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Abstract

The reflection and scattering of light from surfaces is a topic that has
been much discussed in the scientific literature. The application of optical
methods for the characterization of surfaces and the understanding of
natural phenomena is dependent on good models for the optical properties
of surfaces and interfaces. In this work, we will examine three different
aspects of the optical properties of surfaces and interfaces.

The measurement of polarization effects of surfaces is dependent on well-
performing Mueller matrix ellipsometers. While designing Mueller matrix
ellipsometers for a single wavelength is trivial, the design of broad-band
imaging ellipsometers is a much more challenging problem. We discuss
the use of genetic algorithms to optimize such ellipsometers in a very
general fashion, and apply them to ellipsometers based on various liquid
crystal technologies. The results include an ellipsometer design which
was patented, and which outperforms previous designs both in terms of
spectral bandwidth and noise propagation.

Recent progress in the ability to manipulate matter on the nanoscale has
led to great interest in the biological, chemical, and physical properties of
nanoparticles and nano-sized structures. Depositing nanoparticles on top
of a surface modifies the optical properties of both the particles as well as
the substrate: any optical resonances that the particle(s) possess are mod-
ified by the substrate, and the reflectivity of the substrate is changed due
to the presence of the particles. The electromagnetic interactions between
nanoparticles and substrate are here investigated in the quasistatic regime,
with discussion of both small clusters of nanoparticles as well as (infinite)
periodic lattices of nanoparticles deposited on a substrate. The results
include analysis of the interactions and resonances found in nanoparticle
clusters deposited on a substrate.

When light is incident on surfaces possessing random roughness or struc-
ture, the light is scattered according to the statistical properties of the sur-
face. While there has been significant progress on surface scattering from
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surfaces with one-dimensional surface profile functions, less attention has
been devoted to numerical models of surfaces possessing two-dimensional
surface profiles. The main reason for this is that the solution of these
models requires a large amount of computational power, even by today’s
standards. We attempt to shed some light on optical effects observed
in scattering from two-dimensional rough surfaces, with some focus on
polarization effects, which are absent in scattering from one-dimensional
surfaces. The Mueller matrix for a rough surface is also calculated, and
describes the full polarization effects of rough surface scattering.
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Preface

This thesis is a part of the requirements for the degree of philosophiae
doctor at the Norwegian University of Science and Technology (NTNU1).
The work described here was performed primarily at NTNU in the period
September 2008 to June 2012. The body of this thesis consists of two
main parts. The first part is intended as an introduction to and overview
of the subjects discussed in the second part. The second part consists of
the scientific papers published as a result of the work I have performed,
in collaboration with the co-authors of those papers.

This PhD thesis owes a lot to a continuous flow of good ideas and
inspiration from my supervisor, Ingve Simonsen. Working together with
Ingve for four years has been both interesting and fun, in so many ways.

I would have achieved only half as much if I did not share an office with
Tor Nordam. Together, we have written a powerful simulation code, and
eaten a lot of sausages.

Some parts of this work were done at the University of California at
Irvine (UCI), in March–April 2010 and May–June 2011. During my stays
at Irvine, I collaborated closely with Douglas L. Mills on the topic of
nanoparticles and their interactions. Doug is also an unbelievable source
of great stories and interesting discussions. Unfortunately, Doug passed
away in March 2012 after a long period of illness. Doug, I will miss you.

I believe that the secrets of scattering of light from two-dimensional
rough surfaces would still lie in darkness if not for the enthusiastic support
of Alexei A. Maradudin at UCI. It is a delight discussing physics with
someone both so knowledgeable and interested as Alex.

I would also like to thank Ping Chu, at UCI at the time, for her help in
verifying the correctness of my results.

Lunchtime discussions would not have been the same without Ingar
Stian Nerbø, Lars Martin Sandvik Aas, P̊al Gunnar Ellingsen, and Morten

1http://www.ntnu.edu
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Kildemo. Some of these discussions led to a paper on the optimization of
Mueller matrices by the use of genetic algorithms, as well as a patent
application and a bronze prize in the 2011 “Humies”2. For the implemen-
tation of genetic algorithms, I also received excellent advice from Keith
Downing.

The work done on satellite peaks and light scattering from rough thin
films could not have been done without the support and CPU-hours from
the EPCC and the HPC Europa 2 program. In particular, I am indebted
to Fiona Reid and Catherine Inglis, who facilitated our visit in so many
ways, and Chris Johnson, who taught us all about ScaLAPACK and MPI.
The same can be said about Jamie Cole and his group who welcomed Tor
and me as visitors to the School of Physics at the University of Edinburgh.

The office would not be as much fun without its most recent addition:
Jerome Maria. Noone can make you feel warm in winter like a freezing
Frenchman. I should also thank Daniel Sk̊are for keeping Jerome in shape
and out of hospital through tireless soccer practice. I am also grateful for
the warm welcome I got from Frantz Stabo-Eeg and Eirik Glimsdal when
I was a fresh Ph.D. student.

I would still be trying to compile my code if not for the numerous
hours of technical support from Yngve Inntjore Levinsen. I owe him many
thanks; contrary to popular belief3, compiling your code is not the same
as slacking off.

Thanks to H̊avard Granlund for pointing out errors in this manuscript.
I would like to thank employees at the department of physics in general

for making NTNU such a nice place to work. Many a Friday cake has
been devoured in good company.

Finally, I would like to thank my family and friends for their love and
support throughout my period as a Ph.D. student. A special thanks goes
to Aleksandra, for tearing me away from the computer screen more often
than I like.

Trondheim, August 24, 2012
Paul Anton Letnes

2http://www.genetic-programming.org/hc2011/combined.html
3http://www.xkcd.com/303/
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1. Introduction

”God made the bulk; the surface was invented by the devil.
— Wolfgang Pauli

Pauli’s jest reflects upon the fact that whereas inside the bulk of a
material, where symmetries of rotation and translation often can be as-
sumed, these conditions never apply at a surface. Simply the presence of
an interface between two materials breaks both rotation and translation
symmetry, at least in the vicinity of the surface. Since the sources of
polarized light are often linked to anisotropy and the breaking of symme-
tries, it is perhaps not surprising that the surfaces and interfaces between
materials produce effects upon the polarization of light. Interfaces which
modify the polarization of light are the broader topic of this thesis.

The simplest example of such phenomena is the Brewster effect [12].
This effect consists of the fact that, for some materials, the reflectivity of
p-polarized light drops to zero at a certain angle of incidence called the
Brewster angle. This angle can be found by

n1 tan θB = n2 (1.1)

where n1 and n2 are the refractive indices in the two media, θB is the Brew-
ster angle (of incidence), and the ray of light is incident from medium 1.
Note that p polarization is defined as the polarization of light where the
electric field lies in the plane of incidence. The effect can be observed in
the reflection of light from planar interfaces, such as those of glass, water,
and plastic.

Throughout this thesis, we will shed some light on research done by the
author and collaborators on other polarization effects that have their origin
in the interplay between light and structured interfaces between materials.
First, a discussion of how the polarization of light can be created and
measured is in order.
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1. Introduction

E1

E2

E(t)

ωt

Figure 1.1: The polarization ellipse indicates the shape the electric field
“paints” when you look at the electric field vector along the wave vector
(or equivalently, the direction of propagation), k. As time progresses, the
electric field vector rotates with an angular frequency ω.

1.1. Creating polarized light

Everyone is familiar with sources of unpolarized1 light, such as fire, incan-
descent lamps, and the Sun. It is less trivial to create light which possesses
a specified state of polarization. In general, light is elliptically polarized,
as depicted in Fig. 1.1. Special cases include linearly polarized light and
circularly polarized light. In the linear case, the polarization ellipse has
collapsed to a single line, and the electric field oscillates along a single
direction. In the circular case, the phase difference between E1 and E2 is
exactly π/2, giving a polarization ellipse of a perfectly circular shape.

Linearly polarized light can be created by a variety of methods. The
simplest example from our daily lives is that of polarizing (polaroid) sun-
glasses. These polarization filters are composed of aligned microscopic
anisotropic crystals embedded in a polymer film [13]. These hepathite
crystals are capable of conducting electricity at optical frequencies. This
means that when light is incident on the microscopic crystals, the electric
field along one axis of the crystals sets up a current in the filter which
exactly cancels out that component of the electric field. The resulting
transmitted light is thus linearly polarized transversely to the alignment
axis of the crystals.

1Unpolarized light is sometimes referred to as “natural” light. Since light can be
polarized by phenomena found in nature, this choice of words is unfortunate.
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1.1. Creating polarized light

The Brewster effect [12] can be used to create s-polarized light in re-
flection. For instance, reflections from the Sun on wet roads are predomi-
nantly s-polarized due to the Brewster effect. By using a stack of reflectors
at the Brewster angle, one can also create p-polarized light in transmis-
sion in an efficient manner. Another everyday source of polarized light is
the blue sky. At a 90◦ angle with respect to the Sun, the light from the
sky is partially polarized. The reason is that when light is scattered from
molecules in the air, a simple geometric effect causes the light scattered
by 90◦ to be linearly polarized [12].

A birefringent polarizer, such as the historically important Nicol prism,
is based on the phenomena of total internal reflection and birefringence [14].
In a birefringent material, the refractive index is different for two inde-
pendent polarizations. Hence, the two polarizations undergo total internal
reflection at different critical angles, meaning that one polarization is (par-
tially) transmitted when the other is totally reflected.

A common technique to construct optical filters with high reflectance or
transmittance is to use stacks of thin films. Similar approaches can be used
to generate linearly polarized light by employing stacks of birefringent thin
films [15]. Essentially, one polarization “sees” a thin film filter optimized
for reflection, whereas the other polarization sees it as a transmission filter.

Recently, more exotic techniques for generating polarized light have
become possible with the advent of nanotechnology. Work done by the
author and co-workers [10] discusses an alternative way of generating light
which is predominantly s-polarized in one part of the optical spectrum
and predominantly p-polarized in a different part of the spectrum, by the
application of surface plasmons in surfaces patterned by nanoparticles.
The plasmonic interactions in an anisotropic lattice of nanoparticles shift
the resonances in such a way as to produce this effect. Progress has
also been made in the theoretical understanding of how surface scattering
affects the polarization of light [7]. The ability to control the structure of
matter on the nanoscale combined with the ability to model polarization
effects in surface scattering could lead to the advent of optical components
with interesting polarization effects based on the scattering of light.
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1. Introduction

1.2. Measuring polarization

The measurement of polarization can, to some extent, be done using rel-
atively primitive instruments. For instance, a linear polarizer combined
with an intensity detector can be used to determine the linear degree of
polarization. In the simplest case, holding your polarizing sunglasses be-
tween you and a source of light while rotating the sunglasses lets you
distinguish between linearly polarized sources of light. Photographic po-
larization filters are used in this fashion.

As light can be elliptically or circularly polarized, such measurements
are insufficient to determine the full polarization properties of light. Op-
tical retarders have the capability of adjusting the phase difference δ be-
tween the components of the electric field, and thus adjusting the shape of
the polarization ellipse (Fig. 1.1). Hence, circularly or elliptically polar-
ized light can be transformed into linearly polarized light. For instance,
a quarter wave plate2 can be used to convert circularly polarized light
into linearly polarized light, and vice versa. As linearly polarized light
can be measured by the rotating polarizer trick described in the previous
paragraph, it is possible to measure the full polarization state of light by
combining retarders and linear polarizers.

In general, light can also be unpolarized, meaning that the direction of
the electric field varies in a seemingly random fashion from one moment
to the next. A typical example is the light coming from the Sun, which
is unpolarized due to the random nature of light emitted from glowing
gases. To describe the full polarization state of light, four parameters,
known as the Stokes parameters, are required. For this reason, measuring
the full polarization state of light is referred to as Stokes polarimetry. At
this stage the discussion becomes rather technical, and we defer further
discussion to Chapter 2.2.

1.3. Applications of polarization phenomena

Polarized light has had many applications throughout history. For in-
stance, there is a long-standing hypothesis that Vikings used birefringent

2Simply put, a quarter wave plate delays the propagation of one polarization by 1/4
of an oscillation period relative to the other polarization [14].
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1.3. Applications of polarization phenomena

crystals, referred to as a “sólarsteinn” or “sunstone”, to measure the polar-
ization of light coming from (partially) overcast sky. Recent measurements
of the degree of polarization of the sky over the Arctic and over Europe,
including in partially overcast weather, shows that the position of the Sun
can be revealed through such measurements [16]. Further studies will de-
termine whether the polarization properties of partially overcast skies can
be reliably used for navigation [16].

In nature, several species of fish [17] and octopuses [18] are able to detect
polarization of light, especially from reflections (the Brewster effect) at air-
water interfaces. The same is true of insects [19]. There is also evidence
that some bird species [20] and even, to a lesser extent, humans [21] can
detect polarization patterns in light.

The measurement of how the polarization of light is modified by reflec-
tion from a material, or transmission through it, is used extensively to
characterize materials. Examples include medicine, in particular derma-
tology [22], semiconductors [23], surface structures [24], and many others.
One of the more interesting ideas in the search for extraterrestrial life
is that most sources of circularly polarized light are biological in nature.
Searching for circularly polarized light originating from planets in other
solar systems could reveal clues as to whether (not necessarily intelligent)
life is present [25].

The use of polarization is widespread in everyday technology as well.
For instance, liquid crystal displays (LCD) used in TVs, computers, and
other electronic devices employ a liquid crystal whose optical retardance3

can be adjusted by an electric voltage, sandwiched between two polaroid
films, to generate the image shown on the screen. So-called 3D cinema
can be achieved by wearing glasses of opposite polarization on each eye,
and projecting two images—one of each polarization—onto the screen.

In summary, the polarization of light can both be of great technolog-
ical use and can reveal much about our universe by careful observation.
This thesis will discuss how polarization can be modified by surface struc-
tures, including nanoparticles and randomly rough surfaces. Some of the
discussion will be devoted to the observation of polarization of light, in
particular, how one can optimize polarimeters for optimal performance.

3The retardance is the phase shift between the two linear polarizations caused by
transmission through e.g. a quarter wave plate.
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2. Electromagnetic theory

” The work of James Clerk Maxwell changed the world
forever.

— Albert Einstein

Our understanding of optics was largely based on phenomenological
observations of various physical phenomena until the laws of electromag-
netism were discovered. For instance, the nature of light was debated
for centuries, as different schools of philosophers and physicists argued
whether light behaved like particles1 or waves2. By a cruel twist of fate,
history has proven both interpretations to be correct, depending on which
experiment is conducted. In this thesis, the interpretation of light as
(classical) electromagnetic waves is sufficient to describe the phenomena
under study. This chapter presents the background theory of the opti-
cal phenomena discussed in this thesis with Maxwell’s equations as the
fundamental basis.

2.1. Maxwell’s equations and electromagnetic
waves

The whole of classical electromagnetism can be contained in four small
equations, who were discovered separately by some of the most brilliant
physicists in all of history: Gauss, Faraday, and Ampere. It took the ge-
nius of James Clerk Maxwell to organize these into a single framework.
Also, significant development of notation was necessary before the equa-
tions could take on the modern form.

1Newton famously created a theory for the particle nature of light. Although several
of his conclusions were later proven to be incorrect, Einstein was awarded the 1921
Nobel prize in physics for showing the particle nature of light.

2A successful wave theory of light was published by Huygens in 1690.
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2. Electromagnetic theory

As the joke goes: “And God said

∇ ·D = ρf , (2.1a)

∇ ·B = 0, (2.1b)

∇×E = −∂tB, (2.1c)

∇×H = Jf + ∂tD, (2.1d)

and then there was light.”
In Eqs. (2.1), E denotes the electric field, H the magnetic field, D the

electric displacement field, and B the magnetic flux density. The notation
∂t ≡ ∂/∂t denotes the partial derivative with respect to time, t. The terms
ρf and Jf denote, respectively, the free charge and free current densities.
The terms ρf and Jf are often referred to as the source terms, since they
are the origin of electric and magnetic fields.

When studying optical phenomena, we can (at least for our purposes)
neglect the source terms, and Maxwell’s equations become correspondingly
simpler. It is also advantageous to work in the frequency domain, meaning
that we assume that all fields have a time dependence exp (−iωt), where
ω is the angular frequency of the oscillations in the electric and magnetic
field. Hence, we can simplify Eqs. (2.1) by letting ∂t → −iω, ρf → 0, and
Jf → 0:

∇ ·D = 0 (2.2a)

∇ ·B = 0 (2.2b)

∇×E = iωB (2.2c)

∇×H = −iωD. (2.2d)

Under the assumption that the materials under study are local3, linear,
isotropic, and homogeneous, the constitutive relations connecting E with
D and H with B read, in the frequency domain, as

D(x|ω) = ε(ω)E(x|ω) (2.3a)

and

B(x|ω) = μ(ω)H(x|ω). (2.3b)

3A local material is one in which the dielectric function does not depend on the
wavenumber, k.
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2.1. Maxwell’s equations and electromagnetic waves

By manipulating Eqs. (2.2) while assuming the constitutive relations in
Eq. (2.3), it can be shown that the electric and magnetic fields both fulfill
the wave equation [12]: (∇2 + εμω2

)
E = 0, (2.4a)(∇2 + εμω2

)
B = 0. (2.4b)

Note that B can be found from Eq. (2.2c), after determining E. The
solutions to Eq. (2.4a) consist of two independent modes, denoted po-
larizations. If we assume a plane wave travelling along the x3 axis, we
can decompose the electric field along the x1 and x2 axes in the following
fashion:

E1(x, t) = E0,1 exp (ik3x3 − iωt) (2.5a)

E2(x, t) = E0,2 exp (ik3x3 − iωt+ iδ). (2.5b)

Here, the variables E0,1 and E0,2 denote the amplitudes of the oscilla-
tions in the electric fields along the 1 and 2 directions, respectively, and δ
denotes the phase difference between E1 and E2.

In the bulk of a homogeneous and isotropic dielectric material, electro-
magnetic waves propagate freely without being affected by the surround-
ings. Optics is therefore to a large extent concerned with the interaction of
electric and magnetic fields with the interfaces between materials, where
the electric and magnetic fields are reflected and transmitted. The equa-
tions governing such interactions are known as the boundary conditions,
and can be derived from Maxwell’s equations [12]. For the electric field
and the electric displacement fields, the following conditions have to be
met, where we have assumed no free electric charges (ρf = 0):

lim
h→0+

n̂ ·D1 = lim
h→0−

n̂ ·D2 (2.6a)

and

lim
h→0+

n̂×E1 = lim
h→0−

n̂×E2 (2.6b)

where h denotes a small distance from the surface (Fig. 2.1), n̂ is the
surface normal, and the subscripts 1 and 2 are labels indicating which

9



2. Electromagnetic theory

medium we are inside. Similarly, if one assumes the absence of free current
(Jf = 0), the magnetic field and the magnetic flux density have to obey

lim
h→0+

n̂ ·B1 = lim
h→0−

n̂ ·B2 (2.7a)

and

lim
h→0+

n̂×H1 = lim
h→0−

n̂×H2. (2.7b)

Equations (2.6) and (2.7) govern the interactions between electric and
magnetic fields and the interfaces between materials. As an example, Fres-
nel’s equations for reflectance and transmittance can be derived directly
from the solutions of the wave equation [Eq. (2.5a)] and the boundary
conditions [14].

Medium 1

Medium 2

F2(r‖ − hr̂⊥)

F1(r‖ + hr̂⊥)

n̂
h r⊥

r‖

r

O

Figure 2.1: The quantity h is defined above, where F can be any of the
four electromagnetic fields (H, B, E, or D).

2.2. Polarized light and the Mueller–Stokes
calculus

To describe the polarization state of light, including partially (un)polarized
light, the most complete formalism is that of the Stokes (pseudo)vector.

10



2.2. Polarized light and the Mueller–Stokes calculus

The Stokes vector can be defined as [14, 26]

S =

⎡
⎢⎢⎣
I
Q
U
V

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
〈
E2

0,1

〉
+
〈
E2

0,2

〉〈
E2

0,1

〉− 〈E2
0,2

〉
〈2E0,1E0,2 cos δ〉
〈2E0,1E0,2 sin δ〉

⎤
⎥⎥⎦ , (2.8)

where 〈x〉 denotes averaging of the quantity x. The averaging can be
over e.g. a measurement time or over an ensemble of surface realizations,
depending on the context of the (thought) experiment at hand. The vari-
ables I, Q, U , and V are referred to as the Stokes parameters, and are used
when one does not work with the entire Stokes vector. It is worth noting
that all four Stokes parameters are real numbers. It is interesting to note

that the Stokes vector
(
I0 0 0 0

)T
represents fully unpolarized light of

intensity I0. Often, one works with Stokes vectors normalized such that
S1 = 1, i.e. the vectors contain the full polarization information but the
intensity information is neglected. It is worth observing that the Stokes
parameters must obey the relation [26]

I2 ≥ Q2 + U2 + V 2 (2.9)

since the intensity of polarized light cannot be greater than the total in-
tensity. In the case of a normalized Stokes vector, this becomes

1 ≥ Q2 + U2 + V 2. (2.10)

The Stokes parameters I, Q, U , and V each denote, respectively, the in-
tensity of the light, the degree of linear horizontal and/or vertical polariza-
tion, the degree of ±45◦ polarization, and the degree of left/right-handed
circular polarization. Light is usually not purely linearly or circularly po-
larized, but is more generally elliptically polarized, as depicted in Fig. 1.1.
The process of measuring the polarization state of light is usually referred
to as polarimetry.

To compactly describe linear interactions between (partially) polarized
light and matter, one can associate a matrix called the Mueller matrix
to each optical component [26]. Assuming that light with a Stokes vector
Sin is incident on a (partially) transparent optical component that can be

11



2. Electromagnetic theory

modeled by a Mueller matrix Mc, the light being transmitted through the
component can be found from the equation

Sout = McSin. (2.11)

The elements of Mueller matrices are denoted Mij , and the matrix has
dimensions 4× 4 to match the length of the Stokes vector.

Examples of such matrices and their physical interpretation can be
found in any textbook on modern optics [14, 26]. Due to e.g. conser-
vation of energy, there are several conditions a 4 × 4 matrix must fulfill
in order to be a physically realizable Mueller matrix [27]. When focusing
on polarization effects, it is common to normalize the Mueller matrix by
dividing all elements by M11. This removes the intensity effects of the
Mueller matrix, but displays the polarization effects more clearly. Also, a
normalized Mueller matrix operating on a normalized Stokes vector pro-
duces a new normalized Stokes vector.

Save for nonlinear and quantum effects, Stokes vectors and Mueller
matrices are the most powerful tools available when analyzing the polar-
ization state of light and the polarization interactions between light and
matter. In this thesis, Mueller matrices are used to model the proper-
ties of the optical components used in Stokes polarimeters. The Mueller
matrices are also used to describe the polarization effects associated with
rough surface scattering, and the interpretation of the Mueller matrices of
rough surfaces will be essential in order to extract the maximum possible
information from such experimental data.

12



3. Genetic optimization of
spectroscopic polarimeters

”I love fools’ experiments. I am always making them.
— Charles Darwin

The polarization state of light can be fully described by the four Stokes
parameters, which are often collected into a vector (cf. Chapter 2.2). In
order to determine the full polarization state of light, one uses a Stokes
polarimeter, and the measurements are referred to as Stokes polarimetry.
Stokes polarimetry is typically used in scenarios when one wants to re-
motely investigate a light source for some reason. Example applications
include astrobiology [25], astronomy [28], and mine detection [29].

For characterization of e.g. semiconductor [23], biological [30], or hy-
brid [31] materials, one often wishes to measure the effect the material
has on the polarization state of light. Performing such measurements
is referred to as Mueller matrix ellipsometry, and the interested reader
can find a thorough review in Ref. [32]. Mueller matrix polarimetry is
used for characterization when one is able to control both the incoming
and the outgoing polarization state of light, such as characterization of
rough surfaces [7], gratings [33], and nanostructures [34], detection of eye
disease [35], and sensitive detection of roughness and particles on semi-
conductor surfaces [36].

In general, optical components possessing an anisotropic refractive index
are used to modulate the polarization state (Fig. 1.1). Several classes of
optical components exist for the purpose, including liquid crystal variable
retarders (LCVR)1 and ferroelectric liquid crystals (FLC). Other possibil-
ities (that are not discussed here) include rotating retarders [37] and divi-
sion of amplitude [38, 39]. The advantage of the LCVR is that the degree

1This is the technology used in regular flat screen TVs, giving its name to the well-
known LCD (Liquid Crystal Display) acronym.
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3. Genetic optimization of spectroscopic polarimeters

of anisotropy of the refractive index, and hence the retardance [14], of the
material can be tuned through a range of values by adjusting the voltage
applied to the crystal. The disadvantage of the LCVR technology is that
the time required for the material to switch between two discrete states
is typically greater than 15ms [40]. An FLC based component, however,
can switch only between two different orientations, effectively moving the
fast axis by 45◦. This gives less flexibility in modulating the polarization
state, but the switching time of an FLC based component can be as low
as 55 μs [40]. This is the background for the suggestion by Gandorfer [41]
to use FLCs in fast and hyperspectral (imaging) Stokes polarimeters.

Designing a Stokes polarimeter with optimal performance for a single
wavelength is a trivial task, but one is frequently interested in measuring
the full Stokes vector for a broader part of the optical spectrum. In this
case, the process of producing a good polarimeter design is complicated
by the fact that the optical properties of materials are dependent on the
(vacuum) wavelength of the light source under analysis. Several techniques
have been used to optimize Stokes polarimeters (or Mueller matrix ellip-
someters), such as searching the “design space” of polarimeters by partial
direct search [42] and Monte Carlo search [43]. We have suggested that ge-
netic algorithms [44] can be employed to perform efficient and automated
design of Stokes polarimeters (Mueller matrix ellipsometers) [2].

3.1. Performance assessment of Stokes
polarimeters

In order to build a Stokes polarimeter, a polarization state analyzer (PSA)
is required. A PSA projects the polarization state of the incident light onto
a basis of at least 4 polarization states, and subsequently measures the
intensity of each projection state. The measured Stokes vector can then
be expressed as S = A−1b, whereA is a system matrix describing the PSA
and b is a vector containing the intensity measurements. A−1 denotes the
matrix inverse for square (4×4) system matrices, and the Moore–Penrose
pseudoinverse for non-square system matrices, which is necessary when
more than 4 projection states are used. It can be shown that the noise in
the intensity measurements (b) is amplified by the condition number [45]
of the matrix A, denoted κA.
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3.1. Performance assessment of Stokes polarimeters

For a Mueller matrix polarimeter, the inversion process needed to find
the Mueller matrix of the sample involves two matrix inversions, one for
the system matrix of the PSA (A) and one for the system matrix of the
polarization state generator (PSG), denoted W . As was shown by Stabo-
Eeg et al. [46], the noise amplification of the inversion process is limited
by the inequality

‖ΔM‖
‖M‖ � κWκA

‖ΔB‖
‖B‖ + κA

‖ΔA‖
‖A‖ + κW

‖ΔW ‖
‖W ‖ (3.1)

where M is the Mueller matrix that we seek to measure, ΔM is the mea-
surement error in M , and B is the intensity measurement matrix; see
Ref. [46] for more details. The notation ‖M‖ indicates the 2-norm of the
matrix M . Usually, the PSA and the PSG are built from identical com-
ponents, meaning that κA ≡ κW ≡ κ. In this case, the noise amplification
of a Mueller matrix ellipsometer is proportional to κ2.

