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Abstract

This thesis presents a new type of dynamical entropy, defined by the
movement of particles beetween the nodes in a network. The entropy
is intended to have similar properties as the well-known thermodynamic
entropy. Simulations are run on different versions of known networks, and
exhibits expected behaviour. A few applications of the variable have also
been suggested, in which topographical properties, centrality and node
distance is decided in relative terms for spesific networks. In addition, a
historical recap is the science of thermodynamics and networks is given,
and also an explanation to how these fields have come together over the
recent years, culminating in this effort to further connect them.






Sammendrag

Denne masteroppgaven presenterer en ny type dynamisk entropi, defin-
ert for bevegelse av partikler mellom nodene i et nettverk. Entropien
er tiltenkt a ha lignende egenskaper som den velkjente termodynamiske
entropien. Det er kjgrt simuleringer pa forskjellige versjoner av kjente
nettverk, og entropien oppferer seg slik som ventet. Noen applikasjoner
av variabelen har ogsa blitt foreslatt, der de topografiske egenskapene sen-
tralitet og nodeavstand har blitt bestemt relativt for spesifikke nettverk. I
tillegg til dette er det gitt en historisk oppsummering av feltene termody-
namikk og nettverksvitenskap, en forklaring pa hvordan disse feltene har
sammenfalt i de senere ar, og tilslutt hvordan dette har kulminert i dette
forsgket pa & forene de ytterligere.
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Chapter 1

Introduction

In an increasingly complex, digitalized and interconnected world, the stud-
ies of network have become more and more interesting. Whether they are
used to directly represent your friendsships on a social network site, or
used more abstract to model intercity aviation traffic, networks can be
very helpful to visualize and concretizise abstract entities. The advent of
the computer allows us to explore problems with a complexity hereto un-
accessible, allowing for modelling and simulations of increasingly complex
networks. These networks have the interesting feature that any behaviour
modeled on them will be affected by many different features of the net-
work, both by the restrictions in the network and the way the network is
connected. One could consider the internet, which is in many ways the
network that is most obvious to us in our daily life. The way in which
information spreads here, is not given in itself by the computational power
of each individual computers, but rather by the choises of the people using
the computers and how the computers are interconnected in a network. In
the neural networks of our brain, it is possible to understand the function
of each neuron by itself, and we know a lot about how each of them stores
and emits information. It is yet, however a mystery how the connections
of a large number of these can give rise to the complexity that is our mind
and the thought processes. Indeed, Aristoles famous notion that ”The
whole is greater than the sum of its parts” is repeatedly proving to be an
inherent rule of the natural systems.



CHAPTER 1 INTRODUCTION

With the increasing complexity, the idea of how one works with these
models has changed, as one no longer necessarily can assess all informa-
tion by merely eyeballing networks, but rather must construct tools to
analytically treat them. The same concept has earlier been applied to a
lot of real world problems, and one of the most successful fields has been
the science of thermodynamics. Here, huge models of directly uncom-
putable size has been simplified by considering the statistical properties
of the constituents as an ensemble, instead of doing direct computations
on one and one particle. In this thesis, we will attempt to take one of the
most important in the science of thermodynamics, namely entropy, and
introduce into the science of networks. Doing this, we hope to transfer
some of the work that has already been done and applying it to a new
field.



Chapter 2

Theory

2.1 Entropy

Two of the most fundamental principles in physics is stated in the first
and second law of thermodynamics. Both of them have been expressed by
several sources and in several ways, but the essence of them is as follows;
The first law states the principle of energy conservation in a process. It
says that in a thermal process, all internal energy exchange from a system
to it’s environment must result in a corresponding amount of work or heat
exchange. The second law makes a statement about the preferred direc-
tion of processes, namely that heat will always move from a warm object
towards a colder, thereby seeking an equilibrium. This is opposed to the
impossible scenario where the cold object would become even colder to
further enhance the temperature of the warmer|[I].

2.1.1 Macroscopical Entropy

In the middle of the 19th century, after the industrial revolution had made
its everlasting impact on the western world, steam engines were to be found
in every modern industry. As more and more steam engines came into use,
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CHAPTER 2 THEORY

the coal used as fuel became a commodity, and the prices rose. It was in
these times the german physicist Rudolf Clausius discovered the principles
of entropy while he was working on determining the maximal efficiency of
steam engines, expanding on the earlier work of Carnot. Clausius’ work
was based on the derivations of how the macroscopic quantities tempera-
ture, work and heat of systems behaved when undergoing idealized Carnot
cycles, These derivations combined with the axiom that ”Heat cannot pass
by itself from a cold to a hot body” [2] led to the definition of the state-
function, S, called Entropy. Clausius’ definition of entropy was closely
connected to thermal systems undergoing theoretical circuit processes. It
was also only defined for the relative difference in entropy of a system in
two different states. Clausius’ macroscopically founded definition of the
difference in entropy between two states A and B, is given as

Bere
S —SA:/ v
B " T

or in the differential form,

_ erev
s = T (2.1)

In both cases, Qv is the heat exchanged between the system and its envi-
ronment through a reversible circuit process, whereas 7" is the temperature
of the reservoir where the system deposits or withdraws heat. The unit
for entropy is [J/K].

Further exploration on this new concept of entropy led to a reformulation
of the laws of thermodynamics. The reformulated laws stated by Clausius
was ”The energy of the world is constant, and its entropy strives towards
a maximum. [I]” Another more precise formulation of the last part is
that ”the entropy of an isolated system never decreases, because isolated
systems spontaneously evolve towards thermodynamic equilibrium”. In
mathematical terms this is expressed as

ds
=20 22)

where S is the entropy of the system.
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2.1 ENTROPY

From pure macroscopic phenomena, Clausius was able to discover entropy
as the driving force of thermal processes. In order to get a deeper and
more fundamental understanding of the phenomenon, an understanding
of the microscopic mechanics involved was needed.

