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Abstract

This master thesis studies the applicability of continuum mean-field theories such as
the Poisson-Nernst-Planck equations and the Stokes equation. In particular, we in-
vestigate electro-osmotic flow of water and protons in infinite cylindrical nano-scale
pores with a uniform surface charge density, representing pores in polymer electrolyte
membranes. The impact of different modifications to the continuum theory is explored.
Including finite-size ions in the Poisson-Boltzmann equation and spatially dependent
profiles for permittivity and viscosity, values are found for the water drag coefficient
and the pore conductivity. For surface charge densities σs = −0.1 to σs = −0.5 C m−2,
values of 2-5 are found for the water drag coefficient, compared to 7.5 to 22 for the
unmodified equations. Similarly, values for the pore conductivity range from 5.5-30
S m−1 when including the modifications, compared to 13-100 S m−1 for the unmod-
ified equations. A final modification to the Poisson-Boltzmann equations is made by
including a field dependent explicit model for the permittivity. This model yields a
permittivity profile comparable to predictions based on microscopic simulations, but
with a lower permittivity near the wall. The proton concentration exhibits pronounced
saturation effects near the wall.
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Sammendrag

Denne masteroppgaven omhandler anvendelsen av kontinuum- og feltteorier som Poisson-
Nernst-Plancks ligninger og Stokes ligning. Mer spesifikt, undersøkes elektro-osmotiske
strømninger av vann og protoner i uendelige sylindriske nano-skala porer med en uni-
form overflateladningstetthet, som representerer porer i polymerelekrolyttmembraner.
Virkningen av forskjellige modifikasjoner av kontinuumteorien undersøkes. Ved å
inkludere ioner med endelig størrelse i Poisson-Boltzmann ligningen, samt romlig vari-
able profiler for permittivitet og viskositet, finnes verdier for drag-koeffisienten til
vannet samt konduktiviteten til poren. For overflateladningstettheter σs = −0.1 to
σs = −0.5 C m−2 finnes verdier for drag-koeffisienten til vannet mellom 2 og 5, sammen-
lignet med mellom 7.5 og 22 for de umodifiserte ligningene. P̊a samme vis finnes verdier
for konduktiviteten til poren mellom 5.5 og 30 S m−1 n̊ar modifikasjonene inkluderes,
sammenlignet med mellom 13 og 100 S m−1 for de umodifiserte ligningene. En siste
modifikasjon av Poisson-Boltzmann ligningen blir gjort ved å inkludere en feltavhengig
eksplisitt modell for permittiviteten. Denne modellen gir en permittivitetsprofil som
kan sammenlignes med prediksjoner basert p̊a mikroskopiske simuleringer, men med
en lavere permittivitet nær veggen. Tettheten av protoner nær veggen viser tydelige
metningseffekter.
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1 Introduction

The problem of flow of water and protons through nano-scale pores is complicated.
Using mean-field and continuum equations such as the Poisson-Nernst-Planck (PNP)
and Navier-Stokes equations to model the flow in such systems is problematic. There
are significant wall effects for systems of this size, and one is close to the limit of appli-
cability of the continuum approach. It is therefore of interest to study the applicability
of the PNP and Navier-Stokes equations to such nano-scale systems. In particular, it
is interesting to explore to what extent modifications made to existing continuum the-
ory can yield more accurate results. This thesis will use a modified Poisson-Boltzmann
(PB) equation [6, 10] with qualitative microscopic models for permittivity and viscosity
to simulate electro-osmotic flow in nano-pores in non-equilibrium settings. A further
modification to the Poisson-Boltzmann equation with an explicit model for the permit-
tivity [22] will also be developed and studied. Few studies use modified PB equations
in non-equilibrium settings [2]. Hence, this aims to be a worthwhile contribution.

Nano-pore systems are also interesting because of their similarity to the pores in poly-
mer electrolyte membranes (PEM) used in PEM fuel cells. A short introduction to
PEM fuel cells generally, and the PEM itself in particular, follows.

1.1 Polymer Electrolyte Membrane Fuel Cells

A polymer electrolyte membrane (PEM) fuel cell is an electrochemical energy con-
version device. Because of its high energy density and excellent dynamic capability,
it is the fuel cell of choice for application in transportation. It can also be used in
portable and distributed/stationary power generation [50]. Key challenges of the PEM
fuel cell technology include reliability and durability, efficiency, operation over large
temperature ranges and, perhaps more importantly, its cost. The membranes used
are expensive. In addition, platinum is used as a catalyst, and although the amount
of platinum needed has dropped significantly in recent times [29], platinum is still a
major contributor to the total cost of a PEM fuel cell.

The PEM fuel cell consists of a cathode and an anode separated by an electrolyte in
the form of a thin polymer membrane. The membrane is an electronic insulator, but
is a good conductor of protons [39]. At the anode, H2 gas ionizes, splitting up into
electrons (e−) and protons (H+) and releasing energy [29]

2H2 → 4H+ + 4e−. (1.1)
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1 Introduction

The protons produced at the anode flow through the PEM to the cathode, where they
react with oxygen and electrons. The latter are transported from the anode through
an external circuit

O2 + 4e− + 4H+ → 2H2O. (1.2)

The reactions and charge flow are illustrated in figure 1.1

The overall reaction is then
O2 + 2H2 → 2H2O. (1.3)

Figure 1.1: The half-cell reactions and charge flow in a PEM fuel cell

1.2 The Polymer Electrolyte Membrane

One main aspect of interest of a PEM in fuel cells is the conduction of protons, meaning
its ability to transport protons from the anode to the cathode. The protons appear in
the form of protonated water, so the PEM must be hydrated for it to allow the protons
to move. The conductivity of protons increase more or less linearly with increasing
hydration of the PEM. Nafion is the most common PEM for use in fuel cells, and
there has been much research into the properties of Nafion membranes. The exact
morphology is complex and not fully understood. One of the challenges is that it
changes with the degree of water found in the membrane [30]. A short and somewhat

2



1.2 The Polymer Electrolyte Membrane

simplified overview of the morphology and properties of Nafion and similar PEMs
follows.

Figure 1.2: Example of the structure of sulphonated polytetrafluorethylene. The back-
bone is polytetrafluorethylene with an added side-chain ending in a SO3H
acid group.

The starting point is a hydrophobic backbone of polytetrafluorethylene. Side-chains are
then added, each one ending in a sulfonic acid group (SO3H) as shown in figure 1.2 The
structure is called an ionomer, with the acidic SO3H group being covalently bonded.
This means the side chain actually ends in a SO−

3 ion under hydration [29]. The side
chains tend to appear in clusters in the material [20]. The acid groups are highly
hydrophilic, resulting in a phase-segregated medium with water-filled ionic clusters in
an otherwise hydrophobic material. In one of the most referenced models by Gierke
[19], clusters can be connected by narrow channels [23]. The hydration of the PEM
is essential for its conduction of protons. As the water content of the PEM rises, the
ionic clusters grow and create longer and wider pathways, enabling flow of water and
protons [24, 47]. A more recent and simpler model for hydrated Nafion by Schmidt-
Rohr and Chen [46] proposes that the PEM is made up of cylindrical nano-channels
with a circular cross section with diameters between 1.8 and 3.5 nm, as illustrated in
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1 Introduction

figure 1.3. This model matches experimental data better than the Gierke model [12]
and its geometry resembles that of the nano-pore model studied in this thesis.

