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Abstract

A new method is presented for efficient calculation of auto- and cross-spectral
densities in the stochastic modelling of ocean waves and wave loads. As part of
the short-term response analyses, the method may contribute to more efficient
long-term response prediction. Specifically the cross-spectral densities of the
first order wave excitation forces are considered, but the method is straight-
forwardly generalized to other cross-spectral densities, e.g. for wave elevation,
wave kinematics or second order loads. The method can be used with any choice
of directional spreading function, but special attention is given to the commonly
used cos-2s type directional distribution. In addition to the development of the
new method, the traditional method using the trapezoidal rule for numerical
quadrature is improved by developing an adaptive way of choosing the number
of integration points. The accuracy of the adaptive method and the new method
is investigated, revealing rapid convergence for both methods. However, the new
method appears more robust as it avoids so-called spurious hat errors. When
applied to two different pontoon type floating bridges the adaptive method and
the new method both achieve a great improvement in computational effort com-
pared to the traditional trapezoidal rule method. When the dimensions of the
floating bridge increase, i.e. the number of pontoons and their relative distances
increase, the new method is superior with respect to computation time.

Keywords: stochastic processes, wave excitation loads, directional waves,
cross-spectral density, coherency, floating bridge

1. Introduction

For the assessment of extreme responses needed in the design of marine
structures a full long-term response analysis is the most accurate approach [1, 2],
and for fatigue design it is usually required [1, 3]. In the long-term approach
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structural response analyses have to be carried out for a large number of sea5

states, which can be very time-consuming. Over the last decade new methods
have been developed making long-term analysis more efficient, either by reducing
the number of required short-term analyses [2, 4] or by computing the relevant
short-term quantities more efficiently [5]. In the short-term response analysis
of marine structures the auto- and cross-spectral densities of the wave load are10

important quantities, and their computation may contribute significantly to the
computation time, for instance when the power spectral density method [6] is
applied. The method proposed in this paper contributes to more efficient short-
term analyses by making the evaluation of auto- and cross-spectral densities
more efficient.15

When the sea surface is modelled as a stochastic process the cross-spectral
density between the wave elevations at the points (xm, ym) and (xn, yn) can be
written as

Smn (ω) =

∫ π

−π
eiκ(ω)L cos(β−θ)S(2)

ηη (θ, ω) dθ, (1)

where κ(ω) is the wave number and S
(2)
ηη (θ, ω) denotes the directional wave

spectrum [7]. β and L are constants that depend on the spatial separations20

∆x = xm − xn and ∆y = ym − yn, see Section 2.3 for definitions. In [8] a series
expansion solution of the integral (1) is found by expressing the directional
spectrum as a Fourier series and solving the integral term-by-term using Bessel
functions, see also Section 7.2.1 of [7]. This series expansion is then used to
obtain equations for the unknown Fourier coefficients of the directional spectrum25

such that these can be evaluated from measured cross-spectral densities. This
paper deals with the reverse problem, as the aim is to evaluate the cross-spectral
densities when a theoretical model for the directional spectrum is assumed.

A consistent stochastic theory of ocean waves and wave loading processes
is presented in [9], which have been applied for offshore structures [10, 11] and30

floating bridges [6, 12, 13, 14, 15]. In this context calculation of the cross-
spectral densities requires computation of integrals similar to (1), which can be
written in the form ∫ π

−π
f(θ)eiκ(ω)L cos θdθ, (2)

for some function f(θ). In applications these integrals have traditionally been
evaluated using straightforward numerical quadrature [13, 15]. This requires35

care with respect to the number of integration points, because too few integra-
tion points may result in errors referred to as spurious hats [15]. The reason
why these spurious hats occur is that when the factor κ(ω)L in (2) is large, the
integral becomes highly oscillatory. It is worth mentioning that general meth-
ods for numerical quadrature of highly oscillatory integrals do exist [16, 17].40

However, these methods are quite complex, especially for oscillatory integrals
with stationary points like (2). Also, a more specialised computation method is
expected to be more efficient.

In the present paper a new method is developed for the calculation of cross-
spectral densities in the stochastic modelling of ocean waves and wave loads.45
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The series expansion solution of (1) found in [7, 8] is first generalized to the case
of cross-spectral densities of first order wave excitation forces, and then utilized
as a computational method for the cross-spectral densities. The method may
readily be generalized to other cross-spectral densities, e.g. for wave elevation,
wave kinematics or second order loads by using different transfer functions.50

The new method will apply to any directional distribution expressed as a
Fourier series. The Fourier coefficients of various theoretical models of the
directional distribution can be found in [18] or in Section 2.5 of [19]. For the
sake of completeness this paper includes a derivation of the Fourier coefficients
of the cos-2s directional distribution in the most general case where s is any55

positive real number, thus providing a proof of the Fourier coefficients stated in
[18, 19].

In addition to the development of the new method, the traditional method
using the trapezoidal rule for numerical quadrature is improved by developing
an adaptive way of choosing the number of integration points. This adaptive60

trapezoidal rule method is developed by observing when the spurious hats occur.
The accuracy and efficiency is investigated for both the adaptive trapezoidal rule
method and the new series expansion method. Finally the performances of the
methods are compared when applied to pontoon type floating bridges.

2. Review of the stochastic modelling of ocean waves65

2.1. Cross-spectral density

A common approach when modelling wind generated waves for engineer-
ing purposes is to assume that the sea elevation is a homogeneous stationary
stochastic process [9]. The sea elevation at the point (x, y) at time t, denoted
η(x, y, t), is then written as70

η (x, y, t) =

∫ ∞
−∞

eiωt−iκ(x cos θ+y sin θ)dB (κ, ω), (3)

where κ = [κ cos θ, κ sin θ] is the wave number vector, ω is the frequency and
B (κ, ω) is the spectral process associated with the wave elevation. By further
assuming the existence of a dispersion relation which relates the frequency ω
and the wave number κ by a one-to-one mapping κ = κ(ω), or equivalently
ω = ω(κ), the cross-spectral density between the wave elevation at two points
(xm, ym) and (xn, yn) can be expressed by

Smn (ω) =

∫
θ

e−iκ(ω)(∆x cos θ+∆y sin θ)S(2)
ηη (θ, ω) dθ,

where ∆x = xm − xn and ∆y = ym − yn is the separation of the locations

(xm, ym) and (xn, yn) in space. S
(2)
ηη (θ, ω) is the directional wave spectral den-

sity. The details of the derivation is given in Appendix A as well as in [9].
According to the Airy wave theory, or linear wave theory, the dispersion rela-
tion takes the form

ω2 = κg tanh(κd), ω, κ ≥ 0,
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with water depth d and gravitational acceleration g, defining the function κ(ω)
implicitly.