2.1.2 Microscopical Entropy

In the middle of the 19th century, the scientific community considered the
macroscopic variables such as temperature and pressure to be the results
microscopic phenomena. This idea was first postulated by Bernoulli in
his work Hydrodynamica, which he published in 1738. In the book, he
attributed heat and pressure of gases to the movement of great numbers
of molecules. Heat was simply the accumilated effect of these molecules’
kinetic energy, and pressure was the collective impact of the molecules on
a surface. This idea had been further explored by the already mentioned
Clausius, whose work on diffusion led Maxwell to discover the famous
Maxwell distribution of molecular velocities. This was the first statistical
law in physics and laid the way open for a whole new branch of physics.
It was the starting point for both statistical mechanics and the career of
the young austrian Ludwig Boltzmann. He went on to spend the greater
part of his career laying the groundwork for the dicipline of statistical
mechanics, and his greatest contribution in that respect is considered by
many to be the microscopic definition of entropy. He considered a given
system to simultaneously be in both a macrostate and a microstate. The
macrostate was the traditional view of macroscopical variables, with a
given pressure, temperature and volume. The microstate was the more
accurate description of the single particles, including position and velocity
for each and every one of them. For each macrostate, there could be
a huge amount of corresponding microstates which would give the same
macroscopical variables. The number of corresponding microstates to a
given macrostate, €, is together with kp, the Boltzmann constant, the key
part of the Boltzmann entropy/[I],

S = kplnQ. (2.3)
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The claim that this was the most important piece of work Boltzmann did,
is supported by the fact that this is what is engraved on his gravestone in
Vienna. This Boltzmann entropy asserted the fact that the entropy had a
logarithmic relation to some probability of the occurance of the state. The
number {2 is directly proportional to the probability of a macrostate, as the
number of microstates is higher for macrostates with a higher probability.
The Boltzmann entropy requires, however, an important assumption that
prohibits universal validitiy; that all microstates were equally probable,
which only holds true for ideal gases.

An important property of entropy worth mentioning at this point is what
happens with the entropy when two ideal, non-reactive gases are mixed.
Imagine a setupone initially has two gases in a container, each with its
own entropy, and separated by a barrier. When the barrier is removed,
the entropy of the whole system will be larger than for the sum of the two
gases initially, due to a larger uncertainty of position[I]. This important
attribute of entropy will be further studied later in this thesis.

2.1.3 Probabilistic Entropy

In order to generalize Boltzmann’s entropy, the assumption of equal prob-
ability for all microstates had to be removed. This was done by simply
weighing each of the microstates with a probability, and then summing
over all the states. This was done by Josiah Willard Gibbs, and it bears
the name Gibbs entropy. The new extended formula for entropy was [3]

S=—kpg» pilnp,

where p; is the probability for microstate ¢ to occur. The negative presign
is to ensure a positive entropy when the log of a probabillity, p < 1 pro-
duces a negative sign. For ideal gases, where all probabilities are equal,
the formula reduces to Boltzmanns entropy . The formula has been
proven to yield numerical results equal to Clausius’ experimental entropy
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2.1 ENTROPY

(2.1) [4], thereby successfully combining the microscopical and macroscop-
ical both quantitatively and qualitatively.

Through these equations, the understanding of the nature of the entropy
developed. From an initial constructed variable with no deeper explana-
tion beyond the works of a steam-engine, a profound understanding about
the ways of nature was derived. The most important aspect in most eyes
was the way in which entropy made it possible to observe and measure
the second law of thermodynamics directly, giving all physical reactions a
"purpose” and directions. This was widely discussed, not only in physics,
but also in other areas such as philosophy and religion, where it was a
strong point for the determinists who believed the whole story of the uni-
verse was set and just performing according to preset rules before our eyes.
The champions of these views did indeed have a very strong argument, at
least until the peculiarities of quantum physics was discovered. (Indeed,
as von Neumann later would discover, the entropy is well defined also for
quantum systems)

In later years, entropy has been further generalized by the Brazilian physi-
cist Constantino Tsallis. In the same manner that newtonian mechanics
are not valid for velocities near the speed of light, the Boltzmann-Gibbs
entropy has been found to not hold for nonextensive systems, i.e complex
systems where the components has a high degree of correlation between
them. The new generalized formula is [3]

Salp) = 25 (1= 32 pl),

where q is a real parameter called entropic-index, and {p;} is a discrete set
of probabilities. in the limit ¢ — 1, we get the Boltzmann-Gibbs entropy.

2.1.4 Entropy Outside of Physics

Among those lesser inclined to ponder on the big questions in life, there
was also a grand interest for the concept of entropy and the uses of it in
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other branches of science apart from thermodynamics. One of them was
the brilliant young engineer Claude E. Shannon. He had written a brilliant
master thesis on boolean logicals, and after working with cryptography at
the Bell laboratories during World War II, he was ready to start the new
branch the science called information theory.

Shannon started looking at the ”bit”, the information carrier in a digital
computational system. He set out to find a way do encode information in
the most efficient way thorugh ”bits”, and did so by introducing a set of
new concepts. One of these was the notion of uncertainty of information.
He argued that for a set of outcomes where the probabilities were not
equal, the uncertainty was lower that for a set where every outcome was
just as likely. This uncertainty was quantified through the formula[5]

H(X) = P(x;)logy(P(x;), (2.4)

where H is the uncertainty, X = z1,s....x, is the set of outcomes, and
P(z;) is the probability for outcome x;. The base of the logarithm is
set by the information carrier size. If it is a bit, b = 2. By comparing
his uncertainty idea with Boltzmanns entropy, it was evident that there
was an analougue between the two notions. In the statistical mechanical
entropy, the notion of uncertainty is represented in the value €2, where
a higher value would mean a higher number of microstates for the given
macrostate, i.e a higher uncertainty about which microstate it actually
was. As the concepts and the equations, and , were similar,
Shannon decided to call this uncertainty entropy.

Shannon was not the only one who made use of the concept of entropy in

branches seemingly unrelated to physics. After the initial coining of the
term, it has been put to use in a wide range of fields including, but not
limited to, economics [6], sociology [7], medicine [8] and ecology [9].



2.2 NETWORKS

2.2 Networks

2.2.1 The Seven Bridges of Konigsberg

The science of networks, in mathemathical terms referred to as Graph the-
ory, was initiated by the publication of mathemathician Leonard Euler’s
1736 paper "The Seven Bridges of Konigsberg”. The problem he treated
was whether it was possible to cross all seven bridges in the Prussian city
Konigsberg without crossing each bridge more than once. He concidered
the problem, and realized it would be a lot easier to work on the prob-
lem if he removed all the unimportant information of the problem, so he
simplified the islands and land sides into dots and the bridges into lines.
What he had constructed is what i mathematical terms is called a graph.
By just considering the simple graph he had made, he drew the conclu-
sion that the feat had to be deemed impossible, as there were more than
two nodes with an odd number of links connected to it. The idea is that
the start- and end-nodes could have odd numbers, but an odd number on
any of the other nodes, would lead to a stop, as there are more ways in
than out. The remarkable aspect of his solution was the way he simplified
the problem from the real world into a mathemathical construct called a
graph, allowing for analytical and logical treatment.

Figure 2.1: Eulers simplification of the problem of the bridges of
Konigsberg. On the left is an illustration of the actual city layout, in
the center a more simplified version, and on the right the problem is de-
scribed through a graph. Figure taken from [10]
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2.2.2 Networks in Social Studies

After the initial work by Euler, it took quite some time before mathemati-
cians further developed a science around networks. Networks were instead
much more in use to represent connections in social sciences, biology, and
other sciences where the network is given inherently by the studied struc-
tures. The size of the networks were often so small that constructing
them visually and get information just by using eyesight was possible.
The Karate network studied by Zachary is a good example of the types of
networks studied in the middle of the 20th century, where social groups
were mapped through censuses and observations of structure were made
from the visualization. This network will be presented in further detail,
and studied later in this thesis.

