
ISBN 978-82-326-2648-9 (printed ver.)
ISBN 978-82-326-2649-6 (electronic ver.)

ISSN 1503-8181

Doctoral theses at NTNU, 2017:290

Håkon Jacobsen

A Modular Security Analysis of
EAP and IEEE 802.11

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2017:290
H

åkon Jacobsen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r

th
e

D
eg

re
e

of
P

hi
lo

so
ph

ia
e

D
oc

to
r

Fa
cu

lt
y

of
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ri

ca
l

En
gi

ne
er

in
g

D
ep

ar
tm

en
t o

f I
nf

or
m

at
io

n
Se

cu
ri

ty
 a

nd
C

om
m

un
ic

at
io

n
Te

ch
no

lo
gy

Thesis for the Degree of Philosophiae Doctor

Trondheim, October 2017

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Information Security and Communication
Technology

Håkon Jacobsen

A Modular Security Analysis of
EAP and IEEE 802.11

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Information Security and Communication Technology

© Håkon Jacobsen

ISBN 978-82-326-2648-9 (printed ver.)
ISBN 978-82-326-2649-6 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2017:290

Printed by NTNU Grafisk senter

Abstract

This thesis presents a computational reduction-based security analysis of the
Extensible Authentication Protocol (EAP) and the IEEE 802.11 protocol. EAP
is a widely used authentication framework while IEEE 802.11 is the most com-
monly used standard for creating wireless local area networks (WLANs), better
known as Wi-Fi. The typical use case of EAP is to allow a client on a WLAN to
connect to an access point through the use of mutually trusted server. EAP is
a general framework that specifies how different sub-protocols can be combined
to securely achieve this goal. IEEE 802.11 is usually one of the sub-protocols
used within the EAP framework.

There are three main contributions of this thesis. The first is a modular
security analysis of the general EAP framework. This includes two generic
composition theorems that reflect the modular nature of EAP, and which es-
tablish sufficient criteria on its sub-protocols in order for the whole framework
to be instantiated securely. Having proven the soundness of the general EAP
framework, it remains to find suitable sub-protocols that satisfy the security
criteria of the composition results.

Our second main contribution is a security analysis of one such concrete sub-
protocol, namely the EAP-TLS protocol which is used to establish a shared key
between the wireless client and the trusted server. We prove that EAP-TLS is
a secure two-party authenticated key exchange protocol by presenting a generic
compiler that transforms secure channel protocols into secure key exchange
protocols.

Our third main contribution is a thorough security analysis of the IEEE
802.11 protocol. We study both the handshake protocol as well as the encryp-
tion algorithm used to protect the application data. On their own, our results
on IEEE 802.11 apply to the usage found in wireless home networks where a
key is shared between the client and access point a priori, e.g. using a pass-
word. However, by combining this with our composition theorems for the EAP
framework, we also obtain a result for IEEE 802.11 in its “enterprise” variant,
where the common key is instead established using a mutually trusted server.

Acknowledgments

I would like to thank my two supervisors Danilo Gligoroski and Colin Boyd for
all their guidance and support throughout my studies.

Much of the work in this thesis is the result of collaboration with others.
First of all, I want to thank my co-authors on the two papers on which the main
parts of this thesis are based: Chris Brzuska and Douglas Stebila. I especially
want to acknowledge Chris Brzuska for showing me how fun (and exhausting!)
research can be, but also for being a friend, a mentor, a role-model, and in
effect a third supervisor for me. Without him this thesis would simply not have
been possible.

Additionally, I want to thank Bogdan Warinschi and Cas Cremers for many
helpful discussions. I am also indebted to those who volunteered their time and
effort into proofreading my thesis: Colin Boyd, Cristina Onete, Chris Brzuska,
and Gareth Davies—I express my deepest gratitude to all of you.

A big thanks also goes to my office mates Simona Samardjiska, Britta Hale,
and Chris Carr for the great company during my PhD at NTNU.

Finally, I would like to thank my family for their unwavering support and
encouragement throughout the years, and last but not least, Vilde for always
believing in me. Thank you.

Contents

1 Introduction 1
1.1 Computational modeling of cryptographic protocols 3
1.2 Content and contribution of thesis 5

1.2.1 Publications . 7
1.2.2 Outline of thesis . 7

2 Description of EAP and IEEE 802.11 9
2.1 EAP . 9
2.2 IEEE 802.11 . 15

2.2.1 IEEE 802.11 basics . 15
2.2.2 A brief history of security in IEEE 802.11 16
2.2.3 Detailed description of the IEEE 802.11 security protocol 18

3 Formal models 24
3.1 Notation and preliminaries . 25

3.1.1 Security games . 25
3.1.2 Concrete vs. asymptotic security 26

3.2 A unified protocol execution model 27
3.2.1 Protocol participants . 28
3.2.2 Long-term keys . 29
3.2.3 Protocol syntax . 30
3.2.4 Protocol correctness . 33
3.2.5 Security experiment . 33
3.2.6 Freshness predicates and partnering 36

3.3 2P-AKE protocols and 3P-AKE protocols 46
3.3.1 Comparing the three AKE security models 48
3.3.2 Comparison with other models 52

3.4 ACCE protocols . 53
3.5 Explicit entity authentication . 56

4 Security of EAP 59

v

vi Contents

4.1 Modeling EAP . 60
4.1.1 Client–server EAP method 60
4.1.2 Server–authenticator key transport protocol 62
4.1.3 Client–authenticator protocol 63
4.1.4 Related work on EAP . 65

4.2 First composition theorem . 66
4.3 Second composition theorem . 80

4.3.1 Explicit entity authentication 81
4.3.2 AKEfs security . 86

4.4 Application to EAP . 88
4.4.1 EAP without channel binding 89
4.4.2 Channel binding scope . 89

5 Security of EAP-TLS 91
5.1 Motivation . 91

5.1.1 Related work on EAP-TLS 95
5.2 TLS-like ACCE =⇒ AKE . 95

5.2.1 TLS-like protocols . 95
5.2.2 Construction . 97
5.2.3 Main result . 97

5.3 Application to EAP-TLS . 110
5.3.1 TLS security . 111
5.3.2 On the key collision resistance of the TLS KDF 115

6 Security of IEEE 802.11 118
6.1 Summary of the IEEE 802.11 protocol 119

6.1.1 Related work on IEEE 802.11 119
6.2 Analyzing the 4-Way Handshake 120

6.2.1 Formal modeling . 120
6.2.2 AKEnfs security . 123
6.2.3 Explicit entity authentication 126
6.2.4 Security of IEEE 802.11 with upper-layer authentication . 132

6.3 Analyzing CCMP . 133
6.3.1 Description of CCMP . 133
6.3.2 Analysis of CCMP . 135

6.4 Multi-ciphersuite and negotiation security of IEEE 802.11 138
6.4.1 Multi-ciphersuite security 140
6.4.2 Negotiation security . 142

7 Conclusions 144
7.1 Limitations of our results . 145

7.1.1 Things not covered by our analysis 146

Contents vii

7.1.2 Tightness of security reductions 147
7.2 Future work and open problems 147

A Additional definitions 149
A.1 Pseudorandom functions . 149
A.2 Message authentication codes . 150
A.3 Authenticated encryption . 150
A.4 Stateful authenticated encryption 153

B Transcript parsing rules 156

Bibliography 159

Chapter 1

Introduction

Contents
1.1 Computational modeling of cryptographic protocols 3
1.2 Content and contribution of thesis 5

1.2.1 Publications . 7
1.2.2 Outline of thesis 7

Designing secure cryptographic protocols is difficult. Over the years a large
number of security protocols have been proposed that later turned out to be
flawed. This is mostly due to the inherent complexity of the protocols them-
selves, but it can also be partly ascribed to the paradigm in which they were tra-
ditionally designed. Typically, a protocol designer would start out by proposing
some concrete protocol construction P . Next, the protocol would get analyzed,
often revealing some flaw. The designer would then revise the original design
of P to (hopefully) include a fix for the discovered flaw. The whole cycle would
then repeat itself, with a new round of analysis discovering new flaws, yielding
more fixes, and so on.

Over time, a body of prudent practices emerged [AN96], identifying com-
mon pitfalls when designing cryptographic protocols. However, these practices
represented no more than useful heuristics and guidelines, rather than necessary
and sufficient criteria for creating secure protocols. Within the academic cryp-
tography community this realization led to an interest in finding more rigorous
and formal approaches towards assessing the security of a protocol.

Traditionally, two distinct approaches have been taken in order to formally
model cryptographic protocols. The first, and the one we will be following in
this thesis, is the computational approach. As its name suggests, it has its

1

2 Introduction Chapter 1

roots in computational complexity theory and views cryptographic operations
as algorithms working on bitstrings. Adversaries are modeled as probabilistic
Turing machines and security is expressed in terms of the probability and com-
putational complexity of carrying out a successful attack. We will have more
to say about the computational model below, as well as in Chapter 3.

The second approach is the symbolic approach, also called formal methods.
It has its roots in logic and formal language theory and views cryptographic
operations as functions on formal symbolic expressions. A symbolic security
model consists of a set of axioms and inference rules that can be applied to
the symbolic expressions. For example, a formal expression of the form {M}K

could represent the encryption of a message M under some key K. Note,
however, that both M and K are also formal expressions, and thus carry no
inherent meaning. An inference rule could say that, given {M}K and K, one
can conclude M . That is, the inference rule allows you to decrypt M from
{M}K given K. On the other hand, without K it is impossible to deduce
M . In particular, since only operations derivable from the inference rules are
possible, cryptographic primitives in the symbolic model are perfect. Security
in the symbolic model is expressed as saying that one cannot reach a certain
configuration by applying the inference rules, starting from the given axioms.
Unlike in the computational approach, there is no probabilistic reasoning in the
symbolic world.

A major benefit of the symbolic model is that it readily allows for machine-
checkable proofs, or even automatic derivation of proofs. Many tools exist for
this purpose, including ProVerif [Bla16], Scyther [Cre08], and Tamarin [Mei+13].
On the other hand, a common criticism of the symbolic approach is that its
assumption of perfect black-box primitives is unrealistic. A protocol proven
secure in the symbolic model may nevertheless have an attack in the compu-
tational model. Still, there have been attempts to bridge the gap between the
computational model and the symbolic model, beginning with [AR00].

Finally, there have also been much recent development in tools that can au-
tomatically verify proofs in the computational model, such as CryptoVerif [Bla08],
EasyCrypt [Bar+13], and miTLS [Bha+13]. Although this thesis will be based
on the computational model, it will, however, not be making use of any of
these tools. Instead, it will follow the more traditional style of “pen-and-paper”
proofs. Moreover, since our security models will be in the computational set-
ting, we will not be saying more about the symbolic model in this thesis. As
a result, most of our literature references will be to results in the computa-
tional model. At the same time, we acknowledge that there is a vast body of
cryptographic research that consequently will not be covered here.

Section 1.1 Computational modeling of cryptographic protocols 3

1.1 Computational modeling of cryptographic
protocols

The idea of formalizing cryptography within a computational complexity theo-
retical setting was introduced by Goldwasser and Micali in 1984 [GM84]. Cen-
tral to their work was the formal definition of what it means for a cryptographic
scheme to be secure. Specifically, they focused on the goal of public-key encryp-
tion and formalized the now fundamental definition of semantic security. To
go along with their new definition, they also created a concrete scheme which
they could now prove satisfied the definition of semantic security by giving a
reduction to a number-theoretic assumption. Soon after, many other common
cryptographic primitives, like digital signatures, symmetric encryption, pseu-
dorandom functions, and message-authentication schemes were formalized (and
proven secure) in a similar manner.

However, it would go almost 10 years from Goldwasser and Micali’s initial
paper until the first formal model for cryptographic protocols was presented by
Bellare and Rogaway [BR94] in 1993. On the other hand, their model became
highly influential for the formal research on protocols, in particular key exchange
protocols, and it is still the basis for many of the models used today.

The BR-model. The starting point of the BR-model is a set of principals
that want to communicate over an insecure network. Every pair of principals
shares a common long-term key, and their goal is to negotiate a temporary
session key which they will use to secure their further communication. In the
formal model the details of the communication network is mostly abstracted
away, leaving only the principals themselves and a specification of how they
behave on receiving input from the network. How the messages are delivered
to each principal is left to the adversary’s discretion, i.e., in the BR-model
the adversary is the network. In particular, while the adversary can chose
to forward messages as intended by the protocol, it also has full freedom to
arbitrarily change, delay, reorder, reroute or drop messages as it sees fit. It
is important that we allow the attacker this kind of flexibility since we want
our protocols to be secure from any choice of adversarial strategy. That is, in
general it is impossible to enumerate every possible way that a protocol might
get attacked, so the only thing we can reasonably make assumptions about is
the attacker’s computational powers.

Depending on the type of protocol, its security goals may vary. Classically,
the goals considered by Bellare and Rogaway [BR94], were those of authen-
ticated key exchange and entity authentication. The first property focuses on
the security of the established session keys themselves. The formal definition
of this borrows from the idea of semantic security for public-key encryption

4 Introduction Chapter 1

schemes, and demands that an adversary should learn nothing about the dis-
tributed keys. The second property focuses on the authenticity of the protocol
conversation, meaning that two protocol participants can be assured that they
have in fact been speaking to each other at the end of the protocol run. There
are also protocols goals beyond those of authenticated key exchange and en-
tity authentication, for example focusing on the secure usage of the distributed
session keys. This will all be covered in detail in Chapter 3.

Simulation-based vs. game-based security. Within the computational
setting, there are two main approaches to defining the security of protocols. One
is the simulation-based approach and the other is the game-based approach. In
the simulation-based approach, security is defined by considering two “worlds”:
an ideal world where the protocol is replaced with some idealized functionality
that is secure by design; and a real world where the actual protocol is being used.
Security is expressed by saying that for any attacker A against the protocol in
the real world, there should exist a corresponding simulator S in the ideal
world, such that the transcript that A generates through its interactions with
the real protocol, is computationally indistinguishable from the transcript that
S generates through its interaction with the ideal functionality. Since the ideal
functionality is secure by design, the existence of S means that A’s ability to
break the real protocol must be limited.

A number of simulation-based models have been developed in order to an-
alyze protocols. Examples include the model of Shoup [Sho99], the UC model
of Canetti [Can01], the IITM model of Küsters and Tuengerthal [KT13], and
the GNUC model of Hofheinz and Shoup [HS15]. Of these, the latter three are
so-called universal composability models, where the emphasis is on very general
composition results that allow secure sub-protocols to be arbitrarily composed
in order to form larger and still secure protocols. Due to their generality, uni-
versal composability models tend to be quite complex.

The alternative to simulation-based models is game-based models. Here,
security properties are formulated directly as winning conditions in a formal
experiment, called a game, played between an honest entity C called the chal-
lenger, and an adversary A. A protocol is said to be secure with respect to
the property modeled by the game, if no computationally efficient adversary
can manage to win in the game except with a small probability. What “effi-
cient” and “small” means in this setting can be formalized in different ways;
see Chapter 3.

The original BR-model [BR94] was in the game-based setting, and naturally
so were also the large number of extensions and follow-up works that built on
it, for example [BR95, BM97, BPR00, CK01, LLM07, Jag+12]. In this thesis
we are going to take the game-based approach to security.

Section 1.2 Content and contribution of thesis 5

1.2 Content and contribution of thesis

This thesis provides a formal security analysis of the Extensible Authentication
Protocol (EAP) [RFC3748] and the IEEE 802.11 [IEEE 802.11] protocol in a
computational game-based setting. Compared to the Transport Layer Security
(TLS) [RFC5246] protocol, which has been subject to a large amount of formal
analysis, both EAP and IEEE 802.11 have received considerably less scrutiny.
That is not to say that EAP and IEEE 802.11 are little used; quite the contrary.
For instance, according to the Wireless Geographic Logging Engine (WiGLE)1

project, there are more than 350 million Wi-Fi networks available worldwide
today—Wi-Fi being the name more commonly associated with IEEE 802.11.
Similarly, the eduroam2 network alone, which is a roaming service provided to
students and employees of educational institutions around the world, accounted
for more than 3 billion user authentications in 20163—all of these use EAP. The
importance of these protocols should thus be clear from the sheer scale of their
deployment.

The main contribution of this thesis is a formal analysis of the EAP and
IEEE 802.11 protocols in a computational setting based on the BR-model. Our
analysis will cover these protocols both separately and when combined (since
EAP and IEEE 802.11 are often used together). Chapter 2 will describe EAP
and IEEE 802.11 in detail, but here we nevertheless give a very brief description
of these protocols so as to illustrate the main results of the thesis. Hopefully,
Wi-Fi, and thus IEEE 802.11, should be well-known to everyone: a wireless
client and an access point use a shared secret, typically a password, to protect
the wireless link between them. This involves an initial key exchange phase,
where the client and access point derive a cryptographic key from the common
secret, and a channel encryption phase, where the application data is being
sent. At the same time, IEEE 802.11 can also be used in situations where
the client and access point do not share a common secret beforehand. This is
exactly the setting of the eduroam network mentioned above. Here, they will
first use a trusted third-party to help them establish a common secret. The
protocol used to facilitate this is EAP.

EAP specifies a way for two parties to establish a common secret through
the help of a trusted third-party. However, rather than viewing EAP as a single
protocol, it can be better thought of as a protocol framework used to compose
other concrete protocols. For the EAP framework to be secure the concrete
protocols need to be safely instantiated, but EAP itself does not specify them.
IEEE 802.11 is commonly used as one of the concrete sub-protocols in the EAP

1https://wigle.net/.
2https://www.eduroam.org/
3https://www.eduroam.org/2017/03/07/2016-a-record-breaking-year-for-eduroam/

6 Introduction Chapter 1

framework, but it does not have to be; EAP is mostly protocol agnostic.
Given these high-level descriptions of EAP and IEEE 802.11, our results

can be summarized as follows. Below we refer to security notions such as
authenticated key exchange and secure channel protocols only informally. Their
formal definitions will be made precise in Chapter 3.

• Our first result is a game-based security analysis of the general EAP
framework. This involves two generic composition theorems that abstract
away the concrete protocols used within EAP. Instead, the theorems es-
tablish sufficient criteria on the protocol building blocks in order for the
EAP framework to be instantiated securely. The overall security goal of
EAP that we aim for is that of a three-party authenticated key exchange.
Having proven the soundness of the general EAP framework, it remains
to find suitable concrete protocols that satisfy the security criteria laid
down by the composition results.

• One such concrete protocol is EAP-TLS [RFC5216], which within the
EAP framework is used between the client and the trusted third-party.
We prove that EAP-TLS is a secure two-party authenticated key ex-
change, which is sufficient in order to be used in our compositions results.
However, this result also has independent interest outside of the EAP
framework, because of the way it is established. Essentially, we give a
generic transformation that shows how secure channel protocols can be
turned into secure key exchange protocols by exporting additional session
keys from their handshake protocols. This has applications to the practice
of exporting extra keys from the TLS handshake, since TLS is a secure
channel protocol, but not a secure key exchange protocol (we return to
this point in Chapter 3).

• Finally, we analyze the IEEE 802.11 protocol. Again, this analysis has
independent interest outside of the EAP framework, since IEEE 802.11
is often used without EAP. Recall from our brief description above that
IEEE 802.11 proper consists of a key exchange phase followed by a channel
encryption phase. We prove that the former constitutes a secure two-
party authenticated key exchange protocol, and that the latter satisfies
the notion of a secure stateful authenticated encryption scheme. Although
these results are of independent interest, they also combine with our EAP
composition theorems to culminate in our biggest main result: namely the
security of EAP and IEEE 802.11 used together.

The results outlined above roughly correspond to the contents of Chapter 4,
Chapter 5, and Chapter 6, respectively.

Section 1.2 Content and contribution of thesis 7

Modularity. A common theme among all the results established in this thesis
is an emphasis on reusing existing security results as far as possible. For exam-
ple, the TLS protocol is an important component in both EAP and EAP-TLS,
but we do not want to redo any analysis of TLS for the purposes of establish-
ing our results. Instead, we want to be able to leverage the large amount of
already existing analysis of TLS in a black-box manner. This requires generic
and modular results, but it also requires security models that are comparable.
This is one of the reasons why we have chosen to use a game-based formulation
of security over a simulation-based formulation. Many of the existing results
on the real-world protocols we care about, such as TLS, IPsec, and SSH, are
for the most part proven in a game-based setting.

1.2.1 Publications
The material in this thesis is primarily based on the following two papers:

[BJ17] Chris Brzuska and Håkon Jacobsen. “A Modular Security Analysis
of EAP and IEEE 802.11”. In: PKC 2017: 20th International Con-
ference on Theory and Practice of Public Key Cryptography, Part II.
ed. by Serge Fehr. Vol. 10175. Lecture Notes in Computer Science.
Amsterdam, The Netherlands: Springer, Heidelberg, Germany, Mar.
2017, pp. 335–365.

[BJS16] Christina Brzuska, Håkon Jacobsen, and Douglas Stebila. “Safely Ex-
porting Keys from Secure Channels: On the Security of EAP-TLS
and TLS Key Exporters”. In: Advances in Cryptology – EURO-
CRYPT 2016, Part I. ed. by Marc Fischlin and Jean-Sébastien Coron.
Vol. 9665. Lecture Notes in Computer Science. Vienna, Austria:
Springer, Heidelberg, Germany, May 2016, pp. 670–698. doi: 10.
1007/978-3-662-49890-3_26.

Specifically, the material found in Chapter 4 and Chapter 6 of this thesis
is taken from [BJ17], while the material in Chapter 5 comes from [BJS16].
However, the content as it appears in this thesis has undergone major revisions
compared to the original publications. Moreover, this thesis also introduces
some new material not found in either of the published papers. In particular,
Section 6.3 and Section 6.4 present some additional results and discussions on
IEEE 802.11.

1.2.2 Outline of thesis
In Chapter 2 we give detailed protocol descriptions of EAP and IEEE 802.11. In
Chapter 3 we provide the formal framework that will be used to analyze EAP,

8 Introduction Chapter 1

EAP-TLS and IEEE 802.11 in the later chapters. Since our analyses cover a
wide range of different protocols, a great number of definitions and notions are
needed. We have tried to discuss and justify all of our definitional choices to
the greatest extent possible.

In Chapter 4 we conduct our first security analysis, beginning with the
general EAP framework. The main results of the chapter are two modular
and generic protocol composition theorems. Then, in Chapter 5, we analyze
one specific component in the EAP framework, namely the EAP-TLS proto-
col. However, although the starting point is the concrete EAP-TLS protocol,
the main result of the chapter is again a generic result with applications be-
yond the immediate scope of EAP-TLS. Following this, in Chapter 6 we ana-
lyze the IEEE 802.11 protocol. The main technical result is an analysis of the
IEEE 802.11 key exchange protocol when considered as a standalone protocol—
as it is typically used in home networks. However, the result additionally
combines with the composition theorems of Chapter 4 to yield a result for
IEEE 802.11 combined with EAP. Furthermore, Chapter 6 also presents some
new material on IEEE 802.11 which have not appeared elsewhere, including and
analysis of the IEEE 802.11 data encryption algorithm called CCMP, as well as
a discussion of the multi-ciphersuite and negotiation security of IEEE 802.11.

Finally, in Chapter 7 we conclude the thesis by putting our work in a larger
context and discussing some of its limitations. We also point out some possible
directions for future work.

Note. We use the symbol “�” to denote the end of a remark or example, and
use the symbol “�” to denote the end of a proof.

Chapter 2

Description of EAP and
IEEE 802.11

Contents
2.1 EAP . 9
2.2 IEEE 802.11 . 15

2.2.1 IEEE 802.11 basics 15
2.2.2 A brief history of security in IEEE 802.11 16
2.2.3 Detailed description of the IEEE 802.11 security

protocol . 18

This chapter describe EAP and IEEE 802.11 in detail from a functional
perspective. In later chapters we will analyze their security.

2.1 EAP
The Extensible Authentication Protocol (EAP) is an authentication framework
used to provide network access control. It is defined by the IETF in the base
standard RFC3748 [RFC3748], but a large number of supporting RFCs also
update or extend the base standard further in various ways.

The purpose of EAP is to provide central management of authentication in
a network with many clients and network connection points. Specifically, EAP
considers a setting consisting of three principal entities: clients, authenticators,
and authentication servers. The clients are regular users that want to get
access to the network using a device such as a laptop or a smartphone. The

9

10 Description of EAP and IEEE 802.11 Chapter 2

Client Authenticator ServerCli

EAP method (EAP-TLS)

Key-transport (RADIUS)

Link-layer protocol (IEEE 802.11)

←− Link layer −→ ←− IP layer −→

Figure 2.1: The three-party EAP architecture. Concrete example protocols shown
in parenthesis.

authenticators control access to the network and are typically implemented in
network devices such as switches and wireless access points. Authorized clients
will be granted access to the network by the authenticators, unauthorized clients
will be blocked.

The main difficulty of this scenario is that the clients and the authenticators
do not have any common credentials a priori. In order to make their access
control decisions, the authenticators will consult with an authentication server,
which stores the credentials of every user that is authorized to access the net-
work. On a network there will typically be many clients and authenticators,
but only a few authentication servers.

Remark 2.1. Within the EAP standard [RFC3748] the client is usually re-
ferred to as the peer or the supplicant, but in this thesis we will be using the
word client exclusively. Moreover, due the visual resemblance between the
words “authenticator” and “authentication”, from now on we will refer to au-
thentication servers simply as servers in order to avoid confusion. �

EAP architecture. The general EAP architecture is shown in Figure 2.1.
The exchange begins when a client wants to connect to a network controlled by
an authenticator. Since the client and the authenticator do not share any com-
mon credentials, the idea is to first have the client authenticate itself towards
the server and then let the server vouch for the client towards the authenticator.
The client and the server can use any authentication method they like in order
to authenticate each other. However, in order to do this in a uniform man-
ner across different authentication methods, EAP defines four generic message
types that are used to encapsulate the concrete authentication protocol. The
four message types are Request, Response, Success and Failure, respectively.

Section 2.1 EAP 11

The combination of a concrete authentication method, say TLS or IPsec, to-
gether with its encapsulation inside the generic EAP message types, is called
an EAP method.

EAP methods. Individual EAP methods are defined in separate RFC doc-
uments that specifies how the concrete authentication method is to be used
within the EAP framework. For example, RFC5216 [RFC5216] defines the
EAP-TLS method, which provides certificate-based mutual authentication be-
tween the client and the server based on the TLS protocol. Numerous other
EAP methods have also been defined; see Table 2.1 for a few examples.

Although EAP defines message formats in the form of Request, Response,
Success, and Failure messages, it does not specify how these message should
be transmitted through the network. For this, EAP depends on some lower-
layer protocol to take care of the actual delivery of the messages. Thus,
EAP messages will themselves be encapsulated inside other transport proto-
cols. For example, when passing EAP messages over a LAN, a protocol known
as EAPOL (EAP over LAN) is typically used. EAPOL is defined in the IEEE
802.1X [IEEE 802.1X] standard. Notably, EAP does not require IP connectivity
in order to be used.

Besides authentication, EAP methods usually also derive some shared key-
ing material between the client and the server. The keying material (if derived)
needs to be at least 512 bits long and is referred to as the master session key
(MSK). The server will transport the MSK to the authenticator, so that it can
be used in a subsequent authentication step directly between the authenticator
and the client (more on this below). We are going to assume that all EAP
methods derive keying material in this thesis, even though some of the origi-
nally defined EAP methods, such as EAP-MD5 and EAP-OTP, do not support
this feature.

For as long as the EAP method is being run between the client and the
server, the authenticator operates in so-called pass-through mode. This means
that it merely relays the messages between the client and the server. In fact, the
authenticator can be completely oblivious as to which concrete authentication
method is being used since the whole exchange is wrapped inside the generic
EAP message types.

Key transport. Once the client has successfully authenticated itself towards
the server using an EAP method, the server will communicate this fact to the
authenticator using an EAP Success message. This EAP Success message
will also contain the keying material that the server and the client agreed upon
in the prior EAP method exchange. If the client failed to authenticate to-
wards the server, the server will instead send an EAP Failure message to the

12 Description of EAP and IEEE 802.11 Chapter 2

Table 2.1: Examples of standardized EAP methods.

EAP method Description Reference

EAP-TLS TLS-based mutual authentication using certificates. [RFC5216]
EAP-TTLS Tunneled TLS. Certificate-based authentication

from server to client, followed by an arbitrary au-
thentication method from client to server inside the
established TLS tunnel.

[RFC5281]

PEAP Similar to EAP-TTLS, but where the inner authen-
tication method is the password-based protocol MS-
CHAPv2 [RFC2759]

[PEAPv2]

EAP-IKEv2 IKEv2-based [RFC7296] authentication. Credentials
can be based on certificates, pre-shared keys or pass-
words.

[RFC5106]

EAP-AKA Authentication based on the Authentication and Key
Agreement (AKA) protocol used in 3G and 4G mo-
bile networks. Trust relationships are based on sym-
metric keys stored in a SIM card on the client side.

[RFC4187]

EAP-GTC Authentication based on generic token cards and
one-time passwords.

[RFC3748]

EAP-PSK A lightweight authentication method based on PSKs. [RFC4764]

authenticator and abort the exchange.
Since the server transports sensitive data such as keying material to the

authenticator, the security of the connection between the server and the au-
thenticator is also of great importance. However, just like the EAP standard
does not mandate a single concrete authentication method to be used between
the client and the server, it similarly does not mandate any particular protocol
to be used between the server and the authenticator. Thus, implementors are
free to choose whatever protocol they want as long as it supports the features
required by the EAP framework. Still, in practice, the de facto standard is the
RADIUS protocol [RFC2865] (and to some lesser extent its successor Diame-
ter [RFC6733]). In fact, it is not uncommon to call the authentication server in
the EAP framework a “RADIUS server”. Note that RADIUS and Diameter are
also used for purposes other than authentication and authorization, for example
accounting, metering, and billing of network services. Because of this, RADIUS
and Diameter are more generally referred to as Authentication, Authorization,
and Accounting (AAA) protocols.

Link-layer protocol. Once the master session key MSK has been delivered
from the server to the authenticator, the EAP exchange is technically com-

Section 2.1 EAP 13

plete. At this point the client and the authenticator are both in possession of
the same MSK. Since they could have obtained the same MSK only if they
were both trusted by the server, they have also implicitly authenticated each
other. However, rather than using the MSK directly to encrypt their subsequent
communication, the client and the authenticator will instead use the MSK as
input to a lower-layer authentication and key exchange protocol. This proto-
col directly authenticates the client and the authenticator to each other using
the MSK as a shared key, in addition to deriving temporal encryption keys to
protect their communication.

Again, the choice of authentication protocol to run between the client and
the authenticator is independent of EAP and usually depends on the physical
medium being used between them. Recall that the authenticators are normally
implemented in devices such as switches and wireless access points. These
devices operate at the link-layer in the network stack, so the authentication
protocol between the client and the authenticator will also take place at this
layer, as shown in Figure 2.1. While many different link-layer protocols exist,
in this thesis we will primarily focus on the IEEE 802.11 [IEEE 802.11] protocol
used in wireless LANs (Wi-Fi). IEEE 802.11 will be described in detail in the
next section.

Example 2.2. Given the large number of acronyms and different protocols
used within the EAP architecture, it might be helpful to look at a concrete ex-
ample to see how all the different pieces fit together. As a use case, we consider
the eduroam network. Recall from Chapter 1 that eduroam is a roaming service
provided to students and employees of educational institutions and research or-
ganizations around the world. eduroam allows users from any participating
institution to automatically connect to the eduroam network using a single set
of credentials, even if visiting a different institution then their own, i.e., when
roaming. To achieve this, eduroam uses EAP with a hierarchical network of
RADIUS servers. However, in order to keep the example simple, we will only
look at the case of a non-roaming user; that is, a user that wants to connect to
the eduroam network at their home institution.

Suppose Alice is a student at the NTNU university, who wants to connect
to the eduroam network. At the NTNU campus there are many wireless access
points broadcasting the eduroam network identifier, and Alice can connect to
any one of them. However, none of the access points have any a priori knowl-
edge of Alice. Instead, NTNU maintains a central RADIUS server containing
the credentials of all its users, including Alice. In this example we are going
to assume that all users at NTNU are issued client certificates which uniquely
identify them. Conversely, the RADIUS server also has a certificate of its own
which is trusted by all its users. Furthermore, while the access points have no
shared credentials with any of the users, they each share a (unique) long-term

14 Description of EAP and IEEE 802.11 Chapter 2

symmetric key with the RADIUS server. Referring back to Figure 2.1 we thus
have the following situation: Alice corresponds to the client, the access point
is the authenticator, and the NTNU RADIUS server is the server.

When Alice wants to connect to the eduroam network, she first associates
to a wireless access point broadcasting the eduroam network identifier. The ac-
cess point will now ask Alice to identify herself using an EAP Request message.
Since the communication between Alice and the access point takes place over the
link-layer, the EAP Request message is encapsulated inside an EAPOL protocol
frame. On receiving the EAP Request message, Alice responds with an EAP
Response message (again encapsulated inside EAPOL) containing her user-
name: alice@ntnu.no. The access point will now forward this EAP Response
message to the NTNU RADIUS server by encapsulating it inside a RADIUS
packet.1 The RADIUS message will itself be transferred over IP.

Following the receipt of the EAP Response message, Alice and the RADIUS
server will initiate an EAP-TLS exchange, using their respective certificates to
authenticate each other. Alice will use EAP Response messages over EAPOL,
while the server will use EAP Request messages over RADIUS. All of the
messages pass through the access point, which continuously de-encapsulates
the EAPOL frames coming from Alice, and re-encapsulates the containing EAP
messages as RADIUS messages towards the server (and vice versa).

Once the EAP-TLS exchange is complete, corresponding to the red part
in Figure 2.1, Alice and the RADIUS server are in possession of a shared key
MSK exported by the EAP-TLS method. In order to securely transfer the MSK
from the RADIUS server to the access point, the RADIUS protocol specifies
a custom encryption scheme based on the Microsoft Point-to-Point Encryption
(MPPE) protocol [RFC2548]. Basically, this encryption scheme uses the long-
term secret shared between the access point and the RADIUS server to derive
a key-stream which is XOR’ed together with the MSK. Using this method, the
RADIUS server transfers the MSK to the access point in addition to an EAP
Success message to indicate that its EAP-TLS exchange with Alice completed
successfully. This is shown as the blue part in Figure 2.1.

Finally, Alice and the access point use the MSK as input to the IEEE 802.11
handshake protocol, which they now run directly between themselves. This is
shown as the green part in Figure 2.1. The IEEE 802.11 protocol will be
described in detail in the next section, but the result is that Alice and the
access point prove mutual possession of the MSK, and derive an encryption key
to protect their subsequent communication. Since Alice and the access point
could only have obtained the same MSK if they have a mutual trust relationship
with the RADIUS server, this implicitly proves that they are both authorized

1RADIUS is a challenge-response protocol just like EAP, having its own set of generic
messages (called Access/Request in RADIUS).

Section 2.2 IEEE 802.11 15

members of the eduroam network. At this point Alice is allowed to access the
eduroam network by the access point. �

2.2 IEEE 802.11
IEEE 802.11 [IEEE 802.11] is the most widely used standard for creating wire-
less local area networks (WLANs). IEEE 802.11 defines a set of specifications
for the physical and medium access control (MAC) layer, describing how wire-
less devices within a WLAN can achieve connectivity. IEEE 802.11 supports
three modes of operation depending on the network topology: infrastructure
mode, ad-hoc mode, and mesh network mode.

Infrastructure mode is the most common topology currently in use, and
involves one or more access points that coordinate the communication within
the WLAN. In particular, in infrastructure mode all client traffic must pass
through the access points. The access points usually also provide the clients
with connectivity to a larger network, such as the Internet. Conversely, in
ad-hoc and mesh-networking mode there is no central infrastructure. Wireless
clients talk directly to each other and there might be no connectivity to a larger
network. This thesis will only focus on the infrastructure mode of operation.

2.2.1 IEEE 802.11 basics
Most of the IEEE 802.11 standard is not directly concerned with security, but
instead deals with communication and transmission aspects such as the choice
of radio modulation, transfer rates, and frequency spectrums. In this section
we give a very brief description of the IEEE 802.11 protocol in infrastructure
mode from a non-security perspective, providing details only to the extent it
will be needed for the rest of the thesis.

An IEEE 802.11 network in infrastructure mode is identified by its Service
Set Identifier (SSID). This is the network name that an access point broadcasts.
Multiple interconnected access points may advertise the same SSID to form
what is know as an Extended Service Set (ESS). The union of all the access
points advertising the same SSID forms an ESS. Note that a single access point
might broadcast several SSIDs at the same time, hence serving multiple ESSs
simultaneously. An access point broadcasts all the SSIDs it serves at regular
intervals in short messages called beacons. The beacon messages allow wireless
devices to discover the presence of a network by scanning the frequency bands
on which they are sent.

Before a wireless client can send or receive data from an SSID served by an
access point, it first needs to associate with the access point. This process in-
cludes presenting the access point with its media access control (MAC) address

16 Description of EAP and IEEE 802.11 Chapter 2

so that the access point can address future messages directly to it. A MAC
address is normally unique per physical network card, but it can be changed
in software. We will usually refer to MAC addresses as link-layer addresses or
physical addresses in order to avoid confusion with the cryptographic concept
of a message authentication code.

Messages sent over a WLAN are called frames. All frames have a fixed
format consisting of an IEEE 802.11 header, a frame body containing the ap-
plication data, and an error-correcting code. Apart from the fact that the
header includes the link-layer addresses of the sender and the receiver, we will
not the describe the IEEE 802.11 header in any detail since it has no impor-
tance for security. An IEEE 802.11 frame can have a maximum size of roughly
8 kB, but is usually smaller; around 200–2000 bytes.

Like in the EAP standard [RFC3748], the clients in IEEE 802.11 [IEEE
802.11] are generally referred to as supplicants. However, we will only be using
the word clients.

2.2.2 A brief history of security in IEEE 802.11

There have been several different security protocols defined within the IEEE
802.11 standard. Originally, the only security protocol defined for IEEE 802.11
networks was the Wired Equivalent Privacy (WEP) protocol, which revolved
around the stream cipher RC4. After its introduction in 1997 there have been
discovered flaws in virtually every part of WEP’s design. Today the protocol
can be broken within a matter of seconds. See [Wal00, FMS01, BGW01, SIR02,
Cam+03, SIR04, Mis+04, BHL06, Tew07, TWP08, TB09, MT11, Sep+14] for
some of the existing analysis of WEP.

As an interim solution until a long-term replacement for WEP could be de-
fined by the IEEE, an industry consortium called the Wi-Fi Alliance2 designed
the Temporal Key Integrity Protocol (TKIP). While officially called TKIP, it
is probably better known under its marketing name Wi-Fi Protected Access
(WPA). An important design requirement for TKIP/WPA was that it should
be able to run on the same legacy hardware as WEP in order to facilitate
easy upgrades of existing IEEE 802.11 deployments. In particular, this led
TKIP/WPA to reuse RC4 as its algorithm of choice for bulk data encryp-
tion. TKIP/WPA has received quite a bit of analysis [MRH04, Woo04, TB09,
SVV11, Hal+09, MT11, Tod+12, VP13, Gup+15, PPS15, IM15, VP15]. Both
WEP and TKIP are today deprecated by the IEEE.

Ultimately, the long-term replacement for WEP was specified by the IEEE in
a 2004 amendment to the original IEEE 802.11 standard, denoted IEEE 802.11i

2https://www.wi-fi.org/

Section 2.2 IEEE 802.11 17

[IEEE 802.11i]. This amendment defines the concept of a Robust Security Net-
work (RSN) which specifies the security capabilities that a wireless device needs
to support. There are two main components to an RSN: a key establishment
protocol called the 4-Way Handshake (4WHS); and a bulk data encryption al-
gorithm which must either be TKIP or a new algorithm defined in IEEE 802.11i
based on AES, called the Counter Mode Cipher Block Chaining Message Au-
thentication Code Protocol (CCMP). A client and an access point will first use
the 4WHS protocol to establish a temporal session key, and then use this key
with the CCMP encryption algorithm to protect the subsequent communica-
tion. We will explain the 4WHS and CCMP in more detail in Section 2.2.3.

Since IEEE 802.11 also supports multicast and broadcast communication,
IEEE 802.11i additionally specifies a Group Key Handshake. The Group Key
Handshake is used to establish a common (temporal) group key among all the
devices currently connected to the WLAN. The common group key is used with
CCMP to protect all multicast and broadcast messages within the WLAN.

Like TKIP, IEEE 802.11i and RSN are probably better known under the
marketing name Wi-Fi Protected Access 2 (WPA2). Compared to WEP and
TKIP, there has been much less cryptanalysis of RSN/WPA2. Most existing
analyses have focused on the 4WHS protocol and its susceptibility to dictio-
nary attacks when using password-based authentication [Joh+15, Kam+16]. In
particular, if the long-term key is derived from a low-entropy password, then a
passive observer of the 4WHS can conduct an off-line dictionary attack in or-
der to recover the password.3 Besides dictionary attacks, there have also been
a number of DoS attacks against the 4WHS [HM04, HM05, RLM06, Eia09,
Eia10, EM12], as well as attacks focusing on various implementation aspects of
RSN/WPA2 [Cas+13, VP16].

Finally, we note that in addition to IEEE 802.11i, there have been sev-
eral other security-relevant amendments to the IEEE 802.11 standard as well.
For example, amendment IEEE 802.11w [IEEE 802.11w] defines procedures for
protection of management frames; amendment IEEE 802.11s [IEEE 802.11s]
defines security in mesh networking (including a new password-based key estab-
lishment protocol called Simultaneous Authentication of Equals (SAE) [Har08],
as well as using the AES-SIV mode of operation [RFC5297] for the protection
of mesh management frames)); and amendment IEEE 802.11r [IEEE 802.11r]
defines security procedures for fast transitioning between access points. All the
above amendments have been incorporated into the current full IEEE 802.11
standard [IEEE 802.11].

In this thesis we will only focus on the RSN security procedures introduced
in amendment IEEE 802.11i. Specifically, when in the following we talk about

3For instance the open-source tool aircrack-ng (https://www.aircrack-ng.org/) incor-
porates such an attack in an easy-to-use command-line program.

18 Description of EAP and IEEE 802.11 Chapter 2

the security of IEEE 802.11, we mean the collection of the 4WHS, CCMP, and
the Group Key Handshake defined in the current IEEE 802.11 standard [IEEE
802.11], excluding TKIP. In fact, most of our security analysis will be focused
on the 4WHS protocol. For the remainder of the thesis we will use the terms
IEEE 802.11, RSN and WPA2 interchangeably to refer to the security protocols
that were introduced in amendment IEEE 802.11i.

2.2.3 Detailed description of the IEEE 802.11 security
protocol

IEEE 802.11 in infrastructure mode is either a two-party protocol involving a
wireless client and an access point, or a three-party protocol which additionally
includes a trusted server. The goal is for the client and access point to estab-
lish a Robust Security Network (RSN) association, which involves running the
4WHS key exchange protocol to establish a session key, and using the CCMP
encryption scheme to protect their data. The 4WHS protocol needs a shared
symmetric key, which can either be configured as a pre-shared key (PSK) on
both the client and the access point, or be derived from some process involv-
ing the trusted server. Which protocol to use for this purpose is technically
outside the scope of the IEEE 802.11 standard [IEEE 802.11], but in practice
it is usually based on EAP. In any case, when a third-party server is involved
in establishing the shared key for the 4WHS protocol, we call it IEEE 802.11
with upper-layer authentication. The complete IEEE 802.11 establishment pro-
cedures consist of six stages and are shown in Figure 2.2.

Stage 1. Network and Security Capability Discovery. In this stage
the client discovers available networks and their security capabilities. As men-
tioned in Section 2.2.1, an access point will advertise its presence by regularly
broadcasting so-called beacon frames (Message (1) in Figure 2.2). A beacon
frame contains the network SSID as well as all the capabilities supported by
the access point. In particular, this includes the security protocols it is willing
to use (WEP, TKIP, RSN), together with a list of ciphersuites # »CS that it sup-
ports. An IEEE 802.11 ciphersuite specifies a collection of algorithms which is
used either to protect the handshake itself, or the application data. We will
specify the various algorithms supported by IEEE 802.11 when we describe the
4WHS protocol in Stage 4. Any client can learn the capabilities supported
by an access point by passively listening for the information contained in the
beacon frames. Alternatively, a client can actively ask for it by sending a probe
request message (Message (2) in Figure 2.2). An access point that receives a
probe request message will reply with a probe response message (Message (3))
containing the same information as in its beacon frame.

Section 2.2 IEEE 802.11 19

Client Authenticator
Server
(RADIUS)

(1) Beacon:
»
CS

(2) Probe Request

(3) Probe Response: # »
CS

(4) 802.11 Authentication Request

(5) 802.11 Authentication Response

(6) Association Request: CSC

(7) Association Response

(8) EAPOL-Start

(9) EAPOL-Request Identity

(10) EAPOL-Response Identity

(11) RADIUS Request

(12) Mutual Authentication (EAP-TLS)

(13) RADIUS Accept

(14) EAPOL Success

(15) MSK

(16) ηA

(17) [ηC , CSC]kμ

(18) [ηA, { # »
CS,GTK}kε]kμ

(19) [FINISHED]kμ

(20) [ηG, {GTK}kε]kμ

(21) [ηG]kμ

(22) Encrypted data (CCMP)

Stage 1:
Network and
Capability
Discovery

Stage 2:
Open System
Authentication
and Association

Stage 3:
EAP/RADIUS
Authentication

Stage 4:
The 4-Way
Handshake

Stage 5:
Group Key Handshake

Stage 6:
Data communication

Master Session
Key (MSK)

PMK = MSK[0,256] PMK = MSK[0,256]

PTK

PTK
Generate GTK

Notes:

1. Dashed lines indicate optional
messages.

2. [x]kμ
denotes that x is being

integrity protected by a MAC
using the key kμ, i.e.,

[x]kμ

def
= x‖MAC(kμ, x).

3. {x}kε denotes the encryption of
x with some encryption scheme
E using the key kε.

Figure 2.2: The IEEE 802.11 protocol in infrastructure mode. Diagram adapted
from [HM05].

20 Description of EAP and IEEE 802.11 Chapter 2

Stage 2. Open System Authentication and Association. In this stage
the client selects the access point it wants to connect to. The first step involves
a procedure called Open System Authentication (Message (4) and Message (5)
in Figure 2.2). In terms of security this is a null operation; it is included simply
to maintain backward compatibility with previous IEEE 802.11 specifications.
The second step is client association as described in Section 2.2.1. The client
sends an association request message (Message (6) in Figure 2.2) that specifies
which of the capabilities of the access point it wants to use. In particular, this
involves selecting a ciphersuite from the list # »CS that the access point broadcast
earlier. The ciphersuite chosen by the client is denoted CSC . Additionally, the
client also indicates whether a PSK or upper-layer EAP authentication will be
used in the following authentication stages. Provided the access point finds
the client’s choices acceptable, it replies with an association response message
(Message (7)) and continues to the next stage of the protocol. If a pre-shared
key is used for authentication, then Stage 3 as described below is omitted, and
the protocol continues directly to Stage 4.

Stage 3. Upper-layer Authentication. When upper-layer authentication
is being used, the client authenticates itself towards a trusted server, usually
using EAP as described in Section 2.1. In Figure 2.2 we have assumed that
EAP-TLS is the EAP method being used between the client and the server, and
that RADIUS is being used as the key transport protocol between the server
and the access point. The whole exchange is shown as Messages (8)–(15) in
Figure 2.2, although note that Message (12) really constitutes several messages.
The end result of a successful run of EAP is that a shared master session key
MSK is distributed to both the client and the access point. The MSK will be
used as the shared key input for the 4WHS protocol in Stage 4.

Stage 4. The 4-Way Handshake (4WHS). In this stage the client and
the access point run the 4WHS protocol in order to authenticate each other,
as well as to derive temporary session keys for protecting their subsequent
communication. The 4WHS, shown in Messages (16)–(19) in Figure 2.2, is
based on a shared symmetric key called the pairwise master key (PMK).

If EAP was used in Stage 3 to distribute an MSK to the client and the
access point, then the PMK is set to be the first 256 bits of the MSK (recall
from Section 2.1 that the keying material exported by an EAP method needs
to be at least 512 bits long). Otherwise, if no upper-level EAP authentication
is being used, the PMK is a pre-shared key installed manually at the client
and the access point. Usually, this pre-shared key is derived from a password
using the password-based key derivation function PBKDF2 [RFC8018], but it
can also be created in other ways.

Section 2.2 IEEE 802.11 21

Regardless of how the PMK was obtained, the 4WHS protocol proceeds
as follows. In the first handshake message (Message (16) in Figure 2.2) the
access point sends a nonce ηA to the client. On receiving this message, the
client creates its own nonce ηC and derives a Pairwise Transient Key (PTK),
computed in the following way. Let Û denote the 48 bit physical MAC address
of a user U , and let min and max denote functions that compute, respectively,
the smallest and largest of two MAC address based on their numerical values
when treated as 48 bit unsigned integers. Then

PTK = kμ‖kε‖kα ← PRF(PMK, “Pairwise key expansion”, P̂‖η), (2.1)

where P̂ ← min{Â, Ĉ}‖ max{Â, Ĉ} is the combination of the client’s (Ĉ) and
access point’s (Â) physical addresses, and η ← min{ηA, ηC}‖ max{ηA, ηC} is
the combination of their nonces. The pseudorandom function PRF is based on
HMAC [RFC2104]. The PTK is parsed into three sub-keys kμ, kε, and kα,
having the following purposes:

• kμ – this is a key for a message authentication code (MAC) used to provide
integrity of the handshake messages.

• kε – this is an encryption key used to protect the distribution of a Group
Transient Key (GTK) inside the 4WHS (see below), or in a dedicated
Group Key Handshake step (see Stage 5).

• kα – this is the session key used to encrypt the bulk data traffic in Stage 6.

After computing the PTK, the client creates the second protocol message
of the 4WHS (Message (17) in Figure 2.2). This message contains the client’s
nonce ηC , as well as the ciphersuite CSC that it selected during the association
step in Stage 2. The integrity of the entire message is protected by a MAC keyed
with kμ. The precise MAC algorithm to use is determined by the ciphersuite
CSC that was chosen in Stage 2. The IEEE 802.11 standard specifies three
legal MAC algorithms: HMAC-MD5 [RFC2104] (deprecated), HMAC-SHA1-
128 [RFC2104], and AES-128-CMAC [FIPS:SP-800-38B].

On receiving the second handshake message, the access point first extracts
the client’s nonce ηC and derives the PTK according to Equation (2.1). Using
the derived PTK, the access point first checks the validity of the MAC tag
on the message, and compares the included ciphersuite CSC with the one it
received during the association request in Stage 2 (Message (4)).

If the verification is not successful, then the access point silently discards the
message. Otherwise, the access point creates the third handshake message of
the 4WHS (Message (18) in Figure 2.2). This message includes: (i) the nonce ηA

that the access point sent in its previous handshake message (Message (16));

22 Description of EAP and IEEE 802.11 Chapter 2

(ii) the list of ciphersuites # »CS the access point advertised in Stage 1 of the
IEEE 802.11 establishment procedures; and (iii) a group key GTK. The two
latter values are encrypted with an encryption scheme E using the key kε, where
the choice of encryption scheme is again determined by the selected ciphersuite
CSC . The IEEE 802.11 standard specifies two legal encryption algorithms: RC4
(deprecated) and NIST AES Key Wrap [RFC3394]. The integrity of the entire
message is protected by a MAC keyed with kμ.

On receiving the third handshake message, the client first decrypts (with
kε) the list of ciphersuites # »CS and the group key GTK. If the ciphersuite list
does not match what the access point broadcast in Stage 1, then the client
aborts the protocol. Otherwise, the client proceeds by verifying the MAC tag.
If the verification was successful, then the client creates the fourth and final
message of the handshake (Message (19) in Figure 2.2). If the verification was
not successful, then the client silently discards the message.

Remark 2.3. Some additional points about the 4WHS are worth emphasis.

• (No forward secrecy) The 4WHS does not provide forward secrecy. Any-
one who knows the PMK and observes the nonces ηA and ηC can compute
the PTK. Additionally, if the PMK is derived from a low-entropy pass-
word, then the PMK is subject to off-line dictionary attacks. As men-
tioned in Section 2.2.2, most existing security analyses of WPA2 have
focused on this aspect of the 4WHS.

• (Replay protection mechanism) The 4WHS employs a somewhat unusual
approach for protecting against replay attacks. Instead of explicitly ac-
knowledging a nonce by repeating it in a following response message, the
4WHS instead mixes ηA and ηC into the derivation of the PTK. Replays
are then detected implicitly by MAC verification failures.

• (Downgrade protection) To protect against ciphersuite downgrade at-
tacks, the second and third messages of the 4WHS repeat the ciphersuites
that were advertised earlier in the IEEE 802.11 establishment procedures
(i.e., Message (1), (3) and (6) in Figure 2.2). However, note that if WEP is
enabled alongside RSN/WPA/WPA2, then this downgrade protection can
easily be bypassed by an attacker. Namely, since WEP does not involve
running the 4WHS protocol at all, an attacker can remove the option of
WPA/WPA2 from the access point’s beacon and probe request messages,
leading the client to believe that only WEP is supported. Since no sub-
sequent ciphersuite verification is being done in this case, the downgrade
will not be detected.

• (GTK selection) The group key GTK is chosen solely by the access point
without any input from the clients. Although the IEEE 802.11 standard

Section 2.2 IEEE 802.11 23

suggests deriving the GTK from a Group Master Key (GMK), the only
formal requirement on the GTK is that it should be a random number.

�

Stage 5. Group Key Handshake. This is an optional stage, providing a
(new) group key (GTK) to all clients that are currently associated to the access
point and have completed the 4WHS. The GTK is used to protect broadcast and
multicast messages within the WLAN. The access point distributes the GTK
to each client one by one, using their individually shared PTKs to protect
the Group Key Handshake message carrying the GTK. The encryption and
MAC algorithms used to protect the group handshake messages are the same
as those used for the 4WHS. Note that the access point also includes a nonce ηG

in its group handshake message (Message (20) in Figure 2.2) which the client
is required to acknowledge (Message (21)).