Figure 1.3: Structure of Nafion-like membranes. Long chain molecules with cylindri-
cal water-filled hydrophilic regions containing clusters of sulphonated side-
chains. The white areas are the water channels, while the gray and black
are part of the Nafion membrane. Figure from Schmidt-Rohr and Chen
[46].

When hydrated, the acid groups at the ends of the side chains enter into an ion exchange
equilibrium with the nearby water and the dissolved mobile protons [5]. The protons
form complexes with the water, and a simplified equilibrium can be written as

SO3H + H2O ⇌ SO−

3 + H3O+. (1.4)

The simplification here is to consider only H3O
+ complexes. In reality, the proton

bonding in the water changes continuously and contains water complexes∗ larger than
H3O

+ [15].

The proton conductivity σp of the membrane is a measurable quantity. For well hy-
drated membranes, values of σp of around 0.06 S cm−1 have been found [35] . When
protons move through the membrane, they drag water molecules along with them,
increasing the flow of water from anode to cathode through the PEM. This electro-
osmotic drag can cause the anode and parts of the membrane to dry out, which lowers
proton conductivity considerably [14]. It is therefore an important effect in a PEM.
The electro-osmotic or water drag coefficient, that is the number of water molecules

∗In this thesis, we often refer to protons when we should say protonated water complexes
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1.3 Thesis Outline

transported per proton, is measurable experimentally. Values of the water drag coeffi-
cient have been found to be around 1-3 [34, 51]. A third measurable effect is the water
sorption of the PEM. It describes the water content of the PEM as a function of the
relative humidity of the membrane environment. However, this will not be studied in
this thesis.

1.3 Thesis Outline

This thesis is structured as follows. After this short introduction to the general subject,
a description of the Poisson-Nernst-Planck and Stokes equations is included, along with
a section about their applicability. This is kept brief, as the greater part of the work
is computational in nature. Chapter 3 is more comprehensive, developing the models
used in the simulations and providing additional theory where needed. Subsequently,
the numerical method used for the simulations is described in chapter 4. Chapter 5
presents the plots produced in the simulations and discusses them in the context of
existing literature. The last chapter offers a conclusion and an outlook for further
research.
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2 Poisson-Nernst-Planck Equations

and Stokes Equation

2.1 The Continuum Approach to Electro-Osmotic Flow

in Nano-Scale Channels

When dealing with electro-osmotic flow in nano-scale channels, a central question is
to what degree continuum theory based on the Poisson-Nernst-Planck and Navier-
Stokes equations can accurately describe the flow [25]. Some of the assumptions and
simplifications are perhaps not valid when the number of molecules in the flow is
very low. Ions are generally assumed to be point-like, all molecular interactions are
treated with mean-field theory and properties such as the permittivity and viscosity
are assumed to be constant.

An important concept in the electro-osmotic flow theory is the electric double layer.
When a charged surface comes in contact with an electrolytic solution, counterions
attract to the surface and build a layer of equal and opposite charge at the surface
[41, 48]. The Stern model describes this layer as structured with a thin layer of ions
tightly bound and immobile at the surface, often called the Stern layer, and a diffuse
layer of mobile ions adjacent to it [1]. Figure 2.1 shows the structure of the double layer
with an inner Stern layer and a diffuse layer.This diffuse layer is the main contributor
to the electrokinetic effects, as the mobile ions can move under the influence of an
electric field.

The area near the wall is the most important when dealing with electroosmosis. This
is problematic, as it is near the wall that the atomistic effects are strongest. For
example, the nature of the atomistic ordering near the wall can greatly affect the
flow rate [48]. Microscopic models, such as molecular dynamics (MD) simulations
based on interatomic potentials, can be used to study the flow more accurately, taking
such wall effects into account [49]. However, MD simulations are computationally
intensive and might therefore not always be practical. Another approach is to modify
the continuum theory to incorporate microscopic models, or otherwise incorporate new
physical properties. One such modification would be to somehow include finite-size
ions. Such modifications have been proposed by, among others, Bikerman [6], Eigen
[13] and more recently by Borukhov et al. [10, 11] and Bohinc et al. [8]. A similar
modification is used in this thesis and will be introduced in more detail in the next
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2 Poisson-Nernst-Planck Equations and Stokes Equation

Figure 2.1: Structure of electric double layer in the Stern model. Ions in the inner layer
are immobile [41].

chapter.

The value of the viscosity and permittivity in nano-channels is another topic of interest.
Neither is found to be constant in nano-scale pores, deviating significantly from bulk
values near the walls [2]. One way to incorporate this in a continuum model would
be to use qualitative models based on results, for example, from MD simulations or
experimental studies. The ideal approach would be to include models depending on
the system parameters explicitly. An attempt at this is made in this thesis for the
permittivity, by considering the ordering of water dipoles near the wall [22]. Wether
an explicit model exists for the viscosity is still an open question.

The starting point for the continuum model of electro-osmotic flow will be the Poisson-
Nernst-Plack equations coupled to Stokes flow. A short introduction will be given in
the next section.

8



2.2 The Poisson-Nernst-Planck Equations

2.2 The Poisson-Nernst-Planck Equations

Consider a flow of water with a concentration c of protons and a velocity u . In dilute
solution theory, one usually writes the proton flux J+ as [44]

J+ = qcu −D
(

q∇c+
Fqc

RcT
∇ψ

)

, (2.1)

where q is the proton charge, D is the diffusion coefficient, ψ is the electrokinetic po-
tential, T is the absolute temperature, and the constants F and Rc are the Faraday
constant and universal gas constant, respectively. The first term in (2.1) is the con-
vective flow. The second term is the electro-diffusion flux, which again has two terms.
The first is a diffusional term proportional to the concentration gradient ∇c, which is
essentially Fick’s first law [7, 17]. The second is migrational and relates the electric
force to a diffusive flux.

The electro-diffusion in (2.1) is governed by equations developed by Nernst and Planck
[31, 32, 38]. The Nernst-Planck equation for the electro-diffusion describes charge
conservation in the absence of sinks or sources and can in this case be written as

D∇
(

q∇c+
Fqc

RcT
∇ψ

)

= 0. (2.2)

Including the convective flow yields a new Nernst-Planck equation for convective electro-
diffusion [45]

∇J+ = ∇
(

qcu − qD
(

∇c +
Fc

RcT
∇ψ

))

= 0. (2.3)

For the electric potential ψ, the Poisson equation holds

∆ψ = −
qc

εε0

, (2.4)

where ∆ is the Laplace operator, ε is the relative permittivity, hereby referred to just as
the permittivity, and ε0 is the vacuum permittivity. We close the system of equations
by imposing incompressibility

∇u = 0. (2.5)

Now, limiting the flow to an infinite, circular cylinder with a uniform surface charge
density σs and a constant radius R, which is the system that is to be studied, we can
write the full Poisson-Nernst-Planck equations from (2.3) and (2.4) as

1

r

d

dr

(

r
dψ

dr

)

= −
qc

εε0
, (2.6)

∇J+ = 0, (2.7)
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2 Poisson-Nernst-Planck Equations and Stokes Equation

where the proton flux can be found from (2.1) as

J+ = qu(r)c(r)êz −Dq
dc(r)

dr
êr +

DFqc

RcT

(

Eextêz −
dψ

dr
êr

)

. (2.8)

Here, Eext = −dψ
dz

can be interpreted as an external electric field.