A famous social study network was performed by Stanley Milgram in 1967.
It was believed at the time that all people in the world was connected to
each other in a closely connected network. From general assumptions
about how many friends each individual has in average, it had been calcu-
lated that six steps of separation would be sufficient to link any individual
on the earth to any other. The huge network this theory regarded, with
approximately 3.5 billion nodes, and a much higher number of links, was
at this point, and still, impossible to construct, and study accurately.
Even at this point in time, where social networks are automatically digi-
talized on portals such as Facebook, and our computational abilites have
sky-rocketed, it is not yet possible to confirm or reject this hypothesis
definetly. Milgram was well aware of the impossibility, but still designed
an experiment to give an indication as to whether the theory was correct.
He chose a number of individuals in the United States at random and
sent them a package with instructions. The goal was that they should
send a package to a named person in as few steps as possible. They were
given some information about the target, and the rule that they were only
allowed to send the package to people they knew. If they did not know
the target, they were to try to guess which of their friends had the closest
relation to the target, and to send them the same instructions. A lot of
packages never reached the target, but a sufficient amount did, and the
results indicated that indeed, the idea of a six step separation was deemed
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2.2 NETWORKS

reasonable. This experiment was ground-breaking in that it could say
something about the network as a whole without having to have complete
information about the network. This treat of networks where the number
of nodes vastly outnumber the average degree distribution is in general
called the small world phenomenon.

2.2.3 Networks in Mathematics

Intrigued by the information gained from such experiments as Milgrams,
and the possibility of expanding the knowledge into the natural sciences,
the interest of networks grew tremendously among mathematicians. In
1959, the two hungarians Paul Erdés and Albért Rényi constructed an
algorithm to construct random networks, and continued to explore gen-
eral properties to classify networks[IT][12]. They defined properties like
degree-distribution and fractioning for any network. The degree of a node
is given by the amount of links it has to other nodes. A degree distribution
analyses the whole network and gives the relative occurence for each de-
gree. Fractioning is a property that represents to which degree the whole
network is connected or, i.e. any given node is connected to all the others
through links. Related is also the geodesic distance between two nodes,
which is the shortest amount of links one has to traverse in order to get
from one node to another by traversing through the network.

Comparing the work done by the Erdés and Rényi to the growing number
of real-world networks studied, gave rise to some problems. Their com-
pletely random network construction did in fact not seem to give the kinds
of networks that was generally found when real-world networks was stud-
ied. For instance, the Erd6s-Rényi networks had a Poisson-distribution of
the degrees, whereas networks in the real world tends to have a power-law
distribution. The occurence of a topgraphical property called clustering
was also observed everywhere in the real world, but not in Erdés-Rényi
networks. Clustering is the phenomena that a group of nodes are tightly
bound with each other, but only connected at a few points to the rest of
the network. A real-world example could be a city with several schools,

11
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where the students in general have most of their friends at their school,
thereby making a cluster in the social network. The small world phe-
nomenon was also generally not present. The mismatch between what
was observed and complete randomness indicated that there were some
rules as to how networks grew.

Two pairs of mathematicians came up with different solutions to the mis-
match in a short time span. in 1998, Duncan J. Watts and Steven Strogatz
made an algorithm that took a random network and changes connections
to make clusters[I3]. This expansion on Erdés-Rényi networks made net-
works more similar to what was found in the real world, including both
clusters and small world phenomena. Still, the degree distribution is not
changed, and the incompability is still present. Another problem with
this model is that it does not account for growing networks, i.e. networks
where the number of nodes grow, which is the case for countless networks
in the real-world. Albert Laszl6 Barabéasi and Réka Albert came out with
a different approach in 1999[14]. Starting with a small network, new nodes
are added and connected in a manner called preferential attachment. The
idea is that any new node that is connected to the network has a higher
probability of connecting to nodes that already have a high degree. This is
thought to be anologous to the process in which real social networks grow,
where it is generally easier to get to know people that already have a lot
of contacts, as they tend to be more social, and also because the chance of
being introduced to them by a third party is higher than to someone that
has fewer connections. These networks give rise to power law distribution
of degrees, but has shortcomings when it comes to producing a high level
of clustering. This is due to the fact that the connections are chosen in-
discriminately of group belongings, and therefore, if there at some point
happens to be clusters, the chances of connecting said clusters to each
other are high, which will in turn remove them.

12
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2.2.4 Networks in Physics

A network is in this thesis defined as a number of objects connected to
each other in a specific manner. The objects are defined as nodes, and
the connections as links. The networks can be interconnected in several
different ways, which in turn leads to very different network behaviour. For
instance can the connections be directed or undirected. In the undirected
network, the connection between two nodes is completely symmetrical
and equal for both nodes. For a real world example, one can consider the
friend network on social network sites like Facebook. If a person A is in
the friend list of a person B, then by the construct of the site, person B
will have to also be in person A’s friend list. In an undirected network, the
connection from A to B does not necessarily imply the connection from
B to A. An example of this can be a someones phone book or contact
list. Even though most of the numbers would have come into the phone
book after some mutual exchange, it can also be the case that the number
has been given by a third party or found online. For another examples
from the area of social networks, one can look at ”Twitter”. Here, the
relationship between two parties are directional, and separeted with the
notion of either ”following” someone, or ”being followed”. In this thesis,
the more general notion of directed networks will be used even though the
results presented mostly concerns undirected.

Networks can also be divided by the notions weighted and unweighted.
These terms allows for distinguishing between strong and weak connec-
tions between nodes, for instance in a computer network, where the traffic
between two computers connected on a Local Area Network, can be much
larger then two computers connected through the internet. Another exam-
ple is to simulate a transport network, where nodes are intersections and
links are roads. The weight of the link can represent a highway, the weight
being proportional to the number of files on the road, and/or the length
of a road, the weight being inverse proportional to the length and/or the
speed limit of the road.