The directional wave spectral density S
(2)
ηη (θ, ω) is frequently written as

S
(2)
ηη (θ, ω) = Sηη (ω) Ψ (θ, ω) and thus separated into a one-dimensional wave

spectral density Sηη(ω) and a spreading function Ψ(θ, ω). The spreading func-75

tion is sometimes assumed to be a function of the direction θ only, but such an
assumption is not done here. For an overview of the various theoretical models
for Sηη(ω) and Ψ(θ, ω) see e.g. [19, 20]. The cross-spectral density can now be
written as

Smn (ω) = Sηη (ω)

∫ π

−π
Ψ (θ, ω) e−iκ(ω)(∆x cos θ+∆y sin θ)dθ. (4)

2.2. Auto-spectral density and complex coherency80

If we consider the case m = n, we have that ∆x = ∆y = 0, and (4) gives an
expression for the auto-spectral density

Snn (ω) = Sηη (ω)

∫ π

−π
Ψ (θ, ω) dθ. (5)

Since the wave elevation is assumed to be homogeneous, the auto-spectral den-
sity should be equal to the one-dimensional wave spectral density at any point
(xn, yn). This imposes the following normalization of the spreading function:85 ∫ π

−π
Ψ (θ, ω) dθ = 1. (6)

The complex coherency is defined in terms of auto- and cross-spectral den-
sities as

γmn(ω) =
Smn(ω)√

Snn(ω)Smm(ω)
.

Combining equations (4), (5) and (6), we find that the complex coherency is
given by

γmn (ω) =
Smn(ω)

Sηη(ω)
=

∫ π

−π
Ψ (θ, ω) e−iκ(ω)(∆x cos θ+∆y sin θ)dθ. (7)

The complex coherency is favourable to deal with in computations because it
is dimensionless, independent of the one-dimensional spectral density and it
satisfies |γmn(ω)| ≤ 1. For this reason most of the derivations in this paper will
deal with the complex coherency rather than the cross-spectral density. The
cross-spectral density can always be obtained from the complex coherency and
the auto-spectral densities by

Smn(ω) = γmn(ω)
√
Snn(ω)Smm(ω).
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2.3. Directional distribution function

The spreading function Ψ(θ, ω) is commonly given as a distribution around
a mean wave direction, in which case it is written as90

Ψ(θ, ω) = D(θ − θ̄, ω), (8)

where θ̄ is the mean wave direction and D(φ, ω) is the directional distribu-
tion function centred around zero. The directional distribution function is 2π-
periodic and according to (6) it should integrate to one over one period. By
inserting (8) into (7), using the periodicity of D(φ, ω), the complex coherency
can be expressed in terms of the directional distribution by

γmn (ω) =

∫ π

−π
D (φ, ω) e−iκ(ω)(∆x cos(φ+θ̄)+∆y sin(φ+θ̄))dφ.

The linear combination of sine and cosine in the expression above can be written
in terms of a single harmonic function as

−∆x cos
(
φ+ θ̄

)
−∆y sin

(
φ+ θ̄

)
=
√

∆x2 + ∆y2 cos
(
φ+ θ̄ + π − atan2 (∆y,∆x)

)
,

where atan2(∆y,∆x) is the generalization of arctan(∆y/∆x) that covers the
entire circular range. If we then define

L =
√

∆x2 + ∆y2,

β = θ̄ + π − atan2 (∆y,∆x) ,

we obtain

γmn (ω) =

∫ π

−π
D (φ, ω) eiκ(ω)L cos(φ+β)dφ =

∫ π+β

−π+β

D (θ − β, ω) eiκ(ω)L cos θdθ,

where the integrand is 2π-periodic. Thus the complex coherency is finally given
as

γmn (ω) =

∫ π

−π
D (θ − β, ω) eiκ(ω)L cos θdθ. (9)

2.4. Series expansion of the complex coherency

Expressing the directional distribution function D (φ, ω) as a Fourier series
in φ, the integral (9) can be solved in terms of Bessel functions using the same95

approach as in [8], which is also given in Section 7.2.1 of [7].
Let the directional distribution function be given by the Fourier series

D (φ, ω) =

∞∑
k=−∞

ck(ω)eikφ. (10)

Since the directional distribution is a real function, the Fourier coefficients are
required to satisfy c−k(ω) = ck(ω) for k ≥ 0, the overline denoting complex
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conjugation. Using this Fourier expansion in the expression (9) for the complex100

coherency yields

γmn (ω) =

∞∑
k=−∞

ck(ω)e−ikβ
∫ π

−π
eikθeiκ(ω)L cos θdθ (11)

where we have assumed that the order of summation and integration can be
interchanged. The integrals in the above expression can be solved in terms of
Bessel functions by utilizing the integral representation 9.1.21 in [21] stating
that

Jk (z)πik =

∫ π

0

eiz cos θ cos (kθ) dθ,

where Jk(z) is the Bessel function of the first kind with integer order k. Specif-
ically we find that∫ π

−π
eikθeiκ(ω)L cos θdθ =

∫ π

−π
eiκ(ω)L cos θ cos (kθ) dθ + i

∫ π

−π
eiκ(ω)L cos θ sin (kθ) dθ

= 2

∫ π

0

eiκ(ω)L cos θ cos (kθ) dθ

= 2Jk (κ(ω)L)πik,

which inserted into (11) yields the following series expansion of the complex
coherency:

γmn (ω) = 2π

∞∑
k=−∞

ck(ω)ike−ikβJk (κ(ω)L). (12)

2.5. Directional distribution of the cos-2s type

The most commonly used directional distribution is given by

D (φ, ω) =
22s(ω)Γ2 (s(ω) + 1)

2πΓ (2s(ω) + 1)
cos2s(ω)φ

2
, φ ∈ [−π, π), (13)

where Γ(·) denotes the gamma function and s(ω) is a non-negative real valued105

function. This type of directional distribution was originally proposed by [22]
and was developed further by [23] and [24] who investigated frequency depen-
dence through the spreading parameter s(ω). Although in applications s(ω) is
frequently assumed constant, wave data reveals a strong frequency dependence
[18]. Throughout this paper the spreading parameter s(ω) is assumed to be a110

function of frequency. Note, however, that the ω-dependency will not be written
explicitly as in (13) for simplicity of notation.

In order to make D(φ, ω) as given by (13) a 2π-periodic function in φ for
any s ≥ 0, it should rather be written as

D (φ, ω) =
22sΓ2 (s+ 1)

2πΓ (2s+ 1)

(
cos2φ

2

)s
, φ ∈ R. (14)
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If we rewrite cos2 φ
2 = 1

2 (1 + cosφ) it is clear that this directional distribution is
2π-periodic. Writing D(φ, ω) in this way rather than as in (13) will also ensure
that D(φ, ω) is real and non-negative at any φ for any choice of s. Now for an115

arbitrary non-negative real number s, the following identity holds according to
Theorem 1 in Appendix B.(

cos2φ

2

)s
=

1

22s

Γ (2s+ 1)

Γ2 (s+ 1)
+

1

22s−1

∞∑
k=1

Γ (2s+ 1)

Γ (s− k + 1) Γ (s+ k + 1)
cos (kφ),

(15)
Using this identity the directional distribution (14) can be written

D (φ, ω) =
1

2π
+

1

π

∞∑
k=1

Γ2 (s+ 1)

Γ (s− k + 1) Γ (s+ k + 1)
cos (kφ)

=
1

2π

∞∑
k=−∞

Γ2 (s+ 1)

Γ (s− k + 1) Γ (s+ k + 1)
eikφ,

which is recognized as a Fourier series of the form (10) where

ck(ω) =
1

2π

Γ2 (s+ 1)

Γ (s− k + 1) Γ (s+ k + 1)
, k ∈ {0,±1,±2, . . .} . (16)

These Fourier coefficients agrees with those stated in [18, 19]. This derivation
of the Fourier coefficients of the directional distribution (13) generalizes the
derivation found in Section 7.2.1 of [7] which is valid for integer s.120

3. Stochastic modelling of first order wave excitation loads

3.1. Exciting forces and moments on a rigid body

The hydrodynamic forces on a floating body can be decomposed into two
parts, the wave excitation forces and the motion induced forces. We will now
look at how the wave excitation forces can be modelled as a stochastic process.125

Consider a rigid body with a local coordinate system (x̃, ỹ) which is located
with its origin at the point (x0, y0) and rotated counterclockwise with an angle
α0 relative to the global coordinate system (x, y) as shown in Figure 1. Thus
(x0, y0) and α0 specifies the location and orientation of the body. With this
definition the global and local coordinates are related by130 [

x
y

]
=

[
x0 + x̃ cosα0 − ỹ sinα0

y0 + x̃ sinα0 + ỹ cosα0

]
. (17)

Within the framework of linear potential theory, the hydrodynamic forces on
a body of arbitrary shape can be computed using a panel method as implemented
in software such as WAMIT[25] or WADAM[26]. The wave excitation forces are
then reported in terms of the complex transfer function from the wave elevation
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Figure 1: Local coordinate system of a rigid body and definition of wave propagation direction.

to the wave load. This means that for a regular incident wave of amplitude A135

given in local coordinates by

η(x̃, ỹ, t) = A exp
{
iωt− iκ

(
x̃ cos β̃ + ỹ sin β̃

)}
, (18)

the forces and moments due to this wave will be given by Af̃0(β̃, ω)eiωt, where
f̃0(β̃, ω) is the complex transfer function. Here β̃ is the wave propagation direc-
tion given as the angle relative to the x̃-axis, see Figure 1. The vector f̃0 contains
six components, the transfer functions for three forces and three moments.140

Provided the load due to any regular wave, the excitation load for the irreg-
ular wave (3) can be obtained by superposition. Inserting the relation (17) into
(3) yields the sea elevation referring to the local coordinates of the body:

η (x̃, ỹ, t) =

∫ ∞
−∞

eiωt−iκ(x̃ cos(θ−α0)+ỹ sin(θ−α0))e−iκ(x0 cos θ+y0 sin θ)dB (κ, ω).

(19)
Now since θ is the wave propagation direction relative to the global x-axis, we
see from Figure 1 that α0 + β̃ = θ which means that θ − α0 can be identified
as the local wave propagation direction β̃ in (18). Thus the first exponential
in the above expression is recognized as the exponential of the incident wave
(18). Hence (19) can be considered as a linear combination of (infinitely many)
regular waves of amplitude dB(κ, ω) and, assuming the linear operations of
calculating the wave load and taking the integral can be interchanged, we obtain
an expression for the wave excitation load due to the irregular wave (3):

q̃0 (t) =

∫ ∞
−∞

f̃0 (θ − α0, ω) eiωt−iκ(x0 cos θ+y0 sin θ)dB (κ, ω).

This expression gives the loads referring to the local coordinate system of the
body, but the loads referring to the global coordinates are easily obtained by a145
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linear transformation

q0 (t) = T0q̃0 (t) =

∫ ∞
−∞

f0 (θ − α0, ω) eiωt−iκ(x0 cos θ+y0 sin θ)dB (κ, ω). (20)

where T0 is the transformation matrix and f0 = T0f̃0.

3.2. Cross-spectral densities for wave excitation loads

We now consider the wave excitation loads for N bodies at the locations
(x1, y1), (x2, y2), . . . , (xN , yN ), with orientation angles α1, α2, . . . , αN relative to
the global x-axis. The loads are conveniently organized into a total load vector

q =
[

qT1 qT2 · · · qTN
]T
.

Here qn refers to the wave excitation loads on body number n which are given
by (20) using the transfer function fn corresponding to the body. Because each150

vector qn contains six components, the total number of components in q will
be 6N . Each individual component can therefore be denoted by qν , where
ν ∈ {1, 2, . . . , 6N}. Organizing the transfer functions fn in the same manner,
the individual loads are obtained from (20) as

qν (t) =

∫ ∞
−∞

fν (θ − αn, ω) eiωt−iκ(xn cos θ+yn sin θ)dB (κ, ω). (21)

The body number n corresponding to the index ν is given by n = dν/6e, where155

d·e denotes the ceiling function giving the smallest integer not less than the
argument.

Using the formulation (21) as starting point, the same derivation as in Sec-
tion 2.1 can be carried out, yielding the cross-spectral density between the loads
qµ and qν as160

Sqµqν (ω)

Sηη (ω)
=

∫ π

−π
Ψ (θ, ω) fµ (θ − αm, ω)fν (θ − αn, ω)e−iκ(ω)(∆x cos θ+∆y sin θ)dθ,

(22)
where the overline denotes complex conjugation.

3.3. Series expansion of the complex coherency

Using the same approach as in Section 2.3, the expression (22) for the cross-
spectral density can be written as

Sqµqν (ω)

Sηη (ω)
=

∫ π

−π
D(θ − β, ω)fµ

(
θ − β + θ̄ − αm, ω

)
fν
(
θ − β + θ̄ − αn, ω

)
eiκL cos θdθ.

(23)
Now the transfer functions are usually known only by their values at a finite165

number of heading angles. Then in order to perform the integration (23) we can
use functions fµ(θ, ω) that interpolates the transfer functions at the given values
of the heading angle θ. For our purposes it is convenient to use trigonometric
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interpolation [27, 28], which means that the transfer functions are given by
trigonometric polynomials170

fµ (θ, ω) =

Nf∑
k=−Nf

aµk (ω) eikθ. (24)

If the transfer function values are given at heading angles uniformly distributed
between 0 and 2π, the coefficients aµk(ω) can be efficiently computed using fast
Fourier transform (FFT). If the number of heading angles is Nθ we have that
Nf = bNθ/2c.

With transfer functions given by (24) we find that

fµ
(
φ+ θ̄ − αm, ω

)
=

Nf∑
k=−Nf

(
eik(θ̄−αm)aµk (ω)

)
eikφ

and

fν
(
φ+ θ̄ − αn, ω

)
=

Nf∑
k=−Nf

(
eik(θ̄−αn)aνk (ω)

)
e−ikφ

=

Nf∑
k=−Nf

(
e−ik(θ̄−αn)aν−k (ω)

)
eikφ.

With a directional distribution given by (10) we have then available the individ-175

ual Fourier series of each of the factors in the productD(φ, ω)fµ
(
φ+ θ̄ − αm, ω

)
fν
(
φ+ θ̄ − αn, ω

)
.

It can be shown that the Fourier coefficients of a product can be obtained by
taking the convolution of the Fourier coefficients of the factors. Thus we are
able to find coefficients Cµνk (ω) such that

D(φ, ω)fµ
(
φ+ θ̄ − αm, ω

)
fν
(
φ+ θ̄ − αn, ω

)
=

∞∑
k=−∞

Cµνk (ω) eikφ. (25)

Having the product D(φ, ω)fµ
(
φ+ θ̄ − αm, ω

)
fν
(
φ+ θ̄ − αn, ω

)
developed180

as a Fourier series in φ makes the derivation of the series expansion (12) from
Section 2.4 directly applicable. Inserting the Fourier expansion (25) into (23)
yields the cross-spectral densities

Sqµqν (ω) = 2πSηη (ω)

∞∑
k=−∞

Cµνk (ω)ike−ikβJk (κ(ω)L). (26)

In the special case that the Fourier series of the directional distribution is finite,
it can be written as

D (φ, ω) =

ND∑
k=−ND

ck (ω) eikφ,
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and the series expansion (26) will be finite. Specifically we have then that

Sqµqν (ω) = 2πSηη (ω)

Ntot∑
k=−Ntot

Cµνk (ω)ike−ikβJk (κ(ω)L),

where Ntot = 2Nf +ND.
It is worth noticing that for the cross-spectral densities between loads at

the same location we have that m = n and thus L = 0. Using the fact that
Jk(0) = 0 for k ∈ {±1,±2, . . . } and J0(0) = 1 yields the result

Sqµqν (ω) = 2πSηη (ω)Cµν0 (ω),

which holds whenever m = n, or equivalently dµ/6e = dν/6e. The auto-spectral185

densities are thus given by

Sqµqµ(ω) = 2πSηη (ω)Cµµ0 (ω), (27)

which gives the following formula for the complex coherencies:

γqµqν (ω) =
Sqµqν (ω)√

Sqµqµ(ω)Sqνqν (ω)
=

∞∑
k=−∞

Cµνk (ω)√
Cµµ0 (ω)Cνν0 (ω)

ike−ikβJk (κ(ω)L).

(28)

4. Computational methods for the complex coherencies

4.1. Approximation by the trapezoidal rule

By definition the complex coherencies are given by

γqµqν (ω) =
Sqµqν (ω)√

Sqµqµ(ω)Sqνqν (ω)
=

Sqµqν (ω)/Sηη(ω)√
Sqµqµ(ω)/Sηη(ω)

√
Sqνqν (ω)/Sηη(ω)

.

Inserting the expression (22) yields190

γqµqν (ω) =

∫ π
−π Ψ (θ, ω) fµ (θ − αm, ω) fν (θ − αn, ω)e−iκ(ω)(∆x cos θ+∆y sin θ)dθ√∫ π
−π Ψ (θ, ω) |fµ (θ − αm, ω)|2dθ

∫ π
−π Ψ (θ, ω) |fν (θ − αn, ω)|2dθ

.

(29)
We denote by γ̃qµqν (ω) the approximation obtained when the above expression

is computed using the trapezoidal rule with Ñ integration points. Traditionally,
the number of integration points Ñ is chosen to be the same for all values of µ, ν
and ω, this will be referred to as the traditional trapezoidal rule method. As we
will see the number of integration points should rather be adapted according to195

the value of ω, this will be referred to as the adaptive trapezoidal rule method.
We now consider two pontoons located at the points (x1, y1) = (0, 0) and

(x2, y2) = (L, 0) with orientations α1 = α2 = π/2. The indices referring
to the pontoon numbers are thus m,n ∈ {1, 2} and the global indices are
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µ, ν ∈ {1, 2, . . . , 12}. The coherency matrix will then be a 12-by-12 matrix whose200

elements are γqµqν (ω). The transfer functions of the pontoons are evaluated by
the software WADAM [26] at 36 different heading angles, so the transfer func-
tions fµ(θ, ω) are given by (24) with Nf = 18. The spreading function Ψ(θ, ω)
is given by a directional distribution of the cos-2s type as described in Section
2.5 with a constant spreading parameter s(w) = s. Note, however, that the205

methods described will be equally applicable for other directional distributions.

Figure 2: The coherence function
∣∣γ̃q1q7 (ω)

∣∣ computed using the traditional trapezoidal rule

method (29) for different distances L with spreading s = 1 and mean wave direction θ̄ = π/2.
The number of integration points are Ñ = 200 (left) and Ñ = 1650 (right).

Figure 3: The coherence function
∣∣γ̃q1q7 (ω)

∣∣ computed using the traditional trapezoidal rule

method (29) for different distances L with spreading s = 20 and mean wave direction θ̄ = π/2.
The number of integration points are Ñ = 200 (left) and Ñ = 1650 (right).

Figure 2 and Figure 3 show the resulting coherence functions
∣∣γ̃q1q7(ω)

∣∣
when the complex coherency γ̃q1q7(ω) is computed using the traditional trape-

12



Figure 4: The coherence function
∣∣γ̃q1q7 (ω)

∣∣ computed using the traditional trapezoidal rule

method (29) with Ñ = 200 integration points, along with the line defined by κ(ω)L = Ñ . The
shading indicates the value of the coherence, identifying the spurious hats in the upper right
corner.

zoidal rule method for different distances L between the pontoons. The mean
wave direction is θ̄ = π/2 and the spreading parameter is s = 1 in Fig-210

ure 2, and s = 20 in Figure 3. Figure 2 and Figure 3 demonstrate that
relatively large errors may occur if the number of integrations points Ñ is
not large enough. These errors are the same as the spurious hats observed
in [15]. The spurious hats can be explained by observing that the factor
exp{−iκ(ω)(∆x cos θ + ∆y sin θ)} will make the upper integral in (29) highly215

oscillatory when the value of κ(ω)
√

∆x2 + ∆y2 = κ(ω)L is large, and therefore

the trapezoidal rule with Ñ integration points will be far too crude an approxi-
mation. Large values of κ(ω) occur when ω is large. When we consider L ≤ 1000
m and ω ≤ 4 rad/s as in Figure 2 and Figure 3, we have that the maximal value
of κ(ω)L is (κL)max = 1631.5. When the number of integration points Ñ is220

slightly larger than this, we observe that the spurious hats do not occur. Indeed
if we plot the line defined by κ(ω)L = Ñ along with the coherence function
as in Figure 4 we see that the spurious hats starts occurring when the value
of κ(ω)L becomes close to Ñ . These observations suggest that the number of
integration points used when calculating the coherency by the trapezoidal rule225

should be adapted according to the value of κ(ω)L. This adaptive trapezoidal
rule method is implemented in MATLAB [29] by calculating all the complex
coherencies γqµqν (ω), µ, ν = 1, 2, . . . , 6N , at each frequency ω using a number
of integration points given by

Ñ = max{dα(κ(ω)Lmax)e, Ñmin}, (30)

13



where Lmax is the maximal distance between any two pontoons and α is a factor230

determining the accuracy of the integration. The number Ñmin is the number
of integration points used when the value of κ(ω)Lmax is small, meaning that
the integrals are not highly oscillatory. In this paper the value Ñmin = 100 is
used, but a larger value may be necessary if the transfer functions fµ(θ, ω) are

less well-behaved. With Ñ given by (30) the number of integration points is235

the same for all integrals at a given frequency. We could, however, choose Ñ
according to the value of κ(ω)L for each individual integral. This is not done
here because the former method allows for a faster implementation in MATLAB.

4.2. Approximation by the series expansion method

The new method proposed in this paper utilizes the series expansion (28) for240

computing the complex coherencies. If the directional distribution is given by a
finite number of Fourier coefficients the series expansion will be finite as shown
in Section 3.3 and the coherency matrix can be computed exactly. If the number
of Fourier coefficients is infinite or excessively large, the complex coherencies can
still be approximated by truncating the series expansion (28). The idea behind245

this approximation is that only the terms with index |k| ≤ N̂ , for some number
N̂ , will contribute to the total sum within the required precision. The complex
coherencies are then approximated by

γ̂qµqν (ω) =

N̂∑
k=−N̂

Cµνk (ω)√
Cµµ0 (ω)Cνν0 (ω)

ike−ikβJk (κ(ω)L). (31)

This will be referred to as the series expansion method.
Figure 5 and Figure 6 show the resulting coherence functions

∣∣γ̂q1q7(ω)
∣∣ when250

the complex coherency γ̂q1q7(ω) is computed using the series expansion method
(31) for different distances L between the pontoons. The mean wave direction
is θ̄ = π/2 and the spreading parameter is s = 1 in Figure 5, and s = 20 in
Figure 6. Since s is an integer we obtain the exact coherence functions using
N̂ = Ntot = 37 for the case s = 1 and N̂ = Ntot = 56 for the case s = 20,255

see Section 3.3. Figure 5 and Figure 6 also indicate that when the complex
coherency is approximated using the series expansion method with N̂ < Ntot
we obtain reasonable approximations even when N̂ is quite small. Using (31)
the coherence is approximated more smoothly, with no spurious hats, which is
an appealing feature of this method.260

4.3. The error of the approximation methods

In order to say something about the accuracy of the different ways to ap-
proximate the complex coherencies, we compare the exact coherency matrix
obtained when the spreading parameter s is an integer with the coherency ma-
trices obtained using the adaptive trapezoidal rule method and the series expan-265

sion method. The errors are measured by Ẽ = max
µ,ν,ω

∣∣γqµqν (ω)− γ̃qµqν (ω)
∣∣ and
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Figure 5: The coherence function
∣∣γ̂q1q7 (ω)

∣∣ computed using the series expansion method (31)

for different distances L with spreading s = 1 and mean wave direction θ̄ = π/2. The number

of included terms are given by N̂ = 5 (left) and N̂ = Ntot = 37 (right).

Figure 6: The coherence function
∣∣γ̂q1q7 (ω)

∣∣ computed using the series expansion method

(31) for different distances L with spreading s = 20 and mean wave direction θ̄ = π/2. The

number of terms are given by N̂ = 5 (left) and N̂ = Ntot = 56 (right).
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Ê = max
µ,ν,ω

∣∣γqµqν (ω)− γ̂qµqν (ω)
∣∣ for approximation by the adaptive trapezoidal

rule and the series expansion respectively.
Figure 7 shows how the error Ẽ of the adaptive trapezoidal rule method

varies with the integration point parameter α in (30) for three different values270

of s and three different mean wave directions θ̄. We observe that the conver-
gence is extremely fast as long as α > 1, i.e. the number of integration points Ñ
is larger than κ(ω)L. This rapid convergence can be explained by the excellent
convergence properties of the trapezoidal rule for periodic functions. Since we
are using trigonometric interpolation for the transfer functions, the integrand275

will be infinitely many times continuously differentiable for integer s and geo-
metric convergence is achieved [30]. We also observe a faster convergence when
θ̄ = 0 with increasing effect as s gets larger. This happens because for large s
the directional distribution D(θ, ω) will be practically zero except for a small
band around θ = 0, thus cancelling the rapid oscillations of the exponential280

factor when θ̄ = 0.
Figure 8 shows how the error Ê of the series expansion method varies with

N̂ for three different values of s and three different mean wave directions θ̄. We
see that it is not necessary to use all the available coefficients in order to get a
good approximation, especially for larger values of s.285

For non-integer values of s the cos-2s directional distribution will not have
a finite Fourier series and we will not have an exact formula for the complex
coherencies. However, by including only the Fourier coefficients (16) that are
larger than e.g. 10−16 in absolute value we should obtain the exact solution up to
round-off errors. Thus we can calculate the errors Ẽ and Ê of the two methods290

like before. Figure 9 shows how the error Ẽ of the adaptive trapezoidal rule
method varies with the integration point parameter α for θ̄ = π/2 and different
non-integer values of s. When s is not an integer the directional distribution
will no longer be infinitely many times continuously differentiable and the rapid
convergence demonstrated in Figure 7 is no longer guaranteed. However, it295

appears that the error behaves the same as for integer valued s up to a certain
point, and we see from Figure 9 that for s > 4 we have rapid convergence until
round-off error dominates like before. Figure 10 shows how the error Ê of the
series expansion method varies with N̂ for θ̄ = 0 and different non-integer values
of s. Again we see that the convergence is slow for small values of s. This can300

be explained by observing that the Fourier coefficients (16) of the directional
distribution approaches zero very fast for large enough s but more and more
slowly as s decreases.

5. Wave excitation loads on pontoon type floating bridges

The cross-spectral density matrix of wave excitation loads is often needed as
input for dynamic response analysis of floating bridges, both in the frequency
and time domain [6, 12, 14]. For time domain analyses simulated realizations
of the wave loading process can be obtained from the cross-spectral density
matrix using the method found in [31]. An approach for modelling the stochastic
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Figure 7: The error Ẽ of the adaptive trapezoidal rule method as a function of the integration
point parameter α in (30) for different values of the spreading s and the mean wave direction
θ̄.
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Figure 8: The error Ê of the series expansion method as a function of the number N̂ of
included terms in (31) for different values of the spreading s and the mean wave direction θ̄.
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Figure 9: The error Ẽ of the adaptive trapezoidal rule method as a function of the integration
point parameter α for the mean wave direction θ̄ = π/2 and different non-integer values of
the spreading s.
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Figure 10: The error Ê of the series expansion method as a function of the number N̂ of
included terms in (31) for the mean wave direction θ̄ = 0 and different non-integer values of
the spreading s.
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dynamic behaviour of pontoon type floating bridges is discussed in [6], where
the structural response of the bridge is calculated in the frequency domain using
the equation

Su (ω) = H (ω) Sq (ω) H(ω)
H
,

with superscript H denoting the conjugate transpose. Here Su (ω) and Sq (ω)305

are the cross-spectral density matrices of the response u(t) and the wave exci-
tation load q(t) respectively. H (ω) is the transfer function matrix which takes
into account the structural mass, damping and stiffness of the bridge structure,
as well as hydrostatic stiffness, added mass and added damping due to the pon-
toons. The method proposed in this paper can be used to efficiently calculate310

the cross-spectral density matrix Sq (ω) needed in this approach.
In the case of pontoon type floating bridges the structure will experience

wave loads only where the pontoons are located, each pontoon is considered
a rigid body and is thus loaded in six degrees of freedom (dofs). This means
that with N pontoons the cross-spectral density matrix Sq (ω) of the wave ex-315

citation loads will be a 6N -by-6N matrix whose elements are the cross-spectral
densities Sqµqν (ω). The calculation of the cross-spectral density matrix must
be performed for every wave situation considered, which in applications such as
long-term response analyses can be a very large amount [2]. This motivates the
need for an efficient calculation method.320

In order to get some idea of how the different approximation methods per-
form with respect to computation time, the cross-spectral density matrix is com-
puted for two different pontoon type floating bridges, the Bergsøysund bridge
with N = 7 pontoons and a chained floating bridge with N = 18 pontoons [32].
The chained floating bridge is illustrated in Figure 11. The same pontoon type
is used for both bridges, but the number of pontoons and their locations are
different. The locations of the pontoons are shown in Figure 12 and Figure 13
for the Bergsøysund bridge and the chained floating bridge respectively. An
example of a transfer function calculated using WADAM is given in Figure 14.
The transfer functions are calculated for single pontoons, thus neglecting inter-
action effects among multiple bodies. This is justified by to the fact that the
distance between pontoons is large compared to the dimensions of the pontoons.
The cross-spectral density matrix is computed by first calculating all (6N)2 co-
herencies γqµqν (ω) with an approximation error less than 10−3 as measured by Ẽ

and Ê, see Section 4.3. Then the auto-spectral densities Sqνqν (ω) are calculated
using (27) and the cross-spectral densities are found by the relation

Sqµqν (ω) = γqµqν (ω)
√
Sqµqµ (ω)Sqνqν (ω).

In this example the cos-2s directional distribution from Section 2.5 is used with
a constant spreading parameter s(ω) = s, and the one-dimensional wave spectral
density Sηη(ω) is given by the Pierson-Moskowitz spectrum [20].

The approximation methods discussed in this paper are implemented in
MATLAB and the computation times for the cases s = 1 and s = 20 are325

given in Table 1. Since the runtime in MATLAB is very sensitive to the specific
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implementation, it is emphasized that the numbers in Table 1 are only meant
to give some idea of the computational effort. It is clear, however, that the
adaptive trapezoidal rule method and the series expansion method both achieve
a great improvement in computational time, as compared to the traditional330

trapezoidal rule method. We also notice that the increase in computational
effort due to larger distances between pontoons is much smaller for the series
expansion method. In Table 1 we see that for the trapezoidal rule methods the
computational time increases by a factor of approximately 100, while for the
series expansion method the increase is only by a factor of approximately 6.335

It should be pointed out that in many practical applications the cross-
spectral densities between points at large distances are practically zero, making
it a reasonable approximation to set them equal to zero. This will of course
greatly improve the computation time and the trapezoidal rule methods may
still be feasible. However, an assessment of whether this approximation is rea-340

sonable must then be carried out for each particular case. The new method
proposed in this paper eliminates the need for such an assessment.

Figure 11: Chained floating bridge, illustration by Multiconsult.
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Figure 12: Pontoon locations for the Bergsøysund floating bridge.

Figure 13: Pontoon locations for the chained floating bridge.

Table 1: The computation time for the different methods of calculating the cross-spectral
density matrix. Lmax is the maximal distance between two pontoons.

s = 1 s = 20
Bergsøysund bridge – 7 pontoons, Lmax = 626 m
Traditional trapezoidal rule method 5.0 s 5.1 s
Adaptive trapezoidal rule method 1.5 s 1.6 s
Series expansion method 1.1 s 1.1 s
Chained floating bridge – 18 pontoons, Lmax = 4735 m
Traditional trapezoidal rule method 576 s 595 s
Adaptive trapezoidal rule method 171 s 176 s
Series expansion method 6.8 s 7.1 s
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Figure 14: The transfer function for the heave force (vertical direction) on one pontoon, given
by its real part (left) and imaginary part (right).

6. Conclusions

A new method has been presented for the calculation of cross-spectral den-
sities in the stochastic modelling of ocean waves and wave loads, based on a345

series expansion solution of the integral expressing the cross-spectral density.
The method is developed for first order wave excitation loads but it is readily
extended to the computation of other cross-spectral densities, e.g. for wave ele-
vation, wave kinematics or second order load. The only difference will be which
transfer functions that are used. In addition to presenting the new method,350

the traditional trapezoidal rule method has been improved by developing an
adaptive way of choosing the number of integration points.

The accuracy of the adaptive trapezoidal rule method and the series expan-
sion method has been investigated. The adaptive trapezoidal rule method shows
very rapid convergence after a certain point, before which the error is relatively355

large due to so-called spurious hats. The series expansion method also displays
a generally rapid convergence, in addition to avoiding the spurious hat errors
altogether.

When applied to two different pontoon type floating bridges the adaptive
trapezoidal rule method and the series expansion method both achieve a great360

improvement in computational effort compared to the traditional trapezoidal
rule method. When the dimensions of the floating bridge increase, i.e. the
number of pontoons and their relative distances increase, the series expansion
method is superior with respect to computation time.
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Appendix A.495

This section includes the derivation of the expression for the cross-spectral
density of the wave elevation given in Section 2.1. This derivation can also be
found in [9].

When it is modelled as a homogeneous stationary stochastic process, the sea
elevation at the point (x, y) at time t, denoted η(x, y, t), is written as500

η (x, y, t) =

∫ ∞
−∞

eiωt−iκ(x cos θ+y sin θ)dB (κ, ω), (A.1)

where κ = [κ cos θ, κ sin θ] is the wave number vector, ω is the frequency and
B (κ, ω) is the spectral process associated with the wave elevation. The assump-
tion of homogeneity and stationarity implies that the spectral process must have
zero mean and orthogonal increments, giving the cross-correlation function

Rmn (τ) = E
[
η (xm, ym, t+ τ) η (xn, yn, t)

]
=

∫ ∞
−∞

∫
θ

∫
κ

eiωτe−iκ(∆x cos θ+∆y sin θ)S(3)
ηη (κ, θ, ω) dκdθdω. (A.2)

Here ∆x = xm−xn and ∆y = ym−yn is the separation of the locations (xm, ym)

and (xn, yn) in space and S
(3)
ηη (κ, θ, ω) is the three-dimensional wave spectral
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density. The cross-spectral density is obtained as the Fourier transform of the
cross-correlation function (A.2) with respect to the time lag τ :

Smn (ω) =
1

2π

∫ ∞
−∞

Rmn (∆x,∆y, τ) e−iωτdτ

=

∫
θ

∫
κ

e−iκ(∆x cos θ+∆y sin θ)S(3)
ηη (κ, θ, ω) dκdθ. (A.3)

The formula for the cross-spectral density can be simplified using the dis-
persion relation which relates the frequency ω and the wave number κ by a
one-to-one mapping κ = κ(ω), or equivalently ω = ω(κ). Now κ and ω are no
longer independent variables in the integration in (A.3) and the formula finally
reduces to

Smn (ω) =

∫
θ

e−iκ(ω)(∆x cos θ+∆y sin θ)S(2)
ηη (θ, ω) dθ,

where S
(2)
ηη (θ, ω) is the directional wave spectral density.

Appendix B.

This section is devoted to proving the identity (15), which is stated in Theo-
rem 1 below. The proof of Theorem 1 relies upon two parts, which we summarize
in two propositions.505

Proposition 1. For n ∈ {1, 2, 3, . . . } and φ ∈ R we have the following Fourier
series expansions for even- and odd-numbered powers of the cosine function
respectively:

cos2nφ =
1

22n

(
2n

n

)
+

1

22n−1

n∑
k=1

(
2n

n+ k

)
cos (2kφ) (B.1a)

cos2n−1φ =
1

22n−2

n∑
k=1

(
2n− 1

n+ k − 1

)
cos ((2k − 1)φ) (B.1b)

Proof. For ñ ∈ N we can use the complex representation of the cosine function
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and the binomial theorem to obtain

cosñφ =
1

2ñ
(
eiφ + e−iφ

)ñ
=

1

2ñ

ñ∑
k=0

(
ñ

k

)
ei(ñ−k)φe−ikφ

=
1

2ñ

ñ∑
k=0

(
ñ

k

)
(cos (ñ− k)φ+ i sin (ñ− k)φ) (cos kφ− i sin kφ)

=
1

2ñ

ñ∑
k=0

(
ñ

k

)
(cos (ñ− k)φ cos kφ+ sin (ñ− k)φ sin kφ)

+ i
1

2ñ

ñ∑
k=0

(
ñ

k

)
(sin (ñ− k)φ cos kφ− cos (ñ− k)φ sin kφ)

=
1

2ñ

ñ∑
k=0

(
ñ

k

)
cos ((ñ− 2k)φ)− i 1

2ñ

ñ∑
k=0

(
ñ

k

)
sin ((ñ− 2k)φ).

Assuming φ ∈ R it is obvious that cosñ φ is a real number, which means that
the imaginary part of the right hand side above must vanish, resulting in the
expression

cosñφ =
1

2ñ

ñ∑
k=0

(
ñ

k

)
cos ((ñ− 2k)φ). (B.2)

If ñ is an even number it can be written as ñ = 2n for some n ∈ {1, 2, 3, . . . }
and we have then510

cos2nφ =
1

22n

2n∑
k=0

(
2n

k

)
cos (2 (n− k)φ). (B.3)

For the binomial coefficients we have the symmetry property(
2n

2n− k

)
=

(
2n

k

)
, k ∈ {0, 1, 2, . . . , 2n}, (B.4)

which along with the symmetry of the cosine function gives that term number
2n− k in the sum (B.3) is equal to term number k. Thus each term is repeated
twice, except for the middle term where k = n, and the sum can be written as

cos2nφ =
1

22n

(
2n

n

)
+

1

22n−1

n−1∑
k=0

(
2n

k

)
cos (2 (n− k)φ)

=
1

22n

(
2n

n

)
+

1

22n−1

n∑
k=1

(
2n

n− k

)
cos (2kx),

where the last equality is simply a reordering of the terms. Finally (B.1a) is
obtained by again using the symmetry property (B.4) of the binomial coefficient.

If on the other hand ñ is an odd number in (B.2) we can write ñ = 2n − 1
for some n ∈ {1, 2, 3, . . . }, and (B.1b) is obtained using the same approach as
for even ñ, observing that two and two terms are equal.515
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Proposition 2. For k ∈ {0, 1, 2, 3, . . . } and s ∈ R with s ≥ 0 the following
holds:

∞∑
n=0

1

22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
=

1

2s−1

(
2s

s+ k

)
. (B.5)

Here the binomial coefficients are interpreted in the generalized sense, being
defined using the gamma function by(

a

b

)
=

Γ(a+ 1)

Γ(a− b+ 1)Γ(b+ 1)
, a, b ∈ R.