Charge conservation and the symmetry of the pore ensures that the axial part of (2.8)
is zero and that incompressibility is fulfilled, since u = u(r)êz. The radial part of (2.8)
must also be zero, as the cylinder is symmetric, infinite and of constant radius. Using
this last fact, (2.6) and (2.8) can be combined to find the Poisson-Boltzmann (PB)
equation [3]

1

r

d

dr

(

r
dψ

dr

)

= −
qc0

εε0
exp

(

−
qψ

kbT

)

, (2.9)

where c0 is the concentration of protons at the center of the cylinder and kb is the
Boltzmann constant. The distribution c(r) of protons in the cylinder is then given by

c(r) = c0 exp

(

−
qψ

kbT

)

. (2.10)

2.3 Stokes equation

For an incompressible flow of water, driven by a constant pressure gradient ,∇p = P ,
and an external electric field Eext, the Navier-Stokes equation can be written as [25]

ρ

(

∂u

∂t
+ u · ∇u

)

= −P + µ∆u + qcEext (2.11)

where u is the fluid velocity and µ is the viscosity. If the flow is at steady state and
very slow, the Reynolds number is small and the entire left (inertial) part of (2.11)
can be neglected, resulting in the Stokes equation. For the infinite, circular cylinder of
radius R introduced in the previous section, the fluid velocity is purely axial so that
u = uz(r) = u(r), and we can write the Stokes equation as

0 = −P + µ
1

r

d

dr

(

r
du

dr

)

+ qc(r)Eext. (2.12)

Assuming no slip at the wall, the boundary conditions are

u(R) = 0 (2.13)

and
du

dr
= 0 at r = 0 (2.14)

where the second condition is a symmetry condition.

10



3 Model

Consider a cylindrical, circular pore with a uniform surface charge density σs, similar
to Berg and Ladipo [4] and Berg and Findlay [3] (see figure 3.1). The pore has a
radius R and is infinite in the z-direction. The flow through the pore is driven in
the z-direction by an applied electric field Eext and a constant pressure gradient P .
This pore is similar to the cylindrical nano-channels in the model for hydrated Nafion
proposed by Schmidt-Rohr and Chen [46]. The surface charge density σs relates to the
ionic acid groups SO−

3 found in Nafion PEMs. In the ion exchange equilibrium in (1.4),
some of the acid group side chains are charged, while others have a proton bound at
the end. In this model, all the acid groups are assumed to be charged, i.e. all protons
are dissociated. A concentration c of free protons inside the pore balances the surface
charges on the pore walls.

We now need to look at how the protons are distributed inside the pore and how this
affects the electrokinetic flow through the pore.

Figure 3.1: Pore geometry. To the left is an exterior view of the pore, to the right
a cross section of radius R. The negative surface charges are uniformly
distributed along the wall. Protons and water are present inside the pore.

11



3 Model

3.1 Unmodified Poisson-Boltzmann Equation

From (2.9) we can write the Poisson-Boltzmann equation as

1

r

d

dr

(

rε(r)
dψ

dr

)

=
qc0

ε0
exp

(

−
qψ

kbT

)

(3.1)

where ε(r) is a spatially varying permittivity. The boundary conditions are then

dψ

dr
= 0 at r = 0 (3.2)

and
dψ

dr
= −

σs
ε(R)ε0

at r = R. (3.3)

The first boundary condition is simply a symmetry condition. The second is a result
of the global electro-neutrality of the pore. Following Berg and Findlay [3], the gauge

ψ(0) = 0, (3.4)

is imposed on the system. Furthermore, the system is non-dimensionalized using the
variable transformation r = xR, where x is a non-dimensional variable and R is the
pore radius. Setting

ψ̂ = −
qψ

kbT
, (3.5)

we can now write
1

x

d

dx



xε(x)
dψ̂

dx



 = λeψ̂, (3.6)

where

λ =
R2q2c0

ε0kbT
. (3.7)

The new boundary conditions are then

dψ̂

dx
= 0 at x = 0 (3.8)

and
dψ̂

dx
= −

Rqσs
ε(1)ε0c0kbT

at x = 1. (3.9)

In addition, the condition (3.4) holds as

ψ̂(0) = 0. (3.10)

12



3.1 Unmodified Poisson-Boltzmann Equation

Differentiating (3.6) yields

ε(x)
dψ̂

dx
+ x

dε

dx

dψ̂

dx
+ xε(x)

d2ψ̂

dx2
= xλeψ̂. (3.11)

Solving for the second derivative, we obtain

d2ψ̂

dx2
=
λeψ̂

ε(x)
−

1

x

dψ̂

dx
−

1

ε(x)

dε

dx

dψ̂

dx
(x 6= 0) , (3.12)

which can be solved numerically with boundary conditions (3.8) - (3.10). Note that
(3.6) with the conditions (3.8) - (3.10) poses a nonlinear eigenvalue problem, which
has only a solution if the eigenvalue λ is chosen correctly.

Permittivity

The simplest model for the permittivity of the pore is a constant bulk value εb through-
out the pore, as used by Berg and Ladipo [4] and Berg and Findlay [3]. This does not
match MD results [27]. Near the wall the value for the permittivity is found to be
significantly lower. This can be explained by the reduced ability of water dipoles near
the SO−

3 groups to align with the electric field, thereby reducing polarization. Near the
center of the pore, the permittivity reaches the bulk value for well hydrated pores, if
the pore is not too small [27]. Paul and Paddison [37, 36] used a statistical mechanics
model to produce a profile for the permittivity in a hydrated Nafion pore. Ladipo et

al. [28] proposed an equation to fit that profile, given as

ε(r) = A+B tanh
(

r − sR

kR

)

, (3.13)

where s and k are fit parameters, and A and B are constants given by

A = εb +
(εw − εb)tanh(s/k)

tanh(s/k) + tanh((1 − s)/k)
(3.14)

and

B =
(εw − εb)

tanh(s/k) + tanh((1 − s)/k)
. (3.15)

Here, εw is the permittivity near the wall and εb is the bulk permittity. Figure 3.2
shows the profile for the permittivity in a 20Å pore.
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Figure 3.2: Profile of permittiviy in a R = 20Å pore. The value at the wall is εw = 8
[2], the bulk value at T = 353K is εb = 60.93. The fit parameters are
s = 0.5 and k = 0.08.

3.2 Modified Possion-Boltzmann Equation

Treating the protons as point-like, as the unmodified Poisson-Boltzmann equation does,
tends to give an exaggerated ion concentration near the wall, especially for large surface
charge densities. There is nothing stopping the protons form occupying the same space,
so the concentration could conceivably be several orders of magnitude larger than what
is physically possible. One way of handling this is to introduce a finite size of the ions.
This should limit the concentration at the wall and might introduce a Stern-layer like
effect, depending on the size of the ions and the surface charge density [13].