13
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In order to represent a network, it is common to use and Adjecency matrix,
A. This is a n x n matrix where the term A;; represents the directed
connection from j — . The indices represents the n nodes, so that

i,7 € {1,2,...,n}. The Adjecency matrix allows for both direction and
weighting of networks, as shown in figure When the Adjecency matrix
is weighted, we use the letter W to describe it. Another helpful concept
used for characterizing networks is the degree vector, K (ki, ko, ..., k;), of
the nodes. The degree is the number of outgoing links from a given node
and is given by summing the corresponding column of the matrix,

ki=Y_ Aij.
J
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Figure 2.2: The figures represents different networks and their correspond-
ing Adjecency matrices, A, and degree vectors, K. Subfigure (a) shows an
undirected, unweighted network. The corresponding Adjecency matrix is
symmetrical and consists only of zeros and ones. Subfigure (b) shows a
directed, unweighted network. The Adjecency matrix is not symmetri-
cal and consists only of zeros and ones. Subfigure (c) shows a directed,
weighted network. The weighted Adjecency matrix is not symmetrical,
and consists of values zeros, ones and twos. In principal, all real numbers
can be chosen for the weights, but integers was chosen for a better visual
illustration.
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2.2.5 Dynamic Networks

The idea of a dynamic network is essentially to construct a network with
nodes and edges, place a number of walker particles on the network, give
the walkers rules of dispersion, and let the system propagate in time. The
model can represent a variety of real-world phenomena, such as disease
spreading, both in the microscale between cells and macroscale between
cities, car traffic modelling, power grid networks, and generally all types
of networks that has a traffic of information between its nodes. In later
years, some work has focused on determining topographical features of
networks by allowing walkers to spread across networks and mapping the
time-development. In 2005, Simonsen wrote a summary of the results he
had come to by allowing diffusion processes to take place on a network[15].
Just by observing the dispersion of walkers, attributes like clustering (or
as it is described in the paper, modularity), were measured. The process
has also been used by Newman [16], to simulate spreading of deseases and
computer viruses on networks, giving information about how the systems
topography can decide whether a certain epedemic will continue to spread
to the whole network or simply vanish. Both the papers by Simonsen and
Newman give an extensive introduction and summary of the science done
in the field so far, and is worth to read for further explanations. They
have both been used as a reference when writing this chapter.

2.2.6 Diffusion on Networks

Different rules of dispersion can lead to very different time propagations.
In this thesis a simple diffusion model has been used, following Finsteins
description of brownian particles[I7]. These particles behave completely
random, and their movement will have the same probability for moving in
any available direction. Adapted to our network, the model sets the rule
to be that a particle at one node will with move to one of the nodes it
is linked to with the same probability if the system is un-weighted, and
with a probability proportional to the weight of the link if weighted. The
choice has also been made that all the particles present on node j at time
t will move away from it when the system propagates in time to ¢ + 1.
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In order to not have to simulate each of the particles’ random outcome,
the number of particles is very much larger than the number of nodes
n > N. The number of particles going from node j — i at time t, Cy;(t)
per weight unit, will then be completely determinalistically decided by the
population on the node, p;(t), the degree of the node, k;, by the formula

Ci;(t) = oill) : (2.5)

This traffic gives in time the master equation for determining the time
development of node population,

pilt+1) = Wi p]]%gt)' (2.6)

J
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Chapter 3

Network Entropy

Some work has been done on entropy of complex networks, but so far the
focus has been on an entropy defined by the network itself. For instance,
Robert Ash already in 1965 in his book ”Information Theory” defined
an entropy of networks as a measure of how uniform it was, i.e. how
much you could know about any distinct node, by knowing about the
whole network[I8]. A uniform degree distribution would for instance give a
lower entropy than a network with vastly different degrees over the nodes.
Instead of focusing on the entropy of the network topology, a different
approach would be to define an entropy for the information flow in the
system.

3.1 Dynamical Network Entopy

The main goal of this thesis is to define the quantity entropy in the field
of dynamic networks. In order to define the new term, a few conditions
has to be set. First of all, the entropy has to be computable at any
instant of an ongoing network simulation to allow for the study of its
time development. Secondly, as we are dealing with systems with a time
dimension, the variable should for unperturbed systems always increase
monotonically towards an end value, where the entropy is maximized, as
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CHAPTER 3 NETWORK ENTROPY

dictated by the second law of thermodynamics.

To fulfill these conditions, the entropy of a dynamic network per walker
is chosen to be defined as the sum of the traffic of walkers on the links
connecting the nodes together, times the weight of each link in the familiar
plIn(p) formula used by Shannon, equatio

S _ Gy [ Ciu(t)
n %:W”%Cnm(t)l 5= Conl®) | (3.1)

where n is the total amount of walkers in the system defined by adje-
cency matrix, Wj;, and Cj; is the amount of walkers travelling on the link
between node ¢ and j in direction j — 1.

The choice to define the entropy in a ”per walker” fashion, comes directly
from the thermodynamical equivalence, that has a higher entropy for a
higher number of particles. If not for the ”per walker”-definition, the
system would have had the same entropy for any number of walkers. An
interesting feature with this variable, is that its time development is a
function of variables coming from both the rules of the dispersion of walker
particles, and also topographical features of the network itself. The time
development of the entropy will vary significantly for different networks,
and also for different dispersion rules.

For the unconstrained state, the amount of walkers going from node ¢ to
j in timestep t, will be given by ([2.5)).

An important thing to note is that this definition has the p=value from
defined in such a manner that the entropy from a 2-weighted link
is the sum of two 1-weighted links, as opposed to calculating it with the
adjecency matrix element also being a factor inside the paranthesis. This
was a matter of definition, and by choosing in this matter it was possible
to trivially calculate a stationary state entropy, a very useful value for an-
alyzing the results. In the case of Brownian walker diffusion, a stationary
state is reached at ¢ — oo and the amount of walkers at each node 7 will
then be given by
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3.1 DYNAMICAL NETWORK ENTOPY

P = (3.2)

where n is the total amount of walkers populating the entire system. This
expression is found trivially by concidering that in an equilibium state,
every node has ah same weight on links leaving the node as coming in in
each time step, and thus the population on each node must be proportional
to its total relative weight. By inserting this into equation , the term
for the traffic per weight unit on link j7 in an unconstrained network at
t — o0 is

0o n

J

with
Z Cz'j . W,;j =n.
]

Inserting these expressions into the equation (3.1)), the entropy, S, at t —
oo for a network without constraints is given by

1 1
5% = -3 W 1
ZJ: IS Wom S W

If one defines L =, Wi; = >, kj,

S Wij 1
w2 1“<L>’

1 1
= _Lz ln (L) :

= InL. (3.3)
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CHAPTER 3 NETWORK ENTROPY

From thermodynamics, it is expected that when adding two systems with
entropies A and B, the resulting equilibrium entropy per particle should
be larger than for the two systems on their own, due to the increase in
number of spaces each particle is able to occupy,

Sos > ST + SE. (3.4)

This is also the case for the defined entropy for networks, by equation

npgIn(Lg) +npln(Lp) > (na+np)In(Lasp),
because of the nature of the logarithm, which states

In(z) > In(y) ifz>y.
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Chapter 4

Evaluation of the Dynamic
Network Entropy

4.1 Method

4.1.1 Networks

In order to simulate the time development of network systems, different
kinds of networks was used.

