer use service enablers from the layers below (see 
for example the OSI reference model for data communication). The term enabler 
corresponds to a product component. For the MTIS a simplified one-layer architecture with 
the following enablers was presumed: 

A: The network enabler (NE) provides the physical transfer of data between users of 
services, for example GPRS and UMTS networks. 

B: The context enabler (CxE) provides the service context, e.g. information on 
location, time and presence as well as service metadata. 

C: The content enabler (CtE) delivers multimedia information. 
D: The service composition enabler (SCE) coordinates various service platform 

mechanisms (e.g. discovery, brokering and mediation) and composes various 
enablers to the end user service. 
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E: The A4C enabler (A4C) provides authentication, authorization, accounting, auditing 
and charging services. 

F: The identity management enabler (IdM) is used for the retrieval and management of 
the user's identity information and the user's profile. 

The quality of these enablers is furthermore described by physical attributes like processing 
power, software failure rate, memory and transmission characteristics of the information to 
be transmitted, etc. An estimate of the costs of the service enablers, as required for the 
reference design, is given in Table 3.  
Table 3: Total Costs Decomposed by Service Enablers  

= 1 = 2 = 3 = 4 = 5 = 6 Total Costs 
100,000 40,000 21,000 50,000 20,000 55,000 286,000 

 
Hence, the profit from service provision can be computed as = − = 330,000 −
286,000 = 44,000. 
In order to process the target costing optimization problem (26) to (28) the impact of 
cost/design drivers on the attributes of the product ( , = 1, …  and = 1, … , ) need 
to be determined. Table 4 summarizes this information. Table 5 shows the estimated 
sensitivity of the costs on the cost/design drivers ( , = 1, … , ) and the demand ( ). 
These estimates are based on an assessment by telecommunication engineers and partly 
drawn from experiences with preceding and similar products. The uncertainty in this 
evaluation is again indicated by the standard deviation. 
The uncertainty in the data is represented by means of 50 scenarios with equal probability 

= 1/50. These scenarios have been generated from a uniform distribution. The 
underlying dispersion of the data was retrieved from the uncertainty uncovered by customer 
interactions and conjoint analysis as well as the stated data from engineers and 
management. For each scenario the sensitivity of the profit with respect to the cost/design 
drivers and the price was computed according to (12). Finally the following bounds on the 
changes in the cost/design drivers and the price were chosen: = 0.1 ,…,  and =
0.1. 
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Table 4: Impact of Cost/Design Drivers on the Attributes of the Product  
  
 
  

(1) = 1 
(2) = 2 

(3) = 3 
(4) = 4 

(5) = 5 
(6) = 6 

(7) = 7 
A:   = 1 25 % 20 % 10 % 0 % 10 % 10 % 10 % 
B:   = 2 10 % 20 % 20 % 0 % 10 % 10 % 0 % 
C:   = 3 25 % 25 % 30 % 30 % 20 % 10 % 30 % 
D:   = 4 20 % 15 % 20 % 40 % 30 % 10 % 40 % 
E:   = 5 10 % 10 % 10 % 15 % 10 % 30 % 5 % 
F:   = 6 10 % 10 % 10 % 15 % 20 % 30 % 15 % 

 
Table 5: Sensitivity of the Costs with Respect to the Cost/Design Drivers and the Demand 

 = 1 = 2 = 3 = 4 = 5 = 6 Demand 
       

Expectation 66,500 56,300 121,000 110,000 60,800 74,170 0.07 
Standard Deviation 11,500 9,700 20,000 18,900 11,900 12,000 0.0133 

 
With these data the target costing problem with controlled risk as described by (26) to (28)  
can be solved by standard optimization software. In Table 6 the optimal decisions, i. e. the 
changes in the cost/design drivers and the change in the price are given for different values 
of . This table also shows the change of the expected profit ∆ ̅  (the higher the better) and 
the change in the risk ∆ℝ (the lower the better). Figure 3 illustrates the trade-off between 
expected profit and risk graphically. The origin in this figure is the departing point with no 
changes in design and price. For a lambda-value = 0 we have the maximum reduction of 
risk. However, the reduction of risk also implies a heavy reduction of the expected profit. 
For = 1.0 we obtain the maximum profit increase which comes with a substantial 
increase in the risk. For a lambda-value 0.5 risk can be reduced without having a 
reduction in the expected profit. Respectively, at 0.62 the expected profit can be 
increased without incurring additional risk. Depending on the decision maker’s (product 
designer’s) attitude towards risk and expected profit the focus can now be directed on the 
appropriate adjustment of service components and price. 
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Table 6: Target Costing Results 

 ∆  ∆  ∆  ∆  ∆  ∆  ∆  ∆ℝ ∆ ̅ 
0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.09152 -1863 -1481 