Following Borukhov et al. [10, 11] an effective ion size a is introduced (we approximate
the volume by a cube of length a). Now, the concentration of protons in the pore can
be written as

c(x) =
c0e

ψ̂

1 − a3c0 + a3c0eψ̂
. (3.16)

This puts a limit on the maximum concentration which is now a−3. Since we have
chosen ψ̂(0) = 0 in (3.10), the concentration at the center is still c0. The main issue
is then to choose the correct size for the protonated water complexes. This is not

14



3.3 Modified Poisson-Boltzmann Equation with Explicit Model for Permittivity

straightforward, as the nature of the protons in water is complex. In this thesis, it will
be assumed that the protons appear as H3O

+ ions. The effective size is chosen to be
a = 2.2 Å, slightly smaller than that of water (see further below). This is one of the
criticisms of this model.

Introducing the new proton concentration into (3.6), we get

1

x

d

dx



xε(x)
dψ̂

dx



 =
λeψ̂

1 − a3c0 + a3c0eψ̂
(3.17)

with the same boundary conditions (3.8) - (3.10) as for the unmodified PB equation
(3.6).

Differentiating and rearranging yields

d2ψ̂

dx2
=

1

ε(x)

λeψ̂

1 − a3c0 + a3c0eψ̂
−

1

x

dψ̂

dx
−

1

ε(x)

dε

dx

dψ̂

dx
(x 6= 0) , (3.18)

which can be solved numerically.

3.3 Modified Poisson-Boltzmann Equation with Explicit

Model for Permittivity

A different approach for finding the spatial variation of the permittivity is by consid-
ering the ordering of water dipoles within the local electric field E [21]. Permittivity
models for point-like ions and small electric field strengths were presented by, among
others, Onsager [33] and Kirkwood [26]. Generalized models have also been suggested
[9]. Gongadze et al. [22] proposed a generalized model for point-like ions based on a
modified Langevin PB equation. In that model, the water molecules are considered as
Langevin dipoles and the number density of water is assumed to be constant, nw = n0w.
An explicit form of the effective permittivity of the electrolyte is found as

εeff = 1 + n0w
p0

ε0

L(p0E/kbT )

E
, (3.19)

where p0 is the magnitude of the water dipole moment and E = −dψ
dx

is the local
electric field. The function L(U) is the Langevin function given by

L(U) = coth(U) −
1

U
. (3.20)

In (3.19), the Langevin function effectively gives the average magnitude of the Langevin
dipole moments at that point in the pore.
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3 Model

The assumption that the number density of water is constant throughout the pore does
not hold when the ions present in the water are protons, unless the number of protons
c(x) is very low compared to nw0. The protons bond with the water and form H3O

+

ions, or larger complexes [15]. Near the walls, c(x) increases dramatically, and so a
constant nw is unrealistic. Using the hydronium distribution c(x), a spatially varying

number density nw
(

ψ̂(x)
)

can be written as

nw
(

ψ̂(x)
)

= n0w − c
(

ψ̂(x)
)

= n0w −
c0e

ψ̂(x)

1 − a3c0 + a3c0eψ̂(x)
(3.21)

and thereby a new equation for the permittivity as

εeff = 1 + nw(ψ)
p0

ε0

L(p0E/kbT )

E
. (3.22)

Strictly speaking, we should write nwa
3
w + ca3 = 1 which is approximated by (3.21) in

the case of aw ≈ a, where aw is the size of the water molecule.

A new modified PB equation can now be written, using the finite-size ion concentration
(3.16) and the permittivity (3.22) as

1

x

d

dx



xε(ψ̂, E)
dψ̂

dx



 =
λeψ̂

1 − a3c0 + a3c0eψ̂
, (3.23)

where ε(ψ̂, E) = εeff. The boundary conditions (3.8)-(3.10) are still valid. The differ-
entiation yields

ε(ψ̂, E)
dψ̂

dx
+ x





∂ε

∂ψ̂

dψ̂

dx
−
kbT

q

∂ε

∂E

d2ψ̂

dx2





dψ̂

dx
+ xε(ψ̂, E)

d2ψ̂

dx2
=

xλeψ̂

1 − a3c0 + a3c0eψ̂
.

(3.24)

Here, we have from (3.22)

∂ε

∂E
=

∂

∂E

[

1 + nw(ψ)
p0

ε0

L(p0E/kbT )

E

]

. (3.25)

Substituting U = p0E/kbT and differentiating gives

∂ε

∂U
=

∂

∂U

[

1 + nw(ψ)
p2

0

ε0kbT

L(U)

U

]

= nw(ψ)
p2

0

ε0kbT

L′(U)U − L(U)

U2
(3.26)

where

L′(U) =
dL

dU
= 1 − coth2(U) +

1

U2
(3.27)

so that
∂ε

∂E
=

∂ε

∂U

dU

dE
= nw(ψ̂)

p3
0

ε0(kbT )2

U + 2
U

− coth2(U) − coth(U)

U2
. (3.28)
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3.4 Stokes equation

Furthermore, we can write

dε

dψ̂
=

d

dψ̂

[

1 + nw(ψ̂)
p0

ε0

L(p0E/kbT )

E

]

=
dnw

dψ̂

p0

ε0

L(p0E/kbT )

E
(3.29)

where

dnw

dψ̂
=

d

dψ̂



n0w −
c0e

ψ̂(x)

1 − a3c0 + a3c0eψ̂(x)



 = −
c0e

ψ̂(1 − a3c0)
[

1 − a3c0 + a3c0eψ̂
]2 (3.30)

so that
∂ε

∂ψ̂
= −

c0e
ψ̂(1 − a3c0)

[

1 − a3c0 + a3c0eψ̂
]2

p0

ε0

L(p0E/kbT )

E
. (3.31)

Rearranging (3.24) now yields

d2ψ̂

dx2
=

λeψ̂

1 − a3c0 + a3c0eψ̂
−

1

x
ε(ψ̂, E)

dψ̂

dx
−
∂ε

∂ψ̂





dψ̂

dx





2

ε(ψ̂, E) −
kbT

q

∂ε

∂E

dψ̂

dx

(3.32)

which can be solved numerically using (3.28) and (3.31). This is now a very complicated
non-linear eigenvalue problem.

3.4 Stokes equation

Rewriting the Stokes equation (2.12) with the non-dimensional variable x and rear-
ranging yields

d

dx

(

µ(x)x
du

dx

)

= PR2x− qc(x)ER2x. (3.33)

The expression µ(x) is here a spatially varying viscosity and c(x) is found from (2.10)
for the unmodified PB equation and from (3.16) for the modified PB equation. There
is no slip at the wall, so the boundary conditions are

u(1) = 0 (3.34)

and
du

dx
= 0 at x = 0. (3.35)

The second boundary condition is again a result of the symmetry of the pore.
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3 Model

Viscosity

Two models are used for the viscosity µ. The first simply is a constant µ, as used by
Berg and Findlay (2011) [3]. As was the case for the permittivity, this does not match
the results from MD simulations. Using atomistic simulations to study a nano-scale
channel filled with water and Cl−, Freund [18] observed a shift in viscosity near the wall.
There was an increase from a bulk value µb at the center of the pore to about 6 times
the bulk value near the pore wall. In particular, the viscosity is large within roughly
two molecular water layers at the wall. In this thesis, this shift is modeled based on
the same equations as for the permittivity (3.13) [28] with a few minor changes. The
profile for a R = 20Å pore is shown in figure 3.3. The equations used are

µ(r) = A +Btanh

(

|1 − r| − sR

kR

)

, (3.36)

where s and k are fit parameters. A and B are constants given by

A = µw +
(µb − µw)tanh(s/k)

tanh(s/k) + tanh((1 − s)/k)
, (3.37)

B =
(µb − µw)

tanh(s/k) + tanh((1 − s)/k)
. (3.38)
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3.5 Water Drag and Conductivity
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Figure 3.3: Profile of viscosity in a R=20Å pore. The value µw near the wall is 5 times
larger than the bulk value µb. The fit parameters are s = 0.5 and k = 0.08.