The Karate Club Network

A well known real-world example of a network is known as the karate
club network. The network originates from sociologist Wayne Zacharys
studies of the social network in a karate club at an American university
in the 1970s[19]. During the studies, the club went through a turbulent
period over economical issues and broke up into two fractions, one with
supporters of the trainer and one with supporters of the administrator.
Figure 4.1.1] shows the layout of the network, including the division into
two fractions. The karate network is in its original form weighted by
integers 1-7, representing how strong the relationship between two people
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was, and both this original form, and an unweighted version of it, i.e all
weights equal to one, will be considered.

Figure 4.1: The figure shows Zacharys karate network with unweighted,
undirected links. Squares and circles are used to represent membership in
a subgroup, resulting from the ongoing conflict, of the supporters of the
trainer (node 1) and administrator (node 34). Figure taken from [15].

The Square Lattice Network

The square lattice network is essentialy an nzm matrix where all nodes
are connected to four neighbours, one on each of its four sides.. The
squarelattice can have different borderconditions, allowing for different
shapes. The one used in this thesis is one where the opposite edges are
connected to each other, so that the network represents a torus shape.
This configuration is illustrated in figure [4.1.1] The squarelattice can
have any size mxn. The algorithm for constructing this is
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e
.
— 11 — 12 — 13 — 14 — 16 —
| | | | |
— 16 — 17 — 18 — 19 — 20 —

— 21 — 22 — 23 — 24 — 25 —

Figure 4.2: A square lattice with continious border conditions. each node
is connected to four other nodes by an undirected link. The nodes on the
edges are connected to the node on the opposite edge, thereby creating a
torus topology.
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Algorithms

The simulations were performed in Matlab, the R2011b edition, and all
functions used in the algorithms are standard functions of Matlab. An
algorithm was constructed in order to simulate the time development of
the node populations in a network, and at the same time calculate the
entropy, as defined in . The algorithm for the case where the nodes
and links are unrestricted, is given by the scheme in algorithm

Algorithm 1 Translate p(t) from ¢ — ¢t + 1 and get entropy
Given vector p(t), containing node populations, Adjacency matrix, W,
number of walkers, n
K=sum(W)
entropy=0
for i=1:length(W) do

for j=1:length(W) do
newp(i)—newp(i)+A(i.)-0(7) /K ()
tmpS=W(ij)*p(3)/K()/n-log(W(ij)-p(i) /K (i) /n)
if tmpS==NaN then
tmpS=0
end if
entropy=entropy-+tmpS
end for
end for
N=newN

The K vector represents the number of outgoing links per node. The
temporary S value is simply there to make sure that the entropy will not
contain NaN values in the cases where the argument of the logarithm is
0. The analytical value for these terms are

lim xlogx =0,
z—0

so the numerical method has to be corrected for.
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4.1 METHOD

In some cases, there is an interest in connecting two networks to each
other. In Matlab, this is a simple task to perform, and the method is
given in algorithm

Algorithm 2 Connecting two networks represented by Adjecency matri-
ces A and B, into new network C at nodes N4 and Np by weights wap
and wg4g

C=zeros(length(A)+length(B))
C(1:length(A),l:length(A))=A
C(length(A)+1:length(C),length(A)+1:length(C))=B
C(Na, Np)=wap
C(NB,Na)=wpa
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4.2 Results

Simulations using Algorithm [I] to transfer in time enables the plotting of
the entropy S, as a function of time. All systems considered have a start
configuration with an initial distribution of all the walkers on a given node,
giving the lowest possible entropy to start with.

4.2.1 Entropy Development on Undirected Networks
The Karate network

The entropy developements on the karate club network shows a satisfying
progression, increasing monotonically towards the analytical result for the
equilibrium state entropy in accordance with the behaviour predicted by
the second law of thermodynamics. The theoretical equilibrium entropy
is higher for the directed one, which is expected as the average number
of unit weight per link is higher. As the system entropy reaches the the-
oretical value, calculated from , the distribution of node population
proportional to the degree of the link is reached, in accordance with the

predictions given by equation (3.2]).
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4.2 RESULTS

Entropy per walker development and Theoretical maximum for the unweighted, undirected karate lattice network.
Timesteps=30. All walkers start at node 1.
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3 i ——— Simulated entropy
Theoretical equilibrium entropy per walker = In(156)=5.0499
1 1 1 | 1 ]
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Timesteps

Figure 4.3: Entropy development in the unweighted, undirectional karate
network. The theoretical equilibrium entropy is calculated from equation

B3).
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Fractional node population of the unweighted, undirected karate network at t=30. Total number of walkers=100000.
12000 T T T T T T

10000

8000 - 4

6000 b

4000 - b

walkers/total amount of walkers

2000 - b

node

Figure 4.4: Node distribution of the unweighted, undirectional karate net-
work. The distribution is the corresponding to the theoretical given by
equation (|3.2)).
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Entropy per walker development and Theoretical maximum for the weighted, undirected karate lattice network.
Timesteps=30. All walkers start at node 1.
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Theoretical equilibrium entropy per walker = In(462)=6.1356
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Figure 4.5: Entropy development in the weighted, undirectional karate
network. The theoretical equilibrium entropy is calculated from ([3.3)),
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Fractional node population of the weighted, undirected karate network at t=30. Total number of walkers=100000.
12000 T T T T T T

10000 - 3

8000 [~ 1

6000 - 1

4000 - 4

walkers/total amount of walkers

2000 - 4

0 5 10 15 20 25 30 35
node

Figure 4.6: Node distribution of the weighted, undirectional karate net-
work. The distribution is the corresponding theoretical from ((3.2)).
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The Square Lattice network

For the 15 x 15 square lattice network, the entropy progresses the expected
way, as was the case for the karate network. The weighted network behaves
in a similar manner, but is not included here as it is considered to not

provide any additional information.

Entropy per walker development and Theoretical maximum for an unweighted, undirected 15x15 square lattice network.

Timesteps=200. All walkers start at node 114.

— Simulated entropy

Theoretical equilibrium entropy per walker = In(900)=6.8024
1 1 1 1 1 1 1 |

60 80 100 120 140 160 180 200
Timesteps

Figure 4.7: Entropy development of the unweighted, undirectionall5 x 15
square lattice network. The theoretical equilibrium entropy is calculated

from (3.3]).
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Node population of the unweighted, undirected 15x15 square lattice network at t=500. Total number of walkers=100000.
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450
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350

300

250

200

walkers/total amount of walkers
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100

50

0

20 40 60 80 100 120 140 160 180 200 220
node

Figure 4.8: Node distribution of the unweighted, undirectional 15 x 15
network. The final distribution is even across all nodes, corresponding to
the theoretical calculated from from (|3.2]).
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In square lattice networks, there is an issue for n x n lattices when n is an
even number. A closer look at the distribution shows that even numbers
causes the walkers to only occupy the half of the nodes at each timestep like
in a chess board. The nodes that are occupied changes every timestep as
can be seen in This prevents the system of reaching its theoretical
maximum entropy. Square lattices with n being an even number, will
therefore not be used for the remainder of this thesis. One could, however,
circumvent the problem by redifining the theoretical entropy from (3.2)) to
only sum over links with traffic.