0.3 -0.1 -0.1 -0.00113 -0.1 0.1 -0.1 -0.0614 -1564 -536 
0.5 -0.1 -0.1 0.1 -0.1 0.1 -0.1 -0.04011 -1158 -23 
0.6 -0.1 -0.1 0.1 -0.1 0.1 -0.1 0.00539 -248 771 
0.7 -0.1 -0.1 0.1 -0.1 0.1 -0.1 0.0551 1420 1639 
0.9 0.1 -0.1 0.1 -0.1 0.1 -0.1 0.1 3988 2522 
1.0 0.1 0.1 0.1 -0.1 0.1 -0.1 0.1 4209 2533 

 
Table 6 highlights these changes for different trade-offs between risk and expected profit. 
Entries ∆  highlighted with gray indicate a necessary reduction of the costs, which needs 
to be achieved by appropriate measures like reducing the complexity of components, 
simplifying production processes or negotiating lower procurement prices. Accordingly, 
entries ∆  highlighted with gray indicate a necessary price reduction. Lower prices will 
have a positive effect on the demand and the costs per unit of the service components 
(enablers) and the whole service (economies of scale). Customers may also be willing to 
accept a lower quality at lower prices. Non-colorized entries ∆  indicate that the costs of 
the corresponding components are relatively low compared to their contribution to the 
customer’s utility. Therefore these components are allowed to carry more costs. Engineers 
should therefore focus on potential improvements of the design and quality. Accordingly, 
non-colorized entries ∆  propose an increase in the price. However, design and cost 
adjustments cannot be seen isolated from price adjustments. If, for example, the strategy 
represented by = 0.7 is chosen, then the moderate price increase is only justified if the 
design of components C and E is improved while the costs of the other components are 
reduced. 
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Figure 3: Trade-off between the Improvement of Expected Profit and the Change in Risk  

 
6 Conclusion 
In this paper we have extended the traditional target costing approach with concepts from 
optimization and risk management. More particularly, we have developed a model that 
helps decision makers in product design to appropriately adjust product components and 
price. These adjustments are driven by a trade-off between financial improvement on one 
hand and risk reduction on the other hand. Although we have applied our approach to a 
case in the ICT industry, our framework can be applied to any other branch of the service 
and manufacturing industry where fearful competition and substantial uncertainties are 
immanent. We believe that the treatment of uncertainty and risk in target costing as 
proposed by our approach is necessary for the successful application of target costing in 
such industries.  
However, there are a few issues for further research. During the analysis of the practical 
case we have recognized that ICT services may not be provided in a single variant or stand 
alone. Services can vary with respect to the number and kind of features that they obtain for 
different customer segments. Furthermore ICT services can be bundled and sold to 
customers in an integrated form, for example cloud office services that are coupled with 
cloud storage services. This is obviously the case for various services and products in other 
industries as well. Nowadays, products and services are offered in customized versions in 



20 

order to address different market segments. Furthermore, different products might use the 
same production processes and technologies. Target costing should therefore be further 
developed for the support of service and product portfolios rather than standalone services 
or products. A step in this direction is done by Kee and Matherly (2013) who use numerical 
examples for studying the effect of product and production interdependencies on target 
costing decisions.   
We also recognized that products and services can have a changing price and cost structure 
over time. For example, services need to be offered for free in order to gain a critical mass. 
We therefore encourage research on joining target costing with multi-period concepts such 
as life-cycle costing and tools from investment analysis. 
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Appendix 
Let us consider two optimization problems: 
 

Problem 1: max∈  
 . .  ≤  
  
Problem 2: max∈ − 1 −  

 
Proposition: Suppose that ⊂  is a compact set and functions  and  are 
continuous on . Then for any ′ ∈ 0,1  we have that any solution ′ of problem 2 for =

 is a solution of problem 1 for = ′ . 
 
Proof: Due to compactness of X and continuity of  and  the solutions of Problems 
1 and 2 exist for any  and ≥ min∈ . 
Suppose now that ′ is an arbitrary solution of Problem 2 for some ′ ∈ 0,1 . Let  be an 
arbitrary solution of Problem 1 for = ′ . Observe that ′ is feasible for Problem 1 
with = ′  and therefore ≥ . Suppose that 
  (A.1) 

Since  is feasible for problem 1 with =  then  
 ≤ ′  (A.2) 

Let us substitute  into the objective function of problem 2. Due to (A.1) and (A.2) and 
′ ∈ 0,1  we have 
 ′ − 1 − ≥ ′ − 1 − ′ ′ − 1 − ′   

Thus,  yields a larger value for the objective of problem 2 for =   than  and is 
feasible for problem 2. This contradicts with our assumption that ′ is a solution of Problem 
2 for = . Therefore (A.1) can not hold and, consequently, 

= . 
Since  is a solution of problem 1 this means that also ′ is a solution of problem 1. This 
completes the proof. 
 