3.5 Water Drag and Conductivity

To find the water drag ηdrag, the total mass flux Ṁ through a cross section of the pore
must be determined. Berg and Ladipo (2009) gives the mass flux as

Ṁ =
∫ r

0
2π[ρu(r)]rdr (3.39)

where ρ is the water density. This can be expressed in non-dimensionalized variables
as

Ṁ = 2πρR2
∫ 1

0
xu(x)dx (3.40)

which can be evaluated numerically since u(x) is known from the Stokes equation. For
the integration we can use Simpson’s rule, for example.

The proton flux J+ is non-zero only in the z-direction. From (2.8) we can then write
the total proton flux, or current as

J+ =
∫ R

0
2π
[

qc(r)u(r) +
DF

RcT
qEextc(r)

]

rdr (3.41)
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3 Model

which can be rewritten in non-dimensionalized variables as

J+ = 2πR2
∫ 1

0

[

qc(x)u(x) +
DF

RcT
qEextc(x)

]

xdx. (3.42)

The integral (3.42) can again be evaluated numerically.

The electro-osmotic drag ηdrag is found from the ratio of the water flux and the proton
flux as [4]

ηdrag =
Ṁ

ω

F

J+

. (3.43)

Here, the molar weight of water ω and Faradays constant F are included to convert
both the water flux and proton flux to molar fluxes.

Finally, the pore conductivity σp can be written as [4]

σp =
J+

πR2Eext
. (3.44)
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4 Numerical Method

4.1 Solving the Poisson-Boltzmann Equation

As mentioned above, solving the PB equation is essentially a non-linear eigenvalue
problem. The goal is to find the λ in (3.6) that matches the boundary condition (3.9)
at the wall. In this work, a shooting method is used to match the boundary condition,
starting with ψ̂ = 0 at x = 0 and marching forward to x = 1. Initially the value of
λ is estimated and the potential ψ̂ is solved, giving a value for (3.9). The derivative

of the potential ψ̂′ is monotonically increasing with λ. If the chosen λ yields a value
for ψ̂′ at the wall that is too high, the desired value for lambda must be lower than
the chosen value. Conversely, if the value of ψ̂′ is too low, λ must be higher. A higher
and a lower bound for λ can be chosen initially and then updated as the derivative
at the wall is found to be too large or too small (bisection method). The new guess
for λ is then chosen to be λ = (λh + λl)/2 where λh and λl are the higher and lower
bound, respectively. Repeating this, the value of λ that matches (3.9) can be found to
a chosen precision, provided that the initial guess is large enough.

The procedure is identical for the first modified PB equation (3.17), but for the second
modified PB equation (3.32), some care must be taken. Here, the permittivity is a
function of the (actual) potential ψ and its derivative ψ′, so the boundary condition
(3.9) at the wall can no longer be used in the shooting method. To find a new wall
condition for the shooting method which does not depend explicitly on ψ, the boundary
condition (3.9) can be rearranged to yield

dψ̂

dx
ε
(

ψ̂(0), ψ̂′(0)
)

= −
Rqσs
ε0c0kbT

at x = 1. (4.1)

This new wall condition can then be used to match ψ̂′, using the same procedure as
described above.

The potential ψ̂ is found using a fourth order Runge-Kutta scheme [40] for the shooting
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4 Numerical Method

method:

k1 = hf(xn, yn)

k2 = hf(xn +
1

2
h, yn +

1

2
k1)

k3 = hf(xn +
1

2
h, yn +

1

2
k2) (4.2)

k4 = hf(xn + h, yn + k3)

⇒ yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4,

where we set
v = ψ̂ (4.3)

and
w = v′ (4.4)

and solve the resulting first-order ODE system

v′ = w (4.5)

and
w′ = ψ̂′′. (4.6)

Here, ψ̂′′ is the right hand side of the corresponding PB equation above.

The computed potential ψ̂ is then used to find the proton distribution c(x) in the pore
from (2.10) for the unmodified PB equation or (3.16) for the modified PB equations.
This is in turn used to solve the Stokes equation (3.33).

4.2 Stokes Equation, Water Drag and Conductivity

The Stokes equation (3.33) can be solved linearly. The differentiation in (3.33) yields

µ
du

dx
+

dµ

dx
x

du

dx
+ µx

d2u

dx2
= PR2x− qc(x)ER2x (4.7)

or
d2u

dx2
+

du

dx

(

dµ

dx

1

µ
+

1

x

)

=
PR2 − qc(x)ER2

µ
. (4.8)

Now, (4.8) with boundary conditions (3.34) and (3.35) can be discretized according to

d2u

dx2
≈
ui+1 − 2ui + ui−1

h2
at x = xi, (4.9)

du

dx
≈
ui+1 − ui−1

2h
at x = xi, (4.10)
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4.2 Stokes Equation, Water Drag and Conductivity

du

dx
≈

−3u0 + 4u1 − u2

2h
at x = x0, (4.11)

yielding
(

dµ
dxi

= dµ
dx

at x = xi
)

ui+1 − 2ui + ui−1

h2
+

(

dµ

dxi

1

µ(xi)
+

1

xi

)

ui+1 − ui−1

2h
=
PR2 − qc(xi)ER

2

µ(xi)
(i 6= 0, N),

(4.12)

−3u0 + 4u1 − u2

2h
= 0 (i = 0), (4.13)

ui = 0 (i = N). (4.14)

Rearranging (4.12) gives




1

h2
−

dµ
dxi

1
µ(xi)

+ 1
xi

2h



ui−1−
(

2

h2

)

ui+





1

h2
+

dµ
dxi

1
µ(xi)

+ 1
xi

2h



ui+1 =
PR2 − qc(xi)ER

2

µ(xi)
.

(4.15)

This can be written as a system of linear equations

Aiui−1 +Biui + Ciui+1 = Fi, i = 1, ...., N − 1

A0u0 +B0u1 + C0u2 = 0

ANuN−2 +BNuN−1 + CNuN = 0 (4.16)

or
Mu = F (4.17)

where u = (u0, u1, ....., uN)T and F = 0, F1, ...., FN−1, 0. The matrix M is given as

M =





























A0 B0 C0 0 0 .... 0

A1 B1 C1 0 0 .... 0

0 A2 B2 C2 0 .... 0

... ... ... ... ... ... ...

0 0 0 0 AN−1 BN−1 CN−1

0 0 0 0 AN BN CN





























(4.18)

where

A0 =
−3

2h

B0 =
4

2h

C0 =
−1

2h
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Ai =
1

h2
−

dµ
dxi

1
µ(xi)

+ 1
xi

2h

Bi =
−2

h2
(4.19)

Ci =
1

h2
+

dµ
dxi

1
µ(xi)

+ 1
xi

2h

AN = 0

BN = 0

CN = 1

The fluid velocity u(r) can now be found in a straightforward manner by solving (4.17).