PSA

FLC1 WP1 FLC2 WP2 FLC3 WP3 Pol.

Figure 3.1: Sketch of the polarization state analyzer (PSA) for the
polarimeter design published in Ref. [2].

In order to project the measured light onto the basis states, one uses
a stack of optical components, as depicted in Fig. 3.1. This stack forms
the PSA. A PSA typically consists of a linear polarizer and wave plates
with a retardance that can be controlled electronically; often, LVCR or
FLC retarders are used [41]. In addition, one can add fixed retarders, e.g.
quartz wave plates, to increase the condition number of the system matrix.
A sketch of the PSA published in Ref. [2] is shown in Fig. 3.1. This design
consists of 3 FLC-based switchable wave plates (FLC1, FLC2, and FLC3
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3. Genetic optimization of spectroscopic polarimeters

in Fig. 3.1), 3 fixed quartz wave plates (WP1, WP2, and WP3 in Fig. 3.1),
and a linear polarizer (Pol.).
The performance of a polarimeter is directly dependent on the condition

number, which is a function of the (vacuum) wavelength of light, κ(λ).
Since we want a single figure of merit to quantify the performance of a
polarimeter, we define the fitness function f of a polarimeter design as

1

f
=

1

Nλ

Nλ∑
n=1

[
κ−1(λn)− 1/

√
3
]4

. (3.2)

where λn = λmin + (n − 1)Δλ, with n = 1, 2, . . . , Nλ, are a discrete set
of wavelength values. The choice of the power 4 in the fitness function
was taken to severely punish large, narrow peaks in the condition number.
Such peaks will make the polarimeter unusable for a certain wavelength
range, which is undesirable.

3.2. Optimization by genetic algorithms

Figure 3.2: The sketch shows the four essential processes of a genetic
algorithm: reproduction, mutation, development, and the mating contest.

The genetic algorithm (GA) employed was of a standard type, origi-
nally suggested by Holland [44]. A GA performs optimization by simulat-
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3.2. Optimization by genetic algorithms

ing evolution in a population of individuals (here: polarimeter designs).
The fitness2 f increases in the population if the three fundamental proper-
ties of evolution are present in the simulation: variation, heritability, and
selection.

Variation is the presence of genetic, and thus phenotypic3, variation
in the population: all individuals are not created equal. In our GA, the
population is initialized by a set of individuals with randomly generated
genomes. If a trait is said to be heritable, it means that the presence of a
trait in the parent individuals (e.g. hair color in humans) is transferred to
the offspring individuals, possibly with some probability. Finally, selection
was first discussed by Darwin [47], where he observed that most offspring
do not survive to child-bearing age. Only successful individuals reach
adulthood and are able to pass on their genes to the next generation.
Thus, the essential components of a GA are variation, heritability, and
selection.

The processes included in our GA were those indicated in Fig. 3.2, and
were simulated in the following manner. The genome used was a binary
genome [44], i.e. a list of bits (0 or 1). Mutation was simulated by ran-
domly introducing bit-flips, i.e. letting 0 → 1 or vice versa, into the
genome. Mutation generates new genes during evolution, creating new
variation for the GA to improve upon. The development from genotype
to phenotype was performed by interpreting the bits in the binary genome
as real numbers, giving the values for e.g. orientation angles of the optical
components. The Gray code [48] was used for the interpretation of bits
into numbers to avoid excessively large changes in the phenotype when
the individual undergoes mutation in the genome. The mating contest
was performed by one of several standard protocols, but the best perfor-
mance was achieved by the use of tournament selection with 4 individuals
participating in the tournament [49, page 25]. Finally, reproduction was
simulated either by asexual reproduction, i.e. by copying the genome, or
by sexual reproduction, simulated by two-point genetic crossover. The
kind of reproduction was chosen by a random number generator, setting

2The fitness function is sometimes referred to as the objective function or energy
function in other optimization algorithms.

3The genotype is the information encoded in your DNA (e.g. one gene for blue eyes
and one for brown eyes), whereas the phenotype is the physical trait that is a result
of your DNA (e.g. you have brown eyes).
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3. Genetic optimization of spectroscopic polarimeters

e.g. a 70% chance for sexual reproduction and a 30% chance for asexual
reproduction. Two-point crossover is the process where the genome of
each parent is cut at two locations, producing 3 smaller strings of bits. By
interchanging and “gluing” together every second bit string, the genomes
of the two parents are mixed in a fashion resembling that of real-world sex-
ual reproduction. Further details of the genetic algorithm are discussed
in Ref. [2].

Taken together, these processes simulate evolution in a population of
polarimeters. As the generations go by, the population will contain po-
larimeters with a continuously improving condition number, and even-
tually, several good solutions are found. Although the genetic algorithm
makes no promise on finding the globally most optimal polarimeter design,
it allows for searching larger design spaces, and will often result in better
designs than the optimization approaches used in previous work [43, 46].

3.3. Examples of generated polarimeter designs

In this section, the performance of some polarimeter designs generated by
our genetic algorithm is discussed. For the interested reader, the details
on the polarimeter design and the design process can be found in Ref. [2].
Here, we will show examples of how the performance of the genetic designs
compare to previous designs.

The performance of our most broad-band design is shown in Fig. 3.3.
Our design consists of a PSA containing 3 FLCs and 3 fixed quartz wave-
plates. For comparison, the theoretically optimal value of κ−1

optimal = 1/
√
3

and the performance of a recently patented design [50] is indicated. As
can be seen from Eq. (3.1), the noise amplification of a Mueller matrix
ellipsometer scales as κ2. The GA based design clearly outperforms the
recent patent, especially in the infrared part of the spectrum. The GA
based design will probably perform well also further into the infrared part
of the spectrum, but to date, no characterization of the optical compo-
nents has been performed for this part of the spectrum. Hence, there is
some uncertainty with respect to if our design is usable in the wavelength
range λ > 2000 nm.

An optimization was also performed for polarimeters based on 2 FLC
components, similar to designs implemented in the past. The performance
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Figure 3.3: The blue solid curve shows the inverse condition number
of the most broad-band polarimeter design generated by our genetic algo-
rithm. For comparison, the design by Cattelan et al. [50] is shown as a
dashed green line. The theoretically optimal inverse condition number of
1/
√
3 is also shown for reference.

of two GA-generated designs is shown in Fig. 3.4, as compared to a com-
mercial design (covering the visible part of the spectrum) and a research
design (used for Mueller matrix infrared spectroscopy) currently in use at
NTNU. The GA-generated designs outperform the previous designs both
in condition number and in the spectral range over which they have usable
condition numbers. An inverse condition number below approximately 0.3
is considered to be problematic in a real-world application.

An alternative to FLC based polarimeter designs is to use LCVR re-
tarders. These retarders can be placed in a large number of different
states. This is obtained by adjusting the voltage across the crystal, result-
ing in a voltage dependent retardance. By this method, a Mueller matrix
ellipsometer featuring 6 states (one LCVR with 2 and one LCVR with
3 states each) has been designed by our GA code. The resulting design
was implemented and characterized, with the resulting condition number
shown in Fig. 3.5. The parameters of the LCVR retarders were taken from
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Figure 3.4: The inverse condition number of two GA-generated designs,
denoted “Visible” and “NIR” (Near Infra-Red), are shown in green and
blue. The performance of a commercially available design and a previous
NIR design [42] are shown in dashed lines for comparison.

measured values. As all four LCVRs (two for the PSA and two for the
PSG) had slightly different properties, the PSA and PSG were simulated
and characterized separately. The correspondence between simulated and
measured values is very good, and the system is well conditioned over the
entire wavelength range for which it was designed (900 nm to 1700 nm).
To conclude, the problem of designing a well-performing polarimeter can

be solved by the use of genetic algorithms. GAs do not promise to find the
optimal design, but are good at picking up patterns in large search spaces.
This ability allows one to explore a larger variation of possible designs than
what is possible by brute force or gradient optimization, including choice
of materials or other variables that are incompatible with optimization
algorithms relying on the existence of derivatives of all the variables.
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Figure 3.5: The experimentally measured (“exp.”) and simulated
(“sim.”) inverse condition number for a Mueller matrix ellipsometer. Note
that the y axis is truncated to show the curves more clearly.
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4. Plasmonic polarization in
nanoparticle patterned surfaces

” . . . there is enough room on the head of a pin to put all of
the Encyclopaedia Brittanica.

— Richard P. Feynman

The optical properties of nanoparticles were first discussed by Maxwell
Garnett [51] and by Mie [52] as an explanation of the optical proper-
ties of metal glasses and metallic colloids, respectively. In these systems,
the narrow absorption bands observed were explained by plasmonic res-
onances, giving rise to the interesting color effects. In later years, other
observed phenomena such as gold-ruby glass have been explained [53]. Re-
cently, advances in experimental sciences have given us the possibility to
manipulate matter on the nano-scale with unprecedented precision. For
instance, the optical response of single Ag particles or pairs of particles
of sub-wavelength size has been measured [54]. Both theoretical and ex-
perimental studies have been done on the effects nanoparticle have on
surface reflectivity and transmission [55, 56]. Some studies indicate that
nanoparticles deposited on the surface of photovoltaic cells can increase
their light harvesting efficiency through plasmonic resonances [57–59]. As
the electromagnetic field from plasmonic resonances feature strong spa-
tial localization, there is also interest in creating plasmonic circuits to
replace electronic ones [60]. Furthermore, for several spectroscopic tech-
niques, such as Raman spectroscopy, the signal can be greatly enhanced
by the use of an appropriate substrates such as roughened silver [61] or
lattices of nanoparticles [62]. A comprehensive review of the properties of
metallic nanoparticles, including fabrication, optical characterization, and
modelling of their optical properties can be found in Ref. [63].

In this chapter, we will discuss what effects such plasmonic interactions
have on the polarization of light. The discussion will be limited to the
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4. Plasmonic polarization in nanoparticle patterned surfaces

quasistatic regime, i.e., we assume that the wavelength of light is much
longer than the length scale of our system. The interactions between
nanoparticles make the reflection properties of substrates patterned with
arrays of nanoparticles depend strongly on the relative orientation of par-
ticles and electric fields [10]. In the quasistatic regime, the physical basis
for these effects is the frequency shifts of plasmonic resonances, caused by
particle-substrate and particle-particle interactions [1, 3]. Especially the
particle-substrate interactions have not been studied extensively in the
literature. One reason for this is the breaking of symmetries caused by
the presence of a substrate. This makes it hard to solve the corresponding
analytic models, although some models including substrate interactions
have been constructed [55, 64]. Another reason is that manipulating such
particles in a controlled manner has been possible only in the last few
decades [54, 65]. We will attempt to shed some light on the effects of the
presence of a substrate and of the electromagnetic interactions between
nanoparticles, while deferring the details of the theoretical treatment to
Refs. [1, 3, 10].

4.1. Plasmonic interactions in nanoparticle
dimers

In order to examine the fundamental electromagnetic interparticle and
particle-substrate interactions, we have studied a model system consisting
of two spherical particles of dielectric function εj(ω) and radius a, hovering
a height h above the substrate. The parameter h is introduced in order
to avoid singularities in the electric field [66]. The ambient and substrate
materials have a dielectric function ε+(ω) and ε−(ω), respectively. The
system under study is depicted in Fig. 4.1. The results for nanoparticle
interactions shown in this chapter are discussed in full detail in Ref. [3].

The optical response from a single sub-wavelength sized sphere in an
ambient dielectric has been known for a long time due to the work of
G. Mie [52]. However, the close proximity of the two spheres (i.e. for
small d) and the spheres with the substrate (i.e. for small h) cause the op-
tical response to change significantly from the Mie behaviour. In general,
the presence of a second nanoparticle or of a substrate can cause signif-
icant red-shift of the Mie resonance, and also the stimulation of higher
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4.1. Plasmonic interactions in nanoparticle dimers

Figure 4.1: The geometry of a nanoparticle dimer. The results discussed
here will be restricted to the case a1 = a2 = a and ε1(ω) = ε2(ω) = ε(ω).
A small but finite value of h is kept to avoid the divergence which occurs
when the spheres are touching the substrate.

order resonances. To probe these resonances, we study the length of the
normalized dipole moment of (one of) the spheres, defined as (in SI units)

p̄(ω) =
|p(ω)|
a3ε0E0

, (4.1)

where p is the (possibly complex) dipole moment of a single sphere, a is
the sphere radius, ε0 is the vacuum permittivity, and E0 is the strength
of the incident electric field. The normalization is such that a perfectly
conducting spherical particle in vacuum has p̄(ω) ≡ 1. Note that p̄(ω)
also gives us information on higher order resonances, due to the coupling
between the modes caused by intersphere- and particle-substrate interac-
tions.

The normalized dipole moment, p̄(ω), of a single Ag nanoparticle on top
of a dielectric substrate is shown in Fig. 4.2, for different directions of the
incident electric field E0. For the results shown here, h = 0.05a. Note that
in the quasistatic regime, there are no inherent length scales; as such, there
is no explicit length scale in the simulation. The wavelength of the incident
light only enters through the frequency dependence of ε(ω). The incident
electric field was set to point either along x̂ (blue solid line) or along ẑ
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Figure 4.2: The dipole moment of a single Ag nanoparticle over a
dielectric substrate with a dielectric function (a) ε−(ω) ≡ 1 (i.e. vacuum),
(b) ε−(ω) ≡ 2, and (c) ε−(ω) ≡ 10.

(red dotted line). For the case where ε−(ω) ≡ 1, the sphere is essentially
hovering in vacuum [Fig. 4.2(a)], and there is full spherical symmetry
around the center of the sphere. As ε− increases, the resonance frequency
[the position of the peak in p̄(ω)] red-shifts. Another interesting feature is
the fact that, due to the symmetry breaking caused by the substrate, the
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4.2. Reflectivity from lattices of nanoparticles

resonance peak for E0 ‖ x̂ splits relative to the case where E0 ‖ ẑ. This
is an example of how surface interactions can cause polarization effects.
It is a reasonable assumption that s- and p-polarized light incident on a
surface covered with such particles could be reflected differently, due to
the splitting of the resonance.

When considering pairs of nanoparticles, one also breaks the rotational
symmetry around the ẑ axis. This causes the resonance peaks for the cases
E0 ‖ x̂, E0 ‖ ŷ, and E0 ‖ ẑ to split. Simulation results for a nanoparticle
dimer, as depicted in Fig. 4.1, are shown in Fig. 4.3. When the substrate
is absent [Fig. 4.3(a)], the system is rotationally symmetric around the x
axis, which causes the cases E0 ‖ ŷ and E0 ‖ ẑ to be equivalent. The
presence of a second nanoparticle, however, breaks the symmetry with
respect to the case where E0 ‖ x̂. As the dielectric function of the substrate
increases, all three resonances split. The interparticle interactions give rise
to the strongest redshift, as can be seen from the fact that the redshift is
stronger when E0 ‖ x̂. This is fundamentally due to the fact that metallic
structures interact more strongly with the electric field than dielectric
structures do.

If one assumes that the incident electric field is that of an incident lin-
early polarized plane wave, the response of the nanoparticles will depend
greatly both on the frequency of the incident light as well as the polar-
ization (E0). The response can be tailored by varying d and by choosing
the materials, and hence ε(ω), in the system. It is, however, necessary
to employ more than two particles in order to get a macroscopic optical
response. We therefore turn to the case where the substrate is patterned
by a two-dimensional, periodic lattice of nanoparticles. In this case, the
plasmonic resonances of the nanoparticles can be observed by the naked
eye.

4.2. Reflectivity from lattices of nanoparticles

When a two-dimensional lattice of nanoparticles is imposed on a semi-
infinite substrate, the reflectivity of the surface can be significantly influ-
enced by the presence of the particles. The fundament of our treatment
is still the theory discussed in Refs. [1, 3]. The only difference is that the
cluster of particles is now in principle infinite. In practice, it is necessary
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4. Plasmonic polarization in nanoparticle patterned surfaces

1

3

5

7

9
(a) ε− = 1.0

E0 ‖ x̂ E0 ‖ ŷ E0 ‖ ẑ
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Figure 4.3: The dipole moment of one of the spheres in an Ag nanoparti-
cle dimer over a dielectric substrate. Here, we have assumed that d = 0.1a,
and the other simulation parameters are identical to the ones used in gen-
erating Fig. 4.2.
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4.2. Reflectivity from lattices of nanoparticles
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(a) A sketch of the two-dimensional nanoparticle lattice in the xy plane (“from
above”).
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(b) The lattice seen in the xz plane.

Figure 4.4: Sketches of the nanoparticle lattice in the xy and the xz
planes, showing the definitions of d, the effective film thickness; a, the
sphere radius; bx and by, the lattice constants along x̂ and ŷ, respectively;
and the parameter h used to obtain convergence. The spheres are all
characterized by the dielectric function ε(ω). Note that the value of h is
exaggerated for clarity: normally, we assume h = 0.01a.
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4. Plasmonic polarization in nanoparticle patterned surfaces

to truncate the summation over the contributions from neighbouring par-
ticles at some Nmax unit cells away. Additional details not discussed here
can be found in Ref. [10].
In this chapter, we will be studying two-dimensional lattices of particles

deposited on a substrate, as depicted in Fig. 4.4. The lattice is assumed
to be rectangular with lattice constants bx and by along the x and y axes,
respectively. Each sphere has a radius of a, and a finite value of h = 0.01a
is kept for the same reasons as for the nanoparticle dimer case. The exact
value of h was found to be unimportant for the reflectivity results, as long
as it is sufficiently small and non-zero. Whereas the local potential (and
thus, the local electric field) near the bottom of the particles may not
necessarily converge fully, the reflectivity results depend mainly on the
lower order modes, and thus converge for much lower cutoffs (Lmax) in
the spherical harmonic expansion; see Ref. [10] for details.

The reflectivity of an Al2O3 surface patterned with Ag nanoparticles of
radius a = 10nm in a square lattice with lattice constant bx = by = 2.2a
is shown in Fig. 4.5(a). The angle of incidence was θ0 = 45◦. The plane of
incidence was the xz plane, meaning that p-polarized light has an electric
field vector parallel to the xz plane, whereas s-polarized light is polarized
along the y axis. For the square lattice, the interparticle distance was the
same along the x and y axes. This means that the interactions between
neighbouring particles is equally strong along both axes, leading to the
same red-shift in the Mie resonance for both p- and s-polarized light.
When examining Fig. 4.5(a), we observe peaks in R for both polarizations
of the incident light at about 2.9 eV, meaning that the redshift is identical
for both polarizations due to the lattice isotropy.

In Fig. 4.5(b), the reflectivity at θ0 = 45◦ for an otherwise identical
lattice except with by = 2bx = 4.4a is shown. In this case, the s-polarized
light excites plasmonic interactions along the ŷ direction, in which the
lattice constant is larger than in the x̂ direction (by = 4.4a). Due to the
large lattice constant and the weak substrate interaction when the electric
field lies in the xy plane, the Mie resonance undergoes virtually no redshift
and is placed at the frequency of the Mie resonance for an isolated sphere
in vacuum, which is located at approximately 3.5 eV.
When considering the p-polarized incident light, however, the compo-

nent of the electric field along x̂ excites interactions along the short axis
of the lattice (bx = 2.2a). The small distance between the spheres leads
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4.2. Reflectivity from lattices of nanoparticles
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Figure 4.5: Reflectivity of an Al2O3 substrate patterned with an
(a) isotropic and (b) anisotropic lattice of Ag nanoparticles of radius
a = 10nm. In both cases, the plane of incidence was the xz plane, and the
polar angle of incidence was θ0 = 45◦. The (almost) flat lines with super-
script (0) indicate the reflectivity of a clean Al2O3 surface as calculated
from the Fresnel equations.
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4. Plasmonic polarization in nanoparticle patterned surfaces

to strong interparticle interactions and a larger red-shift. The component
of E0 along ẑ causes particle-substrate interactions, which also lead to a
red-shift in the Mie resonance. Taken together, this gives a (modified)
Mie resonance at around 2.9 eV, similar to the case of the isotropic lattice
[Fig. 4.5(a)].
The net effect is that a surface supporting an anisotropic lattice of

metallic nanoparticles can work as a sort of spectral plasmonic polarizer.
If one imagines that a plane wave of unpolarized light is incident on the
surface in the xz plane, the polarization of the reflected beam will be
frequency dependent. A reflected beam at �ω = 2.9 eV will be primarily
p-polarized, whereas a beam at �ω = 3.5 eV will be primarily s-polarized.
At the time of this writing, results are not available for the transmission
of light. However, from conservation of energy, the following inequality
must hold:

T ≤ 1−R, (4.2)

where T is the fraction of transmitted energy and R is the fraction of re-
flected energy. Thus, it is reasonable to assume that a similar but opposite
pattern will be observable in transmission.

There is large interest in tuning the optical properties of surfaces and
interfaces. In the quasistatic regime, the red-shifts of resonances are inde-
pendent of the size of the particles. However, the bigger the particles are,
the higher the reflectivity; in terms of effective medium theory, the thin
film becomes thicker. There are also several other ways to tune the surface
properties. For instance, one can employ different materials in both the
substrate and in the particles. The particles can also be made in the form
of metallic nanoshells with a dielectric core, or vice versa, giving rise to
tunability in the ratio between the inner and outer radius of the shell [67].
The particle lattice can be tuned by choosing the lattice parameters bx
and by, affecting both the resonance positions and the overall reflectivity.
As such, there is a large space of tunability when designing a plasmonic
polarizer, and it is reasonable to assume that interesting optical compo-
nents can be constructed employing the plasmonic properties of surfaces
patterned by nanoparticles.
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5. Rough surface scattering

” The work may be hard, and the discipline severe; but the
interest never fails, and great is the privilege of achievement.

— Lord Rayleigh

The study of light scattering from randomly rough or structured sur-
faces was pioneered by Lord Rayleigh [68], who discussed light scattering
from rough surfaces where the surface profile is constant along one axis
but varies along another axis. In other words, the surface profile can
be expressed as a function of one position variable1: ζ(x1, x2) ≡ ζ(x1).
(We note that in this thesis, we will restrict our discussion to surfaces
whose profile function is single-valued, i.e. the surface has no overhangs.)
Colloquially, we refer to such surfaces as “one-dimensional” surfaces. If
the surface profile function depends on both x1 and x2, the surface is
denoted as a two-dimensional surface. Lord Rayleigh initially studied
one-dimensionally periodic surfaces, in particular ones with a sinusoidal
surface profile function. He worked under the assumption that

δ � a, (5.1)

i.e. that the transverse correlation length (a) is much greater than the rms
height of the surface profile function (δ), meaning that the mean slope,
i.e. the averaged absolute value of the gradient, of the surface is small
compared to 1. It was later shown that for the special case of sinusoidal
surfaces, the inequality

δ

a
≤ 0.448 (5.2)

1We use the (x1, x2, x3) convention in this chapter to be more in line with the relevant
publications, despite the fact that the (x, y, z) convention is used in other chapters
in this thesis.
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5. Rough surface scattering

ensures that the Rayleigh hypothesis holds [69, 70]. The Rayleigh hypoth-
esis is an assumption on the form of the electromagnetic field scattered
from a rough surface, and will be discussed in more detail in Chapter 5.2.
Briefly put, the hypothesis allows for the derivation of a simplified equa-
tion for the scattering of light from a rough surface.

It was a long time before the two-dimensional scattering problem2,
which is the focus of this chapter, was tackled. In particular, the inclusion
of cross-polarization effects complicates the analysis significantly when
compared to the one-dimensional case. Brown et al. derived the reduced
Rayleigh equation for scattering from a two-dimensional randomly rough
surface [71]. This equation is frequently used as a starting point for small-
amplitude perturbation theory. This approach was taken by McGurn and
Maradudin, who analyzed the phenomenon of enhanced backscattering
from two-dimensional randomly rough metallic surfaces [72]. Similarly,
Johnson used the reduced Rayleigh equation as a starting point for devel-
oping a systematic third order small-amplitude perturbation theory [73].
Later, Soubret et al. derived the reduced Rayleigh equation using a dif-
ferent approach from that of Brown et al. and used the results to discuss
scattering from randomly rough surfaces [74] as well as thin films with
random interfaces [75]. Other approaches have also been employed, such
as the stochastic functional approach discussed by Kawanishi et al. [76].
More recently, significant work has also been done on the simulation of
strongly rough surfaces with both isotropic [77, 78] and anisotropic [79]
surface profile functions by the use of rigorous numerical simulations.

In this work, results from the first (to the author’s knowledge) simula-
tions that are based on direct solution of the reduced Rayleigh equation
for two-dimensional surfaces are presented. Significant findings include
the phenomena of enhanced backscattering [8] and satellite peaks [9], as
well as the discovery of reduced backscattering in the M44 element of the
Mueller matrix of a rough metallic surface [7].

Enhanced backscattering is a well-known and theoretically understood
effect [80], caused by the constructive interference between a double scat-
tering path and its time-reversed partner [81]. It takes the form of a peak
in the scattered intensity appearing in the direction of the incident field.

2In the surface scattering community, the scattering problem is regarded as “two-
dimensional” if the surface profile function is a function of both x1 and x2.
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For weak surfaces, the dominating physical effect leading to enhanced
backscattering is the interference between propagating surface modes, e.g.
surface plasmon polaritons. It has also been observed experimentally. It
takes the form of a peak in the differential reflectivity coefficient (DRC)
in the direction pointing to the source of illumination, i.e. at θs = −θ0.
The enhanced backscattering effect was observed experimentally by West
and O’Donnell [82], using a surface with a particular power spectrum now
commonly referred to as the West–O’Donnell spectrum.

The satellite peak (or satellite ring) phenomenon is also caused by inter-
ference between propagating surface modes, but with different lateral wave
numbers. The satellite peak phenomenon occurs for instance in systems
consisting of a dielectric film with a randomly rough interface, deposited on
a metallic substrate, with either the film-ambient or film-substrate inter-
face being randomly rough. The interference between two guided modes,
propagating in the film, of different wave numbers gives rise to a ring
centered at the position of the enhanced backscattering peak. The ring
is partially co- and cross-polarized. The satellite peak phenomenon was
originally found theoretically for one-dimensional systems [83]. Numerical
simulations supported these results [84], as did experimental findings [85].
Kawanishi et al. [76] concluded that this phenomenon does not exist for
two-dimensional surfaces, whereas Soubret et al. [74] found that satellite
peaks should be observable also in the two-dimensional case. Recently, the
direct numerical solution of the reduced Rayleigh equation has confirmed
the presence of satellite peaks for two-dimensional film systems [9].