Stage 6. Application Data. The final stage of the IEEE 802.11 protocol
is the actual transmission of application data. Messages are protected by one
of the two encryption algorithms TKIP and CCMP using the kα sub-key of
the PTK. Since TKIP is deprecated by the IEEE 802.11 standard, we only
explain CCMP to some extent here. CCMP is a stateful authenticated encryp-
tion scheme based on the block cipher AES [FIPS:197-2001]. It ensures data
confidentiality, integrity, and replay protection using the CCM mode of opera-
tion [RFC3610] to encrypt each frame. CCM itself is a combination of counter
mode encryption with CBC MAC. CCMP will be explained in greater detail
when we analyze it in Section 6.3.

Chapter 3

Formal models

Contents
3.1 Notation and preliminaries 25

3.1.1 Security games 25
3.1.2 Concrete vs. asymptotic security 26

3.2 A unified protocol execution model 27
3.2.1 Protocol participants 28
3.2.2 Long-term keys 29
3.2.3 Protocol syntax 30
3.2.4 Protocol correctness 33
3.2.5 Security experiment 33
3.2.6 Freshness predicates and partnering 36

3.3 2P-AKE protocols and 3P-AKE protocols 46
3.3.1 Comparing the three AKE security models 48
3.3.2 Comparison with other models 52

3.4 ACCE protocols . 53
3.5 Explicit entity authentication 56

In this chapter we define the formal security models that will be used to
prove our results on EAP, EAP-TLS and IEEE 802.11 in the later chapters.
We seek to establish two main definitions: the security of an authenticated key
exchange (AKE) protocol and the security of an authenticated and confidential
channel establishment (ACCE) protocol. EAP, EAP-TLS and the IEEE 802.11
4WHS protocol are all naturally modeled as AKE protocols. In fact, since EAP,
EAP-TLS and the 4WHS all achieve different levels of security, we will actually

24

Section 3.1 Notation and preliminaries 25

define three AKE models of varying strengths. ACCE protocols will be used as
important building blocks in our analyses of EAP and EAP-TLS. Definitions
of standard primitives, like pseudorandom functions and MACs, are provided
in Appendix A.

3.1 Notation and preliminaries

For m, n ∈ N and m ≤ n, let [m, n] def= {m, m + 1, . . . , n} and [n] def= [1, n].
We use v ← x to denote the assignment of x to the variable v, and x ←← X to
denote that x is assigned a random value according to the distribution X. If S
is a finite set, then x ←← S means to sample x uniformly at random from S. We
write X ← X ∪ x for adding an element x to a set X. The set of all bitstrings
of length n is denoted by {0, 1}n and the set of all finite length bitstrings is
denoted by {0, 1}∗. The string of zero length is denoted ε. The concatenation of
two bitstrings x and y is written x‖y. Algorithms are in general randomized and
we let y ←← A(x1, . . . , xn) denote running the (possibly randomized) algorithm
A on inputs x1, . . . , xn, assigning A’s output to the variable y. We write AO

for an algorithm being given oracle access to a function or algorithm O(·). If
O = {O1, . . . , Ot} is a collection of functions or algorithms, then AO means
to give oracle access to all the Oi. We use a distinguished error symbol ⊥ to
denote cases where a computation might have failed, some value is missing, or
if some precondition is not met.

3.1.1 Security games
All our security definitions are formulated in terms of formal experiments, called
games. A game consists of an interaction between an adversary and an honest
entity called the challenger. During a game, the adversary interacts with the
challenger using a set of queries. The type of queries present, and how the
challenger answers them, depends on the particular game. Associated to each
game is one or more events that constitute the winning conditions of the game.
A winning condition precisely defines what it means for an adversary to break a
protocol and is meant to capture one or more of the intuitive security properties
we might want a protocol to satisfy. Since both the adversary and the challenger
will be probabilistic algorithms, a security game can also be thought of as
a random variable over a probability space where the random coins of the
challenger and adversary are drawn uniformly at random. In particular, the
outcome of the game, i.e., whether the adversary has won or not, is a random
variable on this probability space. Our formalization of games mostly follows
the style of Shoup [Sho04], as opposed to the more syntactic version of Bellare
and Rogaway [BR04].

26 Formal models Chapter 3

Given that one has defined a formal security game, what does it mean for a
protocol to be secure? Intuitively, a protocol is secure if any “efficient” adver-
sary only has a “small” probability of satisfying the winning condition of the
security game. In other words, a secure protocol provides the security property
formalized by the winning condition. At the same time, it is important to re-
member that a security game is an abstraction of the real world. It represents
an estimate of what we think the adversary might be able to do, as well as a
hope that the associated winning condition truly models the security goal we
set out to capture. Any statement about security always takes place in some
choice of model, and this model is only an approximation of the real world.

3.1.2 Concrete vs. asymptotic security

In our informal definition of security we emphasized that adversaries should
be “efficient” and their winning probabilities “small” but not necessarily zero.
The reason for this is that most protocols cannot hope to achieve unconditional
security in the face of arbitrary adversaries. But how do we define “efficient”
and “small”. There are two common approaches.

The first is the asymptotic approach, where “efficient” is equated with prob-
abilistic polynomial-time (PPT) algorithms and “small” with negligible func-
tions, where a function g : N → R is negligible if for all integers c there exists
an integer N such that for all n ≥ N , g(n) < n−c. The asymptotic approach
says nothing about a protocol’s security for any particular choice of parameters.
Instead, the adversary’s winning probability, as well as its running time, is mea-
sured relative to some security parameter λ. A protocol is said to be (asymp-
totically) secure if for all PPT adversaries A, the probability that A wins the
security game is negligible in λ. The asymptotic approach has its roots in com-
plexity theory and has been the traditional approach taken in cryptography,
originating with the seminal work of Goldwasser and Micali [GM84].

The second approach, and the one we will be taking in this thesis, is called
concrete security. It was originally introduced by Bellare, Killian, and Ro-
gaway [BKR94]. In the concrete security approach one actually forgoes the
whole question of defining “efficient” and “small” altogether. Instead, what
is emphasized is the demonstration of an explicit reduction R, which takes as
input an adversary A that supposedly breaks the protocol, and transforms it
into an algorithm that solves some other problem P . The reduction’s success
probability in solving problem P , as well as its resource usage, is explicitly ex-
pressed in terms of A’s winning probability and resource usage (i.e., the number
of queries it made in the security game). The conceptual idea of the reduction
methodology is that if we believe that no “reasonable” algorithm can be found
for solving problem P , then no algorithm for breaking the protocol can be found

Section 3.2 A unified protocol execution model 27

either. However, the interpretation of “reasonable” is left to the user of the pro-
tocol to decide. Note that there are subtleties in what type of conclusions one
can draw from a result expressed in the concrete security setting, especially
when we know that efficient algorithms for solving P must exist, but we do not
know how to actually to find them (see [Rog06, BL13]).

Whether to favor an asymptotic or a concrete security treatment depends
on the application context. Asymptotic security is typically very useful when
stating high-level results and feasibility results where the qualitative relation-
ship between security notions is being emphasized. For example, the fact that
one-way functions imply pseudorandom generators can be elegantly stated in
the asymptotic language. Concrete security statements on the other hand are
usually more precise, focusing on the quantitative relationship between notions.
It promotes more application oriented results. Ultimately, the choice between
asymptotic and concrete security is not fundamental. A concrete reduction
can trivially be transformed into a statement about asymptotic security, and a
proof showing that a protocol is asymptotically secure typically carries within
it an explicit reduction.

A word on language. Technically speaking, since we are working in the
concrete security setting, we cannot ever say that a scheme or protocol is actu-
ally secure. Unfortunately, this makes talking about our security results quite
cumbersome. For instance, instead of being able to say things like “if scheme X
is IND-CPA secure and scheme Y is EUF-CMA secure, then protocol Z is AKE
secure”, we need to say “given that algorithm A breaks protocol Z according
to security game AKE, we can create explicit algorithms B1 and B2 that breaks
scheme X according to security game IND-CPA, and scheme Y according to
security game EUF-CMA, respectively”. This quickly gets tedious. Thus, in
our informal expositions we allow ourselves to use the first kind of statement
rather than the second, safe in the knowledge that the reader can make the
necessary translation in their head. However, we emphasize that all our formal
definitions and theorem statements will be given in the second, precise form.

3.2 A unified protocol execution model
Our modeling of AKE and ACCE protocols follows the so-called BR-model
which originates in the seminal work by Bellare and Rogaway [BR94], and
includes a number of extensions and follow-up work [BR95, BM97, BPR00,
CK01]. A protocol in the BR-model is formally just an algorithm. However,
it is more useful to think of what this algorithm represents: a collection of
principals interacting across an insecure network. Each principal sends and
receives messages over the network by constructing and processing messages

28 Formal models Chapter 3

according to some rule specific to the protocol being modeled. On the other
hand, details of how the network routes and delivers these messages are ab-
stracted away. Instead, the adversary is assumed to be in full control of the
network, being able to decide exactly where and when messages are delivered
to the principals. In particular, this means that the adversary can also choose
to alter the messages, reorder them, drop them, or even inject messages of its
own. Generally, whatever gets delivered to the principals happens at the behest
of the adversary.

Principals hold both long-term and short-term keys (the latter usually called
session keys), and the adversary will also be given the ability to obtain both
of these types of keys at will. This models the fact that, in the real-world,
keys which are supposed to be kept secret can nevertheless get lost for a large
number of reasons. We return to this in Section 3.2.3.

The following subsections describe our variant of the BR-model in detail.
Since AKE and ACCE protocols are mostly the same in terms of modeling, we
use a unified protocol model that covers everything that is common to both.
Material specific to AKE and ACCE protocols is covered in Section 3.3 and
Section 3.4, respectively. Essentially, their main difference lies in the winning
conditions of their respective security games.

3.2.1 Protocol participants

A protocol is carried out by a set of principals or parties U ∈ P, each taking
on a distinct role within the protocol run. In two-party protocols there is an
initiator role and a responder role, and in three-party protocols there is also an
additional role called the server. We consider only protocols where each party
implements only one of the predefined roles in the protocol. That is, the set of
party identities P is partitioned into three disjoint sets I, R, and S consisting
of the initiators, responders, and servers, respectively. Of course, in two-party
protocols there are no servers, so we have S = ∅. As a convention, we will use
A to denote a party having the initiator role, B to denote a party having the
responder role, S to denote a party having the server role, and U , V , W to
denote parties that could have any role.

Protocol roles serve as symmetry-breaking devices, requiring that each par-
ticipant in the protocol be discernible from the others. Of course, in real-world
protocols there might be no explicit variable that records a user’s role. Instead,
a participant’s role may be implicitly present in the structure and message flow
of the protocol itself, such as the naming of the protocol messages or the order
in which different messages are delivered and processed. Indeed, the names
“initiator” and “responder” reflect the intuitive idea that one party is expected
to initiate the protocol, while the other is supposed to wait for some initial

Section 3.2 A unified protocol execution model 29

incoming message before responding.
Conversely, there are protocols in which there are no fundamental differ-

ences in the actions being performed by the different protocol participants.
For instance, in role-symmetric protocols (see [Cre09, Cre11a]) the messages
are identically distributed, so up to their order, there is no discernible differ-
ence between the messages in the protocol. Examples of such protocols are
MQV [Law+03] and HMQV [Kra05b]. Here, two initiators can establish a
common key with each other. In fact, the two initiators might even belong
to the same party. For role-symmetric protocols, care needs to be taken so
that they are not vulnerable to so-called reflection attacks [Cre11b] where an
attacker replays a sender’s messages back to itself. On the other hand, we point
out that whether a reflection attack should actually be considered problematic
or not, might depend on the protocol’s authentication goals; see Section 3.5 for
further discussion on authentication

Finally, we remark that our model could easily be generalized to protocols
that consist of N distinct roles instead of just two or three. However, for the
purposes of this thesis, three distinct roles are enough. Similarly, many formal
models also allow parties to take on different roles in different runs of the
protocol (see e.g., [Jag+12]). That is, party U could in one run of the protocol
take the role of an initiator, while in another take on the role of a responder
(or a server). For simplicity and clarity of presentation we assume that a party
only implements one role.

3.2.2 Long-term keys
Every party holds at least one long-term key. Our model includes both asym-
metric private/public key-pairs as well as a symmetric pre-shared keys (PSKs).
In principle, we could allow arbitrary configurations of long-term keys, where
each party could hold multiple asymmetric keys and share multiple PSKs with
arbitrary subsets of P. However, we are going to restrict our attention to the
following three specific classes of protocols in terms of their configurations of
long-term keys.

1. Two-party protocols exclusively based on public-keys. In this case, every
party U gets a single asymmetric private/public key-pair (skU , pkU).

2. Two-party protocols exclusively based on PSKs. In this case, every pair of
initiator/responder (A, B) shares a single symmetric long-term key KAB .

3. Three-party protocols, where the long-term keys are configured as follows:

• each initiator A ∈ I has one private/public key-pair (skA, pkA);

30 Formal models Chapter 3

• each responder B ∈ R has one PSK for every server S ∈ S, denoted
KBS ;

• each server S ∈ S has one private/public key-pair (skS , pkS) and
one PSK KBS for every responder B ∈ R.

The choice of focusing only on the above three classes of protocols is not ar-
bitrary. Rather, they model in a somewhat simplified manner the way long-term
keys are used in, respectively, EAP-TLS, IEEE 802.11, and EAP. Specifically,
Item 3 captures the setting of EAP where the EAP method that is run between
the client and the server is based on public-keys, and the key-transport proto-
col between the server and the authenticator (normally RADIUS) is based on
PSKs. It would be possible to also handle EAP methods that use PSKs or even
a mix of both, but for ease of presentation we limit ourselves to the asymmetric
case only.

Finally, when asymmetric long-term keys are used, then all users are given
an authentic copy of every public key in the system. This is a standard assump-
tion used in most key exchange models, but it is nevertheless a big assumption.
It glosses over the big challenges faced with constructing and maintaining a
public key infrastructure (PKI) needed for users to obtain authentic public
keys. The alternative is to explicitly include PKIs into the formal models,
which has been done in a handful of related papers [Bol+07, FW09, Boy+13].
This generally leads to more realistic modeling at the cost of making an already
complex model even more complex. For the sake of keeping our model man-
ageable we have chosen to omit any considerations of PKIs in this thesis and
do not model any aspects relating to the actions and functioning of certificate
authorities (CAs). In particular, this means that we do not consider attacks
where the adversary can register its own public key(s) as authentic, or pass
off somebody else’s public key as its own; nor do we model attacks where the
adversary registers invalid keys, which can have devastating effects on some
protocols (see [MU06]). In short, in our model all long-term keys are honestly
generated and authentically distributed at the beginning of the security game.

3.2.3 Protocol syntax

A protocol is a tuple Π = (KG, NextMsg, κ), where KG is a key generation
algorithm, NextMsg is an algorithm that specifies how honest parties process
and construct protocol messages, and κ ∈ N is a session key length. Algorithm
KG either takes no input, in which case it produces a long-term asymmetric
key-pair (sk, pk) consisting of a private key sk and a public key pk; or it takes
as input the string “PSK”, in which case it produces a long-term symmetric key
K. Each party U ∈ P can take part in multiple executions of the protocol—

Section 3.2 A unified protocol execution model 31

called sessions1—both concurrently and sequentially. We use an administrative
label πi

U to refer to the ith session at user U . Sometimes we simplify πi
U to π .

Associated to each session πi
U , there is a collection of variables that embodies

the local state of πi
U during the run of the protocol. The type of variables that

make up a session’s state are in general highly protocol dependent, but in our
model the following variables are always assumed to be present.

• peers – an unordered list of party identities V ∈ P representing the prin-
cipals that πi

U believes take part in this protocol run (including U itself),

• #»α = (α1, . . . , αn) – a vector of acceptance states αi ∈ {running, accepted,
rejected},

• k ∈ {0, 1}κ ∪ {⊥} – the symmetric session key derived by πi
U ,

• τ ∈ {0, 1}∗ – the local transcript of πi
U , consisting of all the messages it

has sent and received,

• st ∈ {0, 1}∗ – any additional auxiliary state that might be needed by the
protocol.

We use the notation “πi
U .x” to refer to some variable x of session πi

U . For
instance, πi

U .k denotes the session key of πi
U , while πi

U .peers denotes its list of
peers.

In addition to the variables above, a session also has access to the long-
term keys of the party to which it belongs, as well as the public keys of the
other parties in the system. Specifically, to πi

U we also associate the following
variables:

• skU , pkU – the long-term private/public key of party U ,

• PubKey[·] – a list of public keys indexed by their owner’s identity V ∈ P,

• PSK[·] – a list of the PSKs that U shares with other parties, indexed by
their identities V ∈ P.

Of course, if we consider two-party protocols based on PSKs, then the vari-
ables skU , pkU and PubKey are not needed. Likewise, for two-party protocols
based on public keys, or for initiators in three-party protocols, then the vari-
able PSK will be superfluous. In general, depending on the type of protocol
under consideration, some of the long-term key variables may not be needed.
By convention, unnecessary variables are set to ⊥.

1What we call a session is also often called an instance in the literature.

32 Formal models Chapter 3

Remark 3.1. Bellare, Pointcheval, and Rogaway [BPR00, Remark 2] points
out the difference between accepting and terminating. When a session termi-
nates, then it does not send any further messages in the protocol. On the
other hand, a session might be able to accept—meaning that from this point
on we expect some security property to hold—even if more messages will be
exchanged subsequently. �

We use a vector #»α of acceptance states to model protocols Π that are built
out of sub-protocols Πi run sequentially after each other. This is somewhat
similar to the multi-stage model of Fischlin and Günther [FG14] where there is
a separate accept state for each individual stage. However, we use sub-protocols
purely to make our expositions in constructions and proofs easier. We do not
define any security goals in terms of a protocol’s sub-protocols, and a protocol
is not required to have a logical sub-protocol structure.

Each entry of #»α signifies whether the session believes that sub-protocol Πi

has operated correctly (accepted), something has gone wrong (rejected), or that
the session hasn’t come to a decision yet (running). Since we only consider
sub-protocols run sequentially, we demand the following semantics from the
variables #»α = (α1, . . . , αn) and k:

αi = accepted =⇒ αi−1 = accepted, (3.1)
αi = rejected =⇒ αi+1 = rejected, (3.2)

αn = accepted =⇒ k �= ⊥. (3.3)

In other words: a session can only accept in sub-protocol Πi if it has already
accepted in all prior sub-protocols; if it rejects in a sub-protocol Πi, then this
cascades to all subsequent sub-protocols; and finally, if a session accepts in the
final sub-protocol Πn, then it must have set its session key k. Moreover, we
demand that the session key only be set once.

In our formal security experiments, the accepted state will be used as a
reference point from which security properties are expected to hold for a session.
Let αF

def= αn denote the final acceptance state of #»α . As a convention we always
use αF to refer to the acceptance state of the full protocol Π (considered as a
composition of n − 1 sub-protocols). A session is said to have accepted, rejected
or still be running in the full protocol based on the value of αF . Thus, ignoring
all the other states in #»α , the single acceptance state used in most other security
models corresponds to αF in ours.

Finally, note that the acceptance states are not intended to be secret, but
will be explicitly given to the adversary.

Section 3.2 A unified protocol execution model 33

3.2.4 Protocol correctness

Protocols are required to satisfy the following correctness requirement in the ab-
sence of any adversary. If an initiator session πi

A, a responder session πj
B—and

possibly a server session πk
S (if in the three-party setting)—run the protocol be-

tween them according to its specification, then we require that: (1) all sessions
end up accepting, (2) all sessions have their peers variable set to the unordered
list {A, B, [S]}, and (3) πi

A and πj
B derive the same session key πi

A.k = πj
B .k.

Although correctness can be further formalized in various ways,2 we hope that
its intuitive meaning should be sufficiently clear as to obviate this need.

Note that we have only demanded that the initiator and the responder derive
the same key. What about the server’s key in the case of three-party protocols?
The purpose of the server is to help the initiator and the responder establish a
common key, but this does not imply that the server will necessarily derive a
session key itself. Of course, there are protocols in which the server will be in
possession of the session key—in fact, the server might be the one that chooses
and distributes it!—but this is not always the case. Thus, in general it does
not make sense to ask for correctness with respect to the server’s key.

In order to maintain consistency with the requirement of Equation (3.3),
we establish by convention that the session key variable k of all server sessions
πi

S is always set to the all-zero string 0κ. Note that this is pure formalism:
for protocols where the server does, in fact, derive the same session key as the
initiator and responder, this value will simply be stored in the auxiliary state
variable πi

S .st rather than the variable πi
S .k.

3.2.5 Security experiment

As mentioned at the beginning of this section, security will be defined in terms
of a formal experiment run between an adversary and a challenger. Techni-
cally, for each of the security properties we want to define—2P-AKE, 3P-AKE,
and (2P-)ACCE—there will be a corresponding security experiment. However,
since all these experiments are very similar in nature, we use a common exper-
iment template, shown in Figure 3.1, that captures all of them. Experiment
ExpΠ,Q(A) is parameterized by a protocol Π, a query set Q, and an adver-
sary A. The query set Q is a collection of the permissible queries that A can
make during the experiment. Each query represents a function or algorithm
implemented by the experiment.

2For example, with an adequate definition of a benign adversary [BR95], one can easily
formalize correctness using the game framework used in this thesis. Alternatively, correctness
could be defined directly in terms of a protocol’s message sequence diagram (see also the
discussion on matching conversations in Section 3.2.6).

34 Formal models Chapter 3

ExpΠ,Q(A):
1: Long-term key set-up:
2: 3P: For every U ∈ I ∪ S create (skU , pkU) ←← Π.KG
3: For every (U, V) ∈ R × S define KUV = KV U ←← Π.KG(PSK)
4: Define pubkeys ← {(U, pkU) | U ∈ I ∪ S}
5:
6: 2P-Public-Key: for every U ∈ I ∪ R create (skU , pkU) ←← Π.KG
7: Define pubkeys ← {(U, pkU) | U ∈ I ∪ R}
8:
9: 2P-PSK: For every (U, V) ∈ I × R define KUV = KV U ←← Π.KG(PSK)

10: Define pubkeys ← ∅
11:
12: out ←← AQ(pubkeys)

Figure 3.1: Unified experiment used to simultaneously define AKE and ACCE se-
curity, including three-party and two-party settings, as well as protocols using asym-
metric and symmetric long-term keys.

Experiment ExpΠ,Q(A) begins with a set-up phase, where all the long-term
keys in the system are being generated. Recall from Section 3.2.2 that we are
considering three types of protocols in this thesis: two-party protocols based on
public keys, two-party protocols based on PSKs, and three-party protocols that
combine both public keys and PSKs. The set-up phase in Figure 3.1 reflects
these three scenarios.

Following the creation of the long-term keys the adversary A is run, being
given as input a list pubkeys containing all the public keys in the system (if
any). In this phase the adversary gets to interact with the experiment using
the queries contained in the query set Q. The query sets used to define AKE
and ACCE security will be different, but they will contain a common base query
set Qbase consisting of the queries NewSession, Send, Reveal and Corrupt.

A NewSession query allows the adversary to create a new session at a given
party. A Send query allows the adversary to interact with the sessions by
sending (arbitrary) messages to them. This will yield a response based on the
NextMsg algorithm of protocol Π. A Reveal query allows the adversary to learn
the session key of a given session. This models the fact that in the real world,
the adversary might know some of the session keys in the system for a number
of reasons, e.g. because of break-ins, cryptanalysis, leakage due to application
usage, or misconfigurations. Although the loss of a session key will certainly
compromise the security for that particular session, one hopes that it will not
impact the security of other sessions, using different session keys. Finally, a

Section 3.2 A unified protocol execution model 35

Corrupt query allows the adversary to obtain a long-term secret key of a given
party. This query models the fact that in the real world some of the secret
long-term keys might become known to the adversary, for example by break-
ins, subversions, or mishandling of credentials. The loss of a long-term secret
key can potentially be even more devastating than losing a single session key,
since now it might have ramifications for all the sessions of a given party, as
well as all the sessions wanting to communicate with that party. Nevertheless,
many protocols can mitigate the damage caused by leaking long-term keys. For
example if a protocol has forward secrecy [MvV96, p. 496] then the loss of a
long-term key should not affect the security of already established session keys.
Similarly, if a protocol has resistance to key compromise impersonation (KCI)
attacks [JV96, BM97], then the loss of an asymmetric long-term private key
skU will not enable an attacker to impersonate other parties towards the holder
of skU . We now give precise definitions of the queries contained in Qbase.

• NewSession(U, [V, W]): This query creates a new session πi
U at party U .

It takes one mandatory input U , namely the party where the session is
created, and two optional inputs V and W , representing the intended
peers of U . It is required that U , V and W all have different roles.
The variables associated to πi

U are initialized as follows: πi
U .peers =

{U, [V, W]}, πi
U . #»α = (running, . . . , running), πi

U .k = ⊥, πi
U .τ = ⊥, and

πi
U .st is set to whatever is needed by protocol Π.

Additionally, depending on the type of protocol, the long-term key vari-
ables sk, pk, peers, PubKey and PSK are initialized accordingly, based on
the long-term keys in the system.
Finally, if U ∈ I, then πi

U also produces its first message m∗ according to
the message creation algorithm NextMsg of protocol Π. In this case m∗

gets added to πi
U .τ . The administrative label πi

U , the message m∗, and
πi

U ’s accept state πi
U . #»α are all returned to A.

• Send(πi
U , m): This query sends a message m to session πi

U . The session
computes a response message m∗ according to the specification of protocol
Π. This also updates πi

U ’s current internal state. Both m∗ and πi
U . #»α are

returned to A.

• Reveal(πi
U): This query returns the session key πi

U .k of πi
U . From this

point on, πi
U is said to be revealed.

• Corrupt(U, [V]): Depending on the second input parameter, this query
returns a certain long-term key of party U .

– Corrupt(U): If U has an associated private-public key-pair (skU , pkU),
return the private key skU .

36 Formal models Chapter 3

– Corrupt(U, V): If U and V share a symmetric long-term key KUV ,
return KUV .

The long-term key returned from this query is said to be exposed and the
owner(s) of the key, corrupted.

Since the inputs V , W to the NewSession query are optional, we are working
in the post-specified peer model [CK02]. This means that a session might not
know its peers at the beginning of the protocol, but will instead learn this as
the protocol progresses.

Note that a Corrupt query returns a party’s long-term key and nothing else.
Particularly, the adversary does not take control of all the sessions at this party,
nor learn their internal state (except for the leaked long-term key). This is in
contrast to some protocol models [CK01, CK02], where corruption means to
take full control of a party and all its sessions. We emphasize that in our
model, sessions created by the NewSession query always behave honestly (i.e.,
according to the protocol specification), using whatever internal state they have.
The adversary can learn some of this state using Reveal and Corrupt queries,
but it never gets to directly control the sessions’ actions. On the other hand,
with the knowledge of a party’s long-term key, the adversary can of course
simulate a run of a session at this party. However, this “dishonest session” does
not have a material representation in experiment ExpΠ,Q(A) in the form of an
administrative session label π .

Ultimately, the adversary will halt in experiment ExpΠ,Q(A) with some
(possibly empty) output out, which also ends the experiment. Note that exper-
iment ExpΠ,Q(A) does not in itself produce any output, nor define any winning
condition for A. Rather, it provides a single experiment on which we can define
many different winning conditions. Sections 3.3 through 3.5 define the concrete
winning conditions used to formalize the security goals of 2P/3P-AKE, ACCE,
and explicit entity authentication, respectively. For some security properties,
the output out produced by A will be used to define the winning condition of
the security game.

3.2.6 Freshness predicates and partnering
Experiment ExpΠ,Q(A) puts no restrictions on the adversary’s usage of the
queries in Q. Specifically, the adversary can ask for any session key it wants
using the Reveal query, and any long-term key using the Corrupt query. It
follows that any meaningful winning condition needs to take into account the
possibility of trivial attacks enabled by the adversary’s unfettered access to

Section 3.2 A unified protocol execution model 37

Reveal and Corrupt queries. An attacker should not be given credit for trivial
attacks.

To precisely define what constitutes a trivial attack, we use the concept of
a freshness predicate. A session will be considered a legitimate target in the se-
curity game if and only if it satisfies the prescribed freshness predicate. In fact,
we will define several freshness predicates that encode different security proper-
ties. More specifically, the combination of a query set Q, a freshness predicate
F , and a winning condition W , is called a security model (following [CF12]).
Although we don’t do so here (see [CF12, FC14]), the different freshness predi-
cates make it possible to formalize an ordering on the security models in terms
of their “strength”. Generally, a security model M is “stronger” than model M ′

if any protocol secure in model M is also secure in protocol M ′. Provided their
query sets and winning conditions are the same, the relative strength of two
security models comes down to the permissiveness of their freshness predicates.

A key tool for defining freshness is the concept of partnering (also called
matching). Suppose two sessions π and π ′ share the same session key k. If an
adversary A reveals π , meaning that A obtains π ’s session key k, then A can
also trivially attack π ′. But if π and π ′ were supposed to obtain the same key k,
then it doesn’t seem fair that A should get any credit for this attack. Partnering
aims to capture exactly this: two sessions that ought to have the same session
key are called partners, and revealing one of them will automatically make its
partner unfresh as well. We hasten to add that partnering can serve purposes
other than this, something which will be discussed further in Section 3.3, but
the main idea is to match sessions having the same key.

Although the concept of partnering is pervasive in cryptographic security
models, nailing down exactly what partnering is can be surprisingly difficult.
Below we discuss some of the common approaches that have been taken in the
literature.

Matching conversations. In their original key exchange model, Bellare and
Rogaway [BR94] defined partners using matching conversations. For two-party
protocols (which was the topic of [BR94]), two sessions are said to have match-
ing conversations if all the messages sent and received by one session match
the messages received and sent by the other (save possibly for the last mes-
sage, which might not have been delivered). For three-party protocols, or more
generally, N -party protocols, defining matching conversations is less straight-
forward but can still be done (basically by appealing to the protocol’s message
sequence diagram). Notice that matching conversations are consistent with a
protocol run in which all messages are being faithfully transmitted, so by pro-
tocol correctness, partners based on matching conversations do indeed have the
same key.

38 Formal models Chapter 3

Partner functions. Matching conversations do have a downside in that they
focus on an inherently syntactical part of a protocol which ultimately may be
irrelevant to its security. This can be illustrated by the following “folklore”
example. Suppose a protocol Π has been proven secure using matching conver-
sations as the mechanism for partnering. From Π create a new protocol Π0 by
adding a zero bit to the end of every message of Π. On receiving a message
in Π0, a session will ignore the last bit and otherwise proceed as in protocol
Π. Intuitively, protocol Π0 should be no less secure than Π. However, when
matching conversations are used to define partnering, an adversary can simply
flip the zero bit to cause two sessions to no longer be partners. Since proto-
col Π and Π0 otherwise proceed identically, the unpartnered sessions will still
end up with the same session key and can now be legitimately attacked by the
adversary.

Partly due to this undesirable property of matching conversations, in their
next key exchange model, Bellare and Rogaway [BR95] instead defined partner-
ing using the notion of a partner function. The idea behind a partner function
is to look at the global transcript of all the messages sent and received in the
security experiment, and use this to determine a session’s partner. This solves
the problem of matching conversations since a partner function can ignore the
parts of a protocol’s transcript that are irrelevant for security. However, this
begs the question of what parts actually are relevant for security. It is not im-
mediately obvious how one should recognize this. Indeed, the partner function
Bellare and Rogaway [BR95] themselves constructed in order to analyze their
3PKD protocol, turned out to be flawed for the purpose of proving security
as shown by Choo et al. [Cho+05, CH05]. More generally, the connection be-
tween partner functions and our intuitive understanding of partnering seems
less clear than for matching conversations. Similar remarks have also been
made by Rogaway [Rog04, §6].

SIDs. Bellare, Pointcheval, and Rogaway (BPR) [BPR00] presented yet an-
other way of doing partnering by introducing explicit session identifiers (SIDs).
Here, each session is equipped with an additional string called its SID, and for
two sessions to be partners it is necessary that their SIDs are the same. Al-
though simple at first sight, the exact usage and interpretation of SIDs as a
partnering mechanism is not fully consistent in the literature. First there is
the question of how the SID should be constructed. In BPR’s original fomula-
tion, the SID is constructed locally by the sessions themselves during the run
of the protocol, whereas in [CK01, CK02] the SID is assumed to be handed to
the sessions from some unspecified outside process (which could even be the
adversary).

Second, what should the SID contain? At the definitional level this is usually

Section 3.2 A unified protocol execution model 39

left unspecified, but when doing a concrete analysis of a protocol, the SID is
often taken to be the concatenation of a session’s sent and received messages.
This was suggested by BPR [BPR00] and mirrors partnering based on matching
conversations. However, the SID can also be computed as an arbitrary function
of the sent and received messages [AFP05], thus more closely resembling partner
functions.

Finally, the exact relationship between the SID and the session key is not al-
ways formulated identically in different models. For instance, in BPR’s [BPR00]
definition no explicit relationship between the SID and the session key is re-
quired apart from the fact that partners must have both the same SID and
the same session key. This is in contrast to most of the models following it,
where having equal keys is not taken as a requirement for two sessions to be
partners. Instead, the implication “partners =⇒ equal keys” is included as a
security goal on its own (see, e.g., [CK01, CK02, LLM07, CF12]). This idea has
been further distilled in the notion of “Match security” introduced by Brzuska
et al. [Brz+11]. Here, several implications of the form “equal SID =⇒ ...”
are collected into a single Match predicate, and this predicate is then required
to hold throughout the security experiment. Note that Match security mostly
functions as a sanity check on the chosen SID, rather than being an interesting
security goal on its own. When basing partnering on SIDs, it has now become
common practice to split the security definition into two separate goals: one
being Match security and another being the actual security property of interest;
see e.g., [Brz+11, Brz+13a, FG14, Dow+15].

Key-partnering. Of the partnering mechanisms we have discussed so far it
is matching conversations and SIDs which have seen the widest adoption in the
literature; a small sample being [BR94, BM97, Kra05b, LM06, MU08, CF12,
Jag+12, Ber+14, CCG16] (matching conversations) and [BPR00, CK01, CK02,
JKL04, AFP05, RS09, Brz+11, Brz+13a, Brz+13b, KPW13b, FG14, Dow+15]
(SIDs). Partner functions on the other hand, have to the best of our knowledge
only been used in two independent analyses [BR95, SR96]. However, coming
back to the central idea of partnering—two sessions holding the same key—
why are these mechanisms even necessary? Stated differently: why not simply
define partnering directly in terms of which sessions hold the same key? This
approach, which we dub key-partnering here, has in fact been suggested by
Kobara et al. [KSS09] and by George and Rackoff [GR13].

Despite this fact, partnering today is almost exclusively based on either
matching conversations or SIDs. We suggest several possible reasons for this.
One might be historical. When Bellare and Rogaway [BR94] presented their
original model it was primarily in the context of entity authentication. Since
matching conversations is a natural way of formulating the goal of entity au-

40 Formal models Chapter 3

thentication (at least in hindsight!), and since the models for entity authen-
tication and key exchange are almost the same, it might have made sense to
re-use matching conversations as a mechanism for partnering. But as noted by
Bellare and Rogaway [BR95], the goals of entity authentication and key distri-
bution are very different and it is quite possible to consider one without the
other. Hence, there is no reason a priori why a mechanism for defining entity
authentication (matching conversations) needs to be tied up with a definition of
partnering in key exchange. On the other hand, if both entity authentication
and key exchange are wanted properties, then a single mechanism might be
more convenient (see Section 3.5).

Public partnering. A more technical reason for the lack of key-partnering
might be the issue of public partnering. Basically, a partnering mechanism is
said to be public if the adversary can always tell, based on the messages ex-
changed in the protocol, what the partner of a session is. In other words, public
partnering implies that the partnering mechanism must be some function of the
public messages sent and received in the security experiment. For matching con-
versations and partner functions this is true by definition (a point emphasized
by [BR95]), whereas for SID-based partnering this does not necessarily have to
be the case. Specifically, in [BPR00] the definition of partnering depends both
on the session SID and the keys. Although the SID is explicitly handed to the
adversary and in that sense can be thought of as being public, as we remarked
above, there was no implication that equal SIDs imply equal session keys. Thus,
partnering in [BPR00] is not technically speaking public. However, as we also
noted, most SID-based models following [BPR00] removed the requirement of
equal session keys from the partnering definition itself, allowing the partnering
decision to be based purely on public data.

So why is public partnering a desirable feature? The problem with partner-
ing based on private data has to do with simulatability in security reductions.
When proving the security of some protocol Π, one reduces the task of breaking
Π to the problem of breaking one of its building blocks, or to solving some hard
mathematical problem. Specifically, from some hypothetical adversary A that
breaks protocol Π, one constructs an algorithm B that breaks one of the under-
lying building blocks or hardness assumptions. However, in order for B to be
able to capitalize on A’s ability to break protocol Π, it needs to properly simu-
late experiment ExpΠ,Q(A). In particular, B needs to give consistent answers
to A’s Reveal queries. This might require that B is able to determine which
sessions are partners. If protocol Π is only made up out of cryptographic prim-
itives like encryption schemes and signature schemes, then this step is mostly
straightforward. However, if one of the building blocks of Π is actually a pro-
tocol in itself, then this can become much more difficult. In fact, Brzuska et

Section 3.2 A unified protocol execution model 41

al. [Brz+11] showed that a weak form of public partnering is actually necessary
in order to establish a certain compositional result. Particularly, they proved
the “folklore” result that a secure key exchange protocol can safely be com-
posed with a protocol that uses the established session keys—assuming that
the key exchange protocol provides public partnering. Conversely, they also
showed that if two such protocols could be securely composed, then this must
also imply a weak form of public partnering.

In contrast, key-partnering is inherently based on private data (the session
keys!). While Kobara et al. [KSS09] make no mention of this point, George and
Rackoff [GR13] include an oracle that allows the adversary to check whether
two sessions have the same key. In this way they explicitly incorporate public
partnering into their model.

Our choice of partner mechanism. Given all of the above, we have elected
to use partner functions as the partner mechanism in this thesis. On the whole,
we find partner functions to be the most conducive for the kind of modular secu-
rity results we seek to establish. Also, partner functions seem an elegant way of
doing partnering for three-party protocols. While matching conversations can
be generalized beyond two-party protocols, the issue of making a secure pro-
tocol insecure by adding an independent bit to it remains. As for SIDs, when
modeling EAP we are in the peculiar situation that the sessions that we want to
partner, namely the client and authenticator sessions, don’t actually have any
messages in common! Since equal SIDs should imply equal session keys, we are
essentially forced to pick the session keys as the SID—basically leaving us with
key-partnering. However, as pointed out when discussing key-partnering, there
is no guarantee that key-partnering necessarily provides public partnering. This
is an important property to have, especially when analyzing the composition
of several protocols as we do in this thesis. Of course, one could follow the
approach of George and Rackoff [GR13] and assume that a partnering oracle
is present. But since none of the protocols that we want to compose in thesis
(TLS, IKEv2, SSH, etc.,) have been proven secure in this manner, this would
essentially require us to redo the analysis of these protocols in this new setting.
Since a major goal of this thesis is to be able to re-use existing analyses of these
protocols in a modular way, we have chosen not to take this approach.

The remainder of this section is devoted to formally defining partner func-
tions. However, before we can do so we need some language to talk about the
protocol messages being exchanged in the security experiment.

Transcripts. Consider a run of experiment ExpΠ,Q(A). The transcript of
this execution is the ordered sequence T consisting of all the Send and NewSession
queries made by the adversary A, together with their corresponding responses.

42 Formal models Chapter 3

We tacitly assume that A only makes Send queries to sessions that it previ-
ously created with a NewSession query, since sending messages to a non-existing
session is meaningless. Thus, a transcript records all the public messages ex-
changed between the existing sessions in the experiment run.

Example 3.2. A typical transcript T might look something like the following.
Below we have used different colors to indicate different messages, and we have
simplified the sessions’ acceptance state variable #»α to only consist of a single
value α.

〈NewSession(A, B), π1
A, m, running〉,

〈NewSession(B, A), π1
B , ⊥, running〉,

〈Send(π1
B , m), m, running〉,

〈Send(π1
A, m), m, accepted〉,

〈Send(π1
B , m∗), ⊥, rejected〉,

〈NewSession(A, C), π2
A, m, running〉,

...
〈Send(π23

D , m), ⊥, accepted〉
In this example, A first creates an initiator session π1

A and a responder
session π1

B . It then forwards π1
A’s initial message m to π1

B , which responds
with its own message m. This is shown in the first Send query. Next, A
forwards π1

B ’s message m to π1
A which responds with its own message m and

accepts (second Send query). However, A now sends a forged message m∗ to
π1

B which leads it to reject (third Send query). The rest of the transcript can
be explained in a similar manner. �

Note that a transcript does not include any of A’s Test, Reveal, or Corrupt
queries. So for the example given above, A could have made a number of Reveal
and Corrupt queries (as well as a Test query) in between the NewSession and
Send queries recorded on T .

We now define some useful notation for working with transcripts. A tran-
script T is a prefix of another transcript T ′, written T ⊆ T ′, if the first |T |
entries of T ′ are identical to T . A transcript T is said to contain a session π if
there is a NewSession query on T that created π . Let S be a set of sessions and
let T be an arbitrary transcript. The restriction of T to S, written T

∣∣
S

, is the
transcript one gets from T by removing all queries that do not pertain to the
sessions in S. That is, T

∣∣
S

consists only of the NewSession queries in T that
created the sessions in S, as well as the Send queries directed to these sessions.
Note that T

∣∣
S

is not necessarily a prefix of T because the Send and NewSession

Section 3.2 A unified protocol execution model 43

queries of T
∣∣
S

could have been arbitrarily interspersed with all the other Send
and NewSession queries of T .

Partner functions – formal definition. Given the language of transcripts
we can now precisely define partner functions and partnering. We give the
formal definitions first, then make several comments.

Definition 3.3 (Partner functions). A partner function is a function

f : (T, π) �→ π ′/⊥ (3.4)

that takes as input a transcript T and a session π contained in T , and then
outputs a session π ′ in T or ⊥. A partner function is symmetric if f(T, π) = π ′

implies that f(T, π ′) = π for all transcripts T . A partner function is monotone
if f(T, π) = π ′ implies that f(T ′, π) = π ′ for all T ⊆ T ′. Instead of f(T, π) = π ′

we will more commonly write fT (π) = π ′.

Definition 3.4 (Partnering). Let T be a transcript and f be a partner
function. If fT (π) = π ′ then π ′ is said to be the partner of π . If fT (π) = π ′

and fT (π ′) = π then π and π ′ are partners.

In other words, a partner function assigns every session created in experi-
ment ExpΠ,Q(A) to its partner (if it has one) or to ⊥ (if it doesn’t). Technically
speaking, a partner function also depends on the parties in the system and the
roles they have, so a partner function should additionally have taken the sets I,
R, and S as input. However, since these sets could easily have been provided to
the partner function in some other way, say by writing them as the first entries
of the transcript T , we assume that the configuration of I, R, and S is encoded
into the partner function itself.

Except for notational differences, our definition of partner functions mostly
mirrors that of Bellare and Rogaway [BR95]. However, unlike Bellare and Ro-
gaway, we will always demand that our partner functions are symmetric and
monotone. Both properties are fairly natural to expect from a partnering mech-
anism. Symmetry says that if π ′ is a partner of π , then π is also the partner of
π ′; while a partner function is monotone if once π and π ′ becomes partners, then
they remain so forever. Partnering based on matching conversations, SIDs, or
key-partnering are usually both symmetric and monotone3. Moreover, Bellare

3Partnering can fail to be monotone if a requirement of uniqueness is baked into the
definition. For instance, if partnering was defined as “π and π ′ are partners if and only if
they are the only two sessions having the same SID”, then they would cease to be partners
if a third session were to compute the same SID. The original SID-based partner definition
of Bellare, Pointcheval, and Rogaway [BPR00], as well as the key-partnering definition of
Kobara, Shin, and Strefler [KSS09], were of this form. However, most other models today
are monotone. The issue of three sessions computing the same SID is instead formulated as
a security goal of its own.

44 Formal models Chapter 3

and Rogaway [BR95, Thm 5] even state (although without proof) that a pro-
tocol proven secure with a general partner function can also be proven secure
with a symmetric and monotone partner function. At any rate, we find it easier
to simply demand these properties at the definitional level. Since we are always
going to demand that our partner functions are symmetric and monotone, we
drop these adjectives from now on and talk only about “partner functions”.

Because of its generality, the partner function definition technically admits
some rather non-intuitive functions. For instance, the trivial partner function
which partners no sessions at all is a valid partner function. Clearly, no protocol
can be secure with this partner function. So what does security based on partner
functions actually mean? Essentially, security is a statement about the existence
of some partner function for which no adversary can have a good advantage in
breaking the protocol. Particularly, security means that there exists a partner
function so that any attack on the protocol can be translated into an attack
on its building blocks. However, when protocols are built out of sub-protocols,
the meaning of security is more subtle since the security of the sub-protocols
is itself expressed in terms of partner functions. The problem is that for any
protocol there exists a partner function for which the protocol can trivially be
broken (like the trivial partner function mentioned above). Thus, a statement
of the form “an attack on protocol Π under partner function f implies an attack
on its sub-protocol Π1 for some partner function g” is meaningless. Instead, a
meaningful reduction from a protocol to its sub-protocol needs to hold for every
choice of g. Alternatively, it should hold for a particular choice of g, and then
one shows that an attack on the sub-protocol under this g implies an attack
on its building blocks. Note that security based on SIDs is also fundamentally
a statement about the existence of some SID, although this point is seldom
emphasized in papers that use SIDs for partnering.

Finally, we define a special class of partner functions, called local partner
functions, which will be useful in one of our later analyses. Local partner
functions capture the idea that deciding whether two sessions π and π ′ are
partners or not should only depend on π ’s and π ′’s local transcripts, i.e., the
messages they sent and received. However, there is one issue with this approach:
since partner functions are indeed functions, this notion could be ambiguous if
two sessions at the same party have exactly the same local transcript τ . Thus,
we only define local partnering for unique transcripts, where a transcript is
said to be unique if no two sessions at the same party have the same local
transcripts.

Definition 3.5 (Local partnering). A partner function is local if for all
unique transcripts T , and for all sets S of sessions contained in T , we have

f(T, π) = π ′ ⇐⇒ f(T
∣∣
S

, π) = π ′ (3.5)

Section 3.2 A unified protocol execution model 45

for all π, π ′ ∈ S.

Although we have presented local partner functions as being a special class
of partner functions, they are in fact the norm. Both matching conversations
and SIDs are local as partner mechanisms.

Soundness of partner functions. As already noted, the generality of the
partner function definition allows for some nonsensical constructions. In fact,
the definition does not even mandate that partners end up with the same key.
Thus, following the Match security approach of Brzuska et al. [Brz+11], we
define a soundness predicate Sound which aims to capture those properties
that we intuitively expect to hold for two partnered sessions.

Briefly, soundness demands that partners should: (1) end up with the same
session key, (2) agree upon who they are talking to, (3) have compatible roles,
and (4) be unique. Note that beyond having the same key, these requirements
also express authentication goals in terms of the partner function. Since part-
ner functions are indeed functions, the uniqueness requirement of (4) follows
automatically. Hence, we can skip it in our formal definition.

Definition 3.6 (Soundness security). Let f be a partner function. Consider
a run of experiment ExpΠ,Q(A). Predicate Soundf is true if and only if, for
any two partnered sessions πi

U and πj
V , all of the following requirements hold:

1. πi
U .αF = πj

V .αF = accepted =⇒ πi
U .k = πj

V .k,

2. πi
U .αF = πj

V .αF = accepted =⇒ πi
U .peers = πj

V .peers = {U, V, [W]},

3. (U ∈ I ∧ V ∈ R ∧ W ∈ S) or (U ∈ R ∧ V ∈ I ∧ W ∈ S).

We let ExpSoundf

Π,Q (A) ⇒ 1 denote the event that Soundf = false. The
soundness advantage of an adversary A against a protocol Π under partner
function f is

AdvSound
Π,f (A) def= Pr[ExpSoundf

Π,Q (A) ⇒ 1]. (3.6)

If clear from context, we write Sound instead of Soundf . Note that Item 3
excludes role-symmetric protocols (recall Section 3.2.1), but it also encodes the
fact that server sessions will not be considered partners to anyone.

Formulated as a security game, soundness says that if two sessions become
partners, then they will agree upon the same session key (say) except with
some “small” error probability AdvSound

Π,f (A). However, in order not to always
having to condition on two partners having the same session key (or any of the
other properties), we will in most of our proofs make the simplifying assumption
that soundness is perfect, i.e., AdvSound

Π,f (A) = 0. This is a mild assumption;

46 Formal models Chapter 3

partnering mechanisms such as matching conversations and SIDs usually always
have this property provided the protocol employs a deterministic key derivation
function.

3.3 2P-AKE protocols and 3P-AKE protocols
In this section we define our security model for AKE. In fact, we define three
AKE models. One provides what we call full forward secrecy, one provides
weak forward secrecy, and one provides no forward secrecy. Since most of the
groundwork has already been done in the previous section, this section merely
defines the AKE winning condition as well as providing a detailed discussion
of the freshness predicates that make up the different AKE security models.

AKE syntax and security. The syntax of an AKE protocol is exactly the
same as presented in Section 3.2.3. For AKE security, we want that an adversary
should learn nothing about the distributed session keys except for those keys
it can obtain by trivial means using Reveal and Corrupt queries. The standard
way of expressing this is by saying that the session keys held by fresh sessions
should be indistinguishable from random strings. Formally, this is captured by
adding to the base query set Qbase an additional query Test, defined as follows.

• Test(πi
U): If πi

U .αF �= accepted or U ∈ S, return ⊥. Otherwise, draw
a random bit b, and return πi

U ’s session key if b = 0, or a random key
k̃ ←←{0, 1}κ if b = 1. We call πi

U the test-session and the returned key the
test-key. The Test query can only be made once.

The goal of the adversary is to correctly guess the secret bit b used to
answer the Test query. However, A is only given credit if the chosen test-
session was fresh. Whether a session is fresh or not depends on the security
model M . Specifically, it is decided by a freshness predicate Fresh. In this thesis
we consider three AKE security models:

• AKEfs which captures full forward secrecy (fs);

• AKEwfs which captures weak forward secrecy (wfs); and

• AKEnfs which has no forward secrecy (nfs).

Each model is determined by its corresponding freshness predicate FreshAKEfs ,
FreshAKEwfs , or FreshAKEnfs . The definitions of these freshness predicates (together
with the freshness predicate of the ACCE model) are presented jointly in Fig-
ure 3.2 using the parametrized predicate FreshM . Before we describe these
predicates in greater detail, we first give the formal definition of AKE security.

Section 3.3 2P-AKE protocols and 3P-AKE protocols 47

FreshM (πi
U):

1: // Record the long-term keys of πi
U ’s peers in the list LTKeys.

2: // LTKeys depends on the type of protocol under consideration
3: // (2P-PSK vs. 2P-Public Keys vs. 3P).
4: {U, V, [S]} ← πi

U .peers
5: 2P-Public-Key:
6: LTKeys ← {skV }
7: 2P-PSK:
8: LTKeys ← {KUV }
9: 3P:

10: if U is an initiator:
11: LTKeys ← {KV S , skS}
12: if U is a responder:
13: LTKeys ← {KV S , skS , skV }
14:
15: // πi

U is fresh...
16: fresh ← true
17: // ... if it has accepted
18: fresh ← fresh ∧ (πi

U .αF = accepted)
19: // ... and it has not been revealed
20: fresh ← fresh ∧ (Reveal(πi

U) has not been called)
21: // ... and its partner has not been revealed
22: fresh ← fresh ∧ (Reveal(fT (πi

U)) has not been called)
23: // ... and no keys in LTKeys have been exposed in violation of security model M
24: fresh ← fresh ∧ (CorruptM = false)
25:
26: return fresh

CorruptM :
27: corrupt ← false
28: if M ∈ {AKEfs, ACCE}:
29: corrupt ← (fT (πi

U) = ⊥) ∧ (a key in LTKeys was exposed before πi
U accepted)

30: if M = AKEwfs:
31: corrupt ←

(
(fT (πi

U) = ⊥) ∧ (a key in LTKeys is exposed)
)

32: if M = AKEnfs:
33: corrupt ← (a key in LTKeys is exposed)
34: return corrupt

Figure 3.2: Freshness predicate FreshM parameterized on security model M ∈
{AKEfs, AKEwfs, AKEnfs, ACCE}.

48 Formal models Chapter 3

Definition 3.7 (AKE security). Consider a run of experiment ExpΠ,QAKE
(A).

Suppose π was the test-session chosen by A, b was the random bit used in an-
swering the Test query, and b′ was the final output of A. Fix a partner function f
and define AKE∗ ∈ {AKEfs, AKEwfs, AKEnfs} to be the following random variable
on experiment ExpΠ,QAKE

(A):

AKE∗ def=

⎧⎪⎨⎪⎩
1 if (b′ = b) ∧ FreshAKE∗(π) = true
0 if (b′ �= b) ∧ FreshAKE∗(π) = true

b̃ ←←{0, 1} if FreshAKE∗(π) = false
(3.7)

Let ExpAKE∗
Π,QAKE

(A) ⇒ d denote the event that AKE∗ = d. The AKE ∗ advantage
of an adversary A is

AdvAKE∗
Π,f (A) def= 2 · Pr[ExpAKE∗

Π,QAKE
(A) ⇒ 1] − 1. (3.8)

Note that in Definition 3.7 we are quantifying over all adversaries, not only
those that satisfy the freshness predicate. Instead, if the adversary violates the
freshness predicate then it gets penalized in the winning condition by having
the challenger output a random bit on its behalf. This penalty-style formulation
of security has previously been used in other works like [BHK15] and [GR13].

If we want to emphasize that a protocol is two-party or three-party, we write
Adv2P-AKE∗

Π,f (A) or Adv3P-AKE∗
Π,f (A), respectively.

3.3.1 Comparing the three AKE security models
We now explain our AKE security models in detail, beginning with the AKEfs

model, which is the strongest of the three.

AKEfs. Given that the adversary has the ability to obtain any keys it wants
using the Reveal and Corrupt queries, the purpose of the FreshAKEfs predicate
is to limit the scope of what is considered a valid attack within the model.
The goal of the AKEfs model is to restrain the adversary as little as possible
(hence leading to a strongest possible model), while at the same time being
satisfiable. Although the freshness predicate can be applied to any session
πi

U , we ultimately only care about the freshness of the test-session, so in the
following we assume that the session πi

U in Figure 3.2 is the test-session.
First, the adversary should not be allowed to reveal the test-session, since

otherwise it could trivially tell whether the test-key is random or not by checking
whether the test-key is equal to the revealed key. This restriction is shown at
Line 20 in Figure 3.2. Second, as we elaborated in Section 3.2.6, the adversary
should also not be allowed to reveal the session key of the test-session’s partner.

Section 3.3 2P-AKE protocols and 3P-AKE protocols 49

Table 3.1: Summary of the long-term key corruption models for the three AKE
security models considered in this thesis. The table assumes that πi

A is the test-session
having B and S (in the three-party case) as its peers. The adversary is allowed to
corrupt a party U /∈ {A, B, S} in all three models (not shown).

Corrupt B or S

Model Corrupt A if πi
A has a partner if πi

A has no partner

AKEfs allowed1 allowed allowed2

AKEwfs allowed1 allowed ×
AKEnfs allowed1 × ×

1 Only when using asymmetric long-term keys.
2 But only after πi

A accepted.

This is shown at Line 22 in Figure 3.2. Note that this makes the freshness
predicate dependent on the partner function f , although this is not visible from
the notation FreshAKEfs . Finally, we come to the issue of leakage of long-term
keys. We refer to the extent to which an adversary can obtain long-term keys
as the (long-term key) corruption model of the security model. In fact, the only
difference between our three AKE models lies in their respective corruption
models as shown at Line 24 of Figure 3.2. In Table 3.1 we summarize the
corruption models of our three AKE models.

The corruption model of AKEfs is quite liberal. First of all, any long-term
key not contained in the variable LTKeys (Lines 4 through 13 in Figure 3.2)
can be obtained at any point without affecting the freshness of the test-session.
Note in particular that this includes the test-session’s own private key skU

(if it has one). Thus, the AKEfs model captures KCI attacks (refer back to
Section 3.2.5 or [JV96, BM97]).

On the other hand, for the long-term keys contained in LTKeys some restric-
tions apply. The keys in LTKeys are the long-term keys of the parties that the
test-session believes it is talking to (as recorded in its peers variable at Line 4
in Figure 3.2). If these keys could be arbitrarily corrupted the adversary could
trivially impersonate the corresponding parties towards the test-session. There
are two cases to consider: (1) either the test-session has a partner (fT (πi

U) �= ⊥),
or (2) it does not (fT (πi

U) = ⊥).
In the first case the AKEfs model is maximally lenient: any long-term key

can be corrupted—even before the test-session has accepted! This is an exam-
ple of where the partnering concept is used to model something beyond the
notion of two sessions having the same key. In this setting, partnering is in-
stead used to model passiveness by the adversary. Basically, the presence of

50 Formal models Chapter 3

a partner is used as a sign that the adversary did not actively interfere with
the communication of the test-session. Of course, when partnering is based
on matching conversations, this connection is explicit. However, by letting the
existence of a partner represent passiveness, we have lifted this intuition from
matching conversations to partner functions.

Remark 3.8. Note that there are other, more fine grained, mechanisms for
capturing passiveness besides partnering. For instance, the notions of origin-
sessions [CF12] and contributive session identifiers [Dow+15] are two ways to
express the idea that the adversary did not actively influence those parts that
determine the session key, say like a Diffie-Hellman share or a nonce. A similar
concept is the notion of a protocol core introduced by Krawczyk [Kra16]. �
Example 3.9. Modeling an attacker which has access to the parties’ private
long-term keys but does not actively interfere with the communication can
be relevant in a real-world scenario. Namely, consider a Big Brother type of
adversary, like an ISP or a governmental three letter agency, which has massive
data collection capabilities, and might even be able to obtain many of the users’
long-term keys. Still, this Big Brother adversary will probably not be able to
actively interfere with, say, every TLS connection on the Internet, even though
it might be able to passively collect all communications. Thus, in this case
we can still have security for those connections where the adversary does not
actively use its knowledge of the private keys. The AKEfs corruption model
captures this possibility. �

So far we have discussed the AKEfs corruption model in the scenario where
the test-session has a partner. We now turn to the situation where the test-
session does not have a partner. Going with the idea that existence of partners
implies passiveness, the absence of a partner must mean that the adversary
was active. In this scenario, if the adversary can obtain the long-term keys of
the test-session’s peers before it accepted, then we cannot in general give any
security guarantees. This is because the adversary could be impersonating the
peers of the test-session. However, the AKEfs model still assures security as
long as the Corrupt queries happen after the test-session accepts. This is shown
at Line 29 in Figure 3.2.

To summarize, in the AKEfs model the adversary can:

• reveal any session keys that does not belong to the test-session or its
partner,

• (when passive) obtain any long-term keys it wants, at any time,

• (when active) obtain the long-term keys of unrelated parties at any point
it wants, but the long-term keys of the test-session’s peers can only be
obtained after the test-session accepted.

Section 3.3 2P-AKE protocols and 3P-AKE protocols 51

AKEwfs. Many protocols that provide forward secrecy nevertheless fail to
be secure according to the AKEfs model. For example, the Diffie-Hellman
based protocol HMQV [Kra05b] and NAXOS [LLM07] cannot be secure in this
model (see [Kra05a, §3.2] for a description of the attack). But also EAP used
without key-confirmation is insecure in the AKEfs model. To see this, recall
from Chapter 2 that EAP without key-confirmation consists of running an EAP
method between the client and the server in order to establish a common session
key MSK. This key is then transferred from the server to the authenticator
using some secure key transport protocol. Recall also that the server and the
authenticator use a long-term PSK to authenticate each other. Now consider
the following attack. First, the adversary runs the EAP method to completion
as normal. At this point the client has accepted so the adversary can select it as
its test-session. Next, the adversary exposes the PSK shared between the server
and authenticator and uses this to impersonate the authenticator towards the
server. As a result, the server will send the MSK directly to the adversary
using the key transport protocol. Note that this attack on basic EAP is valid
in the AKEfs model since the corruption of the PSK happened after the client
test-session accepted. Hence, basic EAP cannot be secure in the AKEfs model.

The problem is that the client in basic EAP does not have any guarantees
that the second part of the protocol actually took place. As long as the second
part has not completed, we cannot allow the adversary to obtain the long-term
keys of the client’s peers since this enables it to impersonate the authenticator.
In other words, we require that the client must have a partner before we can
safely leak the long-term keys. This is the idea of weak forward secrecy. The
AKEwfs model is obtained from the AKEfs model by moving to a corruption
model using weak forward secrecy instead of full forward secrecy. This is shown
at Line 31 in Figure 3.2.

Bellare, Pointcheval, and Rogaway [BPR00] and Krawczyk [Kra05b] origi-
nally introduced the concept of weak forward secrecy in the context of two-flow
(Diffie-Hellman based) protocols. There it was used to capture the problem
that the adversary could modify the final message of the responder and then
corrupt the initiator in order to learn the session key of the responder. Weak
forward secrecy then demanded that the responder must have a partner before
the initiator could be corrupted. Since the (SID-based) partnering mechanism
used in [BPR00, Kra05b] included the sessions’ local message transcripts, weak
forward secrecy essentially amounted to saying that the adversary must be
passive with respective to the test-session. This is another example of how
partnering is used to encode passiveness.

A standard trick to upgrade protocols from weak forward secrecy to full for-
ward secrecy is to add an additional key confirmation message to the protocol.
For instance, the three-message variant of HMQV, called HMQV-C [Kra05a],

52 Formal models Chapter 3

is constructed in exactly this way and can be shown to satisfy full forward
secrecy. Foreshadowing our own results a bit, the combination of EAP with
IEEE 802.11 can also be seen as an instance of this trick, where the IEEE 802.11
4WHS protocol provides key-confirmation to EAP. Basically, this idea lies at
the center of one of our main composition results (Theorem 4.12 in Chapter 4),
which shows generically that any 3P-AKE protocol with weak forward secrecy
can be upgraded to achieve full forward secrecy by composing it with a 2P-AKE
protocol with no forward secrecy.

AKEnfs. In order to accommodate protocols that do not provide forward
secrecy—like the IEEE 802.11 4WHS protocol—we introduce the AKEnfs model.
The AKEnfs model follows in the same vein as the AKEfs and AKEwfs models,
but now the adversary is banned from obtaining any of the relevant long-term
keys at all times. Long-term keys that are not relevant for the test-session can
still be obtained as before.

3.3.2 Comparison with other models
Our three AKE models correspond almost one-to-one to three comparable mod-
els in [BPR00]. More precisely, our AKEnfs model with no forward secrecy
corresponds to their “basic” model, our AKEfs model with full forward secrecy
corresponds to their “forward secrecy” model, and our AKEwfs model with
weak forward secrecy corresponds to their “weak forward secrecy” model. To
see this, compare our freshness predicates with the freshness notions given in
Figure 2 of [BPR00] (where the freshness notion for the “weak forward secrecy”
model is described in [BPR00, Remark 7]). However, there are two major dif-
ferences between our models and those of [BPR00]. The first is that we are
using partner functions and they are using SIDs. We already elaborated on
the difference between partner functions and SIDs in Section 3.2.6. The second
difference is that the corruption model in [BPR00] additionally allows the ad-
versary to obtain a session’s full state, including its internal randomness used
to generate ephemeral values, and not only their secret long-term keys. Bellare,
Pointcheval, and Rogaway call this the strong corruption model, as opposed to
the weak corruption model [BPR00, Remark 3] where the adversary can only
obtain the long-term keys (not to be confused with the notion of weak forward
secrecy described above). Thus, using this language, our AKE models can be
seen to directly correspond to those of [BPR00] in the weak corruption model
(save for the use of different partnering mechanisms).

Let us expound upon the strong corruption model in order to explain why
we are not covering it in this thesis. The possibility of giving the adversary
access to the sessions’ internal state has been a central motif in the so-called

Section 3.4 ACCE protocols 53

Canetti–Krawczyk [CK01] and extended Canetti–Krawczyk [LLM07] models.
Formally, this is captured by giving the adversary access to an additional query,
usually called SessionStateReveal or EphemeralKeyReveal. The idea is that if a
protocol mixes both ephemeral and long-term keys into the derivation of the
session keys, then it is not sufficient for the adversary to only obtain one of
them. Thus, security can still be achieved in the face of ephemeral key leakage.
More generally, the aim of modern AKE models has been to capture more and
more of the real-world threats that exists, such as bad randomness generators
[FC14], side-channel attacks [ADW09, MO11, ASB14, ASB15], PKI subver-
sion [Boy+13], and total long-term key compromise [CCG16]. Typically, this
is achieved by defining increasingly stronger models that grant the adversary
access to progressively more of a protocol’s secret data and internal computa-
tions.

The reason why we are not capturing these more advanced features in our
security models is because the real-world protocols of interest to this thesis,
e.g., EAP, IEEE 802.11, TLS, IKEv2, and SSH, do not provide them. Thus,
looking at stronger models is out of scope for this thesis. Nevertheless, since
our composition results are quite generic and modular, we believe that they
should be fairly robust in the face of changing models. That is to say, by mak-
ing comparatively stronger assumptions on our underlying (protocol) building
blocks, we should also be able to achieve correspondingly stronger results for
our composed protocols as well. From this perspective, the choice of model
should be rather orthogonal to the results of this thesis.

3.4 ACCE protocols
The world’s most important security protocol, TLS, fails to be a secure AKE
protocol in all its currently standardized versions (up to TLS 1.2 [RFC5246]).
The reason is banal: some of TLS’s key exchange messages are encrypted using
the session key itself. Since AKE security is defined in terms of session key
indistinguishability, this trivially makes it impossible to prove TLS secure as
an AKE protocol. Specifically, after receiving the test-key from the challenger
in experiment ExpTLS,QAKE

(A), the adversary can try to decrypt one of the
encrypted handshake messages using the test-key. If the decryption succeeds,
then the adversary knows that it got the real key, otherwise, it must have gotten
a random key.

On the other hand, it seems unlikely that this property should make TLS
any less secure in practice. More specifically, for the purpose of establishing
a secure channel between two parties, TLS might be perfectly fine. In order
to analyze TLS from this point of view, Jager et al. [Jag+12] introduced the
notion of an authenticated and confidential channel establishment (ACCE) pro-

54 Formal models Chapter 3

tocol. Intuitively, an ACCE protocol combines an ordinary AKE protocol with
a stateful authenticated encryption (stAE) scheme into a monolithic protocol,
where the session key from the AKE protocol is used to key the stAE scheme.
The security goal is then shifted from providing indistinguishable session keys
to instead providing secure channels using the established session keys. As
a consequence, ACCE protocols have less utility than AKE protocols, in the
sense that they provide no assurance on the use of their sessions keys beyond
the fact that they are safe to use with the corresponding authenticated encryp-
tion scheme in the manner described by the protocol. By contrast, a classic
result of Canetti and Krawczyk [CK01] shows that AKE protocols can be used
to construct secure channels in a modular fashion. The more recent result of
Brzuska et al. [Brz+11] further generalizes this to show that AKE protocols can
be securely composed with essentially any type of symmetric key functionality
in a similarly modular way.

Despite the merits of modularity, most real-world designs are unfortunately
not as clean. Like TLS, many protocols use the established session key within
the key exchange phase. This early session key usage prevents a modular anal-
ysis that can treat the AKE part and the channel part of a protocol separately.
As a result, the ACCE model has been used to analyze several real-world
protocols after its introduction, including multiple variants of TLS [Jag+12,
KPW13b, KSS13, Li+14], SSH [Ber+14], and QUIC [Lyc+15]. In this thesis
we are only going to apply the ACCE notion to two-party protocols, so we only
define it in that setting.

Syntax. An ACCE protocol is a two-party protocol as defined in Section 3.2.3,
together with an associated stAE scheme Λ = (Init, Enc, Dec). The formal def-
inition of an stAE scheme is given in Appendix A.4. The notion of a session
is the same as before, but the session state is extended with two additional
variables stE and stD in order to store the encryption/decryption state of the
stAE scheme.

ACCE security. The security of a (2P-)ACCE protocol Π is based on exper-
iment ExpΠ,Q(A) defined in Section 3.2.5. However, the base query set Qbase

is extended with two additional queries, LR and Decrypt, shown in Figure 3.3.
The two additional queries allow the adversary to interact with the channels es-
tablished in the protocol. The LR query takes in a session π , two messages M0,
M1, and some optional additional data A. It returns the stateful encryption of
either M0 or M1 under π ’s session key π.k. The Decrypt takes in a session π , a
ciphertext C, and additional data A. It either always returns ⊥ or potentially
the decryption of C, provided the query was out-of-sync with respect to the LR
query.

Section 3.4 ACCE protocols 55

LR(π, M0, M1, A):
1: if (π.αF �= accepted) ∨ (|M0| �= |M1|):
2: return ⊥
3:
4: π.sent ← π.sent + 1
5: (C0, st0

E) ← Λ.Enc(π.k, M0, A; π.stE)
6: (C1, st1

E) ← Λ.Enc(π.k, M1, A; π.stE)
7:
8: π.stE ← stb

E
9: π.S[sent] ← (Cb, A)

10:
11: return Cb

Decrypt(π, C, A):
1: if (π.b = 0) ∨ (π.αF �= accepted):
2: return ⊥
3:
4: π.rcvd ← π.rcvd + 1;
5: (M, π.stD) ← Λ.Dec(π.k, C, A; π.stD)

6:
7: π ′ ← fT (π)
8: if (π ′ = ⊥) ∨ ((C, A) �= π ′.S[π.rcvd]):
9: π. in-sync ← false

10:
11: if π. in-sync = false:
12: return M
13: return ⊥

Figure 3.3: The LR and Decrypt queries for the ACCE security experiment.

The LR and Decrypt queries associate some additional variables to each
session πi

U , namely:

• b – a random bit drawn at the creation of session πi
U ;

• sent, rcvd – counters initialized to 0 and incremented for each call to
LR(πi

U , ·, ·, ·) and Decrypt(πi
U , ·), respectively;

• S[·] – a list containing the sent ciphertexts and additional data returned
from calls to LR(πi

U , ·, ·, ·), we have S[x] = ⊥ for all x /∈ [1, sent];

• in-sync – a flag used to detect trivial wins by the adversary.

The variables b, sent, ..., are part of the security experiment ExpΠ,Q(A),
and not technically part of the syntax of an ACCE protocol. However, by abuse
of notation, we use πi

U .b, πi
U .sent, ..., also when referring to these variables.

The goal of an ACCE adversary is to guess the secret bit b of one of the
sessions π . As before, the session needs to be fresh according to the freshness
predicate FreshACCE (see Figure 3.2). Although the ACCE experiment is for-
mulated as a distinguishing game, it captures both confidentiality and integrity
goals. Particularly, for each session π , the adversary is challenged to distin-
guish between two worlds: one where the LR query returns the encryption of
its left plaintext input and the Decrypt query always returns ⊥ (π.b = 0); and
one where the LR query returns the encryption of its right plaintext input and
the Decrypt query returns the decryption of the supplied ciphertext provided it
was out-of-sync (π.b = 1).

56 Formal models Chapter 3

If the underlying stAE scheme does not provide confidentiality, then the
LR query alone is enough to guess b. On the other hand, integrity is captured
implicitly through the Decrypt query. If the adversary can successfully forge
a ciphertext—meaning that it can produce an out-of-sync ciphertext which
decrypts to something other than ⊥—then it can use the output from the
Decrypt query (⊥ vs �= ⊥) to determine the value of b. Notice that the out-of-
sync requirement is needed in order to avoid trivial wins, since otherwise the
adversary could just feed the output from the LR query directly to the Decrypt
query and learn b. Finally, note that stateless authenticated encryption schemes
cannot satisfy this definition. Specifically, for a stateless encryption scheme the
adversary could use the LR query to first obtain a ciphertext C, and then query
Decrypt on C twice. If π.b = 0, then the Decrypt query would return ⊥ both
times. If π.b = 1, then the first Decrypt query would return ⊥ and the second
query would return the decryption of C (since it is out-of-sync).

Let Q = Qbase ∪ {LR, Decrypt}. Experiment ExpΠ,Q(A) stops when A
outputs a pair (π, b′).

Definition 3.10 (ACCE security). Consider a run of experiment ExpΠ,Q(A).
Suppose (π, b′) was the final output by A. Fix a partner function f and define
ACCE to be the following random variable on experiment ExpΠ,Q(A):

ACCE def=

⎧⎪⎨⎪⎩
1 if (b′ = π.b) ∧ FreshACCE(π) = true
0 if (b′ �= π.b) ∧ FreshACCE(π) = true

b̃ ←←{0, 1} if FreshACCE(π) = false
(3.9)

Let ExpACCE
Π,Q (A) ⇒ d denote the event that ACCE = d. The ACCE advan-

tage of an adversary A is

AdvACCE
Π,f (A) def= 2 · Pr[ExpACCE

Π,Q (A) ⇒ 1] − 1. (3.10)

3.5 Explicit entity authentication
One can observe the following consequence of our AKE4 security definition. If
a fresh session comes to accept a session key, then there can be at most one
other session holding the same key, and this session must necessarily be its
partner. Why? Suppose not, i.e., assume that π and π ′ accepts the same key
but are not partners. If so, then the adversary can reveal one of them, test the
other, and trivially break the AKE protocol—contradicting its supposed AKE
security. Thus, π and π ′ must either have been partners or not accepted the

4The following applies equally to the ACCE security definition.

Section 3.5 Explicit entity authentication 57

same key. By soundness (Definition 3.6), this implies that a fresh session π
that accepts a key is assured that this key will be shared by at most one other
session π ′, and that this session will reside at π ’s intended peer. However,
notice that this authentication property is implicit in the sense that a session
has no guarantee that its partner actually exists. For example, consider the
client in EAP: after completing the EAP method with the server, it cannot
know whether the subsequent key transfer from the server to the authenticator
actually took place (at least without any further communication).

The opposite of implicit authentication is explicit authentication. Here the
existence of a partner is guaranteed. Thus, explicit authentication adds the
following aliveness property to a protocol. If a session at party A comes to
accept, believing it has talked to party B, then some corresponding (unique)
session at B must actually have contributed to this protocol run.

Note that the question of whether explicit (entity) authentication should
be considered a requirement of secure AKE protocols is somewhat disputed in
the literature (see [BR95, §1.6], [Rog04, §6], and [Kra03, §2.1]). Basically, the
argument is that whether or not a partner is actually “out there” is ultimately
irrelevant; it is the usage of the key that matters. For instance, even though the
EAP client might not have a parter, once it starts using its accepted key, no one
except its intended peer will actually be able to communicate with it. Thus, in
the bigger picture, it is not so clear what benefits explicit authentication brings
over implicit authentication. Consequently, most formal AKE models today do
not require explicit entity authentication as a necessary security feature.

Remark 3.11. As opposed to computational AKE protocol models, which
mostly treat authentication as an ancillary to the goal of key exchange, symbolic
protocol models have historically focused extensively on the goal of authenti-
cation itself. As a result, they also have more refined definitions of authentica-
tion, including elaborate authentication hierarchies that consist of notions like
“weak-aliveness”, “injective-agreement”, and “non-injective-sync”; see Chap-
ter 4 of the book by Cremers and Mauw [CM12]. Our colloquial usage of the
term “aliveness” in the preceding paragraph should not be interpreted in the
literal sense of these technical notions (although the closest thing would prob-
ably be a combination of “weak-aliveness-role” and “injective-agreement”—see
Figure 4.13 in [CM12]). �

Within our framework, the notion of explicit entity authentication is inter-
changeable with another property called key-confirmation. Key-confirmation
is the property that if a session accepts a key, then it is assured that some
other session must also have computed the same key (see [Fis+16] for a formal
treatment of key-confirmation). Again, it might be debatable how useful this
property is in practice, but it nevertheless is the key feature that allows us to

58 Formal models Chapter 3

upgrade the security of EAP from weak forward secrecy to full forward secrecy.
For this reason we find it useful to provide a formal definition of explicit en-
tity authentication (and hence key-confirmation). However, we stress that the
security properties we ultimately aim to satisfy in this thesis are key indistin-
guishability (AKE) and channel security (ACCE), as defined by Definition 3.7
and Definition 3.10, respectively. Explicit entity authentication is mostly used
as a means to an end in order to achieve these goals.

Since explicit entity authentication is defined identically for AKE and ACCE
protocols, we provide a single generic definition here.

Definition 3.12 (Explicit entity authentication). Let M be a security
model. Consider a run of experiment ExpΠ,Q(A) and fix a partner function f .
A session π is said to have accepted maliciously if all of the following hold:

1. π.αF = accepted,

2. FreshM (π) = true,

3. fT (π) = ⊥.

Let ExpM-EA
Π,Q (A) ⇒ 1 denote the event that a session has accepted maliciously.

The EA advantage of an adversary A is

AdvM-EA
Π,f (A) def= Pr[ExpM-EA

Π,Q (A) ⇒ 1], (3.11)

where M ∈ {AKE∗, ACCE}.

Note that Definition 3.12 needs to be paired with soundness in order to
be meaningful. That is, consider the partner function f that partners each
session to itself the moment it is created. For this choice of partner function
AdvM-EA

Π,f (A) equals 0 for all adversaries A. Likewise, when we combine explicit
entity authentication with, say, AKE security, then we only care about an
adversary’s advantage given the same partner function for both notions.

Chapter 4

Security of EAP

Contents
4.1 Modeling EAP . 60

4.1.1 Client–server EAP method 60
4.1.2 Server–authenticator key transport protocol . . . 62
4.1.3 Client–authenticator protocol 63
4.1.4 Related work on EAP 65

4.2 First composition theorem 66
4.3 Second composition theorem 80

4.3.1 Explicit entity authentication 81
4.3.2 AKEfs security 86

4.4 Application to EAP 88
4.4.1 EAP without channel binding 89
4.4.2 Channel binding scope 89

In this chapter we analyze the security of EAP using the formal models in-
troduced in Chapter 3. However, first we need to precisely define what we mean
by EAP and what type of security properties we expect it to provide. Recall
from Section 2.1 that EAP is not a single protocol but rather a protocol frame-
work which inherently depends on other concrete protocols. As summarized
in Figure 2.1, EAP is essentially a composition of three separate protocols:
an EAP method between the client and the server, a key-transport protocol
between the server and the authenticator, and a link-layer specific protocol be-
tween the client and the authenticator. The EAP standard [RFC3748] is mostly
agnostic as to which concrete protocol to actually use for each of these different
parts.

59

60 Security of EAP Chapter 4

4.1 Modeling EAP
With respect to security requirements, the base EAP standard [RFC3748] only
specifies what the security properties of the EAP method should be. However, a
supplementary RFC [RFC5247] describes the security goals of EAP as a whole.
Section 1.5 of this document spells out the main requirements:

The goal of the EAP conversation is to derive fresh session keys
between the EAP [client] and authenticator that are known only to
those parties, and for both the EAP [client] and authenticator to
demonstrate that they are authorized to perform their roles either
by each other or by a trusted third party (the backend authentica-
tion server).
[. . .]
The backend authentication server is trusted to transport keying
material only to the authenticator that was established with the
[client], and it is trusted to transport that keying material to no
other parties. [. . .]

In other words, the goal of EAP is to be a secure 3P-AKE protocol. We
now explain how we are going to model each of the components that make up
the EAP framework. Since EAP is agnostic with respect to its components, we
want to reflect this in our modeling as well. As far as possible, we try not to
make any assumptions on the internal structure of the sub-protocols that are
used to instantiate the EAP framework.

4.1.1 Client–server EAP method
The modeling of the EAP method between the client and the server is fairly
straightforward. Since its goal is to distribute a shared key between the two
parties, it can be naturally modeled as a 2P-AKE protocol with mutual (im-
plicit) authentication. For simplicity, we are going to assume that the EAP
method is based on public keys for its long-term credentials. This corresponds
to EAP methods such as EAP-TLS [RFC5216] which we will study further in
Chapter 5. Nevertheless, there is nothing fundamental about this assumption.
Our results can easily be modified to also handle symmetric long-term keys, or
even a combination of the two.

Channel binding. There is a well-known issue with the EAP architecture
called the “lying authenticator problem” [RFC3748, Section 7.15], where a ma-
licious authenticator may present false or inconsistent identity information to
the different sides. Specifically, during the EAP method the client needs to

Section 4.1 Modeling EAP 61

signal to the server which authenticator it is connecting to, so that the server
can know where it is supposed to transfer the shared key. Unfortunately, many
EAP methods do not authenticate this information. This can enable a rogue
authenticator to impersonate another authenticator towards the client.

Concretely, suppose client A wants to connect to an authenticator B. As-
sume that they are both associated with the mutually trusted server S. Addi-
tionally, suppose there is also a malicious authenticator C associated with the
same server S. When client A begins its EAP method exchange with server S,
it also communicates the identity “B” to S. However, since this information is
not authenticated, the authenticator C can change it to say “C”. Consequently,
once the EAP method completes, the server S will believe that A wanted to
talk to C. As a result, S transfer the key it established with A to C instead
of B.

Unless the EAP method authenticates the identify information there is no
way for the client and server to verify that they are talking to the same authen-
ticator. More generally, the process of ensuring that what the authenticator
said to the client is consistent with what it said to the server is known in EAP
as channel binding. There are two principal ways in which one can achieve
channel binding in EAP [RFC6677, Section 4.1]. The first is to have the EAP
method authenticate the necessary information directly during the exchange or
in a separate integrity-protected channel after the shared key between the client
and the server has been established. The second is to have the information that
needs to be authenticated included into the derivation of the EAP session key.

There are advantages and disadvantages to both approaches. For example,
the former allows for policy-based comparison of network properties where not
all information necessarily have to match bit-for-bit on both ends, while in
the latter this does not work. In contrast, authenticating the information by
explicitly transferring it in an integrity-protected channel might require larger
changes to the existing EAP methods than just including it into the key deriva-
tion.

Since we find it to be the cryptographically cleanest, we only consider chan-
nel binding based on key derivation in this thesis. Consequently, we are go-
ing to assume that there is a pseudorandom function PRF associated to each
EAP method. On the other hand, we are not going to assume that the EAP
method itself provides integrity protection of the identity information in any
way. In fact, we are going to treat the communication of the authenticator’s
identity from the client to the server as being completely independent of the
EAP method. This has the benefit of making it possible to analyze the EAP
methods purely in terms of their concrete underlying authentication protocol.

62 Security of EAP Chapter 4

4.1.2 Server–authenticator key transport protocol
After the EAP session key has been established between the client and the
server, it needs to be transmitted to the authenticator. Without a doubt the
most popular protocol for this purpose is RADIUS [RFC2865]. It is based
on a long-term symmetric secret, i.e., a PSK, shared between the server and
the authenticator. In order to transfer the EAP session key from the RA-
DIUS server to the authenticator, the RADIUS protocol specifies a custom
encryption scheme based on the Microsoft Point-to-Point Encryption (MPPE)
algorithm [RFC2548]. Basically, MPPE is a stream cipher based on the cipher
feedback (CFB) mode of operation using the MD5 hash function as its internal
pseudorandom function. To encrypt an EAP session key K = K1‖K2‖ · · · ‖Kt,
consisting of 128 bit blocks Ki (with Kt possibly zero-padded), MPPE proceeds
as follows:

C1 ← MD5(S‖R‖A) ⊕ K1, (4.1)
Ci ← MD5(S‖Ci−1) ⊕ Ki. (4.2)

Here S is the PSK shared between the server and the authenticator, R is a 128
bit random nonce, and A is a 16 bit salt. Peculiarly, the nonce R is not chosen
by the server itself. Instead, it is generated by the authenticator and sent to the
server in a previous RADIUS message. The ciphertext C = C1‖C2‖ · · · ‖Ct is
integrity protected using HMAC-MD51 before being sent to the authenticator.
The HMAC tag is computed with the same secret S that was used to encrypt K.

Although RADIUS is the most common server-to-authenticator protocol
when using EAP, we choose not to model it explicitly in this thesis. There
are a couple of reasons for this. First, while RADIUS is certainly the pre-
dominant choice of key transport protocol used together with EAP, it is not
the only one. In particular, protocols like Diameter [RFC6733] and Cisco’s
TACACS+[Dah+17], are also frequently used. Thus, in keeping with our goal
of capturing the generality of the EAP framework, we want our modeling to
cover these protocols as well. Second, the RADIUS encryption mechanism
described above has received very little scrutiny. That is to say, its CFB and
HMAC building blocks have been heavily analyzed and are well understood (see
e.g. [Woo08] and [Bel15]), but their specific usage within the RADIUS protocol
is not. In particular, the non-standard way in which the random nonce R is
chosen, as well as the reuse of the secret S in both MPPE and HMAC, are
cause for concern. Ultimately, the security of RADIUS is largely unknown.

On the other hand, RADIUS is often used on top of other security protocols,
like IPsec and TLS (see e.g. RADIUS-over-TLS [RFC6614]). Thus, it seems

1The original RADIUS standard [RFC2865] does not specify HMAC-MD5, but rather the
MAC construction MD5(M‖S). However, a later RFC [RFC3579] dealing specifically with
the combination of EAP + RADIUS, prescribes the use of HMAC-MD5.

Section 4.1 Modeling EAP 63

reasonable to model the key transport protocol between the server and the
authenticator as a generic ACCE protocol based on a symmetric PSK. Again,
there is nothing fundamental about our choice of PSKs for long-term creden-
tials, and our model could very well have included public keys as well. However,
since RADIUS is so often configured with PSKs, it seems like a natural choice.
It also has the added benefit of making our security analyses cleaner, since the
long-term keys used by the EAP method and the key transport protocol are of
distinct types (recall that we have assumed that EAP methods use public keys
for long-term credentials).

4.1.3 Client–authenticator protocol

Let us call the combination of an EAP method and the subsequent key trans-
port protocol basic EAP. Normally, basic EAP is followed by a link-layer specific
protocol between the client and the authenticator, called a Security Association
Protocol in [RFC5247]. Like the key transport protocol between the server and
the authenticator, the Security Association Protocol is technically out of scope
of the base EAP standard [RFC3748]. Nevertheless, Section 3.1 of [RFC5247]
lists a number of recommended features that it ought to have. Chief among
these are: mutual proof of possession of the EAP session key, generation of link-
layer specific encryption keys, entity authentication, and secure negotiation of
protocol capabilities. Save possibly for the last one, these are all features we
expect from a PSK-based 2P-AKE protocol providing explicit entity authenti-
cation.

Let us call the combination of basic EAP with a subsequent Security Associ-
ation Protocol full EAP. Given that full EAP is usually what is used in practice,
our main aim in this chapter is to analyze this composition. However, rather
than analyzing the full EAP all at once, we prefer a more modular approach.
First, we establish the security of basic EAP under the assumptions we made
on the EAP method and the key transport protocol in Section 4.1.1 and Sec-
tion 4.1.2, respectively. Then, rather than viewing the full EAP as consisting
of an EAP method, a key transport protocol, and a Security Association Pro-
tocol, we instead think of it as consisting of a black-box 3P-AKE protocol (i.e.,
basic EAP) combined with a PSK-based 2P-AKE protocol. Consequently, the
two main results in this chapter are two generic composition theorems which
correspond to the “cryptographic core” of basic and full EAP, respectively. Our
results are modular and capture the compositional nature of EAP. Figure 4.1
gives a roadmap for the two composition results.

Preempting our results a bit, we show that basic EAP can achieve security in
our weak forward secrecy model AKEwfs, while full EAP can achieve security
in our full forward secrecy model AKEfs. Intuitively, the reason why basic

64 Security of EAP Chapter 4

A B S

Π1 (2P-AKEfs), “A”, “B”

Π2 (2P-ACCE)

Ckey message

Π4 (2P-AKEnfs)

kAS , kAB

α1, α3 = accepted
kAS , kAB

α1 = accepted

α2 = accepted

“A”, kAB

α3 = accepted

α2 = accepted

“A”, kAB

α3 = accepted

α4, α5 = accepted α4, α5 = accepted

Π3

(3P-AKEwfs)Π5

(3P-AKEfs)

kAB ← PRF(kAS , “A”, “B”)

Figure 4.1: (Right) Construction of a 3P-AKEwfs secure protocol Π3 from a 2P-
AKEfs secure protocol Π1, an ACCE secure protocol Π2, and a pseudorandom function
PRF. (Left) Construction of a 3P-AKEfs secure protocol Π5 from a 3P-AKEwfs secure
protocol Π3 and a 2P-AKEnfs secure protocol Π4.

EAP does not achieve full forward secrecy is because it does not provide key-
confirmation. Namely, after completing the EAP method with the server, the
client has no guarantee that the key-transport protocol between the server and
the authenticator actually took place. Specifically, recall the following attack
from Section 3.3 which illustrates why basic EAP does not provide full forward
secrecy.

Suppose after the client accepted, but before the key-transport protocol
between the server and authenticator starts running, an adversary learns the
long-term PSK of the server and the authenticator. The adversary can now
impersonate the authenticator towards the server and have it send over the
session key it previously established with the client. According to the full
forward secrecy model AKEfs this attack is valid since the exposure of the PSK
happened after the client accepted. On the other hand, in the weak forward
secrecy model AKEwfs the attack is not valid, because the client session does
not have a partner and hence the PSK cannot be exposed.

To that end, the purpose of the link-layer protocol can be seen as providing
key-confirmation to the basic EAP protocol, which ensures that the client will
always have a partner before it accepts. This is similar to how the security
of the two-flow variant of HMQV can be upgraded from only providing weak
forward secrecy to providing full forward secrecy by adding a third flow to
it [Kra05b, §3]. Interestingly, this also means that the forward secrecy of full
EAP depends solely on the forward secrecy of the EAP method and not at all
on the forward secrecy of the Security Association Protocol.

Section 4.1 Modeling EAP 65

Finally, we point out that for technical reasons we cannot use the link-
layer protocol in a completely black-box way, but need to assume a little bit of
structure on it. Specifically, we need to assume that the probability that two
sessions at the same party end up with the same local transcript is statistically
bounded. Recall that a session’s local transcript τ consists of all the messages
it has sent and received. The reason for this assumption is that in the proof
of our second composition result we need to rely on a local partner function,
which are only defined for unique (global) transcripts (see Definition 3.5).

Note that this assumption is quite mild. It is met by any protocol where
each protocol participant contributes some randomness, e.g., a nonce or Diffie-
Hellman share. In particular, it is met by TLS, SSH, IKEv2 and the IEEE 802.11
4WHS protocol.

4.1.4 Related work on EAP

He et al. [He+05] have conducted a formal analysis of the combination of EAP-
TLS and IEEE 802.11 in a symbolic model called the Protocol Compositional
Logic. However, they do not threat the full generality of the EAP framework
since they assume that the server and authenticator belong to the same entity
(hence omitting the key transport stage). In the computational setting there
are to the best of our knowledge no papers that have treated the general EAP
framework. However, from a proof-technical point of view, our composition
theorems are reminiscent of the composition result proven by Abdalla, Fouque
and Pointcheval [AFP05].

Hoeper and Chen [HC07] have criticized the lack of a clear trust model and
precise security definitions in the EAP standard [RFC3748], pointing out that
this makes it difficult to formally assess its security. Regarding EAP methods
specifically, Clancy and Hoeper [CH09] have stressed the importance of channel
binding, demonstrating several real-world attacks that might be possible in its
absence. Somewhat related to channel binding is the concept of tunneled EAP
methods. These are EAP methods that first establish a secure channel (or
tunnel) between the client and the authenticator having only unilateral or even
no authentication. Then, a second authentication protocol is run inside the
secure channel in order to provide mutual authentication. Examples of tunneled
EAP methods are EAP-TTLS [RFC5281] and PEAP [PEAPv2] (see Table 2.1).
A classic result by Asokan, Niemi and Nyberg [ANN03] shows that a man-
in-the-middle attack is possible on tunneled authentication protocols unless
the inner and outer layers are cryptographically bound together. Hoeper and
Chen [HC10] have demonstrated that several existing tunneled EAP methods
fail to properly bind the layers together. This has also been exploited in later
attacks on EAP-TTLS and PEAP [Bha+14a]. However, we stress that we are

66 Security of EAP Chapter 4

not covering tunneled EAP methods specifically in this thesis.
Finally, Horst et al. [Hor+16] have cryptanalysed the Point-to-Point Tunnel-

ing (PPTP) protocol in combination with RADIUS. PPTP is used to establish
a virtual private network (VPN) between a client and a VPN endpoint with the
help of a mutually trusted RADIUS server. The VPN endpoint functions very
much like the authenticator in the EAP framework, and the RADIUS protocol
is used to transfer a session key from the server to the VPN endpoint using the
same MPPE encryption scheme described in Section 4.1.2. However, a crucial
difference between the usage of MPPE in PPTP vs. EAP, is that in the former,
the random nonce R provided by the VPN endpoint to the RADIUS server and
used as input to the MPPE algorithm (see Equation (4.1)), is not protected by
a MAC. This makes the attack of Horst et al. [Hor+16] possible against PPTP,
but not against EAP.

4.2 First composition theorem:
2P-AKEfs + 2P-ACCE =⇒ 3P-AKEwfs

In this section we state and prove our first composition theorem. This result
corresponds to the cryptographic core of basic EAP.

Construction. From a 2P-AKE protocol Π1 (based on public keys), a 2P-
ACCE protocol Π2 (based on PSKs), and a pseudorandom function PRF, we
construct the 3P-AKE protocol Π3 shown in Figure 4.1. Specifically, protocol
Π3 works as follows. First, sub-protocol Π1 is run between client A and server
S to derive an intermediate key kAS . A also communicates the identities “A”
and “B” to S, where B is the identity of the authenticator that A wants to
talk to. These identities are sent independently of sub-protocol Π1 and have
no integrity protection.

Note that A knows the identities of both S and B at the beginning of the
protocol whereas S learns about B from the identities communicated by A.
Technically, this means that a session at A needs to be initialized with the
identities of S and B (setting the peers variable accordingly), while a session at
S will update its peers variable to include B after receiving this identity from A.

From the key kAS derived in sub-protocol Π1, both A and S further derive
the key kAB ← PRF(kAS , A, B). The key kAB will ultimately be the session key
shared between A and B in protocol Π3. In order for S to transfer kAB to B,
they first establish a secure channel using sub-protocol Π2. Once established,
S sends the session key kAB together with the identity of A over the channel
to B. For simplicity, we assume that kAB and “A” are transfered with a single

Section 4.2 First composition theorem 67

channel message, which we call the Ckey message. Specifically,2

Ckey ← Λ.Enc(ck, kAB‖“A”), (4.3)

where Λ is the stAE scheme associated with the ACCE protocol Π2; ck being
the channel key that S and B established in Π2. Unlike the identities “A”,
“B” sent over the A–S link in Figure 4.1, the identity “A” sent over the S–B
link enjoys privacy and integrity protection from the secure channel between S
and B.

The initiator A accepts in protocol Π3 when it has derived kAB , while the
responder B accepts once it has received—and properly decrypted—the Ckey
message, obtaining the session key kAB as well as the identity “A” which it uses
to update its peers variable.

Remark 4.1. Technically speaking, it would be possible to include the identity
“A” only as associated data when creating the Ckey message, since it does not
need privacy protection. However, when RADIUS is being run on top of a
secure channel protocol, like TLS or IPsec, everything is transmitted inside
the encrypted channel anyway, so our approach in Equation (4.3) more closely
matches real-world practice. �

Result. Our first composition result shows that protocol Π3 is 3P-AKEwfs

secure if sub-protocol Π1 is 2P-AKEfs secure, sub-protocol Π2 is 2P-ACCE
secure, and PRF is a pseudorandom function. Note that protocol Π3 does not
provide explicit entity authentication. In fact, no session at the initiator A will
have a partner at the time it accepts. As a consequence, protocol Π3 cannot
achieve security in the strongest AKEfs model due to the attack on basic EAP
described in Section 4.1.3.

Theorem 4.2. Let Π3 be the 3P-AKE protocol constructed from a 2P-AKE
protocol Π1, a ACCE protocol Π2 and a pseudorandom function PRF as de-
scribed in the construction above. Let f1 and f2 be partner functions. Then for
any adversary A in security game AKEwfs against Π3, we can create a partner
function f3 and algorithms B1, B2, B3 and D, such that

Adv3P-AKEwfs

Π3,f3 (A) ≤ AdvACCE- EA
Π2,f2 (B1) + 2n2 · Adv2P-AKEfs

Π1,f1 (B2,)

+ 2n2 · Advprf
PRF(D) + 4n2 · AdvACCE

Π2,f2(B3),
(4.4)

where n = (nπ + 1) · |I ∪ R|, and nπ is the maximum number of sessions that
A creates at each party.

2To simplify our exposition we omit both the associated data and the encryption state
when writing the inputs to the stAE scheme Λ for the remainder of this chapter.

68 Security of EAP Chapter 4

The proof of Theorem 4.2 roughly works as follows. The 2P-AKEfs security
of sub-protocol Π1 allows us to swap out the intermediate key kAS of the test-
session with a random key. The PRF-security of the key-derivation function
PRF then allows us to replace the derived session key kAB with random key.
Finally, the ACCE-security of sub-protocol Π2 ensures that the adversary can-
not modify any Ckey messages nor can it learn anything about the session keys
transferred inside them. Thus, at this point the adversary has zero advantage
in winning in its 3P-AKE experiment.

Proof. We begin by defining the partner function f3 using the given partner
functions for sub-protocols Π1 and Π2. Remember that throughout this thesis
we always assume that all partners functions are symmetric and monotone.

Defining the partner function for Π3. Intuitively, f3 is constructed by
composing the two partner functions f1 and f2 as follows. If πi

A is an initiator
session and πj

B is a responder session, then πi
A and πj

B are partners in protocol
Π3 according to f3 if and only if there exists a server session πk

S , such that
πi

A and πk
S are partners in sub-protocol Π1 according to f1; and that πk

S and
πj

B are partners in sub-protocol Π2 according to f2. That is, πi
A and πj

B are
partners if there exists a server session πk

S that acts as the bridge between them
in the two sub-protocols Π1 and Π2.

To make this formally precise, one needs to extract from the 3P-AKE tran-
script T3 of experiment ExpΠ3,Q(A) two transcripts T1 and T2 that contain
the queries pertaining to the two-party sub-protocols Π1 and Π2. Then f3 is
defined on T3 by running f1 and f2 on the corresponding transcripts T1 and
T2. Admittedly, the details on how to do this are a bit tedious, so they are
relegated to Appendix B. They can safely be skipped on first reading.

Suppose we have extracted transcripts T1 and T2 from T3. We say that
πi

A and πk
S are f1-partners if f1,T1(πi

A) = πk
S . Since f1 is symmetric this is

equivalent to f1,T1(πk
S) = πi

A. Similarly, we say that πk
S and πj

B are f2-partners
if f2,T2(πk

S) = πj
B (or equivalently f2,T2(πj

B) = πk
S). Finally, πi

A and πj
B are

f3-partners, or just partners, if f3,T3(πi
A) = πj

B , where f3 is defined as follows.

• f3,T3(πi
A) = πj

B if and only if:

1. πi
A and πk

S are f1-partners,

2. πk
S and πj

B are f2-partners,

3. πi
A.peers = πj

B .peers = πk
S .peers = {A, B, S}.

Section 4.2 First composition theorem 69

Note that Item 3 implies that πk
S received the same identities that πi

A sent
over the A–S link in Figure 4.1. By its construction, f3 is monotone and sym-
metric provided f1 and f2 are. The soundness of f3 follows from the soundness
of f1 and f2 and the ACCE security of sub-protocol Π2 (particularly its channel
integrity). That is, it can be shown that

AdvSound
Π3,f3(A) ≤ AdvSound

Π1,f1(A′) + AdvSound
Π2,f2(A′′) + AdvACCE

Π2,f2(A′′′). (4.5)

However, for simplicity we are going to assume that f1 and f2 have per-
fect soundness in this proof, i.e., AdvSound

Π1,f1(A′) = 0 and AdvSound
Π2,f2(A′′) = 0.

Unfortunately, this does not imply that f3 has perfect soundness too, since an
adversary could potentially forge a Ckey message so that two partners end up
with different keys. Thus, in order to enforce perfect soundness for f3 as well,
we extend its definition with the following requirement:

4. the Ckey message received by πj
B was identical to the one produced by πk

S .

This removes the AdvACCE
Π2,f2(A′′′) term in Equation (4.5) and gives f3 perfect

soundness. In the remainder we can thus always assume that f3-partners have
the same session key.

AKEwfs security. Our proof for protocol Π3, as well as most of the other
proofs in this thesis, make use of a proof technique called game hopping ([Sho04,
BR04]). In a game hopping proof, one incrementally introduce small changes to
the original security game—each change being called a game hop—which, after
a finite number of hops, eventually leads to a situation where the adversary
cannot win by definition, or where it is easy to bound its advantage in terms
of something else. Each individual game hop is justified by showing that the
change does not substantially affect the adversary’s winning chances.

The most fundamental result on game hoping proofs is the so-called Differ-
ence Lemma [Sho04], sometimes also called the Fundamental Lemma of Game-
Playing [BR04]. Basically, the Difference Lemma states that if two games
proceed identically unless the some event F occurs, then the difference between
the adversary’s advantage in the two games is bounded by Pr[F]. We will use
this result many times in our thesis.

In the following, when we say that a certain game aborts, we mean that the
challenger stops the execution of the experiment and outputs a random bit on
A’s behalf.

Game 0: This is the real 3P-AKEwfs security game, hence

AdvG0
Π3,f3

(A) = Adv3P-AKEwfs

Π3,f3 (A) .

70 Security of EAP Chapter 4

Game 1: This game proceeds as the previous one, but aborts if a fresh re-
sponder or server session accepts maliciously in sub-protocol Π2, meaning that
it accepted without a partner in Π2 according to partner function f2.

Claim 4.3.

AdvG0
Π3,f3

(A) ≤ AdvG1
Π3,f3

(A) + AdvACCE- EA
Π2,f2 (B1). (4.6)

Proof. Let E be the event that a server or responder session accepts maliciously
in sub-protocol Π2. Game 0 and Game 1 proceed identically as long as event
E does not occur, so by the Difference Lemma we have

AdvG0
Π3,f3

(A) ≤ AdvG1
Π3,f3

(A) + Pr[E]. (4.7)

To bound Pr[E] we create an algorithm B1 which breaks the explicit entity
authentication of sub-protocol Π2 whenever event E occurs in Game 0. Algo-
rithm B1 begins by creating all the long-term keys for sub-protocol Π1, selects a
random bit bsim, and then runs A. Since B1 has created all the long-term keys
for sub-protocol Π1, it can derive all the session keys kAB itself, and simulate
all of A’s queries pertaining to sub-protocol Π1.

When A makes a Send query that pertains to sub-protocol Π2, then B1
answers it by making a corresponding Send query to its 2P-ACCE-EA security
game. When a server session πk

S accepts in the 2P-ACCE-EA security game,
then B1 creates its Ckey message by making the query LR(πk

S , kAB , kAB)3, where
kAB is session key B1 derived for πk

S in sub-protocol Π1. When A issues a
Test(πi

U) query, then, depending on bit bsim, B1 returns πi
U ’s real session key

or a random key. Finally, when A terminates, then B1 terminates too (in this
case event E has not occurred).

To analyze B1’s winning probability, observe that B1 provides a perfect sim-
ulation of protocol Π3 for A. Moreover, since the freshness predicate FreshAKEwfs

is strictly more restrictive than predicate FreshACCE, if event E occurs in Game 0,
then a malicious accept also occurs in B1’s 2P-ACCE-EA security game. �

Remark 4.4. The abort condition in Game 1 does not mean that every session
in protocol Π3 will have a partner (according to f3). In fact, no initiator session
will have a partner at the time when it accepts, because at that point sub-
protocol Π2 has not even started yet. �

Game 2: This game implements a selective AKE security game [KPW13a,
§3.3], rather than the normal adaptive one. That is, at the beginning of the
game, the adversary is required to commit to its choice of test-session and its

3For the remainder of this proof we omit the associated data input to the LR query, since
the Ckey message does not depend on it.

Section 4.2 First composition theorem 71

partner (if any). Technically, at the beginning of the game the adversary must
output two pairs (U, i) and (V, j), with i ∈ [1, nπ] and j ∈ [0, nπ], where nπ is
an upper bound on the number of sessions at each party, and a choice of j = 0
means that πi

U is not intended to get a partner. Game 2 then proceeds as in
Game 1, except that if either of the following events occur, then the challenger
penalizes the adversary by outputting a random bit at the end.

(i) πi
U was not selected as the test-session by A.

(ii) πi
U gets a different partner than πj

V (including the case that it gets a
partner if j = 0).

Claim 4.5.

AdvG1
Π3,f3

(A) ≤ (nπ + 1)2 · |I ∪ R|2 · AdvG2
Π3,f3

(A′). (4.8)

Proof. From an adversary A that wins against the adaptive game in Game 1,
we create the following adversary A′ that wins against the selective game in
Game 2. First, A′ randomly selects a pair (U, i) ←← (I ∪ R) × [1, nπ] and a pair
(V, j), which, depending on the role of U , is either selected as (V, j) ←← I×[0, nπ]
or (V, j) ←← R × [0, nπ]. It outputs (U, i) and (V, j) as its choice to the selective
security game it is playing. A′ then runs A and answers all of its queries by
forwarding them to its own selective security game. When A stops with output
b′, then A′ stops and outputs the same bit as well.

Algorithm A′ perfectly simulates Game 1 for A, so A′’s choice of selective
security targets matches those of A with probability 1/

(
(nπ + 1) · |I ∪ R|)2.

When A′’s guess is correct it wins with the same probability as A, while when
it is wrong, A′ gets penalized in its selective security game, hence wins with
probability 1/2 in Game 2. �

In the remaining games, let πi
U and πj

V denote the targets that the adversary
commits to in Game 2; πi

U being the test-session, and πj
V being its (potentially

empty) partner. Define the co-partner of πi
U to be the server session being

involved in the protocol run between πi
U and πj

V . Specifically, if πi
U has the

initiator role, then its co-partner is defined to be f1,T1(πi
U); while if πi

U has the
responder role, then its co-partner is defined to be f2,T2(πi

U).
Note that if πi

U has the initiator role, then it does not necessarily have a
co-partner when it accepts. On the other hand, if πi

U has the responder role,
then its co-partner is guaranteed to exist by Game 1.

Game 3: This game proceeds as the previous one, except that it replaces
the intermediate key kAS derived in sub-protocol Π1 with a random key in
the protocol run involving the test-session. That is, for the session out of πi

U

72 Security of EAP Chapter 4

and πj
V that has the initiator role in protocol Π3, the challenger replaces its

intermediate key kAS in sub-protocol Π1 with a random key. Moreover, the
intermediate key derived by the co-partner of πi

U (if any) is also replaced with
the same random key.

Claim 4.6.

AdvG2
Π3,f3

(A) ≤ AdvG3
Π3,f3

(A) + 2 · Adv2P-AKEfs

Π1,f1 (B2). (4.9)

Proof. We show that if it is possible to distinguish Game 2 and Game 3, then we
can create an algorithm B2 that breaks the 2P-AKEfs security of sub-protocol
Π1. Algorithm B2 begins by drawing a random bit bsim and creates all the long-
term PSKs for sub-protocol Π2. B2 then runs A and forwards all its queries
that pertain to sub-protocol Π1 to its own 2P-AKEfs security game. All queries
that pertain to sub-protocol Π2, B2 answers itself using the PSKs it created. It
also implements all the abort conditions of the previous games. To answer A’s
Test(πi

U) query, B2 proceeds as follows.
If bsim = 1, then B2 responds as normal by drawing a random key and

returning this to A. If bsim = 0 and πi
U is an initiator session, then B2 makes a

corresponding Test(πi
U) query to its own 2P-AKEfs security game to obtain a

key k∗
AS (which is either πi

U ’s real session key in sub-protocol Π1 or a random
key). From k∗

AS , B2 derives kAB ← PRF(k∗
AS , A, B) which it returns back to A

(A, B being the party identities accepted by the test-session).
If bsim = 0 and πi

U is a responder session, then πi
U must have a co-partner

πk
S by Game 1. To obtain the intermediate key k∗

AS needed to derive the session
key kAB , B2 does the same thing as above, but this time by issuing the Test
query to πk

S .
When A outputs its guess b′, then B2 stops and outputs 0 to its 2P-AKEfs

security game if b′ = bsim, and 1 otherwise.

Note that if the key k∗
AS returned from the Test query in B2’s 2P-AKEfs

security game is real, then B2 perfectly simulates Game 2. On the other hand,
if k∗

AS is a random key, then B2 perfectly simulates Game 3. Thus, the claim
follows if we can show that the test-session chosen by B2 in its own 2P-AKEfs

security game is fresh according to predicate FreshAKEfs whenever the test-session
πi

U chosen by A is fresh according to predicate FreshAKEwfs .
If πi

U is an initiator session, then B2 uses the same session πi
U as the test-

session target in its own 2P-AKEfs security game. Since the freshness predicate
FreshAKEwfs is strictly more restrictive than predicate FreshAKEfs , it follows that
πi

U is fresh in B2’s 2P-AKEfs game whenever it is fresh in B2’s simulation for A.
If πi

U is a responder session, then the test-session chosen by B2 is πi
U ’s

co-partner πk
S . We need to argue that πk

S is fresh in B2’s 2P-AKEfs security
game whenever πi

U is AKEwfs fresh in B2’s simulation. There are two cases to

Section 4.2 First composition theorem 73

consider: either πi
U has an f3-partner or it does not. If πi

U has a partner (which
by Game 2 must be πj

V), then A cannot have made a Reveal(πj
V) query since

this would violate the AKEwfs freshness of πi
U . Moreover, since f3 is constructed

from f1 and f2, πj
V must be πk

S ’s f1-partner. Consequently, B2 is also allowed
to forward any Corrupt query to either A or S without violating the freshness
of πk

S according to predicate FreshAKEfs .
If πi

U does not have an f3-partner, then A cannot have made any Corrupt
query to A or S (since this would violate AKEwfs freshness). Thus, neither has
B2. Furthermore, if πi

U does not have an f3-partner, then this implies that its
co-partner πk

S cannot have an f1-partner either. Thus, B2 can safely forward
all of A’s Reveal queries without violating the AKEfs freshness of πk

S . �

Game 4: This game proceeds as the previous one, except that when deriv-
ing the session key kAB in the protocol run involving the test-session πi

U , the
challenger uses a random function $(·, ·) rather than the function PRF(kAS , ·, ·).

More specifically, if πi
U has the initiator role then its session key kAB is

derived using the random function $(·, ·) instead of the function PRF(kAS , ·, ·).
Additionally, if πi

U has a co-partner πk
S , then πk

S uses the same random function
to derive the key kAB that it will forward in its Ckey message.

If πi
U has the responder role, then it must have a co-partner πk

S by Game 1.
When deriving the key kAB that πk

S will use for its Ckey message, the challenger
uses the random function $(·, ·) instead of the function PRF(kAS , ·, ·).

Claim 4.7.

AdvG3
Π3,f3

(A) ≤ AdvG4
Π3,f3

(A) + 2 · Advprf
PRF(D). (4.10)

Proof. We show that if it is possible to distinguish Game 3 and Game 4, then we
can create a distinguisher algorithm D against the PRF security of the function
PRF. Distinguisher D has access to an oracle O which either implements the
function PRF(k̃, ·, ·) using an independent and uniformly distributed key k̃, or
it implements a random function $(·, ·). D begins by drawing a random bit bsim

and creates all the long-term keys for sub-protocols Π1 and Π2. Next, it runs
A and answers all its queries according to Game 3 by using the keys it created,
except that it answers A’s Test(πi

U) query as follows.
If bsim = 1, then D returns a random key as normal. If bsim = 0 and πi

U is
an initiator session, then D answers with O(A, B), where A, B are the party
identities accepted by πi

U . If bsim = 0 and πi
U is a responder session, then D

does the same, but this time A, B are the identities that the co-partner of πi
U

received over the A–S link in Figure 4.1 (recall that if πi
U is a responder session

then it is guaranteed to have a co-partner by Game 1).

74 Security of EAP Chapter 4

When A outputs its guess b′, then D stops and outputs 0 to its PRF-game
if b′ = bsim, and 1 otherwise.

When D’s oracle O implements PRF(k̃, ·, ·), then D perfectly simulates
Game 3; while if O implements a random function $(·, ·), then D perfectly
simulates Game 4. For x ∈ {3, 4}, let GA

x ⇒ 1 denote the event that A wins in
Game x. Then

Advprf
F (A) = Pr[APRF(̃k,·,·) ⇒ 1] − Pr[A$(·,·) ⇒ 1] (4.11)

= Pr[GA
3 ⇒ 1] − Pr[GA

4 ⇒ 1], (4.12)

and the claim follows. �

At this point one might expect that the adversary should be unable to dis-
tinguish the test-key from random since the session key of πi

U is now derived
using a random function rather than the pseudorandom function PRF. Unfortu-
nately, we cannot (currently) rule out that A might be able to learn something
about the session key through the Ckey message delivered from the server to
the responder. Furthermore, A could potentially also modify the Ckey message
in such a way that it still decrypts to the same session key. In this case πi

U and
πj

V would end up with the same key while at the same time not being partners
according to the definition of the partner function f3. Hence, A could reveal
πj

V and trivially win in Game 4.
In the following two games we show that neither of these scenarios are

possible due to the ACCE security of sub-protocol Π2. In the first game we
show that A is unable to successfully forge the Ckey message in the protocol
run involving πi

U . In the second game we show that A is unable learn anything
about the session key from observing the Ckey message.

Game 5: Suppose πi
U has a co-partner πk

S and that the ciphertext C was
the Ckey message produced by πk

S (if it created one at all). Let π∗ be the f2-
partner of πk

S in sub-protocol Π2 required to exist by Game 1. Game 5 proceeds
as Game 4, but if π∗ receives a Ckey message C ′ �= C, then C ′ is automatically
rejected, i.e., it is assumed to have decrypted to ⊥. In this case π∗’s session
key is not set.

Remark 4.8. Note that if πi
U has the responder role, then π∗ is πi

U itself, while
if πi

U has the initiator role then π∗ (if it exists) is some responder session. We
write “if it exists” because if πi

U has the initiator role then it might not actually
have a co-partner at all since sub-protocol Π1 does not give any guarantees of
explicit entity authentication. However, in that case there is no difference
between Game 4 and Game 5 since no relevant Ckey message is being created.

�

Section 4.2 First composition theorem 75

Claim 4.9.

AdvG4
Π3,f3

(A) ≤ AdvG5
Π3,f3

(A) + 2 · AdvACCE
Π2,f2(B′

3). (4.13)

Proof. Assume πi
U has a co-partner πk

S , and that πk
S produced the ciphertext

C as its Ckey message. Let session π∗ be a session with the same definition
as given in the game description above, and let F denote the event that A
successfully forges the Ckey message being delivered to π∗.

• Event F : A sends to π∗ a Ckey message C ′ �= C, and C ′ decrypts to
something other than ⊥.

As long as event F does not occur then Game 4 and Game 5 are identical,
so by the Difference Lemma we have

AdvG4
Π3,f3

(A) ≤ AdvG5
Π3,f3

(A) + Pr[F]. (4.14)

To bound Pr[F] we create an adversary B′
3 that capitalizes on the event

F in order to break the ACCE security of sub-protocol Π2. Algorithm B′
3

begins by drawing a random bit bsim and creates all the long-term keys for
sub-protocol Π1. All of A’s Send queries that pertain to sub-protocol Π1, B′

3
answers itself using the long-term keys it created. Particularly, B′

3 can answer
all Corrupt queries targeting the asymmetric long-term keys of initiators and
servers itself. Moreover, it can also answer all of A’s Reveal queries that target
initiator sessions, and answer the Test query if πi

U if U ∈ I (using the bit bsim).
Send queries that pertain to sub-protocol Π2, as well as Corrupt queries that

target the PSKs shared between servers and responders, are forwarded to B′
3’s

2P-ACCE security game. Whenever a server session π accepts in sub-protocol
Π2, then B′

3 creates its Ckey message by querying LR(π, A‖kAB , A‖kAB)4 to
its ACCE experiment, where “A” is the party identity that π received on the
A–S link in Figure 4.1, and kAB is the session key that B′

3 derived from π ’s
intermediate key kAS in sub-protocol Π1.

Whenever A forwards a Ckey message to a responder session different from π∗,
then B′

3 first makes a Reveal query to that session in its ACCE security game
in order to obtain its channel-key for sub-protocol Π2. Using this channel-key,
B′

3 decrypts the received Ckey message and simulates the responder session ac-
cordingly. Consequently, B′

3 can also answer all of A’s Reveal queries targeting
responder sessions different from π∗.

If A at any point stops during B′
3’s simulation, not having sent a Ckey

message to π∗, then B′
3 stops too and outputs (π, b′) to its ACCE security

game where π is an arbitrary session and b′ is a random bit, i.e., b′ ←←{0, 1}.
4Here we are abusing notation and using “π” to denote both the server session that B′

3
simulates for A in protocol Π3, as well as the corresponding “proxy” server session that B′

3
creates in its own ACCE security game in order to answer the queries to the former.

76 Security of EAP Chapter 4

If A does forward a Ckey message C ′ to π∗, then B′
3 stops its simulation and

outputs (π∗, b′) to its ACCE game, where the bit b′ is determined as follows.
If C ′ = C, where C is the Ckey message produced by πi

U ’s co-partner πk
S ,

then this cannot be a forgery, so B′
3 lets b′ be a random bit. On the other

hand, if C ′ �= C, meaning that C ′ is a potential Ckey message forgery, then B′
3

first makes the query Decrypt(π∗, C ′) to its ACCE game. If the Decrypt query
returns something other than ⊥, B′

3 outputs 1, and in all other cases outputs a
random bit.

We now analyze B′
3. If A does not send a Ckey message to π∗ during

B′
3’s simulation then B′

3 outputs (π, b′) to its 2P-ACCE security, where π is an
arbitrary session and b′ a random bit. In this case B′

3 wins with probability 1/2.
If A does send a Ckey message to π∗, then B′

3 picks π∗ as its ACCE target.
We begin by arguing that π∗ is fresh according to predicate FreshACCE, pro-
vided A’s test-target πi

U is fresh according to predicate FreshAKEwfs . Since B′
3’s

simulation stops immediately once π∗ accepts, it never makes a Reveal query
to π∗, and so we only have to consider the effects of Corrupt queries against the
PSK shared between π∗ and its server peer.

If πi
U has the responder role then πi

U = π∗. By Game 1, π∗ must have
an f2-partner in sub-protocol Π2 and its ACCE freshness follows immediately
since then any long-term key can legally be exposed; in particular, this includes
the PSK shared between π∗ and its server peer.

Now suppose πi
U has the initiator role. If πi

U does not have a co-partner
or this co-partner never reached the accept state (hence not producing a Ckey
message), then there is nothing to prove since then there is also no π∗ session.
On the other hand, if πi

U has co-partner πk
S which created a Ckey message C,

then by Game 1 there must be some session π∗ being the f2-partner of πk
S . If

A forwards C unmodified to π∗, then πi
U and π∗ would be f3-partners and so

the ACCE freshness of π∗ would again follow immediately. Conversely, if A
sends C ′ �= C to π∗, then πi

U and π∗ would not be f3-partners. Hence, if πi
U

is to be fresh according to predicate FreshAKEwfs , then the long-term keys of its
peers cannot have been exposed. In particular, this means that the PSK of π∗

cannot have been exposed. It follows that π∗ is fresh according to predicate
FreshACCE.

It remains to calculate B′
3’s winning probability when A forwards a Ckey

message to π∗. That is, if B′
3 picked π∗ as its ACCE target. If the Ckey

message that π∗ received was forwarded unmodified from its f2-partner πk
S ,

then B′
3 outputs a random bit and thus wins with probability 1/2. On the

other hand, if the Ckey message that π∗ received was different from the one
that πk

S sent out, then there is a potential for event F to occur. Note that
B′

3 perfectly simulates Game 4 until A sends a Ckey message to π∗, so the

Section 4.2 First composition theorem 77

probability that F occurs in B′
3’s simulation is the same as the probability that

F occurs in Game 4.
Let C ′ be the Ckey message that π∗ received. Recall that B′

3 outputs 1 only
if the Decrypt(π∗, C ′) query returned something other than ⊥, and a random bit
otherwise. Since a Decrypt query in the ACCE experiment returns something
other than ⊥ only if π∗.b = 1, we have

Pr[ExpACCE
Π2,Q(B′

3) ⇒ 1 | F ∧ π∗.b = 1] = 1, (4.15)

and
Pr[ExpACCE

Π2,Q(B′
3) ⇒ 1 | F ∧ π∗.b = 0] =

1
2

. (4.16)

Finally, notice that the value of π∗’s secret bit b in B′
3’s ACCE security game

is independent of event F . This is because there is nothing in B′
3’s simulation

that depends on π∗.b before π∗ receives the Ckey message, and B′
3’s simulation

stops immediately once this happens. Thus

Pr[π∗.b = b | F] =
1
2

. (4.17)

Conditioning on event F occurring, the winning probability of B′
3 is

Pr[ExpACCE
Π2,Q(B′

3) ⇒ 1 | F] = Pr[ExpACCE
Π2,Q(B′

3) ⇒ 1 | F ∧ π∗.b = 0] · 1
2

+ Pr[ExpACCE
Π2,Q(B′

3) ⇒ 1 | F ∧ π∗.b = 1] · 1
2

(4.18)

= 1
2

· 1
2

+ 1 · 1
2

= 3
4

. (4.19)

Combing the above probability with the case when F does not occur yields
Claim 4.9. �

The previous game established that A cannot modify the Ckey message in
the protocol run involving the test-session πi

U . The next and final game shows
that A also cannot learn anything about πi

U ’s session key by merely observing
the Ckey message.

Game 6: This game proceeds as the previous one, but when creating the Ckey
message of the co-partner of πi

U , the challenger encrypts the all-zero string 0κ

instead of the session key kAB . If this Ckey message is eventually delivered to
the intended responder session (being either πi

U or πj
V), then its session key is

still set to kAB .

Claim 4.10.

AdvG5
Π3,f3

(A) ≤ AdvG6
Π3,f3

(A) + 2 · AdvACCE
Π2,f2(B′′

3). (4.20)

78 Security of EAP Chapter 4

Proof. We show that if it is possible to distinguish Game 5 and Game 6, then
we can create an algorithm B′′

3 that breaks the ACCE security of sub-protocol
Π2. Algorithm B′′

3 is almost identical to algorithm B′
3 in the previous proof of

Claim 4.9, except for the following differences.

• When creating the Ckey message of πi
U ’s co-partner (if it exists), say πk

S ,
algorithm B′′

3 makes the query LR(πk
S , A‖kAB , A‖0κ) instead of the query

LR(πk
S , A‖kAB , A‖kAB).

• If A sends a Ckey message C ′ to π∗ (with the same definition of π∗ as in
the description of Game 5), then B′′

3 does not stop its simulation. Instead
B′′

3 continues the simulation as follows.

If C ′ is equal to the Ckey message that was previously output by the
co-partner of πi

U using the LR(πk
S , A‖kAB , A‖0κ) query described above,

then π∗’s peer and session key variables are set based on the left message
input to the LR query.

If C ′ is not equal to the Ckey message, then C ′ is automatically rejected
in accordance with Game 5.

• Finally, when A outputs its guess b′, then B′′
3 outputs the following to

its 2P-ACCE game. If the test-session πi
U has a co-partner πk

S , then B′′
3

outputs (πk
S , 0) if b′ = bsim and (πk

S , 1) otherwise. If the test-session does
not have a co-partner, then B′′

3 outputs an arbitrary session together with
a random bit.

Note that if the test-session does not have a co-partner then there is no
difference between Game 5 and Game 6, and B′′

3 perfectly simulates it.
If the test-session has a co-partner πk

S , and πk
S .b = 0 in B′′

3 ’s 2P-ACCE
security game, then B′′

3 perfectly simulates Game 5 since the Ckey message
of πk

S is an encryption of the actual session key kAB . On the other hand, if
πk

S .b = 1 then B′′
3 perfectly simulates Game 6 since the Ckey message of πk

S is
an encryption of 0κ.

It remains to argue that whenever B′′
3 uses πk

S as its ACCE target-session,
then it is fresh according to predicate FreshACCE whenever πi

U is fresh according
to predicate FreshAKEwfs . But this follows by the same arguments that was used
to show that π∗ was ACCE fresh in the proof of Game 5, hence we omit it. �

Concluding the proof of Theorem 4.2. We argue that AdvG6
Π3,f3

(A) = 0.
By the change in Game 4, the session key of the test-session πi

U is derived
using a random function $(A, B), where “A” and “B” are the identities of the
initiator and responder that πi

U believes took part in this protocol run. We

Section 4.3 First composition theorem 79

claim that the only other session that holds a session key derived from $(·, ·)
using the same identities “A” and “B”, is πi

U ’s partner πj
V (if it exists).

First, note that the random function is evaluated at no more than two
sessions: one initiator session and one server session. Second, the session key
derived by the server session is delivered to at most one responder session.
Finally, the identities used to evaluate $(·, ·) at the initiator and server could
potentially be different since A can modify the identities communicated at the
A–S link in Figure 4.1.

However, if A modifies these identities, then the initiator and server derive
independent keys, which means that the initiator and responder will ultimately
have independent keys too. Moreover, since the communicated identities at the
S–B link in Figure 4.1 will be different, the initiator and responder sessions will
not be partners (recall that f3-partnering includes the sessions’ recorded peers,
and by Game 5 the adversary is unable to change the Ckey message). On the
other hand, if the identities were the same, then the initiator and responder
session would necessarily be f3-partners. This follows because the initiator has
the server session as its f1-partner in sub-protocol Π1 and the server session’s
Ckey message, if delivered at all, must be delivered honestly to its f2-partner
in sub-protocol Π2. Combined with their agreement on their peers, this means
the initiator and responder session would be partners by the definition of f3.

Altogether, since the session key of the test-session is derived using a random
function, and since the corresponding Ckey message leaks nothing about the
session key by Game 6, the adversary has zero advantage in Game 6 as claimed.

Combining the bounds from Claim 4.3 to Claim 4.10 we get

Adv3P-AKEwfs

Π3,f3 (A) ≤ AdvACCE- EA
Π2,f2 (B1) + 2n2 · Adv2P-AKEfs

Π1,f1 (B2) + 2n2 · Advprf
PRF(D)

+ 2n2 · AdvACCE
Π2,f2(B′

3) + 2n2 · AdvACCE
Π2,f2(B′′

3),

where n = (nπ + 1) · |I ∪ R|.
By letting B3 be the ACCE adversary that with probability 1/2 either im-

plements algorithm B′
3 or algorithm B′′

3 , the concrete bound in the statement
of Theorem 4.2 follows. �

Remark 4.11. Note that the conclusion above only holds if protocol Π3 em-
ploys channel binding. If the identities of A and B where not included in the
evaluation of the pseudorandom function PRF, then Π3 would be vulnerable to
the simple UKS attack described in Section 4.1. That is, simply change the
responder identity being sent over the (unauthenticated) A–S link from “B”
to “C”. Without channel binding, A and C would obtain the same session key
but disagree on their intended peers, and hence not be partners. �

80 Security of EAP Chapter 4

4.3 Second composition theorem:
3P-AKEwfs + 2P-AKEnfs =⇒ 3P-AKEfs

In this section we state and prove our second composition theorem. This result
corresponds to the cryptographic core of full EAP.

Construction. From a 3P-AKE protocol Π3 and a PSK-based 2P-AKE pro-
tocol Π4, we construct the 3P-AKE protocol Π5 shown in Figure 4.1. Specifi-
cally, protocol Π5 works as follows. First sub-protocol Π3 is run between A, B
and S in order to establish an intermediate key KΠ3 . Then sub-protocol Π4 is
run between A and B using KΠ3 as the their PSK. The session key derived in
sub-protocol Π4 becomes A and B’s final session key in protocol Π5.

Result. Our second composition result shows that protocol Π5 is 3P-AKE
secure if sub-protocol Π3 is 3P-AKEwfs secure and sub-protocol Π4 is 2P-AKEnfs

secure with explicit entity authentication. We remark that the last requirement
is necessary in order for our proof to go through. In fact, Π5 inherits the
property of explicit entity authentication from sub-protocol Π4. Moreover,
while Π4 does not necessarily achieve any forward secrecy on its own, protocol
Π5 does. The reason is that within Π5, sub-protocol Π4 is merely used to
upgrade the security of Π3 from weak forward secrecy to full forward secrecy.

For technical reasons, we additionally need to assume some minimal struc-
ture on sub-protocol Π4 beyond it being a 2P-AKE protocol. In particular, we
require that the probability that two sessions at the same party end up with
the same local transcript τ in sub-protocol Π4 should be “small”. Formally, we
demand that the probability of such a transcript collision should be statistically
bounded by some function ε of the number of parties and sessions. This tech-
nical requirement is needed in order be able to apply a local partner function
to the transcript of sub-protocol Π4 (see the proof of Claim 4.18).

Theorem 4.12. Let Π5 be the 3P-AKE protocol constructed from the 3P-AKE
protocol Π3 and 2P-AKE protocol Π4 as described in the construction above. Let
f3 and f4 be partner functions, where f4 is required to be local. Then, for any
adversary A in security experiment AKEfs against protocol Π5, we can create
a partner function f5 and algorithms B1 and B2, such that

Adv3P-AKEfs

Π5,f5 (A) ≤ 3n2 · Adv3P-AKEwfs

Π3,f3 (B1) + 2n2 · Adv2P-AKEnfs

Π4,f4 (B2) + 2ε, (4.21)

where n = (nπ + 1) · |I ∪ R|, nπ is the maximum number of sessions that A
creates at each party, and ε = ε(|I ∪ R| , nπ) is a function that bounds the
probability that two sessions at the same party get the same local transcript in
protocol Π4.

Section 4.3 Second composition theorem 81

The idea of the proof is as follows. Using that sub-protocol Π3 is 3P-
AKEwfs secure, we can replace the intermediate key KΠ3 coming out of Π3
with a random key for the test-session. This then allows us to reduce the 3P-
AKEfs security of protocol Π5 to the 2P-AKEnfs of sub-protocol Π4, since the
now random intermediate key of the test-session is identically distributed with
the PSKs used in Π4. The partner function f5 will be composed out of f3 and
f4, so that two sessions are f5-partners if and only if they are f3-partners and
f4-partners.

The main difficulty of the proof lies in the first step, i.e., replacing the
intermediate key of the test-session with a random key. The issue is that A
plays in a security game that has full forward secrecy, whereas the reduction
B1 to sub-protocol Π3 plays in a security game with only weak forward secrecy.
As such, A is allowed strictly more Corrupt queries than what B1 can do itself.
The question is how B1 can simulate the 3P-AKEfs security game for A while
still keeping the test-session fresh in its own 3P-AKEwfs security game.

This is where we use that sub-protocol Π4 provides explicit entity authen-
tication. Essentially, it guarantees that the test-session must have a partner
in protocol Π5. By definition of f5, this implies that it must also have an f3-
partner in sub-protocol Π3. But recall from Table 3.1 that when the test-session
has a partner, then there is no difference between the AKEfs and AKEwfs mod-
els! Thus, as long as we can show that the test-session has a partner in protocol
Π5, we are fine. Consequently, we first prove as an initial lemma that protocol
Π5 provides explicit entity authentication.

Proof of Theorem 4.12. We begin by defining the partner function f5 for pro-
tocol Π5. We construct f5 from the partner functions f3 and f4 given for
sub-protocols Π3 and Π4 as follows:

f5,T5(π) = π ′ ⇐⇒ (f3,T3(π) = π ′) ∧ (f4,T4(π) = π ′), (4.22)

where T3 and T4 are the transcripts one gets from T5 by restricting to the
messages pertaining to sub-protocols Π3 and Π4, respectively. The soundness
of f5 follows directly from the soundness of f3 and f4. Moreover, like in the
proof of the first composition theorem (Theorem 4.2), we assume for simplicity
that f3 and f4 have perfect soundness. It follows that f5 has perfect soundness
too.

4.3.1 Explicit entity authentication
Lemma 4.13. With f5 as defined above, and everything else as otherwise stated
in Theorem 4.12, we have that

Adv3P-AKEfs- EA
Π5,f5 (A) ≤ 2n2 · Adv3P-AKEwfs

Π3,f3 (B1) + n2 · Adv2P-AKEnfs- EA
Π4,f4 (B2) + ε.

82 Security of EAP Chapter 4

Proof.

Game 0: This is the original 3P-AKEfs-EA security experiment, hence

AdvG0- EA
Π5,f5

(A) = Adv3P-AKEfs- EA
Π5,f5 (A). (4.23)

Game 1: In this game the challenger aborts if two sessions at the same party
end up with the same local transcript τ in sub-protocol Π4. By definition of
the function ε this gives

AdvG0- EA
Π5,f5

(A) ≤ AdvG1- EA
Π5,f5

(A) + ε. (4.24)

Game 2: This game implements a selective security game where the adver-
sary is required to commit to the session that will accept maliciously first.
Specifically, at the beginning of the game the adversary must first choose a
pair (U, i), with i ∈ [1, nπ]. The game then proceeds as in Game 1, except
that if some session accepts maliciously before πi

U , the challenger aborts the
game and outputs 0 (i.e., A loses). In particular, this includes the possibility
that A makes a query that renders πi

U unfresh (which would preclude πi
U from

accepting maliciously).

Claim 4.14.

AdvG1- EA
Π5,f5

(A) ≤ nπ · |I ∪ R| · AdvG2- EA
Π5,f5

(A′). (4.25)

Proof. The proof is essentially the same as for Game 2 in Theorem 4.2 (Claim 4.5),
only that this time the selective security adversary guesses one session rather
than two. �

In the remaining games, let πi
U denote the session that the adversary com-

mits to in Game 2. Note that πi
U is not necessarily the same as the test-session

chosen by the adversary.

Game 3: This game extends the selective security requirement of Game 2
by demanding that the adversary also commits to the partner of πi

U in sub-
protocol Π3 (if any). Specifically, at the beginning of the game the adversary
must pick a pair (U, i) as in Game 2, but it must also pick a pair (V, j), with
j ∈ [0, nπ]. Game 3 then proceeds as in Game 2, but it additionally aborts if
πi

U gets a different f3-partner than πj
V in sub-protocol Π3. This includes the

case that πi
U gets an f3-partner if j = 0.

Section 4.3 Second composition theorem 83

Remark 4.15. Note that there is no contradiction between πi
U accepting ma-

liciously in protocol Π5 according to partner function f5, while simultaneously
having an f3-partner in sub-protocol Π3. �
Claim 4.16.

AdvG2- EA
Π5,f5

(A) ≤ (nπ + 1) · max{|I|, |R|} · AdvG3- EA
Π5,f5

(A′). (4.26)

Proof. Again, from an adversary A that plays against the single selective se-
curity requirement of Game 2, we can create an adversary A′ against the two
selective security requirements of Game 3. Basically, after A outputs its com-
mitment to a pair (U, i), then A′ guesses another pair (V, j) (conditioned on the
role of U), and outputs (U, i) and (V, j) as its own commitments to Game 3. �

In the remaining games, let πj
V denote the (possibly empty) f3-partner of

πi
U that the adversary commits to in Game 3 in addition to πi

U .

Game 4: This game proceeds as the previous one, but it replaces the inter-
mediate key KΠ3 of πi

U and πj
V in sub-protocol Π3 with a random key K̃.

Claim 4.17.

AdvG3- EA
Π5,f5

(A) ≤ AdvG4- EA
Π5,f5

(A) + Adv3P-AKEwfs

Π3,f3 (B1). (4.27)

Proof. We show that if it is possible to distinguish Game 3 and Game 4, then we
can create an algorithm B1 that breaks the 3P-AKEwfs security of sub-protocol
Π3. Reduction B1 begins by choosing a random bit bsim. It then runs A and
implements all the abort conditions introduced so far. All of A’s Send queries
that pertain to the 3P-AKE sub-protocol Π3, B1 forwards to its 3P-AKEwfs

security game. For all sessions different from πi
U and πj

V , B1 obtains their
intermediate keys KΠ3 in sub-protocol Π3 by making a corresponding Reveal
query to its 3P-AKEwfs game.

On the other hand, when the first session out of πi
U and πj

V accepts in sub-
protocol Π3, then B1 instead makes a Test query to obtain its intermediate key
KΠ3 in protocol Π5. Let k∗ denote this key. When the second session out of
πi

U and πj
V accepts in sub-protocol Π3, it is assigned the same key k∗ as its

intermediate key in sub-protocol Π3.
B1 simulates sub-protocol Π4 itself using the intermediate keys it obtained

for sub-protocol Π3 as the PSKs for Π4. To answer A’s Test query, B1 uses the
bit bsim it drew in the beginning of the simulation. Finally, when πi

U accepts
in protocol Π5, then B1 stops it simulation and outputs a 0 to its 3P-AKEwfs

game if πi
U accepted maliciously, and a 1 otherwise.

Before analyzing B1’s advantage, we argue that if πi
U accepts maliciously in

B1’s simulation, then both πi
U and πj

V are valid test-targets in its 3P-AKEwfs

84 Security of EAP Chapter 4

game, i.e., fresh according to predicate FreshAKEwfs . Recall that B1 selects its
test-session based on which of πi

U and πj
V accepted first in sub-protocol Π3. We

consider three cases:

• j = 0: In this case πi
U is chosen as the test-session, and B1 makes no

Reveal query towards it in its 3P-AKEwfs game because it uses the Test
query to obtain its intermediate key. Since πi

U does not have an f3-partner
(j = 0), there are of course no other Reveal queries that could have made
πi

U unfresh.

We claim that B1 also never issued a Corrupt query to πi
U ’s peers. To see

this, note that if πi
U is to accept maliciously in protocol Π5, then it must

be fresh according to predicate FreshAKEfs . In particular, this means that
A cannot issue any Corrupt queries to πi

U ’s peers before πi
U accepted.5 But

B1 stops its simulation immediately once πi
U accepts, so no Corrupt query

will actually be forwarded to πi
U ’s peers in B1’s 3P-AKEwfs experiment in

this case.

• j �= 0 and πi
U chosen as test-session: Again, B1 makes no Reveal query

towards πi
U or πj

V in its 3P-AKEwfs game, since they are both handled by
the Test query. Moreover, since πi

U has an f3-partner (j �= 0), it remains
AKEwfs fresh even if its peers are corrupted.

• j �= 0 and πj
V chosen as test-session: By symmetry of the f3 partner

function, πj
V has πi

U as its f3-partner, and thus the argument is the same
as for the above case.

Taken together, the above cases show that no-matter which one of πi
U and

πi
V was selected as the test-session by B1, it will be fresh according to predicate

FreshAKEwfs in B1’s 3P-AKEwfs game if πi
U accepted maliciously.

Finally, we analyze B1’s advantage. Let b denote the challenge-bit used to
answer B1’s Test query in its 3P-AKEwfs game. If b = 0, then B1’s Test query
is answered with a real key, and B1 simulates Game 3 perfectly for A up until
the point when πi

U accepts (in protocol Π5). Thus:

Pr[ExpAKEwfs

Π3,Q (B1) ⇒ 1 | b = 0] = AdvG3- EA
Π5,f5

(A). (4.28)

On the other hand, if b = 1, meaning that B1’s Test query is answered with
a random key, then B1 perfectly simulates Game 4. Since B1 only outputs a

5Recall that predicate FreshAKEfs forbids any Corrupt query to a session’s peers if (1) it
does not have a partner, and (2) it has not accepted yet. This corresponds exactly to the
setting we are in when a session accepts maliciously.

Section 4.3 Second composition theorem 85

1 to its 3P-AKEwfs security game if A loses in B1’s simulation, i.e., if πi
U does

not accept maliciously, we have

Pr[ExpAKEwfs

Π3,Q (B1) ⇒ 1 | b = 1] = 1 − AdvG4- EA
Π5,f5

(A). (4.29)

Thus, B1’s advantage is

Adv3P-AKEwfs

Π3,f3 (B1) = 2 · Pr[ExpAKEwfs

Π,Q (B1) ⇒ 1] − 1 (4.30)

= Pr[ExpAKEwfs

Π,Q (B1) ⇒ 1 | b = 0]

+ Pr[ExpAKEwfs

Π,Q (B1) ⇒ 1 | b = 1] − 1
(4.31)

= AdvG3- EA
Π5,f5

(A) − AdvG4- EA
Π5,f5

(A), (4.32)

as stated in the claim. �

Since the intermediate key KΠ3 of πi
U and πj

V is replaced with an inde-
pendent uniformly random key in Game 4, we can finally show that if πi

U

accepts maliciously in Game 4, then it must have accepted maliciously in sub-
protocol Π4.

Claim 4.18.
AdvG4- EA

Π5,f5
(A) ≤ Adv2P-AKEnfs- EA

Π4,f4 (B2). (4.33)

Proof. If A wins in Game 4, we can create the following algorithm B2 which
breaks the explicit entity authentication of sub-protocol Π4. Algorithm B2
begins by creating all the long-term keys for sub-protocol Π3 and drawing a
random bit bsim. It then runs A and simulates sub-protocol Π3 itself using the
intermediate keys coming out of sub-protocol Π3 as the PSKs for sub-protocol
Π4. Additionally, for all sessions different from πi

U and πj
V , B2 also simulates

sub-protocol Π4 itself. On the other hand, to simulate sub-protocol Π4 for πi
U

and πj
V , B2 instead forwards the corresponding queries to its own 2P-AKEnfs

security game. Once A stops and outputs a guess b′, then B2 stops too.
For sessions different from πi

U and πj
V , B2 simulates Game 4 perfectly since

it created all the keys. However, B2 also perfectly simulates πi
U and πj

V , since
by the change in Game 4, their intermediate key KΠ3 from sub-protocol Π3
is replaced with an independent uniformly random key K̃. This is identically
distributed to the long-term PSK used in B2’s 2P-AKEnfs security game, so by
forwarding the Send queries directed to πi

U and πj
V to its 2P-AKEnfs game, B2

perfectly simulates these sessions too.
It remains to argue that if πi

U accepts maliciously in Game 4, then it must
also have accepted maliciously in B2’s 2P-AKEnfs security game. First we claim
that session πj

V cannot be πi
U ’s f4-partner in sub-protocol Π4.

86 Security of EAP Chapter 4

• If j = 0, then B2 never creates a corresponding proxy session in its 2P-
AKEnfs security game, hence πi

U cannot possibly have a partner there.

• If j �= 0, then πj
V by definition (Game 3) must be πi

U ’s f3-partner in
sub-protocol Π3. But if πj

V was also the f4-partner of πi
U in sub-protocol

Π4, then by the construction of f5 from f3 and f4, πj
V would be πi

U ’s
f5-partner—contradicting the fact that πi

U was supposed to accept mali-
ciously.

There is one subtlety with the arguments above: technically we need to
show that πi

U and πi
V are f4-partners in Game 4 if and only if they are f4-

partners in B2’s 3P-AKEnfs-EA security game. However, the T4 transcript from
Game 4 contains many sessions, while the transcript TB2 from B2’s 2P-AKEnfs

security game contains at most two: πi
U and πj

V . In particular, transcript TB2

is the restriction T4
∣∣
πi

U
,πi

V

of T4. But evaluating the same partner function
on these two transcripts does not necessarily have to yield the same answer.
This is where we use the assumption that f4 is a local partner function (see
Definition 3.5). Namely, since f4 is local, we have that πi

U and πi
V are f4-

partners based on T4 if and only if they are f4-partners based on the restriction
T4

∣∣
πi

U
,πi

V

—provided that T4 is a unique transcript, i.e., no two sessions at the
same party have the same local transcript τ . But this is exactly what the abort
condition in Game 1 ensures.

Having shown that πi
U does not accept with an f4-partner in B2’s 2P-

AKEnfs-EA security game, we only have to show that πi
U is fresh according

to predicate FreshAKEnfs . But this is true since B2 makes no Corrupt query at all
in its 2P-AKEnfs security game, and also makes no Reveal query to πi

U . Thus
πi

U accepts maliciously in B2’s 2P-AKEnfs security game whenever it accepts
maliciously in Game 4, proving Claim 4.18. �

Combining the bounds from Game 1 to Game 4 with Claim 4.18 yields
Lemma 4.13. �

4.3.2 AKEfs security

Given Lemma 4.13, which shows that Π5 provides explicit entity authentication,
we can now proceed with the proof of Theorem 4.12.

Game 0: This is the real 3P-AKEfs security game, hence

AdvG0
Π5,f5

(A) = Adv3P-AKEfs

Π5,f5 (A).

Section 4.3 Second composition theorem 87

Game 1: In this game, the challenger aborts if a session accepts maliciously
in protocol Π5, whence

AdvG0
Π5,f5

(A) ≤ AdvG1
Π5,f5

(A) + Adv3P-AKEfs- EA
Π5,f5 (A). (4.34)

The remaining game hops are essentially the same as those of Lemma 4.13.
Hence, we merely state their descriptions and corresponding bounds, but omit
the proofs.

Game 2: In this game the challenger aborts if two sessions at the same party
end up with the same local transcript τ in sub-protocol Π4. By definition of
the function ε this gives

AdvG1
Π5,f5

(A) ≤ AdvG2
Π5,f5

(A) + ε. (4.35)

Game 3: This game implements a selective security game where the adversary
has to commit to a test-session and its partner (required to exist by Game 1).
Specifically, at the beginning of the game the adversary must output two pairs
(U, i) and (V, j). The game then proceeds as in Game 2, except that if either
of the following events occur, then the challenger penalizes the adversary by
outputting a random bit at the end.

(i) Neither πi
U nor πj

V were selected as the test-session by A.

(ii) πi
U and πj

V did not get partnered to each other.

Claim 4.19.

AdvG2
Π5,f5

(A) ≤ (n2
π · |I| · |R|)/2 · AdvG3

Π5,f5
(A′). (4.36)

In the remaining games, let πi
U and πj

V denote the two sessions the adversary
commits to in the selective security game.

Game 4: This game proceeds as the previous one, but it replaces the inter-
mediate key KΠ3 of πi

U and πj
V in sub-protocol Π3 with a random key K̃.

Claim 4.20.

AdvG3
Π5,f5

(A) ≤ AdvG4
Π5,f5

(A) + 2 · Adv3P-AKEwfs

Π3,f3 (B1). (4.37)

Finally, any successful attack on protocol Π5 in Game 4 can be transformed
into a successful attack on sub-protocol Π4.

Claim 4.21.
AdvG4

Π5,f5
(A) ≤ Adv2P-AKEnfs

Π4,f4 (B2). (4.38)

88 Security of EAP Chapter 4

Concluding the proof of Theorem 4.12. Combining the bounds from
Section 4.3.2 to Game 4 with Claim 4.21, we get

Adv3P-AKEfs

Π5,f5 (A) ≤ Adv3P-AKEfs- EA
Π5,f5 (A) + 2n2 · Adv3P-AKEwfs

Π3,f3 (B1)

+ n2 · Adv2P-AKEnfs

Π4,f4 (B2) + ε.
(4.39)

The concrete bound of Theorem 4.12 now follows by applying Lemma 4.13
to Equation (4.39). �

4.4 Application to EAP
Our two composition theorems (Theorem 4.2 and Theorem 4.12) apply to the
basic and full variants of EAP respectively, as defined in Section 4.1. Specif-
ically, in Theorem 4.2 we identify sub-protocol Π1 with the EAP method run
between the client and the server, and sub-protocol Π2 with the key-transport
protocol between the server and the authenticator. By a suitable instantiation
of these building blocks, and assuming that the EAP method provides channel
binding, we immediately get from Theorem 4.2 that basic EAP (Π3) is a secure
3P-AKE protocol in the weak forward secrecy model 3P-AKEwfs. This result
can then be combined with Theorem 4.12, where we identify sub-protocol Π3
with basic EAP and sub-protocol Π4 with the subsequent Security Association
Protocol between the client and the authenticator. It follows immediately that
full EAP (Π5) is a secure 3P-AKE protocol in the full forward secrecy model
AKEfs.

In Chapter 5 we will show that the EAP method EAP-TLS [RFC5216]
satisfies the requirements on sub-protocol Π1 in Theorem 4.2. Likewise, in
Chapter 6 we show that IEEE 802.11 [IEEE 802.11] satisfies the requirements
on sub-protocol Π4 in Theorem 4.12. Thus, it remains to demonstrate that the
key-transport protocol between the server and the authenticator satisfies the
requirements on sub-protocol Π2 in Theorem 4.2.

As we argued in Section 4.1.2, the security properties provided by the MPPE
encryption method employed by RADIUS are largely unknown. It is therefore
difficult to assess whether RADIUS alone can safely instantiate our first com-
position theorem. On the other hand, RADIUS is commonly run on top of a
secure channel protocol like TLS or IPsec. In this case the security reduces
to that of the underlying secure channel protocol. Both TLS and IPsec are
well-studied, and have received large amounts of formal analysis. In particular,
a number of works have shown TLS to be a secure ACCE protocol [Jag+12,
KPW13b, KSS13, Brz+13a, Li+14], so in Theorem 4.2 we can for instance set
sub-protocol Π2 to be RADIUS-over-TLS [RFC6614].

Section 4.4 Application to EAP 89

4.4.1 EAP without channel binding
Theorem 4.2 requires that the EAP method provides channel binding. Without
it, EAP becomes vulnerable to the UKS attack described in Section 4.1.1.
Unfortunately, many concrete EAP methods do not provide channel binding.
Because the communication between the client and the server is normally routed
through the authenticator, a malicious authenticator can trivially modify the
information presented to the two sides. As a consequence, without channel
binding it suffices to compromise a single authenticator in order to compromise
an entire network. Since authenticators are typically low-protected devices,
such as wireless access points, this represents a substantial attack vector on
larger enterprise networks.

Interestingly, a very similar situation can be found in the UMTS and LTE
mobile networks. UMTS and LTE employ a key exchange protocol called AKA
which is structured almost identically to the EAP protocol: a mobile client
that wants to connect to a base station first has to authenticate to its home
operator. The home operator then transmits a list of so-called authentication
vectors (which in particular includes a session key) to the base station in much
the same way the server forwards the session key to the authenticator in EAP.
Moreover, similar to many EAP methods, the AKA protocol lacks channel
binding for its authentication vectors. In their analysis of the AKA protocol,
Alt et al. [Alt+16, §5] noted this lack of channel binding, and suggested a
fix which is almost identical to the key-derivation approach analyzed in this
chapter.

4.4.2 Channel binding scope
Theorem 4.2 assumes that the channel binding includes the identity of the
client and the authenticator in order to bind them cryptographically to the
session key. However, this fine-grained scope of the channel binding might not
be relevant all situations. For example, in a WLAN supported by many access
points, the client does not actually care about which specific access point it
connects to, as long as it connects to a legitimate access point of that WLAN.
Thus, in this case the granularity of the channel binding does not have to be
at the individual access point level, but rather at the WLAN level, defined
by all the access points broadcasting the same network identifier (SSID). Of
course, by doing so the protection provided by the channel binding will be
weaker. In particular, when channel binding occurs at the individual level,
then the corruption of a single access point will not influence clients connecting
to access points having a different identity. On the other hand, when channel
binding occurs at the network level, then a single corrupted access point will
affect all connections within that WLAN. In this case, channel binding only

90 Security of EAP Chapter 4

protects connections occurring in networks having a different SSID.
More generally, the information included in the channel binding defines the

scope of the protection it provides, and can include more than just identities.
For instance, physical media types, data rates, cost-information, channel fre-
quencies, can all be used as input to the channel binding (see [CH09] for a
discussion of these possibilities). The specifications for channel binding within
EAP [OPY06, RFC6677] leave open exactly what type of information should
go into the binding, because the amount of information that will be available
to both the client and the server may vary.

Chapter 5

Security of EAP-TLS

Contents
5.1 Motivation . 91

5.1.1 Related work on EAP-TLS 95
5.2 TLS-like ACCE =⇒ AKE 95

5.2.1 TLS-like protocols 95
5.2.2 Construction . 97
5.2.3 Main result . 97

5.3 Application to EAP-TLS 110
5.3.1 TLS security . 111
5.3.2 On the key collision resistance of the TLS KDF . 115

5.1 Motivation
In Chapter 4 we showed that EAP is a secure 3P-AKE protocol assuming,
among other things, that the EAP method between the client and the server
is a secure 2P-AKE protocol. Thus, in order to complete the picture on EAP,
we need to establish that at least some EAP method satisfies the 2P-AKE
security notion. Fortunately, such an EAP method already exists, namely EAP-
IKEv2 [RFC5106]. In particular, since an EAP method is just a wrapper around
some concrete AKE protocol, the security of EAP-IKEv2 reduces to that of
IKEv2, which has been proven secure by Canetti and Krawczyk [CK02].

On the other hand, probably the most widely supported EAP method of
all—EAP-TLS—has no such proof. In fact, as we explained in Section 3.4, TLS

91

92 Security of EAP-TLS Chapter 5

in all versions up to TLS 1.2 is not a secure AKE protocol at all! The reason
is that TLS encrypts some of the handshake messages using the session key
itself, giving the adversary a trivial way of distinguishing the session key from
random. Thus, it might appear that our results on EAP cannot be applied to
the case when EAP-TLS is being used as the EAP method.

Fortunately, it turns out that within the context of EAP-TLS, TLS can be
proven to be a secure AKE protocol. Recall from Section 2.1 that an EAP
method is supposed to export a master session key MSK. Crucially, in EAP-
TLS the MSK is not the ordinary session key of TLS which is used to protect
the channel. Instead, the MSK is derived as a separate key from the master
secret established during the TLS handshake. This fact makes it possible to
prove that EAP-TLS is a secure AKE protocol, by considering the MSK as the
session key.

Concretely, in this chapter we show that if one derives an additional ex-
port key from the TLS master secret—independent of the other handshake
messages—then TLS constitutes a secure AKE protocol by taking this export
key to be the session key. Furthermore, while our starting point is the TLS pro-
tocol, our result will in fact be much more general. Instead of focusing solely
on TLS, we generalize to a wider class of protocols which we call TLS-like
ACCE protocols. Roughly, TLS-like ACCE protocols are protocols that satisfy
the ACCE security notion and, like TLS, establish a master secret during the
handshake. Apart from this requirement, our result has no other dependencies
on the specifics of the TLS protocol. In other words, our main result is a gen-
eral theorem showing that any ACCE protocol which has a concept of a master
secret can be turned into an AKE protocol.

An immediate corollary of this result is of course that EAP-TLS is a secure
2P-AKE protocol. However, it also applies more broadly to the general practice
of exporting additional keys from the master secret in TLS, as has been formal-
ized in RFC 5705: “Keying Material Exporters for Transport Layer Security
(TLS)” [RFC5705] (which we call TLS Key Exporters from now on).

Motivation for our approach. For the moment, suppose we only wanted to
show that EAP-TLS was a secure AKE protocol, leaving aside the possibility
of further generalizations for now. One obvious approach would be to reuse
one of the many existing security proofs which shows that TLS is a secure
ACCE protocol (e.g., [Jag+12, KSS13, Li+14]). Specifically, in these proofs the
master secret of a particular session is typically swapped out with a completely
random value, allowing the rest of the proof to continue on the assumption
that the master secret is completely hidden from the adversary. Due to the
unpredictability of the master secret, the adversary will not be able to detect
the switch. Using this truly random master secret, we could then extend the

Section 5.1 Motivation 93

proof with one additional step where we derive the export key using a random
oracle. It would then follow that the derived export key is indistinguishable
from random.

However, a big downside of such a result is that it could not be re-used
across different TLS ciphersuites, nor would it hold for future versions of TLS.
Indeed, for every variant of TLS one would have to redo the corresponding
security proof and augment it accordingly to account for the extra export key.
Besides being tedious, this approach is of course also inherently non-modular
since it is tied to the innards of each particular proof. Still, it seems likely that
most of these proofs would be fairly similar in terms of technique, and also
reasonably independent of the specific details of the TLS protocol itself.

The question is whether we can isolate exactly those properties of the TLS
protocol that these proofs rely on. If so, we could extract a generic proof of
TLS key exporters that works across different versions unmodified. Moreover,
it would be even better if we could have a result that is not tied to TLS at all,
but rather one that targets an appropriate abstract security notion.

Essentially, this is what we do in this chapter: we identify certain features of
the TLS protocol which, when added to a generic ACCE protocol, are sufficient
to establish the indistinguishability of the export keys derived by the protocol.
Note that, apart from the features that we identify, the result is completely
independent of the internals of TLS. Below we describe these features.

Technical overview of our result. Surprisingly, the number of additional
features that needs to be added beyond a generic ACCE protocol is rather
minimal. They consist of the following three requirements.

(i) The handshake includes a random nonce from each session.

(ii) Each session maintains a value called the master secret during the hand-
shake.

(iii) The session key is derived from the master secret, the nonces, and possibly
some other public information using a key derivation function (KDF).

We call an ACCE protocol that satisfies these requirements TLS-like. Our
result can now be more precisely formulated as follows: starting from an ACCE
secure TLS-like protocol Π, we create an AKE secure protocol Π+, where Π+

consists of running protocol Π until a session accepts (according to Π), and then
derives one additional key from the master secret and nonces of Π. This key—
which is distinct from the session key in the underlying protocol Π—becomes the
session key of Π+. In our security proof the key derivation step will be modeled
using a random oracle. The construction of Π+ from Π precisely captures the
definition used in TLS key exporters [RFC5705] and EAP-TLS [RFC5216].

94 Security of EAP-TLS Chapter 5

Note that while we put no security requirements on the master secret of a
TLS-like protocol, it is pivotal in our proof to relate the indistinguishability of
the session keys in Π+ to the ACCE security of Π. However, at first sight it
does not seem like merely assuming the ACCE security of TLS will allow us to
say anything about the internal variables of TLS, and in particular its master
secret. Nevertheless, inspired by Morrissey, Smart, and Warinschi [MSW10],
we can show that the ACCE security of TLS implies that the master secret is
unpredictable, meaning that no adversary is able to output the full master secret
of a fresh target session. If the master secret was predictable, then we would be
able to break the security of the ACCE channel. This intuition lies at the heart
of our proof, which uses the ACCE property of TLS in a (semi-)black-box way.

Specifically, Morrissey et al. [MSW10] proved that a secure AKE protocol
can be built out of a secure master key agreement protocol, which has the much
weaker security requirement of having unpredictable master secrets. In their
security reduction they assumed to have access to a key-checking oracle O that
answers whether a supplied value equals the master secret of a given session.
Using the key-checking oracle O, they could simulate the session key derivation
of the AKE protocol as well the random oracle. Crucially, however, it required
that O was perfect, meaning that it always answered correctly.

By contrast, our proof is complicated by the fact that there is no perfect
key-checking oracle available. That is, given only a (TLS-like) ACCE protocol,
there is no apparent mechanism for testing the master secret of a session with
certainty. The main technical novelty of our proof is to show that we can
still create an approximation of the key-checking oracle as long as we allow a
(small) one-sided error probability. This emulated key-checking oracle suffices
to simulate the AKE experiment of protocol Π+ in our reduction to the ACCE
security of Π.

To give some intuition for our key-checking oracle in the ACCE setting,
suppose we want to test whether the value ms is the master secret of some
session π . First, we use ms, the nonces π accepted with, and the KDF of Π
(all available since Π is TLS-like) to derive a guess on π ’s session key in Π.
Next, we obtain a ciphertext C of a random message under π ’s actual session
key in Π using our access to the “left-or-right” LR query in the ACCE game.
Finally, we locally decrypt C using the guessed session key of Π, i.e., we do not
use the Decrypt query of the ACCE game. If the local decryption gives back
the random message we started with, we guess that ms was the correct master
secret of π ; otherwise, we guess that it was incorrect.

In the above, we tacitly assumed that different master secrets derive different
session keys (using the same nonces). Normally, this would follow directly
from the pseudorandomness of the KDF used in Π. However, since we do
not require the master secrets to be independent and uniformly distributed,

Section 5.2 TLS-like ACCE =⇒ AKE 95

we cannot invoke this property of the KDF. Instead, we have to explicitly
assume that different master secrets do not collide to the same session key. We
expect this property to hold for most real-world KDFs. Particularly, we show
in Theorem 5.14 (Section 5.3.2) that the HMAC-based KDF used in TLS 1.2
has this property, provided the underlying hash function in HMAC is collision-
resistant.

5.1.1 Related work on EAP-TLS
The classic result of Canetti and Krawczyk [CK01] shows how to build secure
channels from AKEs. Our result can be seen as a kind of dual: building AKEs
from secure channels. Specifically, we create a compiler that on input a secure
TLS-like ACCE protocol outputs a secure AKE protocol. There is a long
tradition for generic compiler results like this in the literature [BCK98, KY03,
Jag+10, BG11, CF12, Kra16].

On the specific topic of EAP-TLS we are not aware of any existing re-
sults. There are results on other EAP methods, however. For example, the
already mentioned EAP-IKEv2 method is a secure AKE protocol (following di-
rectly from the corresponding result on IKEv2 [CK02]). Likewise, Küsters and
Tuengerthal [KT11a] have shown that the EAP-PSK method (see Table 2.1) is
secure in their IITM universal composability framework.

5.2 TLS-like ACCE =⇒ AKE
In this section we state and prove our generic result which will be used to
establish the AKE security of EAP-TLS in Section 5.3. The protocols analyzed
in this section are generic in the sense that they are not assumed to have any
specific structure except for being TLS-like.

5.2.1 TLS-like protocols
Since the definition of TLS-like is motived by the structure of the TLS 1.2 pro-
tocol, we first give a brief description of it here. Figure 5.1 shows a simplified
version of the TLS 1.2 handshake parameterized on a key encapsulation mecha-
nism (KEM) KEM. This presentation is inspired by Krawczyk et al. [KPW13b]
and allows us to treat all the main TLS handshake variants, TLS-RSA, TLS-
DH, TLS-DHE, in a uniform manner by suitably instantiating the KEM. Note
that in order to do so, the “Cert+” notation captures more than just one side’s
certificate. For example, for TLS-DHE we have that Cert+

C includes the client’s
ephemeral Diffie-Hellman share, a signature on the share, as well as the client
certificate itself.

96 Security of EAP-TLS Chapter 5

Client Server

ηC

ηS , Cert
+
S

Cert+C , FinishedC

FinishedS

ms← KEM(Cert+S ,Cert
+
C)

k ← tls.PRF(ms, ηC‖ηS)
ms← KEM(Cert+S ,Cert

+
C)

k ← tls.PRF(ms, ηC‖ηS)

Figure 5.1: Simplified TLS 1.2 handshake.

The TLS handshake begins with the client sending a random nonce ηC .
The server responds with its own random nonce ηS and its contribution to the
KEM, denoted Cert+

S . On receiving this message, the client generates its own
KEM contribution Cert+

C , and from the two KEM values derives a master secret
key ms. From the master secret and the nonces, the client also derives the TLS
session key k using the TLS key derivation function tls.PRF. The client sends
its KEM contribution together with a key confirmation message FinishedC to
the server. On receiving the client’s KEM contribution, the server derives the
same ms and k as the client and checks the validity of FinishedC . It ends the
handshake by sending a key confirmation message FinishedS of its own.

Essentially, a TLS-like protocol abstracts from the TLS 1.2 handshake the
idea of having random nonces, a master secret, and a session key derived from
the master secret and the nonces using a KDF. In the definition below, recall
that a session’s local transcript τ consists of all the messages it has sent and
received during the protocol run.

Definition 5.1 (TLS-like protocols). An ACCE protocol Π is TLS-like if:

(i) each session transmits a random nonce value η ←←{0, 1}λ during its run
of the protocol,

(ii) each session holds a variable ms ∈ {0, 1}κ ∪{⊥}, called the master secret,

(iii) if η1, η2 are the two nonces on a session’s local transcript τ , then the
session key is derived as

k ← Kdf(ms, η1‖η2, FΠ(τ)), (5.1)

where Kdf : {0, 1}κ × {0, 1}2λ × {0, 1}∗ → {0, 1}κ and FΠ : {0, 1}∗ →
{0, 1}∗ are deterministic functions.

It should be clear from Figure 5.1 that TLS 1.2 is indeed TLS-like. But
many other real-world protocols also belong to this class, like SSH, IKEv2, and

Section 5.2 TLS-like ACCE =⇒ AKE 97

QUIC. The function FΠ is protocol-specific and meant to capture any auxiliary
input that might be used to derive the session keys in addition to the nonces.
For example in TLS 1.2, FΠ(τ) is the empty string, while in IKEv2, FΠ(τ) is
the Security Parameter Index (SPI) of the initiator and the responder.

5.2.2 Construction
Let Π be a TLS-like ACCE protocol with key derivation function Kdf and let
G : {0, 1}κ ×{0, 1}2λ ×{0, 1}∗ → {0, 1}κ be a random oracle. From Π and G we
create an AKE protocol Π+ as follows. Protocol Π+ consists of first running
protocol Π as usual until a session accepts, then it derives an additional key
ek ← G(ms, η, aux), where ms is the master secret of Π, ηC and ηS are the
nonces, and aux ∈ {0, 1}∗ is an (optional) string containing selected values
from the session’s local transcript τ . The key ek becomes the session key in
protocol Π+.

By construction, a session in Π+ derives (at least) two keys: its “true”
session key in the sense of the AKE model, i.e., the key ek derived from the
random oracle G; and the “session key” derived in the underlying protocol Π
using the KDF Π.Kdf. To avoid confusion, we will call the former key the export
key; and the latter key the channel key and denote it ck. In particular, in the
AKE game the session key variable π.k will store the export key ek, while the
channel key ck will merely be one of π ’s other internal state variables, written
π.ck. The reason why the export key ek needs to be derived using a random
oracle will be explained below.

5.2.3 Main result
Informally, our main result shows that the construction described above trans-
forms a secure TLS-like ACCE protocol Π into a secure AKE protocol Π+.
However, in our proof we need to make one additional assumptions besides
that of ACCE security. We need to assume that the key derivation function
Π.Kdf does not have key collisions, i.e., that two different master secrets pro-
duce the same output when given the same nonces and auxiliary data as input.

Definition 5.2 (KDF collision resistance). Let KDF be a function with the
same domain and range as the function in Equation (5.1). Define the following
advantage measure for an adversary A:

Advkdfcoll
KDF (A) def= Pr

[
((ms, ms′), r, s) ← A : KDF(ms, r, s) = KDF(ms′, r, s)

ms �= ms′

]
.

A tuple ((ms, ms′), r, s) satisfying the criterion in the equation above is called
a key collision for KDF.

98 Security of EAP-TLS Chapter 5

Remark 5.3. Definition 5.2 is a variant of the more common notion of collision-
resistant hash functions. The difference is that KDF collision resistance is about
collisions in the keys, not the messages. �

Theorem 5.4. Let Π+ be the AKE protocol derived from a TLS-like ACCE pro-
tocol Π and a random oracle G using the construction described in Section 5.2.2.
Let f be a partner function with perfect soundness. Then for any adversary A
in the AKE security experiment against Π+, we can create adversaries B and
C such that:

AdvAKEfs

Π+,f (A) ≤ 3 ·AdvACCE
Π,f (B)+3 ·AdvKDFcoll

Π.Kdf (C)+
6qnP nπ

2c
+

(nP nπ)2

2λ+1 , (5.2)

where λ is the nonce length of protocol Π, nP is the number of parties, nπ is
the max number of sessions that A creates at each party, q is A’s number of
random oracle queries, and c ∈ N is an arbitrary constant.

The main idea behind the proof of Theorem 5.4 is to relate the security of
the derived export keys to the security of the channel keys in the underlying
ACCE protocol Π. Basically, by using the property that TLS-like protocols
derive their channel keys from the master secret and nonces, we establish that
two sessions derive the same export key if and only if they derive the same
channel key (barring certain bad events which we bound). The reason why the
export key needs to be derived using a random oracle is because the master
secret is not guaranteed to be uniform and independently distributed. Because
of this we cannot invoke the pseudorandomness of the KDF when deriving the
export key from the master secret.

Like in the proofs of our compositions theorems in Chapter 4, we assume
for simplicity that the partner function f has perfect soundness so that we can
always take for granted that partners derive the same session key.

Proof. Let A be the adversary in the AKEfs security game against protocol Π+.
Our proof proceeds through a sequence of games, where each consecutive game
aims to decrease the challenger’s dependency on the sessions’ master secrets
and the random oracle G, in order to derive the export keys in protocol Π+.
Eventually, in the final game the random oracle G will have been completely
replaced by a local list LG, and the Π+ export keys are derived independently
of the sessions’ master secrets. At this point we can construct an algorithm B
against the ACCE security of the underlying protocol Π, since B will now be
able to simulate the game.

Game 0: This is the original AKEfs security game for protocol Π+:

AdvAKEfs

Π+,f (A) = AdvG0
Π+(A). (5.3)

Section 5.2 TLS-like ACCE =⇒ AKE 99

Game 1: Game 1 proceeds like in Game 0, but aborts if two sessions generate
the same nonce value. Since there are nP ·nπ generated nonces, the probability
of there being at least one collision is bounded by (nP nπ)2 · 2−(λ+1). By the
Difference Lemma we have

AdvG0
Π+,f (A) ≤ AdvG1

Π+,f (A) +
(nP nπ)2

2λ+1 . (5.4)

The remaining games are aimed at removing the challenger’s dependency on
the random oracle and enabling it to derive the Π+ export keys without knowing
the sessions’ master secrets. To this end, the challenger will begin to maintain a
list LG which it will use to simulate the random oracle G and derive the sessions’
export keys. The entries of LG are tuples of the form (ms, η, aux, ek, [∗]), where
ms ∈ {0, 1}κ ∪ {⊥}, η ∈ {0, 1}2λ, aux ∈ {0, 1}∗, ek ∈ {0, 1}κ, and [∗] denotes a
list that contains zero or more session oracles. Specifically, we use the notation
“[]” to denote an empty list, “[π]” for a list containing exactly π , “[π, ∗]” for
a list containing π plus zero or more (unspecified) sessions, and “[∗]” for a list
containing zero or more (unspecified) sessions. LG is initially empty and is filled
out either in response to A’s random oracle queries or when a session reaches
the accepted state.

All the remaining games either change the way export keys are derived for
newly accepted sessions (which we call the “Send-code”), or how they answer
random oracle calls (which we call the “G-code”). The evolution of the Send-
code from Game 2 through Game 6 is shown in Figure 5.2 on Page 102, while
the corresponding G-code is shown in Figure 5.3 on Page 103. Here is how to
read the Send-code. When a session π accepts with master secret ms, nonces
η = ηC‖ηS , and auxiliary data aux, then we look for the existence of a tuple
t ∈ LG that matches these variables. We use red color to indicate the variables
that a given if/else-if clause uses to “pattern-match” against the corresponding
variables of π . The G-code is read in a similar way.

We annotate the changes made in one game relative to the previous one
using boxes. Note that some games make changes to both the Send-code and
the G-code at the same time For the remainder of this proof we always use η to
refer to the concatenation of the two nonces ηC , ηS that a session has received.

Game 2: This game introduces the list LG. When a session π accepts with
master secret ms, nonces η = ηC‖ηAP , and auxiliary data aux, the challenger
uses the Send-code shown in the panel labeled “Game 2” in Figure 5.2 to derive
its export key. It uses the G-code shown in the panel labeled “Game 2” in
Figure 5.3 to answer the adversary’s random oracle queries.

100 Security of EAP-TLS Chapter 5

Claim 5.5.
AdvG1

Π+,f (A) = AdvG2
Π+,f (A). (5.5)

Proof. Since the challenger considers all of the input values to the random oracle
when answering from LG in this game—in particular, it explicitly looks at the
master secrets of the sessions—and because a random oracle always returns
the same value when given the same input twice, the answers in Game 2 are
distributed exactly like in Game 1. �

In the remaining games, we define ck-colli to be the event that during the
run of Game i, the challenger calls the key derivation function Π.Kdf on two
different master secrets ms �= ms′, but with the same nonces η and additional
input aux, such that Π.Kdf(ms, η, aux) = Π.Kdf(ms′, η, aux). We call event
ck-colli a channel key collision.

Game 3: In this game the Send-code is modified so that when a session
accepts, the challenger first checks whether the session’s partner is present in a
tuple on LG before deriving its export key (see the panel labeled “Game 3” in
Figure 5.2). The G-code remains unchanged.

Claim 5.6.
AdvG2

Π+,f (A) ≤ AdvG3
Π+,f (A) + Pr[ck-coll3]. (5.6)

Proof. We claim that unless a channel key collision occurs, then Game 2 and
Game 3 are identical. To see this, suppose the if-check at Line 2 of Game 3
matched two sessions π and π ′. This means that fT (π) = π ′, which implies
that they have the same channel key by our assumption of perfect soundness of
f . Then our assumption that no key collision occurs further implies that they
must also have the same master secret. Hence, the else-if check at Line 10 would
also have matched π and π ′ in Game 2. This shows that Game 2 and Game 3
matches exactly the same sessions when no channel key collision occurs.

To bound Pr[ck-coll3] we create an algorithm C1 that finds key collisions in
Π.Kdf. Algorithm C1 emulates adversary A and the challenger in an execu-
tion of Game 3 by instantiating all the parties’ long-term keys and running all
the sessions according to the specification of the game. If event ck-coll3 hap-
pened during this run, say due to the calls Π.Kdf(ms, η, FΠ(τ)) and Π.Kdf(ms′,
η, FΠ(τ)), then algorithm C1 outputs ((ms, ms′), η, FΠ(τ)) as its collision for
Π.Kdf.

Since C1 holds all the keys, it can simulate Game 3 perfectly. In particular,
it can correctly simulate the random oracle G in those places where it is called
inside of Game 3 (i.e., Line 15 of the Send-code, and Line 11 of the G-code).
Thus, the probability that C1 finds a collision in Π.Kdf is exactly the probability
that event ck-coll3 occurs during its simulation of Game 3 for A. �

Section 5.2 TLS-like ACCE =⇒ AKE 101

Remark 5.7. The reason we have to condition on there being no channel key
collision in Game 3 is because we do not assume that being partners necessarily
implies having equal master secrets. It is conceivable that two partner sessions
might end up with the same channel key (and export key) even if their master
secrets differ. This would lead to a discrepancy in how G queries are answered
in Game 2 and Game 3. �

Game 4: In this game the Send-code is augmented by matching non-fresh
sessions based on their channel keys (see Figure 5.2). That is, if two non-fresh
sessions are found to have the same channel key (and the same nonces and
auxiliary data), then they are given the same export key too.

Claim 5.8.
AdvG3

Π+,f (A) ≤ AdvG4
Π+,f (A) + Pr[ck-coll4]. (5.7)

Proof. Again, as long as a channel key collision does not occur (event ck-coll4),
then Game 3 and Game 4 are identical. To bound Pr[ck-coll4] we build an
algorithm C2 against the collision resistance of Π.Kdf just like we created C1 in
the proof of Claim 5.6. �

Game 5: In this game the challenger replaces the calls to the random oracle
(both in the Send-code and in the G-code) with strings drawn uniformly at
random.

Claim 5.9.
AdvG4

Π+,f (A) = AdvG5
Π+,f (A). (5.8)

Proof. We show that the challenger in Game 4 never repeats a call to the
random oracle on the same input. Thus, replacing these calls with uniformly
drawn strings in Game 5 yields exactly the same distribution on the export
keys.

Suppose at some point during Game 4 the challenger made the random
oracle call G(ms, η, aux) for the first time (either due to a session accepting,
or because A made this exact G query). Suppose the random oracle responded
with ek, and let t = (ms, η, aux, ek, [∗]) be the tuple that was added to LG in
response to the call.

If the adversary later makes a G query on the same values, i.e. a query of
the form G(ms, η, aux), then Line 2 of the G-code will be used to answer the
query. Thus, the random oracle call on Line 11 of the G-code would never be
made on the same values twice in Game 4.

Likewise, if a session π accepts with the same values, i.e., master secret ms,
nonces η = ηC‖ηS , and auxiliary data aux, after the initial G query was made,

102 Security of EAP-TLS Chapter 5

1: // match partner sessions � Game 2
2: if ∃(∗, η, aux, ek, [π ′]) ∈ LG ∧ fT (π) = π ′:
3: π.k ← ek
4: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
5: // match non-fresh sessions on their channel keys
6: else if (∃(∗, η, aux, ek, [π ′]) ∈ LG)

∧ (π, π ′ non-fresh) ∧ (π.ck = π ′.ck):
7: π.k ← ek
8: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
9: // look at the master secret

10: if ∃(ms, η, aux, ek, [∗]) ∈ LG:
11: π.k ← ek
12: update (ms, η, aux, ek, [∗]) to (ms, η, aux, ek, [∗, π])
13: else
14: // no match found – derive new key
15: ek ← G(ms, η, aux)
16: π.k ← ek
17: LG ← LG ∪ (ms, η, aux, ek, [π])

1: // match partner sessions � Game 3
2: if (∃(∗, η, aux, ek, [π ′]) ∈ LG) ∧ (fT (π) = π ′):
3: π.k ← ek
4: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
5: // match non-fresh sessions on their channel keys
6: else if (∃(∗, η, aux, ek, [π ′]) ∈ LG)

∧ (π, π ′ non-fresh) ∧ (π.ck = π ′.ck):
7: π.k ← ek
8: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
9: // look at the master secret

10: else if ∃(ms, η, aux, ek, [∗]) ∈ LG:
11: π.k ← ek
12: update (ms, η, aux, ek, [∗]) to (ms, η, aux, ek, [∗, π])
13: else
14: // no match found – derive new key
15: ek ← G(ms, η, aux)
16: π.k ← ek
17: LG ← LG ∪ (ms, η, aux, ek, [π])

1: // match partner sessions � Game 4
2: if (∃(∗, η, aux, ek, [π ′]) ∈ LG) ∧ (fT (π) = π ′):
3: π.k ← ek
4: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
5: // match non-fresh sessions on their channel keys
6: else if (∃(∗, η, aux, ek, [π ′]) ∈ LG)

∧ (π, π ′ non-fresh) ∧ (π.ck = π ′.ck):
7: π.k ← ek
8: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
9: // look at the master secret

10: else if ∃(ms, η, aux, ek, [∗]) ∈ LG:
11: π.k ← ek
12: update (ms, η, aux, ek, [∗]) to (ms, η, aux, ek, [∗, π])
13: else
14: // no match found – derive new key
15: ek ← G(ms, η, aux)
16: π.k ← ek
17: LG ← LG ∪ (ms, η, aux, ek, [π])

1: // match partner sessions � Game 5
2: if (∃(∗, η, aux, ek, [π ′]) ∈ LG) ∧ (fT (π) = π ′):
3: π.k ← ek
4: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
5: // match non-fresh sessions on their channel keys
6: else if (∃(∗, η, aux, ek, [π ′]) ∈ LG)

∧ (π, π ′ non-fresh) ∧ (π.ck = π ′.ck):
7: π.k ← ek
8: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
9: // look at the master secret

10: else if ∃(ms, η, aux, ek, [∗]) ∈ LG:
11: π.k ← ek
12: update (ms, η, aux, ek, [∗]) to (ms, η, aux, ek, [∗, π])
13: else
14: // no match found – derive new key
15: ek ←←{0, 1}κ

16: π.k ← ek
17: LG ← LG ∪ (ms, η, aux, ek, [π])

1: // match partner sessions � Game 6
2: if (∃(∗, η, aux, ek, [π ′]) ∈ LG) ∧ (fT (π) = π ′):
3: π.k ← ek
4: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
5: // match non-fresh sessions on their channel keys
6: else if (∃(∗, η, aux, ek, [π ′]) ∈ LG)

∧ (π, π ′ non-fresh) ∧ (π.ck = π ′.ck):
7: π.k ← ek
8: update (∗, η, aux, ek, [π ′]) to (∗, η, aux, ek, [π ′, π])
9: // has G already been queried on an ms′ valid for π?

10: else if (∃(ms′, η, aux, ek, [∗]) ∈ LG)
∧ (CheckKey(π, ms′) = true):

11: π.k ← ek
12: update (ms′, η, aux, ek, [∗]) to (ms′, η, aux, ek, [∗, π])
13: else
14: // no match found – derive new key
15: ek ←←{0, 1}κ

16: π.k ← ek
17: LG ← LG ∪ (⊥, η, aux, ek, [π])

Figure 5.2: How to the derive the export key ek of a session π that accepted with
master secret ms, nonces η = ηC‖ηS , and auxiliary data aux, in Game 2 to Game 6.

Section 5.2 TLS-like ACCE =⇒ AKE 103

� Game 2–Game 4
1: // G queried on the same value before?
2: if ∃(ms, η, aux, ek, [∗]) ∈ LG:
3: return ek
4: // test if ms matches any already accepted sessions
5: else if (∃(⊥, η, aux, ek, [π, ∗]) ∈ LG)
6: ∧ (CheckKey(π, ms) = true):
7: update (∗, η, aux, ek, [π, ∗]) to (ms, η, aux, ek, [π, ∗])
8: return ek
9: else

10: // no match found – derive new key
11: ek ← G(ms, η, aux)
12: LG ← LG ∪ (ms, η, aux, ek, [])
13: return ek

� Game 5
1: // G queried on the same value before?
2: if ∃(ms, η, aux, ek, [∗]) ∈ LG:
3: return ek
4: // test if ms matches any already accepted sessions
5: else if (∃(⊥, η, aux, ek, [π, ∗]) ∈ LG)
6: ∧ (CheckKey(π, ms) = true):
7: update (⊥, η, aux, ek, [π, ∗]) to (ms, η, aux, ek, [π, ∗])
8: return ek
9: else

10: // no match found – derive new key
11: ek ←←{0, 1}κ

12: LG ← LG ∪ (ms, η, aux, ek, [])
13: return ek

� Game 6
1: // G queried on the same value before?
2: if ∃(ms, η, aux, ek, [∗]) ∈ LG:
3: return ek
4: // test if ms matches any already accepted sessions
5: else if (∃(⊥, η, aux, ek, [π, ∗]) ∈ LG)
6: ∧ (CheckKey(π, ms) = true):
7: update (⊥, η, aux, ek, [π, ∗]) to (ms, η, aux, ek, [π, ∗])
8: return ek
9: else

10: // no match found – derive new key
11: ek ←←{0, 1}κ

12: LG ← LG ∪ (ms, η, aux, ek, [])
13: return ek

Figure 5.3: How G queries (RO calls) of the form G(ms, η, aux) are answered in
Game 2 to Game 6.

104 Security of EAP-TLS Chapter 5

then the else-if check on Line 10 of the Send-code would match π to t. Thus,
the random oracle call on Line 15 of the Send-code would not be made on the
same values twice in Game 4 either. �

In the final game hop the challenger will derive the sessions’ export keys
independently of their master secrets. To do this, the challenger will use a
probabilistic key-checking procedure called CheckKey to test whether the ad-
versary queried the random oracle at the correct master secret of a session. The
CheckKey procedure is defined in Algorithm 1. The statements in blue boxes
can be ignored for now.

The idea of CheckKey is to test the validity of a supplied master secret
indirectly by checking whether it derives the same channel key as the one held
by the session. Of course, this whole exercise might seem totally pointless, since
the challenger has direct access to the session’s master secrets. However, the
purpose of the game hop is to prepare the ground for a subsequent reduction
to the ACCE security of protocol Π. This reduction will not have direct access
to the session’s master secrets, hence it needs to be able to simulate this key-
checking procedure.

The CheckKey procedure can be explained as follows. After being given
a master secret ms and a session π , it first derives a guess on π ’s channel key,
denoted ck′ (Line 6 in Algorithm 1). If π is non-fresh, then CheckKey simply
compares ck′ with π.ck directly (Line 10). On the other hand, when π is fresh,
then CheckKey tests the validity of ck′ by trying to decrypt a ciphertext C
that was legitimately created with the actual channel key of π ′.

Unfortunately, this stage is complicated by the fact that the stAE scheme
is stateful. Recall that a stAE scheme maintains two counters stE and stD
for encryption and decryption, respectively. Before attempting to decrypt C,
CheckKey first needs to recreate a valid decryption state stD. This is shown
at Lines 16 through 18. Basically, starting from the initial state of the stAE
scheme, CheckKey chronologically decrypts each encrypted message output
by the session during the handshake (if any). Then it decrypts all ciphertext
messages created in prior calls to CheckKey (because these advance the ses-
sion’s encrypt state stE). If the correct channel key was used, then this process
is guaranteed to generate a decryption state st′

D that “matches”1 the encrypt
state stE which was used to create the ciphertext C. Finally, CheckKey at-
tempts the decryption of C (Line 21).

If CheckKey was called on the correct master secret of a session π , then the
above shows that it will always return true since the derived channel key ck′

will equal π.ck because Π.Kdf is deterministic. Conversely, if CheckKey was

1We write “matches” since the recreated state st′
D will not necessarily be equal to the

decryption state held by π , only that it has the property of yielding a valid decryption.

Section 5.2 TLS-like ACCE =⇒ AKE 105

Algorithm 1 CheckKey(π, ms)

Note: The procedure is parameterized by some integer c ∈ N. Calls on the
same input always return the same value, i.e. CheckKey caches its results for
every input combination. To simplify the presentation this is not shown below.
Statements shown in blue boxes are only executed by reduction algorithm B.

Precondition: To every session π , CheckKey associates a random bit d, writ-
ten π.d. Let Lπ = {(C1, H1), . . . , (Cr, Hr), (Cr+1, ε), . . . , (Cs, ε)} be the list of
all the encrypted handshake messages (if any) output by π during the run of Π+,
as well as all the ciphertexts produced by previous calls to CheckKey(π, ∗).

1: x, y ←←{0, 1}c

2: m0 ← 0‖x
3: m1 ← 1‖y
4:
5: // η = ηC‖ηS are the nonces π accepted with, and aux ← FΠ(π.τ)
6: ck′ ← Π.Kdf(ms, η, aux)
7:
8: if π is non-fresh:
9: ck ← π.ck ck ← Reveal(π)

10: return ck
?= ck′

11: else
12: // obtain an encryption of mπ.d under π.ck

13: (C, stE) ← Λ.Enc(π.ck, mπ.d, ε, stE) C ← LR(π, m0, m1, ε)
14:
15: // recreate a decrypt state st′

D
16: (∗, st′

D) ← Λ.Init
17: for all (C ′, H ′) ∈ Lπ :
18: (∗, st′

D) ← Λ.Dec(ck′, C ′, H ′, st′
D)

19:
20: // decrypt C using ck′ and st′

D

21: (m′, ∗) ← Λ.Dec(ck′, C, ε, st′
D)

22:

23: return m′ ?∈ {m0, m1}

106 Security of EAP-TLS Chapter 5

called on a wrong master secret, then it is possible that it incorrectly returns
true. Namely, if the derivation of the channel key ck′ at Line 6 in Algorithm 1
yields the same channel key as π , then CheckKey will erroneously return true
both when π is fresh and when it is non-fresh. Moreover, even if the derived
channel key was wrong, there is still a possibility of error when π is fresh: by
pure chance the decryption at Line 21 of Algorithm 1 could return one of the
messages m0 or m1 even with the wrong key.

Thus, CheckKey has a one-sided error probability. Let CKerror denote the
event that a call to CheckKey erroneously returns true.

Game 6: The challenger in Game 6 proceeds as in Game 5, except that it
starts using the CheckKey procedure as indicated on Line 10 of the Send-code
and Line 6 of the G-code (Figure 5.2 and Figure 5.3 respectively). Additionally,
if a session accepts without a match on LG, then Game 6 omits its master secret
from the tuple that gets added to LG in the Send-code (Line 17).

Claim 5.10.

AdvG5
Π+,f (A) ≤ AdvG6

Π+,f (A) + Pr[CKerror]. (5.9)

Proof. By inspecting the Send-code and G-code of Game 5 and Game 6, one
sees that they proceed identically unless event CKerror occurs. In particular,
provided CheckKey does not make a mistake, then the else-if clause on Line 10
in the Send-code of Game 6 matches π with a tuple on LG if and only the tuple
contains the correct master secret of π (plus of course all the other input to the
KDF, which we ignore here). But this is exactly the same as what the else-if
clause on Line 12 in the Send-code of Game 5 does too. Similarly, in the G-code
of Game 6, the else-if clause on Line 6 assigns a master secret ms to a tuple of
LG if and only it matches the master secret of those sessions contained in the
tuple. Combined with the preceding argument for the Send-code of Game 6,
this means that no more sessions gets matched to tuples in LG in the Send-code
of Game 6 than in Game 5.

Hence, provided CheckKey does not make a mistake, Game 5 and Game 6
proceed identically and the claim follows. �

It remains to bound the right-hand side of Equation (5.9). Recall that
CKerror represents the event that CheckKey erroneously returns true on a
wrong master secret. Note that this can happen both with a fresh session and
with a non-fresh session. Let fresh denote that CheckKey was called on a
fresh session π according to predicate FreshACCE, and let non-fresh denote that
CheckKey was called on a non-fresh session. Then we have:

Pr[CKerror] ≤ Pr[CKerror ∧ fresh] + Pr[CKerror ∧ non-fresh]. (5.10)

Section 5.2 TLS-like ACCE =⇒ AKE 107

In the case of a non-fresh session, CheckKey can by design only make a
mistake if the there is a key collision, so the next claim follows at once.

Claim 5.11.
Pr[CKerror ∧ non-fresh] ≤ Advkdfcoll

Π.Kdf (C3). (5.11)

Consequently, we are left to bound Pr[CKerror ∧ fresh]. To this end, we
define the following event:

Q : CheckKey returns true when called on a fresh session. (5.12)

We stress that if event Q happened, say due to a call CheckKey(π, ms′),
then this does not necessarily imply that π.ms = ms′. Event Q also includes
those cases where CheckKey erroneously returns true. We will later show
that A has zero advantage in guessing the Test-challenge correctly unless Q
happens (Claim 5.13). The probability Pr[CKerror ∧ fresh] can now be bounded
in terms of the occurrence of event Q.

Claim 5.12.
Pr[CKerror ∧ fresh] ≤ 2 · Pr[Q]. (5.13)

Proof. Event CKerror ∧ fresh only occurs if the decryption of C at Line 21 of
Algorithm 1 returned one of the two messages m0 and m1. We write correctDec
for the event that C got decrypted to md, and wrongDec for the event that
it got decrypted to md, where d is the bit associated to the session π in the
CheckKey procedure.2 The events correctDec and wrongDec are mutually
exclusive, so

Pr[CKerror ∧ fresh] = Pr[correctDec] + Pr[wrongDec]. (5.14)

Finally, within the context of CheckKey, both correctDec and wrongDec
are sub-events of Q, hence, Pr[correctDec] + Pr[wrongDec] ≤ 2 · Pr[Q]. �

The next claims shows that unless Q happens in Game 6, then A has zero
advantage in answering the Test-challenge correctly.

Claim 5.13. Suppose that A output b′ as its answer to the Test-challenge in
Game 6. Then,

Pr[b′ = b | Q] =
1
2

. (5.15)

2Note that event correctDec can happen both legitimately (π.ms = ms′) and due to an
error (π.ms �= ms′). Event wrongDec can only happen because of an error.

108 Security of EAP-TLS Chapter 5

Proof. If event Q did not happen, then CheckKey never returned true for any
fresh session during Game 6. Since CheckKey is always correct when rejecting
a key, i.e., when outputting false, this implies that A never queried the random
oracle on the correct master secret of any fresh session. In particular, this means
that the derived export key of the test-session in Game 6 is distributed exactly
like that of a random key. Thus, the bit b is independent of the derived export
key from A’s point of view. �

Claim 5.13 implies that it is sufficient to bound the probability of event Q
to bound A’s advantage in Game 6. Furthermore, Claim 5.12 showed that the
probability of event CKerror ∧ fresh is also bounded in terms of Q. Thus, the
only thing that remains in order to bound the right-hand side of Equation (5.9)
is to bound Pr[Q]. To this end, we construct an ACCE adversary B against
protocol Π such that

Pr[Q] ≤ AdvACCE
Π,f (B) +

2qnP nπ

2c
, (5.16)

where q is the number of random oracle calls made by A and c ∈ N is the free
parameter value of the CheckKey procedure.

Description of algorithm B. Algorithm B plays in an ACCE security ex-
periment against protocol Π. It simulates Game 6 for A by using the sessions
in its own ACCE experiment to represent the sessions in Game 6. Basically, B
forwards all of A’s queries to its own ACCE game (to simulate the Test query,
B draws a mock bit bsim). To simulate the sessions’ export keys in Game 6,
B maintains the list LG which it fills out, and answers from, according to the
Send-code and G-code of Game 6. However, B implements the CheckKey
procedure slightly different from what the challenger in Game 6 does.

Specifically, at Line 9 and Line 13 in Algorithm 1, B executes the statements
shown in blue boxes instead of the respective statements at those lines. The
blue boxes represents queries to B’s ACCE game. To compare the key ck′ with
the real channel key of π when π is non-fresh, B uses the Reveal query. To
obtain a valid ciphertext under π ’s real channel key when π is fresh, B uses the
“left-or-right” LR query.

Finally, B stops and outputs a guess (π, b′) in its ACCE game if one of the
following events happen.

• Two sessions generated the same nonce: select π arbitrarily among the
fresh sessions and draw b′ randomly.

• A outputs a guess for the Test-challenge: select π arbitrarily among the
fresh sessions and draw b′ randomly.

Section 5.2 TLS-like ACCE =⇒ AKE 109

• A call to CheckKey(π, ms) returned true for a fresh session π :
This means that the decryption at Line 21 of Algorithm 1 either returned
m0 or m1. If the result was m0 then B outputs (π, 0) to its ACCE game.
If the result was m1 then B outputs (π, 1) to its ACCE game.

Analysis of B. Note that the only thing that differs between B’s simulation
and Game 6 is B’s implementation of the CheckKey procedure. However,
B’s usage of Reveal and LR queries perfectly simulates the respective lines in
Algorithm 1. Particularly, the secret bit of a session π in B’s ACCE game, i.e.,
π.b, simulates the bit associated to π in the CheckKey procedure, i.e., π.d.
Thus, if event Q happens, then B’s output in its ACCE experiment will be
directly related to the value of π.b. On the other hand, if Q does not happen,
then B by design wins in its ACCE game with probability 1/2.

Formally, suppose B output (π, b′) for some fresh session π . The probability
that B wins in its ACCE security game is then:

Pr[π.b = b′] = Pr[π.b = b′ | Q] · Pr[Q] + Pr[π.b = b′ | Q] · Pr[Q] (5.17)
(a)
= Pr[π.b = b′ | Q] · Pr[Q] +

1
2

(1 − Pr[Q]) (5.18)

(b)
=

(=1︷ ︸︸ ︷
Pr[π.b = b′ | Q ∧ correctDec] · Pr[correctDec | Q]

+
=0︷ ︸︸ ︷

Pr[π.b = b′ | Q ∧ wrongDec] · Pr[wrongDec | Q]
)

· Pr[Q]
(5.19)

+
1
2

(1 − Pr[Q])

= Pr[correctDec | Q] · Pr[Q] +
1
2

(1 − Pr[Q]) (5.20)

= Pr[correctDec ∧ Q] − 1
2

· Pr[Q] +
1
2

(5.21)

(c)
=

(
Pr[Q] − Pr[wrongDec ∧ Q]

) − 1
2

Pr[Q] +
1
2

(5.22)

=
1
2

Pr[Q] − Pr[wrongDec ∧ Q] +
1
2

(5.23)

=
1
2

Pr[Q] − Pr[wrongDec] +
1
2

(5.24)

≥ 1
2

Pr[Q] − qnP nπ

2c
+

1
2

. (5.25)

In (a) we used the fact that B outputs a random bit when Q does not happen,

110 Security of EAP-TLS Chapter 5

while (b) and (c) used that event Q is the union of the mutually exclusive events
correctDec and wrongDec. The final inequality is proved as follows.

Let b = 1 − π.b and let (m0, m1) be the two messages associated to the pair
(π, ms) in CheckKey. Since mb is independent of the ciphertext C produced
at Line 13 of Algorithm 1, the probability that C decrypts to mb at Line 21
is statistically bounded by 2−c for any key k. By taking the union bound over
all parties, the number of sessions per party, and the number of random oracle
calls, we get that Pr[wrongDec] ≤ qnP nπ /2c.

Solving (5.25) and (5.17) for Pr[Q] yields

Pr[Q] ≤ AdvACCE
Π,f (B) +

2qnP nπ

2c
, (5.26)

which is what we wanted to prove.

Concluding the proof of Theorem 5.4. Applying Claim 5.11, Claim 5.12,
Claim 5.13 and Equation (5.26) to Equation (5.9), we get

AdvG5
Π+,f (A) ≤ 3 · AdvACCE

Π,f (B) +
6qnP nπ

2c
+ Advkdfcoll

Π.Kdf (C3). (5.27)

Collecting all the probabilities from Section 5.2.3 to Game 5 we get

AdvAKEfs

Π+,f (A) ≤ 3·AdvACCE
Π,f (B)+

6qnP nπ

2c
+

(nP nπ)2

2λ+1 +
3∑

i=1
Advkdfcoll

Π.Kdf (Ci) (5.28)

Let C be the algorithm that with probability 1/3 implements one of the Ci’s,
then

3∑
i=1

Advkdfcoll
Π.Kdf (Ci) ≤ 3 · Advkdfcoll

Π.Kdf (C), (5.29)

and Theorem 5.4 follows. �

5.3 Application to EAP-TLS
In EAP-TLS [RFC5216] the export key ek is derived as follows:

ek
def= tls.PRF(ms, “client EAP encryption”, ηC‖ηS). (5.30)

More generally, RFC 5705: “Keying Material Exporters for Transport Layer
Security (TLS)” [RFC5705] defines how export keys should be derived from the

Section 5.3 Application to EAP-TLS 111

TLS handshake for any type of application. In particular, the export key in
RFC 5707 is derived as follows:

ek
def= tls.PRF(ms, “label”, ηC‖ηS , aux), (5.31)

where label is some application dependent label, and aux is an optional auxil-
iary input that can be added into the key derivation together with the nonces.

Thus, we can apply Theorem 5.4 to EAP-TLS and TLS Key Exporters by
in the theorem setting Π = TLS and Π+ = EAP-TLS or Π+ = TLS-EXPORT,
with FΠ being ε or aux, respectively. However, we still have to argue that
TLS is in fact a secure TLS-like ACCE protocol and that the TLS KDF is key
collision resistant. In the following two sections we address these questions.

5.3.1 TLS security
There is a large body of existing analysis on TLS. Here we only focus on a
small sample of these results, based on how relevant they are to our current
analysis on EAP-TLS. The first thing that should be acknowledged is that each
study of TLS comes with its own unique security model. Our own work is no
exception in this regard. As a consequence, most of the existing results on TLS
cannot be applied verbatim to our setting, but will need some reinterpretation
within our formal models. Fortunately, most of the differences are quite minor,
concerning superficial things like choice of notation and so on. But there are
also some differences that are more substantial and which we feel are worthy
to point out. Mainly, these have to do with the choice of corruption model and
partnering mechanism. Below we survey a few of the existing results on TLS
and discuss how they pertain to our result on EAP-TLS.

Jager, Kohlar, Schäge, and Schwenk (JKKS) [Jag+12]. JKKS were
the first to conduct an analysis of the unmodified TLS 1.2 protocol, looking
specifically at the TLS-DHE ciphersuite. They showed that TLS-DHE con-
stitutes a secure ACCE protocol. The security model used by JKKS largely
mirrors our own, but with some slight differences. First, their corruption model
is a little weaker than the AKEfs model we have used in Theorem 5.4. Specif-
ically, in our AKEfs model the adversary is allowed to corrupt the long-term
keys of the test-session’s peers before it accepted provided it has a partner.
On the other hand, in the model of JKKS these corruptions always need to
happen after the test-session accepts. Theorem 5.4 allows us to conclude that
Π+ = EAP-TLS-DHE achieves the stronger security guarantees of the AKEfs

model only by making a similarly strong assumption on Π = TLS-DHE. How-
ever, Theorem 5.4 can be modified to work with the weaker model of JKKS as
well, but then with a correspondingly weaker conclusion for Π+.

112 Security of EAP-TLS Chapter 5

Second, JKKS used matching conversations in their analysis of TLS, while
we use partner functions. Since matching conversations can be recast in terms
of partner functions in a straightforward manner this is not a big issue.3 How-
ever, there is a subtle technical difference between the ACCE model defined
in this thesis and the ACCE model defined by JKSS, stemming from the dif-
ference in choice of partnering mechanism. Specifically, in JKSS’s definition of
ACCE [Jag+12, Def. 11] one must forbid the adversary from issuing a Reveal
query towards the server after it sent out its last message, but before the client
to which it has a matching conversation received it. This is to avoid a triv-
ial attack whereby the adversary can re-encrypt the final message towards the
client, getting it to accept maliciously.

By contrast, the definition of ACCE used in this thesis allows all Reveal
queries. It should be noted that the trivial attack in JKSS’s model does not
imply any obvious weakness in TLS, but rather highlights a peculiarity of using
matching conversations as the partnering mechanism when defining ACCE.

Krawczyk, Paterson, and Wee (KPW) [KPW13b]. As mentioned in
Section 5.1, KPW showed that all the main handshake variants of TLS, i.e.,
TLS-DHE, TLS-DH, and TLS-RSA, satisfy a security notion on its key encap-
sulation mechanism (KEM) called IND-CCCA [HK07]. Additionally, starting
from the assumption that the TLS KEM is IND-CCCA secure, they generically
proved that the full TLS protocol is a secure ACCE protocol, Hence, by com-
bining these two sets of results, KPW could show that TLS is a secure ACCE
protocol for all the handshake variants TLS-DHE, TLS-DH and TLS-RSA.

Remarks similar to those we made for JKKS [Jag+12] also apply to KPW
regarding their result’s applicability to our analysis of EAP-TLS. Specifically,
the ACCE model of KPW is mostly the same as JKKS’s, except for one major
difference: KPW do not treat forward secrecy at all. Thus, since KPW only
allow us to assume (ACCE) security of TLS in our weakest corruption model,
we can correspondingly only conclude with (AKE) security of EAP-TLS in our
weakest corruption model AKEnfs as well.

Kohlar et al. [KSS13] and Li et al. [Li+14]. In parallel work to KPW
[KPW13b], Kohlar et al. [KSS13] also proved that the TLS variants TLS-RSA
and TLS-DH satisfy the ACCE notion. However, their result is less modu-
lar, essentially following the original approach of JKKS [Jag+12]. Later, Li et
al. [Li+14] complemented the work of JKKS and Kohlar et al. [KSS13], by con-
ducting an analysis of the pre-shared key variants of TLS, i.e., they showed that
the TLS-DHE-PSK, TLS-DH-PSK, TLS-RSA-PSK and TLS-PSK ciphersuites

3See Section 6.2.2 for how to recast SIDs as partner functions. The procedure for matching
conversations is completely analogous.

Section 5.3 Application to EAP-TLS 113

all satisfy the ACCE security notion (in appropriate corruption models). As
before, the results of Kohlar et al. [KSS13] and Li et al. [Li+14] can be used to
instantiate our Theorem 5.4, again given the relevant caveats on the assumed
security of the underlying TLS variant and the corresponding conclusion we can
draw for EAP-TLS. Note that the result of Li et al. [Li+14] is also particularly
interesting from the viewpoint of our first composition theorem (Theorem 4.2),
seeing as RADIUS is based on symmetric shared secrets. In particular, if one
wants migrate from plain RADIUS to RADIUS-over-TLS [RFC6614], shared
secrets can still be supported by using one of the TLS-PSK ciphersuites.

Brzuska et al. [Brz+13a]. Given that the above results can be applied more
or less directly to our Theorem 5.4 in order to obtain a result on EAP-TLS, it
is interesting to discuss another result where this cannot be done. Specifically,
Brzuska et al. [Brz+13a] developed a generic composition framework which al-
lowed them to show that the TLS variants TLS-DHE, TLS-DH, and TLS-RSA,
all satisfy the ACCE security notion. However, in their analysis—which used
SIDs as the partnering mechanism—Brzuska et al. [Brz+13a] defined the SID
to consist of the parties’ nonces, identities, and the TLS pre-master secret. Bas-
ing the SID upon secret values does not in general allow for public partnering.
For instance, if the KEM used in the TLS handshake was a re-randomizable
encryption scheme [CKN03, PR07], then the choice of Brzuska et al. [Brz+13a]
would not allow for public partnering (see also [Brz+11] for further details).
Unfortunately, this also means that we cannot use Brzuska et al.’s result within
our Theorem 5.4 since partner functions are defined on public data.

On TLS 1.3. The IETF is currently in the process of standardizing a new
version of TLS, denoted TLS 1.3 [Res17]. Unlike the prior versions, TLS 1.3.
does not use the derived session key within the handshake itself, and so it avoids
the issue that prevented the other versions from being a secure AKE protocol.
In fact, several preliminary analyses have already proven that different draft
versions of TLS 1.3 satisfy the AKE security notion [Dow+15, KW15, Dow+16].
Moreover, in the context of exporting keys from the TLS handshake, TLS 1.3
even defines a dedicated exporter key much like how EAP-TLS and TLS Key
Exporters [RFC5705] do it. Thus, our generic result for turning an ACCE
protocol into an AKE is unnecessary for TLS 1.3. Nevertheless, TLS 1.3 is still
a TLS-like protocol, and so our result could in principle be applied to TLS 1.3
as well, albeit redundantly. Interestingly, however, the existing analysis of
TLS 1.3 would not work for this purpose, because of an issue similar to the
one we had with the analysis of Brzuska et al. [Brz+13a]. That is, a new
feature of TLS 1.3 is that many of the handshake messages are encrypted with
a temporary handshake key. But the analyses in [Dow+15] and [Dow+16],

114 Security of EAP-TLS Chapter 5

define the SID over the unencrypted messages. Thus, in trying to use these
results in our Theorem 5.4, we would run into the same problems with public
partnering as we had with the analysis of Brzuska et al. [Brz+13a]. The reason
why Dowling et al. [Dow+15, Dow+16] are still able to carry out their analysis,
is because they leverage the fact that TLS 1.3 provides so-called multi-stage
security [FG14], where different stage keys are computationally independent.
By modifying Theorem 5.4 to assume a “TLS 1.3-like” structure on protocol
Π, and by incorporating the multi-stage assumption, we could potentially be
able to obtain a similar black-box result for EAP-TLSv1.3 as we have for EAP-
TLS(v1.2).

Other results on TLS. Two other works that also analyze the TLS (1.2)
protocol are [Koh+15] and [Bha+14b]. However, the models used in these
analyses are significantly different from ours, making their use in Theorem 5.4
difficult. On a different note, Bhargavan et al. [Bha+14b] showed that the full
TLS protocol, including resumption and renegotiation, is vulnerable to an un-
known key-share attack [BM99]. The attack allows an adversary to synchronize
the master secret and nonces of two non-partnered sessions, leading them to
derive the same channel key. While the attack carries over to EAP-TLS, it does
not invalidate our results, since our model does not consider resumption and
renegotiation. However, it should be noted that this has been done for the sake
of simplicity, not because of an essential limitation in our analysis. Our result
can be extended to incorporate features like renegotiation, resumption or ci-
phersuite and version negotiation, either by using the multi-phase ACCE model
of Giesen et al. [GKS13] or the multi-ciphersuite ACCE model of Bergsma et
al. [Ber+14]. The former has been used to prove results on TLS with renegoti-
ation [Ber+14], while the latter has been used to prove results on SSH and TLS
with ciphersuite and version negotiation [Ber+14, DS15]. Since our proof uses
the underlying ACCE protocol in an almost black-box way, by adopting one of
the above models we could inherit their corresponding results for EAP-TLS as
well.

Alternatives to the ACCE security notion. The main reason for using
the ACCE security notion in our analysis is that is has proved to be a very
useful model for studying real-world protocols that intermix the key exchange
stage with the channel stage. Since our result applies to any ACCE protocol
that is TLS-like, it can be applied to all of these protocols in a nearly black-
box manner. In particular, we can plug in any existing ACCE result without
having to re-do any of the steps carried out in the (ACCE) proof itself. For
example, our result applies unmodified to every ciphersuite version of TLS for
which there exist an ACCE proof. Moreover, we can even apply our theorem to

Section 5.3 Application to EAP-TLS 115

future versions of TLS, as long as these continue to be TLS-like and derive their
channel keys using a key collision resistant KDF. Even so, in the specific case of
TLS, one might ask whether another approach could have given a simpler, yet
equally modular proof of the same result, namely that EAP-TLS constitutes a
secure AKE protocol.

Krawczyk, Paterson, and Wee (KPW) [KPW13b] showed that all the major
handshake variants of TLS satisfy a security notion on its key encapsulation
mechanism (KEM) called IND-CCCA [HK07]. If we could reduce the AKE
security of EAP-TLS to the IND-CCCA security of the TLS KEM, then the
results of [KPW13b] would automatically give us a corresponding result on
EAP-TLS for all the major TLS ciphersuites.

Unfortunately, it is not obvious how such a result could be obtained in a
black-box manner from the KEM defined by KPW. Technically, in order to
reduce the AKE security of EAP-TLS to the IND-CCCA security of the TLS
KEM, we need to be able to simulate the key derivation step in the AKE
game of EAP-TLS. This requires knowledge about the sessions’ master secrets.
However, the KEM defined by KPW does not contain the TLS master secret.
This means that an adversary against the TLS-KEM in the IND-CCCA game
cannot simulate the Test-challenge for some adversary playing in the AKE game
against EAP-TLS. Moreover, as remarked by KPW [KPW13b, Remark 4], if the
KEM key was actually defined to be the TLS master secret, then the resulting
scheme would be insecure for TLS-RSA, provided that RSA PKCS#1v1.5 is
re-randomizable. On the other hand, Bhargavan et al. [Bha+14b] conjecture
that re-randomizing RSA PKCS#1v1.5 is infeasible, allowing the master secret
to be used as the KEM key in TLS-RSA too. We forgo the whole issue by not
reducing to the KEM-security of TLS at all.

We stress that the KEM used to explain the TLS handshake in Figure 5.1
is only meant for illustratory purposes, and is not the same as the KEM used
by KPW [KPW13b].

5.3.2 On the key collision resistance of the TLS KDF

The TLS key derivation function tls.PRF is an iterated construction based on
the HMAC [RFC2104] function, which itself is based on some underlying hash
function H. Let H denote the HMAC function using H as its underlying hash
function, that is,

H(K, M) def= H ((K ⊕ opad)‖H ((K ⊕ ipad)‖M)) , (5.32)

where ipad and opad are distinct constants.
The TLS 1.2 KDF is defined as follows, where the variable t depends on

116 Security of EAP-TLS Chapter 5

how much keying material is needed:

tls.PRF(K, M) def=
t�

i=1
H(K, A(i)‖“key expansion”‖M), (5.33)

with

A(1) = H(K, “key expansion”‖M)
A(i) = H(K, A(i − 1)).

In TLS, M = ηC‖ηS is the concatenation of the client and server nonce.
Note that tls.PRF does not take any auxiliary input.

Theorem 5.14. A key collision in tls.PRF implies a collision in H.

Proof. Suppose tls.PRF(K, M) = tls.PRF(K ′, M), with K �= K ′, and let S =
“key expansion”‖M . By (5.33) we have in particular that

H(K, A(1)‖S) = H(K ′, A′(1)‖S), (5.34)

where A′(1) = H(K ′, S). Expanding (5.34) using (5.32) we get:

H (K ⊕ opad‖H (K ⊕ ipad‖A(1)‖S))
=

H (K ′ ⊕ opad‖H (K ′ ⊕ ipad‖A′(1)‖S)) .

(5.35)

Letting X = H (K ⊕ ipad‖A(1)‖S) and Y = H (K ′ ⊕ ipad‖A′(1)‖S) de-
note the “inner” hash function values, (5.35) becomes:

H(K ⊕ opad‖X) = H(K ′ ⊕ opad‖Y). (5.36)

Since K ⊕ opad �= K ′ ⊕ opad, it follows that (K ⊕ opad‖X, K ′ ⊕ opad‖Y)
constitute a collision in H. �

Remark 5.15. The construction of tls.PRF in TLS 1.0/1.1 is different from
the one in TLS 1.2 (shown in Equation (5.33)). In versions prior to TLS 1.2,
tls.PRF is defined as PMD5 ⊕ PSHA1, where PMD5 and PSHA1 are equal to the
right-hand side of Equation (5.33) with H using MD5 and SHA1, respectively.
Theorem 5.14 only applies to the construction used in TLS 1.2. �

Remark 5.16. It is interesting to note that HMAC in general is not key
collision resistant. As observed by Dodis et al. [Dod+12], HMAC has two large
classes of so-called weak keys with exactly the property that HMAC(K, M) =
HMAC(K ′, M). These weak keys arise due to an ambiguity in how HMAC

Section 5.3 Application to EAP-TLS 117

handle different-length keys. For example, if d is the block size of the underlying
hash function used in HMAC and |K| < d, then K and K ′ = K‖0 lead to a
key collision. Similarly, if |K| > d and K ′ = H(K) we also get a key collision.
On the other hand, the way HMAC is used within TLS does not lead to key
collisions since TLS only uses fixed-length keys. �

Chapter 6

Security of IEEE 802.11

Contents
6.1 Summary of the IEEE 802.11 protocol 119

6.1.1 Related work on IEEE 802.11 119
6.2 Analyzing the 4-Way Handshake 120

6.2.1 Formal modeling 120
6.2.2 AKEnfs security 123
6.2.3 Explicit entity authentication 126
6.2.4 Security of IEEE 802.11 with upper-layer authen-

tication . 132
6.3 Analyzing CCMP . 133

6.3.1 Description of CCMP 133
6.3.2 Analysis of CCMP 135

6.4 Multi-ciphersuite and negotiation security of IEEE
802.11 . 138
6.4.1 Multi-ciphersuite security 140
6.4.2 Negotiation security 142

In Chapter 5 we proved that EAP-TLS is a secure 2P-AKE protocol. By
the first composition theorem this means that basic EAP using EAP-TLS as
its EAP method is a secure 3P-AKE protocol with weak forward secrecy. To
complete the picture on full EAP having full forward, we need to establish
that there is a link-layer protocol which satisfies the requirements of the second
composition theorem. In this chapter we do exactly that for the IEEE 802.11
protocol. IEEE 802.11 is also of independent interest outside of its use in EAP,
since it is the most widely used standard for creating wireless LANs.

118

Section 6.1 Summary of the IEEE 802.11 protocol 119

6.1 Summary of the IEEE 802.11 protocol
IEEE 802.11 is a link-layer protocol, aiming to secure the wireless link between
a client and an access point. As explained in Section 2.2.3, IEEE 802.11 consists
of two main security protocols for this purpose: the 4-Way-Handshake (4WHS)
protocol used to authenticate and establish a session key between the client and
access point; and CCMP used to secure the actual application data.

The 4WHS is based on a symmetric pairwise master key (PMK) shared be-
tween the client and the access point. The PMK can either be a pre-shared key
(PSK) or distributed through some other means, for instance using EAP. The
first alternative is most typically found in home networks where a static PMK is
manually configured at the access point and at every connecting device.1 This
variant is also commonly referred to as WPA2-PSK. The second alternative, of-
ten referred to as WPA2-Enterprise, is normally used in large organization like
universities and big companies where there are many users and access points.
In this setting it is infeasible for every user and access point to share the same
PMK. Instead, a central authentication server is used to manage authentication
as well as distributing new PMKs for every established session. The protocol
used to access the authentication server is normally EAP.

In Section 6.2 we will analyze the PSK variant of the 4WHS protocol, and
in Section 6.2.4 we describe how this result can be combined with the com-
position theorems of Chapter 4 to also get a result for the enterprise variant
of IEEE 802.11. In Section 6.3 we analyze the CCMP algorithm. Finally, in
Section 6.4 we informally discuss how our results on the 4WHS protocol can be
extended to also cover multi-ciphersuite and negotiation security.

6.1.1 Related work on IEEE 802.11

As explained in Section 2.2.2, IEEE 802.11 has been subject to a large amount
of cryptanalysis, especially against WEP and TKIP. Here we only discuss re-
lated work as it pertains to the formal analysis of IEEE 802.11. In the symbolic
setting, He et al. [He+05] have conducted a formal analysis of the 4WHS pro-
tocol using their Protocol Compositional Logic. In the computational setting,
Küsters and Tuengerthal [KT11b, KT11a] have analyzed both the 4WHS pro-
tocol and CCMP in their universal composability framework called IITM. In
the game-based setting the only work we are aware of that attempts to analyze
the 4WHS protocol is [ZMM05]. However, this work is quite rudimentary; se-
curity definitions and theorems are only outlined and it provides no proofs nor

1The PMK is usually not configured directly, but instead derived from a password using
the Password Based Key Derivation Function 2 (PBKDF2) [RFC8018]. We ignore this detail
here.

120 Security of IEEE 802.11 Chapter 6

proof sketches. To the best of our knowledge, there is no existing analysis of
CCMP in the game-based setting.

6.2 Analyzing the 4-Way Handshake

6.2.1 Formal modeling

The 4WHS protocol was described in detail in Section 2.2.3, and our formal
modeling of it is shown in Figure 6.1. The 4WHS depends on a pseudorandom
function PRF and a MAC scheme Σ = (MAC, Vrfy). We use the notation
[x]k

def= x‖σ to denote a message x together with its MAC tag σ ← MAC(k, x).
An IEEE 802.11 network is identified by its SSID. In the PSK setting each

SSID is associated with a single 256 bit pairwise master key (PMK). However,
the same SSID can be broadcasted by multiple different access points. This
could happen either by chance if independent networks unknowingly configuring
the same SSID, or deliberately if multiple access points are combined to form
an extended service set (ESS) in order increase the coverage of the network. In
the former case, the PMK will (usually) be different, while in the latter case
the same PMK will be shared by all the access points of the ESS. Technically
speaking, if two independent networks configure the same SSID and PMK, then
they are in fact part of the same ESS.

An access point can also broadcast multiple SSIDs at the same time, and
hence belong to more than one ESS (using different PMKs). For simplicity we
are going to assume that every ESS has a unique SSID. In the PSK setting all
clients connecting to the same ESS will share the same PMK.

We are mostly going to ignore the details of the IEEE 802.11 frame format
used in the real 4WHS protocol. For our purposes it is sufficient to model the
four handshake messages as consisting of a nonce plus some value pi = i‖x
which uniquely determines each message mi. If a received message does not
match the expected format it is silently discarded.

For p1 in particular we moreover assume that x is a constant, which means
that p1 itself is a constant. Thus, although the first handshake message lacks in-
tegrity protection, an attacker can in effect only modify the nonce value because
a client will always check that it matches the excepted format of “ηAP ‖1‖x”.
Of course, a real IEEE 802.11 frame consists of many bit fields, but for message
m1 they all have pre-determined values except for the nonce field. So modeling
p1 as a constant faithfully represents the real IEEE 802.11 frame.

For the other three handshake messages there are variable bit fields that an
attacker could potentially influence. But since these messages are protected by
a MAC, the adversary will be unable to modify them (as we will show).

Section 6.2 Analyzing the 4-Way Handshake 121

C AP

m1 = (ηAP , p1)

m2 = [ηC , p2]kμ

m3 = [ηAP , p3]kμ

m4 = [p4]kμ

ηAP ← {0, 1}λ
ηC ← {0, 1}λ

P = MinMax(C,AP)
η = MinMax(ηC , ηAP)

kμ‖kα ← PRF(PMK, P‖η)
P = MinMax(C,AP)
η = MinMax(ηC , ηAP)
kμ‖kα ← PRF(PMK, P‖η)
if Σ.Vrfy(kμ,m2) �= 1:
discard kμ, kα, m2

if ηAP �= m1.ηAP or
Σ.Vrfy(kμ,m3) �= 1:
discard m3

Legend: [x]kμ

def
= x‖Σ.MAC(kμ, x)

Figure 6.1: Our formal model of the IEEE 802.11 4-Way Handshake protocol. The
client C and access point AP share a symmetric key PMK.

Recall from Section 2.2.3 that prior to the 4WHS there is a negotiation
phase where the client and access point agree upon the ciphersuite to use.
This includes the choice of PRF and Σ. In this section we assume that there
is a single fixed ciphersuite being used. The topic of multi-ciphersuite and
negotiation security will be treated in Section 6.4.

Identities in the 4WHS protocol are based on the parties’ 48 bit link-layer
addresses. The functions min and max compute the minimum and maximum
of two link-layer addresses when treated as 48 bit unsigned integers. In the
following, let

MinMax(X, Y) = min{X, Y }|| max{X, Y }. (6.1)

The 4WHS protocol proceeds as follows.

1. The exchange begins with the access point AP sending the message m1 =
ηAP ‖p1 to the client C, where ηAP is a 256 bit nonce and p1 is a constant.

2. On receiving m1 = ηAP ‖p1, the client C generates its own 256 bit nonce
ηC and derives a pairwise transient key (PTK) as

PTK def= kμ‖kε‖kα ← PRF(PMK, P‖η), (6.2)

where P ← MinMax(C, AP) and η ← MinMax(ηC , ηAP).
The sub-key kα will be the session key eventually output by the client in
the 4WHS. The sub-key kμ is the MAC key used to protect the handshake
messages. The sub-key kε is an encryption key used to protect a group

122 Security of IEEE 802.11 Chapter 6

key GTK transmitted from AP to C. Since we do not model any group
aspect of IEEE 802.11 in this thesis, we ignore kε and set it to be the
empty string ε.
After deriving PTK, C creates and sends the next protocol message m2 =
[ηC‖p2]kμ .

3. On receiving m2 = [ηC‖p2]kμ
, the access point AP derives the pairwise

transient key PTK = kμ‖kα ← PRF(PMK, P‖η) according to Equa-
tion (6.2). With the sub-key kμ it verifies the MAC tag on m2.
If the verification succeeds, then AP stores PTK ← kμ‖kα as its PTK
and sends out the third protocol message m3 = [ηAP ‖p3]kμ

. Additionally,
AP , or rather the corresponding session at AP , sets the accept state to
α = accepted (since the 4WHS does not consist of any sub-protocols, we
simplify the accept vector #»α to a single value α = αF).
If the verification fails, then AP silently discards m2, as well as the derived
PTK, and continues running.

4. On receiving m3 = [ηAP ‖p3]kμ
, the client C checks that ηAP is the same

as the nonce it received in message m1 (denoted “m1.ηAP ” in Figure 6.1)
and verifies that the MAC tag on message m3 is valid.
If either of these checks fail, then C silently discards m3 and continues
running.
Otherwise, C sends out the final handshake message m4 = [p4]kμ

. Addi-
tionally, it sets its own acceptance state to α = accepted.

5. On receiving m4, the access point AP verifies the MAC with the key kμ.
If the verification succeeds, then the 4WHS is over and AP is ready to
receive encrypted messages under the key kα.
If the verification fails, then AP silently discards the message and contin-
ues running.

Note that the fourth handshake message m4 serves no cryptographic purpose
and could safely have been omitted. However, to stay true to the actual 4WHS
protocol, we leave it in.

Note also that the error handling semantics of the 4WHS is different from
protocols like TLS and SSH. Specifically, rather than rejecting immediately on
receiving a bad message, a session will instead silently discard it. Combined
with the fact that the key used to verify the handshake messages (kμ) is derived
from the handshake messages themselves, modeling the error handling seman-
tics of the 4WHS protocol will make our analysis a little more complicated
(specifically the proof of explicit entity authentication in Section 6.2.3).

Section 6.2 Analyzing the 4-Way Handshake 123

6.2.2 AKEnfs security
We begin by proving that the 4WHS constitutes a secure 2P-AKE protocol in
the AKEnfs model, when all PMKs are pre-shared keys. Remember that we have
assumed that each SSID belongs to a unique ESS, which is potentially served
by multiple access points all sharing the same PMK. All clients connecting to
this ESS will also use the same PMK. Since a client might share multiple PMKs
with the same access point if the latter serves multiple ESSs, we slightly change
the syntax of the Corrupt query to instead take an SSID as input, identifying
the PMK of a specific ESS. Since the access point has the initiator role and the
client has the responder role in the 4WHS, we write PAP = I and PC = R.

Theorem 6.1. For any adversary A in security experiment AKEnfs against the
4WHS protocol as described above, we can create a partner function f and an
algorithm D, such that

Adv2P-AKEnfs

4WHS,f (A) ≤ 2 · nSSID · Advprf
PRF(D) +

(nP nπ)2

2λ+1 , (6.3)

where nSSID is the number of unique SSIDs, nπ is the number of sessions that
A creates at each party, λ is the length of the nonces, and nP = |PC | + |PAP |.

By our assumption above, nSSID corresponds to the number of ESSs and thus
also gives an upper bound on the number of PMKs in the system. Moreover,
by assuming that no access point belongs to more than c different ESSs, then
c · |PAP | is an upper bound on nSSID.

Proof.

Defining the partner function f . For the analysis of the 4HWS it would
be natural to use session identifiers as the partnering mechanism. Namely, the
session identifier of a session π would be the string sid = P‖η that π input
to its PRF in order to create the session key (see Equation (6.2)). However,
because our security model is phrased in terms of partner functions, we instead
synthetically encode the session identifier as a partner function by saying that
π ’s partner is the first session—different from π—that sets the same session
identifier as π . Taking the first such session is important in order to make the
partner function well-defined.

In more detail, suppose πi
C is a client session and πi

AP is an access point
session. For the purposes of this description, let us associate an extra variable
sid to each session. Session πi

C sets its value of sid to be the string that it input
to the PRF after having received the first handshake message. Session πi

AP also
sets its value of sid to be the input to the PRF, but it only sets its value after

124 Security of IEEE 802.11 Chapter 6

it has verified the MAC of the second handshake message. Partner function f
can now be defined as follows.

• Definition of f : πi
C and πj

AP are partners if and only if

1. πi
C .sid = πj

A.sid, and
2. πi

C and πi
A where the first sessions at C and AP , respectively, for

which Item 1 holds.

Note that since the party identities of the session’s intended peers are in-
cluded in the sid string, we do not need to include agreement on peers as an
explicit requirement. The soundness of f is immediate from the value of sid and
PRF being a deterministic function. In fact, f has perfect soundness and is also
a local partner function (Definition 3.5). This will be important when we look
at IEEE 802.11 combined with upper-layer authentication in Section 6.2.4.

Game 0: This is the real 2P-AKEnfs security game, hence

AdvG0
4WHS,f (A) = Adv2P-AKEnfs

4WHS,f (A).

Game 1: This game proceeds as the previous one, but aborts if not all the
nonces in the game are distinct, hence

AdvG0
4WHS,f (A) ≤ AdvG1

4WHS,f (A) +
(nP nπ)2

2λ+1 . (6.4)

Game 2: This game implements a selective AKE security game where at
the beginning of the game the adversary has to commit to the ESS which the
test-session will be connected to. Specifically, at the beginning of the game the
adversary has to output an SSID and the game aborts if the test-session was
not connected to the ESS having this SSID.

Claim 6.2.
AdvG1

4WHS,f (A) ≤ nSSID · AdvG2
4WHS,f (A′). (6.5)

Proof. From an adversary A that wins against the adaptive game in Game 1,
we create an adversary A′ that wins against the selective game in Game 2. A′

randomly selects an SSID (and thus an ESS) and outputs this as its choice to
the selective security game it is playing. A′ then runs A and answers all of
its queries by forwarding them to its own selective security game. If the test-
session selected by A does not belong to the SSID network guessed by A′, then
A′ stops its simulation an outputs a random bit. Else, it outputs the same bit
as A. Algorithm A′ perfectly simulates Game 1 for A, and since its guess is
correct with probability at least 1/nSSID the claim follows. �

Section 6.2 Analyzing the 4-Way Handshake 125

In the remainder of the proof, let SSID∗ denote the SSID that the adversary
commits to in Game 2, and let PMK∗ denote the corresponding PMK used in
the ESS identified by SSID∗. Note that by the requirements of the FreshAKEnfs

predicate (Figure 3.2), PMK∗ cannot be exposed if the test-session is to be fresh.
In particular, this means that the adversary cannot make a Corrupt(SSID∗)
query.

Game 3: In this game the challenger replaces the pseudorandom function
PRF with a random function $(·) in all evaluations involving PMK∗. That is,
calls of the form PRF(PMK∗, ·) are instead answered by $(·).

Claim 6.3.

AdvG2
4WHS,f (A) ≤ AdvG3

4WHS,f (A) + 2 · Advprf
PRF(D). (6.6)

Proof. If it is possible to distinguish between Game 2 and Game 3, then we can
create a distinguisher algorithm D against the PRF security of the function PRF.
Algorithm D has access to an oracle O, which either implements the function
PRF(˜PMK, ·) for some independent and uniformly distributed key ˜PMK, or it
implements a truly random function $(·). Algorithm D begins by choosing a
random bit bsim and creating all the PMKs for all ESSs different from the one
identified by SSID∗. It then runs A, answering its queries as follows.

For all of A’s queries that do not involve the computations of PMK∗, D
answers itself using the PMKs it created. On the other hand, for queries that
would normally involve computations of PMK∗, algorithm D instead uses its
oracle O to do these computations. Finally, when A stops with some output b′,
then D stops and outputs 0 to its PRF security game if b′ = bsim, and outputs
1 otherwise.

When O = PRF(˜PMK, ·) then D perfectly simulates Game 2 since all the
PMKs are chosen independently and uniformly at random; while when O = $(·),
then D perfectly simulates Game 3. The claim follows. �

Concluding the proof of Theorem 6.1. Suppose the test-session in Game 3
accepted with the sid variable set to P‖η. Since all nonces in the game are
unique by Game 1, the only sessions that evaluated the pseudorandom func-
tion on sid was the test-session and possibly its partner. However, by Game 3
the PRF is now a truly random function, so the PTK derived by the test-session
(and possibly its partner) is a truly random string ˜PTK = k̃μ‖k̃α ← {0, 1}2κ.
Moreover, k̃α is independent of all other values. Thus, AdvG3

4WHS,f (A) = 0, and
Theorem 6.1 follows. �

126 Security of IEEE 802.11 Chapter 6

6.2.3 Explicit entity authentication
We now prove that the 4WHS protocol additionally provides explicit entity
authentication. The proof of this fact follows the same outline as for the key-
indistinguishability part of the proof, using essentially the same game hops.
However, instead of bounding the key-indistinguishability advantage of the ad-
versary in the final game, we instead bound the probability that a session will
accept maliciously. Intuitively, we can translate this event into a forgery for the
MAC algorithm Σ since the adversary will either have to forge an m2 message
to the access point or an m3 message to the client in order for a malicious
accept to happen.

Alas, the proof is complicated by the aforementioned error handling seman-
tics of the 4WHS protocol. That is, when a session receives a bad message it
silently discards it and continues running the protocol instead of immediately
rejecting. This means that the adversary can make many attempts at getting
an access point to accept an m2 message or a client to accept an m3 message.
The first case is especially subtle to deal with since the access point will derive
a new PTK for each received m2 message. To better align our reduction to the
possibility of an adversary making many attempts at the m2 and m3 messages,
we reduce to a variant of SUF-CMA security that allows multiple verification
attempts; see Appendix A.2 for the formal definition.

While single-verification and multi-verification are not equivalent in the tra-
ditional UF-CMA setting, they are equivalent in the stronger SUF-CMA set-
ting; see [BGM04]. Moreover, for message authentication codes—as opposed
to message authentication schemes in general—UF-CMA security implies SUF-
CMA security. Since the IEEE 802.11 4WHS protocol only uses MACs and
not general message authentication schemes, the multi-verification SUF-CMA
assumption is justified provided the MAC scheme is UF-CMA secure. The se-
curity of the HMAC [RFC2104] algorithm and the CMAC [FIPS:SP-800-38B]
algorithm used by the IEEE 802.11 standard is well-studied; see [GPR14, Bel15,
IK03a, IK03b].

Theorem 6.4. For any adversary A in security experiment AKEnfs-EA against
the 4WHS, we can create algorithms D and F , such that

Adv2P-AKEnfs- EA
4WHS,f (A) ≤ 2 · nSSID · Advprf

PRF(D) +
(nP nπ)2

2λ+1

+ 2n′
π · (q + 1) · nSSID · AdvSUF-CMA

Σ (F),
(6.7)

where f , nSSID, nπ , nP and λ are the same as in Theorem 6.1, and where n′
π is

the maximum number of sessions A creates in each ESS, and q is the maximum
number of m2 messages that A sends to an access point session.

Section 6.2 Analyzing the 4-Way Handshake 127

Proof. The initial part of the proof proceeds through three game hops that are
completely analogous to the first three game hops of the proof of Theorem 6.1.

Game 0: This is the real explicit entity authentication security game, hence

AdvG0
4WHS,f (A) = Adv2P-AKEnfs- EA

4WHS,f (A).

Game 1: This game proceeds as the previous one, but aborts if not all the
nonces in the game are distinct, hence

AdvG0
4WHS,f (A) ≤ AdvG1

4WHS,f (A) +
(nP nπ)2

2λ+1 . (6.8)

Game 2: This game implements a selective security game where at the be-
ginning of the game the adversary has to commit to the ESS which the first
session that accepts maliciously connects to. Just like for Game 2 of Theo-
rem 6.1 (Claim 6.2), we have

AdvG1
4WHS,f (A) ≤ nSSID · AdvG2

4WHS,f (A′). (6.9)

In the remainder of the proof, let SSID∗ denote the SSID that the adversary
commits to in Game 2, let ESS∗ denote the ESS identified by SSID∗, and let
PMK∗ denote the corresponding PMK used in ESS∗.

Game 3: In this game the challenger replaces the pseudorandom function
PRF with a random function $(·) in all evaluations involving PMK∗. That is,
calls of the form PRF(PMK∗, ·) are instead answered by $(·). By the same
arguments as for Game 3 of Theorem 6.1 (Claim 6.3), we have

AdvG2
4WHS,f (A) ≤ AdvG3

4WHS,f (A) + 2 · Advprf
PRF(D). (6.10)

In the next game the adversary additionally has to commit to the session
(in ESS∗) that will accept maliciously first.

Game 4: This game implements a selective security game where at the be-
ginning of the game the adversary has to commit to the session in ESS∗ which
accepts maliciously first. With the same type of reduction as for Game 2, we
have

AdvG3
4WHS,f (A) ≤ n′

π · AdvG4
4WHS,f (A′). (6.11)

In the following let πi
U∗ denote the session that A commits to in Game 4.

We conclude the proof of Theorem 6.4 by showing that if A gets πi
U∗ to accept

maliciously in Game 4, then we can construct an algorithm F that creates
forgeries for the MAC algorithm Σ.

128 Security of IEEE 802.11 Chapter 6

Claim 6.5.
AdvG4- EA

4WHS,f (A) ≤ 2(q + 1) · AdvSUF-CMA
Σ (F). (6.12)

Proof. From an adversary A in Game 4 we create an algorithm F against the
SUF-CMA security of MAC algorithm Σ. The algorithm F has access to two
oracles OMAC(·) and OVrfy(·, ·) which implements the functions Σ.MAC(k̃, ·) and
Σ.Vrfy(k̃, ·, ·) for some independent uniformly distributed key k̃. The idea of F
is to embed the oracles OMAC and OVrfy into computations that would normally
involve using the PTK of the target session πi

U∗ .
Algorithm F begins by drawing a random bit bsim and waits for A to commit

to a pair (SSID∗, πi
U∗) according to Game 2 and Game 4. If πi

U∗ belongs to
a client, say U∗ = C, let AP be its intended peer, i.e., πi

U∗ .peers = {C, AP}
(remember that even if an ESS potentially contains many clients and access
points, a connection will nonetheless be between two specific parties in ESS).
Conversely, if πi

U∗ belongs to an access point AP , let C be the client it wants
to talk to.

For sessions not pertaining to network ESS∗, i.e., those not using PMK∗ as
their long-term key, F simulates everything itself by creating their PMKs. For
sessions in ESS∗, F still mostly simulates everything itself, but this time by
implementing a random function $(·) rather than the function PRF(PMK∗, ·).
This can be done using lazy sampling [BR04, Section 4.3]. However, for certain
specific computations which we describe below, F will embed its MAC oracles
OMAC and OVrfy. We split our proof into two cases, depending on whether πi

U∗

belongs to the client C or the access point AP .

Case U∗ = C. Assume that πi
U∗ belongs to the client C. In this case F

uses its tagging oracle OMAC to create the m2 message of πi
U∗ . Similarly, when

πi
U∗ receives an m3 message, then F uses the oracle OVrfy to verify it. If the

verification succeeds, then we will argue below that F has created a forgery
in its SUF-CMA security game. If the verification fails, then F discards the
message and continues the simulation.

Besides this, there is one additional place where B embeds its OVrfy oracle.
Namely, suppose the nonce πi

U∗ received in the first handshake message, say
ηAP , was created by a session πj

AP at the access point AP . If A forwards
πi

U∗ ’s m2 message back to πj
AP , or at least the nonce ηC contained in it, then

πi
U∗ and πj

AP will derive the same PTK since the they will input the same
nonces ηC , ηAP to $(·). Thus, in order for the simulation to be consistent, F
needs to embed the verification oracle OVrfy into πj

AP ’s verification of this m2
message. If the verification fails, then F discards the message and continues
the simulation. Else, F aborts with a failure. The procedure labeled SimC in
Figure 6.2 on Page 129 makes this high-level description precise.

Section 6.2 Analyzing the 4-Way Handshake 129

SimC(πi
U∗):

100: Initialization:
101: η∗

C , η∗
AP ← ⊥

102: π∗
AP ← ⊥

200: On receiving m1:
201: parse m1 as (ηAP , p1)
202: η∗

AP ← ηAP

203: if session πj
AP created ηAP :

204: π∗
AP ← πj

AP

205: η∗
C ←←{0, 1}λ

206: m2 ← OMAC(η∗
C‖p2)

207: send m2

300: On receiving an m3 message:
301: parse m3 as ηAP ‖p3‖τ
302: if ηAP �= η∗

AP :
303: discard m3
304: continue simulation
305: else
306: d ← OVrfy(ηAP ‖p3, τ)
307: if d = 1:
308: stop simulation
309: else
310: discard m3
311: continue simulation

400: On forwarding η∗
C to π∗

AP :
401: parse m2 attempt as η∗

C‖p2‖τ
402: d ← OVrfy(η∗

C‖p2, τ)
403: if d = 1:
404: abort with failure
405: else
406: discard m2
407: continue simulation

SimAP(πi
U∗):

100: Initialization:
101: η∗

AP ← ⊥
102: q∗ ←←[1, q]
103: distinct ← 0
104:

#»

N ← ∅
105: Fwd ← ∅

200: Creating m1:
201: η∗

AP ←←{0, 1}λ

202: m1 ← η∗
AP ‖p1

203: send m1

300: On receiving an m2 message:
301: parse m2 attempt as ηC‖p2‖τ
302:
303: if ηC /∈ #»

N:
304: distinct ← distinct + 1
305:

#»

N[distinct] ← ηC

306:
307: d ← 0
308: if (ηC = #»

N[q∗]) ∧ (ηC /∈ Fwd):
309: d ← OVrfy(ηC‖p2, τ)
310: else
311: kμ‖kα ← $(AP, C, η∗

AP , ηC)
312: d ← Σ.Vrfy(kμ, ηC‖p2, τ)
313:
314: if d = 1:
315: stop simulation
316: else
317: discard m2
318: continue simulation

400: On forwarding η∗
AP to any πj

C :

401: create πj
C ’s response message

402: m2 ← ηC‖p2‖τ as normal
403: Fwd ← Fwd ∪ {ηC}

Figure 6.2: Description of F ’s simulation in the proof of Claim 6.5. The simulation
depends on whether U∗ = C (shown in SimC) or U∗ = AP (shown in SimAP). The
random function that F implements for key derivation between AP and C is denoted
by $(·). In both SimC and SimAP it is assumed that if the parsing of a received
message fails, then the message is silently dropped and the simulation continues; for
simplicity this behavior is omitted from the code.

130 Security of IEEE 802.11 Chapter 6

Algorithm F ’s simulation of Game 4 is perfect. We argue that if πi
U∗ ac-

cepted maliciously, then F must also have made a valid forgery in its SUF-CMA
game. By definition, for πi

U∗ to have accepted maliciously it must have received
an m3 message that verified correctly, and no session at AP can have set the
same sid as πi

U∗ . Since F uses its OVrfy oracle to verify m3 messages (Line 306
in the SimC procedure), and because F never asks for a tag on an m3 message
to its OMAC oracle (since p2 �= p3); this implies that whenever πi

U∗ accepts
maliciously, then F creates a valid forgery in its SUF-CMA game (Line 308 in
SimC).

Note that F aborts with failure at Line 404 in SimC only if A failed. That
is, F embeds its OVrfy oracle also when verifying m2 messages delivered to
π∗

AP = πj
AP that contains πi

U∗ ’s nonce η∗
C (Line 402 in the SimC procedure).

However, if such a verification were to succeed, then πj
AP would accept and

store the nonces η∗
C , η∗

AP in πj
AP .sid. But this would yield the same sid as

that of πi
U∗ . So if πi

U∗ were to accept on receiving an m3 message, πi
U∗ and

πj
AP would be partners, contradicting the fact that πi

U∗ was supposed to accept
maliciously.

Case U∗ = AP . Now suppose πi
U∗ belongs to the access point AP . For

πi
U∗ to accept maliciously, it must receive some m2 message that verifies cor-

rectly. Again, F will embed its MAC oracles into some of πi
U∗ ’s computations,

in particular the OVrfy oracle. However, F cannot verify every m2 message with
OVrfy. The problem is that A might forward πi

U∗ ’s initial message, containing
the nonce ηAP , to multiple sessions at C. Since these sessions will all generate
their own unique nonces ηC , they will also derive distinct2 PTKs which they
use to create their m2 messages. But the MAC oracles only represent a single
key kα, so it would not be correct to embed the OVrfy oracle to verify all these
m2 messages. Moreover, some m2 messages may not even have been created
by sessions at client C at all because A could have forged the nonces itself or
taken them from sessions at other clients. So which m2 messages should be
verified with OVrfy?

Since each nonce ηC combined with πi
U∗ ’s own nonce ηAP determines a

single PTK, F must guess one nonce and use its OVrfy oracle to verify all m2
messages that contain this nonce. For all other m2 messages, F will instead
derive a PTK using $(·), and use the MAC algorithm Σ.Vrfy to “locally” verify
the message without calling OVrfy. This strategy is described in the SimAP
procedure shown in Figure 6.2.

In SimAP, the value q represents the maximum number of unique nonces
that A will ever send to an access point session. It is upper bounded by the

2At least with high probability.

Section 6.2 Analyzing the 4-Way Handshake 131

number of Send queries made by A. Algorithm F makes a guess q∗ ←←[1, q]
and hopes that m2 messages that contain the q∗-th unique nonce will lead πi

U∗

to accept maliciously. We emphasize that this does not mean that πi
U∗ must

necessarily accept maliciously after receiving the q∗-th m2 message in total
(since A could make repeated attempts with some of the earlier nonces first);
nor does it mean that πi

U∗ must necessarily accept maliciously after receiving
an m2 message containing the q∗-th unique nonce for the first time (since A
can make many m2 attempts with this particular nonce).

The counter distinct is used to keep track of how many unique nonces πi
U∗

have received so far. The array
#»

N stores all the distinct nonces. In particular,
the nonce in

#»

N[q∗] is the one for which F will embed the OVrfy oracle. Addi-
tionally, F maintains a list Fwd which is used to record situations where πi

U∗

cannot accept malicously (discussed below). The variable η∗
AP stores the nonce

created by πi
U∗ .

We first argue that F perfectly simulates Game 4. Looking at the SimAP
procedure, it is clear that we only need to focus on the verification of m2
messages. If πi

U∗ receives an m2 message which contains a nonce ηC which
is different from the q∗-th nonce

#»

N[q∗], or if ηC has been forwarded from a
session at C which first received πi

U∗ ’s nonce η∗
AP (meaning ηC ∈ Fwd), then F

derives the PTK itself and verifies with the MAC algorithm Σ.Vrfy (Line 311
and Line 312 in SimAP). This gives a correct simulation.

For the remaining m2 messages, ηC is equal to the q∗-th unique nonce and
ηC /∈ Fwd, so F embeds its OVrfy oracle (Line 309). The condition ηC /∈ Fwd
implies that no session at C have input both η∗

AP and ηC to $(·). This implies
that the MAC keys used by the sessions at C are independent from the MAC
key (if any) used to produce these specific m2 messages. Consequently, using
oracle OVrfy to verify these m2 messages lead to answers that are identically
distributed to those one would get if F derived PTK from $(·) itself and verified
“locally” with Σ.Vrfy.

It remains to analyze F ’s probability of making a valid forgery in its SUF-
CMA game whenever πi

U∗ accepts maliciously in Game 4. For πi
U∗ to have

accepted maliciously it must have successfully verified an m2 message, so at
some point we must have had d = 1 in SimAP (Line 315). Moreover, by the
same arguments as for the “abort with failure” condition in the SimC procedure,
the nonce ηC which πi

U∗ accepted on cannot have been produced by a session
πj

C which received πi
U∗ ’s nonce η∗

AP . In other words, we must have ηC /∈ Fwd.
Thus, if F ’s guess of q∗ was correct, F will have used the oracle OVrfy to

verify the m2 = ηC‖p2‖τ message on which πi
U∗ accepted maliciously. Further-

more, since F never makes a query to its tagging oracle OMAC, if it happens
that OVrfy(ηC‖p2, τ) = 1 then this must necessarily be a valid forgery in the
SUF-CMA experiment. On the other hand, if F ’s guess of q∗ was wrong, then

132 Security of IEEE 802.11 Chapter 6

it will not have used OVrfy to calculate d, in which case it clearly does not win
in its SUF-CMA game.

Since F ’s simulation of Game 4 is perfect, and since q∗ was drawn inde-
pendently of A, F ’s guess was correct with probability q−1. Hence F winning
probability in its SUF-CMA experiment is at least q−1 times A’s winning prob-
ability in Game 4.

Concluding the proof of Claim 6.5. Up to a factor of q−1, we see that
F successfully forges whenever πi

U∗ accepts maliciously in Game 4 regardless
of whether U∗ = C or U∗ = AP . This proves Claim 6.5. �

Concluding the proof of Theorem 6.4. Combining all the bounds from
Game 0 to Game 4 with Claim 6.5 yields Theorem 6.4. �

6.2.4 Security of IEEE 802.11 with upper-layer authenti-
cation

Theorem 6.1 and Theorem 6.4 apply to the WPA2-PSK variant of IEEE 802.11.
To also address the security of IEEE 802.11 in its WPA2-Enterprise variant,
we need to analyze the setting where the PMK is provided by some upper-
layer authentication protocol. Technically, IEEE 802.11 can be combined with
any type of upper-layer authentication protocol, but in practice the de facto
standard is EAP. Consequently, our second composition result from Chapter 4
can immediately be applied to obtain a result on IEEE 802.11 in its WPA2-
Enterprise variant as well.

More precisely, by setting Π3 = basic EAP and Π4 = 4WHS in Theo-
rem 4.12, we get that the combination Π5 = EAP + 4WHS is a secure 3P-AKE
protocol in our strongest security model AKEfs. However, technically speaking,
in order to apply Theorem 4.12 we also need to show that the probability that
two sessions end up with the same local transcript in the 4WHS protocol is
small. Fortunately, this is trivial since each side in the 4WHS protocol creates
a random 256 bit nonce. In detail, the function ε required by Theorem 4.12 is in
the 4WHS bounded by the probability of a nonce collision among the sessions
at a specific party, namely

ε ≤ |I ∪ R| · n2
π

2λ
=

nP · n2
π

2256 . (6.13)

Note that the bound is proportional to nP · n2
π and not (nP · nπ)2, since the

collision needs to happen at a specific party.

Section 6.3 Analyzing CCMP 133

EK EK EK EK

IV A1 P1 P2

EK EK EK

C1 C2 CT

ctr+1 ctr+2 ctr
64

T

IV = flags1||N ||length16(A+ P)

ctr = flags2||N ||016

Figure 6.3: The CCM mode of operation.

6.3 Analyzing CCMP
While this chapter is primarily about the AKE security of the 4WHS key ex-
change protocol, for completeness we also include an analysis of the CCMP al-
gorithm used to protect the IEEE 802.11 application data. CCMP is a stateful
authenticated encryption (stAE) scheme built out of the CCM mode of opera-
tion [RFC3610] using AES as its underlying block cipher. Since CCMP is only
defined within the context of IEEE 802.11, we specialize all of our descriptions
to this setting, including that of CCM.

6.3.1 Description of CCMP
An IEEE 802.11 frame consists of a header A = A1‖A2‖ · · · ‖Ar which will be in-
tegrity protected but not encrypted, and a plaintext message P = P1‖P2‖ · · · ‖Ps

which will be both integrity protected and encrypted. Each block of A and P
is 128 bits, except possibly for the final blocks Ar, Ps which might be shorter.

CCM. The CCM mode of operation is shown in Figure 6.3 with one header
block A1 and two plaintext blocks P1‖P2. CCM combines a CBC-MAC with
CTR mode encryption in the style of MAC-then-encrypt, and can be summa-
rized as follows. On input a key K, a message A‖P , and a 104 bit nonce N ;
CCM first derives the initial value IV needed by CBC-MAC, and the initial
counter value ctr needed by CTR mode, from the nonce N and two distinct 8 bit

134 Security of IEEE 802.11 Chapter 6

CCMP.Enc(K, P, A):
1: sent ← sent + 1
2: Û ← Address(A)
3: N ← flags‖Û‖sent
4:
5: C ← CCM.Enc(K, N, P, A)
6:
7: return (sent, C)

CCMP.Dec(K, sent‖C, A):

1: Û ← Address(A)
2: N ← flags‖Û‖sent
3:
4: P ← CCM.Dec(K, N, C, A)
5:
6: if P = ⊥:
7: return ⊥
8:
9: if sent ≤ rcvd:

10: return ⊥
11:
12: rcvd ← sent
13:
14: return P

Figure 6.4: The CCMP encryption and decryption procedures.

flags flags1 and flags2. Then, CBC-MAC is computed over the whole message
A‖P to produce a tag T . Next, the plaintext message P is encrypted using
CTR mode to produce a ciphertext CP . Finally, the tag T is encrypted with a
single counter block to produce a ciphertext CT . The combination C ← CP ‖CT

is the output of CCM. Decryption works in the obvious manner.

CCMP. The CCMP encrypt and decrypt procedures are shown in Figure 6.4.
The two main responsibilities of CCMP are to create the nonce N that will be
used as input to CCM, and to ensure replay protection for the IEEE 802.11
frames. CCMP achieves both by maintaining a 48 bit counter sent, which is
incremented for each sent IEEE 802.11 frame; and a 48 bit counter rcvd, which
is (potentially) updated for each received IEEE 802.11 frame.3 The sent counter
is initialized to 1 and the rcvd counter is initialized to 0.

In order to encrypt an IEEE 802.11 frame consisting of a header A and
a plaintext P , CCMP first increments the sent counter and creates the 104 bit
nonce N as

N ← flags‖Û‖sent, (6.14)

where Û is the 48 bit link-layer address of the sender, and flags is an 8 bit value
3The sent counter is called the packet number in the IEEE 802.11 standard [IEEE 802.11],

while the rcvd counter is called the replay counter.

Section 6.3 Analyzing CCMP 135

encoding various IEEE 802.11 settings. We treat it as a constant. The link-
layer address Û is always part of the header A, so in Figure 6.4 we use a function
Address to indicate the process of extracting Û from A. Given the nonce N ,
CCMP then encrypts the IEEE 802.11 frame consisting of header data A and
plaintext P using the CCM mode of operation to produce the ciphertext C.
The output of CCMP is the concatenation sent‖C.

Remember that CCM will add additional elements to the nonce N in order
to create the CBC-MAC IV and the CTR mode initial counter as indicated in
Figure 6.3. Particularly, the IV and initial counter for CCM when used in the
context of CCMP are the following two 128 bit values.

IV ← flags1‖flags‖Û‖sent‖length16(A + P) (6.15)

ctr ← flags2‖flags‖Û‖sent‖016 (6.16)

Here, length16(A+P) is the length of A plus P in bytes, encoded as 16 bits.
Note that 16 bits is sufficient to accommodate the length of the maximum size
IEEE 802.11 frame.

To decrypt an IEEE 802.11 frame Z = (sent‖C, A), CCMP first recreates
the nonce N from A and sent, and then decrypts C with CCM. If the decryption
fails, then CCMP outputs ⊥. Else, it checks that the value sent contained in
Z is strictly greater than the internally maintained rcvd counter. If not, then
CCMP outputs ⊥ again. Otherwise, it updates the value of rcvd to match that
of the received sent, and returns the plaintext P .

6.3.2 Analysis of CCMP
Jonsson [Jon03] has shown that the CCM mode of operation is a secure au-
thenticated encryption scheme. He proved that CCM satisfies the two separate
security notions of indistinguishability under chosen-plaintext attacks (IND-
CPA) and integrity of ciphertexts (INT-CTXT); see [BN00] for their formal
definitions. In Appendix A.3, we show that this is equivalent to our all-in-one
definition of AE security. Thus, in order to prove the stateful AE security of
CCMP, it is sufficient to reduce to the (stateless) AE security of CCM.

However, on closer inspection, we cannot, in fact, prove that CCMP is a
secure stAE scheme according to Definition A.5. The reason is that the security
experiment used to define stAE security in Appendix A.4, targets a different
integrity semantic than what is provided by CCMP. Namely, the security exper-
iment in Figure A.4 is adapted from [Jag+12], which presented the definition
in the context of analyzing TLS. But the integrity guarantees provided by the
TLS Record Layer protocol are stronger than those provided by CCMP.

Specifically, in terms of integrity, the TLS Record Layer is supposed to
provide protection against:

136 Security of IEEE 802.11 Chapter 6

1. forgeries,

2. replays,

3. reordering, and

4. dropping of messages.

However, CCMP does not provide protection against messages being dropped.
To see this, suppose a sender transmits as its first encrypted CCMP messages,
the frames Z1, Z2 and Z3, thus having corresponding packet numbers 2, 3 and
4 (remember that the sent counter starts at 1). Now suppose an attacker drops
messages Z1 and Z2, but delivers Z3 to the receiver. Since Z3 is a validly created
CCMP frame, the CCM decryption at Line 4 of the CCMP.Dec procedure will
succeed. Moreover, when the CCMP.Dec procedure continues to check whether
Z3 is a replay at Line 9, then this will also succeed, since the receiver’s rcvd
counter is set to 0 and so we have rcvd < sent. Thus, Z3 will be accepted by
the receiver even though Z1 and Z2 were lost.

By contrast, the TLS Record Layer demands that the decryption process
happens in exactly the same order as the ciphertexts were created by the en-
cryption process. Thus, it does not accept any messages being dropped. Other
integrity semantics are also possible by considering different combinations of the
four properties listed above. Boyd et al. [Boy+16] have analyzed this question
in depth.

To summarize, CCMP cannot be proven secure according to the stAE se-
curity definition given in Appendix A.4 because it implies a stronger integrity
semantics than what CCMP achieves. Consequently, we have to consider a
weakening of the stAE model that allows for messages to be dropped. Par-
ticularly, at Line 7 of the Dec oracle in Figure A.4, we change the condition
from

if (C, A) �= S[rcvd]: if (C, A) /∈ S[rcvd . . . sent]:
in-sync ← false to in-sync ← false

where S[i . . . j] = {S[i], S[i + 1], . . . , S[j]} if i ≤ j, and ∅ otherwise. Notice that
this widens the scope of which messages are considered in-sync, from one mes-
sage S[rcvd], to potentially a large range S[rcvd . . . sent]. Hence, this effectively
weakens the model since it restricts the adversary more.

Let AdvstAE-d
Π (A) denote the stAE advantage of an adversary A against

some stAE scheme Π within this weakened model. We then have the following
result.

Theorem 6.6. Let A be an adversary against the stAE security of CCMP,
then we can create an adversary B against the AE security of CCM, such that

AdvstAE-d
CCMP (A) ≤ AdvAE

CCM(B). (6.17)

Section 6.3 Analyzing CCMP 137

Proof. From an adversary A that breaks the stAE security of CCMP where
message drops are allowed, we can construct an algorithm B that breaks the
CCM mode of operation. Specifically, algorithm B creates and maintains the
counters sent and rcvd of the CCMP scheme, as well as the variables sent, rcvd,
S[·], and in-sync of security game ExpstAE-d

CCMP (A). We write sentCCMP, rcvdCCMP
for the counters that B maintains for the CCMP scheme, and sentExp, rcvdExp
for the counters that B maintains for the stAE experiment.

When A makes an encryption query (M0, M1, A), B first increments sentCCMP
and creates a nonce N from sentCCMP according Equation (6.14). It then queries
the Enc oracle in its own AE security game on (N, M0, M1, A). B returns the
resulting ciphertext C together with sentCCMP to A, and updates the variables
sentExp and S[sentExp] accordingly.

When A makes a decryption query (sent′‖C, A), B first increments the value
of the counter rcvdExp by 1 and then proceeds as follows.

• If (sent′‖C, A) ∈ S[rcvdExp . . . sent′], then B returns ⊥ to A (since this
query is in-sync).

• Else, B creates the nonce N ← flags‖Û‖sent′, and queries (N, C, A) to
the Dec oracle in its own AE security game to produce a message M .
If M �= ⊥ then B stops its simulation and outputs 1 to its AE security
game. Otherwise, B returns ⊥ to A.

Finally, when A stops with some output b′, then B stops and outputs the
same bit to its AE security game.

Notice that when the secret bit in B’s own AE security game is 0, then
B perfectly simulates the “left-world” of experiment ExpstAE-d

CCMP (A), i.e., where
the encryption query returns the encryption of M0 and the decryption query
always returns ⊥. This is because in this scenario B’s own AE decryption oracle
always returns ⊥, and so B answers all of A’s decryption queries with ⊥ too.
Moreover, B’s simulation of A’s encryption queries is perfect no matter what
the value of the secret bit in its own AE security game is. This is because B
properly creates the nonce N from the counter sentCCMP, which it creates and
maintains itself.

Thus, it only remains to argue that B perfectly simulates the decryption
query of the “right-world” of experiment ExpstAE-d

CCMP (A) when the secret bit
in B’s own AE security game is 1. To this end, it is sufficient to note that
B forwards the decryption query to its own AE security game exactly when
the query is out-of-sync according to the requirements of game ExpstAE-d

CCMP (A).
This is so because B itself has created and maintains the counter rcvdExp in
accordance with ExpstAE-d

CCMP (A). Moreover, if B’s own decryption oracle returns
something other than ⊥, which for instance could happen if A replays an old

138 Security of IEEE 802.11 Chapter 6

ciphertext but with a new counter sent′ such that rcvdExp < sent′, then B stops
and immediately wins in its AE security game.4

To summarize: B perfectly simulates the ExpstAE-d
CCMP (A) game for A, and

wins in its own AE security against CCM with at least the same probability
as A. �

Since CCMP maintains a 48 bit counter sent in order to create the nonces
for CCM, it can technically be used to encrypt up to 248 IEEE 802.11 frames.
The maximum allowable IEEE 802.11 frame size is around 213 bytes = 8 kB,
so a total of 248+13 bytes can be encrypted under the same key. However, the
CCM security bound proven by Jonsson [Jon03] includes a “birthday bound”
term of the form c · �2 · 2−κb , where c is a small constant, � is the number
of invocations of the underlying block cipher, and κb is the block length. In
CCMP the block cipher is AES, so κb = 128. Moreover, since CCM makes
roughly 2 block cipher calls per input block, this implies that an IEEE 802.11
frame of B bytes will involve around 2B/16 = B/8 block cipher calls. If we set
c = 1, then in order for �2 · 2−κb to stay below ε, we need (B/8)2 · 2−128 ≤ ε. In
other words, no more than 267 · B−1 · ε1/2 frames of B bytes can be encrypted
under the same key.

For example, if we set the frame size to be B = 210 bytes = 1 kB, and
we want ε < 2−60, then Jonsson’s bound only justifies up to 227 IEEE 802.11
frames being encrypted with the same key, or roughly 237 ≈ 137 GB of data.
Alternatively, if the requirement is reduced to ε < 2−50, then we get the more
tolerable bound of ≈ 4 TB of data; while if the requirement is increased to
ε < 2−70, we get virtually no guarantees (≈ 4 GB of data).

6.4 Multi-ciphersuite and negotiation security
of IEEE 802.11

In Section 6.2 we analyzed the 4WHS protocol under the assumption that
there is only a single version of it. However, as explained in Section 2.2.3,
IEEE 802.11 actually supports several different ciphersuites, leading to slightly
different instances of the 4WHS protocol. A ciphersuite in IEEE 802.11 essen-
tially determines five things:

• Whether to use upper-layer authentication or not.
4Note that aborting early is a tiny optimization which is not strictly necessary in order

to bound A’s winning probability in terms of B’s. Without it, B would additionally have to
maintain the rcvdCCMP counter and properly check sent′ against rcvdCCMP before answering
A. The benefit of the optimization is that it makes the description of B simpler, and can
only strictly increase B’s winning chances.

Section 6.4 Multi-ciphersuite and negotiation security 139

C AP

»
CS

CSc

M1 : ηAP

M2 : ηC , CSc,MACc(kμ, ηC , CSc)

M3 : ηAP , X,MACc(kμ, ηAP , X)

M4 : Finished,MACc(kμ, Finished)

»
CSAP ← # »

CS

CSc ← Nego(
»
CS) CSC ← CSc

kμ‖kε‖kα ← PRFc(PMK, ...)
kμ‖kε‖kα ← PRFc(PMK, ...)
if Vrfyc(kμ,M2) �= 1:

discard message
if CSc �= CSC :
reject

X ← Ec(kε, # »
CS,GTK)

»
CS,GTK← Dc(kε, X)
if

»
CS �= # »

CSAP :
reject

if Vrfyc(kμ,M3) �= 1:
discard message

Figure 6.5: Ciphersuite negotiation in the 4WHS protocol.

• Which KDF to use inside the 4WHS. There are two possible options: a
PRF based on HMAC-SHA1 and a PRF based on HMAC-SHA256.

• Which MAC algorithm to use inside the 4WHS. There are three pos-
sible options: HMAC-MD5 [RFC2104] (deprecated), HMAC-SHA1-128
[RFC2104], and AES-CMAC-128 [FIPS:SP-800-38B].

• Which encryption algorithm to use inside the 4WHS. There are two pos-
sible options: RC4 (deprecated) and AES Key Wrap [RFC3394].

• Which encryption algorithm to use for the IEEE 802.11 application data.
There are two possible options: TKIP (deprecated) and CCMP.

Although in principle this gives a total number of 24 · 3 = 48 ciphersuites,
the actual number is smaller since some options need to be used together.
The ciphersuite to use is determined by a negotiation protocol run prior to
the 4WHS. In particular, recall from Section 2.2.3 that during the association
phase of the IEEE 802.11 protocol, the access point will send the client a
list of supported ciphersuites # »CS. From this list the client will chose a single
preferred ciphersuite CSc based on some negotiation function Nego. Leaving
out the irrelevant messages from Figure 2.2, this gives the simplified protocol
shown in Figure 6.5. Compared to Figure 6.1, we have made the values of
the constants p1, . . . , p4 explicit in order to reflect the presence of ciphersuite-
specific information in the 4WHS.

In particular, in Figure 6.5 the chosen ciphersuite CSc determines a spe-
cific KDF PRFc, a MAC algorithm Σc = (MACc, Vrfyc), a handshake encryp-
tion algorithm Ec = (Ec, Dc), and an application data encryption algorithm
Λc = (Initc, Encc, Decc) (not shown). Both the client and the access points re-
peat their respective messages from the negotiation protocol inside the 4WHS

140 Security of IEEE 802.11 Chapter 6

(integrity protected by the MAC algorithm Σc). If the received values CSc and
»CS are not identical to what the client and access point received during the ne-
gotiation protocol, they abort the 4WHS. Note that the access point encrypts
its ciphersuite list # »CS with the encryption algorithm Ec in the third message of
the 4WHS (which also includes a group key GTK).

Given that IEEE 802.11 supports multiple ciphersuites, there are two related
questions to ask. The first is whether the 4WHS protocol is multi-ciphersuite
secure, meaning that it is still secure as an AKE protocol when multiple different
ciphersuites can be run in parallel. The second is whether the negotiation
protocol in combination with the 4WHS achieves negotiation security, meaning
that the client and access point end up with the ciphersuite prescribed by their
initial configurations.

In the sections below we examine both of these issues and indicate how
one could prove the multi-ciphersuite and negotiation security of IEEE 802.11.
We stress that unlike the other sections of this chapter, we do not provide
any formal theorem statements or proofs, but only keep the discussion at an
informal level.

6.4.1 Multi-ciphersuite security
If a multi-ciphersuite protocol uses different long-term keys for each ciphersuite,
then the multi-ciphersuite security of the protocol follows trivially from the
security of the individual ciphersuites. However, if the same long-term key
is used across different ciphersuites, then this does not necessarily have to be
the case. Chatterjee et al. [CMU09] give several examples of attacks that are
possible when long-term keys are reused across different protocols. Since the
same PSK can be reused across different ciphersuites in IEEE 802.11, we cannot
automatically conclude that the 4WHS achieves multi-ciphersuite security.

Generic composition. Seemingly, a possible approach to proving the multi-
ciphersuite security of the 4WHS protocol would be to adapt the multi-cipher-
suite framework of Bergsma et al. (BDKSS) [Ber+14]. In their framework a
multi-ciphersuite protocol NP‖ #»Π is the composition of a negotiation protocol
NP, followed by a sub-protocol Πc ∈ #»Π, corresponding to specific ciphersuite
c. Importantly, BDKSS do not demand that a different long-term key be used
for each sub-protocol Πc. One of the central results of BDKSS is a generic
composition theorem that tries to recover as much as possible of the intuition
that the security of NP‖ #»Π should follow from the security of the individual
sub-protocols.

The main issue in reducing the security of NP‖ #»Π to the security of a sub-
protocol Πc, is that the reduction also needs to be able to simulate the other

Section 6.4 Multi-ciphersuite and negotiation security 141

sub-protocols Πd that use the same long-term key as Πc. BDKSS solve this
problem by considering an extension to the single-ciphersuite security game
where the adversary additionally gets access to an auxiliary oracle that runs a
certain operation Aux(sk, ·) based on a private key sk.5 For instance, if sk was
the private key for some signature scheme, then Aux(sk, ·) could be a signing
operation under sk. The idea of introducing the auxiliary oracle is that it can
make it possible to simulate the other ciphersuites which uses the same private
key sk. This is the central ingredient of the composition theorem of BDKSS:
if the auxiliary oracle allows simulation of other ciphersuites that use the same
private key as Πc, then the multi-ciphersuite security of NP‖ #»Π can be reduced
to the single-ciphersuite security of Πc, in the extended auxiliary oracle model.

Still, this instead shifts the problem to showing that Πc satisfies single-
ciphersuite security in the possibly stronger auxiliary oracle model. In par-
ticular, if the operation Aux(sk, ·) is very liberal in terms of what function it
computes with sk, then it will be easy to simulate the other ciphersuites, but
at the cost of making it more difficult to show security of Πc in the (single-
ciphersuite) auxiliary oracle model. To counteract this, BDKSS additionally
introduced the notion of a constraint predicate Φ. If the adversary is to win in
the extended single-ciphersuite security game, then it cannot make an auxiliary
oracle query that satisfies Φ. The stricter Φ is, the easier it becomes to prove
the security of Πc in the single-ciphersuite setting. On the other hand, a stricter
Φ could also make it harder to simulate the other ciphersuites, which is needed
by the composition theorem.

Let NP be the negotiation protocol in Figure 6.5 and let #»Π be the collection
of all the different 4WHS ciphersuite variants. To prove the multi-ciphersuite
security of NP‖ #»Π using the composition theorem of BDKSS [Ber+14], we have
to come up with a suitable auxiliary oracle and constraint predicate Φ. Al-
though BDKSS’s original formulation was in the public-key setting, we can
adapt it to the PSK setting in a straightforward manner. However, what is
not so straightforward is constructing the PSK operation Aux(PMK, ·) and
the corresponding constraint predicate Φ. In order for an adversary against a
ciphersuite Πc to simulate another ciphersuite Πd sharing the same PMK, it
needs to be able to create the application keys kα of Πd. For simplicity, sup-
pose ciphersuites c and d share the same KDF PRF. If we let Aux(PMK, x)
return PRF(PMK, x) then we can certainly simulate protocol Πd. The problem
is that having access to this operation also makes it trivial to break protocol
Πc in the single-ciphersuite setting. Unfortunately, there does not seem to be
a way to constrain the inputs to Aux(PMK, ·) using Φ which simultaneously
protects Πc and at the same time enables simulation of sub-protocol Πd. This

5Technically, BDKSS only considered multi-ciphersuite security for ACCE protocols, but
their results can easily be adapted to other protocol types as well.

142 Security of IEEE 802.11 Chapter 6

is because the chosen ciphersuite is not cryptographically bound to the derived
keys through the KDF input (in the sense of channel binding). Hence there is
no difference between how the key kα is derived in Πc and Πd. In the end, we
do not see how the composition theorem of BDKSS [Ber+14] can be used to
prove the multi-ciphersuite security of IEEE 802.11.

Agile security. An alternative to using the modular composition theorem of
BDKSS [Ber+14] is to prove the multi-ciphersuite security of IEEE 802.11 di-
rectly. Essentially, a proof of multi-ciphersuite AKE security or multi-ciphersuite
explicit entity authentication would mostly mirror the corresponding single-
ciphersuite proofs in Section 6.2.2 and Section 6.2.3, respectively. However,
there is one major difference: the multi-ciphersuite proofs would have to rely
on a so-called cryptographic agility assumption [Aca+10, Bha+14b]. Cryp-
tographic agility refers to a setting where the same key is being used across
multiple members of the same type of function, e.g., a PRF or a MAC.

In IEEE 802.11, the same PMK is used in two different PRFs: one based
on HMAC-SHA1, and one based on HMAC-SHA256. A key agility assumption
would then say that each of these schemes is secure (as a PRF), even when
the adversary has oracle access to the other scheme under the same key. Ad-
ditionally, it is also possible that the same MAC key could be used across the
different MAC algorithms supported by IEEE 802.11, namely HMAC-MD5,
HMAC-SHA1, and AES-CMAC. This could happen if an attacker in the nego-
tiation protocol (see Figure 6.5) replaced the client’s choice of ciphersuite CSc

with another ciphersuite CS′
c that selects a different MAC algorithm. Thus, we

would also need an agility assumption on the MAC security of the collective
{HMAC-MD5, HMAC-SHA1, AES-CMAC}.

In more detail, during a multi-ciphersuite security proof of the 4WHS pro-
tocol, the PRF agility assumption would be invoked in the game hop where
we replace the KDF with a random function (Game 3 in both proofs), and the
MAC agility assumption would be invoked in the analysis of the final game
in the proof of explicit entity authentication (Claim 6.5 in Theorem 6.4). Ex-
cept for the added assumptions of agility security, we expect the proofs to be
straightforward extensions of those presented in Section 6.2.

Incidentally, the 4WHS protocol is quite similar to the PSK based variant
of the IKEv1 [RFC2409] protocol in “aggressive” mode, which Bhargavan et
al. [Bha+16] have conducted a multi-ciphersuite security analysis of.

6.4.2 Negotiation security
Intuitively, the goal of negotiation security is that no attacker should be able
to get two parties to successfully agree upon a worse ciphersuite than the best

Section 6.4 Multi-ciphersuite and negotiation security 143

ciphersuite they mutually support. If an adversary succeeds in getting the
parties to use a worse ciphersuite then what is prescribed by their mutual con-
figurations, it is said to have performed a downgrade attack. As mentioned in
Section 2.2.3, if WEP is supported alongside Robust Security Network (RSN)
ciphersuites, then IEEE 802.11 cannot provide any protection against down-
grade attacks. This is because when WEP is used, the 4WHS protocol is not
run at all, and hence there is no way for the client and access point to ver-
ify that a downgrade attack has occurred. The IEEE 802.11 standard [IEEE
802.11] requires that WEP and RSN should not be enabled together. In the
remainder we only discuss the negotiation security of IEEE 802.11 when using
RSN ciphersuites exclusively.

Similar to the modular composition theorem of BDKSS [Ber+14] for the
multi-ciphersuite security of a protocol NP‖ #»Π, Dowling and Stebila [DS15] pro-
posed a generic composition theorem that relates the negotiation security of
NP‖ #»Π to the authentication security of the individual sub-protocols Πc. How-
ever, their theorem assumes that different sub-protocols use different long-term
keys, and so cannot be applied to IEEE 802.11.

In contrast, Bhargavan et al. [Bha+16] formulate negotiation security in the
setting of key reuse across ciphersuites. They also prove a generic theorem that
allows the negotiation security of NP‖ #»Π to be lifted from a simpler core negotia-
tion protocol NP′ extracted from NP and #»Π. Thus, it is sufficient to focus on the
negotiation security of protocol NP′. Using their generic theorem, Bhargavan
et al. [Bha+16] proved the negotiation security of the SSH [RFC4253] protocol
under agile assumptions on its cryptographic primitives.

Admittedly, the value of applying the composition theorem of Bhargavan et
al. [Bha+16] to IEEE 802.11 is rather limited, since the core negotiation pro-
tocol one can extract for IEEE 802.11 is almost the same as the whole protocol
itself; essentially corresponding to the protocol we have shown in Figure 6.5.
A proof of negotiation security for IEEE 802.11 would thus proceed in more
or less the same way as the proofs of multi-ciphersuite security—which them-
selves are essentially the same as our proofs of single-ciphersuite AKE security
(Theorem 6.1) and explicit entity authentication (Theorem 6.4). But again, it
would require agile security assumptions on the KDFs and MACs.

As mentioned in Section 6.4.1, Bhargavan et al. [Bha+16] also analyzed the
negotiation security of IKEv1-PSK in aggressive mode, which is very similar to
the 4WHS protocol. However, for simplicity they assumed that only a single
KDF and a single MAC algorithm was being used in order to rely on more
traditional non-agile security assumptions.

Chapter 7

Conclusions

Contents
7.1 Limitations of our results 145

7.1.1 Things not covered by our analysis 146
7.1.2 Tightness of security reductions 147

7.2 Future work and open problems 147

In recent years there has been a great interest in formally analyzing the
TLS protocol. Almost every aspect of TLS have been scrutinized, ranging
from the security of its core handshake protocol [MSW10, Jag+12, KPW13b,
Brz+13a, KSS13, Li+14, Bha+14b] and Record Layer Protocol [Kra01, PRS11,
Boy+16], to its multi-ciphersuite and (re-)negotiation (in)security [GKS13,
Ber+14, DS15, Beu+15]. Even for the unfinished upcoming TLS 1.3 standard,
there have already been multiple results [Bad+15b, Dow+15, KW15, Dow+16,
FG17]. This analysis has greatly increased our understanding of TLS. At the
same time, there are other important real-world protocols that have received
much less attention. EAP, EAP-TLS and IEEE 802.11 are all examples of this.
In this thesis we have tried to remedy this state-of-affairs by conducting a for-
mal security analysis of the three aforementioned protocols in the game-based
setting. We have concentrated on the central cryptographic operations of each
of these protocols.

Beginning with EAP in Chapter 4, we showed through two generic compo-
sition theorems how the security of the overall EAP framework is sound. More
specifically, these composition theorems give sufficient security requirements on
the components that make up EAP in order to securely instantiate the frame-
work. In this sense, they make precise the security requirements that were only
informally described in [RFC5247]. A particularly interesting observation is the

144

Section 7.1 Limitations of our results 145

importance of channel binding in the EAP methods. This has so far lacked any
formal justification in the EAP standard, only being argued based on ad-hoc
examples. Recall that our first composition theorem showed that basic EAP is
a secure 3P-AKE protocol. Without channel binding this would not be true.

In Chapter 5 we analyzed the EAP-TLS protocol, which is one of the most
widely supported EAP methods. We showed that it is a secure 2P-AKE proto-
col. However, more interesting than this result on its own, is how it was estab-
lished. Namely, our result on EAP-TLS follows as a corollary of a more general
theorem that shows how almost any secure channel protocol (i.e., TLS-like
ACCE protocols), can be transformed into a secure AKE protocol. Although
intuitively straightforward, the proof of this was non-trivial.

Finally, in Chapter 6 we analyzed the IEEE 802.11 protocol. We first looked
at the setting found in most home networks, where a common key is manually
installed at all connecting devices. In this scenario we proved that the 4WHS
protocol is a secure 2P-AKE with no forward secrecy, and that it additionally
provides explicit entity authentication. These are also exactly the properties
needed by our second composition theorem, which when combined with our
4WHS result, culminated in a first security proof of EAP + IEEE 802.11 in
the computational setting. Besides our results on the 4WHS handshake, we
also proved that the IEEE 802.11 channel protocol CCMP is a secure stateful
authenticated encryption scheme.

7.1 Limitations of our results

There are several caveats to our results. First and foremost, all of our results
are based on simplifications of the actual real-world protocols. This is always
necessary in order to make any analysis feasible. Nevertheless, it opens up the
possibility that our modeling does not accurately reflect the protocols as they
really are. Unfortunately, this is a fundamental problem for which there is no
easy solution. A recent trend in the analysis of TLS has been to introduce
machine-checkable proofs, and even derive models from executable code itself,
so as to mirror the real TLS protocol as closely as possible [Bha+14b, Beu+15].
But even these approaches make simplifications compared to the real protocol.
Moreover, it is not clear how this approach can be applied to the kind of
generic theorems we have proven, which inherently have no implementations.
In the end, we have tried to model the protocols as faithfully as we can, but
ultimately there are no guarantees that our models completely match the real-
world protocols.

146 Conclusions Chapter 7

7.1.1 Things not covered by our analysis
There are several things not covered by our analysis due to assumptions made
in our security model (Chapter 3). Below we discuss some of them.

PKI. We have not considered the question of PKI in this thesis. Instead, we
have assumed that all long-term keys are honestly generated, and that all parties
have authentic copies of every public-key in the system. Since PKI is highly non-
trivial, this certainly simplifies our model. At the same time, we argue that the
PKI needed by most EAP use-cases is much simpler than the PKI needed for the
public Internet. With the exception of eduroam, EAP is typically used within
the scope of a single organization. Thus, all administration of users and long-
term credentials is fully controlled by the organization itself. Moreover, in the
current design of eduroam, the authentication of long-term keys is only relevant
between users and servers belonging to the same institution, thus reducing to
the single organization scenario (see Section 7.2 below for further discussion on
eduroam).

Long-term key configurations. Our security model only considered three
classes of protocols: (i) two-party protocols based solely on public keys, (ii) two-
party protocols based solely on PSKs, and (iii) three-party protocols where the
client and servers have public keys, and the servers and authenticators share
PSKs. The reason for choosing to focus exclusively on these three classes of
protocols was that they correspond to the way long-term keys are being used
in EAP-TLS, IEEE 802.11, and EAP(-TLS) + IEEE 802.11, respectively. Still,
this choice was mostly done for ease of exposition. All our results should be
largely orthogonal to the type of long-term keys being used.

Side-channel attacks. Traditionally, security models have only considered
adversaries that attack a cryptographic algorithm in a black-box way. That is,
the adversary only acts based on the input/output behavior of the algorithm.
However, this misses a large class of real-world attacks known as side-channel
attacks. These are attacks where the adversary exploits some implementation
specific detail about an algorithm in order to learn its secret key. Side-channel
attacks can be based on observations of an algorithm’s power usage, its mem-
ory usage, its running time, or its behavior in faulty running environments.
Being able to observe details about an algorithm’s run-time characteristics is a
powerful capability, and many algorithms that are secure in traditional security
models can nonetheless be broken when given access to this information.

Although protection against side-channel attacks is important, and even
though security models that try to capture this exist [ASB14], we have consid-

Section 7.2 Future work and open problems 147

ered it out of scope for this thesis. Besides the additional complexity it would
add to our models, we also feel that it would distract from the overall theme
of our results, which are mostly generic and do not focus on any particular
implementation.

7.1.2 Tightness of security reductions
A security reduction which transforms an adversary A breaking protocol Π, into
an algorithm B solving a problem P , is said to be tight if B’s success probability
and computational cost is essentially the same as that of A. A security reduction
which is not tight is said to be non-tight. The value of a tight reduction is that
it allows to transfer confidence in the hardness of problem P into a similar
confidence level for the security of protocol Π. Ostensibly, this means that one
can also determine safe parameters for Π based on confidence in the hardness
of problem P . On the other hand, if the security reduction is non-tight, then
one would have to compensate for the difference by choosing larger parameters
for Π. Generally, this leads to less efficient protocols.

Our composition results in Chapter 4 are non-tight since they incur a factor
of n2, where n is the total number of sessions created by adversary A. Un-
fortunately, this seems to be inevitable for these types of generic composition
results. Although Bader et al. [Bad+15a] have shown how to construct an AKE
protocol with a tight security reduction, they required a special construction.
Our composition results on the other hand, uses its protocol building blocks
in a black-box manner. Moreover, the protocol of Bader et al. [Bad+15a] is
currently the only known protocol with a tight reduction—all other protocols
comes with a non-tight reduction, black-box or not. The recent impossibility
result of Jager et al. [Jag+17], which shows that non-tight security reduction
are necessary for multi-key authenticated encryption schemes when corruption
is allowed, suggests that the same should be true for protocols that are largely
generic in nature.

7.2 Future work and open problems
There are several possible avenues for future work based on the results of this
thesis. One possibility is further specialization, aiming to include more details
about the concrete protocols into the analysis. One example could be a more
detailed analysis of the eduroam network. In particular, eduroam does not
currently employ a global PKI. In order to facilitate roaming between different
institutions, eduroam employs a hierarchy of RADIUS servers, organized at
an institutional, national, and global level, somewhat similar to DNS. When
transferring the MSK from the home RADIUS server to the access point of

148 Conclusions Chapter 7

the visiting network to which the client is currently roaming, eduroam will
send the MSK through a chain of RADIUS servers within the hierarchy. Every
pairwise RADIUS servers in this hierarchy share a symmetric secret. It could
be interesting to factor this type of authentication server structure into the
analysis of EAP. At the same time, eduoram is in fact planning a transition
away from this PSK-based RADIUS hierarchy, moving instead towards a global
PKI [RFC7593]. This would make it possible for an access point to establish
a secure channel directly with the RADIUS server of a roaming user’s home
institution. This could also be interesting to analyze and would require PKIs
to be incorporated into the security model, similar to [Boy+13].

Another example of further specialization could be to look at the MPPE
algorithm described in Section 4.1.2, used by RADIUS to encrypt the MSK.
As mentioned in the corresponding related work section (Section 4.1.4), Horst
et al. [Hor+16] have successfully cryptanalyzed MPPE within the context of
PPTP. However, establishing the precise security guarantees provided by MPPE
as it is used within RADIUS is an open problem.

The alternative to a more detailed analysis is further generalization. A
straightforward generalization would be to consider more general protocol classes
in our security models by allowing arbitrary configurations of long-term keys,
as well as protocols having N > 3 roles. Another generalization would be
to incorporate multi-ciphersuite and negotiation security into our composition
theorems.

Beyond the dichotomy of further specialization or generalization, there is
also the question of applying our results in settings outside of EAP, EAP-TLS
and IEEE 802.11. For instance, the AKA protocol used within 3G and 4G
mobile networks is very similar to the architecture of the EAP framework.
Thus, it could be possible to apply the composition theorems of Chapter 4 to
the AKA protocol as well. This would provide an alternative, and perhaps
more modular, proof to the one that was recently given by Alt et al. [Alt+16].

Finally, it is an open problem whether the tightness of our security reduc-
tions for the generic composition theorems can be improved, or if the n2 security
loss is essentially optimal. If the n2 loss is inherent, then it might be possi-
ble to prove this using meta-reduction techniques similar to those of Jager et
al. [Jag+17], who showed that reductions from multi-key security to single-key
security must be non-tight for authenticated encryption schemes when keys can
be corrupted.

Appendix A

Additional definitions

Contents
A.1 Pseudorandom functions 149

A.2 Message authentication codes 150

A.3 Authenticated encryption 150

A.4 Stateful authenticated encryption 153

A.1 Pseudorandom functions

A pseudorandom function (PRF) is a family of functions F : {0, 1}κ ×{0, 1}� →
{0, 1}L, having key length κ, input length � and output length L. Let Func(�, L)
denote the family of all functions from {0, 1}� to {0, 1}L. The security of a PRF
is defined by the experiment shown in Figure A.1.

Definition A.1 (PRF security). Let F be a PRF. The PRF advantage of
an adversary A is

Advprf
F (A) def= 2 · Pr[Expprf

F (A) ⇒ 1] − 1 (A.1)

= Pr[AFK (·) ⇒ 1] − Pr[A$(·) ⇒ 1]. (A.2)

Equation (A.1) is the definition. Equation (A.2) is an equivalent formulation,
where FK = F (K, ·) for a random key K ←←{0, 1}κ, and $ ←← Func(�, L).

149

150 Additional definitions Chapter A

Expprf
F (A):

1: b ← {0, 1}
2: K ←←{0, 1}κ

3: f0 ← F (K, ·)
4: f1 ←← Func(�, L)
5:
6: b′ ← Afb(·)

7: return (b′ = b)

Figure A.1: Experiment defining PRF security.

A.2 Message authentication codes
A message authentication code (MAC) is a pair of algorithms Σ = (MAC, Vrfy),
where

• MAC : {0, 1}κ × {0, 1}∗ → {0, 1}∗ is a deterministic tag-generation algo-
rithm that takes in a key K ∈ {0, 1}κ, a message m ∈ {0, 1}∗ and returns
a tag τ ∈ {0, 1}∗.

• Vrfy : {0, 1}κ × {0, 1}∗ × {0, 1}∗ → {0, 1} is a deterministic verification-
algorithm that takes in a key K ∈ {0, 1}κ, a message m ∈ {0, 1}∗ and a
candidate tag τ ∈ {0, 1}∗; and produces a decision d ∈ {0, 1}. Algorithm
Vrfy(K, ·, ·) is uniquely determined by algorithm MAC(K, ·) as follows:

Vrfy(K, m, τ) def=

{
1 if MAC(K, m) = τ ,
0 otherwise.

(A.3)

The security of a MAC is defined by the experiment shown in Figure A.2.

Definition A.2 (SUF-CMA security). Let Σ = (MAC, Vrfy) be a MAC.
The SUF-CMA advantage of an adversary A is

AdvSUF-CMA
Σ (A) def= Pr[ExpSUF-CMA

Σ (A) ⇒ 1]. (A.4)

A.3 Authenticated encryption
An authenticated encryption (AE) scheme is a tuple Λ = (Enc, Dec) consisting
of two algorithms.1

1We omit the property of length-hiding in our treatment of AE, stAE (Appendix A.4) and
ACCE (Section 3.4). This omission is immaterial for the results established in this thesis.

Section A.3 Authenticated encryption 151

ExpSUF-CMA
Σ (A):

1: K ←←{0, 1}κ

2: forgery ← 0
3: T [·] ← ∅
4:
5: AMAC(K,·),Vrfy(K,·,·)

6: return forgery

MAC(K, m):
1: τ ← Σ.MAC(K, m)
2: T [m] ← T [m] ∪ {τ}
3: return τ

Vrfy(K, m, τ):
1: d ← Σ.Vrfy(K, m, τ)
2: if (d = 1) ∧ (τ /∈ T [m]):
3: forgery ← 1
4: return d

Figure A.2: Experiment defining SUF-CMA security.

• Enc : {0, 1}κ × {0, 1}λ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is an encryption al-
gorithm that takes as input a key K ∈ {0, 1}κ, a nonce N ∈ {0, 1}λ, a
message M ∈ {0, 1}∗, and associated data A ∈ {0, 1}∗; and outputs a
ciphertext C ∈ {0, 1}∗.

• Dec : {0, 1}κ × {0, 1}λ × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⊥} is a decryption
algorithm that takes as input a key K ∈ {0, 1}κ, a nonce N , a ciphertext
C ∈ {0, 1}∗, and associated data A; and either outputs a message M ∈
{0, 1}∗ or a distinguished failure symbol ⊥.

Correctness of an AE scheme demands that

Dec(K, N, Enc(K, N, M, A), A) = M (A.5)

for all K ∈ {0, 1}κ, N ∈ {0, 1}λ, and M, A ∈ {0, 1}∗.
The security of an AE scheme is defined by the experiment shown in Fig-

ure A.3. This is a nonce-based variant of the definition used in [PRS11]. We re-
quire that the adversary is nonce-respecting, which means that it never queries
its encryption oracle with the same nonce twice. However, rather than only
quantifying over nonce-respecting adversaries, we instead enforce the require-
ment directly in the encryption oracle itself.

Definition A.3 (AE security). Let Λ = (Enc, Dec) be an AE scheme. The
AE advantage of an adversary A is

AdvAE
Λ (A) def= 2 · Pr[ExpAE

Λ (A) ⇒ 1] − 1 (A.6)

= Pr[ExpAE
Λ (A) ⇒ 1 | b = 0] − Pr[ExpAE

Λ (A) ⇒ 0 | b = 1]. (A.7)

Equation (A.6) is the definition, while (A.7) is an equivalent formulation.

152 Additional definitions Chapter A

ExpAE
Λ (A):

1: K ←←{0, 1}κ

2: N ← ∅
3: C ← ∅
4: b ←←{0, 1}
5:
6: b′ ←← AEnc(K,·),Dec(K,·)

7: return (b′ = b)

Enc(K, N, M0, M1, A):
1: if |M0| �= |M1|:
2: return ⊥
3:
4: // A must be nonce-respecting
5: if N ∈ N :
6: return ⊥
7:
8: C0 ← Λ.Enc(K, N, M0, A)
9: C1 ← Λ.Enc(K, N, M1, A)

10:
11: N ← N ∪ N
12: C ← C ∪ (N, Cb, A)
13:
14: return Cb

Dec(K, N, C, A):
1: if b = 0:
2: return ⊥
3:
4: if (N, C, A) ∈ C:
5: return ⊥
6:
7: M ← Λ.Dec(K, N, C, stD)
8:
9: return M

Figure A.3: Experiment defining security for an AE scheme Λ = (Enc, Dec).

Equivalence with other formulations. In Section 6.3.2 we reduce the se-
curity of CCMP to the AE security of the CCM mode of operation. Jons-
son [Jon03] have shown that CCM satisfies the two separate security notions
of IND-CPA and INT-CTXT. Furthermore, Rogaway and Shrimpton [RS06a]
have shown that this is equivalent to an all-in-one formulation of AE security.
However, the AE definition used by Rogaway and Shrimpton is slightly different
from the all-in-one definition we have given above. Specifically, Rogaway and
Shrimpton [RS06a] use a “Real-vs-Ideal” formulation of AE security, whereas
we (and [PRS11]) use a “Left-or-Right” formulation for encryption combined
with a “Real-vs-Ideal” formulation for decryption.

In more detail, let AERvI denote the variant of AE security in [RS06a]
and, for the remainder of this section, let AELR denote the formulation of AE
security we have used in Definition A.3. The AERvI advantage of an adversary
A against some AE scheme Λ is

AdvAE-RvI
Λ (A) def= Pr[AEK (·,·,·),DK (·,·,·) ⇒ 1] − Pr[AEK (·,$,·),⊥(·,·,·) ⇒ 1], (A.8)

where EK(·, ·, ·) and DK(·, ·, ·) are oracles for the real encryption and decryption
algorithms of Λ, while EK(·, $, ·) is an oracle that returns encryption of random
bits $ equal in length to the input message and ⊥(·, ·, ·) is an oracle that always
returns ⊥. Just like in AELR, it is required that A is nonce-respecting and
does not forward the output of its encryption oracles to its decryption oracles.
Additionally, A is forbidden from making the same encryption query twice.

Theorem A.4 (Informal). The following three notions of AE security are all
equivalent:

Section A.4 Stateful authenticated encryption 153

(i) AELR,

(ii) AERvI,

(iii) IND-CPA + INT-CTXT.

Proof sketch.
(i) =⇒ (ii): Suppose we have an adversary A against the AERvI security

of some AE scheme Λ. From A we construct the following adversary B against
the AELR security of Λ. To answer A’s encrypt queries (N, M, A), B queries
its left-or-right Enc oracle on (N, $, M, A), where $ is a random bit string of
the same length as M . To answer A’s decrypt queries, B forwards to its own
decryption oracle Dec. When A outputs a bit b′, then Bstops and outputs the
same bit b′.

Note that when the secret bit b in B’s AELR security game is 0, then B
perfectly simulates the “Ideal” world for A. On the other hand, when b = 1,
then B perfectly simulates the “Real” world. Hence, B wins with the same
probability as A.

(ii) =⇒ (iii): This follows by an adaption of the proof of Proposition 9
in [RS06b] to the setting of nonce-based AE schemes.

(iii) =⇒ (i): Let A be an adversary against the AELR security of Λ. Let
G0 be the original AELR security game, and let G1 be the game where all Dec
queries are answered by ⊥ irregardless of the secret bit b. Game G0 and G1 are
identical unless A makes a forgery. Let F denote this event. The probability
Pr[F] is bounded by the following INT-CTXT adversary F . To answer A’s
left-or-right encryption queries (N, M0, M1, A), F simulates the secret bit b of
the AELR security game itself by drawing a random bit bsim. It then queries
its own (proper) encryption oracle EK(·, ·, ·) on (N, Mbsim

, A). To simulate A’s
decryption queries, F forwards to its own decryption oracle DK(·, ·, ·). In this
way F perfectly simulates game G0 and wins exactly when event F occurs.

To bound A’s advantage in game G1, we create an IND-CPA adversary
B which forwards A’s left-or-right encryption queries to its own left-or-right
encryption oracle EK(·, ·, ·, ·), and answers all of A’s decryption queries by ⊥.

�

A.4 Stateful authenticated encryption
A stateful authenticated encryption (stAE) scheme is a tuple Λ = (Init, Enc, Dec)
consisting of three algorithms.

154 Additional definitions Chapter A

• Init is a deterministic initialization algorithm, that takes no input and
produces two states (stE, stD) ∈ {0, 1}∗ × {0, 1}∗; one for encryption and
one for decryption.

• Enc : {0, 1}κ × ({0, 1}∗)3 → {0, 1}∗ × {0, 1}∗ is an encryption algorithm
that takes as input a key K ∈ {0, 1}κ, a message M ∈ {0, 1}∗, associated
data A ∈ {0, 1}∗, and an encryption state stE; and produces a ciphertext
C ∈ {0, 1}∗ and a new encryption state st′

E.

• Dec : {0, 1}κ × ({0, 1}∗)3 → {0, 1}∗ × {0, 1}∗ is a deterministic decryption
algorithm that takes as input a key K ∈ {0, 1}κ, a ciphertext C ∈ {0, 1}∗,
associated data A ∈ {0, 1}∗, and a decryption state stD. It then either
produces a message m ∈ {0, 1}∗ or distinguished failure symbol ⊥, to-
gether with a new decryption state st′

D.

Correctness of a stAE scheme demands that for all K ∈ {0, 1}κ, if the
states (st0

E, st0
D) were produced by running algorithm Init, and the sequence

of encryptions (Ci, sti+1
E) ← Λ.Enc(K, Mi, Ai, sti

E) is such that Ci �= ⊥ for all
i ≥ 0; then the sequence of decryptions (M ′

i , sti+1
D) ← Λ.Dec(K, Ci, Ai, sti

D) is
such that M ′

i = Mi for each i ≥ 0.
Following [PRS11] and [Jag+12], the security of an stAE scheme is defined

by the experiment shown in Figure A.4. Note that we have S[i] = ⊥ for all
i /∈ [1, sent].

Definition A.5 (stAE security). Let Λ = (Init, Enc, Dec) be a stAE scheme.
The stAE advantage of an adversary A is

AdvstAE
Λ (A) def= 2 · Pr[ExpstAE

Λ (A) ⇒ 1] − 1 (A.9)

= Pr[ExpstAE
Λ (A) ⇒ 1 | b = 0]

− Pr[ExpstAE
Λ (A) ⇒ 0 | b = 1].

(A.10)

Equation (A.9) is the definition, while (A.10) is an equivalent formulation.

Section A.4 Stateful authenticated encryption 155

ExpstAE
Λ (A):

1: K ←←{0, 1}κ

2: (stE, stD) ← Λ.Init
3: S[·] ← ∅
4: sent, rcvd ← 0
5: in-sync ← true
6: b ←←{0, 1}
7:
8: b′ ←← AEnc(K,·,·,·),Dec(K,·,·)

9: return (b′ = b)

LR(K, M0, M1, A):
1: if |M0| �= |M1|:
2: return ⊥
3:
4: sent ← sent + 1
5: (C0, st0

E) ← Λ.Enc(K, M0, A; stE)
6: (C1, st1

E) ← Λ.Enc(K, M1, A; stE)
7:
8: stE ← stb

E
9: S[sent] ← (Cb, A)

10:
11: return Cb

Decrypt(K, C, A):
1: if b = 0:
2: return ⊥
3:
4: rcvd ← rcvd + 1;
5: (M, stD) ← Λ.Dec(K, C, A; stD)
6:
7: if (C, A) �= S[rcvd]:
8: in-sync ← false
9:

10: if in-sync = false:
11: return M
12:
13: return ⊥

Figure A.4: Experiment defining security for a stAE scheme Λ = (Init, Enc, Dec).

Appendix B

Transcript parsing rules

Let T3 be a transcript produced by running experiment ExpΠ3,Q(A), where Π3
is the protocol described in Section 4.2. Table B.1 defines how to extract from
T3 two other transcripts, T1 and T2, corresponding to runs of ExpΠ1,Q(A′),
and ExpΠ2,Q(A′′), respectively. Essentially, T1 and T2 are extracted from T3
as follows.

• For each initiator session on T3, create a corresponding initiator session
on T1.

• For each responder session on T3, create a corresponding responder session
on T2.

• For each server session on T3, create two sessions: one responder session
on T1; and one initiator session on T2. However, the latter is only created
if the server session reached the accept state in sub-protocol Π1 on T3.

• For each Send message on T3 directed to an initiator session, copy the
Send message to the corresponding session on T1.

• For each Send message on T3 directed to a responder session, copy the
Send message to the corresponding session on T2.

• For each Send message on T3 directed to a server session which has not
accepted in sub-protocol Π1, copy the Send message to the corresponding
session on T1.

• For each Send message on T3 directed to a server session which has ac-
cepted in sub-protocol Π1, copy the Send message to the corresponding
session on T2.

156

T
ab

le
B

.1
:

P
ar

si
ng

ru
le

s
fo

r
ex

tr
ac

ti
ng

tr
an

sc
ri

pt
s

T
1

an
d

T
2

fr
om

a
tr

an
sc

ri
pt

T
3

ge
ne

ra
te

d
by

an
ex

ec
ut

io
n

of
ex

pe
ri

m
en

t
E

xp
Π

3
,Q

(A
),

w
he

re
Π

3
is

th
e

pr
ot

oc
ol

de
fin

ed
in

Se
ct

io
n

4.
2.

T
he

ta
bl

e
as

su
m

es
th

at
A

∈
I,

B
∈

R
an

d
S

∈
S

in
pr

ot
oc

ol
Π

3.
P

ar
si

ng
is

do
ne

as
fo

llo
w

s.
Fo

r
ea

ch
en

tr
y

in
T

3,
lo

ok
up

th
e

ro
w

in
th

e
co

lu
m

n
m

ar
ke

d
“T

3”
th

at
m

at
ch

es
th

is
qu

er
y.

Fr
om

th
is

ro
w

,u
se

th
e

co
rr

es
po

nd
in

g
qu

er
ie

s
in

th
e

co
lu

m
ns

m
ar

ke
d

“T
1”

an
d

“T
2”

to
cr

ea
te

th
e

en
tr

ie
s

on
T

1
an

d
T

2
re

sp
ec

ti
ve

ly
(“

−”
m

ea
ns

th
at

no
qu

er
y

sh
ou

ld
be

cr
ea

te
d)

.

T
3

T
1

T
2

(N
ew

Se
ss

io
n(

A
,
B

,
S

),
π

i A
,
m

)
(N

ew
Se

ss
io

n(
A

,
S

),
π

i A
,
m

)
−

(N
ew

Se
ss

io
n(

B
,
A

,
S

),
π

j B
,
⊥

)
−

(N
ew

Se
ss

io
n(

B
,
S

),
π

j B
,
⊥

)
(N

ew
Se

ss
io

n(
S

,
A

,
B

),
π

k S
,
⊥

)
(N

ew
Se

ss
io

n(
S

,
A

),
π

k S
,
⊥

)
−

(S
en

d(
π

i A
,
m

),
m

∗ ,
(r

un
ni

ng
,
ru

nn
in

g,
ru

nn
in

g)
)

(S
en

d(
π

i A
,
m

),
m

∗ ,
(r

un
ni

ng
))

−
(S

en
d(

π
i A

,
m

),
m

∗ ,
(a

cc
ep

te
d,

ac
ce

pt
ed

,
ac

ce
pt

ed
))

(S
en

d(
π

i A
,
m

),
m

∗ ,
(a

cc
ep

te
d)

)
−

(S
en

d(
π

i A
,
m

),
⊥

,
(r

ej
ec

te
d,

re
je

ct
ed

,
re

je
ct

ed
))

(S
en

d(
π

i A
,
m

),
⊥

,
(r

ej
ec

te
d)

)
−

(S
en

d(
π

j B
,
m

),
m

∗ ,
(a

cc
ep

te
d,

ru
nn

in
g,

ru
nn

in
g)

)
−

(S
en

d(
π

j B
,
m

),
m

∗ ,
(r

un
ni

ng
))

(S
en

d(
π

j B
,
m

),
m

∗ ,
(a

cc
ep

te
d,

ac
ce

pt
ed

,
ru

nn
in

g)
)

−
(S

en
d(

π
j B

,
m

),
m

∗ ,
(a

cc
ep

te
d)

)
(S

en
d(

π
j B

,
m

),
⊥

,
(a

cc
ep

te
d,

re
je

ct
ed

,
re

je
ct

ed
))

−
(S

en
d(

π
j B

,
m

),
⊥

,
(r

ej
ec

te
d)

)
(S

en
d(

π
j B

,
C

ke
y

),
⊥

,
(a

cc
ep

te
d,

ac
ce

pt
ed

,
ac

ce
pt

ed
))

−
−

(S
en

d(
π

j B
,
C

′ ke
y

),
⊥

,
(a

cc
ep

te
d,

ac
ce

pt
ed

,
re

je
ct

ed
))

−
−

(S
en

d(
π

k S
,
m

),
m

∗ ,
(r

un
ni

ng
,
ru

nn
in

g,
ru

nn
in

g)
)

(S
en

d(
π

k S
,
m

),
m

∗ ,
(r

un
ni

ng
))

−
(S

en
d(

π
k S

,
m

),
⊥

,
(r

ej
ec

te
d,

re
je

ct
ed

,
re

je
ct

ed
))

(S
en

d(
π

k S
,
m

),
⊥

,
(r

ej
ec

te
d)

)
−

(S
en

d(
π

k S
,
m

),
m

∗ ,
(a

cc
ep

te
d,

ru
nn

in
g,

ru
nn

in
g)

)†
(S

en
d(

π
k S

,
m

),
⊥

,
(a

cc
ep

te
d)

)
(N

ew
Se

ss
io

n(
S

,
B

),
π

k S
,
m

∗)
(S

en
d(

π
k S

,
m

),
m

∗ ,
(a

cc
ep

te
d,

ru
nn

in
g,

ru
nn

in
g)

)
−

(S
en

d(
π

k S
,
m

),
m

∗ ,
(r

un
ni

ng
))

(S
en

d(
π

k S
,
m

),
C

ke
y

,
(a

cc
ep

te
d,

ac
ce

pt
ed

,
ac

ce
pt

ed
))

−
(S

en
d(

π
k S

,
m

),
⊥

,
(a

cc
ep

te
d)

)
(S

en
d(

π
k S

,
m

),
⊥

,
(a

cc
ep

te
d,

re
je

ct
ed

,
re

je
ct

ed
))

−
(S

en
d(

π
k S

,
m

),
⊥

,
(r

ej
ec

te
d)

)

† T
hi

s
ru

le
on

ly
ap

pl
ie

s
if

π
k S

.#» α
=

(r
un

ni
ng

,r
un

ni
ng

,r
un

ni
ng

)
fo

r
al

l
pr

io
r

Se
nd

qu
er

ie
s

to
π

k S
,

i.e
.,

if
re

ce
iv

in
g

m
es

sa
ge

m
ca

us
ed

se
ss

io
n

π
k S

to
ac

ce
pt

in
su

b-
pr

ot
oc

ol
Π

1.

Bibliography

[Aca+10] Tolga Acar, Mira Belenkiy, Mihir Bellare, and David
Cash. “Cryptographic Agility and Its Relation to Cir-
cular Encryption”. In: Advances in Cryptology – EURO-
CRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. Lecture
Notes in Computer Science. French Riviera: Springer,
Heidelberg, Germany, May 2010, pp. 403–422 (Cited on
page 142).

[ADW09] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs.
“Leakage-Resilient Public-Key Cryptography in the
Bounded-Retrieval Model”. In: Advances in Cryptology
– CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. Lec-
ture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 2009, pp. 36–
54 (Cited on page 53).

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David
Pointcheval. “Password-Based Authenticated Key Ex-
change in the Three-Party Setting”. In: PKC 2005: 8th
International Workshop on Theory and Practice in Public
Key Cryptography. Ed. by Serge Vaudenay. Vol. 3386.
Lecture Notes in Computer Science. Les Diablerets,
Switzerland: Springer, Heidelberg, Germany, Jan. 2005,
pp. 65–84 (Cited on pages 39, 65).

[Alt+16] Stéphanie Alt, Pierre-Alain Fouque, Gilles Macario-Rat,
Cristina Onete, and Benjamin Richard. “A Cryptographic
Analysis of UMTS/LTE AKA”. In: ACNS 16: 14th
International Conference on Applied Cryptography and
Network Security. Ed. by Mark Manulis, Ahmad-Reza
Sadeghi, and Steve Schneider. Vol. 9696. Lecture Notes in
Computer Science. Guildford, UK: Springer, Heidelberg,

159

160 Bibliography

Germany, June 2016, pp. 18–35. doi: 10.1007/978-3-
319-39555-5_2 (Cited on pages 89, 148).

[AN96] Martín Abadi and Roger M. Needham. “Prudent Engi-
neering Practice for Cryptographic Protocols”. In: IEEE
Trans. Software Eng. 22.1 (1996), pp. 6–15. doi: 10.1109/
32.481513. (Cited on page 1).

[ANN03] N. Asokan, Valtteri Niemi, and Kaisa Nyberg. “Man-in-
the-Middle in Tunnelled Authentication Protocols”. In:
Security Protocols, 11th International Workshop, Cam-
bridge, UK, April 2-4, 2003, Revised Selected Papers. Ed.
by Bruce Christianson, Bruno Crispo, James A. Mal-
colm, and Michael Roe. Vol. 3364. Lecture Notes in Com-
puter Science. Springer, 2003, pp. 28–41. doi: 10.1007/
11542322_6. (Cited on page 65).

[AR00] Martín Abadi and Phillip Rogaway. “Reconciling Two
Views of Cryptography (The Computational Soundness of
Formal Encryption)”. In: Theoretical Computer Science,
Exploring New Frontiers of Theoretical Informatics, In-
ternational Conference IFIP TCS 2000, Sendai, Japan,
August 17-19, 2000, Proceedings. Ed. by Jan van Leeuwen,
Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and
Takayasu Ito. Vol. 1872. Lecture Notes in Computer Sci-
ence. Springer, 2000, pp. 3–22. doi: 10.1007/3- 540-
44929-9_1. (Cited on page 2).

[ASB14] Janaka Alawatugoda, Douglas Stebila, and Colin Boyd.
“Modelling after-the-fact leakage for key exchange”. In:
ASIACCS 14: 9th ACM Symposium on Information,
Computer and Communications Security. Ed. by Shiho
Moriai, Trent Jaeger, and Kouichi Sakurai. Kyoto, Japan:
ACM Press, June 2014, pp. 207–216 (Cited on pages 53,
146).

[ASB15] Janaka Alawatugoda, Douglas Stebila, and Colin
Boyd. “Continuous After-the-Fact Leakage-Resilient eCK-
Secure Key Exchange”. In: 15th IMA International Con-
ference on Cryptography and Coding. Ed. by Jens Groth.
Vol. 9496. Lecture Notes in Computer Science. Oxford,
UK: Springer, Heidelberg, Germany, Dec. 2015, pp. 277–
294. doi: 10.1007/978-3-319-27239-9_17 (Cited on
page 53).

Bibliography 161

[Bad+15a] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike
Kiltz, and Yong Li. “Tightly-Secure Authenticated Key
Exchange”. In: TCC 2015: 12th Theory of Cryptography
Conference, Part I. Ed. by Yevgeniy Dodis and Jesper
Buus Nielsen. Vol. 9014. Lecture Notes in Computer Sci-
ence. Warsaw, Poland: Springer, Heidelberg, Germany,
Mar. 2015, pp. 629–658. doi: 10 . 1007 / 978 - 3 - 662 -
46494-6_26 (Cited on page 147).

[Bad+15b] Christian Badertscher, Christian Matt, Ueli Maurer,
Phillip Rogaway, and Björn Tackmann. “Augmented Se-
cure Channels and the Goal of the TLS 1.3 Record Layer”.
In: ProvSec 2015: 9th International Conference on Prov-
able Security. Ed. by Man Ho Au and Atsuko Miyaji.
Vol. 9451. Lecture Notes in Computer Science. Kanazawa,
Japan: Springer, Heidelberg, Germany, Nov. 2015, pp. 85–
104. doi: 10.1007/978- 3- 319- 26059- 4_5 (Cited on
page 144).

[Bar+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire,
César Kunz, Benedikt Schmidt, and Pierre-Yves Strub.
“EasyCrypt: A Tutorial”. In: Foundations of Security
Analysis and Design VII - FOSAD 2012/2013 Tutorial
Lectures. Ed. by Alessandro Aldini, Javier Lopez, and
Fabio Martinelli. Vol. 8604. Lecture Notes in Computer
Science. Springer, 2013, pp. 146–166. doi: 10.1007/978-
3-319-10082-1_6. (Cited on page 2).

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. “A Mod-
ular Approach to the Design and Analysis of Authentica-
tion and Key Exchange Protocols (Extended Abstract)”.
In: 30th Annual ACM Symposium on Theory of Comput-
ing. Dallas, TX, USA: ACM Press, May 1998, pp. 419–428
(Cited on page 95).

[Bel15] Mihir Bellare. “New Proofs for NMAC and HMAC: Secu-
rity without Collision Resistance”. In: Journal of Cryptol-
ogy 28.4 (Oct. 2015), pp. 844–878. doi: 10.1007/s00145-
014-9185-x (Cited on pages 62, 126).

[Ber+14] Florian Bergsma, Benjamin Dowling, Florian Kohlar, Jörg
Schwenk, and Douglas Stebila. “Multi-Ciphersuite Secu-
rity of the Secure Shell (SSH) Protocol”. In: ACM CCS
14: 21st Conference on Computer and Communications
Security. Ed. by Gail-Joon Ahn, Moti Yung, and Ninghui

162 Bibliography

Li. Scottsdale, AZ, USA: ACM Press, Nov. 2014, pp. 369–
381 (Cited on pages 39, 54, 114, 140–144).

[Beu+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine
Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Al-
fredo Pironti, Pierre-Yves Strub, and Jean Karim Zinzin-
dohoue. “A Messy State of the Union: Taming the Com-
posite State Machines of TLS”. In: 2015 IEEE Sympo-
sium on Security and Privacy. San Jose, CA, USA: IEEE
Computer Society Press, May 2015, pp. 535–552. doi: 10.
1109/SP.2015.39 (Cited on pages 144, 145).

[BG11] Colin Boyd and Juanma González Nieto. “On Forward Se-
crecy in One-Round Key Exchange”. In: 13th IMA Inter-
national Conference on Cryptography and Coding. Ed. by
Liqun Chen. Vol. 7089. Lecture Notes in Computer Sci-
ence. Oxford, UK: Springer, Heidelberg, Germany, Dec.
2011, pp. 451–468 (Cited on page 95).

[BGM04] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The
Power of Verification Queries in Message Authentication
and Authenticated Encryption. Cryptology ePrint Archive,
Report 2004/309. http://eprint.iacr.org/2004/309.
2004 (Cited on page 126).

[BGW01] Nikita Borisov, Ian Goldberg, and David Wagner. “Inter-
cepting mobile communications: the insecurity of 802.11”.
In: MOBICOM 2001, Proceedings of the seventh annual
international conference on Mobile computing and net-
working, Rome, Italy, July 16-21, 2001. Ed. by Christo-
pher Rose. ACM, 2001, pp. 180–189. doi: 10 . 1145 /
381677.381695. (Cited on page 16).

[Bha+13] Karthikeyan Bhargavan, Cédric Fournet, Markulf
Kohlweiss, Alfredo Pironti, and Pierre-Yves Strub. “Im-
plementing TLS with Verified Cryptographic Security”.
In: 2013 IEEE Symposium on Security and Privacy.
Berkeley, CA, USA: IEEE Computer Society Press, May
2013, pp. 445–459 (Cited on page 2).

[Bha+14a] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Alfredo Pironti, and Pierre-Yves Strub. “Triple
Handshakes and Cookie Cutters: Breaking and Fixing Au-
thentication over TLS”. In: 2014 IEEE Symposium on Se-
curity and Privacy. Berkeley, CA, USA: IEEE Computer

Bibliography 163

Society Press, May 2014, pp. 98–113. doi: 10.1109/SP.
2014.14 (Cited on page 65).

[Bha+14b] Karthikeyan Bhargavan, Cédric Fournet, Markulf
Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and
Santiago Zanella Béguelin. “Proving the TLS Hand-
shake Secure (As It Is)”. In: Advances in Cryptology
– CRYPTO 2014, Part II. Ed. by Juan A. Garay and
Rosario Gennaro. Vol. 8617. Lecture Notes in Com-
puter Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2014, pp. 235–255. doi:
10.1007/978-3-662-44381-1_14 (Cited on pages 114,
115, 142, 144, 145).

[Bha+16] Karthikeyan Bhargavan, Christina Brzuska, Cédric Four-
net, Matthew Green, Markulf Kohlweiss, and Santi-
ago Zanella Béguelin. “Downgrade Resilience in Key-
Exchange Protocols”. In: 2016 IEEE Symposium on Se-
curity and Privacy. San Jose, CA, USA: IEEE Computer
Society Press, May 2016, pp. 506–525. doi: 10.1109/SP.
2016.37 (Cited on pages 142, 143).

[BHK15] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. “Sub-
tleties in the Definition of IND-CCA: When and How
Should Challenge Decryption Be Disallowed?” In: Jour-
nal of Cryptology 28.1 (Jan. 2015), pp. 29–48. doi: 10.
1007/s00145-013-9167-4 (Cited on page 48).

[BHL06] Andrea Bittau, Mark Handley, and Joshua Lackey. “The
Final Nail in WEP’s Coffin”. In: 2006 IEEE Symposium
on Security and Privacy. Berkeley, CA, USA: IEEE Com-
puter Society Press, May 2006, pp. 386–400 (Cited on
page 16).

[BJ17] Chris Brzuska and Håkon Jacobsen. “A Modular Secu-
rity Analysis of EAP and IEEE 802.11”. In: PKC 2017:
20th International Conference on Theory and Practice of
Public Key Cryptography, Part II. Ed. by Serge Fehr.
Vol. 10175. Lecture Notes in Computer Science. Amster-
dam, The Netherlands: Springer, Heidelberg, Germany,
Mar. 2017, pp. 335–365 (Cited on page 7).

[BJS16] Christina Brzuska, Håkon Jacobsen, and Douglas Stebila.
“Safely Exporting Keys from Secure Channels: On the Se-
curity of EAP-TLS and TLS Key Exporters”. In: Advances

164 Bibliography

in Cryptology – EUROCRYPT 2016, Part I. Ed. by Marc
Fischlin and Jean-Sébastien Coron. Vol. 9665. Lecture
Notes in Computer Science. Vienna, Austria: Springer,
Heidelberg, Germany, May 2016, pp. 670–698. doi: 10.
1007/978-3-662-49890-3_26 (Cited on page 7).

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The Se-
curity of Cipher Block Chaining”. In: Advances in Cryptol-
ogy – CRYPTO’94. Ed. by Yvo Desmedt. Vol. 839. Lecture
Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 1994, pp. 341–358
(Cited on page 26).

[BL13] Daniel J. Bernstein and Tanja Lange. “Non-uniform
Cracks in the Concrete: The Power of Free Precompu-
tation”. In: Advances in Cryptology – ASIACRYPT 2013,
Part II. Ed. by Kazue Sako and Palash Sarkar. Vol. 8270.
Lecture Notes in Computer Science. Bengalore, India:
Springer, Heidelberg, Germany, Dec. 2013, pp. 321–340.
doi: 10 . 1007 / 978 - 3 - 642 - 42045 - 0 _ 17 (Cited on
page 27).

[Bla08] Bruno Blanchet. “A Computationally Sound Mechanized
Prover for Security Protocols”. In: IEEE Trans. Depend-
able Sec. Comput. 5.4 (2008), pp. 193–207. doi: 10.1109/
TDSC.2007.1005. (Cited on page 2).

[Bla16] Bruno Blanchet. “Modeling and Verifying Security Proto-
cols with the Applied Pi Calculus and ProVerif”. In: Foun-
dations and Trends® in Privacy and Security 1.1-2 (2016),
pp. 1–135. issn: 2474-1558. doi: 10.1561/3300000004.
(Cited on page 2).

[BM97] Simon Blake-Wilson and Alfred Menezes. “Entity Au-
thentication and Authenticated Key Transport Proto-
cols Employing Asymmetric Techniques”. In: Security
Protocols, 5th International Workshop, Paris, France,
April 7-9, 1997, Proceedings. Ed. by Bruce Christian-
son, Bruno Crispo, T. Mark A. Lomas, and Michael Roe.
Vol. 1361. Lecture Notes in Computer Science. Springer,
1997, pp. 137–158. doi: 10.1007/BFb0028166. (Cited on
pages 4, 27, 35, 39, 49).

Bibliography 165

[BM99] Simon Blake-Wilson and Alfred Menezes. “Unknown Key-
Share Attacks on the Station-to-Station (STS) Protocol”.
In: PKC’99: 2nd International Workshop on Theory and
Practice in Public Key Cryptography. Ed. by Hideki Imai
and Yuliang Zheng. Vol. 1560. Lecture Notes in Com-
puter Science. Kamakura, Japan: Springer, Heidelberg,
Germany, Mar. 1999, pp. 154–170 (Cited on page 114).

[BN00] Mihir Bellare and Chanathip Namprempre. “Authenti-
cated Encryption: Relations among notions and analy-
sis of the generic composition paradigm”. In: Advances
in Cryptology – ASIACRYPT 2000. Ed. by Tatsuaki
Okamoto. Vol. 1976. Lecture Notes in Computer Science.
Kyoto, Japan: Springer, Heidelberg, Germany, Dec. 2000,
pp. 531–545 (Cited on page 135).

[Bol+07] Alexandra Boldyreva, Marc Fischlin, Adriana Palacio, and
Bogdan Warinschi. “A Closer Look at PKI: Security and
Efficiency”. In: PKC 2007: 10th International Conference
on Theory and Practice of Public Key Cryptography. Ed.
by Tatsuaki Okamoto and Xiaoyun Wang. Vol. 4450. Lec-
ture Notes in Computer Science. Beijing, China: Springer,
Heidelberg, Germany, Apr. 2007, pp. 458–475 (Cited on
page 30).

[Boy+13] Colin Boyd, Cas Cremers, Michele Feltz, Kenneth G. Pa-
terson, Bertram Poettering, and Douglas Stebila. “ASICS:
Authenticated Key Exchange Security Incorporating Cer-
tification Systems”. In: ESORICS 2013: 18th Euro-
pean Symposium on Research in Computer Security. Ed.
by Jason Crampton, Sushil Jajodia, and Keith Mayes.
Vol. 8134. Lecture Notes in Computer Science. Egham,
UK: Springer, Heidelberg, Germany, Sept. 2013, pp. 381–
399. doi: 10.1007/978-3-642-40203-6_22 (Cited on
pages 30, 53, 148).

[Boy+16] Colin Boyd, Britta Hale, Stig Frode Mjølsnes, and Dou-
glas Stebila. “From Stateless to Stateful: Generic Au-
thentication and Authenticated Encryption Constructions
with Application to TLS”. In: Topics in Cryptology – CT-
RSA 2016. Ed. by Kazue Sako. Vol. 9610. Lecture Notes
in Computer Science. San Francisco, CA, USA: Springer,
Heidelberg, Germany, Feb. 2016, pp. 55–71. doi: 10.1007/
978-3-319-29485-8_4 (Cited on pages 136, 144).

166 Bibliography

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway.
“Authenticated Key Exchange Secure against Dictio-
nary Attacks”. In: Advances in Cryptology – EURO-
CRYPT 2000. Ed. by Bart Preneel. Vol. 1807. Lecture
Notes in Computer Science. Bruges, Belgium: Springer,
Heidelberg, Germany, May 2000, pp. 139–155 (Cited on
pages 4, 27, 32, 38–40, 43, 51, 52).

[BR04] Mihir Bellare and Phillip Rogaway. Code-Based Game-
Playing Proofs and the Security of Triple Encryption.
Cryptology ePrint Archive, Report 2004/331. http : / /
eprint.iacr.org/2004/331. 2004 (Cited on pages 25,
69, 128).

[BR94] Mihir Bellare and Phillip Rogaway. “Entity Authentica-
tion and Key Distribution”. In: Advances in Cryptology –
CRYPTO’93. Ed. by Douglas R. Stinson. Vol. 773. Lecture
Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 1994, pp. 232–249
(Cited on pages 3, 4, 27, 37, 39).

[BR95] Mihir Bellare and Phillip Rogaway. “Provably Secure Ses-
sion Key Distribution: The Three Party Case”. In: 27th
Annual ACM Symposium on Theory of Computing. Las
Vegas, NV, USA: ACM Press, May 1995, pp. 57–66 (Cited
on pages 4, 27, 33, 38–40, 43, 44, 57).

[Brz+11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and
Stephen C. Williams. “Composability of Bellare-Rogaway
key exchange protocols”. In: ACM CCS 11: 18th Con-
ference on Computer and Communications Security. Ed.
by Yan Chen, George Danezis, and Vitaly Shmatikov.
Chicago, Illinois, USA: ACM Press, Oct. 2011, pp. 51–
62 (Cited on pages 39, 41, 45, 54, 113).

[Brz+13a] Christina Brzuska, Marc Fischlin, Nigel P. Smart, Bog-
dan Warinschi, and Stephen C. Williams. “Less is more:
relaxed yet composable security notions for key exchange”.
English. In: International Journal of Information Security
12.4 (2013), pp. 267–297. issn: 1615-5262. doi: 10.1007/
s10207-013-0192-y. (Cited on pages 39, 88, 113, 114,
144).

Bibliography 167

[Brz+13b] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and
Gaven J. Watson. “An analysis of the EMV channel estab-
lishment protocol”. In: ACM CCS 13: 20th Conference on
Computer and Communications Security. Ed. by Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung. Berlin,
Germany: ACM Press, Nov. 2013, pp. 373–386 (Cited on
page 39).

[Cam+03] Nancy Cam-Winget, Russell Housley, David Wagner, and
Jesse Walker. “Security flaws in 802.11 data link proto-
cols”. In: Commun. ACM 46.5 (2003), pp. 35–39. doi:
10.1145/769800.769823. (Cited on page 16).

[Can01] Ran Canetti. “Universally Composable Security: A New
Paradigm for Cryptographic Protocols”. In: 42nd Annual
Symposium on Foundations of Computer Science. Las Ve-
gas, NV, USA: IEEE Computer Society Press, Oct. 2001,
pp. 136–145 (Cited on page 4).

[Cas+13] Aldo Cassola, William K. Robertson, Engin Kirda, and
Guevara Noubir. “A Practical, Targeted, and Stealthy At-
tack Against WPA Enterprise Authentication”. In: ISOC
Network and Distributed System Security Symposium –
NDSS 2013. San Diego, CA, USA: The Internet Society,
Feb. 2013 (Cited on page 17).

[CCG16] Katriel Cohn-Gordon, Cas J. F. Cremers, and Luke Gar-
ratt. “On Post-compromise Security”. In: IEEE 29th Com-
puter Security Foundations Symposium, CSF 2016, Lis-
bon, Portugal, June 27 - July 1, 2016. IEEE Computer
Society, 2016, pp. 164–178. doi: 10.1109/CSF.2016.19.
(Cited on pages 39, 53).

[CF12] Cas J. F. Cremers and Michele Feltz. “Beyond eCK:
Perfect Forward Secrecy under Actor Compromise and
Ephemeral-Key Reveal”. In: ESORICS 2012: 17th Eu-
ropean Symposium on Research in Computer Security.
Ed. by Sara Foresti, Moti Yung, and Fabio Martinelli.
Vol. 7459. Lecture Notes in Computer Science. Pisa, Italy:
Springer, Heidelberg, Germany, Sept. 2012, pp. 734–751
(Cited on pages 37, 39, 50, 95).

[CH05] Kim-Kwang Raymond Choo and Yvonne Hitchcock. “Se-
curity Requirements for Key Establishment Proof Mod-
els: Revisiting Bellare-Rogaway and Jeong-Katz-Lee Pro-
tocols”. In: ACISP 05: 10th Australasian Conference on

168 Bibliography

Information Security and Privacy. Ed. by Colin Boyd and
Juan Manuel González Nieto. Vol. 3574. Lecture Notes
in Computer Science. Brisbane, Queensland, Australia:
Springer, Heidelberg, Germany, July 2005, pp. 429–442
(Cited on page 38).

[CH09] T. Charles Clancy and Katrin Hoeper. “Making the case
for EAP channel bindings”. In: 2009 IEEE Sarnoff Sympo-
sium, Princeton, NJ, March 30-31 & April 1. IEEEXplore,
Mar. 2009, pp. 1–5. doi: 10.1109/SARNOF.2009.4850319
(Cited on pages 65, 90).

[Cho+05] Kim-Kwang Raymond Choo, Colin Boyd, Yvonne Hitch-
cock, and Greg Maitland. “On Session Identifiers in Prov-
ably Secure Protocols: The Bellare-Rogaway Three-Party
Key Distribution Protocol Revisited”. In: SCN 04: 4th
International Conference on Security in Communication
Networks. Ed. by Carlo Blundo and Stelvio Cimato.
Vol. 3352. Lecture Notes in Computer Science. Amalfi,
Italy: Springer, Heidelberg, Germany, Sept. 2005, pp. 351–
366 (Cited on page 38).

[CK01] Ran Canetti and Hugo Krawczyk. “Analysis of Key-
Exchange Protocols and Their Use for Building Se-
cure Channels”. In: Advances in Cryptology – EURO-
CRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045. Lecture
Notes in Computer Science. Innsbruck, Austria: Springer,
Heidelberg, Germany, May 2001, pp. 453–474 (Cited on
pages 4, 27, 36, 38, 39, 53, 54, 95).

[CK02] Ran Canetti and Hugo Krawczyk. “Security Analysis of
IKE’s Signature-based Key-Exchange Protocol”. In: Ad-
vances in Cryptology – CRYPTO 2002. Ed. by Moti Yung.
Vol. 2442. Lecture Notes in Computer Science. http://
eprint.iacr.org/2002/120/. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2002, pp. 143–161
(Cited on pages 36, 38, 39, 91, 95).

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen.
“Relaxing Chosen-Ciphertext Security”. In: Advances
in Cryptology – CRYPTO 2003. Ed. by Dan Boneh.
Vol. 2729. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2003, pp. 565–582 (Cited on page 113).

Bibliography 169

[CM12] Cas Cremers and Sjouke Mauw. Operational Semantics
and Verification of Security Protocols. Information Secu-
rity and Cryptography. ISBN 978-3-540-78636-8. Springer,
2012. doi: 10.1007/978- 3- 540- 78636- 8. (Cited on
page 57).

[CMU09] Sanjit Chatterjee, Alfred Menezes, and Berkant Ustaoglu.
“Reusing Static Keys in Key Agreement Protocols”. In:
Progress in Cryptology - INDOCRYPT 2009: 10th Inter-
national Conference in Cryptology in India. Ed. by Bimal
K. Roy and Nicolas Sendrier. Vol. 5922. Lecture Notes
in Computer Science. New Delhi, India: Springer, Heidel-
berg, Germany, Dec. 2009, pp. 39–56 (Cited on page 140).

[Cre08] Cas J. F. Cremers. “The Scyther Tool: Verification, Falsifi-
cation, and Analysis of Security Protocols”. In: Computer
Aided Verification, 20th International Conference, CAV
2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings.
Ed. by Aarti Gupta and Sharad Malik. Vol. 5123. Lec-
ture Notes in Computer Science. Springer, 2008, pp. 414–
418. doi: 10.1007/978-3-540-70545-1_38. (Cited on
page 2).

[Cre09] Cas J.F. Cremers. Formally and Practically Relating the
CK, CK-HMQV, and eCK Security Models for Authenti-
cated Key Exchange. Cryptology ePrint Archive, Report
2009/253. http://eprint.iacr.org/2009/253. 2009
(Cited on page 29).

[Cre11a] Cas Cremers. “Examining indistinguishability-based se-
curity models for key exchange protocols: the case of
CK, CK-HMQV, and eCK”. In: ASIACCS 11: 6th ACM
Symposium on Information, Computer and Communica-
tions Security. Ed. by Bruce S. N. Cheung, Lucas Chi
Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong. Hong
Kong, China: ACM Press, Mar. 2011, pp. 80–91 (Cited on
page 29).

[Cre11b] Cas J. F. Cremers. “Key Exchange in IPsec Revisited: For-
mal Analysis of IKEv1 and IKEv2”. In: ESORICS 2011:
16th European Symposium on Research in Computer Se-
curity. Ed. by Vijay Atluri and Claudia Dıaz. Vol. 6879.
Lecture Notes in Computer Science. Leuven, Belgium:
Springer, Heidelberg, Germany, Sept. 2011, pp. 315–334
(Cited on page 29).

170 Bibliography

[Dah+17] Thorsten Dahm, Andrej Ota, Douglas C. Medway Gash,
and David Carrel. The TACACS+ Protocol draft-ietf-
opsawg-tacacs-06. Internet-draft. RFC Editor, Feb. 2017,
pp. 1–41. url: https://tools.ietf.org/html/draft-
ietf-opsawg-tacacs-06 (Cited on page 62).

[Dod+12] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger,
and Stefano Tessaro. “To Hash or Not to Hash Again?
(In)Differentiability Results for H2 and HMAC”. In: Ad-
vances in Cryptology – CRYPTO 2012. Ed. by Reihaneh
Safavi-Naini and Ran Canetti. Vol. 7417. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2012, pp. 348–366 (Cited on
page 116).

[Dow+15] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. “A Cryptographic Analysis of the
TLS 1.3 Handshake Protocol Candidates”. In: ACM CCS
15: 22nd Conference on Computer and Communications
Security. Ed. by Indrajit Ray, Ninghui Li, and Christo-
pher Kruegel: Denver, CO, USA: ACM Press, Oct. 2015,
pp. 1197–1210 (Cited on pages 39, 50, 113, 114, 144).

[Dow+16] Benjamin Dowling, Marc Fischlin, Felix Günther, and
Douglas Stebila. A Cryptographic Analysis of the TLS
1.3 draft-10 Full and Pre-shared Key Handshake Proto-
col. Cryptology ePrint Archive, Report 2016/081. http:
//eprint.iacr.org/2016/081. 2016 (Cited on pages 113,
114, 144).

[DS15] Benjamin Dowling and Douglas Stebila. “Modelling Ci-
phersuite and Version Negotiation in the TLS Protocol”.
In: ACISP 15: 20th Australasian Conference on Informa-
tion Security and Privacy. Ed. by Ernest Foo and Douglas
Stebila. Vol. 9144. Lecture Notes in Computer Science.
Wollongong, NSW, Australia: Springer, Heidelberg, Ger-
many, June 2015, pp. 270–288. doi: 10.1007/978-3-319-
19962-7_16 (Cited on pages 114, 143, 144).

[Eia09] Martin Eian. “Fragility of the Robust Security Network:
802.11 Denial of Service”. In: ACNS 09: 7th International
Conference on Applied Cryptography and Network Secu-
rity. Ed. by Michel Abdalla, David Pointcheval, Pierre-
Alain Fouque, and Damien Vergnaud. Vol. 5536. Lecture
Notes in Computer Science. Paris-Rocquencourt, France:

Bibliography 171

Springer, Heidelberg, Germany, June 2009, pp. 400–416
(Cited on page 17).

[Eia10] Martin Eian. “A Practical Cryptographic Denial of Service
Attack against 802.11i TKIP and CCMP”. In: CANS 10:
9th International Conference on Cryptology and Network
Security. Ed. by Swee-Huay Heng, Rebecca N. Wright,
and Bok-Min Goi. Vol. 6467. Lecture Notes in Computer
Science. Kuala Lumpur, Malaysia: Springer, Heidelberg,
Germany, Dec. 2010, pp. 62–75 (Cited on page 17).

[EM12] Martin Eian and Stig Frode Mjølsnes. “A formal analysis
of IEEE 802.11w deadlock vulnerabilities”. In: Proceedings
of the IEEE INFOCOM 2012, Orlando, FL, USA, March
25-30, 2012. Ed. by Albert G. Greenberg and Kazem
Sohraby. IEEE, 2012, pp. 918–926. doi: 10.1109/INFCOM.
2012.6195841. (Cited on page 17).

[FC14] Michèle Feltz and Cas Cremers. On the Limits of Au-
thenticated Key Exchange Security with an Application
to Bad Randomness. Cryptology ePrint Archive, Report
2014/369. http://eprint.iacr.org/2014/369. 2014
(Cited on pages 37, 53).

[FG14] Marc Fischlin and Felix Günther. “Multi-Stage Key Ex-
change and the Case of Google’s QUIC Protocol”. In:
ACM CCS 14: 21st Conference on Computer and Com-
munications Security. Ed. by Gail-Joon Ahn, Moti Yung,
and Ninghui Li. Scottsdale, AZ, USA: ACM Press, Nov.
2014, pp. 1193–1204 (Cited on pages 32, 39, 114).

[FG17] Marc Fischlin and Felix Günther. “Replay Attacks on
Zero Round-Trip Time: The Case of the TLS 1.3 Hand-
shake Candidates”. In: 2017 IEEE European Symposium
on Security and Privacy, EuroS&P 2017, Paris, France,
April 26-28, 2017. IEEE, 2017, pp. 60–75. doi: 10.1109/
EuroSP.2017.18. (Cited on page 144).

[FIPS:197-2001] Advanced Encryption Standard (AES). Tech. rep.
Gaithersburg, MD, United States: National Insti-
tute of Standards & Technology, Nov. 2001. doi:
10.6028/NIST.FIPS.197 (Cited on page 23).

172 Bibliography

[FIPS:SP-800-38B] Morris J. Dworkin. SP 800-38B. Recommendation for
Block Cipher Modes of Operation: The CMAC Mode
for Authentication. Tech. rep. Gaithersburg, MD, United
States: National Institute of Standards & Technology,
Oct. 2016. doi: 10.6028/NIST.SP.800- 38B (Cited on
pages 21, 126, 139).

[Fis+16] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bog-
dan Warinschi. “Key Confirmation in Key Exchange: A
Formal Treatment and Implications for TLS 1.3”. In: 2016
IEEE Symposium on Security and Privacy. San Jose, CA,
USA: IEEE Computer Society Press, May 2016, pp. 452–
469. doi: 10.1109/SP.2016.34 (Cited on page 57).

[FMS01] Scott R. Fluhrer, Itsik Mantin, and Adi Shamir. “Weak-
nesses in the Key Scheduling Algorithm of RC4”. In:
SAC 2001: 8th Annual International Workshop on Se-
lected Areas in Cryptography. Ed. by Serge Vaudenay and
Amr M. Youssef. Vol. 2259. Lecture Notes in Computer
Science. Toronto, Ontario, Canada: Springer, Heidelberg,
Germany, Aug. 2001, pp. 1–24 (Cited on page 16).

[FW09] Pooya Farshim and Bogdan Warinschi. “Certified Encryp-
tion Revisited”. In: AFRICACRYPT 09: 2nd Interna-
tional Conference on Cryptology in Africa. Ed. by Bart
Preneel. Vol. 5580. Lecture Notes in Computer Science.
Gammarth, Tunisia: Springer, Heidelberg, Germany, June
2009, pp. 179–197 (Cited on page 30).

[GKS13] Florian Giesen, Florian Kohlar, and Douglas Stebila. “On
the security of TLS renegotiation”. In: ACM CCS 13: 20th
Conference on Computer and Communications Security.
Ed. by Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung. Berlin, Germany: ACM Press, Nov. 2013, pp. 387–
398 (Cited on pages 114, 144).

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryp-
tion”. In: J. Comput. Syst. Sci. 28.2 (1984), pp. 270–299.
doi: 10.1016/0022-0000(84)90070-9. (Cited on pages 3,
26).

[GPR14] Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. “The
Exact PRF-Security of NMAC and HMAC”. In: Advances
in Cryptology – CRYPTO 2014, Part I. Ed. by Juan A.
Garay and Rosario Gennaro. Vol. 8616. Lecture Notes in

Bibliography 173

Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2014, pp. 113–130. doi: 10.
1007/978-3-662-44371-2_7 (Cited on page 126).

[GR13] Wesley George and Charles Rackoff. Rethinking Defini-
tions of Security for Session Key Agreement. Cryptology
ePrint Archive, Report 2013/139. http://eprint.iacr.
org/2013/139. 2013 (Cited on pages 39, 41, 48).

[Gup+15] Sourav Sen Gupta, Subhamoy Maitra, Willi Meier,
Goutam Paul, and Santanu Sarkar. “Dependence in IV-
Related Bytes of RC4 Key Enhances Vulnerabilities in
WPA”. In: Fast Software Encryption – FSE 2014. Ed. by
Carlos Cid and Christian Rechberger. Vol. 8540. Lecture
Notes in Computer Science. London, UK: Springer, Hei-
delberg, Germany, Mar. 2015, pp. 350–369. doi: 10.1007/
978-3-662-46706-0_18 (Cited on page 16).

[Hal+09] Finn Michael Halvorsen, Olav Haugen, Martin Eian, and
Stig Frode Mjølsnes. “An Improved Attack on TKIP”.
In: Identity and Privacy in the Internet Age, 14th Nordic
Conference on Secure IT Systems, NordSec 2009, Oslo,
Norway, 14-16 October 2009. Proceedings. Ed. by Audun
Jøsang, Torleiv Maseng, and Svein J. Knapskog. Vol. 5838.
Lecture Notes in Computer Science. Springer, 2009,
pp. 120–132. doi: 10 . 1007 / 978 - 3 - 642 - 04766 - 4 _ 9.
(Cited on page 16).

[Har08] Dan Harkins. “Simultaneous Authentication of Equals:
A Secure, Password-Based Key Exchange for Mesh Net-
works”. In: Proceedings of the 2008 Second International
Conference on Sensor Technologies and Applications, Cap
Esterel, France, 25-31 August 2008. SENSORCOMM’08.
Washington, DC, USA: IEEE Computer Society, 2008,
pp. 839–844. isbn: 978-0-7695-3330-8. doi: 10 . 1109 /
SENSORCOMM.2008.131. (Cited on page 17).

[HC07] Katrin Hoeper and Lidong Chen. “Where EAP security
claims fail”. In: 4th International ICST Conference on
Heterogeneous Networking for Quality, Reliability, Secu-
rity and Robustness, QSHINE 2007, Vancouver, Canada,
August 14-17, 2007. Ed. by Victor Leung and Sastri Kota.
ACM, 2007, p. 46. doi: 10 . 1145 / 1577222 . 1577285.
(Cited on page 65).

174 Bibliography

[HC10] Katrin Hoeper and Lidong Chen. “An inconvenient truth
about tunneled authentications”. In: The 35th Annual
IEEE Conference on Local Computer Networks, LCN
2010, 10-14 October 2010, Denver, Colorado, USA, Pro-
ceedings. IEEE Computer Society, 2010, pp. 416–423. doi:
10.1109/LCN.2010.5735754. (Cited on page 65).

[He+05] Changhua He, Mukund Sundararajan, Anupam Datta,
Ante Derek, and John C. Mitchell. “A Modular Correct-
ness Proof of IEEE 802.11i and TLS”. In: ACM CCS 05:
12th Conference on Computer and Communications Se-
curity. Ed. by Vijayalakshmi Atluri, Catherine Meadows,
and Ari Juels. Alexandria, Virginia, USA: ACM Press,
Nov. 2005, pp. 2–15 (Cited on pages 65, 119).

[HK07] Dennis Hofheinz and Eike Kiltz. “Secure Hybrid Encryp-
tion from Weakened Key Encapsulation”. In: Advances
in Cryptology – CRYPTO 2007. Ed. by Alfred Menezes.
Vol. 4622. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2007, pp. 553–571 (Cited on pages 112, 115).

[HM04] Changhua He and John C. Mitchell. “Analysis of the
802.11i 4-way handshake”. In: Proceedings of the 2004
ACM Workshop on Wireless Security, Philadelphia, PA,
USA, October 1, 2004. Ed. by Markus Jakobsson and
Adrian Perrig. ACM, 2004, pp. 43–50. doi: 10 . 1145 /
1023646.1023655. (Cited on page 17).

[HM05] Changhua He and John C. Mitchell. “Security Anal-
ysis and Improvements for IEEE 802.11i”. In: ISOC
Network and Distributed System Security Symposium –
NDSS 2005. San Diego, CA, USA: The Internet Society,
Feb. 2005 (Cited on pages 17, 19).

[Hor+16] Matthias Horst, Martin Grothe, Tibor Jager, and Jörg
Schwenk. “Breaking PPTP VPNs via RADIUS Encryp-
tion”. In: CANS 16: 15th International Conference on
Cryptology and Network Security. Ed. by Sara Foresti and
Giuseppe Persiano. Vol. 10052. Lecture Notes in Com-
puter Science. Milan, Italy: Springer, Heidelberg, Ger-
many, Nov. 2016, pp. 159–175. doi: 10.1007/978- 3-
319-48965-0_10 (Cited on pages 66, 148).

Bibliography 175

[HS15] Dennis Hofheinz and Victor Shoup. “GNUC: A New Uni-
versal Composability Framework”. In: Journal of Cryptol-
ogy 28.3 (July 2015), pp. 423–508. doi: 10.1007/s00145-
013-9160-y (Cited on page 4).

[IEEE 802.11] “IEEE Standard for Information technology—Telecom-
munications and information exchange between systems
Local and metropolitan area networks—Specific require-
ments Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications”. In:
IEEE Std 802.11-2012 (Mar. 2012), pp. 1–2793. doi: 10.
1109/IEEESTD.2012.6178212 (Cited on pages 5, 13, 15–
18, 88, 134, 143).

[IEEE 802.11i] “IEEE Standard for Information technology—Telecom-
munications and information exchange between systems-
Local and metropolitan area networks—Specific require-
ments Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications: Amend-
ment 6: Medium Access Control (MAC) Security Enhance-
ments”. In: IEEE Std 802.11i-2004 (July 2004), pp. 1–190.
doi: 10.1109/IEEESTD.2004.94585 (Cited on page 17).

[IEEE 802.11r] “IEEE Standard for Information technology—Local and
metropolitan area networks—Specific requirements Part
11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications Amendment 2: Fast
Basic Service Set (BSS) Transition”. In: IEEE Std
802.11r-2008 (Amendment to IEEE Std 802.11-2007 as
amended by IEEE Std 802.11k-2008) (July 2008), pp. 1–
126. doi: 10.1109/IEEESTD.2008.4573292 (Cited on
page 17).

[IEEE 802.11s] “IEEE Standard for Information Technology—Telecom-
munications and information exchange between systems—
Local and metropolitan area networks—Specific require-
ments Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications Amend-
ment 10: Mesh Networking”. In: IEEE Std 802.11s-2011
(Amendment to IEEE Std 802.11-2007 as amended by
IEEE 802.11k-2008, IEEE 802.11r-2008, IEEE 802.11y-
2008, IEEE 802.11w-2009, IEEE 802.11n-2009, IEEE
802.11p-2010, IEEE 802.11z-2010, IEEE 802.11v-2011,

176 Bibliography

and IEEE 802.11u-2011) (Sept. 2011), pp. 1–372. doi:
10.1109/IEEESTD.2011.6018236 (Cited on page 17).

[IEEE 802.11w] “IEEE Standard for Information technology—Telecom-
munications and information exchange between systems—
Local and metropolitan area networks—Specific require-
ments. Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amend-
ment 4: Protected Management Frames”. In: IEEE Std
802.11w-2009 (Amendment to IEEE Std 802.11-2007 as
amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-
2008, and IEEE Std 802.11y-2008) (Sept. 2009), pp. 1–
111. doi: 10.1109/IEEESTD.2009.5278657 (Cited on
page 17).

[IEEE 802.1X] “IEEE Standard for Local and metropolitan area networks
– Port-Based Network Access Control”. In: IEEE Std
802.1X-2010 (Revision of IEEE Std 802.1X-2004) (Feb.
2010), pp. C1–205. doi: 10.1109/IEEESTD.2010.5409813
(Cited on page 11).

[IK03a] Tetsu Iwata and Kaoru Kurosawa. “OMAC: One-Key
CBC MAC”. In: Fast Software Encryption – FSE 2003.
Ed. by Thomas Johansson. Vol. 2887. Lecture Notes in
Computer Science. Lund, Sweden: Springer, Heidelberg,
Germany, Feb. 2003, pp. 129–153 (Cited on page 126).

[IK03b] Tetsu Iwata and Kaoru Kurosawa. “Stronger Security
Bounds for OMAC, TMAC, and XCBC”. In: Progress in
Cryptology - INDOCRYPT 2003: 4th International Con-
ference in Cryptology in India. Ed. by Thomas Johansson
and Subhamoy Maitra. Vol. 2904. Lecture Notes in Com-
puter Science. New Delhi, India: Springer, Heidelberg,
Germany, Dec. 2003, pp. 402–415 (Cited on page 126).

[IM15] Ryoma Ito and Atsuko Miyaji. “New Linear Correlations
Related to State Information of RC4 PRGA Using IV in
WPA”. In: Fast Software Encryption – FSE 2015. Ed. by
Gregor Leander. Vol. 9054. Lecture Notes in Computer
Science. Istanbul, Turkey: Springer, Heidelberg, Germany,
Mar. 2015, pp. 557–576. doi: 10 . 1007 / 978 - 3 - 662 -
48116-5_27 (Cited on page 16).

Bibliography 177

[Jag+10] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg
Schwenk. “Generic Compilers for Authenticated Key Ex-
change”. In: Advances in Cryptology – ASIACRYPT 2010.
Ed. by Masayuki Abe. Vol. 6477. Lecture Notes in Com-
puter Science. Singapore: Springer, Heidelberg, Germany,
Dec. 2010, pp. 232–249 (Cited on page 95).

[Jag+12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg
Schwenk. “On the Security of TLS-DHE in the Standard
Model”. In: Advances in Cryptology – CRYPTO 2012. Ed.
by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417.
Lecture Notes in Computer Science. Santa Barbara, CA,
USA: Springer, Heidelberg, Germany, Aug. 2012, pp. 273–
293 (Cited on pages 4, 29, 39, 53, 54, 88, 92, 111, 112, 135,
144, 154).

[Jag+17] Tibor Jager, Martijn Stam, Ryan Stanley-Oakes, and Bog-
dan Warinschi. Multi-Key Authenticated Encryption with
Corruptions: Reductions are Lossy. Cryptology ePrint
Archive, Report 2017/495. http://eprint.iacr.org/
2017/495. 2017 (Cited on pages 147, 148).

[JKL04] Ik Rae Jeong, Jonathan Katz, and Dong Hoon Lee.
“One-Round Protocols for Two-Party Authenticated Key
Exchange”. In: ACNS 04: 2nd International Confer-
ence on Applied Cryptography and Network Security. Ed.
by Markus Jakobsson, Moti Yung, and Jianying Zhou.
Vol. 3089. Lecture Notes in Computer Science. Yellow
Mountain, China: Springer, Heidelberg, Germany, June
2004, pp. 220–232 (Cited on page 39).

[Joh+15] Tyler Johnson, Daniel Roggow, Phillip H. Jones, and
Joseph Zambreno. “An FPGA Architecture for the Re-
covery of WPA/WPA2 Keys”. In: Journal of Circuits,
Systems, and Computers 24.7 (2015). doi: 10 . 1142 /
S0218126615501054. (Cited on page 17).

[Jon03] Jakob Jonsson. “On the Security of CTR + CBC-MAC”.
In: SAC 2002: 9th Annual International Workshop on Se-
lected Areas in Cryptography. Ed. by Kaisa Nyberg and
Howard M. Heys. Vol. 2595. Lecture Notes in Computer
Science. St. John’s, Newfoundland, Canada: Springer,
Heidelberg, Germany, Aug. 2003, pp. 76–93 (Cited on
pages 135, 138, 152).

178 Bibliography

[JV96] Mike Just and Serge Vaudenay. “Authenticated Multi-
Party Key Agreement”. In: Advances in Cryptology – ASI-
ACRYPT’96. Ed. by Kwangjo Kim and Tsutomu Mat-
sumoto. Vol. 1163. Lecture Notes in Computer Science.
Kyongju, Korea: Springer, Heidelberg, Germany, Nov.
1996, pp. 36–49 (Cited on pages 35, 49).

[Kam+16] Markus Kammerstetter, Markus Muellner, Daniel Burian,
Christian Kudera, and Wolfgang Kastner. “Efficient High-
Speed WPA2 Brute Force Attacks Using Scalable Low-
Cost FPGA Clustering”. In: Cryptographic Hardware and
Embedded Systems – CHES 2016. Ed. by Benedikt Gier-
lichs and Axel Y. Poschmann. Vol. 9813. Lecture Notes
in Computer Science. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 2016, pp. 559–577. doi: 10.
1007/978-3-662-53140-2_27 (Cited on page 17).

[Koh+15] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn
Tackmann, and Daniele Venturi. “(De-)Constructing TLS
1.3”. In: Progress in Cryptology - INDOCRYPT 2015: 16th
International Conference in Cryptology in India. Ed. by
Alex Biryukov and Vipul Goyal. Vol. 9462. Lecture Notes
in Computer Science. Bangalore, India: Springer, Heidel-
berg, Germany, Dec. 2015, pp. 85–102. doi: 10.1007/978-
3-319-26617-6_5 (Cited on page 114).

[KPW13a] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee.
On the Security of the TLS Protocol: A Systematic Anal-
ysis. Cryptology ePrint Archive, Report 2013/339. http:
//eprint.iacr.org/2013/339. 2013 (Cited on page 70).

[KPW13b] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee.
“On the Security of the TLS Protocol: A Systematic Anal-
ysis”. In: Advances in Cryptology – CRYPTO 2013, Part I.
Ed. by Ran Canetti and Juan A. Garay. Vol. 8042. Lecture
Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2013, pp. 429–448.
doi: 10 . 1007 / 978 - 3 - 642 - 40041 - 4 _ 24 (Cited on
pages 39, 54, 88, 95, 112, 115, 144).

[Kra01] Hugo Krawczyk. “The Order of Encryption and Authen-
tication for Protecting Communications (or: How Secure
Is SSL?)” In: Advances in Cryptology – CRYPTO 2001.
Ed. by Joe Kilian. Vol. 2139. Lecture Notes in Computer

Bibliography 179

Science. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 2001, pp. 310–331 (Cited on page 144).

[Kra03] Hugo Krawczyk. “SIGMA: The “SIGn-and-MAc” Ap-
proach to Authenticated Diffie-Hellman and Its Use
in the IKE Protocols”. In: Advances in Cryptology –
CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. Lecture
Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2003, pp. 400–425
(Cited on page 57).

[Kra05a] Hugo Krawczyk. HMQV: A High-Performance Secure
Diffie-Hellman Protocol. Cryptology ePrint Archive, Re-
port 2005/176. http://eprint.iacr.org/2005/176.
2005 (Cited on page 51).

[Kra05b] Hugo Krawczyk. “HMQV: A High-Performance Secure
Diffie-Hellman Protocol”. In: Advances in Cryptology –
CRYPTO 2005. Ed. by Victor Shoup. Vol. 3621. Lecture
Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2005, pp. 546–566
(Cited on pages 29, 39, 51, 64).

[Kra16] Hugo Krawczyk. “A Unilateral-to-Mutual Authentication
Compiler for Key Exchange (with Applications to Client
Authentication in TLS 1.3)”. In: ACM CCS 16: 23rd Con-
ference on Computer and Communications Security. Ed.
by Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi. Vienna, Aus-
tria: ACM Press, Oct. 2016, pp. 1438–1450 (Cited on
pages 50, 95).

[KSS09] Kazukuni Kobara, SeongHan Shin, and Mario Strefler.
“Partnership in key exchange protocols”. In: ASIACCS
09: 4th ACM Symposium on Information, Computer and
Communications Security. Ed. by Wanqing Li, Willy
Susilo, Udaya Kiran Tupakula, Reihaneh Safavi-Naini,
and Vijay Varadharajan. Sydney, Australia: ACM Press,
Mar. 2009, pp. 161–170 (Cited on pages 39, 41, 43).

[KSS13] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the
Security of TLS-DH and TLS-RSA in the Standard Model.
Cryptology ePrint Archive, Report 2013/367. http : / /
eprint.iacr.org/2013/367. 2013 (Cited on pages 54,
88, 92, 112, 113, 144).

180 Bibliography

[KT11a] Ralf Küsters and Max Tuengerthal. “Composition theo-
rems without pre-established session identifiers”. In: ACM
CCS 11: 18th Conference on Computer and Communica-
tions Security. Ed. by Yan Chen, George Danezis, and Vi-
taly Shmatikov. Chicago, Illinois, USA: ACM Press, Oct.
2011, pp. 41–50 (Cited on pages 95, 119).

[KT11b] Ralf Küsters and Max Tuengerthal. “Ideal Key Deriva-
tion and Encryption in Simulation-Based Security”. In:
Topics in Cryptology – CT-RSA 2011. Ed. by Aggelos Ki-
ayias. Vol. 6558. Lecture Notes in Computer Science. San
Francisco, CA, USA: Springer, Heidelberg, Germany, Feb.
2011, pp. 161–179 (Cited on page 119).

[KT13] Ralf Kuesters and Max Tuengerthal. The IITM Model: a
Simple and Expressive Model for Universal Composability.
Cryptology ePrint Archive, Report 2013/025. http : / /
eprint.iacr.org/2013/025. 2013 (Cited on page 4).

[KW15] Hugo Krawczyk and Hoeteck Wee. The OPTLS Pro-
tocol and TLS 1.3. Cryptology ePrint Archive, Report
2015/978. http://eprint.iacr.org/2015/978. 2015
(Cited on pages 113, 144).

[KY03] Jonathan Katz and Moti Yung. “Scalable Protocols
for Authenticated Group Key Exchange”. In: Advances
in Cryptology – CRYPTO 2003. Ed. by Dan Boneh.
Vol. 2729. Lecture Notes in Computer Science. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug.
2003, pp. 110–125 (Cited on page 95).

[Law+03] Laurie Law, Alfred Menezes, Minghua Qu, Jerome A. Soli-
nas, and Scott A. Vanstone. “An Efficient Protocol for Au-
thenticated Key Agreement”. In: Des. Codes Cryptography
28.2 (2003), pp. 119–134 (Cited on page 29).

[Li+14] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and
Jörg Schwenk. “On the Security of the Pre-shared Key
Ciphersuites of TLS”. In: PKC 2014: 17th International
Conference on Theory and Practice of Public Key Cryp-
tography. Ed. by Hugo Krawczyk. Vol. 8383. Lecture Notes
in Computer Science. Buenos Aires, Argentina: Springer,
Heidelberg, Germany, Mar. 2014, pp. 669–684. doi: 10.
1007/978-3-642-54631-0_38 (Cited on pages 54, 88,
92, 112, 113, 144).

Bibliography 181

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mitya-
gin. “Stronger Security of Authenticated Key Exchange”.
In: ProvSec 2007: 1st International Conference on Prov-
able Security. Ed. by Willy Susilo, Joseph K. Liu, and Yi
Mu. Vol. 4784. Lecture Notes in Computer Science. Wol-
longong, Australia: Springer, Heidelberg, Germany, Nov.
2007, pp. 1–16 (Cited on pages 4, 39, 51, 53).

[LM06] Kristin Lauter and Anton Mityagin. “Security Anal-
ysis of KEA Authenticated Key Exchange Protocol”.
In: PKC 2006: 9th International Conference on Theory
and Practice of Public Key Cryptography. Ed. by Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin.
Vol. 3958. Lecture Notes in Computer Science. New York,
NY, USA: Springer, Heidelberg, Germany, Apr. 2006,
pp. 378–394 (Cited on page 39).

[Lyc+15] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and
Cristina Nita-Rotaru. “How Secure and Quick is QUIC?
Provable Security and Performance Analyses”. In: 2015
IEEE Symposium on Security and Privacy. San Jose, CA,
USA: IEEE Computer Society Press, May 2015, pp. 214–
231. doi: 10.1109/SP.2015.21 (Cited on page 54).

[Mei+13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David
A. Basin. “The TAMARIN Prover for the Symbolic Anal-
ysis of Security Protocols”. In: Computer Aided Verifica-
tion - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings. Ed. by
Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture
Notes in Computer Science. Springer, 2013, pp. 696–701.
doi: 10 . 1007 / 978 - 3 - 642 - 39799 - 8 _ 48. (Cited on
page 2).

[Mis+04] Arunesh Mishra, Nick L. Petroni Jr., William A. Arbaugh,
and Timothy Fraser. “Security issues in IEEE 802.11 wire-
less local area networks: a survey”. In: Wireless Commu-
nications and Mobile Computing 4.8 (2004), pp. 821–833.
doi: 10.1002/wcm.257. (Cited on page 16).

[MO11] Daisuke Moriyama and Tatsuaki Okamoto. “Leakage re-
silient eCK-secure key exchange protocol without random
oracles (Short Paper)”. In: ASIACCS 11: 6th ACM Sym-
posium on Information, Computer and Communications
Security. Ed. by Bruce S. N. Cheung, Lucas Chi Kwong

182 Bibliography

Hui, Ravi S. Sandhu, and Duncan S. Wong. Hong Kong,
China: ACM Press, Mar. 2011, pp. 441–447 (Cited on
page 53).

[MRH04] Vebjørn Moen, Håvard Raddum, and Kjell J. Hole. “Weak-
nesses in the Temporal Key Hash of WPA”. In: SIG-
MOBILE Mob. Comput. Commun. Rev. 8.2 (Apr. 2004),
pp. 76–83. issn: 1559-1662. doi: 10 . 1145 / 997122 .
997132. (Cited on page 16).

[MSW10] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi.
“The TLS Handshake Protocol: A Modular Analysis”.
In: Journal of Cryptology 23.2 (Apr. 2010), pp. 187–223
(Cited on pages 94, 144).

[MT11] Masakatu Morii and Yosuke Todo. “Cryptanalysis for
RC4 and Breaking WEP/WPA-TKIP”. In: IEICE Trans-
actions 94-D.11 (2011), pp. 2087–2094. url: http : / /
search.ieice.org/bin/summary.php?id=e94-d_11_
2087 (Cited on page 16).

[MU06] Alfred Menezes and Berkant Ustaoglu. “On the Impor-
tance of Public-Key Validation in the MQV and HMQV
Key Agreement Protocols”. In: Progress in Cryptology
- INDOCRYPT 2006: 7th International Conference in
Cryptology in India. Ed. by Rana Barua and Tanja Lange.
Vol. 4329. Lecture Notes in Computer Science. Kolkata,
India: Springer, Heidelberg, Germany, Dec. 2006, pp. 133–
147 (Cited on page 30).

[MU08] Alfred Menezes and Berkant Ustaoglu. “Security argu-
ments for the UM key agreement protocol in the NIST
SP 800-56A standard”. In: ASIACCS 08: 3rd ACM Sym-
posium on Information, Computer and Communications
Security. Ed. by Masayuki Abe and Virgil Gligor. Tokyo,
Japan: ACM Press, Mar. 2008, pp. 261–270 (Cited on
page 39).

[MvV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. Boca Ra-
ton, Florida: CRC Press, 1996 (Cited on page 35).

[OPY06] Yoshihiro Ohba, Mohan Parthasarathy, and Mayumi
Yanagiya. Channel Binding Mechanism based on Param-
eter Binding in Key Derivation. Internet-draft. RFC Edi-
tor, Dec. 2006, pp. 1–18. url: https://tools.ietf.org/

Bibliography 183

html/draft-ohba-eap-channel-binding-02 (Cited on
page 90).

[PEAPv2] Dan Simon, Glen Zorn, Simon Josefsson, Hao Zhou, and
Joseph Salowey. Protected EAP Protocol (PEAP) Version
2. Internet-draft. RFC Editor, Oct. 2004, pp. 1–87. url:
https://tools.ietf.org/html/draft- josefsson-
pppext-eap-tls-eap-10 (Cited on pages 12, 65).

[PPS15] Kenneth G. Paterson, Bertram Poettering, and Jacob
C. N. Schuldt. “Plaintext Recovery Attacks Against
WPA/TKIP”. In: Fast Software Encryption – FSE 2014.
Ed. by Carlos Cid and Christian Rechberger. Vol. 8540.
Lecture Notes in Computer Science. London, UK:
Springer, Heidelberg, Germany, Mar. 2015, pp. 325–349.
doi: 10 . 1007 / 978 - 3 - 662 - 46706 - 0 _ 17 (Cited on
page 16).

[PR07] Manoj Prabhakaran and Mike Rosulek. “Rerandomiz-
able RCCA Encryption”. In: Advances in Cryptology –
CRYPTO 2007. Ed. by Alfred Menezes. Vol. 4622. Lecture
Notes in Computer Science. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 2007, pp. 517–534
(Cited on page 113).

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas
Shrimpton. “Tag Size Does Matter: Attacks and Proofs
for the TLS Record Protocol”. In: Advances in Cryptol-
ogy – ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xi-
aoyun Wang. Vol. 7073. Lecture Notes in Computer Sci-
ence. Seoul, South Korea: Springer, Heidelberg, Germany,
Dec. 2011, pp. 372–389 (Cited on pages 144, 151, 152,
154).

[Res17] Eric Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3 draft-ietf-tls-tls13-21. Internet-draft. RFC
Editor, July 2017, pp. 1–143. url: https : / / tools .
ietf . org / html / draft - ietf - tls - tls13 - 21 (Cited
on page 113).

[RFC2104] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC:
Keyed-Hashing for Message Authentication. Internet Re-
quests for Comments. RFC 2104. Feb. 1997. url: https:
//tools.ietf.org/html/rfc2104 (Cited on pages 21,
115, 126, 139).

184 Bibliography

[RFC2409] Dan Harkins and Dave Carrel. The Internet Key Exchange
(IKE). RFC 2409. RFC Editor, Nov. 1998, pp. 1–41. url:
https : / / tools . ietf . org / html / rfc2409 (Cited on
page 142).

[RFC2548] Glen Zorn. Microsoft Vendor-specific RADIUS Attributes.
Internet Requests for Comments. RFC 2548. Mar. 1999.
url: https://tools.ietf.org/html/rfc2548 (Cited on
pages 14, 62).

[RFC2759] Glen Zorn. Microsoft PPP CHAP Extensions, Version 2.
RFC 2759. RFC Editor, Jan. 2000, pp. 1–20. url: https:
//tools.ietf.org/html/rfc2759 (Cited on page 12).

[RFC2865] Allan C. Rubens, William Allen Simpson, and Steve Wil-
lens. Remote Authentication Dial In User Service (RA-
DIUS). RFC 2865. RFC Editor, June 2000, pp. 1–76. url:
https : / / tools . ietf . org / html / rfc2865 (Cited on
pages 12, 62).

[RFC3394] Jim Schaad and Russell Housley. Advanced Encryption
Standard (AES) Key Wrap Algorithm. RFC 3394. RFC
Editor, Sept. 2002, pp. 1–41. url: https://tools.ietf.
org/html/rfc3394 (Cited on pages 22, 139).

[RFC3579] Bernard Aboba and Pat R. Calhoun. RADIUS (Remote
Authentication Dial In User Service) Support For Exten-
sible Authentication Protocol (EAP). RFC 3579. RFC Ed-
itor, Sept. 2003, pp. 1–46. url: https://tools.ietf.
org/html/rfc3579 (Cited on page 62).

[RFC3610] Doug Whiting, Russell Housley, and Niels Ferguson.
Counter with CBC-MAC (CCM). RFC 3610. RFC Edi-
tor, Sept. 2003, pp. 1–26. url: https://tools.ietf.
org/html/rfc3610 (Cited on pages 23, 133).

[RFC3748] Bernard Aboba, Larry J. Blunk, John R. Vollbrecht,
James Carlson, and Henrik Levkowetz. Extensible Authen-
tication Protocol (EAP). RFC 3748. RFC Editor, June
2004, pp. 1–67. url: https://tools.ietf.org/html/
rfc3748 (Cited on pages 5, 9, 10, 12, 16, 59, 60, 63, 65).

[RFC4187] Jari Arkko and Henry Haverinen. Extensible Authentica-
tion Protocol Method for 3rd Generation Authentication
and Key Agreement (EAP-AKA). RFC 4187. RFC Edi-
tor, Jan. 2006, pp. 1–79. url: https://tools.ietf.
org/html/rfc4187 (Cited on page 12).

Bibliography 185

[RFC4253] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH)
Transport Layer Protocol. RFC 4253. RFC Editor, Jan.
2006, pp. 1–32. url: https://tools.ietf.org/html/
rfc4253 (Cited on page 143).

[RFC4764] Florent Bersani and Hannes Tschofenig. The EAP-PSK
Protocol: A Pre-Shared Key Extensible Authentication
Protocol (EAP) Method. RFC 4764. RFC Editor, Jan.
2007, pp. 1–64. url: https://tools.ietf.org/html/
rfc4764 (Cited on page 12).

[RFC5106] Hannes Tschofenig, Dirk Kroeselberg, Andreas Pashalidis,
Yoshihiro Ohba, and Florent Bersani. The Extensible Au-
thentication Protocol-Internet Key Exchange Protocol ver-
sion 2 (EAP-IKEv2) Method. RFC 5106. RFC Editor,
Feb. 2008, pp. 1–33. url: https://tools.ietf.org/
html/rfc5106 (Cited on pages 12, 91).

[RFC5216] Dan Simon, Bernard Aboba, and Ryan Hurst. The EAP-
TLS Authentication Protocol. RFC 5216. RFC Editor,
Mar. 2008, pp. 1–34. url: https://tools.ietf.org/
html/rfc5216 (Cited on pages 6, 11, 12, 60, 88, 93, 110).

[RFC5246] Tim Dierks and Eric Rescorla. The Transport Layer Secu-
rity (TLS) Protocol Version 1.2. RFC 5246. RFC Editor,
Aug. 2008, pp. 1–104. url: https://tools.ietf.org/
html/rfc5246 (Cited on pages 5, 53).

[RFC5247] Bernard Aboba, Dan Simon, and Pasi Eronen. Extensible
Authentication Protocol (EAP) Key Management Frame-
work. RFC 5247. RFC Editor, Aug. 2008, pp. 1–79. url:
https : / / tools . ietf . org / html / rfc5247 (Cited on
pages 60, 63, 144).

[RFC5281] Paul Funk and Simon Blake-Wilson. Extensible Authen-
tication Protocol Tunneled Transport Layer Security Au-
thenticated Protocol Version 0 (EAP-TTLSv0). RFC 5281.
RFC Editor, Aug. 2008, pp. 1–51. url: https://tools.
ietf.org/html/rfc5281 (Cited on pages 12, 65).

[RFC5297] Dan Harkins. Synthetic Initialization Vector (SIV) Au-
thenticated Encryption Using the Advanced Encryption
Standard (AES). RFC 5297. RFC Editor, Oct. 2008, pp. 1–
26. url: https : / / tools . ietf . org / html / rfc5297
(Cited on page 17).

186 Bibliography

[RFC5705] Eric Rescorla. Keying Material Exporters for Transport
Layer Security (TLS). RFC 5705. RFC Editor, Mar. 2010,
pp. 1–7. url: https://tools.ietf.org/html/rfc5705
(Cited on pages 92, 93, 110, 113).

[RFC6614] Stefan Winter, Mike McCauley, Stig Venaas, and Klaas
Wierenga. Transport Layer Security (TLS) Encryption for
RADIUS. RFC 6614. RFC Editor, May 2012, pp. 1–22.
url: https://tools.ietf.org/html/rfc6614 (Cited on
pages 62, 88, 113).

[RFC6677] Sam Hartman (editor), T. Charles Clancy, and Katrin
Hoeper. Channel-Binding Support for Extensible Authen-
tication Protocol (EAP) Methods. RFC 6677. RFC Editor,
July 2012, pp. 1–31. url: https://tools.ietf.org/
html/rfc6677 (Cited on pages 61, 90).

[RFC6733] Victor Fajardo, Jari Arkko, John Loughney, and Glen
Zorn. Diameter Base Protocol. RFC 6733. RFC Editor,
Oct. 2012, pp. 1–152. url: https://tools.ietf.org/
html/rfc6733 (Cited on pages 12, 62).

[RFC7296] Charlie Kaufman, Paul Hoffman, Yoav Nir, Pasi Eronen,
and Tero Kivinen. Internet Key Exchange Protocol Ver-
sion 2 (IKEv2). RFC 7296. RFC Editor, Oct. 2014, pp. 1–
142. url: https : / / tools . ietf . org / html / rfc7296
(Cited on page 12).

[RFC7593] Klaas Wierenga, Stefan Winter, and Tomasz Wolniewicz.
The eduroam Architecture for Network Roaming. RFC
7593. RFC Editor, Sept. 2015, pp. 1–37. url: https :
//tools.ietf.org/html/rfc7593 (Cited on page 148).

[RFC8018] Kathleen M. Moriarty, Burt Kaliski, and Andreas Rusch.
PKCS #5: Password-Based Cryptography Specification
Version 2.1. RFC 8018. RFC Editor, Jan. 2017, pp. 1–40.
url: https://tools.ietf.org/html/rfc8018 (Cited on
pages 20, 119).

[RLM06] Floriano De Rango, Dionigi Cristian Lentini, and Salva-
tore Marano. “Static and Dynamic 4-Way Handshake So-
lutions to Avoid Denial of Service Attack in Wi-Fi Pro-
tected Access and IEEE 802.11i”. In: EURASIP J. Wire-
less Comm. and Networking 2006 (2006). doi: 10.1155/
WCN/2006/47453. (Cited on page 17).

Bibliography 187

[Rog04] Phillip Rogaway. “On the of Role of Definitions in and Be-
yond Cryptography”. In: ASIAN. Vol. 3321. Lecture Notes
in Computer Science. Springer, 2004, pp. 13–32 (Cited on
pages 38, 57).

[Rog06] Phillip Rogaway. “Formalizing Human Ignorance”. In:
Progress in Cryptology - VIETCRYPT 06: 1st Inter-
national Conference on Cryptology in Vietnam. Ed. by
Phong Q. Nguyen. Vol. 4341. Lecture Notes in Computer
Science. Hanoi, Vietnam: Springer, Heidelberg, Germany,
Sept. 2006, pp. 211–228 (Cited on page 27).

[RS06a] Phillip Rogaway and Thomas Shrimpton. “A Provable-
Security Treatment of the Key-Wrap Problem”. In: Ad-
vances in Cryptology – EUROCRYPT 2006. Ed. by Serge
Vaudenay. Vol. 4004. Lecture Notes in Computer Science.
St. Petersburg, Russia: Springer, Heidelberg, Germany,
May 2006, pp. 373–390 (Cited on page 152).

[RS06b] Phillip Rogaway and Thomas Shrimpton. Deterministic
Authenticated-Encryption: A Provable-Security Treatment
of the Key-Wrap Problem. Cryptology ePrint Archive, Re-
port 2006/221. http://eprint.iacr.org/2006/221.
2006 (Cited on page 153).

[RS09] Phillip Rogaway and Till Stegers. “Authentication with-
out Elision: Partially Specified Protocols, Associated
Data, and Cryptographic Models Described by Code”. In:
Proceedings of the 22nd IEEE Computer Security Founda-
tions Symposium, CSF 2009, Port Jefferson, New York,
USA, July 8-10, 2009. IEEE Computer Society, 2009,
pp. 26–39. doi: 10 . 1109 / CSF . 2009 . 23. (Cited on
page 39).

[Sep+14] Pouyan Sepehrdad, Petr Susil, Serge Vaudenay, and Mar-
tin Vuagnoux. “Smashing WEP in a Passive Attack”. In:
Fast Software Encryption – FSE 2013. Ed. by Shiho Mo-
riai. Vol. 8424. Lecture Notes in Computer Science. Singa-
pore: Springer, Heidelberg, Germany, Mar. 2014, pp. 155–
178. doi: 10.1007/978- 3- 662- 43933- 3_9 (Cited on
page 16).

[Sho04] Victor Shoup. Sequences of games: a tool for taming com-
plexity in security proofs. Cryptology ePrint Archive, Re-
port 2004/332. http://eprint.iacr.org/2004/332.
2004 (Cited on pages 25, 69).

188 Bibliography

[Sho99] Victor Shoup. On Formal Models for Secure Key Ex-
change. Cryptology ePrint Archive, Report 1999/012.
http://eprint.iacr.org/1999/012. 1999 (Cited on
page 4).

[SIR02] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin.
“Using the Fluhrer, Mantin, and Shamir Attack to Break
WEP”. In: ISOC Network and Distributed System Secu-
rity Symposium – NDSS 2002. San Diego, CA, USA: The
Internet Society, Feb. 2002 (Cited on page 16).

[SIR04] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin.
“A key recovery attack on the 802.11b wired equivalent
privacy protocol (WEP)”. In: ACM Trans. Inf. Syst. Se-
cur. 7.2 (2004), pp. 319–332. doi: 10 . 1145 / 996943 .
996948. (Cited on page 16).

[SR96] Victor Shoup and Aviel D. Rubin. “Session Key Distri-
bution Using Smart Cards”. In: Advances in Cryptology
– EUROCRYPT’96. Ed. by Ueli M. Maurer. Vol. 1070.
Lecture Notes in Computer Science. Saragossa, Spain:
Springer, Heidelberg, Germany, May 1996, pp. 321–331
(Cited on page 39).

[SVV11] Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuag-
noux. “Statistical Attack on RC4 - Distinguishing WPA”.
In: Advances in Cryptology – EUROCRYPT 2011. Ed. by
Kenneth G. Paterson. Vol. 6632. Lecture Notes in Com-
puter Science. Tallinn, Estonia: Springer, Heidelberg, Ger-
many, May 2011, pp. 343–363 (Cited on page 16).

[TB09] Erik Tews and Martin Beck. “Practical Attacks Against
WEP and WPA”. In: Proceedings of the Second ACM
Conference on Wireless Network Security. WiSec ’09.
Zurich, Switzerland: ACM, 2009, pp. 79–86. isbn: 978-
1-60558-460-7. doi: 10.1145/1514274.1514286. (Cited
on page 16).

[Tew07] Erik Tews. Attacks on the WEP protocol. Cryptology
ePrint Archive, Report 2007/471. http://eprint.iacr.
org/2007/471. 2007 (Cited on page 16).

[Tod+12] Yosuke Todo, Yuki Ozawa, Toshihiro Ohigashi, and
Masakatu Morii. “Falsification Attacks against WPA-
TKIP in a Realistic Environment”. In: IEICE Transac-
tions 95-D.2 (2012), pp. 588–595. url: http://search.

Bibliography 189

ieice.org/bin/summary.php?id=e95-d_2_588 (Cited
on page 16).

[TWP08] Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin.
“Breaking 104 Bit WEP in Less Than 60 Seconds”. In:
WISA 07: 8th International Workshop on Information Se-
curity Applications. Ed. by Sehun Kim, Moti Yung, and
Hyung-Woo Lee. Vol. 4867. Lecture Notes in Computer
Science. Jeju Island, Korea: Springer, Heidelberg, Ger-
many, Aug. 2008, pp. 188–202 (Cited on page 16).

[VP13] Mathy Vanhoef and Frank Piessens. “Practical verifica-
tion of WPA-TKIP vulnerabilities”. In: ASIACCS 13: 8th
ACM Symposium on Information, Computer and Commu-
nications Security. Ed. by Kefei Chen, Qi Xie, Weidong
Qiu, Ninghui Li, and Wen-Guey Tzeng. Hangzhou, China:
ACM Press, May 2013, pp. 427–436 (Cited on page 16).

[VP15] Mathy Vanhoef and Frank Piessens. “All Your Biases
Belong to Us: Breaking RC4 in WPA-TKIP and TLS”.
In: 24th USENIX Security Symposium, USENIX Secu-
rity 15, Washington, D.C., USA, August 12-14, 2015. Ed.
by Jaeyeon Jung and Thorsten Holz. USENIX Associa-
tion, 2015, pp. 97–112. url: https://www.usenix.org/
system/files/conference/usenixsecurity15/sec15-
paper-vanhoef.pdf (Cited on page 16).

[VP16] Mathy Vanhoef and Frank Piessens. “Predicting, De-
crypting, and Abusing WPA2/802.11 Group Keys”. In:
25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016. Ed. by Thorsten
Holz and Stefan Savage. USENIX Association, 2016,
pp. 673–688. url: https://www.usenix.org/system/
files/conference/usenixsecurity16/sec16_paper_
vanhoef.pdf (Cited on page 17).

[Wal00] Jesse Walker. “Unsafe at any key size; An analysis of
the WEP encapsulation”. Oct. 2000. url: https : / /
www . csee . umbc . edu / courses / graduate / CMSC691A /
Spring04 / papers / wep - problems . pdf (Cited on
page 16).

[Woo04] Avishai Wool. “A note on the fragility of the "Michael"
message integrity code”. In: IEEE Trans. Wireless Com-
munications 3.5 (2004), pp. 1459–1462. doi: 10.1109/
TWC.2004.833470. (Cited on page 16).

190 Bibliography

[Woo08] Mark Wooding. New proofs for old modes. Cryptology
ePrint Archive, Report 2008/121. http://eprint.iacr.
org/2008/121. 2008 (Cited on page 62).

[ZMM05] Fan Zhang, Jianfeng Ma, and Sang-Jae Moon. “The Se-
curity Proof of a 4-Way Handshake Protocol in IEEE
802.11i”. In: Computational Intelligence and Security,
International Conference, CIS 2005, Xi’an, China, De-
cember 15-19, 2005, Proceedings, Part II. Ed. by Yue
Hao, Jiming Liu, Yuping Wang, Yiu-ming Cheung, Hujun
Yin, Licheng Jiao, Jianfeng Ma, and Yong-Chang Jiao.
Vol. 3802. Lecture Notes in Computer Science. Springer,
2005, pp. 488–493. doi: 10.1007/11596981_72. (Cited on
page 119).

	91514_Innmat_01_1_PhDCover
	91514_b5_thesis-main-UPDATED

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