Finally, the integrals for the proton flux J+ in (3.41) and the mass flux in (3.40) can
be evaluated numerically using a Simpson’s rule solver according to [40]

∫ xN

x0

f(x)dx = h
[

1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 + · · · +

2

3
fN−2 +

4

3
fN−1 +

1

3
fN

]

(4.20)

The water drag and pore conductivity can then be determined from (3.43) and (3.44),
respectively.
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5 Results and Discussion

Parameter Description Value

a Effective size of H3O+ 2.2 Å to 3.14 Å

D Diffusion coefficient of protons 7.5 x 10−10 m2 s−1

Eext Applied electric field 2000 V m−1

T Temperature 353 K

εb Bulk permittivity of water 60.93

εw Permittivity of water at the wall 8

µb Bulk viscosity of water 3.35 x 10−4 Pa s

ρ Water density 971.8 kg m−3

Table 5.1: Values of system parameters

5.1 Proton Concentration

Figure 5.1 shows what effect the introduction of finite-size ions in the PB-equation has
on the concentration c(x) of protons in the pore when the permittivity is kept constant
at bulk value. As the concentration approaches the maximum concentration allowed,
a−3 = 9.36 x 1028 m−3, the distribution should flatten out. For the surface charge
density σs = −0.1, the distributions in figure 5.1 are too low for the modification
(3.16) to matter and the two curves coincide. For σs = −0.5 C m−2 the modified
concentration near the wall is suppressed, leaving a slightly larger concentration in the
rest of the pore.

In figure 5.2 a varying permittivity ε(r) (see figure 3.2) is introduced, resulting in a
significantly higher concentration near the wall where ε is small. For σs = −0.5 C
m−2, this has the effect of a more pronounced flattening of the distribution at the wall
compared to the constant permittivity distribution in figure 5.1. The profile of the
distributions changes markedly with the introduction of a varying permittivity. The
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5 Results and Discussion

concentration of protons is higher in areas of low permittivity, that is near the walls,
while the concentration near the center of the pore is lower.
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Modified PB, constant ε,     σ
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Figure 5.1: Concentration of protons as a function of position x in a 1 nm pore for both
the modified PB equation and the unmodified PB equation with constant
permittivity and σs = −0.5 and σs = −0.1 (in C m−2).
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5.1 Proton Concentration
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Figure 5.2: Concentration of protons as a function of position x in a 1 nm pore for
the modified PB equation with varying permittivity and σs = −0.5 and
σs = −0.1 (in C m−2).
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5 Results and Discussion

5.2 Water Drag

The water drag is a characteristic quantity of the PEM that is measurable experimen-
tally. It is therefore of interest to compare the values presented here with experimental
results. Also of interest is the effect each modification made to the model, that is
the inclusion of finite-size ions, the non-constant permittivity and the non-constant
viscosity, has on the results. Figures 5.3 to 5.6 show the dependency of the water drag
coefficient ηdrag on the radius R of the pore for different values of the pressure gradient
P and the surface charge density σs. Results are found using different modifications
to the PB equation and Stokes equation. The values chosen for σs, −0.1 and −0.5 C
m−2, should represent the limits for the surface charge density of a typical PEM.

The water drag is in general found to be increasing with increasing pore radius R. For
very large pressure gradients, around P = 1011Pa m−1 [16], the effect of the pressure
gradient on the flow increases, and the drag coefficient can turn negative, meaning the
flow of water opposes the flow of protons. This effect seems to become more important
the smaller the surface charge density σs of the pore is. A negative drag coefficient
corresponds to back diffusion in the pore [3]. These findings are a result of a parabolic-
like water velocity profile, where the maximum velocity is found at the pore center,
while most protons are found near the walls where u is very small.

The results in figures 5.3 and 5.4 are found using the unmodified PB equation in (3.6)
and the modified PB equation in (3.17) respectively, with constant permittivity and
viscosity at bulk value. The only difference between the two is then the inclusion of
finite size-ions in figure 5.4. For σs = −0.1 C m−2 there is no discernible difference
when including finite-size ions. This is as expected, considering the distribution of
protons shown in figure 5.1, was largely unaffected by the modification. Increasing the
surface charge density to σs = −0.5 C m−2, the difference is still marginal. The water
drag turns negative for σs = −0.1 C m−2 and P = 1011 Pa m−1, but only when the
channel radius is relatively large.

In figure 5.5, a varying permittivity with the profile from figure 3.2 is included in the
modified PB model. The effect of this inclusion is to lower values for the water drag
coefficient ηdrag all over. This is especially true for large pressure gradients where the
turn to negative values of ηdrag happens for smaller R. As a result, the value of ηdrag at
R = 1 nm for σs = −0.1 C m−2 and P = 1010 Pa m−1 is about a third of the value for
the constant permittivity case. For smaller pressure gradients, there is a 20-30% drop
in ηdrag at R = 1 nm. Another notable effect is the turn to negative values of ηdrag for
large σs at P = 1010 Pa m−1.

In figure 5.6, a varying viscosity with the profile from figure 3.3 is included in the
modified PB model in addition to the non-constant permittivty. This inclusion has the
effect of further lowering the values for ηdrag. At R = 1 nm and P = 0 and P = 1010

Pa m−1, the values for ηdrag are reduced by about a factor of 4 compared to the case
with constant permittivity and viscosity. For P = 1011 Pa m−1, ηdrag is seen to turn
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5.2 Water Drag

negative at smaller R. This results in a value of ηdrag for σs = −0.1 C m−2 that is an
order of magnitude lower compared to the constant permittivity and viscosity case.
For σs = −0.5 C m−2, the value is reduced by a factor of 5.

To isolate the effect of the protons on the flow of water, ηdrag should be measured
when P = 0. Experimental and theoretical studies indicate a value of ηdrag between
1 and 3 [34, 51]. For the case of constant permittivity in figures 5.3 and 5.4, the
values for ηdrag at R = 1 nm are about 7.5 and 22 for σs = −0.5 and −0.1 C m−2,
respectively. The values are almost identical for the unmodified and modified PB
equation. These values line up with Berg and Findlay [3], who found a value around
15 from an analytical solution of the PB and Stokes equation with constant permittivity
and viscosity. Introducing a varying permittivity, the values of ηdrag for the same pore
decrease to about 6 and 17 for σs = −0.5 and −0.1 C m−2, respectively. Finally,
adding a varying viscosity yields values of about 2 and 5 for σs = −0.5 and −0.1
C m−2 respectively. This is close to the experimental values. It is also apparent
that the inclusion of a varying permittivity and viscosity greatly improve the results,
as predicted by Berg and Findlay [3]. The effect of the finite-size ions looks to be
limited, although the concentration is significantly higher near the wall with the varying
permittivity as seen in figure 5.2, so it might make a difference for large σs.
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Figure 5.3: Water drag ηdrag as a function of pore radius R for the unmodified PB
equation (3.1) with constant (bulk) values for permittivity and viscosity.
Values are found for surface charge densities σs = −0.1 and σs = −0.5 (in
C m−2) and different values for the constant pressure gradient P (in Pa
m−1).
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Figure 5.4: Water drag ηdrag as a function of pore radius R for the modified PB equation
(3.17) with constant (bulk) values for permittivity and viscosity. Values are
found for surface charge densities σs = −0.1 and σs = −0.5 (in C m−2) and
different values for the constant pressure gradient P (in Pa m−1).
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Figure 5.5: Water drag ηdrag as a function of pore radius R for the modified PB equation
(3.17) including varying permittivity with the profile from figure 3.2 and
constant (bulk) viscosity. Values are found for surface charge densities
σs = −0.1 and σs = −0.5 (in C m−2) and different values for the constant
pressure gradient P (in Pa m−1).
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Figure 5.6: Water drag ηdrag as a function of pore radius R for the modified PB equation
(3.17) including varying permittivity with the profile from figure 3.2 and
varying viscosity with the profile from figure 3.3. Values are found for
surface charge densities σs = −0.1 and σs = −0.5 (in C m−2) and different
values for the constant pressure gradient P (in Pa m−1).
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5.3 Pore Conductivity

The second quantity studied is the pore conductivity σp, which can also be measured
experimentally. As was the case for the water drag, the objective is to compare the
results with experimental data and observe the difference each modification to the PB
model makes to the conductivity. Figures 5.7 to 5.10 show the dependency of the pore
conductivity σp on the radius R of the pore for different values of the pressure gradient
P and the surface charge density σs. Results are found using different modifications
to the PB equation and Stokes equation.

In general, the pore conductivity falls as the pore radius R increases since c decreases.
The pressure gradient P only matters when very large (P = 1011), and even then the
effect is limited, especially with non-constant permittivity and viscosity as seen in figure
5.10. A larger surface charge density σs results in larger values for σp. This is perhaps
not surprising, considering this also means a larger overall proton concentration in the
pore.

In figure 5.7 the results are found using the unmodified PB equation (3.6), whereas the
results in figure 5.8 are found using the modified PB equation (3.17) with finite-size
ions. Both the permittivity and the viscosity are kept constant at bulk value. As
was the case with the water drag, there is no discernible effect for small surface charge
densities. For σs = −0.5, the values for σp at R = 1 nm are a bit larger for the modified
PB equation than for the unmodified PB equation.

The results when including the variable permittivity from figure 3.2, can be seen in
figure 5.9. The value of σp at 1 nm is reduced by a factor of 2 for σs = −0.5 C m−2

and close to 2 for σs = −0.1 C m−2. In figure 5.10, the variable viscosity from figure
3.3 is added to the model. At R = 1 nm, this further reduces σp by about 40% for
σs = −0.5 C m−2, while the reduction is somewhat less for σs = −0.1 C m−2.

Experimental data puts σp at around 6 S m−1 [35] for Nafion. Measuring at P = 0 and
R = 1 nm, the values of σp for the constant permittivity cases are around 13 and 100
S m−2 for σs = −0.1 and −0.5 C m−2, respectively. Including the varying permittivity
puts the same values at around 7 and 50 S m−1. Finally, including also the variable
viscosity reduces the values to about 5.5 and 30 S m−1. For small σs, the results when
including the non-constant permittivity and viscosity, are very reasonable compared
to the experimental data. For the larger surface charge density σs = −0.5 C m−2,
the values are significantly larger than the experimental reference, but not completely
unreasonable. It is clear that the introduction of varying permittivity and viscosity
significantly improved the results for the pore conductivity. The values are lower by
a factor 2 or more compared to the unmodified case. The effect of the finite-size ions
seems to be larger than for the water drag, although at constant permittivity it has
the effect of increasing the conductivity. This might not be the case for the varying
permittivity. The integral for the proton flux (3.42) in the pore conductivity (3.44)
includes both the concentration c(x) of protons and the fluid velocity u(x). From
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inspection of the figure 5.1, it is apparent that the concentration for the modified PB
equation is lower than the unmodified PB concentration only at the wall where the
velocity u is close to zero (from the no-slip boundary condition). This might explain
the slightly larger value.
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Figure 5.7: Pore conductivity σp as a function of pore radius R for the unmodified PB
equation (3.1) with constant (bulk) values for permittivity and viscosity.
Values are found for surface charge densities σs = −0.1 and σs = −0.5 (in
C m−2) and different values for the constant pressure gradient P (in Pa
m−1).
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Figure 5.8: Pore conductivity σp as a function of pore radius R for the modified PB
equation (3.17) with constant (bulk) values for permittivity and viscosity.
Values are found for surface charge densities σs = −0.1 and σs = −0.5 (in
C m−2) and different values for the constant pressure gradient P (in Pa
m−1).
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Figure 5.9: Pore conductivity σp as a function of pore radius R for the modified PB
equation (3.17) including varying permittivity with the profile from figure
3.2 and constant (bulk) viscosity. Values are found for surface charge den-
sities σs = −0.1 and σs = −0.5 (in C m−2) and different values for the
constant pressure gradient P (in Pa m−1).
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Figure 5.10: Pore conductivity σp as a function of pore radius R for the modified PB
equation (3.17) including both a varying permittivity with the profile from
figure 3.2 and a varying viscosity with the profile from figure 3.3. Values
are found for surface charge densities σs = −0.1 and σs = −0.5 (in C m−2)
and different values for the constant pressure gradient P (in Pa m−1).
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5.4 Modified Poisson-Boltzmann Equation with Explicit

Model for Permittivity

The modified Poisson-Boltzmann equation (3.23) with the explicit model for permit-
tivity from (3.22) introduces a permittivity depending explicitly on the potential ψ
and the local electric field E = −ψ′. Since the model is based on the ordering of water
dipoles, finding the correct spatial variation of the number density, or concentration,
of water in (3.21) is essential to achieve accurate results. This variation stems directly
form the variation in the concentration of protons, as all protons are assumed to ap-
pear as H3O+ ions. Coupling this to the finite-size ion modification from (3.17), the
effective size a chosen for the H3O

+ ions becomes important. In the first modified PB
equation (3.17), this size was chosen to be a bit smaller than the effective size of the
water molecules. Attempting to use the same size for the current model, one could end
up with a larger number density of protons near the wall than the number density n0

of water with no protons present. This would appear as a negative nw in (3.21), which
would not be physical and cause a breakdown of the shooting method used to match
the wall condition (3.9). To gain an understanding of the qualitative properties of the
model, a new effective size a was chosen so that the H3O+ ion would be slightly larger
than a water molecule, thereby eliminating the possibility of negative nw. However,
large concentrations of protons, as seen near the walls, would still lead to a depletion
of water molecules. With the model (3.22), where the magnitude of the effective dipole
moment of hydronium is taken to be zero, this will result in a very small permittivity.

Figure 5.11 shows the effective permittivity εeff as a function of the position x in a 1
nm pore for different values of the surface charge density σs. The permittivity is found
to be almost constant up to a point at around x = 0.75 where it starts to decrease
rapidly ending up at around 1, which is the lowest value allowed in (3.19). The shift
from bulk value to 1 occurs at larger x as σs is decreased. For σs = −0.1, the shift
does not happen at all, and the value of the permittivity is about 58 at the wall. The
profile for large σs is qualitatively not very different from the profile used in the first
modified PB equation (see figure 3.2). The wall and bulk values are different, however.
In addition, the shift from bulk value to the wall value of the permittivity happens
closer to the wall in the explicit model. The position of the shift in figure 3.2 is based
on the work of Paul and Paddison [37, 36].

Figure 5.12 shows the effective permittivity as a function of the pore potential ψ̂ for
a given ψ̂′. This profile shares the characteristic shift from bulk to wall values of the
permittivity with the positionally dependent plots in figure 5.11. The value of the
permittivity at the wall is expected to be around 10 [36]. Achieving such a value with
this model would be difficult. The shift happens over a short interval in the potential,

but near the wall, the derivative of the potential dψ̂
dx

is large. In practice, this means
that the permittivity at the wall will most likely either be large (> 40) or hit the lower
limit for the permittivity (∼ 1). Therefore a more realistic permittivity model is called
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for that captures the dynamics of protonated water complexes near the wall.

The plots in figure 5.13 show the concentration of protons c(x) as a function of position
x in a R = 1 nm pore for decreasing values of the surface charge density σs. For large
surface charge densities, the concentration reaches the maximum allowed concentration
(a−3) at a distance of about 1 Å from the wall. As σs decreases, the concentration
reaches the maximum value closer to the wall. For σs = −0.1 C m−2, the concentration
never reaches the maximum. In comparison with figure 5.11, the concentration seems to
reach the maximum value at the same distance from the wall as the permittivity reaches
its minimum. Figure 5.2 showed that a lower permittivity near the wall allows for a
higher concentration of protons, so this is perhaps not surprising. Since the effective
size a of the protons is larger in the explicit model, the maximum concentration is
lower than for the first modified PB equation. This saturation in the concentration
also resembles the distribution one might expect with a Stern layer present [13].

As the model is implemented at the moment, the number concentration of water nw(x)
at the center of the pore is taken to be nw(0) = n0 so as to enable the calculation of
the permittivity at the pore center, ε(0). This is not strictly true, as the concentration
of protons at the center, c(0), is nonzero. The error this introduces in nw(0) is roughly
3%. This is reduced somewhat, as a lower nw0 gives a lower ε(0), and in turn a lower
c(0). Another loose end is the effective magnitude of the water dipole moment p0 which
was taken to be p0 = 4.79 D by Gongadze et al. [22]. Using this value for p0, the bulk
permittivity is from (3.19) found to be around 65, about 10% higher than the actual
bulk value at T = 353K. A recalibration of p0 at T = 353K could mitigate this.

Because of the issues with the model, no plots for the water drag ηdrag and pore
conductivity σp have been included here. However, for comparison with the other
models, values have been found for 1 nm pores with the variable viscosity included.
The water drag was found to be between about 3 and 9 for surface charge densities
σs = −0.1 to −0.5 C m−2. This is slightly larger than the values for the first modified
PB equation with variable permittivity. The values for the pore conductivity are found
to be between about 7 and 100 for σs = −0.1 to −0.5 C m−2. This is larger than in
the previous model. The conductivity also seems to be more sensitive to changes in
the surface charge density.
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Figure 5.11: Value of the permittivity εeff as a function of position x in a R = 1 nm
pore for decreasing values of the surface charge density σs .
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Figure 5.13: Concentration of protons c(x) as a function of position x in a R = 1 nm
pore for decreasing values of the surface charge density σs.

43





6 Conclusion and Outlook

6.1 Conclusion

The main goal of this thesis was to study the effects of different modifications made to
the PB and Stokes equations for electro-osmotic flow in nano-scale pores reminiscent
of the pores found in PEM membranes. As such, the inclusion of finite-size ions in
the PB equation (3.17) had modest effects when applied to a system with constant
permittivity. Adding a positionally dependent permittivity where the value, based on
microscopic simulations found in literature, dropped near the pore surface, increased
the wall concentration of protons and thereby the effect of the finite-size ion modifica-
tion. Values for both the water drag coefficient and the pore conductivity were reduced
significantly, coming closer to experimental values. Including a similar model for the
viscosity, with an increased value only near the wall instead of a gradually increasing
profile, yielded even better results for the water drag and pore conductivity when com-
pared to experimental values. The water drag coefficient attained values between 2
and 5 for surface charge densities σs = −0.1 to −0.5 C m−2 which is very close to the
experimental reference values of 1-3. Values were about a factor four lower than the
unmodified PB results. The pore conductivity gave values between 5.5 and 30 S m−1

for σs = −0.1 to −0.5, which is also in reasonably good agreement with experimental
values of about 6 S m−1. The reduction compared to the unmodified PB equation was
by a factor of between 2 and 3.

The explicit field dependent permittivity modification yielded a profile of the permittiv-
ity not unlike those seen in microscopic simulations. The value of the permittivity near
the wall was found to be lower than predicted from literature. The proton distribution
of the pore exhibited saturation effects near the wall, resembling those seen in distri-
butions with a Stern layer included. The source of this saturation, however, seemed to
be the significantly lower permittivity near the wall compared to the first permittivity
model, combined with a larger effective size of the H3O

+ ions in the finite-size ion
model.

The modifications to the PB equation investigated in this thesis are successful in
improving the results yielded by continuum equations for electroosmotic flow under
non-equilibrium settings in nano-scale pores. As such, it is a modest but worthwhile
contribution to a large field of research.
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6.2 Outlook

There are a few unresolved issues with the models proposed in this thesis. Firstly, the
question of how to model the viscosity is still unresolved. The accuracy of the model
used in this thesis is uncertain, as it was based on somewhat vague MD simulation
results [2]. It seems to be accepted that the viscosity near charged surfaces increases
considerably, but the how and why is still unclear. It has been found to increase
with increasing surface charge density [43], which the model used in this thesis does
not account for. An alternative approach to the viscosity model is to use a constant
viscosity, but with an adjusted value matched to MD simulations of the water velocity.
Qiao and Aluru [42] achieved good results with this model everywhere except near the
walls. The behavior of the viscosity in nano-scale systems seems to be non-uniform and
the mathematical description is not well understood [2]. It is clear from the results,
however, that the water drag coefficient and pore conductivity are both very much
affected by the viscosity, underlining the need for a better model.

Another unanswered question is how to model the finite-size ions when studying protons
in water. The properties and behavior of such solutions is not easy to incorporate into
a mean-field model and their nature is much more complex than solutions with other
types of ions. The protons are shared among the water molecules available and can
appear in water complexes larger than the simple H3O+ ion assumed in the model
used in this thesis. The formation and dissolution of such water complexes happens
fast [15]. The question is if this is at all possible to accurately model in a mean-field
approach.

The field dependent model for the permittivity shows promise in the search for a self-
consistent model. The issues regarding the finite-size ions and water concentration
needs further investigation, however. Some care might have to be taken with the other
system parameters as well. The fact that it seemingly under-predicts the value of the
permittivity near the wall might indicate that there are more effects that need to be
considered to achieve an accurate model. Including a non-zero dipole moment for the
hydronium, for example, will yield larger values for the permittivity near the wall.

Ultimately, a main goal would be to build a pore network model, representing a macro-
scopic PEM. Such a model should be based on the dynamics of individual nano-pores,
as exhibited in this thesis. This approach would then yield water drag and conductivity
values as measured experimentally.
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