Reduced backscattering is a phenomenon similar to that of enhanced
backscattering, but as the name says, it takes on the form of a dip rather
than a peak in the absolute value of the M44 element (see Chapter 2.2) of
the Mueller matrix of a rough surface. An explanation of this phenomenon
is unfortunately lacking at the time of writing, but it is reasonable to
assume that it is closely related to the enhanced backscattering effect,
i.e. that it is a (destructive) interference effect between surface plasmon
polaritons excited by the incident light.
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5. Rough surface scattering

5.1. Statistical description of surface roughness

Stochastically rough surfaces cannot be attributed a specific surface profile
function. Instead, a statistical description is preferred, where the height
variations and the lateral correlations tell us what properties we would
expect a rough surface to have in probabilistic terms. In the following
we will assume that the surfaces in question are single-valued functions
of the coordinates in the plane, i.e. the surface is located at x3 = ζ(x‖)
where x‖ = (x1, x2, 0). The surface profile function ζ possesses a height
distribution which, in our simulations, is assumed to be Gaussian. In all
cases we will assume that the process generating ζ(x‖) is a stationary,
zero-mean process, implying that〈

ζ(x‖)
〉
= 0. (5.3)

The height distribution does not specify (even statistically) how the
various heights are placed relative to each other in the x‖ plane. This
property is specified by the autocorrelation function of the surface,〈

ζ(x‖)ζ(x′
‖)
〉
= δ2W

(
x‖ − x′

‖
)
, (5.4)

normalized such that W (0) = 1. Here, δ is the rms height of the surface.
Furthermore, it can be shown that −1 ≤ W (x‖) ≤ 1. In some cases, the
autocorrelation function will be isotropic, meaning that

W
(
x‖ − x′

‖
)
= W

(∣∣∣x‖ − x′
‖
∣∣∣) . (5.5)

In order to generate randomly rough surfaces with the desired statistical
properties, the method described in Refs. [79, 86] was employed. For
this algorithm, the quantity that is specified is the power spectrum of
the surface, or the Fourier transform of the (normalized) autocorrelation
function:

g
(
k‖
)
=

∫
d2x‖W

(
x‖
)
exp

(−ik‖ · x‖
)
. (5.6)

A power spectrum frequently used in theoretical and experimental studies
to date is the Gaussian power spectrum [81],

g
(
k‖
)
= πa1a2 exp

(
−a21k

2
1 + a22k

2
2

4

)
, (5.7)
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5.2. The reduced Rayleigh equation

where the parameters a1 and a2 are denoted as the transverse correlation
lengths, and the vector k‖ = (k1, k2, 0) is the wave number parallel to
the surface. If the choice a1 = a2 is made, the power spectrum becomes
isotropic, and depends only on k‖ =

∣∣k‖
∣∣. Another power spectrum that

we will use is referred to as the West–O’Donnell (or cylindrical) power
spectrum [72, 82],

g(k‖) =
4π

k2max − k2min

θ
(
k‖ − kmin

)
θ
(
kmax − k‖

)
, (5.8)

where θ(k) is the Heaviside unit step function, and kmin and kmax are
parameters whose values determine the surface power spectrum. Note
that this power spectrum is isotropic (i.e., rotationally symmetric).

5.2. The reduced Rayleigh equation for
two-dimensional surfaces

Once the statistical properties of a rough surface has been described, as
specified in Chapter 5.1, one can classify surfaces according to their prop-
erties. This is necessary as the validity of all techniques for performing
simulations of light scattering from rough surfaces depends on the surface
properties. For instance, small amplitude perturbation theory, expanded
in power series of the surface profile function [72], breaks down for surfaces
with all but the lowest values of rms roughness. Solving the scattering
problem by a rigorous approach [77, 78] gives good results for surfaces
with any rms roughness and arbitrarily steep slopes, but the calculations
are both CPU and memory intensive. Due to the memory requirements,
only short surface profiles can be simulated without further development
of existing codes or theory. An approach which falls between the per-
turbation theory and the rigorous simulations is the technique of solving
the reduced Rayleigh equation (RRE) in a direct manner, without resort-
ing to perturbation theory [8]. This approach will be discussed below, for
the systems shown in Figs. 5.1 and 5.2. (Note that in these figures, the
interfaces are rendered as flat for the sake of clarity.)
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Figure 5.1: The geometry of the scattering problem shown schematically
(interface roughness not shown), assuming in-plane scattering

(
q‖ ‖ k‖

)
and the presence of a thin film on top of the substrate. If one or both of
the interfaces of the film are (randomly) rough, guided modes (with wave
number qn, where n is the mode index) can be excited.
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Figure 5.2: The geometry of the scattering problem for a clean, rough
surface. To avoid confusion, we denote the dielectric function in the sub-
strate as ε3 here as well. The surface roughness allows coupling into surface
plasmon polaritons with wave number qspp(ω) > ω/c, shown schematically.
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5.2. The reduced Rayleigh equation

The incident field is assumed to be a plane wave, expressed as

E0(x|ω) =
[
ê(0)p (k‖)Bp(k‖) + ê(0)s (k‖)Bs(k‖)

]
× exp

[
ik‖ · x‖ − iα1(k‖, ω)x3

]
,

(5.9)

where k‖ = (k1, k2, 0) denotes the component of the incident wave vector
parallel to the x‖ plane, and ω being the angular frequency of the incident
light. The vectors êp and ês are the polarization vectors of the electric
field [8]. Finally, the variable Bβ is the amplitude of the electric field of β
polarization. The scattered field can asymptotically (i.e. as x3 → ∞) be
expressed as a sum of outgoing plane waves:

Es(x|ω) =
∫

d2q‖
(2π)2

[
ê(s)p (q‖)Ap(q‖) + ê(s)s (q‖)As(q‖)

]
× exp

[
iq‖ · x‖ + iα1(q‖, ω)x3

]
.

(5.10)

Here, the variable Aα is the amplitude of the scattered electric field of α
polarization, and q‖ = (q1, q2, 0) is the component of the wave vector of
the scattered light parallel to the x1x2 plane. The transmitted field can be
expressed in a similar fashion, but we are not concerned with transmission
in this work. The total field above the surface can be written as

Etot(x|ω) = E0(x|ω) +Es(x|ω), (5.11)

i.e. the sum of the incident and the scattered fields. In Eqs. (5.9)
and (5.10), the subscripts p and s correspond to p polarization and s po-
larization, respectively. The function αi(k‖, ω) is defined as

αi

(
k‖, ω

)
=

(
εi
ω2

c2
− k2‖

)1/2

where Re(αi) > 0, Im(αi) > 0, (5.12)

where c is the speed of light in vacuum. Finally, εi is the dielectric function
in the ambient, film, or substrate, labeled i = 1, 2, 3, respectively3. The
vectors

ê(0)p (k‖) = −
c

ω

[
α0(k‖, ω)k̂‖ + k‖x̂3

]
(5.13a)

3When we later will study the reduced Rayleigh equation for a thin film, we will denote
the dielectric function in the film with i = 2. The use of the subscripts i = 1, 3 is
intended to cause less confusion at this later stage.
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5. Rough surface scattering

and

ê(0)s (k‖) = k̂‖ × x̂3 (5.13b)

define the polarization vectors of p and s polarization of the incident light,
while

ê(s)p (q‖) =
c

ω

[
α0(q‖, ω)q̂‖ − q‖x̂3

]
(5.14a)

and

ê(s)s (q‖) = q̂‖ × x̂3 (5.14b)

define the polarization vectors for light scattered from the surface. The
amplitudes Aα and Bβ are assumed to be connected through the linear
relation

Aα(q‖, ω) =
∑
β=p,s

Rαβ(q‖|k‖)Bβ(k‖, ω). (5.15)

The quantity Rαβ is referred to as the surface scattering amplitude for
incident light of β polarization and wave vector k being scattered into
α polarization and wave vector q. This quantity is not directly observ-
able in an experiment; however, the differential reflectivity coefficient can
be calculated directly from the scattering amplitude. The differential re-
flectivity coefficient is defined as the fraction of the total incident power
scattered into a solid angle ∂Ωs about the scattering direction (θs, φs) [81].
As we are mainly interested in coherent (non-specular) contributions to
the scattering amplitude, we will in this work focus on the incoherent (or
diffuse) component of the mean differential reflectivity coefficient, defined
as 〈

∂Rαβ

∂Ωs

〉
incoh

=
( ω

2πcL

)2 cos2 θs
cos θ0

×
(〈∣∣Rαβ(q‖|k‖)

∣∣2〉− ∣∣〈Rαβ(q‖|k‖)
〉∣∣2) . (5.16)

In the expressions above, L is the length of the surface profile, (θ0, φ0) are
the polar angles of the incident wave vectors, and (θs, φs) are the polar
angles of the scattered wave vector. The angles θ0 and θs are defined in
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5.2. The reduced Rayleigh equation

Fig. 5.1, while φ0 (φs) is the angle between k‖ (q‖) and the x1 axis. In
mathematical terms, the relationships between the wave vectors and the
polar angles are given by

k‖ =
√
ε1

ω

c
sin θ0(cosφ0, sinφ0, 0) (5.17a)

and

q‖ =
√
ε1

ω

c
sin θs(cosφs, sinφs, 0). (5.17b)

In his efforts to understand surface scattering, Lord Rayleigh made the
assumption that the asymptotic expression of the fields [Eq. (5.9)–(5.11)]
are valid all the way down to the surface, i.e. at x3 = ζ(x‖). This as-
sumption has later been named “the Rayleigh hypothesis” in his honor.
The Rayleigh equation for one-dimensional surfaces was derived by as-
suming that the Rayleigh hypothesis holds. More recently, Brown et
al. [71] derived the reduced Rayleigh equation for light scattering from
a two-dimensional surface. Reformulated in the notation of McGurn and
Maradudin [72], the equation reads

∫
d2q‖
(2π)2

I
(
α3(p‖, ω)− α1(q‖, ω)|p‖ − q‖

)
α3(p‖, ω)− α1(q‖, ω)

M+(p‖|q‖)R(q‖|k‖)

=
I
(
α3(p‖, ω) + α1(k‖, ω)|p‖ − q‖

)
α3(p‖, ω) + α1(k‖, ω)

M−(p‖|k‖),
(5.18a)

where the function I is an integral given by

I(γ|Q‖) =
∫

d2x‖ exp(−iQ‖ · x‖) exp
[−iγζ(x‖)

]
, (5.18b)

and the symbol M± refers to the matrix

M±(p‖|q‖) =
(
p‖q‖ ± α3(p‖, ω)p̂‖ · q̂‖α1(q‖, ω) −ω

c α3(p‖, ω)(p̂‖ × q̂‖)3
±ω

c (p̂‖ × q̂‖)3α1(q‖, ω) ω2

c2
p̂‖ · q̂‖

)
,

(5.18c)

where the subscript 3 on the cross products refers to the third component
of the resulting vector.
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Figure 5.3: The mean differential reflection coefficient for the light
scattered from a randomly rough surface, for light incident at (θ0, φ0) =
(2◦, 45◦). The white dot shows the specular direction.
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5.2. The reduced Rayleigh equation

In order to speed up the numerical calculations, it is desirable to tabu-
late the integral in Eq. (5.18b) for each combination of q‖ and p‖ in the
equation (5.18a). This can be achieved by Taylor expanding the exponen-
tial in Eq. (5.18b) as follows:

I(γ|Q‖) =
∞∑
n=0

(−iγ)n
n!

ζ̂(n)(Q‖) (5.19)

where

ζ̂(n)(Q‖) =
∫

d2x‖ exp
(
iQ‖ · x‖

)
ζn(x‖). (5.20)

This integral can be efficiently calculated by use of the fast Fourier trans-
form (FFT) [48].

The details of how one proceeds to obtain the solution to the reduced
Rayleigh equation [Eq. (5.18a)] are given in Ref. [8].
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Figure 5.4: In-plane (φ0 = φs) cut of the differential reflection coefficient
as presented in Fig. 5.3.
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5. Rough surface scattering

The resulting solutions to the reduced Rayleigh equation are most effi-
ciently presented as the incoherent part of the mean differential reflection
coefficient [Eq. (5.16)], shown as a contour plot in Fig. 5.3. In generating
this figure, light of vacuum wavelength λ = 457.9 nm was incident on a
silver surface profile with an rms height of δ = 0.025λ, and an isotropic
transverse correlation length of a = 0.25λ. The realizations of the surface
profile functions had a length L = 25λ and the resolution of the surface
discretization was Δx = 0.078λ. The dielectric function of the substrate
was taken to be that of silver at the corresponding wavelength, namely,
ε3 = −7.5 + 0.24i [87]. The angles of incidence were (θ0, φ0) = (2◦, 45◦),
and the DRC shown was found by averaging results from 14 200 surface
profile realizations. Note that the specular peak is not present in these re-
sults, as only the incoherent (diffuse) contribution to the mean differential
reflection coefficient is shown.

Several interesting observations can be made from Fig. 5.3. For in-
stance, one can readily observe that light scattered in-plane (φs = φ0)
is predominantly co-polarized, i.e. the polarization is unchanged during
scattering. Out-of-plane scattering (φs = φ0 ± 90◦), however, is predom-
inantly cross-polarized. This is to first approximation a geometric (or
single-scattering) effect, which can be explained by a model similar to the
Kirchoff model [88] for surface scattering.

The phenomenon of enhanced backscattering which was first discovered
in light scattering from one-dimensional surfaces [80] can also be observed
in Fig. 5.3. This phenomenon is seen as a sharp peak in the mean dif-
ferential reflection coefficient in the retroreflection direction [(θs, φs) =
(θ0, φ0+180◦) or, equivalently, q‖ = −k‖]. However, it is more easily seen
in an in-plane cut of the differential reflection coefficient, as presented
in Fig. 5.4. The specular and backscattering directions are both shown
with a vertical dotted line. When comparing plots for different angles of
incidence, one sees that the enhanced backscattering peak always occurs
at θs = −θ0, as one would expect. The enhanced backscattering peak
arises from constructive interference between counterpropagating surface
plasmon polaritons travelling along the metal-vacuum interface. The ob-
servation of the enhanced backscattering effect, as well as the comparison
of the results obtained from the reduced Rayleigh equation with a rigorous
approach [6, Fig. 9], give confidence in the correctness of these results.
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5.3. Satellite peaks

The phenomenon of satellite peaks in the differential reflectivity coefficient
is well-known for one-dimensional randomly rough surfaces [83]. However,
there has been some controversy over whether this effect exists in surfaces
whose profile function is two-dimensional. Kawanishi et al. [76] found no
signs of satellite peaks when employing the so-called stochastic functional
approach, whereas Soubret et al. [74] observed satellite peaks when solv-
ing the reduced Rayleigh equation perturbatively in powers of the surface
profile function. We show here and in Ref. [9] that satellite peaks do in-
deed exist also for systems with a two-dimensional rough surface profile,
through the solution of the reduced Rayleigh equation for a system con-
sisting of a dielectric film with a rough interface deposited on a planar
metallic substrate.
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Figure 5.5: The incoherent part of the mean differential reflection co-
efficient as a function of the polar scattering angle θs from the in-plane
(φs = φ0) co-polarized (p → p, s → s) scattering of light incident on a
two-dimensional randomly rough surface of a dielectric film deposited on
a planar substrate of silver. The angle of incidence was θ0 = 5◦.
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In Fig. 5.5, we show the contributions to the mean differential reflection
coefficient as functions of the polar scattering angle θs from the in-plane
(φs = φ0) co-polarized (p→ p, s→ s) and cross-polarized (p→ s, s→ p)
scattering of light from a thin, rough film deposited on a planar, metallic
substrate. The metal was taken to be silver, whose dielectric constant
is ε3 = −18.28 + 0.481i at the vacuum wavelength of λ = 633 nm. The
angles of incidence were (θ0, φ0) = (0.74◦, 45◦). The dielectric constant of
the film was ε2 = 2.6896 + 0.01i, and its mean thickness was d = 478.5
nm. The roughness of the surface is characterized by the power spectrum
in Eq. (5.8), with k− = 0.82(ω/c), k+ = 1.97(ω/c), and the rms height
was δ = λ/40 = 15.82 nm. This system possesses two guided modes in
p-polarization and two guided modes in s-polarization. The p-polarized
modes have wave numbers

q1,p(ω) = 1.4391(ω/c), (5.21a)

q2,p(ω) = 1.0119(ω/c), (5.21b)

and the s-polarized modes have wave numbers

q1,s(ω) = 1.5467(ω/c), (5.21c)

q2,s(ω) = 1.2432(ω/c). (5.21d)

In Fig. 5.5, the satellite peaks are clearly seen symmetrically around the
enhanced backscattering peak for s → s scattering. The dotted vertical
lines indicate the angles θs = −23.2◦ and θs = 12.3◦ for which one would
expect satellite peaks to appear, based on the wave numbers in Eq. (5.21).
The lack of any satellite peaks in p-polarization can be due to several
reasons, including lack of resolution near q‖ = ω/c; the wave number of
one of the p-polarized guided modes are very close to ω/c. Other reasons
include that there could be weaker coupling into these modes. We refer
the reader to Ref. [9] for further discussion and details.

5.4. The Mueller matrix of a rough surface

As discussed in Chapter 2.2, the Mueller matrix describes linear inter-
actions between the polarization of light and matter. In the past, there
have been performed few calculations of the Mueller matrix for a rough
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surface. Exceptions include the calculations performed by Bruce using
the Kirchoff approximation, and his discussion of symmetry properties of
the Mueller matrix for light normally incident on a statistically isotropic
rough surface [89]. Zhang and Bahar [90] also performed an approximate
analytic calculation of the scattering from a randomly rough dielectric
surface coated with a thin film composed of a different dielectric mate-
rial. However, to the author’s knowledge, no computer simulation studies
published to date show the full angular distribution of the Mueller matrix
for arbitrary angles of incidence. Examples of numerical results will be
discussed in this chapter, and the interested reader can consult Ref. [7] for
a more thorough discussion.

For a complete description of polarization effects of a randomly rough
surface, one needs to calculate the Mueller matrix not only for the specular
reflection, but for scattering from any incident wave vector (k) into any
scattered wave vector (q). In Fig. 5.6, the full angular distribution of
the Mueller matrix for light scattering from an isotropic, randomly rough
silver surface is given. The incident light, with λ = 457.9 nm, shining upon
a silver surface having a dielectric function of ε = −7.5 + 0.24i [87]. The
surface autocorrelation function is assumed to be isotropic and Gaussian,
i.e.

W
(∣∣x‖

∣∣) = exp

(
−
x2‖
a2

)
, (5.22)

with a correlation length a = λ/4 = 114.5 nm and rms roughness δ =
λ/40 = 11.5 nm. The angles of incidence were (θ0, φ0) = (2◦, 45◦), i.e.
nearly normal incidence.

As predicted by Bruce [89], the elements in column 2 and column 3 are
identical, save for a 45◦ rotation about the origin (Fig. 5.6). Intuitively, one
might expect the elements of the Mueller matrix to be circularly symmet-
ric at normal incidence for isotropic surfaces. The “cloverleaf” patterns in
the center two columns are counterintuitive, as the physical system under
study is rotationally symmetric (to a good approximation: θ0 = 2◦). How-
ever, the pattern is artificial in the sense that the orientation of the pattern
depends only on the orientation of the coordinate system. For instance,
the Stokes parameter Q gives the linearly polarized light intensity in the
horizontal and vertical directions, but the labeling of certain directions as

47



5. Rough surface scattering

−0.5

0.0

0.5

1.0

q 2
/(

ω
/c
)

−0.5

0.0

0.5

1.0

q 2
/(

ω
/c
)

−0.5

0.0

0.5

1.0

q 2
/(

ω
/c
)

−0.5 0.0 0.5 1.0
q1/(ω/c)

−0.5

0.0

0.5

1.0

q 2
/(

ω
/c
)

−0.5 0.0 0.5 1.0
q1/(ω/c)

−0.5 0.0 0.5 1.0
q1/(ω/c)

−0.5 0.0 0.5 1.0
q1/(ω/c)

−0.015 0.000 0.015 0.030

〈Mij〉incoh

Figure 5.6: The Mueller matrix of a rough surface for angles of incidence
(θ0, φ0) = (2◦, 45◦). The position of the specular direction is indicated by
a white dot.
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horizontal or vertical is simply a choice of coordinate system. Rotating
the polarization vectors êp and ês of the incident light thus results in a
rotation of the “cloverleaf” pattern.
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Figure 5.7: In-plane cut (φs = φ0) of the diagonal elements of the
Mueller matrix for simulation parameters identical to those used in gener-
ating Fig. 5.6. The vertical dashed line shows the enhanced backscattering
direction (θs = −θ0 = −2◦). Note in particular the reduced absolute value
of M44 in the enhanced backscattering direction; this result has not been
reported previously.

The full Mueller matrix contains some interesting physical phenomena,
for instance enhanced backscattering [80]. This effect is not easily observed
directly in Fig. 5.6, but can be seen more readily by plotting the in-plane
cut (i.e. the plane φs = φ0) of the diagonal elements in the Mueller
matrix (Fig. 5.7). It is observed that the absolute value for three of the
elements has a peak in the backscattering direction, where q‖ = −k‖, or
equivalently, (θs, φs) = (θ0, φ0 + 180◦). The M44 element, however, has a
dip in its absolute value, contrary to the other elements. This corresponds
to reduced backscattering for circular polarization, which has previously
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not been reported.

The full angular distribution of the Mueller matrix for angles of inci-
dence (θ0, φ0) = (25◦, 45◦) is shown in Fig. 5.8. Interestingly, the elements
M31, M41, M14, and M24 are no longer (to numerical precision) zero, but
exhibit interesting structure in the angular distribution. The symmetry
of the patterns in the center two columns is also broken, although the
patterns remain similar. The enhanced backscattering peak in M11, M22,
and M33 can be observed as a small dot, as can the reduced backscat-
tering peak in M44. The results for non-normal incidence complement
the results for normal incidence, showing how the rough surface exhibits
different polarization effects for normal and non-normal incidence.

Simulations of the Mueller matrix for (randomly) rough or structured
surfaces may facilitate both the design of surfaces with desirable polariza-
tion properties, as well as the interpretation of experimental data. There
is in general a lack of scattering models for polarization effects, which
come into play in a wide range of applications. Simulation approaches like
the one sketched here can hopefully be useful in the advancement of both
fundamental science, as well as in technological applications.

5.5. Summary

In summary, the surface scattering of light from two-dimensional sur-
faces has both similarities to and differences from scattering from one-
dimensional surfaces. Several phenomena, which were well known from
one-dimensional surfaces, have been observed in the numerically gener-
ated results for two-dimensional surface scattering, including enhanced
backscattering and satellite peaks. The most significant difference lies in
the polarization effects, which are not present in one-dimensional surface
scattering. Such effects are most efficiently described in terms of Mueller
matrices, whose full angular distribution has been calculated.

The surface scattering of light is a classical problem with many aspects
to it, and much work remains before all aspects of it are understood. For
instance, there is a need for better understanding of which polarization
effects can occur in anisotropic and chiral surfaces. Such understanding
is necessary if surface scattering is to be an effective experimental charac-
terization technique. It would also be of interest to examine the effects of
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Figure 5.8: The Mueller matrix of the same rough surface as in Fig. 5.6,
but with angles of incidence (θ0, φ0) = (25◦, 45◦). The position of the spec-
ular peak is shown by a white dot. The enhanced (or reduced) backscat-
tering peak can be seen as a faint dot in each of the diagonal elements,
located at q‖ = −k‖.
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different height distribution functions and lateral correlation functions in
a more systematic fashion.
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This thesis has discussed polarization effects observed due to the proper-
ties of rough and structured interfaces, as well as how one can optimize
polarimeters for measuring polarization effects. The systems studied in-
clude nanoparticle patterned surfaces, stochastically rough surfaces, and
stochastically rough films deposited on planar substrates.

In order to study surfaces patterned with nanoparticles, a simulation
code was written which uses multipole expansions [1] and the image multi-
pole method [3, 10] to take particle-particle and particle-substrate effects
into account. The code is capable of simulating both small clusters of
nanoparticles, as well as two-dimensional infinite arrays of nanoparticles.
Simulations of single nanoparticles and nanoparticle dimers on top of sub-
strates show the importance of taking the substrate into account to high
order. Conveniently, some variables (e.g. the reflectivity of a nanopar-
ticle lattice) achieve good convergence at lower cutoffs in the spherical
harmonic expansion (Lmax) than the local fields—that is, the fulfillment
of the boundary conditions—do.

By employing a form of effective medium theory which takes the en-
vironment of the particle into account, the reflectivity from a surface
patterned with a lattice of sub-wavelength particles has been simulated.
This was done by approximating a rectangular lattice of nanoparticles as
an anisotropic thin film, and using standard theory to calculate the re-
flectance from the surface. The results show some interesting features,
including the wavelength dependent polarization of light reflected from
the surface [10].

By direct solution of the reduced Rayleigh equation [8], the scattering
of light from two-dimensionally rough surfaces has been simulated. The
simulation code, named Rayleigh2D, takes the polarization effects of the
scattering process into account. In order to obtain the most complete de-
scription of the polarization effects, the Mueller matrix was constructed
from the simulation results [7]. The results exhibit the effect of enhanced
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backscattering, well known from studies using perturbation theory to cal-
culate the scattering amplitude. Interestingly, a new effect denoted re-
duced backscattering was observed in the M44 element of the Mueller
matrix.

A controversy over whether the phenomenon of satellite peaks, taking
the form of peaks (or a ring) placed symmetrically around the enhanced
backscattering peak, exists in the scattering of light from two-dimensional
(as opposed to one-dimensional) surfaces, was resolved. Our simulation
results clearly show satellite peaks at the positions predicted by the dis-
persion relation, and thus resolve the controversy in the literature [9].

A long-standing problem in Mueller matrix ellipsometry is the issue of
optimizing an (imaging) polarization state analyzer (or, equivalently, a po-
larization state generator) for both speed of operation and noise. Hence,
we attempted to generate a polarimeter design with good performance
over a broad spectrum using a genetic algorithm. The resulting polarime-
ter design, based on ferroelectric liquid crystals, features excellent perfor-
mance [2, 5] over the wavelength range from 430 nm to 2000 nm. This
work also received 3rd prize in the 2011 annual “Humies” awards1 at the
GECCO 2011 conference.

The same approach was used again to design a Mueller matrix ellipsome-
ter using liquid crystal variable retarders. This design was subsequently
implemented, and the achieved performance was compared to the theo-
retical design. The predicted performance was achieved to good precision,
proving both that our simulation of the ellipsometer was realistic, as well
as the efficiency of the optimization algorithm.

To finalize, this thesis describes several models of surface optical phe-
nomena, and especially polarization effects. This includes a quasistatic
model of nanoparticles deposited on surfaces, a model of surface scatter-
ing from single rough interfaces, and a similar model for scattering from
rough thin films deposited on a planar interface. With respect to the mea-
surement of polarization effects, a general approach for the optimization
of Stokes/Mueller polarimeters has been described. Together, the papers
presented in Appendix A give more details for the interested reader, and
complement each other nicely.

1http://www.genetic-programming.org/hc2011/combined.html
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6.1. Suggested future work

As usual, the work described in this thesis not only answers questions,
it also opens up for new venues of research. For example, preliminary
results indicate that the Rayleigh2D simulation code can simulate trun-
cated nanoparticles of low aspect ratio deposited on planar interfaces. The
system can be modeled as a thin film where the height of the surface pro-
file function describes the top surface of the particles. This may allow for
the comparison of the optical effects of spherical nanoparticles to that of
truncated spheres or other types of particles with low aspect ratio and no
overhangs. Also, one can attempt to determine at which point retardation
effects become important, by simulation of nanoparticles of increasing size.

As the efficiency of genetic algorithms for the design of polarimeters
has been established, it would be advantageous to explore new applica-
tions of this approach. For example, it is of interest to design even more
broad-band polarimeters, and in particular for the ultra violet part of the
spectrum. The main challenge here is to find and characterize suitable ma-
terials and components. It is also possible that other broad-band optical
components could be optimized using similar approaches.

Finally, the simulation of lattices of nanospheres could be expanded to
include truncated nanospheres. This requires some analytical work, as
the naive approach requires the calculation of an extremely large amount
of double integrals. The symmetries of rectangular and triangular lat-
tices may lend itself to the simplification or elimination of some of these
integrals, which may facilitate numerical solution of this problem.
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Abstract: A fast multichannel Stokes/Mueller polarimeter with no
mechanically moving parts has been designed to have close to optimal
performance from 430− 2000 nm by applying a genetic algorithm. Stokes
(Mueller) polarimeters are characterized by their ability to analyze the full
Stokes (Mueller) vector (matrix) of the incident light (sample). This ability
is characterized by the condition number, κ , which directly influences
the measurement noise in polarimetric measurements. Due to the spectral
dependence of the retardance in birefringent materials, it is not trivial to
design a polarimeter using dispersive components. We present here both a
method to do this optimization using a genetic algorithm, as well as simu-
lation results. Our results include fast, broad-band polarimeter designs for
spectrographic use, based on 2 and 3 Ferroelectric Liquid Crystals, whose
material properties are taken from measured values. The results promise to
reduce the measurement noise significantly over previous designs, up to a
factor of 4.5 for a Mueller polarimeter, in addition to extending the spectral
range.

© 2010 Optical Society of America

OCIS codes: (120.2130) Ellipsometry and polarimetery; (120.4570) Optical design of instru-
ments; (300.0300) Spectroscopy.
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1. Introduction

Polarimeters are applied in a wide range of fields, from astronomy [1–3], remote sensing [4] and
medical diagnostics [5, 6] to applications in ellipsometry such as characterizing gratings [7],
nanostructures [8] and rough surfaces [9–11]. As all polarimeters are based on inverting so-
called system matrices, it is well known that the measurement error from independent Gaus-
sian noise is minimized when the condition number (κ) of these system matrices is mini-
mized [12,13]. It has been shown that κ =

√
3 is the best condition number that can be achieved

for such a system, and that this optimal condition number can be achieved by several different
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approaches using various optical components (e.g. rotating retarders [14], division of ampli-
tude [15, 16], and liquid-crystal variable retarders [17]). In many applications it is necessary to
perform fast spectroscopic measurements (e.g. by using a Charge-Coupled Device (CCD) based
spectrograph) [18]. In that case, the wavelength dependence of the optical elements will cause
the polarimeter not to be optimally conditioned over the full range simultaneously. A system
based on two Ferroelectric Liquid Crystals (FLC) has been reported to be fast and reasonably
well conditioned over the visible or near infrared spectral range [18–20]. By introducing a third
FLC a similar system has been proposed to have an acceptable condition number from the visi-
ble to the near infra-red (430−1700 nm) [21]. The design of a system having the best possible
condition number over a broad spectrum is a challenging optimization problem due to the large
number of parameters; many optimization algorithms are prone to return local optimums, and
a direct search is too time consuming. To avoid this time-consuming exhaustive search, we
decided to employ the Genetic Algorithm (GA). A GA simulates evolution on a population of
individuals in order to find an optimal solution to the problem at hand. Genetic Algorithms were
pioneered by Holland [22], and are discussed in detail in e.g. Ref. [23]. GAs have previously
been applied in ellipsometry to solve the inversion problem for the thickness and dielectric
function of multiple thin layers, see e.g. Ref. [24–26].

2. Overdetermined polarimetry

A Stokes polarimeter consists of a polarization state analyzer (PSA) capable of measuring the
Stokes vector of a polarization state, see Fig. 1. The PSA is based on performing at least 4 dif-
ferent measurements along different projection states. A measured Stokes vector S can then be
expressed as S = A−1b, where A is a system matrix describing the PSA and b is a vector con-
taining the intensity measurements. A−1 denotes the matrix inverse of A, which in the case of
overdetermined polarimetry with more than 4 projection states will denote the Moore–Penrose
pseudoinverse. The analyzing matrix A is constructed from the first rows of the Mueller matri-
ces of the PSA for the different states. The noise in the measurements of b will be amplified by
the condition number of A, κA, in the inversion to find S. Therefore κA should be as small as
possible, which correspond to do as independent measurements as possible (i.e. to use projec-
tion states that are as orthogonal as possible).

A Mueller matrix M describes how an interaction changes the polarization state of light, by
transforming an incoming Stokes vector Sin to the outgoing Stokes vector Sout =MSin. To mea-
sure the Mueller matrix of a sample it is necessary to generate at least 4 different polarization
states by a polarization state generator (PSG) and measure the outgoing Stokes vector by at
least 4 measurements for each generated state. The measured intensities can then be arranged
in a matrix B = AMW, where the system matrix W of the PSG contains the generated Stokes
vectors as its columns. These generated Stokes vectors are found simply as the first column
of the Mueller matrix of the PSG in the respective states. M can then be found by inversion
as M = A−1BW−1. The error ΔM in M is then bounded by the condition numbers according
to [27]

‖ΔM‖
‖M‖ � κWκA

‖ΔB‖
‖B‖ +κA

‖ΔA‖
‖A‖ +κW

‖ΔW‖
‖W‖ . (1)

The condition number is given as κA = ‖A‖‖A−1‖, which for the the 2-norm can be calcu-
lated from the ratio of the largest to the smallest singular value [28]. ΔA and ΔW are calibration
errors, which increase with κ when calibration methods using matrix inversion are applied. The
PSG can be constructed from the same optical elements as the PSA, placed in the reverse order,
which would give κA = κW ≡ κ . As the error in Mueller matrix measurements is proportional
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b) Mueller polarimeter

a) Stokes polarimeter

PSA

PSAPSG Sample Sensor

Sensor

Fig. 1. (a) A Stokes polarimeter measures the polarization state of an arbitrary light source
using a Polarization State Analyzer (PSA). (b) A Mueller polarimeter measures how the po-
larization state of light, generated by with a Polarization State Generator (PSG), is changed
by a sample.

PSA

FLC1 WP1 FLC2 WP2 FLC3 WP3 Pol.

Fig. 2. Sketch of a PSA consisting of 3 FLC’s, 3 waveplates (WP), each with a retardance
δ and an orientation θ relative to the transmission axis of a polarizer.

to κ2, it is very important to keep this value as low as possible.
If 4 optimal states can be achieved (giving κ =

√
3), no advantage is found by doing a larger

number of measurements with different states, compared to repeated measurements with the 4
optimal states [14]. If, however, these optimal states can not be produced (κ >

√
3), the con-

dition number, and hence the error, can be reduced by performing more than 4 measurements.
For a FLC based polarimeter this can be done by using 3 FLCs followed by a polarizer as PSA,
with up to 3 waveplates (WP) between the FLCs to increase the condition number (see Fig. 2).
A PSG can be constructed with the same elements in the reverse order. Since each FLC can be
switched between two states (this switching can be described as a rotation of the fast axis of a
retarder by +45◦), 23 = 8 different states can be analyzed (generated) by the PSA (PSG). To ac-
curately measure the Stokes vector, the system matrix A needs to be well known. For a Mueller
polarimeter generating and analyzing 4 states in the PSG and PSA, the eigenvalue calibration
method (ECM) [29] can be applied. The ECM allows the measuring of the actual produced
states by the PSA and PSG (A and W), without relying on exact knowledge or modeling of
the optical components. However, the ECM is based on the inversion of a product of measured
intensity matrices B for measurements on a set of calibration samples. This product becomes
singular for a system analyzing and generating more than four states. A workaround of this
problem is to choose the subset of 4 out of 8 states which gives the lowest κ value, and build a
B matrix of those states to find 4 of the 8 rows (columns) of A (W). More rows (columns) of
A (W) can then be found by calibrating on a different subset of the 8 states, giving the second
lowest κ value, and so on. By repeating the calibration on different subsets of states, all the 8
rows (columns) of A (W) can be found with low relative error ‖ΔA‖/‖A‖ (‖ΔW‖/‖W‖).
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Reproduction Mutation

Mating contest Development

Fig. 3. The four essential processes in a genetic algorithm are shown above. Sexual repro-
duction is performed by multi-point genetic crossover, giving rise to the next generation
of individuals. Mutation can be simulated with simple bit negation (e.g. 0 → 1 and vice
versa). Development is the process where a genotype is interpreted into its phenotype, i.e.
the binary genome is interpreted as a polarimeter design. In the mating contest, one eval-
uates the fitness of each individual’s phenotype, and let the more fit individuals reproduce
with higher probability than the less fit individuals.

3. Genetic optimization

In order to optimize κ(λ ), one can conceivably employ a variety of optimization algo-
rithms, from simple brute-force exhaustive search to more advanced algorithms, such as e.g.
Levenberg–Marquardt, simulated annealing, and particle swarm optimization. Our group has
previously performed optimization of a polarimeter design based on fixed components, namely,
two FLCs and two waveplates. In this case, the optimization problem reduces to searching the
space of 4 orientation angles. With a resolution of 1◦ per angle, this gives a search space con-
sisting of 1804 ≈ 109 states to evaluate; on modern computer hardware, this direct search can be
performed. In order to optimize the retardances of the components as well, the total number of
states increases to about

(
109

)2
= 1018. Obviously, brute force exhaustive search is unfeasible

for such large search spaces.
A GA performs optimization by simulating evolution in a population of individuals (here:

simulated polarimeters). The three pillars of evolution are variation, heritability, and selection.
Our initial population must have some initial genetic variation between the individuals; hence,
we initialize our population by generating random individuals. Heritability means that the chil-
dren have to carry on some of the traits of their parents. We simulate this by either cloning
parents into children (asexual reproduction) or by performing genetic crossover (sexual repro-
duction) in a manner that leave children with some combination of the traits of their parents.
Finally, selection is done by giving more fit individuals a larger probability of survival. For this
purpose, we used the tournament selection protocol, described in Ref. [23]. For a sketch of the
essential processes involved in a GA, see Fig. 3.

Our GA builds directly on the description given by Holland [22], using a binary genome as
the genetic representation. In this representation, a string of 0s and 1s represent the genome of
the individual. To simulate mutation in our genetic algorithm, we employ logical bit negation;
i.e. 0→ 1 or vice versa. Sexual reproduction is simulated by using multi-point crossover, i.e.
simply cutting and pasting two genomes together, as described by Holland [22].

The interpretation of the genome into a phenotype (development), in this case a polarimeter
design, is done in a straightforward way. For each variable in the polarimeter’s configuration,
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i.e. for each orientation angle and each retardance, we select m bits in the genome (typically,
m = 8) and interpret this number as an integer in the range from 1 to 2m. The integer is subse-
quently interpreted as a real number in a predefined range, e.g., θ ∈ [0◦,180◦]. In order to avoid
excessively large jumps in the search space due to mutations, we chose to implement the inter-
pretation of bits into integers by using the Gray code, also known as the reflected binary code.
The most important parameter values in our GA are shown in Table 2. Making good choices
for each of these parameters is often essential in order to ensure good convergence.

After determining the phenotype, we must assign to each simulated polarimeter individual
a fitness function (also known as the objective function). In order to do this, we first calculate
κ(λ ). As discussed, κ−1(λ ) maximally takes on the value 1/

√
3. Hence, we define an error

function, e, as

e =
1

Nλ

Nλ

∑
n=1

(
κ−1(λn)−1/

√
3
)4

. (2)

In Eq. (2), λn = λmin +(n− 1)Δλ , with n = 1,2, . . . ,Nλ and Δλ = 5 nm. λmin and Nλ are
determined by the wavelength range we are interested in. The choice of taking the difference
between κ−1(λ ) and the optimal value to power 4 is done in order to “punish” peaks in the
condition number more severely. As GAs conventionally seek to maximize the fitness function,
we define an individual’s fitness as

f =
1
e
. (3)

This definition is convenient because f takes on real and positive values where higher values
represents more optimal polarimeter designs.

4. Results

For the case of a polarimeter based on 3 FLCs and 3 WPs, we have minimized κ(λ ) by varying
the orientation angle, θ , and the retardance, δ , of all the elements. This yields a 12-dimensional
search space, i.e., 6 retardances and 6 orientation angles. θ is the angle between the fast axis of
the retarder (WP or FLC) and the transmission axis of the polarizer (see Fig. 2), taken to be in
the range θ ∈ [0◦,180◦]. The retardance, δ , is modeled using a modified Sellmeier equation,

δ ≈ 2πL
[

AUV

(λ 2−λ 2
UV )

1/2
− AIR

(λ 2
IR−λ 2)1/2

]
, (4)

where AUV , AIR, λUV , and λIR are experimentally determined parameters for an FLC (λ/2@510
nm, Displaytech Inc.) and a Quartz zero order waveplate (λ/4@465 nm) taken directly from
Refs. [19] (for the FLCs, AIR = 0). L is a normalized thickness, with L = 1 corresponding to
a retardance of λ/2@510 nm for the FLCs and λ/4@465 nm for the waveplates. Each L and
θ are represented by 8 bits each in the genome. We use experimental values to ensure that our
design is based on as realistic components as possible.

The 3-FLC polarimeter design scoring the highest fitness function is shown in Table 1. The
wavelength range for which we optimized the polarimeter was from 430 to 2000 nm. To visu-
alize the performance of this design, we show a plot of κ−1(λ ) in Fig. 4. The inverse condition
number, κ−1, is larger than 0.5 over most parts of the spectrum, which is close to the optimal
inverse condition number (κ−1 = 1/

√
3 = 0.577). This is a great improvement compared to

the earlier reported 3-FLC design [21], which oscillates around κ−1 ≈ 0.33. The new design
promise a decrease in noise amplification by up to a factor of 2.1 for a Stokes polarimeter, and
up to factor of 4.5 for a Mueller polarimeter. In addition the upper spectral limit is extended
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Table 1. Orientation angles, θ , and normalized thicknesses L, of the components of the best
3-FLC polarimeter. (WP = (fixed) waveplate)

Component θ [◦] L
FLC1 56.5 2.44
WP1 172.9 1.10
FLC2 143.3 1.20
WP2 127.1 1.66
FLC3 169.4 1.42
WP3 110.1 4.40

from 1700 nm to 2000 nm. Shorter wavelengths than 430 nm were not considered as the FLC
material will be degraded by exposure to UV light. Previous designs often suffer from κ−1(λ )
oscillating as a function of wavelength, whereas our solution is more uniform over the wave-
length range we are interested in. This uniformity in κ(λ ) will, according to Eq. (1), give a
more uniform noise distribution over the spectrum.

To give some idea of how fast the GA converges, a plot of f [see Eq. (3)] as a function of the
generation number is shown in Fig. 5. The mean population fitness (μ) and standard deviation
(σ ) is also shown. As so often happens with genetic algorithms, we see that the maximal and
average fitness increases dramatically in the first few generations. Following this fast initial
progress, evolution slows down considerably, before it finally converges after 600 generations.
The parameters used in our GA to obtain these results are shown in Table 2.

A design using fewer components, in particular 2 FLCs and 2 waveplates, does have advan-
tages. These advantages include increased transmission of light, as well as reduced cost and
complexity with respect to building and maintaining the instrument. In addition some applica-
tions have weight and volume restrictions [3]. For these reasons, we have performed genetic
optimization of the 2-FLC design. In Fig. 6, we show the performance of two polarimeter de-
signs for the wavelength ranges 430−1100 nm (compatible with an Si detector) and 800−1700
nm. Both of these polarimeter designs show condition numbers which are considerably better

Fig. 4. Inverse condition number for the best GA-generated 3-FLC design. For comparison,
we show the inverse condition number of the patented 3-FLC design [21].
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Fig. 5. Convergence of fitness as a function of generation number. μ and σ refer to the
average and standard deviation of the population’s fitness, respectively. The best result
from this simulation is the one shown in Fig. 4.

Table 2. Genetic Algorithm parameters. The “crossover rate” is the probability for two
parents to undergo sexual reproduction (the alternative being asexual reproduction). The
parameter “crossover points” refer to the number of points where we cut the genome during
crossover (sexual reproduction). “Mutation rate” is the probability for any given individual
to undergo one or several bit flip mutations in one generation

Parameter Value
Crossover rate 0.7
Crossover points 2
Mutation rate 0.2
Population size 500

Table 3. Orientation angle, θ , and normalized thickness, L, of the 2-FLC polarimeters
shown in Fig. 6

Visible design NIR design
Component θ [◦] L θ [◦] L
FLC 1 90.4 1.17 177.9 2.60
WP 1 3.5 3.58 112.9 2.94
FLC 2 92.5 1.02 74.8 1.75
WP 2 19.8 3.52 163.1 4.71

than previously reported designs. The numerical parameters of the two designs based on 2 FLCs
are shown in Table 3.

Our optimization algorithm can, with little effort, be applied to a wider range of polarimeter
design. Any optical component can be included into our GA; for example, one can include fixed
waveplates of different materials, prisms, mirrors, and other types of liquid crystal devices. The
material of each component could also be a variable, which could help alleviate the dispersion
problem. The only requirement is that the retardance of the component in question must be
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Fig. 6. Condition number for two designs using 2 FLC retarders and 2 waveplates. By op-
timizing κ(λ ) over a narrower part of the spectrum, we can design good polarimeters with
fewer components. The polarimeter designs labeled “Visible” and “IR” show our two de-
signs, optimized for 430 nm < λ < 1100 nm and 800 nm < λ < 1700 nm, respectively. For
comparison with our “NIR” design, we show the previous simulated design from Ref. [30].
The curve labeled “Commercial” shows the measured condition number of a commercial
instrument (MM16, Horiba, 2006) based on the same (FLC) technology.

possible to either model theoretically or measure experimentally. It is possible to optimize a
polarimeter for a different wavelength range, simply by changing program inputs. Focusing on
a wavelength range which is as narrow as possible typically results in higher condition numbers
than reported here. Evaluating different technologies, materials and components for polarimetry
should thus be relatively straightforward. The task is not computationally formidable: we have
used ordinary desktop computers in all our calculations.

5. Conclusion

In conclusion, we have used genetic algorithms to optimize the design of a fast multichannel
spectroscopic Stokes/Mueller polarimeter, using fast switching ferroelectric liquid crystals. We
have presented three polarimeter designs which promise significant improvement with respect
to previous work in terms of noise reduction and spectral range. Our approach requires rela-
tively little computational effort. One can easily generate new designs if one should wish to
use other components and materials, or if one wishes to focus on a different part of the opti-
cal spectrum. We hope that our designs will make polarimetry in general, and ellipsometry in
particular, a less noisy and more efficient measurement technique.

Acknowledgements

The authors would like to thank professor Keith Downing at the Department of Computer and
Information Science at NTNU for helpful discussions regarding genetic algorithms and their
implementation.

#134880 - $15.00 USD Received 9 Sep 2010; revised 5 Oct 2010; accepted 5 Oct 2010; published 18 Oct 2010
(C) 2010 OSA 25 October 2010 / Vol. 18,  No. 22 / OPTICS EXPRESS  23103



P. A. Letnes, I. Simonsen, and D. L. Mills. “Substrate
influence on the plasmonic response of clusters of spherical
nanoparticles”, 075426. Phys. Rev. B 83 (2011)

Paper 3 Foo F

83



PHYSICAL REVIEW B 83, 075426 (2011)
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The plasmonic response of nanoparticles is exploited in many subfields of science and engineering to enhance
optical signals associated with probes of nanoscale and subnanoscale entities. We develop a numerical algorithm
based on previous theoretical work that addresses the influence of a substrate on the plasmonic response of
collections of nanoparticles of spherical shape. Our method is a real-space approach within the quasistatic limit
that can be applied to a wide range of structures. We illustrate the role of the substrate through numerical
calculations that explore single nanospheres and nanosphere dimers fabricated from either a Drude model metal
or from silver on dielectric substrates and from dielectric spheres on silver substrates.

DOI: 10.1103/PhysRevB.83.075426 PACS number(s): 78.67.Bf

I. INTRODUCTION

Currently there is great interest in the use of the plasmonic
response of tailored metallic substrates and other structures for
the purpose of enhancing electric fields of laser beams in their
near vicinity. Enhancements with an origin in the excitation
of collective plasmon modes can increase the field intensity
by many orders of magnitude in the near vicinity of diverse
systems. This phenomenon was first explored in the context
of surface-enhanced Raman scattering (SERS), wherein it was
found that the Raman cross section of pyridine adsorbed on
electrochemically roughened Ag surfaces can be enhanced by
approximately 6 orders of magnitude relative to that realized
for pyridine in solution.1 The field has evolved to the point
where the Raman spectrum of single molecules can be de-
tected through the use of plasmon-enhanced Raman probes.2,3

Plasmonic enhancements can be used not only in the context
of Raman spectroscopy, but also, more generally, to enhance
the cross section of diverse nonlinear optical processes.4,5

In the theoretical literature, one finds numerous studies
of the plasmonic response of isolated nanoparticles of di-
verse shape6,7 along with metallic arrays of nanoparticles.8,9

So far as we know, virtually all such discussions explore
nanoparticles and their arrays in free space.10,11 Treatments
of the free-space response are appropriate for clusters of
nanoparticles in solution, but commonly, one is interested
in particles and particle arrays on substrates. Then, an issue
is the influence of the nanoparticle-substrate interaction on
the plasmonic response of the nanoparticles that reside on it.
Papers addressing particle-substrate interactions include the
work of Yamaguchi et al.,12 which discussed particles above
substrates in the dipole approximation.Work done byRuppin13

and by Román-Velázquez et al.14 and Noguez15 also deal with
sphere-substrate interactions but only for a single nanoparticle.
Mayergoyz et al. have studied the plasmon eigenfrequencies
of nanosphere dimers and also cylindrical structures on a
substrate.7 Moreover, a recent study on the plasmonic response
of cubical nanoparticle dimers16 reports on the dimer-substrate
interactions in the SERS context.
Since the early 1970s, Bedeaux andVlieger have conducted

numerous theoretical and numerical studies on the effects of

particle-substrate and particle-particle interactions.17 These
studies have been concentrated around spherical or spheroidal
particles on top of a substrate or truncated particles of such
shapes on a substrate (used to model a finite contact angle). In
a paper based on the formalism of Bedeaux and Vlieger, the
particle-substrate interactions were taken into account to high
multipolar order, while the particle-particle interactions were
only calculated to dipolar or quadrupolar order, since their
main concernwas systemswhere the particle coverage is low.18

More recently, numerical studies based on Bedeaux and
Vlieger’s work have been carried out by Lazzari and co-
workers for the purpose of in situ inversion of experimental
optical spectra obtained from growing thin granular metal
films.18–21

In this paper, we present a description of the influence
of a substrate on the plasmonic response of nonperiodic
nanosphere arrays; through the use of the Bloch theorem,
one may address periodic systems as well. We employ the
quasistatic description of the response of the system. This
proves adequate for objects whose linear dimensions are
small compared to the wavelength of light.22 In contrast to
previous work, we consistently take into account higher-order
interactions between the nanospheres.
After we describe the formalism, we turn our attention to

calculations that explore the influence of the substrate on the
response of nanospheres and nanosphere dimers. Of interest is
the discussion of hot-spot regions where, at selected excitation
frequencies, one realizes very large field enhancements by
virtue of the excitation of collective plasmon modes. For the
case of two spheres in free space that are nearly in contact,
one realizes a hot spot at the point of closest contact between
the spheres.23,24 In this paper, for a nanosphere dimer near a
dielectric substrate, we find moving hot spots. A small change
in excitation frequency can cause the hot spot to move from
the point of nearest contact between the spheres to the south
poles of the spheres—the points on the spheres closest to the
substrate. In recent work, two of the authors have discussed
moving hot spots in nanosphere clusters.25

This paper illustrates the role of the substrate in creating
new hot spots. We find that, if a dielectric sphere is in close
proximity to a plasmonic active metallic substrate, the region
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around the south pole of the dielectric sphere becomes a hot
spot. A spatially localized potential well that can trap substrate
plasmons is formed just under the dielectric sphere. Also, if a
metallic sphere is placed close to a dielectric substrate, we find
a collective plasmon localized near the south pole of the sphere.
Thus, the interaction of nanospheres and structured arrays of
such objects placed on substrates creates new hot spots that
can be exploited in diverse nonlinear optical spectral probes
of nanoscale and subnanoscale matter.
In this paper, Sec. II is devoted to setting up a formalism

that may be applied to any nonperiodic structure of spherical
nanoparticles that are located on, or near, a substrate, and
Sec. III presents the results of our numerical studies of isolated
nanospheres and nanosphere dimers on substrates. Section IV
contains concluding remarks.

II. THEORY

Even if the numerical calculations to be performed in
this paper will focus on one or two nanoparticles, we will,
however, present a more general formalism valid for a cluster
of N nanoparticles. For the case of the dimer, the geometry
is illustrated in Fig. 1. The substrate is located in the half
space z < 0, and it is characterized by the dielectric function
ε−(ω). The region above the substrate, z > 0, is assumed to
be a nonabsorbing dielectric characterized by the dielectric
function ε+(ω).
We consider a system consisting of N nonoverlapping

nanospheres, located at arbitrary positions. For each such
sphere, we embed a coordinate system Sj , j = 1,2, . . . N so
that the origin of Sj is located at the center of sphere j . With
each coordinate system Sj , we associate a position vector
rj = (rj ,θj ,φj ).
Our interest is in nanosphere arrays whose extent is small

compared to the wavelength of light, so the electrostatic
approximation suffices to describe the electric fields in its

FIG. 1. (Color online) An illustration of the system we consider
in this paper, for the case where we have a nanosphere dimer. The
substrate occupies the half space z < 0, h is the distance between the
south poles of the spheres and the substrate, and d is their surface-
surface separation. Sphere j of the dimer has dielectric function
εj (ω) and radius aj . The medium above the substrate has dielectric
function ε+(ω) while that of the substrate is ε−(ω). The two black
dots schematically represent image multipoles in the substrate seen
by an observer in the half space z > 0.

vicinity. Under this assumption, the Maxwell equations are
equivalent to the Laplace equation. Thus, our task is to solve
Laplace’s equation for the electrostatic potential ψ ,

∇2ψ = 0,

subject to the appropriate boundary conditions on the surface
of each sphere and at the interface between the substrate and
the rest of the system. As usual, the electric field is given by22

E = −∇ψ .
We will assume that a spatially uniform electric field E0 of

angular frequencyω is applied to the system, andwe analyze its
response to this field. In what follows, all dielectric functions
that enter the analysis are the complex dielectric functions
appropriate for the frequency ω, although we suppress any
explicit reference toω in what follows. Hence, the electrostatic
potential in the half space z > 0 can be written as

ψ+(r) = −r · E0 +
N∑

j=1
ψj (rj )+

N∑
j̄=1

ψj̄ (r j̄ ), (1)

where ψj is the electrostatic potential produced by the
polarization charges in sphere j and ψj̄ is the potential
produced by its image, located in the half space z < 0. In
the substrate (z < 0), the electrostatic potential takes the form

ψ−(r) = −r · ET
0 +

N∑
j=1

ψT
j (rj ), (2)

where ψT
j is the electrostatic potential of sphere j as seen

by an observer in the region z < 0, and ET
0 is the applied

field in the substrate. The various single-sphere potential
functions that enter Eqs. (1) and (2) may be expanded in
the spherical harmonics. Using the shorthand notation

∑
lm =∑∞

l=0
∑l

m=−l , we have

ψj (rj ) =

⎧⎪⎪⎨
⎪⎪⎩

∑
lm

A
(j )
lm r−l−1

j Ym
l (θj ,φj ), rj � aj ,

∑
lm

B
(j )
lm rl

jY
m
l (θj ,φj ), rj < aj ,

(3a)

ψj̄ (r j̄ ) =
∑
lm

A
(j,R)
lm r−l−1

j̄
Y m

l (θj̄ ,φj̄ ), (3b)

and

ψT
j (rj ) = ∑

lm A
(j,T )
lm r−l−1

j Ym
l (θj ,φj ), (3c)

where the variousAlm andBlm are expansion coefficients to be
determined and aj refers to the radius of sphere j . The symbol
Ym

l refers to the spherical harmonic functions as described
in Ref. 22. As discussed in Refs. 17 and 19, the coefficients
A
(j,R)
lm and A

(j,T )
lm are related to A

(j )
lm through the boundary

conditions at the interface z = 0. Simple image arguments
supply the relation between these quantities. In particular, one
finds that17,19

A
(j,R)
lm = (−1)l+m ε+ − ε−

ε+ + ε−
A
(j )
lm , (4a)

and

A
(j,T )
lm = 2ε+

ε+ + ε−
A
(j )
lm . (4b)
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Equation (4) ensures that the boundary conditions on the
substrate (z = 0) are automatically satisfied for anyA

(j )
lm . Thus,

in what follows, we seek to solve for the coefficients A
(j )
lm

and B
(j )
lm using the equations that follow from the boundary

conditions at the surface of each nanosphere, i.e., where
rj = aj . Through rearrangement of the equations following
from the boundary conditions on the sphere surfaces, one can
eliminate the coefficients B

(j )
lm . In the Appendix, the linear

set of equations determining A
(j )
lm and B

(j )
lm are derived [cf.

Eq. (A4)].
In Sec. III, we present a series of numerical studies of

plasmon resonance phenomena for nanosphere monomers
and dimers placed on a substrate. To this end, we must solve
Eq. (A4). In order to do so, we truncate the summations in
Eq. (3) and also the equation system in Eq. (A4) at l = L.
The number of unknown coefficients in Eq. (A4) is then
N (L + 1)2 − 1. We use the same truncation limit for both
the nanosphere-nanosphere interactions as well as for the
nanosphere-substrate interactions. The nanosphere-substrate
interactions include both the interaction of a given nanosphere
with its own image and the images of the other nanospheres.
Note that all particle-substrate and particle-particle
interactions consistently have been taken into account
(to a given order). In several previous studies, the interaction
with the substrate has been taken into account to a high order,
while the particle-particle interactions have been accounted
for at dipolar or quadrupolar order.17–21 In Sec. III, we will
see that the use of the dipole approximation (retention of only
the terms with l = 1) in the particle-substrate interaction is
very inaccurate from a quantitative point of view save for the
case when the nanospheres are quite far from the substrate.
In passing, we note that the formalism presented in this

paper can be applied to extend the formalism used in Ref. 9 to
incorporate interactions of periodic structures with a substrate.
One then has plasmon normal modes characterized by a wave
vector k‖ parallel to the surface; one encounters only (L + 1)2
coefficients in this case because the expansion coefficients of
different nanoparticles are linked by the Bloch theorem. The
quasistatic limit developed in this paper can be applied to
the description of collective excitations whose wave vector is
large compared to ω/c with ω as the angular frequency of an
excitation of interest and c as the velocity of light in vacuum.

III. RESULTS AND DISCUSSION

In this section, we present a series of studies of the influence
of a dielectric substrate on the plasmonic response of isolated
nanospheres and nanosphere dimers. In addition, we find
hot spots created by plasmonic resonances between dielectric
spheres and metallic substrates, as noted before. We will also
see that termination of the hierarchy of equations at the dipole
(L = 1, see Ref. 12) or quadrupole (L = 2) order provides
a very poor quantitative description of interactions between
particles and between the particles and the substrate. We
remark that it is evident from earlier studies, which utilize
a different methodology,24 that higher-order harmonics must
be included in the description of particle-particle interaction,
since the fields associated with hot spots are highly localized

around the points of nearest contact. Thus, one must retain
spherical harmonics at high order to describe these features.
For the purpose of studying particle-substrate interactions,

wefirst consider nanoparticlesmodeled by a dielectric function
of the Drude form,22

ε(ω) = 1− ω2P

ω(ω + iγ ) , (5)

where ωP is the plasma frequency and γ is the inverse of
the free carrier relaxation time. For the ambient material, we
have chosen vacuum, i.e., ε+ = 1 and a dielectric substrate
of ε− > 0. The virtue of model studies based on the form of
Eq. (5) is that we may choose the relaxation rate γ sufficiently
small so that much detail is evident in the calculated results.
For the Drude model parameters, we assume ωP = 3 eV and
γ = 0.03 eV. After our discussion of nanospheres consisting
of Drude metal, we present results for geometries incorpo-
rating silver (Ag) nanoparticles. Among metals that exhibit
plasmonic response in the visible part of the optical spectrum,
the damping rate in Ag is modest, and numerous experiments
employ Ag-based structures.26 It should be remarked that the
optical response of aluminum (Al) is described very well by
the Drude model. Unfortunately, the plasma frequency is very
high, close to 15 eV, so the interesting plasmonic resonances
in Al-based materials lie well into the ultraviolet. In our view,
it would be of great interest to see experimental probes of
structures that incorporate Al nanoparticles, with attention to
the appropriate spectral range.
One possible indicator of plasmonic activity is the total

dipole moment of one of our spherical objects. With p(ω)
being the dipole moment of a nanosphere at angular frequency
ω, we define the dimensionless dipole moment as

p̄ = p
a3ε0E0

,

where a is the radius of the sphere in question and ε0 is the
vacuum permeability. In terms of our expansion coefficients
Alm, the three Cartesian components of the dimensionless
dipole moment are given by

p̄x =
√
3

8π

A1,−1 − A1,1

a2
,

p̄y = −i
√
3

8π

A1,−1 + A1,1

a2
,

and

p̄z =
√
3

4π

A10

a2
.

Since the dipole moment in general is a complex vector
quantity, the quantity we display in the figures that follow is
the modulus of the total dipole moment given by

p̄(ω) ≡ | p̄(ω)| =
√

p̄† p̄,

where † symbolizes the Hermitian transpose. In our studies of
the interaction of a single sphere with the substrate, we will
display the total dimensionless dipole moment, along with
field-enhancement factors for applied fields perpendicular to
the substrate (E0 ‖ ẑ) as well as parallel to the substrate (E0 ‖
x̂).Moreover, for the dimer illustrated in Fig. 1, wewill present
results for all three Cartesian components of the applied field.
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FIG. 2. (Color online) The dimensionless dipole moment p̄(ω),
for a Drude metal particle on a substrate of dielectric function
(a) ε− = 1, (b) ε− = 2, and (c) ε− = 10. For the vacuum case, i.e.,
ε− = 1, we obtain the Mie result at h̄ω = h̄ωP /

√
3 ≈ 1.73 eV. For

all plots, we have h = 0.05a, ωP = 3 eV, γ = 0.03 eV, and L = 50.

A. The Drude monomer and dimer

We begin by considering a single Drude sphere in vacuum
(ε+ = 1) located a distance h = 0.05a above a substrate. In
Fig. 2, we present numerical calculations of the dimensionless
dipole moment for three choices of the dielectric function
of the substrate, ε− = 1, 2, and 10. The choice ε− = 1
corresponds physically to the case where no substrate is
present. We present results for two choices of the applied
field: (i) perpendicular to the substrate (z direction, red dotted
curves) and (ii) parallel to the substrate (x direction, blue solid
curves). Since the system is invariant with respect to rotation
about the z axis, the response to an applied field parallel to the
y axis is identical to that shown for x polarization.
In Fig. 2(a), we present the response of the sphere in

free space, from which the Mie resonance at the frequency
h̄ωP /

√
3 ≈ 1.73 eV is readily observed. While an isolated

Drude metal sphere has a spectrum of multipole modes at an-
gular frequencies ωl = ωP [l/(2l + 1)]1/2 with l = 1,2,3, . . .,
only the dipole mode with l = 1 is excited by an applied
field whose wavelength is large compared to the radius of
the sphere. In the presence of a substrate, higher-order modes
may be excited by a spatially uniform applied field, as we
will see. These will appear at higher frequencies than the Mie
resonance, as suggested by the fact that ωl+1 > ω1 for l � 1.
When the dielectric function of the substrate is ε− > ε+,

the spectral response of the nanosphere is altered significantly.
First, for the case of modest dielectric function ε− = 2, the

(former)Mie resonance remains the dominant spectral feature,
and it is redshifted by the proximity of the dielectric substrate to
the nanosphere [Fig. 2(b)]. A substantial splitting of the modes
is observedwhen the response to a field parallel to the substrate
is compared to the response to a field perpendicular to it. We
also see activation of a higher-frequency mode. One might be
tempted to associate this with excitation of the quadrupolar
mode with l = 2, but when the sphere is so close to the
substrate, classification of the mode by the angular momentum
quantum number is no longer accurate since a large number of
l modes are mixed together. We require L, the cutoff used in
the hierarchy of equations displayed in Eq. (A4), to be on the
order of 30 (or more) to obtain converged results.
If the substrate has a large dielectric function (ε− = 10),

then the response of the sphere is modified dramatically
relative to the free-space case [Fig. 2(c)]. The splitting of
the low-frequency resonances, for parallel and perpendicular
excitations, is now very large. For both orientations of the
applied field, the oscillator strength of the next highest mode
is comparable to the low-frequency (dipole) mode. We also
see a third mode in the spectrum, so the symmetry breaking
provided by the substrate now asserts itself prominently in the
response of the sphere.
The appearance of these higher-order modes can be in-

tuitively understood as follows. When we apply an electric
field E0 to a nanosphere, it will generate local evanescent
fields. When h is small, some of the evanescent fields are
reflected from the substrate, resulting in a nonuniform field
around the sphere. This causes the simultaneous excitation of
many different l modes, meaning that the notion of discussing
modes inmultipolar terminology breaks down badly. The cross
talk between different l modes is also the reason why we see
higher-order modes (e.g., quadrupole modes) in the dipole
moment [p̄(ω)] of the spheres.
We now turn our attention to a discussion of the response

of a Drude dimer, as shown in Fig. 1. The radii of the two
spheres are both assumed to be equal to a. The distance
between the spheres is d = 0.1a, and they are both placed
a distance h = 0.05a above the substrate. In Fig. 3, we depict
the dimensionless dipole moment of one of the spheres in a
dimer whose axis is parallel to the x axis and, hence, to the
substrate.
When the dimer is placed in free space [Fig. 3(a)] and

the applied field is perpendicular to the dimer axis, there is
one dominant resonance. This is the Mie resonance of the
single sphere, slightly blueshifted due to the particle-particle
interactions. In addition, a second weak mode shows up at
higher frequencies. In contrast, when the dimer is excited by
a field parallel to the dimer axis (blue solid curve), we see
a sequence of collective modes redshifted by large amounts
from the isolated sphere Mie resonance. These results are in
agreement with previous work on nanoparticle dimers in free
space.24 As for the case of the single sphere on a substrate, the
fields generated from one sphere cause higher-order modes to
be excited in the other sphere, and vice versa.
For a substrate with modest dielectric function [ε− = 2,

Fig. 3(b)], we see a splitting between the dominant collective
modes excited by a field parallel to ẑ (red dotted curve) and
that excited by a field parallel to ŷ (green dashed curve). This
is to be expected since the presence of the substrate will break
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FIG. 3. (Color online) The dimensionless dipole moment p̄(ω),
for one of the particles in a Drude metal dimer, on top of a substrate
of dielectric function (a) ε− = 1, (b) ε− = 2, and (c) ε− = 10. For all
plots, we have h = 0.05a, d = 0.1a, ωP = 3 eV, γ = 0.03 eV, and
L = 50.

the rotational symmetry around the x axis. If the dielectric
function of the substrate is substantial [ε− = 10, Fig. 3(c)], we
observe dramatic differences between the spectral response
for the three directions of the applied field. The shift of the
lowest-frequency mode for E0 ‖ x̂ from the Mie resonance of
the isolated sphere is particularly dramatic.
These results demonstrate that placing metallic nanosphere

dimers over a substrate with a large dielectric function will
give rise to substantial field enhancements. Also, strong dipole
moment enhancements can be achieved over a very large
spectral range compared to that realized for a single isolated
nanosphere. Thus, as this example illustrates, the interaction
between structured nanoparticle arrays and a substrate of
substantial dielectric function can allow one to design objects
with a broad plasmonic spectral response.
Figure 4 shows how the response of the dimer depends

on the distance h above the substrate. A substrate dielectric
function ε− = 10 was assumed in order to emphasize the
influence of the substrate on the response of the dimer. In
Fig. 4(a), where h = 2a, the spectral response is very close
to that of the isolated dimer, shown in Fig. 3(a). We see
clear interaction effects with the substrate when h = 0.3a
[Fig. 4(b)], but it remains true that the spectrum is qualitatively
similar to that of the free dimer. The dimer has to be close to
the substrate for the interaction effects to modify the spectrum
even for the large substrate dielectric function used in these
calculations [Fig. 4(c)].
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FIG. 4. (Color online) The plots show p̄(ω) for one of the particles
in a Drude metal dimer for (a) h = 2a, (b) h = 0.3a, and (c) h =
0.05a. For all plots, we have ε− = 10, d = 0.1a, ωP = 3 eV, γ =
0.03 eV, and L = 30.

We pause for a moment to comment on issues of conver-
gence. It is common to employ the dipole approximation to
describe intersphere interactions and interactions of nanopar-
ticles with substrates using the image method.12 In Fig. 5,
we present how the position of the lowest-energy collective
mode for the case E0 ‖ ẑ depends on L, which determines
the number of unknown Alm coefficients in Eq. (A4). The
frequently used dipole approximation corresponds to L = 1,
and from Fig. 5, one observes that it is inaccurate even when
the dimer is far above the substrate (h = 2a) and becomes
gradually worse as h is decreased. The cutoffLmust be on the
order of 30 to obtain converged results for the parameter ranges
explored in this paper. One may appreciate the reason for this
from earlier work.24 When two spheres are quite close to each
other, one encounters collective modes wherein the fields are
concentrated in a small angular range near the points of closest
contact. Similarly, when one or more nanospheres are very
close to a dielectric substrate, one encounters collective modes
localized around the south pole of the spheres—the points
closest to the substrate. One requires large values of the cutoff
L if one wishes to describe such modes accurately. Notice, by
the way, that the mode frequency is significantly redshifted
when the dimer comes very close to touching the substrate.
In passing, we note that convergent results do not guarantee
correctness of the calculated potentials. In order to do so, one
has to explicitlymake sure that the boundary conditions are sat-
isfied for the required accuracy at all points on all interfaces.19

In Fig. 6, we examine the nature of the enhanced fields in the
Drude dimer at the two points indicated in the inset. Again, we
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FIG. 5. (Color online) Position of the lowest-energy resonance as
a function of h, in the case where E0 ‖ ẑ. The blue dotted curve shows
the result when the calculation is done in the dipole approximation
(i.e., L = 1), while the red solid curve L = 30 shows the converged
results. For all cases, a Drude dimer with d = 0.1a was assumed, and
the substrate dielectric function was ε− = 10.

have assumed d = 0.1a and h = 0.05a in these calculations.
For most of the spectrum, the largest field enhancement is
found at point 2, the hot spot where the two spheres nearly
touch. Notice, however, that we also have very large field
enhancements between the south pole of the spheres and
the dielectric substrate, in particular, at 1.35 eV [see Figs. 6
and 7(a)]. In our view, the region where the dielectric substrate
is very close to the bottom of the sphere acts like an effective
potential well that traps surface plasmons at the south pole.
The surface plasmons sense the presence of the dielectric
through the fields associatedwith them in the region outside the
sphere.
From Fig. 6, we can see that points 1 and 2 are hot

simultaneously at roughly the same frequency. However, as
one scans through a given resonance peak, near h̄ω = 1.4 eV
in Fig. 6, the hot spot moves from point 1 to point 2 and
conversely, depending on the precise value of the frequency.
Thus, we have another example of the phenomenon of the
moving hot spots discussed in a recent publication.25 We
illustrate this behavior in Fig. 7, where we plot |E|/|E0| on
a contour map.27 A small energy shift of 0.1 eV is enough to
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FIG. 6. (Color online) The square of the electric field |E|2/|E0|2,
at point 1 (blue solid curve) and point 2 (green dotted curve) as a
function of frequency, for the Drude dimer. The results are for the
case where E0 ‖ x̂, and the substrate dielectric function is ε− = 10.
The other parameters are the same as in Fig. 3.
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FIG. 7. (Color online) The field enhancement |E|/|E0| in the
xz plane. At (a) h̄ω = 1.35 eV, the highest field enhancement is
found between the sphere and the substrate; at (b) h̄ω = 1.45 eV, the
highest field enhancement is found on the line connecting the two
spheres. As shown in the figure, E0 ‖ x̂. The system parameters are
ε− = 10, h = 0.05a, d = 0.1a, and L = 50. Of particular interest
is the area between the two lowest-frequency peaks, where the
location of maximum field enhancement flips between the two points
indicated.

change the shape of the field enhancement considerably and
move the hot spot from point 1 to point 2.

B. Ag monomers and dimers

The Drude model discussed in Sec. III A is useful to exam-
ine, since one may model metals in which the plasmons are
damped very lightly. Thus, one can explore detailed structure in
the response of themodel system. In practice, however, interest
resides in realistic metals that display plasmonic response in
the visible. In this respect, silver (Ag) and gold (Au) are the
two metals most studied experimentally. While Au is indeed
plasmon active, the plasmons in this material are, in fact, rather
heavily damped. Ag is amuch better material in principle, even
though in experiments oxide can form on its surface.
This section is devoted to studies of the plasmon resonance

properties of Ag monomers and dimers. Figure 8 shows
calculations of the reduced dipole moment for a single Ag
nanosphere placed a distance h = 0.05a over a dielectric
substrate. For a free-standing Ag sphere in vacuum, the Mie
resonance at h̄ω = 3.5 eV is readily observed [Fig. 8(a)].
The response of the sphere is modest for ε− = 2 [Fig. 8(b)].
However, when ε− = 10 [Fig. 8(c)], we see a substantial
splitting of the main resonance and activation of higher-
frequency modes occur.
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FIG. 8. (Color online) The dimensionless dipole moment for an
Ag sphere placed a distance h = 0.05a above a dielectric substrate
of (a) ε− = 1, (b) ε− = 2, and (c) ε− = 10. The equation system was
truncated at L = 50.

In Fig. 9, we show the response of an Ag dimer with its
axis parallel to the substrate. As previously, we have assumed
h = 0.05a and d = 0.1a. The strong interaction between the
two spheres of a free-standing dimer in vacuum can be seen
from Fig. 9(a) by noting the pronounced difference in response
to an applied field parallel (E0 ‖ x̂) or perpendicular (E0 ‖ ŷ
or E0 ‖ ẑ) to the dimer axis. At least from the perspective of the
dipole moment of each sphere, the influence of the substrate
is not significant for ε− = 2 [Fig. 9(b)], but we see substantial
effects for the larger dielectric function ε− = 10 [Fig. 9(c)].
While the dipole moment of the Ag spheres shows substrate

effects to be weaker than those of the corresponding Drude
monomer and dimer, the field-enhancement effects are still
substantial. When the spheres are either close to each other
and/or close to the substrate, the resonances are highly
localized in space and form so-called hot spots. This is
illustrated by Fig. 10, which shows the enhancement in the
electric field intensity (|E|2/|E0|2) for an Ag dimer. Hence,
one can have local regions where the fields are strongly
enhanced while their effect on the total dipole moment of
the sphere is more modest.
Regarding the field enhancement in the Ag dimer, depicted

in Fig. 10, we see considerable enhancement between the
sphere and the substrate. This enhancement is caused by the
proximity of the sphere to the dielectric substrate that creates a
potential well where surface plasmons can be trapped near the
south pole of the sphere. On resonance, the enhancement in
the square of the field is close to 5× 103 [Fig. 10]. If one has
SERS in mind, where the cross section is enhanced by roughly
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FIG. 9. (Color online) The response for an Ag dimer close to a
substrate, as described by the dimensionless dipole moment of one of
the spheres. As in previous cases, d = 0.1a, h = 0.05a, and L = 50
were used. (a) ε− = 1, (b) ε− = 2, (c) ε− = 10.

the fourth power of the field, then in this case, the Raman cross
section would be enhanced by 25× 106. Thus, the influence of
the dielectric substrate on the enhanced fields realized for the
dimer is very substantial. Although we observed full reversal
of hot-spot positions for a dimer made from Drude metal,
it appears that the larger attenuation of silver {Im[εj (ω)]}
prohibits this phenomena in theAg dimer. Hence, the dominant
hot spot is for all frequencies of the incident light located at
point 2 in the gap between the two spheres.
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FIG. 10. (Color online) Intensity enhancement |E|2/|E0|2, as a
function of frequency of the applied field at points 1 and 2 for the Ag
dimer on a substrate of dielectric function ε− = 10. The remaining
parameters are the same as in Fig. 9.
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FIG. 11. (Color online) The dimensionless dipole moment of a
member of a dielectric dimer placed in close proximity to an Ag
surface. The dielectric functions for the two spheres forming the
dimer are both (a) εj = 2 and (b) εj = 10. In both cases, we have
d = 0.1a, h = 0.05a, and L = 50.

C. Dielectric dimer on an Ag substrate

In the literature, primary attention is directed toward
nanoscale objects fabricated from plasmon-active metals.
We find that dielectric particles create localized evanescent
fields that stimulate the formation of localized plasmons in
a nearby metallic substrate. These surface plasmons are not
excited on a flat metallic surface. In this section, we consider
a dielectric dimer with a frequency-independent, real, and
positive dielectric function εj placed close to an Ag surface.
Figure 11 depicts the dimensionless dipole moment of the

dielectric dimers placed very close to an Ag substrate. As
before, the separation between the two spheres is d = 0.1a,
and the height above the substrate ish = 0.05a. Dipole activity
in the dielectric sphere is observed in the frequency range near
the surface plasmon resonance of the Ag surface. Since the
dielectric function of the sphere (εj ) is frequency independent,
this plasmonic activity has its origin in the Ag substrate. As
expected, the effect is enhanced when the dielectric function
of the spheres εj is increased [Fig. 11].
Figure 12 illustrates the frequency dependence of the

intensity enhancement at a position between the dielectric
spheres and the substrate (point 1) and between the spheres
(point 2). Between the spheres (point 2), the plasmonic
response of the substrate plays only a minor role in the
intensity enhancement, whereas, just below the south pole
of the spheres, the plasmonic activity plays a more important
role, producing higher intensity enhancement for a narrow part
of the spectrum. The proximity of the dielectric spheres to the
substrate converts the incoming plane wave to an evanescent
wave that excites surface plasmons in the Ag substrate. The
consequence is that substantial intensity enhancements appear
below the nanospheres near the surface plasmon frequency of
the Ag surface. The physics is quite similar to the formation of
a hot spot between a metal sphere and a dielectric substrate.
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FIG. 12. (Color online) Intensity enhancements at two selected
points for a dielectric dimer placed in the near vicinity of an Ag
surface. The dielectric function of the spheres is ε = 10, and other
parameters are the same as in Fig. 11.

The structure of the field enhancement near the plasmon
resonance is shown in detail in Fig. 13. This figure is
qualitatively similar to Fig. 7. Again, we are faced with the
moving hot-spot phenomenon, since the hot spot moves from
between the spheres to below the spheres as the frequency of
the incident light changes.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

x/a

−0.5
0.0

0.5

1.0

1.5

2.0

2.5

z
/a

E0

1

2

3

4

5

6

7

8

9

|E
|/|

E
0
|

(a)

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

x/a

−0.5
0.0

0.5

1.0

1.5

2.0

2.5

z
/a

E0

2

4

6

8

10

12

14

16

18

|E
|/|

E
0
|

(b)

FIG. 13. (Color online) The field enhancement |E|/|E0| in
the xz plane for a dielectric dimer above an Ag substrate. At
(a) h̄ω = 3.02 eV, the highest field enhancement is found between the
spheres; at (b) h̄ω = 3.39 eV, the highest field enhancement is found
on the line connecting the two spheres.As shown in the figure, E0 ‖ x̂.
The parameters are εj = 10, h = 0.05a, d = 0.1a, and L = 50.
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IV. CONCLUDING REMARKS

We have formulated the theory of the interaction of
nonperiodic nanosphere arrays with a substrate, and for the
case of monomers and dimers, we have provided numerical
studies of electric dipole moments induced by a uniform
driving field and field enhancement generated by excitation
of plasmon resonances. While the focus usually is placed on
the interaction of metallic nanoscale objects with metallic
substrates or surroundings, our emphasis has been on the
interaction between metallic and dielectric materials: metallic
nanoparticles on dielectric substrates or dielectric nanoparti-
cles on metallic substrates. Such systems are, in our view,
better suited for experimental examination.
For both these configurations, we find hot spots (i.e., local

regions of high intensity) that are localized between the south
pole of the nanosphere and the substrate. The physical origin
of this behavior is an effective potential well created by the
dielectric that traps and localizes plasmons in the nearbymetal-
lic component. Consider, for example, a semi-infinite slab of
a model metal described by the Drude model, Eq. (5). Let the
metal lie in the half space z < 0, and let the half space z > 0 be
vacuum.The surface supports surface plasmons, and in electro-
static theory, these have frequency ωP /

√
2 independent of the

wave vector. Instead, supposewe fill the upper half space z > 0
with a dielectric material whose dielectric constant is ε+ > 1.
This lowers the frequency of surface plasmons on the metal
surface toωP (1+ ε+)−1/2. Then, if we imagine that the dielec-
tric covers only a finite area on the metallic surface, clearly
an attractive potential well is formed that can trap surface
plasmons bound to the regionwhere the dielectric is found. The
frequency of these modes lies below the frequency band asso-
ciatedwith those on themetal/vacuum interface. In our studies,
we have a rather different geometry. For instance, in one
configuration,we explored a dielectric sphere that is placed just
a bit above the metallic substrate. The surface plasmons on the
metal surface sense the presence of the dielectric through their
evanescent field that extends above the metal surface. We then
find plasmon modes localized in the near vicinity of the south
pole of the sphere. In the case of dimers, of interest is the mov-
ing hot-spot phenomenon illustrated in Fig. 7. Small changes
in excitation frequency result in a hot spot that moves from one
point in the structure to another. An earlier discussion provided
an example of this behavior in a rather different structure.25

The hot spots localized between metallic spheres and di-
electric substrates and between dielectric spheres and metallic
substrates, suggests that strongly enhanced nonlinear optical
studies may be carried out on diverse systems, not just those
where all constituents are plasmon-active metals. It would be
of interest to explore field enhancements not just for spheres
placed near flat substrates, but for other nanoscale objects
of diverse shape as well. It should be possible to engineer
structures in which large field enhancements are realized that
can be exploited to study, for instance, adsorbates on insulating
surfaces.
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APPENDIX: CONSTRUCTION OF THE
EQUATION SYSTEM

The expression for the electrostatic potentialψ(r) is shown
in Eqs. (1) and (3). This expansion is of no use before one
has determined the expansion coefficients A

(j )
lm and B

(j )
lm . To

do so, we combine the series expansion of ψ and require
the fulfillment of the boundary conditions at the surface of
the spheres, i.e., the continuity of ψ and ε ∂nψ over any
interface (where ∂n = n̂ · ∇ denotes the normal derivative).22

Note that the boundary conditions at the interface at z = 0
are already fulfilled through Eq. (4). For instance, we may
consider continuity of the electrostatic potential at the surface
of sphere j . This gives the condition

lim
rj →a−

j

ψj (r j ) = lim
rj →a+

j

{
− r · E0

+
N∑

i=1
ψi(r i)+

N∑
i=1

ψī(r i)

}
, (A1)

where the notation a±
j means aj ± η, where η is infinitesimally

small and positive. For this condition to be useful, and
similarly, for the equation following from the continuity of the
normal components of the displacement field D = −εε0∇ψ ,
we need to express the potentials ψi and ψī for i 
= j in terms
of the coordinate system Sj centered on sphere j . One can do
this by using an identity employed by Bedeaux and Vlieger.17

This reads

r
−li−1
i Y

mi

li
(θi,φi) =

∞∑
lj =0

lj∑
mj =−lj

H (lj ,mj ,|li ,mi)

×
Y

mi−mj

li+lj
(θij ,φij )

R
lj +li+1
ij

r
lj
j Y

mj

lj
(θj ,φj ), (A2)

where Rij is the vector between the center of the sphere i

and j , and θij and φij are the polar and azimuthal angles,
respectively, which describe the direction of Rij . In writing
Eq. (A2), we have used

H (lj ,mj ,|li ,mi) =
√
4π (−1)li+mj

×
[

2li + 1
(2lj + 1)(2l + 1)

]1/2

×
[(

l + m

li + mi

)(
l − m

lj + mj

)]1/2
, (A3)
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where l = lj + li and m = mi − mj . Moreover, the notation(
a

b

)
denotes the binomial coefficient. The expansion described

by Eqs. (A2) and (A3) can also be applied to the image
multipoles located in the substrate (z < 0).
We now have the electrostatic potential on each side of

the surface of sphere j expressed in terms of the coordinates
of system Sj . One may generate a system of equations
for the unknown amplitudes by equating the coefficients of
Y

mj

lj
(θj ,φj ). When Eq. (A1) is combined with the condition

that the normal components of the electric displacement field
D should be continuous across the surface of sphere j , it is
possible to eliminate the coefficients B

(j )
lm and to generate a

linear system of equations that involves only A
(j )
lm . When this

is done, the following linear system of equations results:

−b1mj
δ1,lj=A

(j )
lj mj

lj εj + ε+(lj + 1)
lj (εj − ε+)

a
−2lj −1
j

−
∑
lj ,mj

A
(j )
limi

H (lj ,mj |li ,mi)
Y

mi−mj

li+lj
(θij ,φij )

R
lj +li+1
ij

+
∑
i 
=j

∑
li ,mi

A
(i)
limi

H (lj ,mj |li ,mi)

[
Y

mi−mj

li+lj
(θij ,φij )

R
lj +li+1
ij

+ (−1)li+mi β
Y

mi−mj

li+lj
(θīj ,φīj )

R
lj +li+1
īj

]
, (A4)

where β = (ε+ − ε−)/(ε+ + ε−) and lj = 1,2,3, . . . ,L and
mj = 0, ± 1, ± 2, . . . , ± lj . The coefficients blm are the
expansion coefficients of the applied field E0 in terms of the
spherical harmonics. The nonzero blm coefficients (in the case
of uniform E0) are given by17,19

b10 = −E0

√
4π

3
cos θ0, (A5a)

b1±1 = ±E0

√
2π

3
sin θ0e

∓iφ0 , (A5b)

where θ0 is the angle between the external field and the
positive z axis and φ0 is the azimuthal angle that describes the
angle between the projection of the external field onto the xy

plane and the positive x axis. As the Laplace equation is linear,
we only need to solve for three different directions of E0
(E0 parallel to x̂, ŷ, and ẑ). The response to an applied field
pointing in any other direction can be constructed through
superposition of these three cases.
Equation (A4) gives us N (L + 1)2 − 1 linear equations

in the expansion coefficients A
(j )
lm , and we have N (L + 1)2

unknowns. The final equation results from the continuity
of the normal component of D at the spherical interfaces.
Taking the normal (i.e., radial) derivative of the B00 term,
we see that this term vanishes [∂rj

B00 Y 00 (θj ,φj ) = 0]. This
means that A00 = 0, related to the fact that the nanoparticles
are assumed to carry no charge. Hence, the equation system is
closed, and we can expect to find a unique solution.
Finally, the resonances for an isolated sphere in a homo-

geneous background of dielectric function ε+ can be obtained
from Eq. (A4). By neglecting all contributions from other
particles and image multipoles, i.e., to keep only the first term
on the right-hand side of Eq. (A4), one is essentially left with
the isolated sphere case. Under this assumption, the resulting
equation can readily be solved to give

Alm ∝ 1

lε + ε+(l + 1) ,

where ε is the dielectric function of the sphere. Hence, the
resonance positions are determined by the zeros of the real
part of the denominator of Alm:

Re [lε + ε+(l + 1)] = 0.

If we assume for ε the Drude model with γ = 0 (ε =
1− ω2P /ω2), which in our case, is a good approxima-
tion, we get the following resonance frequencies for the
isolated sphere:

ωl = ωP

√
l

2l + 1 .

For systems containing more than a single isolated sphere,
such as the ones discussed in this paper, these resonance
frequencies are typically modified due to particle-particle or
particle-substrate interactions.
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FIG. 10. (Color online) Intensity enhancement, |E|2/|E0|2, as a
function of frequency of the applied field at point 1 and point 2,
for the Ag dimer on a substrate of dielectric function ε− = 10. The
remaining parameters are the same as in Fig. 9.
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FIG. 12. (Color online) Intensity enhancements at two selected
points for a dielectric dimer placed in the near vicinity of an Ag
surface. The dielectric function of the spheres is ε = 10, and other
parameters are the same as in Fig. 11.
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The scattering of light from two-dimensional randomly rough
surfaces
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bDepartment of Physics, Norwegian University of Science and Technology (NTNU)
NO-7491 Trondheim, Norway

ABSTRACT

We present results, obtained by rigorous computational approaches, for light of p- and s-polarization scattered
from two-dimensional, randomly rough, perfectly conducting, lossy metallic, and dielectric surfaces. The perfectly
conducting surfaces we study are characterized by an isotropic power spectrum of the surface roughness and by
an anisotropic power spectrum. The mean differential reflection coefficient and the full angular distribution of
the intensity of the scattered light are calculated for the perfectly conducting and metal surfaces. From the
latter calculations it is found that the computational approach used in these calculations conserves energy in the
scattering from a perfectly conducting and from a lossless metal surface with an error that is smaller than 0.5%.
Finally, we presents results obtained by a numerical, nonperturbative, solution of the reduced Rayleigh equation
for the scattering of p- and s-polarized light from two-dimensional randomly rough, metallic and dielectric
surfaces. We show that the results for the metallic surface are in good agreement with results for the same
metallic surface obtained by the rigorous computational approach.

Keywords: randomly rough surfaces; mean differential reflection coefficient; impedance boundary condition;
reduced Rayleigh equation; Müller integral equations; Franz formulas; Stratton–Chu equation; scattering

1. INTRODUCTION

Despite the significant advances that have been made in the last 15 years or so in approaches to the calculation
of the scattering of light from two-dimensional randomly rough perfectly conducting1–8 and penetrable6,9–14

surfaces, such calculations remain computationally intensive, and need further improvements in the methods
used in carrying them out. In this paper we review some of our recent work devoted to this problem, and present
some new results. The emphasis will be on the results obtained and their significance, but the methods by which
the results were obtained will be sketched out.

The physical system we consider in this paper consists of vacuum in the region x3 > ζ(x‖), where x‖ =
(x1, x2, 0), and the scattering medium in the region x3 < ζ(x‖) (Fig. 1). The latter will be a perfect conductor,
a metal, or a dielectric. The surface profile function ζ(x‖) is assumed to be a single-valued function of x‖ that is
at least twice differentiable with respect to x1 and x2, and constitutes a stationary, zero-mean, Gaussian random

process defined by
〈
ζ(x‖)ζ(x′‖)

〉
= δ2W (x‖−x′‖). The angle brackets here denote an average over the ensemble

of realizations of the surface profile function, and δ =
〈
ζ2(x‖)

〉 1
2 is the rms height of the surface. The power

spectrum of the surface roughness is defined by

g(k‖) =

∫
d2x‖ W (x‖) exp

(−ik‖ · x‖) , (1)

where k‖ = (k1, k2, 0). Each realization of the surface profile function is generated numerically by a two-
dimensional version of the filtering method used in [15], which is based on the power spectrum (1).

This paper is organized as follows. Scattering from two-dimensional randomly rough perfectly conducting
surfaces will be discussed in Section 2, both when the surface roughness is characterized by an an isotropic
power spectrum and when it is characterized by an anisotropic power spectrum. In Section 3 scattering from a
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Figure 1. A sketch of the studied scattering geometry. The figure also shows the coordinate system used, angles of
incidence (θ0, φ0) and scattering (θs, φs), and the corresponding transverse wavevectors k‖ and q‖, respectively.

two-dimensional randomly rough penetrable surface is considered, specifically scattering from a metallic surface
and from a dielectric surface. Section 4 is devoted to a presentation of results obtained from a purely numerical,
nonperturbative, solution of the reduced Rayleigh equation for the scattering of polarized light from a two-
dimensional, randomly rough, penetrable surface. A discussion of the results obtained, and conclusions drawn
from them, in Section 5, concludes this paper.

2. A PERFECTLY CONDUCTING SURFACE

2.1 Mathematical Formulation

The starting point for the calculation of the electromagnetic field scattered from a two-dimensional rough perfectly
conducting surface is the Stratton–Chu formula16 for the magnetic field in the vacuum

θ(x3 − ζ(x‖))H>(x|ω) = H(x|ω)inc + 1

4π

∫
d2x′‖ [∇g0(x|x′)]|x′

3=ζ(x′
‖)
× JH(x′‖|ω), (2)

where θ(z) is the Heaviside unit step function, and H(x|ω)inc is the magnetic component of the incident field.
In writing Eq. (2) we have assumed the time dependence exp(−iωt) for the field, but have not indicated this
explicitly.

The function g0(x|x′) is the scalar free-space Green’s function,

g0(x|x′) =
exp

[
iωc |x− x′|]
|x− x′| (3a)

=

∫
d2q‖
(2π)2

2πi

α0(q‖)
exp

[
iq‖ · (x‖ − x′‖)

]
exp

[
iα0(q‖)|x3 − x′3|

]
, (3b)

where ω and c are the angular frequency and speed of light in vacuum, respectively, while α0(q‖) = [(ω/c)2−q2‖]
1
2 ,

with Reα0(q‖) > 0, Imα0(q‖) > 0. The electric surface current JH(x‖|ω) is defined by JH(x‖|ω) = [n ×
H>(x|ω)]x3=ζ(x‖), where n = (−ζ1(x‖),−ζ2(x‖), 1) and ζj(x‖) ≡ ∂ζ(x‖)/∂xj (j = 1, 2). On evaluating Eq. (2)
at x3 = ζ(x‖) + η and at x3 = ζ(x‖)− η, where η is a positive infinitesimal, adding the resulting two equations,
and taking the vector cross product of the sum with n, we obtain the integral equation satisfied by JH(x‖|ω),

JH(x‖|ω) = 2J
(i)
H (x‖|ω) + 1

2π
P

∫
d2x′‖ n×

{�∇g0(x|x′)
�× JH(x′‖|ω)

}
, (4)
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where J
(i)
H (x‖|ω)inc = n×H(x|ω)inc|x3=ζ(x‖), P denotes the Cauchy principal value, and we have introduced the

definition

�
f(x|x′)� = f(x|x′)

∣∣∣∣x3=ζ(x‖)
x′
3=ζ(x′

‖)

. (5)

Because n ·JH(x‖|ω) = 0, only two components of JH(x‖|ω) are independent. We choose them to be JH(x‖|ω)1
and JH(x‖|ω)2, and obtain JH(x‖|ω)3 from

JH(x‖|ω)3 = ζ1(x‖)JH(x‖|ω)1 + ζ2(x‖)JH(x‖|ω)2. (6)

The two coupled, inhomogeneous, two-dimensional integral equations satisfied by JH(x‖|ω)1,2 are solved by
converting them into matrix equations. This is done by generating a realization of the surface profile function
on a grid of N2 points within a square region of the x1x2 plane of edge L, where the discretization intervals for
both directions are Δx = L/N . The integrals over this region are carried out by means of a two-dimensional
version of the extended midpoint method,17 and the values of JH(x‖|ω)1 and JH(x‖|ω)2 are calculated at the
points of this grid. The resulting matrix equations are solved by means of the biconjugate gradient stabilized
method.18 The values of JH(x‖|ω)3 are then obtained by the use of Eq. (6).

In these calculations the incident electric field has the form of a p- or s-polarized Gaussian beam, propagating
in the direction of k = (ω/c)(sin θ0 cosφ0, sin θ0 sinφ0,− cos θ0). In the case that k‖ = k‖x̂1, it is given by

Eν(x|ω)inc =

∫
q‖<ω

c

d2q‖ Ê
(i)

ν (q−|ω) exp [iq− · x] W (q‖|k‖), (7)

where ν = p or s, q±(q‖, ω) = q‖ ± α0(q‖)x̂3, and W (q‖|k‖) is

W (q‖|k‖) = w2

2π
exp

[
−w2

2
(q‖ − k‖)2

]
. (8)

For an incident field that is p polarized

Ê(i)

p (q−|ω) =
α0(q‖)x̂1 + q1x̂3

[q21 + α2
0(q‖)]

1
2

, (9a)

while for an incident field that is s polarized

Ê(i)

s (q−|ω) =
q1q2x̂1 − [q21 + α2

0(q‖)]x̂2 − q2α0(q‖)x̂3

ω
c [q

2
1 + α2

0(q‖)]
1
2

. (9b)

The scattered electric field, written in terms of JH(x‖|ω), is

E(x|ω)sc =

∫
d2q‖
(2π)2

[Ep(q+|ω)γ̂p(q+|ω) + Es(q+|ω)γ̂s(q+|ω)
]
exp [iq+ · x] , (10)

where

γ̂p(q+|ω) =
−α0(q‖)q̂‖ + q‖x̂3

ω/c
(11a)

γ̂s(q+|ω) = q̂‖ × x̂3, (11b)

and (ν = p, s)

Eν(q+|ω) = − (ω/c)

2α0(q‖)

∫
d2x‖ γ̂ν(q+|ω) · JH(x‖|ω) exp

[−iq‖ · x‖ − iα0(q‖)ζ(x‖)
]
. (12)
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The differential reflection coefficient (∂R/∂Ωs) is defined such that (∂R/∂Ωs)dΩs is the fraction of the total
time-averaged flux incident on the surface that is scattered into the element of solid angle dΩs about the scattering
direction (θs, φs). Since we are studying the scattering of light from a randomly rough surface, it is the average
of this quantity over the ensemble of realizations of the surface profile function that we need to calculate. The
mean differential reflection coefficient for the scattering of light of polarization β, the projection of whose wave
vector on the mean scattering surface is k‖, into light of polarization α, the projection of whose wave vector on
the mean scattering surface is q‖, is given by

〈
∂Rαβ

∂Ωs

〉
=

1

4π2

(ω
c

)3
cos2 θs

〈|Eα(q+|ω)|2
〉

pinc
, (13)

where for both polarizations of the incident light,

pinc = w4

∫
q‖<ω

c

d2q‖ α0(q‖) exp
[−w2(q‖ − k‖)2

]
. (14)

The dependence of the right-hand side of this equation on the polarization index β is through the dependence
of the amplitude Eα(q+|ω) on the surface current JH(x‖|ω) in Eq. (12). The surface current satisfies Eq. (4) in
which the inhomogeneous term depends on the incident field and hence on its polarization β = p, s. Therefore
Eα(q+|ω) depends implicitly on the polarization β of the incident field and consequently so does the mean
differential reflection coefficient.

If one is interested in nonspecular effects, it is the contribution to the mean differential reflection coefficient
from the light that has been scattered incoherently (diffusely) that is of interest. It is given by

〈
∂Rαβ

∂Ωs

〉
incoh

=
1

4π2

(ω
c

)3
cos2 θs

〈
|Eα(q+|ω)|2

〉
−
∣∣∣〈Eα(q+|ω)

〉∣∣∣2
pinc

. (15)

We now turn to some results obtained on the basis of this method.

2.2 Results for a Perfectly Conducting Surface

2.2.1 An Isotropic Roughness Power Spectrum

The first set of calculations were carried out for a two-dimensional randomly rough perfectly conducting surface
defined by an isotropic surface height autocorrelation function, i.e. one that depends on the vector x‖ only
through its magnitude. We have chosen for it the Gaussian form W (x‖) = exp(−x2

‖/a
2). The characteristic

length a is called the transverse correlation length of the surface roughness. The power spectrum of the surface,
given by Eq. (1), in this case has the form

g(k‖) = πa2 exp

(
−
k2‖a

2

4

)
. (16)

We have carried out calculations of the scattering of p-polarized light from such a surface with an rms height
δ = λ and a transverse correlation length a = 2λ, where λ is the wavelength of the incident field in vacuum.
The incident field had the form of a Gaussian beam, Eq. (7), with w = 4λ. The surface, covering an area
L2 = 16λ×16λ in the mean surface plane, was generated at the points of a 112×112 grid of mesh size Δx = λ/7
for both directions.

In Fig. 2 we plot the mean differential reflection coefficients as functions of the polar scattering angle θs for
the in-plane (φs = 0◦, 180◦) and out-of-plane (φs = ±90◦) co-(p → p) and cross-(p → s) polarized scattering
when a p-polarized Gaussian beam is incident on the surface at angles of incidence (θ0, φ0) given by (0◦, 0◦)
and (20◦, 0◦). Results obtained for 12 000 realizations of the surface profile function were averaged to obtain
these figures. The calculations for each realization of the surface profile function required 76 CPU seconds on an
Intel Core 2 CPU (Q9550) operating at 2.83 GHz and running the Linux operating system. For the roughness
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Figure 2. The mean differential reflection coefficients, 〈∂Rαβ/∂Ωs〉 (β → α), as functions of the polar scattering angle θs
for the in-plane (φs = φ0 or φs = φ0 + 180◦) (a) co-polarized (p → p) and (b) cross-polarized scattering (p → s), and
the out-of-plane (φs = φ0 ± 90◦) (c) co-polarized (p → p) and (d) cross-polarized scattering (p → s) of a p-polarized
incident beam (β = p) of width w = 4λ (θ0 = 0◦ and θ0 = 20◦; φ0 = 0◦) scattered from a Gaussian randomly rough
perfectly conducting surface. The Gaussian correlated surface had a correlation length a = 2λ and an rms height δ = λ. To
facilitate comparison between the various configurations presented in this figure, notice that we have used similar scales for
all ordinate axes. Moreover, to simplify the presentation of the figures, a convention was adopted where negative (positive)
values of θs correspond to φs = φ0 + 180◦ (φs = φ0). (After Ref. 7).

parameters assumed in these calculations the contribution to the mean differential reflection coefficient from the
light scattered coherently is smaller than the contribution from the light scattered incoherently by a factor of
approximately 10−4.

There is no single scattering contribution to the mean differential reflection coefficient in the cases of in-plane
cross-polarized [Fig. 2(b)] and out-of-plane co-polarized [Fig. 2(c)] scattering.1 What is plotted in these figures
therefore is due to multiple scattering only. The results plotted in Figs. 2(a) and 2(d) contain a contribution
from single-scattering processes.

The peaks in the retroreflection directions in the results for in-plane co-polarized scattering [Fig. 2(a)] are
enhanced backscattering peaks.19–22 However, as we will see from the full angular distribution of the intensity of
the scattered light, the structures seen as peaks in the results for in-plane cross-polarized scattering [Fig. 2(b)]
are not real peaks. The results that the out-of-plane co- and cross-polarized scattering [Figs. 2(c) and 2(d)] are
even functions of θs are consequences of the scattering geometry, namely that φ0 = 0◦, φs = ±90◦, and the
isotropy of the power spectrum of the surface roughness.

The full angular distribution of the intensity of the scattered light is presented as contour plots in Fig. 3,
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Figure 3. The complete angular distributions of the mean differential reflection coefficient, 〈∂Rαβ/∂Ωs〉, for the scattering
of an β-polarized Gaussian beam incident on the surface at polar angle θ0 = 20◦ and azimuthal angle φ0 = 0◦. The
perfectly conducting rough surface was characterized by a Gaussian height distribution of rms-value δ = λ and a Gaussian
correlation function of transverse correlation length a = 2λ. The incident beam was p polarized in Figs. 3(a)–(c) [left
column], and s polarized in Figs. 3(d)–(f) [right column]. Moreover, in the top two figures [Figs. 3(a) and (d)] the
polarization of the scattered light was not recorded; in Figs. 3(b) and (e) [central row] only p-polarized scattered light was
recorded; while the bottom two figures correspond to recording only s-polarized scattered light [Figs. 3(c) and (f)]. The
rough surface, covering an area 16λ× 16λ, was discretized at a grid of 112× 112 points corresponding to a discretization
interval λ/7 for both directions. The presented figures were obtained by averaging results for the differential reflection
coefficient obtained for 12 000 surface realizations. (After Ref. 7).

which correspond to polar and azimuthal angles of incidence (θ0, φs) = (20◦, 0◦), when the incident beam is
p polarized and the scattered light is p and s polarized. In Fig. 3(a) we present a contour plot of the mean
differential reflection coefficient for the scattering of p-polarized light into both p- and s-polarized scattered light,
i.e. the polarization state of the scattered light was not recorded. It is seen that there is a pronounced enhanced
backscattering peak in the retroreflection direction at θs = 20◦ and φs = 180◦. From Figs. 3(b) and 3(c),
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where only p-polarized light or s-polarized scattered light is recorded, respectively, we see that the co-polarized
scattering displays a structure that is elongated along the plane of incidence, while the cross-polarized scattering
has a scattering pattern that is elongated perpendicular to this plane. In principle an enhanced backscattering
peak should be present in the retroreflection direction in both co- and cross-polarized scattering.20–22 However,
for the roughness parameters assumed in this work, instead of a well-defined peak in the retroreflection direction
we see a ridge of constant enhanced intensity in parts of the region q1 < 0, forming a semicircle of constant
polar scattering angle θs ≈ θ0 = 20◦, with 90◦ < φs < 270◦ [Fig. 3(c)]. In precisely the retroreflection direction,
θs = 20◦ and φs = 180◦, there is little, if any, additional enhancement in the cross-polarized scattering compared
to the intensities at other values of φs in the interval [90◦, 270◦]. We speculate that the enhancement ridge seen
in Fig. 3(c) is a constructive interference effect similar to the effect underlying enhanced backscattering.

We note that if we had examined only the in-plane and out-of-plane results for the same angle of incidence,
the peak observed in Fig. 2(b) for θ0 = 20◦ could easily have been interpreted as the well-localized feature in
the retroreflection direction similar to the one present for co-polarized scattering in Fig. 3(b). Thus the angular
distributions of the intensities of the scattered light, such as those presented in Fig. 3, can provide information
that helps in better understanding multiple scattering phenomena.

When the incident beam was s polarized, we obtain the results presented in Figs. 3(d)–(f). Also here an
enhanced backscattering peak is observed, and the intensity distributions of the co- and cross-polarized scattered
light are oriented along and perpendicular to the plane of incidence, respectively.

A necessary, but not sufficient, criterion for the accuracy of a scattering calculation is that energy be conserved
in the scattering process. In scattering from a perfectly conducting surface this requires that the total time-
averaged scattered flux must equal the total time-averaged incident flux. This requirement can be stated as

Uβ(θ0, φ0) =
∑

α=p,s

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
= 1 β = p, s. (17)

Under the conditions assumed in obtaining the results presented in Figs. 2 and 3, the value of Up(θ0, φ0) and
Us(θ0, φ0) were calculated to be 0.9962 and 0.9966, respectively. Consequently, the computational approach
outlined in Section 2 conserves energy in the scattering process with an error that is smaller than 0.5%. This
error is expected to be reduced further by decreasing the sampling interval Δx and/or by increasing the area
(L2) of the the mean surface.

2.2.2 An Anisotropic Roughness Power Spectrum

The existing computational studies of the scattering of light from two-dimension randomly rough perfectly
conducting surfaces1–7 have been based on the assumption that the surface profile function ζ(x‖) is a stationary,
zero-mean, isotropic, Gaussian random process. Very little work has been devoted to the case where ζ(x‖)
is an anisotropic random process. In this section we present results obtained by the rigorous computational
approach described in Section 2.1 for the light scattered from a two-dimensional, randomly rough, perfectly
conducting surface defined by a surface profile function that is a stationary, zero-mean, anisotropic, Gaussian
random process.

The surface we assume in these calculations is defined by a surface height autocorrelation function that has
an anisotropic Gaussian form, W (x‖) = exp[−(x1/a1)

2−(x2/a2)
2] where, for specificity, we assume that a1 < a2.

Thus, we will refer to the x1 and x2 axes as the minor and major axes of the anisotropy, respectively. The power
spectrum of the surface roughness, defined by Eq. (1), in the present case has the form

g(k‖) = πa1a2 exp

[
−k21a

2
1

4
− k22a

2
2

4

]
, (18)

and is elongated along the minor anisotropy axis.

To provide a reference against which results for the angular distribution of the fields scattered from an
anisotropic random surface can be compared, we first present, in Fig. 4, contour plots of the angular distributions
of the fields scattered from an isotropic random surface. The incident field is a p-polarized beam with the width
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Figure 4. A p-polarized beam of wavelength λ and width w = 4λ is scattered from an isotropic perfectly conducing rough
surface characterized by a Gaussian height distribution of rms-value δ = λ/2 and a Gaussian correlation function of
correlation lengths a1 = a2 = λ. The panels show contour plots of the full angular distributions of the mean differential
reflection coefficient, 〈∂Rαp/∂Ωs〉, obtained by a rigorous computer simulation approach for the scattering of the beam
incident on the rough surface at a polar angle θ0 = 20◦ and an azimuthal angle φ0 = 45◦. The three panels correspond
to various configurations for the polarization of the scattered light. They are: (a) the polarization of the scattered light
is not recorded [α = p, s]; (b) only p-polarized scattered light is measured [α = p]; and (c) only s-polarized scattered
light is recorded [α = s]. The rough surface, covering an area 16λ × 16λ, was discretized on a grid of 112 × 112 points
corresponding to a discretization interval λ/7 for both directions. The presented figures were obtained by averaging results
for the differential reflection coefficient obtained for 6 000 surface realizations. (After Ref. 8).

parameter w = 4λ, where λ is the wavelength of the field. The polar and azimuthal angles of incidence are
(θ0, φ0) = (20◦, 45◦). The surface is characterized by the Gaussian power spectrum (16), with a correlation
length a = λ. The rms height of the surface is δ = λ/2. The surface was generated on the same grid as the
surface studied in Section 2.2.1. The mean differential reflection coefficient was obtained as the arithmetic average
of results obtained for 6000 realizations of the surface profile function. The three panels in this figure correspond
to different choices for the polarization of the scattered light. Thus, in obtaining Fig. 4(a) the polarization of
the scattered light was not recorded; in obtaining Fig. 4(b) only the p-polarized component of the scattered light
was recorded; while in obtaining Fig. 4(c) only the s-polarized component of the scattered light was recorded.

We see from these results that the co-polarized (p→ p) scattering has a dipole-like angular distribution with
the main intensity oriented parallel to the plane of incidence [Fig. 4(b)]. In contrast the cross-polarized (p→ s)
scattering has its main intensity distribution oriented perpendicular to the plane of incidence [Fig. 4(c)]. In both
cases the intensity distributions are symmetric with respect to the plane of incidence, and the scattered intensity
patterns simply rotate as the azimuthal angle of incidence φ0 is changed. When the polarization of the scattered
light is not recorded [Fig. 4(a)], the pronounced peak in the retroreflection direction (θs = θ0, φs = φ0 +180◦) is
the enhanced backscattering peak.
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Figure 5. Same as Fig. 4 with the only difference that now the rough surface is weakly anisotropic and characterized by
the correlation lengths a1 = λ and a2 = 1.5λ. (After Ref. 8).

Turning now to the scattering from an anisotropic surface, in Fig. 5 we present contour plots of the full angular
distributions of the mean differential reflection coefficients when the randomly rough surface is defined by the
power spectrum (18) with a1 = λ and a2 = 1.5λ. The remaining experimental and computational parameters
have the values used in obtaining the results presented in Fig. 4. The three panels correspond to different choices
for the polarization of the scattered light. In obtaining Fig. 5(a) the polarization of the scattered light was not
recorded; in obtaining Fig. 5(b) only the p-polarized component of the scattered light was recorded; while in
obtaining Fig. 5(c) only the s-polarized component of the scattered light was recorded. Unlike in the scattering
of light from an isotropic surface, the intensity distribution of light scattered from an anisotropic surface in
general is not symmetric with respect to the plane of incidence. It is only when the plane of incidence is parallel
to either the minor or the major axis of the anisotropy that this type of symmetry obtains.

The dipole-like angular intensity patterns in Figs. 5(b) and 5(c) are no longer symmetric with respect to
the plane of incidence, as their isotropic equivalents are. This asymmetry is particularly pronounced in the
cross-polarized scattering [Fig. 5(c)]. It is explained by the fact that the cross-polarized component of the mean
differential reflection coefficient to the lowest (second) order in the surface profile function is proportional to

g(q‖ − k‖) [(q̂‖ × k̂‖)3]2, where q‖ = (ω/c) sin θs(cosφs sinφs, 0).
23 When the power spectrum g(k‖) is given by

Eq. (18), this function is not symmetric with respect to the plane of incidence.

The co-polarized scattering pattern [Fig. 5(b)] is explained in a similar fashion. In this case the contribution
to the mean differential reflection coefficient of the lowest order in the surface profile function contains terms
proportional to g(q‖ − k‖)(q̂‖ − k̂‖)m with m = 1, 2.23 The maxima of these functions are in the forward
scattering direction and, for an anisotropic surface, move away from the plane of incidence toward the minor
axis of the anisotropy.
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3. A PENETRABLE SURFACE

3.1 Mathematical Formulation

In calculating the electromagnetic field scattered from a two-dimensional randomly rough surface a convenient
starting point are the Franz formulas of electromagnetic scattering theory.24,25 These formulas for the magnetic
and electric fields in the vacuum region x3 > ζ(x‖) can be written as

H>(x|ω) = H(x|ω)inc + 1

4π
∇×

∫
d2x′‖ g0(x|x′)|x′

3=ζ(x′
‖)
JH(x′‖|ω)

− ic

4πω
∇×∇×

∫
d2x′‖ g0(x|x′)|x′

3=ζ(x′
‖)
JE(x

′
‖|ω) (19a)

E>(x|ω) = E(x|ω)inc + 1

4π
∇×

∫
d2x′‖ g0(x|x′)|x′

3=ζ(x′
‖)
JE(x

′
‖|ω)

+
ic

4πω
∇×∇×

∫
d2x′‖ g0(x|x′)|x′

3=ζ(x′
‖)
JH(x′‖|ω). (19b)

The Franz formulas for the magnetic and electric fields in the scattering medium x3 < ζ(x‖) can be written as

H<(x|ω) = − 1

4π
∇×

∫
d2x′‖ gε(x|x′)|x′

3=ζ(x′
‖)
JH(x′‖|ω)

+
ic

4πω
∇×∇×

∫
d2x′‖ gε(x|x′)|x′

3=ζ(x′
‖)
JE(x

′
‖|ω) (20a)

E<(x|ω) = − 1

4π
∇×

∫
d2x′‖ gε(x|x′)|x′

3=ζ(x′
‖)
JE(x

′
‖|ω)

− ic

4πωε(ω)
∇×∇×

∫
d2x‖ gε(x|x′)|x′

3=ζ(x′
‖)
JH(x′‖|ω). (20b)

In writing these equations we have introduced the vectors

JH(x‖|ω) =
[
n×H>(x|ω)]∣∣

x3=ζ(x‖)
, (21a)

=
[
n×H<(x|ω)]∣∣

x3=ζ(x‖)
, (21b)

and

JE(x‖|ω) =
[
n×E>(x|ω)]∣∣

x3=ζ(x‖)
, (22a)

=
[
n×E<(x|ω)]∣∣

x3=ζ(x‖)
. (22b)

The vector n has been defined in Section 2.1. The scalar free-space Green’s function for an infinite scattering
medium is defined by

gε(x|x′) =
exp [− |x− x′| /d(ω)]

|x− x′| (23a)

=

∫
d2k‖
(2π)2

2π

β(k‖)
exp

[
ik‖ · (x‖ − x′‖)

]
exp

[−β(k‖)|x3 − x′3|
]
, (23b)

where

β(k‖) =

[
k2‖ +

1

d2(ω)

] 1
2

, Reβ(k‖) > 0, Imβ(k‖) < 0, (24)
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and d(ω) = (c/ω)[−ε(ω)]− 1
2 , Re d(ω) > 0, Im d(ω) > 0, while ε(ω) is the dielectric function of the scattering

medium.

To obtain the equations satisfied by JH(x‖|ω) and JE(x‖|ω) we proceed as follows. We take the vector cross
product of Eqs. (19a) and (20a) with the vector n, evaluate each product at x3 = ζ(x‖)+ η, and x3 = ζ(x‖)− η,
respectively, where η is a positive infinitesimal, and add the resulting equations. In this way we obtain the
equation

JH(x‖|ω) = JH(x‖|ω)inc + 1

4π
P

∫
d2x′‖

�
n× {∇× [g0(x|x′)− gε(x|x′)]JH(x′‖|ω)}

�

− ic

4πω

∫
d2x′‖

�
n× {∇×∇× [g0(x|x′)− gε(x|x′)]JE(x

′
‖|ω)}

�
, (25a)

where JH(x‖|ω)inc = n×H(x|ω)inc|x3=ζ(x‖), and P denotes the Cauchy principal value.

If we next take the vector cross product of Eq. (19b) and of ε(ω) times Eq. (20b) with the vector n, evaluate
each product at x3 = ζ(x‖) + η, and at x3 = ζ(x‖)− η, respectively, and add the resulting equations, we obtain

JE(x‖|ω) = 2
JE(x‖|ω)inc
1 + ε(ω)

+
2

4π[1 + ε(ω)]
P

∫
d2x′‖

�
n× {∇× [g0(x|x′)− ε(ω)gε(x|x′)]JE(x

′
‖|ω)}

�

+
2ic

4πω[1 + ε(ω)]

∫
d2x′‖

�
n× {∇×∇× [g0(x|x′)− gε(x|x′)]JH(x′‖|ω)}

�
, (25b)

where JE(x‖|ω)inc = n×E(x|ω)inc|x3=ζ(x‖).

In obtaining Eq. (25) we have used the results

lim
η→0+

∫
d2x′‖ n(x‖)×

⎧⎨
⎩∇×

⎡
⎣g(x|x′)∣∣∣∣x3=ζ(x‖)

x′
3=ζ(x′

‖)±η

J(x′‖|ω)
⎤
⎦
⎫⎬
⎭

= ±2π J(x‖|ω) + P

∫
d2x′‖ n(x‖)×

{�∇× [g(x|x′)�J(x′‖|ω)]
}
, (26)

where g(x|x′) is either g0(x|x′) or gε(x|x′), J(x‖|ω) is either JH(x‖|ω) or JE(x‖|ω), and P denotes the Cauchy
principal value. Equations of the type of Eq. (25) are called Müller integral equations.26,27 These equations are
convenient for numerical calculations. Because g0(x|x′) and gε(x|x′) have the same limiting behavior as x′ → x,
the most divergent terms in the integrands, associated with the second derivatives of these Green’s functions,
cancel, rendering the resulting integrals integrable. The terms containing the first derivatives of the Green’s
functions possess integrable singularities.

From the definitions of JH,E(x‖|ω) it follows that n · JH,E(x‖|ω) = 0. Therefore JH,E(x‖|ω) have only two
independent elements, which we choose to be JH,E(x‖|ω)1 and JH,E(x‖|ω)2. The elements JH,E(x‖|ω)3 are then
obtained from the analogues of Eq. (6). Equations (25) thus provide a system of four coupled, inhomogeneous
two-dimensional integral equations for JH,E(x‖|ω)1,2.

By the use of a local impedance boundary condition,28

JE(x‖|ω)i = Kij(x‖|ω)JH(x‖|ω)j (i = 1, 2), (27)

the dependence on JE(x‖|ω)1,2 can be removed from Eq. (25a), yielding a pair of coupled, inhomogeneous,
two-dimensional, integral equations for JH(x‖|ω)1,2. These equations are converted into matrix equations in
the manner described in Section 2, which are then solved by the biconjugate gradient stabilized method. The
solutions are used to calculate the contribution to the mean differential reflection coefficient from the light
scattered incoherently, by the use of the expressions obtained in Section 2.
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Figure 6. The mean differential reflection coefficients, 〈∂Rαp/∂Ωs〉 (p → α) for a p-polarized incident beam of wavelength
λ = 632.8nm and width w = 4λ, whose polar angle of incidence is θ0 = 20◦, as functions of the polar scattering angle
θs for the (a) in-plane and (b) out-of-plane scattering. Negative values for θs are interpreted as in the caption to Fig. 2.
The scattering system assumed in obtaining these results consisted of a silver substrate (ε(ω) = −16 + i1.088) separated
from vacuum by a Gaussian-correlated randomly rough surface of rms-height δ = λ/4 and correlation length a = λ/2.
The randomly rough surface covered an area of 16λ×16λ and the discretization length used in the numerical calculations
was Δx = λ/7 thus resulting in a 112× 112 grid of x‖ values. A total of 5 000 surface realizations were used to calculate
〈∂Rαp/∂Ωs〉. (After Ref. 14).

3.2 Results for a Penetrable Surface

3.2.1 A Metallic Surface

We first present results for scattering from a metallic surface. We have carried out numerical simulations for the
scattering of a p-polarized beam of light of wavelength λ = 632.8 nm and width parameter w = 4λ, incident on
a randomly rough silver surface. The dielectric function of silver at this wavelength is ε(ω) = −16.00+ i1.088.29

The surface roughness is characterized by the Gaussian power spectrum (16) with a correlation length a = λ/2,
and an rms height δ = λ/4. The rough surface was assumed to cover an area 16λ× 16λ on the mean scattering
surface, and the discretization length Δx was λ/7 on a 112× 112 grid of x‖ values.

In Fig. 6 we present the mean differential reflection coefficients as functions of the polar scattering angle θs
for the in-plane [Fig. 6(a)] and out-of-plane (φs = ±90◦) [Fig. 6(b)], co-(p→p) and cross-(p→s) scattering of
the beam when the polar and azimuthal angles of incidence (θ0, φ0) are (20◦, 0◦). The results obtained from
Np = 5000 realizations of the surface profile function were averaged to obtain these results. The calculations
required 96 CPU seconds on a 2.67 GHz Intel i7 CPU for each realization of the surface profile function. The
peak at θs = −20◦ in the mean differential reflection coefficient for in-plane co-polarized scattering plotted in
Fig. 6(a) is the enhanced backscattering peak.

For the same parameters we present in Figs. 7(a)–(c) the full angular distribution of the mean differential
reflection coefficient when the polarization state of the scattered light is not recorded [Fig. 7(a)], when only the
p-polarized component of the scattered light is recorded [Fig. 7(b)], and when only the s-polarized component
of the scattered light is recorded [Fig. 7(c)]. Similar results, but for an s-polarized incident beam, are presented
in Figs. 7(d)–(f). The peaks observed in Figs. 7(a), 7(b), 7(d), and 7(f) in the retroreflection direction (θs =
θ0, φs = φ0 + 180◦) are the enhanced backscattering peaks.

From a knowledge of the full angular distribution of the mean differential reflection coefficient, the conserva-
tion of energy in the scattering process can be checked by means of Eq. (17). For this purpose the full angular
distribution of the mean differential reflection coefficient was calculated for “nonabsorbing” silver, i.e. for the
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Figure 7. Similar to Fig. 3, but now the scattering medium is silver, and therefore penetrable. The roughness and numerical
parameters assumed in obtaining these results are identical to those used to obtain the results of Fig. 6.

case in which the imaginary part of its dielectric function was set equal to zero, so that ε(ω) = −16.00. For the
parameters used in obtaining the results presented in Figs. 6 and 7 it was found that Up,s(20

◦, 0◦) > 0.995 , a
result that demonstrates the accuracy of our computational approach.

In order to obtain such a good unitarity value it was necessary to treat not only the diagonal elements of the
matrix versions of Eq. (25) accurately, but also close-to-diagonal elements, because of the singular behavior of
the Green’s functions for small arguments. The need to treat close-to-diagonal matrix elements more accurately
than matrix elements between more widely separated points in the solution of the volume integral equation
arising in scattering from finite-sized objects has also been noted.30 If the extended midpoint method was used
in calculating the off-diagonal matrix elements, while the diagonal elements were treated exactly, as in [6] and
[9], a value of Up(20

◦, 0◦) = 0.834 was obtained. The ability to calculate unitarity values, and the need to treat
close-to-diagonal matrix elements accurately to obtain good unitarity values, are some of the main results of this
work.
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4. SOLUTION OF THE REDUCED RAYLEIGH EQUATIONS

4.1 Mathematical Formulation

The calculation of the electromagnetic field scattered from a randomly rough surface of a penetrable medium
is greatly simplified if the field in the scattering medium does not need to be taken into account. The use of
an impedance boundary condition at the interface between the medium of incidence and the scattering medium
accomplishes this, so that only the field in the medium of incidence needs to be determined.

The same result can also be achieved by the use of the reduced Rayleigh equation for calculating the scattered
field. In this section we present this equation and describe its numerical solution.

We begin by writing the electric field in the vacuum region x3 > ζ(x‖) as the sum of an incident and a

scattered field, E(x; t) =
[
E(i)(x|ω) +E(s)(x|ω)] exp(−iωt), where

E(i)(x|ω) =
{
c

ω

[
α0(k‖)k̂‖ + k‖x̂3

]
E(i)p (k‖) + [k̂‖ × x̂3] E(i)s (k‖)

}
exp

[
ik‖ · x‖ − iα0(k‖)x3

]
, (28a)

E(s)(x|ω) =
∫

d2q‖
(2π)2

{
c

ω

[−α0(q‖)q̂‖ + q‖x̂3

] E(s)p (q‖) + [q̂‖ × x̂3] E(s)s (q‖)
}
exp

[
iq‖ · x‖ + iα0(q‖)x3

]
. (28b)

Note that the factors appearing in Eq. (28) in front of E(i)α (k‖) and E(s)α (q‖) (α = p, s) are the polarization
vectors as defined previously in Section 2.1, but now written out explicitly. Maxwell’s equations imply a linear

relation between the amplitudes E(s)α (q‖) and E(i)β (k‖) of the form (α = p, s, β = p, s)

E(s)α (q‖) =
∑
β

Rαβ(q‖|k‖)E(i)β (k‖). (29)

The contribution to the mean differential reflection coefficient from the incoherent (diffuse) component of the
scattered light, when incident light of β polarization (whose wave vector has the projection k‖ on the mean
scattering surface) into light of α polarization (whose wave vector has the projection q‖ on the mean scattering
surface), is given by〈

∂Rαβ

∂Ωs

〉
incoh

=
1

S

( ω

2πc

)2 cos2 θs
cos θ0

[〈 ∣∣Rαβ(q‖|k‖)
∣∣2 〉− ∣∣∣〈Rαβ(q‖|k‖)

〉∣∣∣2] , (30)

where S is the area of the plane x3 = 0 covered by the rough surface.

It was shown by Celli and his colleagues32 by the use of the Rayleigh hypothesis,33 the extinction theorem,34

and the vectorial equivalent of the Kirchhoff integral,35 that the scattering amplitudes Rαβ(q‖|k‖) satisfy the
matrix integral equation∫

d2q‖
(2π)2

I(α(p‖)− α0(q‖)|p‖ − q‖)
α(p‖)− α0(q‖)

M(p‖|q‖)R(q‖|k‖) = −
I(α(p‖) + α0(k‖)|p‖ − k‖)

α(p‖) + α0(k‖)
N(p‖|k‖), (31)

with Rpp and Rps forming the first row of the matrix R, where

I(γ|Q‖) =

∫
d2x‖ exp

[−iγζ(x‖)] exp [−iQ‖ · x‖] , (32)

and α(p‖) = [ε(ω)(ω/c)2 − p2‖]
1
2 , with Reα(p‖) > 0, Imα(p‖) > 0. The matrices M(p‖|q‖) and N(p‖|k‖) are

given by

M(p‖|q‖) =

(
[p‖q‖ + α(p‖)p̂‖ · q̂‖α0(q‖)] −ω

c α(p‖) [p̂‖ × q̂‖]3
ω
c [p̂‖ × q̂‖]3 α0(q‖) ω2

c2 p̂‖ · q̂‖

)
(33a)

and

N(p‖|k‖) =

(
[p‖k‖ − α(p‖)p̂‖ · k̂‖α0(k‖)] −ω

c α(p‖) [p̂‖ × k̂‖]3
−ω

c [p̂‖ × k̂‖]3 α0(k‖) ω2

c2 p̂‖ · k̂‖

)
. (33b)
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Figure 8. Full angular intensity distribution of the light scattered incoherently from a two-dimensional randomly rough
silver surface calculated by solving the reduced Rayleigh equations. Light of either p (left column) or s polarization
(right column) is incident on the surface at angles of incidence (θ0, φ0) = (25◦, 45◦). The wavelength (in vacuum) of the
incident light is λ = 632.8 nm for which frequency ω = 2π/λ the dielectric function of silver is ε(ω) = −16.0 + 1.088i.
The white dots indicate the position of the specular direction. The surface parameters assumed in these calculations are
L = 25λ; δ = λ/40; and a = λ/4. The surface was discretized so that Q = 6.4ω/c or equivalently Δx = π/Q ≈ 0.0781λ.
Figures 8(a)–(c) correspond to a p-polarized plane incident wave, while in Figs. 8(d)–(f) the incident plane wave is s
polarized. In Figs. 8(a) and (d) all scattered light is recorded, i.e. no distinction is made between scattered p- and
s-polarized light. However, in Figs. 8(b) and (e) only the scattered p-polarized light is recorded, while Figs. 8(c) and (f)
include only s-polarized scattered light. The presented figures were obtained by averaging the results for the differential
reflection coefficient obtained for Np = 10 000 surface realizations.

Although purely numerical, nonperturbative solutions of the reduced Rayleigh equations for the scattering
of light from one-dimensional randomly rough clean metal surfaces36,37 and coated perfectly conducting sur-
faces38,39 have been carried out, up to now Eq. (31) has been solved only by small-amplitude perturbation
theory through terms of third order in the surface profile fuction.23,40,41 Here we present some preliminary
results for the mean differential reflection coefficient obtained by a purely numerical, nonperturbative solution of
Eqs. (31)–(33). This was done by generating a realization of the surface profile as this was done in the preceding
two sections, and evaluating the function I(γ|Q‖) by expanding the integrand in Eq. (32) in powers of ζ(x‖), and
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calculating the Fourier transform of ζn(x‖) by the Fast Fourier Transform. As in previous sections, the random
surface covered a square region of the x1x2 plane of edge L, and a grid of N2 points was created within this
square so that the (linear) sampling interval is Δx = L/N . The infinite limits of integration in Eq. (31) were
replaced by finite ones: |q1| < Q/2, |q2| < Q/2 where Q = π/Δx. A quadratic grid within the square region
of the q1q2 plane of edge Q was constructed with a grid constant Δq = 2π/L. The integral over this region
in Eq. (31) was carried out by a two-dimensional version of the extended midpoint method, and the values of
Rαβ(q‖|k‖) were calculated for values of q‖ at the points of this grid for a given value of k‖, which was a point
on the same grid. The resulting matrix equations were solved by LU factorization. This is a slower solution
method than the biconjugate gradient stabilized method, but has the advantage of being able to handle multiple
right-hand sides, i.e. different angles of incidence, more-or-less with no extra addition to the computational time.
With the reflection amplitudes, Rαβ(q‖|k‖), available, the differential reflection coefficient was then calculated
by the use of Eq. (30).

4.2 Results Obtained by the Solution of the Reduced Rayleigh Equations

4.2.1 A Metallic Surface

As the first example of the application of this approach to the scattering of light from a penetrable surface we
apply it to the scattering of a p- or s-polarized plane wave of wavelength λ = 632.8 nm incident on a silver
surface. The dielectric function of silver at this wavelength is ε(ω) = −16 + i1.088.29 The roughness of the
surface was characterized by the Gaussian power spectrum, Eq. (16), where the transverse correlation length was
given the value a = λ/4, while the rms height of the surface was δ = λ/40. In the calculations the rough surface
was assumed to cover an area of 25λ × 25λ of the plane x3 = 0, while for the wavenumber cut-off we assumed
Q = 6.4ω/c, which corresponds to a spatial discretization interval of Δx = π/Q ≈ 0.0781λ (for both directions).

In Fig. 8 we present contributions to the mean differential reflection coefficients from the light scattered
incoherently as functions of q1 and q2 when a plane wave is incident on the surface at angles (θ0, φ0) = (25◦, 45◦).
Figure 8(a) corresponds to a p-polarized incident plane wave being scattered by the rough surface into both p-
and s-polarized light, i.e. the polarization state of the scattered light was not recorded. However, in Figs. 8(b)
and 8(c) contour plots of the same quantity are presented for the cases where only p-polarized or s-polarized
scattered light, respectively, are recorded. Similar results are presented in Figs. 8(d)–(f) for the case when the
incident light is s-polarized. An arithmetic average of results obtained for Np = 10 000 realizations of the surface
profile function was carried out to produce Fig. 8.

By artificially putting the imaginary part of the dielectric constant of the metal to zero, Im ε(ω) ≡ 0, so
that there is no absorption in the scattering system, it has been found that the numerical method used to solve
the reduced Rayleigh equation, Eq. (31), conserves energy with an error smaller than 0.5% for the parameters
assumed here.

The numerical calculations used to obtain the results of Fig. 8 required for each realization of the surface
profile function approximately 8.8 cpu hours on a single 12-core 2.4 GHz AMD Opteron computer node and
using approximately 20 GB of memory.

The calculations whose results are presented in Fig. 8 and which were performed by solving numerically the
reduced Rayleigh equations (31), could also have been done by solving the Müller equations, as was discussed
in Section 3. In order to compare the two approaches, we present in Fig. 9 the results obtained by these two
methods for the contributions to the mean differential reflection coefficients from the light scattered incoherently
as functions of the polar scattering angle θs for the in-plane (φs = 0◦, 180◦) and out-of-plane (φs = ±90◦)
co-(s→ s) and cross-(s→ p) polarized scattering when an s-polarized wave is incident on the surface at angles
of incidence (θ0, φ0) = (25◦, 0◦). The roughness parameters assumed in obtaining these results are identical to
those assumed in obtaining Fig. 8. The numerical parameters used to obtain these results were those of Fig. 8
when using the reduced Rayleigh equation. However, when solving the Müller equations, a Gaussian beam of
width (w = 4λ) was assumed to be incident on the surface, which was discretized with an interval Δx = λ/7 (in
both directions). It is observed from Fig. 9 that the two approaches produce quantitatively similar results. The
minor differences between the results of the two approaches we believe are due to the differences in the areas
covered by the rough surfaces, and to the differences in the discretization intervals, assumed in the two sets of
calculations, which have not been optimized as yet.
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From the results presented in Figs. 8 and 9, we can draw the conclusions that a purely numerical, nonper-
turbative solution of the reduced Rayleigh equation yields accurate results for the mean differential reflection
coefficient that are in good agreement with those obtained by the use of the Müller equations.

4.2.2 A Dielectric Surface

The reduced Rayleigh equation (31) can also be used for calculating the field scattered from a dielectric surface.
We apply it here to calculate the contribution to the mean differential reflection coefficient from the incoherent
component of the scattered light when a p- or s-polarized plane wave whose wavelength in vacuum is λ = 632.8 nm
is incident at (θ0, φ0) = (27.5◦, 45◦) on the surface of a dielectric medium whose dielectric constant is assumed
to be εd = 2.64 (photoresist). The results are presented in Fig. 10. The randomly rough surface had an
rms roughness of δ = 3λ/200 = 0.015λ and it covered a 20λ × 20λ area in the x3 = 0 plane. Moreover, the
wavenumber cut-off assumed in these calculations was Q = 8ω/c, corresponding to a discretization interval of
Δx = π/Q = 0.0625λ. Except for these differences, the remaining roughness and computational parameters were
the same as the ones assumed in the calculations that produced Fig 8.

By comparing Figs. 8 and 10 it is observed that the overall structure of the angular distributions of the
intensity of the light scattered from a metal and dielectric is rather similar, and that, as expected, the scattered
intensity for the metallic surface is stronger (by a factor of about 70) than that for the dielectric surface.

5. DISCUSSION AND CONCLUSIONS

We have shown that the use of the method of moments and the biconjugate gradient stabilized method provides
a formally exact solution to the scattering of p- and s-polarized light from a two-dimensional randomly rough
perfectly conducting surface, with a modest expenditure of computational time. The addition of an impedance
boundary condition on a two-dimensional rough surface to these two methods has been shown to provide a
formally exact solution to the scattering of polarized light from two-dimensional randomly rough metallic surfaces,
also with a modest expenditure of computational time.

Figure 9. Comparison of the mean differential reflection coefficients for the scattering of s polarized waves from a rough
silver surface with the roughness parameters given in the caption of Fig. 8. The results were obtained by two different
numerical approaches: the solution of the reduced Rayleigh equation (solid lines), and by the use of the rigorous approach
(dashed lines). The numerical parameters and number of surface realizations assumed when using the former approach
were those used to obtain the results presented in Fig. 8. However, when using the rigorous approach, the parameters
given in the caption to Fig. 6 were assumed with the exception that now θ0 = 25◦, L = 20λ, and only a small number of
surface realizations were used (Np = 750) to obtain these results.
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Figure 10. Full angular intensity distribution of the light scattered incoherently from a two-dimensional randomly rough
dielectric surface calculated by solving the reduced Rayleigh equations. The dielectric substrate was taken to be photoresist
which at the frequency of the incident light λ = 632.8 nm is characterized by a dielectric constant ε(ω) = 2.64. The angles
of incidence assumed are (θ0, φ0) = (27.5◦, 45◦), and the white dots indicate the position of the specular direction. These
figures were obtained by averaging results for the scattered intensity obtained for Np = 6000 surface realizations. The
surface parameters assumed in these calculations were L = 20λ; δ = 3λ/200 = 0.015λ; and a = λ/4. The surface
discretization was done so that Q = 8ω/c, or equivalently, Δx = π/Q = 0.0625λ. The remaining parameters and the
organization of the sub-figures are identical to those of Fig. 8.

The computational methods employed in these calculations have made it possible to obtain a formally exact
full angular distribution of the intensity of the light scattered from a strongly rough random surface. In the case
of scattering from a perfectly conducting surface, and from a metallic surface when the imaginary part of its
dielectric function is set equal to zero, knowledge of the full angular distribution of the intensity of the scattered
light enables the conservation of energy in the scattering process to be checked. It was found to be satisfied with
an error smaller than 0.5%, a result that testifies to the accuracy of the methods used in our calculations and
the adequacy of the discretization of the mean scattering surface employed in them.

We have also presented results obtained from a rigorous numerical solution of the reduced Rayleigh equation
for the scattering of p- and s-polarized light from a penetrable surface. These results demonstrate the feasibility
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of using this equation in studies of the scattering of light from weakly rough surfaces. The good agreement
between the results obtained by the solution of the reduced Rayleigh equation and those obtained by the use
of the rigorous computational method indicates that the simpler approach yields accurate results for scattering
from surfaces that are not very rough. The limits of validity of this equation have yet to be determined.

The success of the methods used in carrying out the calculations described here opens the door to rigorous
computational studies of other properties of electromagnetic waves scattered from two-dimensional randomly
rough surfaces. These include calculations of the ellipsometric parameters of metallic and dielectric surfaces,
transmission through dielectric surfaces, and all of the elements of the Mueller matrix for scattering from and
transmission through such surfaces. This work will be reported elsewhere.
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Calculation of all elements of the Mueller matrix for scattering of light from a
two-dimensional randomly rough metal surface
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We calculate all the elements of the Mueller matrix, which contain all the polarization properties
of light scattered from a two-dimensional randomly rough lossy metal surface. The calculations are
carried out for arbitrary angles of incidence by the use of nonperturbative numerical solutions of
the reduced Rayleigh equations for the scattering of p- and s-polarized light from a two-dimensional
rough penetrable surface.

PACS numbers: 42.25.-p, 41.20.-q

All the information about the polarization properties
of light scattered from two-dimensional rough surfaces
is contained in the Mueller matrix [1–3]. Yet, very few
calculations of the elements of this matrix for a two-
dimensional randomly rough surface have been carried
out to date by any computational approach, largely be-
cause calculations of the scattering of light from such sur-
faces are still difficult to carry out [4–6]. An exception [7]
is a calculation of the elements for two-dimensional ran-
domly rough perfectly conducting and metallic surfaces
characterized by a surface profile function that is a sta-
tionary, zero-mean, isotropic, Gaussian random process,
defined by a Gaussian surface height autocorrelation
function. These calculations were carried out by a ray-
tracing approach on the assumption that the surface was
illuminated at normal incidence. In this work it was also
shown that due to the assumptions of normal incidence
and the isotropy of the surface statistics, the elements of
the corresponding Mueller matrix possess certain sym-
metry properties. Subsequently Zhang and Bahar [8]
carried out an approximate analytic calculation of the
elements of the Mueller matrix for the scattering of light
from two-dimensional randomly rough dielectric surfaces
coated uniformly with a coating of a different dielectric
material.

In this paper we calculate, for arbitrary angles of inci-
dence, all the elements of the Mueller matrix for the scat-
tering of light from a two-dimensional randomly rough
metal surface. The calculations are carried out on the
basis of nonperturbative numerical solutions of the re-
duced Rayleigh equations for the scattering of p- and s-
polarized light from a two-dimensional rough penetrable
surface [6, 9].

The system we study consists of vacuum in the re-
gion x3 > ζ(x‖), where x‖ = (x1, x2, 0), and a metal
whose dielectric function is ε(ω) in the region x3 < ζ(x‖).
The surface profile function ζ(x‖) is assumed to be a
single-valued function of x‖ that is differentiable with re-
spect to x1 and x2, and constitutes a stationary, zero-
mean, isotropic, Gaussian random process defined by

〈
ζ(x‖)ζ(x′‖)

〉
= δ2W (|x‖ − x′‖|). The angle brackets

here and in all that follows denote an average over the
ensemble of realizations of the surface profile function,

and δ =
〈
ζ2(x‖)

〉 1
2 is the rms height of the surface. Each

realization of the surface profile function is generated nu-
merically by a two-dimensional version of the filtering
method used in Ref. [10].

We begin by writing the electric field in the vacuum
region x3 > ζ(x‖) as the sum of an incident and a scat-

tered field, E(x, t) = [E(i)(x|ω) + E(s)(x|ω)] exp(−iωt),
where

E(i)(x|ω) =
[
E(i)p (k‖)êip(k‖) + E(i)s (k‖)êis(k‖)

]
× exp[ik‖ · x‖ − iα0(k‖)x3], (1a)

E(s)(x|ω) =

∫
d2q‖
(2π)2

[
E(s)p (q‖)êsp(q‖) + E(s)s (q‖)êss(q‖)

]
× exp[iq‖ · x‖ + iα0(q‖)x3]. (1b)

Here k‖ = (k1, k2, 0), the unit polarization vectors are

êip(k‖) = (c/ω)[α0(k‖)k̂‖ + k‖x̂3], êis(k‖) = k̂‖ × x̂3,
êsp(q‖) = (c/ω)[−α0(q‖)q̂‖ + q‖x̂3], êss(q‖) = q̂‖ × x̂3,

while α0(q‖) = [(ω/c)2 − q2‖]
1
2 , with Reα0(q‖) > 0,

Imα0(q‖) > 0. A caret over a vector indicates that it is
a unit vector. In terms of the polar and azimuthal angles
of incidence (θ0, φ0) and scattering (θs, φs), the vectors
k‖ and q‖ are given by k‖ = (ω/c) sin θ0(cosφ0, sinφ0, 0)
and q‖ = (ω/c) sin θs(cosφs, sinφs, 0).

A linear relation exists between the amplitudes

E(s)α (q‖) and E(i)β (k‖), which we write in the form (α =
p, s, β = p, s)

E(s)α (q‖) =
∑
β

Rαβ(q‖|k‖)E(i)β (k‖). (2)

It was shown by Celli and his colleagues [9] that the scat-
tering amplitudes Rαβ(q‖|k‖) satisfy the matrix integral



2

equation (the reduced Rayleigh equation)

∫
d2q‖
(2π)2

I
(
α(p‖)− α0(q‖)|p‖ − q‖

)
α(p‖)− α0(q‖)

N+(p‖|q‖)R(q‖|k‖)

= −I
(
α(p‖) + α0(k‖)|p‖ − k‖

)
α(p‖) + α0(k‖)

N−(p‖|k‖), (3a)

with Rpp and Rps forming the first row of the matrix R,
where

I(γ|Q‖) =
∫
d2x‖ exp[−iγζ(x‖)] exp(−iQ‖ · x‖), (3b)

and α(p‖) = [ε(ω)(ω/c)2 − p2‖]
1
2 , with Reα(p‖) > 0,

Imα(p‖) > 0. The matrices N±(p‖|q‖) are given by

N±(p‖|q‖) =(
p‖q‖ ± α(p‖)p̂‖ · q̂‖α0(q‖) −ω

c α(p‖)[p̂‖ × q̂‖]3
±ω

c [p̂‖ × q̂‖]3α0(q‖) ω2

c2 p̂‖ · q̂‖

)
. (3c)

These equations were solved by generating a realization
of the surface profile function on a grid of N2

x points
within a square region of the x1x2 plane of edge L [6]. In
evaluating the q‖-integral in Eq. (3a) the infinite limits
of integration were replaced by finite ones: |q1| < Q/2,
|q2| < Q/2, and the integral was carried out by a two-
dimensional version of the extended midpoint rule [12]
using a grid in the q1q2 plane that is determined by the
Nyquist sampling theorem and the properties of the dis-
crete Fourier transform. The values of q‖ and p‖ used
in calculating Rαβ(q‖|k‖) from Eq. (3a) were given by
points on this grid for a given value of k‖, which was also
a point on this grid. The resulting matrix equations were
solved by LU factorization. In this calculation the func-
tion I(γ|Q‖) was evaluated by expanding the integrand
in Eq. (3b) in powers of ζ(x‖) and calculating the Fourier
transform of ζn(x‖) by the Fast Fourier Transform. The
Nyquist sampling theorem requires that |q1| and |q2| can-
not be larger than qc = π/Δx where Δx = L/Nx [11].
The components of the vector Q‖ = p‖ − q‖, needed
in I(γ|Q‖), are in the interval [−Q,Q], so we have put
Q = qc.

The scattering amplitudes Rαβ(q‖|k‖) play a central
role in the calculation of the elements of the Mueller ma-
trix. In terms of these amplitudes the elements of the

Mueller matrix, M, are [13]

M11 = C[|Rpp|2 + |Rsp|2 + |Rps|2 + |Rss|2]
M12 = C[|Rpp|2 + |Rsp|2 − |Rps|2 − |Rss|2]
M13 = C[RppR

∗
ps +RspR

∗
ss +RpsR

∗
pp +RssR

∗
sp]

M14 = iC[RppR
∗
ps +RspR

∗
ss −RpsR

∗
pp −RssR

∗
sp]

M21 = C[|Rpp|2 − |Rsp|2 + |Rps|2 − |Rss|2]
M22 = C[|Rpp|2 − |Rsp|2 − |Rps|2 + |Rss|2]
M23 = C[RppR

∗
ps −RspR

∗
ss +RpsR

∗
pp −RssR

∗
sp]

M24 = iC[RppR
∗
ps −RspR

∗
ss −RpsR

∗
pp +RssR

∗
sp]

M31 = C[RppR
∗
sp +RspR

∗
pp +RpsR

∗
ss +RssR

∗
ps]

M32 = C[RppR
∗
sp +RspR

∗
pp −RpsR

∗
ss −RssR

∗
ps]

M33 = C[RppR
∗
ss +RspR

∗
ps +RpsR

∗
sp +RssR

∗
pp]

M34 = iC[RppR
∗
ss +RspR

∗
ps −RpsR

∗
sp −RssR

∗
pp]

M41 = −iC[RppR
∗
sp −RspR

∗
pp +RpsR

∗
ss −RssR

∗
ps]

M42 = −iC[RppR
∗
sp −RspR

∗
pp −RpsR

∗
ss +RssR

∗
ps]

M43 = −iC[RppR
∗
ss −RspR

∗
ps −RpsR

∗
sp −RssR

∗
pp]

M44 = C[RppR
∗
ss −RspR

∗
ps −RpsR

∗
sp +RssR

∗
pp]

where

C =
1

2S

( ω

2πc

)2 cos2 θs
cos θ0

,

and S is the area of the plane x3 = 0 covered by the
rough surface.

As we are concerned with scattering from a randomly
rough surface, it is the average, 〈M〉, of the Mueller ma-
trix over the ensemble of realizations of the surface pro-
file function that we seek. In evaluating an average of
the form

〈
RαβR

∗
γδ

〉
we can write Rαβ as the sum of its

mean value and its fluctuation about the mean, Rαβ =〈
Rαβ

〉
+
[
Rαβ −

〈
Rαβ

〉]
. We then obtain the result〈

RαβR
∗
γδ

〉
=
〈
Rαβ

〉〈
R∗γδ

〉
+ [
〈
RαβR

∗
γδ

〉 − 〈
Rαβ

〉〈
R∗γδ

〉
].

The first term on the right hand side of this equation
arises in the contribution to an element of the ensemble
averaged Mueller matrix from the light scattered coher-
ently (specularly); the second term arises in the contribu-
tion to that ensemble averaged matrix element from the
light scattered incoherently (diffusely). It is the latter
contribution, 〈M〉incoh, that we calculate.

We have calculated in this way the 16 elements of the
Mueller matrix when light of wavelength λ = 457.9 nm
is incident on a two-dimensional randomly rough silver
surface whose dielectric function at this wavelength is
ε(ω) = −7.5 + i0.24 [14]. The roughness of the surface
is defined by a surface height autocorrelation function
W (|x‖|) = exp(−x2

‖/a
2), where a = λ/4 and the rms

height δ = λ/40. For the numerical parameters we used
L = 25λ and Nx = 319 which implies that Q = 6.4(ω/c).
For these parameters, and when the metal is assumed to
be non-absorbing [Im ε(ω) ≡ 0], our simulation approach
conserved energy within a margin of 1% or better. More-
over, the calculated Mueller matrices were found to be
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FIG. 1: (Color online) Color-level plots of the contribution to the Mueller matrix elements from the light scattered incoherently
as functions of q1 and q2 for angles of incidence (θ0, φ0) = (2◦, 45◦). An ensemble consisting of Np = 10 000 surface realizations
was used in obtaining these results. The elements, 〈Mij〉incoh (i, j = 1, 2, 3, 4), are organized as a matrix with 〈M11〉incoh in the
top left corner; 〈M12〉incoh top row and second column, etc. The white spots indicate the specular direction in reflection.

physically realizable and therefore self-consistent by the
method of Ref. [15].

The results presented in Fig. 1 were obtained for angles
of incidence (θ0, φ0) = (2◦, 45◦), i.e. for (essentially) nor-
mal incidence. The first thing to notice is that the indi-
vidual matrix elements possess the symmetry properties
predicted by Bruce [7]. The elements of the first and last
column are circularly symmetric; each element of the sec-
ond and third columns is invariant under a combined 90◦

rotation about the origin and a change of sign; and the
elements of the second column are 45◦ rotations of the
elements of the third column in the same row [16]. Note
that the elements 〈M31〉incoh, 〈M41〉incoh, 〈M14〉incoh, and
〈M24〉incoh are zero, at least to the precision used in this
calculation.

The results presented in Fig. 2 were obtained for angles
of incidence (θ0, φ0) = (25◦, 45◦), and display some in-
teresting features. The elements 〈M11〉incoh, 〈M22〉incoh,
and 〈M33〉incoh contain a (weak) enhanced backscatter-
ing peak at q‖ = −k‖. The element 〈M44〉incoh appears
to have a dip in the retroreflection direction. This dip is
not present in the results of a calculation based on small-
amplitude perturbation theory to the lowest (second) or-
der in the surface profile function, and is therefore a mul-
tiple scattering effect, just as the enhanced backscatter-
ing peak is. In contrast to what was the case for normal
incidence, the elements 〈M31〉incoh and 〈M24〉incoh are no
longer zero.

If we denote the ensemble average of the contribu-
tion to a normalized element of the Mueller matrix
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FIG. 2: (Color online) Same as Fig. 1, but now for angles of incidence (θ0, φ0) = (25◦, 45◦).

from the light that has been scattered incoherently by
mij = 〈Mij〉incoh / 〈M11〉incoh, we can estimate the or-
der of magnitude of the Mueller matrix elements by
calculating the quantities sij =

〈|mij(q‖)|
〉
q‖
, where〈

f(q‖)
〉
q‖

=
∫
d2q‖ f(q‖)/π(ω/c)2, and the integral over

q‖ is taken over the circular region 0 < q‖ < ω/c. It was
found that s11, s22, s23, s32, s33, s44 are of O(1); s12,
s13, s21, s34, s42, s43 are of O(0.1); and s14, s24, s31, s41
are of O(0.01). These results are only weakly dependent
on the polar angle of incidence θ0, for the values of θ0
assumed in this study.

In conclusion, in this paper we have presented a
new approach to the calculation of all sixteen elements
of the Mueller matrix for light scattered from a two-
dimensional, randomly rough, lossy metal surface, for
arbitrary values of the polar and azimuthal angles of
incidence. It is based on a rigorous numerical solution

of the reduced Rayleigh equation for the scattering of
p- and s-polarized light from a two-dimensional rough
surface of a penetrable medium, that captures multiple-
scattering processes of all orders. The results display
multiple scattering effects in certain matrix elements,
such as an enhanced backscattering peak in the retrore-
flection direction, or an unexpected dip in the same direc-
tion. The matrix elements also display symmetry proper-
ties that, for normal incidence, agree with those predicted
by Bruce [7].

The physical implications of the approach and results
of this Letter point to better understanding of the po-
larimetric properties of random surfaces. Such knowl-
edge may be critical for improved photovoltaic and re-
mote sensing applications and has the potential of being
used to engineer surface structures with well-defined po-
larization properties of the light interacting with them.
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Numerical simulations of scattering of light from two-dimensional surfaces using the
Reduced Rayleigh Equation

T. Nordam,∗ P. A. Letnes,† and I. Simonsen‡
Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway

A formalism is introduced for the nonperturbative purely numerical solution of the reduced
Rayleigh equation for the scattering of light from two-dimensional penetrable rough surfaces. As
an example, we in this way study the scattering of p- or s-polarized light from two-dimensional
dielectric or metallic randomly rough surfaces by calculating the full angular distribution of the
co- and cross-polarized intensity of the scattered light. In particular, we present calculations of
the mean differential reflection coefficient for glass and silver surfaces characterized by Gaussian
and cylindrical power spectra. We find our results to be in agreement with previous work. The
proposed method is found, within the validity of the Rayleigh hypothesis, to give reliable results.
In particular, for a non-absorbing metal the conservation of energy is explicitly checked, and found
to be satisfied to within 0.03% or better for the simulation results presented.

I. INTRODUCTION

Wave scattering from rough surfaces is an old disci-
pline which keeps attracting a great deal of attention
from the scientific and technological community. Several
important technologies in our society rely on such knowl-
edge, with radar being a prime example. In the past, the
interaction of light with rough surfaces was often con-
sidered an extra complication that had to be taken into
account in order to properly interpret or invert scatter-
ing data. However, with the advent of nano technology,
rough structures can be used to design novel materials
with tailored optical properties. Examples are: metama-
terials [1, 2], photonic crystals [3], spoof plasmons [4],
optical cloaking [5–7], and designer surfaces [8, 9]. These
developments have made it even more important to have
available efficient and accurate simulation tools to calcu-
late both the far- and near-field behavior of the scattered
and transmitted fields for any frequency of the incident
radiation, including potentially resonant frequencies of
the structure.

Lord Rayleigh was the first to perform systematic stud-
ies of wave scattering from rough surfaces when, in the
late 1800s, he studied the intensity distribution of waves
scattered from a sinusoidal surface [10, 11]. More than
three decades later, Mandel’shtam studied light scatter-
ing from randomly rough surfaces [12] thereby initiat-
ing the field of wave scattering from surface disordered
systems. Since the initial publication of these seminal
works, numerous studies on wave scattering from ran-
domly rough surfaces have appeared in the literature [13–
19], and several new multiple scattering phenomena have
been predicted and confirmed experimentally. These
phenomena include the enhanced backscattering and en-
hanced transmission phenomena, the satellite peak phe-
nomenon, and coherent effects in the intensity-intensity

∗ tor.nordam@ntnu.no
† paul.anton.letnes@gmail.com
‡ Ingve.Simonsen@ntnu.no

correlation function [19–24].

These studies, and the methods they use, can be cate-
gorized as either perturbative, or purely numerical (and
non-pertubative). While the former group of methods
is limited to weakly rough surfaces, and therefore have
limited applicability, the latter group of methods can be
applied to a wider class of surface roughnesses. Rigor-
ous numerical methods can in principle be used to study
the wave scattering from surfaces of any degree of surface
roughness. Such simulations are routinely performed for
systems where the interface has a one-dimensional rough-
ness, i.e., where the surface structure is constant along
one of the two directions of the mean plane [19, 25].
However, for the practically more relevant situation of
a two-dimensional rough surface, the purely numerical
and rigorous methods are presently less used due to their
computationally intensive nature. The reason for this
complexity is the fact that for a randomly rough surface
there is no symmetry or periodicity in the surface struc-
ture that can be used to effectively reduce the simulation
domain. For a periodic surface, however, it is sufficient
to simulate a single unit cell, while for a random surface
the unit cell is in principle infinite.

A wide range of simulation methods are currently avail-
able for simulating the interaction of light with mat-
ter, including the finite-difference time-domain (FDTD)
method [26], the finite-element method (FEM) [27, 28],
the related surface integral equation techniques also
known as the boundary element method (BEM) or
the method of moments (MoM) [29–33], the reduced
Rayleigh equation (RRE) technique [18, 34–40], and
spectral methods [32].

The FDTD and FEM methods discretize the whole
volume of the simulation domain. Due to the complex
and irregular shape of a (randomly) rough surface, it is
often more convenient, and may give more accurate re-
sults (for the same level of numerical complexity) [41], to
base numerical simulations on methods where only the
surface itself needs to be discretized. This is the case,
for example, for the surface integral technique and the
reduced Rayleigh equation methods.
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The reduced Rayleigh equation is an integral equation
where the unknown is either the scattering amplitude
or the transmission amplitude. In the former (latter)
case one talks about the reduced Rayleigh equation for
reflection (transmission). For reflection this equation was
originally derived by Brown et al. [34], and subsequently
by Soubret et al. [39, 40]. Later it has also been derived
for transmission [42] and film geometries [39, 43, 44].

In the past, the surface integral technique has been
used to study light scattering from two-dimensional ran-
domly rough perfectly conducting or penetrable sur-
faces [33, 45, 46]. However, to date a direct numerical and
non-perturbative solution of the two-dimensional reduced
Rayleigh equation has not appeared in the literature,
even if its one-dimensional analog has been solved suc-
cessfully numerically and has been used to study the scat-
tering from, and transmission through, one-dimensional
rough surfaces [35–37]. The lesson learned from the one-
dimensional scattering studies reported in Refs. [35–37] is
that simulations based on a direct numerical solution of
the reduced Rayleigh equations may give accurate non-
perturbative results for systems where alternative meth-
ods struggle to give the same level of accuracy. More-
over, the Rayleigh method also requires less memory for
the same surface dimensions when compared to, e.g., the
rigorous surface integral technique.

The main aim of this paper is to present a numeri-
cal method and formalism for the solution of the two-
dimensional reduced Rayleigh equation for reflection.
While we exclusively consider reflection, the formalism
for transmission will be almost identical, and the result-
ing equation will have a similar form as for reflection.
Additionally, the equation for transmission or reflection
for a film geometry, i.e., for a film of finite thickness on
top of a substrate, where only one interface is rough, will
also have a similar form. The method presented will be
illustrated by applying it to study the scattering of p-
or s-polarized light from two-dimensional metallic or di-
electric media separated from vacuum by an isotropic or
anisotropic randomly rough surface.

This paper is organized as follows: First, in Sec. II
we present the scattering geometry which we consider.
We will then briefly outline a derivation of the reduced
Rayleigh equation for reflection (Sec. III), followed by
details of how the equation was solved numerically (Sec.
IV). