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Indentation tests provide a simple means to study the inelastic behavior of ice and other 12 

materials when loaded under a compressive stress state. Such tests provide force-time plots 13 

which are often converted to pressure-area (PA) curves. For ice, PA curves are widely used in 14 

the design of ships and offshore structures. Despite their usage, and despite many attempts to 15 

relate empirical results to theory, the mechanics underlying PA curves is not clearly 16 

understood. In this paper, it is shown that by taking into account the strain-softening behavior 17 

of ice when rapidly deformed beyond terminal failure within the regime of brittle behavior, 18 

two effects can be explained: the decrease in pressure with increasing area, termed the 19 

indentation size effect; and, for a given area, the increase in pressure with increasing radius of 20 

indenter, termed the indenter radius effect. The analysis is supported using published data on 21 

freshwater, polycrystalline ice that have been obtained using spherically shaped indenters. 22 

The indentation size effect for ice reflects a similar effect found in ceramics and rock, but is 23 
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opposite to the effect found in metals where, owing to strain hardening, indentation pressure 24 

or hardness increases with increasing area. 25 

 26 
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1. Introduction 29 

The present study follows from Sanderson‟s work and is motivated by a number of 30 

observations and a number of engineering experiences at different scales on the indentation of 31 

ice. Ever since Sanderson (1988) found that the pressure to indent ice decreases with 32 

increasing area, many attempts have been made to explain the relationship. Although initially 33 

controversial, the trend of decreasing global pressure with increasing contact area now 34 

appears to have been accepted by the international engineering community (see Table 1). 35 

Upon reviewing design practices and recommendations for offshore structures and for ships, 36 

we find that it is commonly accepted that, provided ice is indented rapidly enough to impart 37 

brittle behavior, ice pressure is in accordance with Sanderson‟s pressure-area relationship: 38 

 39 

p=CA
q
, [1] 40 

 41 

where C is a proportionally constant (to be discussed further), p is defined as the design 42 

(maximum/failure) load divided by either the apparent projected contact area or the local 43 

design area, and where ‒0.7≤q≤0.0. The value q=0.0 implies no size effect, which is the case 44 

for ductile behavior. 45 

Generally, the derivation of design pressures is based on experimental data that are 46 

obtained from a variety of sources, including structure-ice interactions, ship ramming trials, 47 

borehole-jack tests, indentation tests and flat-jack tests. Also, the data come from different ice 48 
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types and geometries and from different geometries of the structure. The data, therefore, are 49 

scattered, by as much as an order of magnitude or more for a given contact area. In an attempt 50 

to isolate key parameters, including confinement, contact aspect ratio, interaction rate and ice 51 

characteristics (temperature, salinity, density, grain structure, loading direction, failure mode), 52 

Timco and Sudom (2013) noted that the information is too limited to allow definitive 53 

conclusions. The challenge of understanding ice indentation and pressure-area relationships 54 

thus remains. 55 

 56 

Several explanations of the pressure-area relationship (Eq. 1) have been offered. Some 57 

workers have attempted to explain the pressure-area relationship in terms of the flaw statistics 58 

of the specimen (Sanderson, 1988). Palmer and Sanderson (1991) used the concept of fractals 59 

combined with linear elastic fracture mechanics to explain the pressure-area effect. Palmer 60 

and Sanderson (1991) and Palmer et al. (2009) indicated that a simple dimensional argument 61 

could explain the pressure-area curve. Schulson and Duval (2009) showed that the pressure-62 

area effect follows from Griffith‟s theory of brittle fracture and also from the concept of 63 

ductile-to-brittle transition. Owing to a non-uniform distribution of the force between ice and 64 

a structure (i.e., evidence of force concentration in high pressure zones (hpz‟s)), Palmer et al. 65 

(2009) made a distinction between the area over which a force is measured and the area that 66 

controls the force. Their explanation is based on the idea that only one hpz is present within 67 

the contact area over which the total force is measured. 68 

1.1 Questions and approach 69 

 70 

Noteworthy, by its absence in any of the PA explanations, is a reference to the stress-strain 71 

constitutive relationship of ice as a material. Absent, too, is the geometry of the indenter. To 72 

us, that seems like a shortcoming. Thus, this paper addresses two questions: 73 
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 74 

 Given that pressure (p) and contact area (A) are the measurable quantities and 75 

that C and q are the proportionality coefficient and exponent uniting these 76 

measurable quantities, such that p=CA
q
, do C and q relate to the material 77 

properties of ice and to the system parameters of the indenter?  78 

 And, for a given shape of indenter, do C and q vary with indenter size?  79 

 80 

To those ends, our approach is first to review relevant experimental observations on the 81 

indentation of ice, and then to offer a new constitutive-based, phenomenological explanation 82 

of the effects on pressure of both indentation size and indenter radius. In the interests of 83 

clarity, we limit our discussion to the rapid indentation of freshwater, polycrystalline ice at 84 

temperatures of around ‒10°C by spherically shaped indenters with radii from 5 mm to 2300 85 

mm. The term „rapid indentation‟ is used here to indicate that ice exhibited characteristics of 86 

brittle compressive failure: radial cracks, saw-tooth load behavior, etc. We consider only 87 

results from tests where possible effects of sample boundaries were minimized by careful 88 

selection of the sample size, of the indenter size and of the experimental setup. In other words, 89 

we consider results only from tests that correspond to so-called full confinement indentation 90 

(as defined by Blanchet and DeFranco, 2001) or to indentation into an ice wall (Sodhi, 2001). 91 

Finally, in the interests of placing the behavior of ice within the context of materials behavior 92 

as a whole, we note that ceramics and rock also exhibit a reduction in indentation pressure 93 

with increasing area, and that metals, owing to their ability to strain harden, exhibit an inverse 94 

relationship. 95 

To some extent our work is motivated by the findings of Masterson et al. (1992) who 96 

wrote: “The curves [referring to PA curves] indicate that indenter curvature affects the 97 

pressures measured. In fact, Figure 16 suggests that, as plate curvature increases for a 98 
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specific contact area, the pressure is decreasing. This may be explained by noting that a flat 99 

surface (i.e. curvature tending to zero) presents a greater degree of confinement when 100 

compared to more rounded surfaces (i.e. increasing curvature) for the same contact area.” 101 

Where we differ, is to focus not on confinement as the principal factor underlying PA 102 

relationships, although confinement is certainly present and probably a contributing factor, 103 

but to focus on ice as a material.  104 

 105 

1.2 List of symbols 106 

 107 

 108 

2. Observations 109 

A contact area 

a chordal radius of indentation 

C, q proportionality constants 

E
*
 effective elastic modulus 

F
 

indentation force 

H hardness 

ka Auerbach constant 

p contact pressure 

pG global contact pressure 

pL local contact pressure 

R indenter radius 

s, f1, f2 numerical factors 

u penetration depth 

α, β, b, c, k, km, m, n  material constants 

ε,   strain and strain rate, respectively 

σ representative failure stress  



 6 

 110 

A short summary of the selected tests is given in appendix. Detailed descriptions can be 111 

found in the corresponding literature. 112 

Figure 1 shows a summary PA plot on semi logarithmic scale, derived from the collection 113 

of indentation and impact tests (Appendix A). Data for 5 and for 12.7-mm indenters are from 114 

the constant velocity experiments by Kim et al. (2012), for 100-mm indenters are from a drop 115 

test in Timco and Frederking (1993), for 200‒1280 mm and for 2300-mm indenters are from 116 

Masterson et al. (1992) and from Masterson and Frederking (1993), respectively. In using 117 

these experimental data, we assumed that the sampling frequency was high enough to capture 118 

pressure peaks. 119 

 120 

Looking at the data in Figure 1b, one of the possible interpretations is the following: for 121 

the range of 0.003‒10 m
2
, there a weak PA effect. The data is highly scattered. The pressure 122 

values vary nearly by an order of magnitude for any given area. Similar thinking can be 123 

applied to the data in Figure 1a. In this case, there is really no PA effect for the contact areas 124 

between 10
‒5

 and 10
‒3

 m
2
. However, if one looks at individual data sets (Figures 1a and 1b), 125 

two points are noteworthy: firstly, the variation of pressure with contact area exhibits self-126 

similarity; that is, for different radii of indenter, pressure decreases with increasing (projected) 127 

contact area. And secondly, as first suggested by Masterson et al. (1992), for a given contact 128 

area the pressure is higher for larger radius indenters. Masterson‟s observation was made 129 

under conditions where temperature, ductile/brittle behavior and ice type were roughly the 130 

same.  131 

As an illustration of the latter point, Figure 1b shows that if one follows up any line of 132 

constant area (e.g., A=1.0 m
2
), the higher pressure values are generally seen with larger radius 133 

indenters. This point is reminiscent of an observation by Timco and Sudom (2013) who 134 
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examined pressure-area data, Figure 2, for both narrow and wide structures subjected to ice 135 

action in the field. For global ice action, they observed similar pressure-area dependency, i.e., 136 

in the relationship p=CA
q
, they found (for p in MPa and A in m

2
) the exponent q= ‒0.27 and 137 

q= ‒0.42, for narrow and wide structures, respectively, while C=1.06 for narrow structures 138 

and C=6.02 for wide ones (Figure 2a). The local pressures measured on the narrow structure 139 

were lower than those measured on the wide structure (Figure 2b). Timco and Sudom (2013) 140 

attributed this behavior to confinement which is expected to be higher for thicker ice 141 

experienced by the wider structure. 142 

 143 

From Figure 1, Table 2 summarizes values derived for the parameters C and q in the PA 144 

relationship (Eq. 1). Values in parentheses correspond to q= ‒0.5. C and q were derived using 145 

a curve fitting application (cftool) in Matlab. The table shows that when indenters of different 146 

radii are used, the values of C and q change. The value of q shows no systematic dependence 147 

on indenter radius, but C increases with increasing radius, Figure 3. Taking q= ‒0.5, the 148 

corresponding value of C scales with radius as C=1.9R (R is in meters) with a goodness of fit 149 

of R
2
=0.69. For very small indentation depth (i.e., of the order of a few grain diameters), the 150 

absolute value of q increases (see test with 200 mm indenter in Table 1), implying a lower 151 

limit to the validity of the pressure-area relation (more below). 152 

 153 

To summarize, the data from indentation tests on polycrystalline, freshwater ice rapidly 154 

loaded by a spherically shaped indenter at ‒10
o 
C exhibit two size effects:  155 

 156 

1. an indentation size effect in which indentation pressure decreases as the size of the loaded 157 

area increases. The relationship p=CA
q
 is found to hold for indenters submerged almost to 158 
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their diameters. However, for loads giving small indentations with respect to the grain 159 

diameter, the relationship is inapplicable; and 160 

2. an indenter radius effect in which, for a given contact area, indentation pressure increases 161 

with increasing radius of the indenter. 162 

 163 

3. Explanation of the pressure-area curve in terms of materials behavior 164 

 165 

The discussion in this section centers on placing the behavior of ice within the context of 166 

materials behavior as a whole. 167 

3.1. Definitions 168 

 169 

Within the context of materials behavior, indentation pressure is equivalent to hardness 170 

‒the material resistance to inelastic deformation by indentation. Like indentation pressure, 171 

hardness H was defined by Meyer in 1908 and described by Barnes et al. (1971) for ice and 172 

by Tabor (2000) for metals as: 173 

 174 

2a

F
pH


  [2] 175 

 176 

where F is the indentation force and a is the chordal radius of indentation, Figure 4. Unlike 177 

indentation of ice, an indentation test on a metallic (or ceramic) material usually consists of 178 

performing an indent at the surface of the material by the penetration of a rigid indenter at a 179 

given indentation load for a given time. 180 

 181 

Further, we define a „representative‟ stress σ acting on the whole material beneath the 182 

indenter, even though stress varies spatially. The representative stress is a function of 183 
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hardness σ=f(H). Also, we define a „representative‟ inelastic strain (Eq. 3a and 3b) within the 184 

contact zone, even though strain also varies spatially. We consider two definitions of strain. 185 

One is from Tabor (2000): 186 

 187 



 


















R

a
m

R

a
 [3a] 188 

 189 

where m, β are material constants with positive values and R is the radius of the indenter. The 190 

other definition of strain is one that we introduce: 191 

 192 

as

u

a

u











 , [3b] 193 

 194 

where u is the penetration distance and s is a non-dimensional factor, such that the product s∙a 195 

characterizes the depth at which the inelastic strain is almost zero. 196 

To relate indentation area to strain, we note that for a spherically-shaped indenter the 197 

projected area A is a function of u: 198 

 199 

)2( 2uRuA  . [4] 200 

 201 

Solving Eq. (4) with respect to u and taking into account the fact that the maximum 202 

indentation is limited to the indenter radius, we get: 203 

 204 

2
1

R

A
RRu


 . [5] 205 

 206 
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Given that A=πa
2
 we can then rewrite strain in terms of area. Then Eq. 3a: 207 

 208 





















R

A
m  [6a] 209 

 210 

and from Eq. 3b: 211 

 212 
















2
1

1

R

A
RR

As 


.

 [6b] 213 

 214 

Since the representative stress is a function of hardness, we can express pressure/hardness-215 

area curves in terms of stress-strain characteristics. For comparison, Figure 5 presents 216 

schematic stress (pressure/hardness)-strain (area) curves for ductile metals and brittle 217 

ceramics and for ice. Ductile metals exhibit strain hardening (Tabor, 2000), while ceramics 218 

(Gong et al., 1999) and ice (Golding et al., 2012) exhibits strain softening once terminal 219 

failure sets in. The q-values in Figure 5 are justified below. 220 

 221 

3.2. Materials-based explanation of size effects 222 

 223 

Before accounting for the hardness (pressure)-area relationship in ice, we first describe 224 

similar relationships for metals, ceramics and rocks, to show how ice fits a pattern exhibited 225 

by other materials. 226 

 227 

3.2.1. Ductile solids (e.g., metals) 228 

 229 
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For ductile metals, Tabor (2000) expressed the constitutive stress-strain relationship as:  230 

 231 

 b , [7] 232 

 233 

where α>0 represents strain-hardening behavior and ε is described by Eq. 3a. Then from Eq. 234 

2: 235 

 236 

. [8] 237 

 238 

where c is a constant. Equation 8 may be rewritten as: 239 

 240 

qCAA
R

cbm
R

a
cbm

R

a
cbpH 


































  











 5.05.01
, [9] 241 

 242 

where  and . For ductile metals, α and β, and hence q 243 

have positive values (Tabor, 2000), and so for that material, the hardness/pressure increases 244 

with increasing area of indentation and the coefficient C decreases with increasing radius of 245 

the indenter. This behavior is a direct result of the strain hardening character of metals and is 246 

opposite the behavior exhibited by ice.  247 

 248 

The fact that q>0 for metals is evident from Meyer‟s (1908) law. That law states that for an 249 

indenter of fixed diameter, the relationship between the load F and the chordal diameter 2a of 250 

the indent is F=km(2a)
n
, where km and n are constants for the metal under examination. 251 

Dividing Meyer‟s expression by the area of indentation A=πa
2
 and expressing a via A, we 252 

obtain the following hardness-area relation H=p=CA
q
, where C=2

n
·π
‒0.5n

·km and q=0.5n‒1. 253 




c
a

F
pH 

2

qkRRcbmC 25.0     5.0q
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Tabor (2000) noted that for ductile metals Meyer‟s exponent n is generally greater than 2.0 254 

and usually lies between 2.0 and 2.5. Consequently, for metals, q lies between 0.0 and 0.25. 255 

Meyer (1908) found experimentally that the index q was almost independent of R but C was 256 

proportional to R
‒2q

. Equation 9 derived from stress-strain relationship supports this 257 

observation. Tabor (2000) added that, because at very small loads deformation is essentially 258 

elastic, there is a lower limit to the validity of Meyer‟s law, given as a/R=0.1. 259 

 260 

3.2.2. Brittle solids (e.g., ceramics and rock) 261 

For ceramics, the relationship between hardness and contact area (or indentation size 262 

effect) is opposite that of metals and similar to that of ice. The relationship may be expressed 263 

using Auerbach‟s (1891) law. The law states that the force F required to produce a cone crack 264 

is proportional to the radius of the indenter R such that F=kaR, where ka is the Auerbach 265 

constant. Rock, too, obeys Auerbach‟s law (Lundquist, 1981, Momber, 2004). Following 266 

Fischer-Cripps (2007), we can rewrite F in terms of the chordal radius a using Hertzian 267 

contact equations for a spherical indenter and a flat surface. Accordingly: 268 

 269 

5.1

5.0

*

3

4
aEkF a 








 , [10] 270 

 271 

where E
*
 is an effective elastic modulus that takes into account Poisson‟s ratio and the 272 

modulus of both the indenter and the specimen. (The expression for E
*
 can be found in 273 

Fischer-Cripps (2007)). We can rewrite Eq. 10 as p=F/A=CA
q
, where  274 

 275 

5.0

*

5.1

1

3

4








 EkC a


 [11] 276 

 277 
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and q= ‒0.25. Moreover, Gong et al. (1999) pointed out that Meyer‟s law is applicable to a 278 

variety of ceramics and that for those materials Meyer‟s exponent n= 1.5 to 2. 279 

Correspondingly, q= ‒0.25 to 0.0. A satisfactory explanation of the physical meaning of these 280 

relationships (for both ceramics and rock) is still lacking, but may reside in the explanation 281 

we propose below for ice. 282 

 283 

3.2.3. Polycrystalline ice 284 

Returning to the two size effects observed for ice, we base our interpretation on the strain 285 

softening behavior that ice exhibits once terminal failure is reached. The indentation analysis 286 

presented in this section assumes that the representative volume of the material has passed 287 

through the point of terminal failure such that strain softening takes place. This is a reasonable 288 

assumption because characteristics of brittle compressive failure (i.e., radial cracks, saw-tooth 289 

load behavior) were evident in all tests considered. Strain softening is evident from 290 

compressive stress-strain curves when ice is rapidly loaded (to impart brittle behavior) under 291 

triaxial states of stress (e.g., see Golding et al., 2012).  292 

Following Tabor‟s (2000) analysis for metals, the principal difference for ice is that α<0 293 

(in Eq. 7). This implies that q<0, as observed. It could then be said that ice exhibits an 294 

„inverse‟ indentation size effect, relative to the one seen in metals. Correspondingly, the value 295 

of the constant C in the PA relationship is expected to increase with increasing R, as shown in 296 

Figure 3. 297 

Qualitatively, therefore, the two size effects exhibited by the indentation of ice can be 298 

explained in terms of its strain softening behavior. Quantitatively, we caution against 299 

quantifying both C and q from Eq. 9 as we do not have independent measurements of the 300 

material constants in that relationship. 301 

 302 
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The two size effects can also be derived phenomenologically by using the second 303 

definition of strain, Eq. 3b. Accordingly, consider two indenters of radii Rl and Rs such that Rl 304 

> Rs. When the chordal radii of imprints left by indenters are equal al =as (i.e., the contact area 305 

A is the same), the smaller radius indenter creates a deeper crater, i.e., us > ul where u is the 306 

depth of imprint. Assuming that both us and ul fulfill the requirements of continuity, we then 307 

can establish the ratio of strain created by the smaller radius indenter to that created by the 308 

larger radius indenter. 309 

 310 

l

s

sl

ls

l

s

u

u

au

au





, [12] 311 

assuming that sl = ss. 312 

Substituting Eq. 5 into Eq. 12 we get: 313 

 314 

)1(

)11(1

2

1

2

2

1

f

f

f

fl

s









, where 

s

l

R

R
f 1  and 

22

sR

A
f




.

 [13] 315 

 316 

Moreover, f1 ≥1.0 and 0<f2≤1.0. The ratio of strains is weakly dependent on the magnitude 317 

of f2 , as can be seen by plotting εs/εl against f2 for different values of f1. (For example, for f1 318 

=2.0, εs/εl approaches a constant value equal to f1 ). Hence, the representative strain generated 319 

by the smaller radius indenter is higher than that generated by the larger radius indenter.  320 

 321 

Now we relate the strains to the stress levels. Figure 6 shows stress vs. time and strain vs. 322 

time plots obtained by Golding et al. (2012) from ice loaded triaxially under high degree of 323 

confinement. From Figure 6, assuming that strain softening will continue to large strains, one 324 

can see that, the representative stress (σ11) is expected to be higher for the larger radius 325 
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indenter and so does the hardness. This means that for a given contact area A, the hardness 326 

under the larger radius indenter will be higher than that under the smaller radius indenter. It 327 

can also be interpreted that C in the equation p=CA
q
 gets larger with increasing the radius of 328 

indenter. This is indenter radius effect we were looking for. 329 

 330 

To summarize, we have applied two slightly different definitions of inelastic strain in an 331 

attempt to explain two size effects observed during the indentation of polycrystalline ice. 332 

First, we borrowed the definition of strain from metallic materials and applied the continuum 333 

indentation analysis of Tabor (2000). In the second approach, we used another definition of 334 

strain that takes into account the size of the deformation region below the indenter. We 335 

utilized the experimentally found stress-strain relationship for the ice loaded tiaxially under 336 

high degrees of confinement. In so doing, we were able to account for both the indentation 337 

size effect and the indenter radius effect. 338 

 339 

4. Discussion 340 

Ice pressure is a function of many variables not just the contact area. But, in Sanderson‟s 341 

PA relation, the other variables are hidden in the proportionality constants C and q. This paper 342 

has re-examined full and laboratory scale data on freshwater ice indentation with spherically-343 

shaped indenter tips and has addressed two questions. Firstly, given the PA relation (Eq. 1), 344 

do C and q relate to the material properties of ice and to the system parameters of the 345 

indenter? The answer is yes, as taking into account strain-softening behavior of ice, the 346 

parameters C and q can be expressed in terms of material parameters (strain softening 347 

exponent, etc.); see Eq. 9. Secondly, for a given spherical indenter tip, do C and q vary with 348 

indenter tip radius? The analysis in this paper has shown that that the coefficient C increases 349 
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with increasing size of the indenter, but the exponent q shows no systematic dependence on 350 

radius. 351 

So, what do we have now on Sanderson‟s pressure-area relationship p=CA
q
 that the earlier 352 

explanations (i.e., Palmer and Sanderson (1991), Palmer et al. (2009), Sanderson (1988) and 353 

Schulson and Duval (2009)) did not offer? In short, we have shown that the indentation of ice 354 

exhibits two effects of size, and we have developed greater physical insight into the 355 

coefficient C and the exponent q. Also, we have an appreciation that ice, when indented 356 

within the regime of brittle behavior, reflects behavior exhibited by other materials.  357 

On size effects, in examining only data that have been obtained under more or less one set 358 

of conditions ‒ indenter shape (spherical), temperature, rapid loading, confined freshwater ice 359 

‒ we have shown that indentation pressure depends on both indentation size and indenter 360 

radius, and that both effects can be explained in terms of the stain softening behavior of ice 361 

when rapidly deformed beyond the point of terminal failure. We expect that indenters of other 362 

shapes may lead to similar effects.  363 

On the parameters in Sanderson‟s relationship, earlier explanations found that q<0 for 364 

global pressure and, depending on which model one favored, led to specific, but different 365 

values: ‒0.5, ‒0.27, ‒0.25, ‒1.0. The present, constitutive based model also finds that q<0, but 366 

does not specify one value. Instead, the new model expresses q in terms of the product of the 367 

strain softening exponent α (Eq. 7) and the exponent β that relates inelastic strain to the ratio 368 

of the radii of the indentation and the indenter (Eq. 3a), q= ‒0.5αβ. At this juncture, there are 369 

no data available on the value of the either exponent, only the qualitative results (from stress-370 

strain curves in Figure 6) that α<0 beyond the point of terminal failure and that β>0. It is 371 

premature, therefore, to go further than we have. Our sense, however, is that the actual value 372 

of both exponents may be a function of the conditions of deformation (temperature, 373 

indentation velocity, grain size of the ice, etc.) and, thus, that the value of q depends 374 
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somewhat on the conditions of indentation. From a practical perspective, however, the value 375 

q= ‒0.5 seems to describe field data quite well. 376 

In terms of the coefficient C, earlier models were not informative. The present model, in 377 

comparison, expresses C algebraically in terms of a number of materials parameters (Eq. 9) 378 

and indenter radius. Again, since the values of material parameters are not available, it is 379 

difficult to specify C numerically. Yet, with respect to the objective of this study, the new 380 

model shows that C increases with the radius of the indenter, owing to the strain softening 381 

character of ice (α<0).  382 

Finally, the constitutive-based explanation has placed ice within the context of non-linear 383 

inelastic behavior of materials as a whole. 384 

 385 

5. Summary and conclusions 386 

 387 

This paper has been concerned with the situation where a hard, spherically shaped indenter 388 

of radius between 5 and 2300 mm is pressed rapidly into the flat surface of polycrystalline, 389 

freshwater ice at approximately ‒10°
 
C. This paper has addressed two questions regarding the 390 

pressure-area relationship for the indentation of ice: do the proportionality constants between 391 

the ice pressure and contact area relate to the material properties of ice and to the system 392 

parameters of the indenter, and do these proportionality constants vary with indenter radius.  393 

Analysis of field and laboratory data has shown that: 394 

 There are two effects of size on indentation pressure: an indentation size effect and 395 

an indenter radius effect. The indentation size effect means that the contact 396 

pressure p (hardness) decreases as the magnitude of the loaded area A increases. 397 

Accordingly, for conditions of brittle behavior, the relationship p=CA
q
 is found to 398 

hold for spherical indenters submerged almost to their diameters, where q<0. 399 
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However, for loads giving small indentations with respect to the grain size of the 400 

ice, the relationship does not apply. The indenter radius effect means that, for a 401 

given contact area, indentation pressure (hardness) increases with increasing radius 402 

of the indenter; i.e., that the coefficient C increases with increasing size of the 403 

indenter, but q is weakly dependent on radius. 404 

 The pressure-area relationship reflects semi-quantitatively the stress-strain 405 

constitutive relationship for ice as a material, particularly the strain-softening of ice 406 

when deformed beyond terminal failure within the regime of brittle behavior. In 407 

this regard, the indentation of ice is reminiscent of the indentation of metals, 408 

ceramics and rock. 409 

 A continuum indentation analysis, taking into account the strain softening character 410 

of the ice, can account for the two size effects. 411 

 412 

In the context of structure-ice interactions, the information presented in this paper can be 413 

helpful in establishing or interpreting the coefficients in the PA relationship for the scenarios 414 

of indentation into an ice wall. The link between a constitutive stress-strain relationship for 415 

ice and the resulting pressure-area dependency can be used in future mathematical models of 416 

ice crushing.  417 
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Appendix A 484 

 485 

Small-scale laboratory ice indentation tests (Kim et al., 2012) 486 

Load-time and displacement-time curves were used to access ice pressure. For each test, 487 

the local load-peaks were used to calculate pressures between the surface of the indenter and 488 

the indentation. Projected contact area at a given peak load was determined using the 489 

corresponding displacement of the indenter. The pressure was calculated as the ratio of the 490 

load to the projected area of indentation at the corresponding time step and corresponded to 491 

global ice pressure.  492 

 493 

Medium-scale indentation tests (Masterson et al., 1992) 494 

Masterson et al. (1992) and Masterson and Frederking (1993) used local peaks of the load-495 

time histories to construct pressure-area plots. The pressure on the projected area of the 496 

indenter was calculated as the measured load from the load cells divided by the contact area at 497 

the time of peak load. The surface contact area, calculated from indenter penetration as a 498 
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function of time, was used in the pressure calculations because for the maximum penetration, 499 

the difference between the projected and surface area was 5 percent or less. To access global 500 

pressures for the tests, we digitized using Java program “Plot Digitizer” the data available in 501 

Figure 14 of Masterson et al. (1992) and in Figure 6 of Masterson and Frederking (1993) for 502 

spherically shaped indenters.  503 

 504 

Laboratory impact tests (Timco and Frederking, 1993) 505 

Timco and Frederking (1993) calculated the average pressure as the ratio of the impact 506 

force (F) to the area (A) at the corresponding time step using force-time and displacement-507 

time curves. The impact force, in turn, was calculated from the measured acceleration (az) and 508 

known mass of the indenter (M) as F=Maz. The area of contact throughout the impact (A) was 509 

calculated from the geometries of the ice and the indenter by determining the penetration 510 

depth as a function of time from the acceleration record. To access pressures for the tests, we 511 

digitized (again using Java program “Plot Digitizer”) the data available in Figure 17 of Timco 512 

and Frederking (1993) for a spherically shaped indenter (Test J30-003). This gave us average 513 

global pressure versus projected contact area during the impact event. 514 

 515 

Tables 516 

 517 

Table 1. Summary of various pressure-area relationships in offshore codes and in ships 518 

rules; pressure is in units of MPa; subscripts G and L indicate global and local pressure, 519 

respectively. The definition of global/local pressure is adopted from Timco and Sudom 520 

(2013). 521 

Codes and rules PA-relation Contact area Comments 

Canadian Standard Association 

CSA S471-04, Clause E.6.2.3 

pG=26.9 A≤0.1 m
2
 

The constant coefficients 
have been multiplied by factors 

appropriate for the sea ice pG=8.5A
‒0.5

 0.1<A≤30 m
2
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a 
Derivation of pressure is based on the assumption that only one PA curve applies to all 522 

design conditions (Blanchet and DeFranco, 2001). 523 

 524 

 525 

Table 2. Summary of curve fitting parameters. 526 

Indenter Maximum C q Goodness  

pG=2.7A
‒0.165

 A≥30 m
2
 

regime with annual freezing 

degree days of 3000 to 4000 °C-

days. 

ISO (International Standard 
Organization) 19906, Clause 

A.8.2.4.3.3 

pG2.8A
‒0.15 

A = w∙h 
2.0≤A<200 m

2
 

In ISO, the global pressure 
is used in combination with ice 

thickness (h) and structural 

width (w). This pressure-area 
relation is an approximation for 

scenarios where first-year or 

multi-year ice of thickness more 
than 1.0 m acts against a vertical 

structure in Arctic areas. 

ISO 19906, Clause A.8.2.4.3.5 and  

Canadian Standard Association CSA 

S471-04, Clause E.6.2.3 (Random 
action) 

pG=CpA
Dp

, where 

Cp=3.0±1.5, Dp=‒0.4±0.2 
A<50 m

2
 

Determined using data 
collected during ship rams in 

multi-year ice, i.e., from the 

Kigoriak, Polar Sea, MV Arctic, 
Manhattan, and Oden icebreaker 

trials. 

ISO 19906, Clause A.8.2.5.3 
pL=7.40A

‒0.70
 

pL=1.48 

A≤10 m
2
 

A>10 m
2
 

Determined using data 
collected by Masterson et al. 

(2007). These include pressure 

from interactions with the 
Molikpaq structure, with 

Hobson‟s Choice ice island and 

also from indenter and flat-jack 
field tests. 

API RP 2N (American Petroleum 
Institute Recommended Practice), 

Clause 5.4.7a 

p
a
=8.1A

‒0.5
 

p
a
=1.5 

0.1≤A≤29 m
2
 

A>29 m
2
 

Corresponds to the average 

value +2STD for combined data 

for on Figure 11 in Masterson 

and Frederking (1993). These 

are taken from indenter and 

from flat-jack field tests, from 
ship ramming trials and from ice 

interactions with the Molikpaq 

structure and with Hobson‟s 
Choice ice island. 

IACS UR I2 (International 

Association of Classification Societies 
Unified Requirements), Background 

notes to design ice load 

pG=PoA
‒0.1

, 
where Po depends on the 

Polar Class of the vessel 
and varies between 1.25 

6.0. 

Calculated based on 

penetration depth, 
geometry of the ice 

edge and of the vessel 

For derivation of the oblique 
collision force on the bow. 

DNV (Det Norske Veritas) Rules 
for Classification of Ships, Part 5, Ch.1, 

Sec. 4, Clause D 400 

pL=CA
‒0.50

 

pL=CA
‒0.15

, 

where C is the correction 

factor depending on Ice 

Class and ice reinforced 
area in question. It varies 

between 2.4 and 5.8 in the 

bow and stem area. 

A≤1.0 m
2
 

A>1.0 m
2
 

The design pressure shall be 

applied over a corresponding 

contact area reflecting the type 
of load in question. 



 24 

radius 

(mm) 

penetration 

depth (mm) 

(MPa∙m
‒2q

) (-) of fit R
2
 

5
a
 5 0.053 (0.22) ‒0.64 (‒0.5) 0.99 (0.97) 

12.7
a
 12.7 0.11 (0.30) ‒0.63 (‒0.5) 0.98 (0.99) 

100 uncertain 0.60 (0.79) ‒0.55 (‒0.5) 0.68 (0.68) 

200 20 5.6·10
‒5

 (0.24) ‒2.3 (‒0.5) 0.91 (0.24) 

400 40 0.46 (0.92) ‒0.74 (‒0.5) 0.94 (0.99) 

900 90 1.04 (2.1) ‒0.92 (‒0.5) 0.63 (0.64) 

1280 128 4.4 (4.3) ‒0.50 (‒0.5) 0.90 (0.91) 

2300 230 3.3 (3.3) ‒0.44 (‒0.5) 0.79 (0.99) 

a 
tests with constant indentation speed 527 

 528 

Table A1. Summary of test parameters for the considered data sets. 529 

Data source Kim et al. (2012) Masterson et al. (1992) 
Timco and Frederking 

(1993), Test J30-003 

Test type 

indentation at a 

constant speed of 

5.08 mm/s 

indentation with a speed 

varying from 100 mm/s 

at the ice surface to zero 

after traveling a distance 

in the ice 

drop test with an 

impact speed of 3700 

mm/s 

Indenter 

hemispherical with 

R=5.0 mm and 12.7 

mm 

spherically shaped with 

R=200 mm, 400 mm, 

900 mm, 1280 mm and 

2300 mm 

spherically shaped with 

R=100 mm  

Ice type 

freshwater granular 

ice (grain size 1 to 

2.4 mm) 

iceberg ice (effective 

grain size 10 mm) 

freshwater columnar 

S2 ice (column 

diameter 1‒6 mm) 

indented along the 

columns 

Temperature ‒10°C ‒10°C ‒12°C 

Maximum penetration  0.08R‒R 0.1R 0.09R 

Time to maximum 

displacement 
0.2‒2.5 s 0.3‒3.6 s  0.006 s 

Sampling frequency 2 kHz 10 kHz 50 kHz 

 530 

Figure captions 531 
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Figure 1. Summary of pressure-area data from indentation and impact tests on freshwater 532 

ice with spherical indenters of different radii. 533 

Figure 2. Compilation plots of all measurements on field structures where the ice failed in 534 

a crushing mode; source: Timco and Sudom (2013), Figures 20 and 21. 535 

Figure 3. Indentation of freshwater, polycrystalline ice. Plot of C against R. Data taken 536 

from Table 1; C values are for q of ‒0.5. 537 

Figure 4. Illustration of the indentation problem (a‒chordal radius of indentation, u(t) 538 

‒penetration depth, F(t)‒indentation force, R‒radius of the indenter). 539 

Figure 5. Schematic representation of stress vs. strain relationship (or hardness vs. area 540 

curve) for ductile and brittle solids; logarithmic scales.  541 

Figure 6. Stress vs. time and strain vs. time from freshwater ice loaded at temperature of 542 

‒10°C and 1/s. Note that for an indentation test the first principal stress (σ11) is 543 

expected to be smaller due to shear (data from Golding et al., 2012). 544 

 545 

Figures 546 

 547 

  

(a) Constant indentation speed (unlimited 

energy in the interaction) 

(b) Variable indentation speed (limited energy) 

Figure 1. 548 

2

11 103 



 26 

 549 

  

(a) Global pressure vs. area (b) Local pressure vs. area 

Figure 2. 550 

 551 

 552 

Figure 3.  553 

 554 

 555 

 556 

Figure 4.  557 
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 558 

 559 

Figure 5.  560 

 561 

Figure 6.  562 