Proof. The key for calculating the series is the method of hypergeometric
summation [33]. First we use Algorithm 2.8 in [33] to write the series in (B.5)
as a hypergeometric function. Expressing the binomial coefficients using the
gamma function, the n-th term in the series can be written as

an =
1

22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
=

1

22n+k−1

Γ (s+ 1)

Γ (s− 2n− k + 1)n! (n+ k)!
.

This gives the term ratio

an+1

an
=

(s− 2n− k) (s− 2n− k − 1)

4 (n+ 1) (n+ k + 1)
=

(
n+ k−s

2

) (
n+ k+1−s

2

)
(n+ 1) (n+ k + 1)

,

where we have used the property that Γ(x+1) = xΓ(x) for any x. Thus the term
ratio is written as an+1

an
= un

vn
, where un and vn are polynomials in n factorized

in linear factors. Observing that the initial term is

a0 =
1

2k−1

Γ (s+ 1)

Γ (s− k + 1) k!
=

1

2k−1

(
s

k

)
,

it follows from Algorithm 2.8 in [33] that we can rewrite the series using the
Gauss hypergeometric series as

∞∑
n=0

1

22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
=

1

2k−1

(
s

k

)
2F1

(
k − s

2
,
k + 1− s

2
; k + 1; 1

)
.

(B.6)
The Gauss hypergeometric series is defined as

2F1 (a, b; c; z) =
Γ (c)

Γ (a) Γ (b)

∞∑
n=0

Γ (a+ n) Γ (b+ n)

Γ (c+ n)

zn

n!
,

and according to property 15.1.20 in [21] we have for z = 1 that

2F1 (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

holds whenever Re(c − a − b) > 0 and c /∈ {0,−1,−2,−3, . . . }. Using this520

property (B.6) yields

∞∑
n=0

1

22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
=

1

2k−1

(
s

k

)
Γ (k + 1) Γ

(
s+ 1

2

)
Γ
(
s+k+2

2

)
Γ
(
s+k+1

2

) , (B.7)
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which is valid for Re
(
k + 1− k−s

2 −
k+1−s

2

)
= Re(s)+ 1

2 > 0 and k /∈ {−1,−2,−3, . . . }.
These conditions are clearly satisfied when s ∈ R with s ≥ 0 and k ∈ {0, 1, 2, 3, . . . }.
Finally we rewrite the expression obtained in (B.7) using property 6.1.18 in [21],
the duplication formula for the gamma function, finding that

∞∑
n=0

1

22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

)
=

2s+1Γ
(
s+ 1

2

)
Γ (k + 1)

√
πΓ (s+ k + 1)

(
s

k

)

=
2s+1Γ

(
s+ 1

2

)
Γ (k + 1) Γ (s+ 1)

√
πΓ (s+ k + 1) Γ (s− k + 1) Γ (k + 1)

=
1

2s−1

Γ (2s+ 1)

Γ (s+ k + 1) Γ (s− k + 1)

=
1

2s−1

(
2s

s+ k

)
,

which concludes the proof.

With the aid of Proposition 1 and Proposition 2 we can now prove the
identity (15) which we state here as a Theorem.

Theorem 1. Let s be any non-negative real number. Then for any φ ∈ R the
following equality holds:(

cos2φ

2

)s
=

1

22s

(
2s

s

)
+

1

22s−1

∞∑
k=1

(
2s

s+ k

)
cos (kφ)

=
1

22s

Γ (2s+ 1)

Γ2 (s+ 1)
+

1

22s−1

∞∑
k=1

Γ (2s+ 1)

Γ (s− k + 1) Γ (s+ k + 1)
cos (kφ).

Proof. Let s be any non-negative real number and define the function f : R→
R by

f(φ) =

(
cos2φ

2

)s
=

1

2s
(1 + cosφ)

s
, φ ∈ R.

Now f(φ) can be expanded using the binomial series as525

f(φ) =
1

2s

∞∑
n=0

(
s

n

)
cosnφ, (B.8)

which is convergent for any value of φ, since s ≥ 0. In order to further expand
f(φ) into a Fourier series we split the series (B.8) into two series of even and
odd powers of the cosine function respectively, and utilize the formulas (B.1a)
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and (B.1b) from Proposition 1. This yields

2sf (φ) = 1 +

∞∑
n=1

(
s

2n

)
cos2nφ+

∞∑
n=1

(
s

2n− 1

)
cos2n−1φ

= 1 +

∞∑
n=1

1

22n

(
s

2n

)(
2n

n

)
+

∞∑
n=1

n∑
k=1

1

22n−1

(
s

2n

)(
2n

n+ k

)
cos (2kφ)

+

∞∑
n=1

n∑
k=1

1

22n−2

(
s

2n− 1

)(
2n− 1

n+ k − 1

)
cos ((2k − 1)φ).

Changing the order of summation gives

2sf (φ) =
1

2

∞∑
n=0

1

22n−1

(
s

2n

)(
2n

n

)
+

∞∑
k=1

( ∞∑
n=k

1

22n−1

(
s

2n

)(
2n

n+ k

))
cos (2kφ)

+

∞∑
k=1

( ∞∑
n=k

1

22n−2

(
s

2n− 1

)(
2n− 1

n+ k − 1

))
cos ((2k − 1)φ),

and if we change the summation index such that all sums start from n = 0 we
obtain

2sf (φ) =
1

2

∞∑
n=0

1

22n−1

(
s

2n

)(
2n

n

)
+

∞∑
k=1

( ∞∑
n=0

1

22n+2k−1

(
s

2n+ 2k

)(
2n+ 2k

n+ 2k

))
cos (2kφ)

+

∞∑
k=1

( ∞∑
n=0

1

22n+2k−2

(
s

2n+ 2k − 1

)(
2n+ 2k − 1

n+ 2k − 1

))
cos ((2k − 1)φ)

=
1

2

∞∑
n=0

1

22n−1

(
s

2n

)(
2n

n

)
+

∞∑
k=1

( ∞∑
n=0

1

22n+k−1

(
s

2n+ k

)(
2n+ k

n+ k

))
cos (kφ),

where the last equality is obtained by combining the sums with even and odd
indices. Finally the Fourier coefficients are found by computing the series ac-
cording to Proposition 2 and we end up with(

cos2φ

2

)s
=

1

22s

(
2s

s

)
+

1

22s−1

∞∑
k=1

(
2s

s+ k

)
cos (kφ)

=
1

22s

Γ (2s+ 1)

Γ2 (s+ 1)
+

1

22s−1

∞∑
k=1

Γ (2s+ 1)

Γ (s− k + 1) Γ (s+ k + 1)
cos (kφ),

which is what we wanted to prove.
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