Entropy per walker development and Theoretical maximum for an unweighted, undirected 15x15 square lattice network.
Timesteps=100. All walkers start at node 114.
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Simulated entropy
Theoretical equilibrium entropy per walker = In(784)=6.6644
L 1 1 1 1 1
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|
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Timesteps

Figure 4.9: Entropy development of the unweighted, undirectional 14 x 14
square lattice network. The theoretical equilibrium entropy is calculated

from (3.3]).

35



CHAPTER 4 EVALUATION OF THE DYNAMIC
NETWORK ENTROPY

1000
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walkers/total amount of walkers

200 |

20 40 60 80 100 120 140 160 180
node

Figure 4.10: Node distribution of the unweighted, undirectional 14 x 14
square lattice network. The final distribution is not the correspond-
ing to the theoretical from , but rather every other node is occu-
pied /unoccupied.
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14 x 14 image of node population at time t=100. total number of walkers =100000
1000
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Figure 4.11: ITllustration of the interchanging chess board behaviour of an
even number square lattice at two times ¢ and t+1. The picture represents
a 14 x 14 lattice, where each square represents a node, node 1 being at the
upper left corner, and node 2 to the right of it. Notice that node 1 is black
at one time, and white in the second, which represents that the node is
empty and populated, respectively. The color of the nodes is representing
the popilation on each node by the scale provided in the figure.
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4.2.2 Directed Networks

The networks can, as discussed in theory, be directed with an unsymmetric
Adjecency Matrix. In this section, the weighted karate network will be
used, with some modifications to make it directed. One interesting thing
with directed networks is that they introduce a constraint on the flow
of particles. These constraints can in turn lead to congestions in the
network, with more particles in one area than others. In the following,
the modifications that are done are done with the purpose of showing these
effects.

First, a modification is made on the karate network where one removes the
link going from node 3 — 1, and from node 1 — 9. This does not congest
the system at all, as the walkers on one of these nodes, can reach the
walkers on the other node in the pair by going through other nodes. The
calculated equilibrium state entropy will change slightly from the original
network as links are removed, but it is still defined in the same way. As
shown in figures and the entropy behaves as for the undirected
networks, and reaches the equilibrium entropy and distribution.
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Entropy per walker development and Theoretical maximum for the weighted, directed karate lattice network
with links 3 to 1 and 1 to 9 removed.Timesteps=30. All walkers start at node 34.

ol — —
/ .
_ 550 /
é) ’//
= /
H
g st
>
Qo
o
E |
Yoast
4 T Simulated entropy
| Theoretical equilibrium entropy per walker = In(462)=6.1356
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Timesteps
Figure 4.12: Entropy development in the weighted, directed karate net-

work with no congestion. The theoretical equilibrium entropy is calculated

from (33),
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Fractional node population of the weighted, directed karate network
with links 3 to 1 and 1 to 9 removed. Timestep=30. Total number of walkers=100000.
| I | | | |
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node

Figure 4.13: Node distribution of the weighted, directed karate network
with no congestion. The distribution is the corresponding theoretical from

(3-2).

To demonstrate the extreme case of congestion, the modification done on
the weighted karate network is the removal of the links 5,6,7,11 — 1.
This leads to all the walkers accumulating at the nodes in the upper right
corner of figure The results shown in figures and show
how the entropy at first increases as the walkers are dispersed over the
whole network at first, but then decreases towards stability as the walkers
get accumulated on nodes 5, 6, 7 and 17.
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Entropy per walker development and Theoretical maximum for the weighted, directed karate lattice network

with links 5,6,7,11 to 1 removed.Timesteps=100. All walkers start at node 1.
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Entropy per walker development and Theoretical maximum for the weighted, directed karate lattice network

Entropy per walker

55

with links 5,6,7,11 to 1 removed.Timesteps=500. All walkers start at node 1
. The simulated entropy at equilibrium is S=3.6389
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Figure 4.14: Entropy development in the weighted, directed karate net-
work with full congestion shown in two plots with different axes. The

theoretical equilibrium entropy is calculated from (3.3]),

41



CHAPTER 4 EVALUATION OF THE DYNAMIC
NETWORK ENTROPY

. Fractional node population of the weighted, directed karate network
x 10 Withlinks 5,6,7,11 to 1 removed. Timestep=100. Total number of walkers=100000.
T T T T T T

15 .,

walkers

05 ]

node

Figure 4.15: Node distribution of the weighted, directed karate network
with full congestion, having most of the walkers concentrated on nodes 5,
6, 7, 11 and 17.
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In addition to the two extreme cases of no congestion and full congestion,
there is a case in between. Instead of removing the links 5,6,7,11 — 1,
their weight can be set to a low value, say 0.25. For this configuration,
there will be a partial congestion on the subgroup of nodes 5, 6, 7, 11 ,17,
but, the equilibrium still has walker population on the rest of the nodes,

as shown in figures and [4:2.2]

Entropy per walker development and Theoretical maximum for the weighted, directed karate lattice network
with links 5,6,7,11 to 1 removed.Timesteps=100. All walkers start at node 1
. The simulated entropy at equilibrium is S=5.5252

55/

Entropy per walker

Simulated entropy
Theoretical equilibrium entropy per walker = In(452)=6.1137
1 1 1 1 1 1 J
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Timesteps

10 20 30 40

Figure 4.16: Entropy development in the weighted, directed karate net-
work with partial congestion. The theoretical equilibrium entropy is cal-

culated from ([3.3)).
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Fractional node population of the weighted, directed karate network
with links 5,6,7,11 to 1 removed. Timestep=100. Total number of walkers=100000.

T T T T I
14000 - b
12000 - b
10000 - T
® 8000 - .
&
©
E
6000 -
4000
) III I I I I
. I miinnlililaslinnn lIIIIII
5 10 15 20 25 30

node

Figure 4.17: Node distribution of the weighted, directed karate network
with partial congestion.
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A suggestion as to how one should quantify the congestion of a network
would be to compute the relation between the between the simulated and
theoretical equillibrium state entropy,

: Ssimulated
Congestion = —2ec

theoretical '

This number would be ranging from 0 to 1, where 0 indicates the case
where all the walkers are at one node and there is no traffic on any link,
and 1 indicates no congestion. The values for the three cases considered
in this section is given in table 1

Network Ssimulated Stheoretical Congestion
No Congestion 6.1356 6.1356 1
Full Congestion 3.6389 6.1115 0.5954
Partial Congestion 5.5252 6.1137 0.9037

45



CHAPTER 4 EVALUATION OF THE DYNAMIC
NETWORK ENTROPY

4.2.3 Mixing of Networks

Having two networks with an initial configuration of walkers on each of
them, should lead to an equilibrium entropy larger for the resulting system
than if the two systems were kept separate. The mixing is performed by
at time= t,,7x changing the adjecency matrix to include a link between
two chosen nodes in network A and B, according to algorithm The
algorithm gives Lap =L+ Lp + 2

Entropy development for networks A and B. Connected at t=20.

X 105 50000 walkers start at node 1 in A,100000 walkers start at node 1 in B.
10
9
8
7
3 6
]
c 5
w
4
3
2
1
0
10 20 30 40 50 60 70 80 90 100
Timesteps

Figure 4.18: Entropies for the unweighted, undirected karate network (A)
and an unweighted 11x11 square lattice network (B) connected together
at time t with a link between node 1 in A and B, with weight 1 in both
directions. The connection is indicated by the vertical black line. The
blue and red areas shows the entropies for A and the B respectively. To
the right of the black line, the areas show the entropy of A and B as they
would have developed without connection. The green area shows the extra
contribution from the connection between the two networks.
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The entropy after mixing of two networks behaves as expected from equa-
tion ({3.4]), with

ST = mnyu-In(Ly) = 50000 - In(156) = 2.5249 - 10°,

S% = np-In(Lg) = 100000 - In(484) = 6.1821 - 10°,

S35 = (na+np)-In(Ly+ Ly +2) = 150000 - In(642) = 9.6969 - 10°.

These results shows how the suggested entropy fulfills yet another property
commonly associated with the thermodynamic property.
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Chapter 5

Applications

The suggested dynamical entropy has so far satisfied the properties ex-
pected from its thermodynamic analogue, and it is therefore useful to
show some applications of the variable. Some applications of the variable
follows here.

5.1 Determining Node Centrality by Use of Start
Node Variation

The information of which nodes in a network that are the most important
cab be concidered by looking at what we define as node centrality. This
attribute is very interesting in many cases. For instance, if the network
models a car traffic network, with links as roads and nodes as intersec-
tions. In this case the most central node will be the intersection with most
traffic on it, and thus the intersection most probable to be congested. If
the network models the internet, the most central nodes are the servers
most vital to keeping the internet online, and should therefore be more
protected against hacker attacks. In general, the centrality of the nodes is
valuable information about how important each node is to sustaining the
information flow through the network.
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5.1.1 Method

The method is based on the fact that the more central a node is, the faster
the information from this node will disperse evenly over the network, i.e.
reach S°°, faster. For a demonstration of this property, see figure [5.1.1
Have all the walkers start at one node and log the entropy after a time
T. For times 0 < T < Tge, the entropy will increase towards S*°. Tge
is the time when equilibrium is reached. The relative difference in values
after the same time T' chosen to be at a time where walkers are dispersed
to all of the nodes, but for less than the lowest T~ across all nodes, gives
the relative centrality of the nodes. The method is given step by step in
algorithm

Algorithm 3 The variation of walker start node method, returning a
entropy at time T for each of the nodes
Given a time, T, number of walkers, n, and the Adjecency matrix, W
entropies(1:length(W))=0
for i=1:length(W) do

for t=1:T do
Perform algorithm
end for
entropies(i)=entropy(T)
end for
N=newN
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5.1 DETERMINING NODE CENTRALITY BY USE OF
START NODE VARIATION

Comparison of the entropy per walker for different start nodes the for walkers.
Here node 1 and 17 in the unweighted karate network.

Entropy

15F Entropy with start at node 1

Entropy with start at node 17

10 Theoretical equilibrium entropy = In(156)=5.0499
1 1

5 10 15 20 25
Timesteps

Figure 5.1: Comparison of entropy development for different cases of
walker start distribution. Here, node 1 and 17 in the karate network
are chosen, because from the illustration of the network, figure node
1 is very central, and node 17 is located in the periphery of the network.
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CHAPTER 5 APPLICATIONS

In order to show that the method works satisfactory, a centrality network
is constructed. This network is a simple 7-node network, with node 4
being obviosly the most central. When the method is run on this network
it should give a higher relative S(7") value for 4 than for the other nodes

VAVAN
/\

Figure 5.2: The centrality network is designed to have a node with a higher
centrality than the others, here node 4.
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5.1.2 Results

When performing the variation of start node algorithm on the constructed
centrality network, it is evident that it behaves as expected. When all
of the walkers started on thecentral node, the entropy had propagated
closer to the maximum after T' = 3 timesteps, than for the other more
peripheral nodes, see figure [5.1.2] For all starting positions, the system
would eventually move towards the same So.

Entropy per walker reached for each node using the start node variation algorithm
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Figure 5.3: Entropies reached using the variaton of start node method on
the centrality network after T' = 3 timesteps.
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CHAPTER 5 APPLICATIONS

The results of the variation of start node method on the centrality network
was fairly easy to predict. For the unweighted karate network, it is not
as trivial. If one consider the graphical representation in figure
one expects that the central nodes, such as node 9, 20 and 3 would be
more central than the obviously peripheral nodes 12 and 17. For the rest,
however, the results are not given.

Entropy per walker reached for each node using the start node variation algorithm
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Figure 5.4: Entropies reached using the variaton of start node method on
the unweighted karate network after T = 5 timesteps. Bars are added to
make it easier to see which value represent each node.
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5.1 DETERMINING NODE CENTRALITY BY USE OF
START NODE VARIATION

In figure the results are shown for performing the variation of start
node method on the unweighted karate network. As expected, the most
central nodes are nodes 3 and 9, with node 20 also having a high value.
The least central node was node 17, which is also as expected. In addi-
tion to these points few interesting observations can be made as to how
this method creates this hierarchy. From merely observing at the graphi-
cal representation of the network, one could easily assume that node 6 is
more central, as it is linked to node 1 in the same manner as node 12, and
also to additional nodes. Node 1 is important because it has a very high
degree, 16, compared to the other nodes in the network. Getting walkers
there is therefore very important to speed up the spreading of them, i.e
augment the entropy. The reason node 12 is deemed more central than
node 6 is that node 12 immediately sends all of its walkers to node 1,
whereas node 6 disperses it equally between node 7, 17, 11 and 1.
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CHAPTER 5 APPLICATIONS

As a confirmation, the method is also run on the uniform unweighted 15 x
15 square lattice network, and as expected, the distribution is completely
uniform, as no nodes are more central than others, see figure [5.1.2

Entropy per walker reached for each node using the start node variation algorithm
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Figure 5.5: Entropies reached using the variaton of start node method on
the 15 x 15 square lattice after T' = 5 timesteps.
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5.2 MIRROR NETWORK TO FIND DISTANCES
BETWEEN NODES

5.2 Mirror Network to Find Distances Between
Nodes

In this section, the method of variation of start node will be used to
create an hierarchy for the distance from one distinct node to the rest.
This knowledge is valuable in the same way that centrality is valuable in
order to understand the importance of nodes. It should be noted that the
distance in question is not the geodesic distance, i.e the shortest possible
distance, but the distance in terms of the time it takes to get information
through the network from one node to another.

5.2.1 Method

The method is first a manipulation of the adjecency matrix in question,
followed by the method of variation of start node. The method originally
finds the most central node as the highest entropy after time 7', and the
others are hierarchally lower at the same time. The manipulation per-
formed on the network in this method, is to copy the entire network into
a mirror network, then combine the original network with the mirrored
network at the node of interest. What is achieved by doing this is that
the node of interest will become the most central node. The algorithm
for this mirroring is shown in algorithm 4} and an illustration is given in

figure 5.2.1]

Algorithm 4 The method of mirroring a network A, getting a new net-

work C
Given an Adjecency matrix, A, and node of interest, x

B=A

combine matrices A and B by algorithm [2] into C
C(x, length(A)+x)=1

C(length(A)+x , x)=1
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CHAPTER 5 APPLICATIONS

Figure 5.6: This is an illustration of the mirroring and connection to the
mirror image of the karate network seen in figure|d.1.1l The red line shows
the connection between the node of interest and its mirror node, here node
17. Mirror nodes are represented by their numbers being mirrored.
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5.2 MIRROR NETWORK TO FIND DISTANCES
BETWEEN NODES

5.2.2 Results

In order to demonstrate the information given by this method, it is use
to consider the 15 x 15 square lattice network. If on chooses the node of
interest to be the center node, the distance from this node to the others
should be larger the further from it one gets. This is certainly the case,
and it is well demonstrated by the plot in figure [5.2.2] and even better by
the 3D-plot of the same entropies in figure

Entropy per walker reached for each node using the imaging algorithm.
Timesteps=15. Node of interest is node 113
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Figure 5.7: The mirror method performed on a 15 x 15 square lattice
matrix.
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CHAPTER 5 APPLICATIONS

Entropies per walker reached for each node using the imaging algorithm.
Timesteps=15. Node of interest is node 113

Figure 5.8: A 3D-representation of the imaging method performed on a
15 x 15 square lattice network. The node in the center of the surface is
the node of interest. The square lattice is represented by the xy-plane,
and the z-axis is the entropy.

The method was also performed on the unweighted karate network. Here
it was chosen to use node 17 as the node of interest, so the mirroring would
be of the form depicted in figure From again observing figure [£.1.1]
it was expected that nodes 7, 5 and 6 were the closest, and nodes on the
other side of the figure, such as 27 and 15. These results were as expected,
with low values for them both. Interestingly, the results shown in figure
indicated that the node with the longest distance from node 17 is
node 28.
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5.2 MIRROR NETWORK TO FIND DISTANCES
BETWEEN NODES

Entropy per walker reached for each node using the imaging algorithm.
Timesteps=8. Node of interest is node 17
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Figure 5.9: Entropies reached using the variaton of start node method on
the karate network. Bars are added to make it easier to see which value
represent each node.

This method measures the flow of information from the other nodes to the
node of difference. This is distance is not necessarely the same in the other
direction. Therefore, the method is limited in the way that one could only
say in relative terms which nodes will be able to get information to the
node in question, fastest and not the other way around.
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Chapter 6

Conclusion and Further

Work

6.1 Conclusion

In this thesis, a suggestion for a dynamical entropy as a function of walker
traffic on the links between nodes in a network has been put forward.
It was calculated for a diffusion process without constraints on various
networks, and in these networks it behaved as expected when concidering
the analogous variable in thermodynamics. The cases of directed systems
where the theoretical value of equilibrium entropy was not reached do not
break with the definition of the second law of thermodynamics. This is
because the law is only expected to be valid for systems without constraints
or perturbations, which directional links must be said to be.

The applications that were suggested were to some degree limited in their
use, as they are just valid for the processes studied, and even under
these terms, only relative values were given for centrality and informa-
tion spreading distances. They are meant as suggestions for how one can
go about to seek the meaning of the dynamical entropy in some networks,
and should be considered under these terms.
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CHAPTER 6 CONCLUSION AND FURTHER WORK

6.2 Further Work

Regarding the further studies of the defined entropy, its behaviour should
be examined for different processes on systems , as it is reasonable to
expect that the entropy should be valid for any kind of processes on net-
works, though the processes should lead to a finite state dispersion of the
particles in question for the value to have any practical importance. Types
of networks that the entropy should hold for uncludes networks with sinks
and sources, and limitations of node populations and link traffic. Networks
that are developing in time are also natural to consider.

If one considers an real world car traffic network, and models it with a
weighted adjacency matrix, the method of node variation could be used
to explore whether frequently congested intersections corresponds to the
most central nodes in the network. Assumingly, there have already been
performed simulations of such problems, but it would be interesting to
compare these results with the approach suggested in this thesis.

Models of desease spreading have been studied using diffusion processes
earlier, and attacking the problem with an entropy approach could in
some cases provide new knowledge. As the entropy is a function of both
the processes taking place and the networks topography, it could very well
provide new knowledge as to how the topography would affect whether a
desease will reach an endemic or pandemic state on the network.

Another area of interest would be to check whether applications of entropy
in other fields could be modeled in a network and to see if the entropy
behaves in the same manner. An example of this is the entropy of a chem-
ical reaction between gases. One could, on a network, define two different
populations of particles, A and B, which would react with each other to
create a new particle C, A + B — C An unconstrained network would
merely work as the container for these reactions, and if the right defini-
tion of the different entropies are chosen, it should behave accordingly to
models

As diffusion processes has already been used to find topographical prop-
erties of networks, the entropy could provide further information to this,
complementing what is already known. By running entropy simulations
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6.2 FURTHER WORK

on systems that have the same degree-distributions, but different cluster-
ing properties, one should expect to find some sort of relation between
the time taken for the entropy to reach an equilibrium and the degree of
clustering. Higher clustering would impede efficient spread of information,
and should therefore give rise to longer times.

Lastly, the meaning of the dynamical entropy for a system, and what it
can be used to study, is still not decided. The high importance of entropies
in other systems could, however, give hope to the notion that the variable
can be used to give new information to the field of networks, or in the
very least, a new approach to the problems.
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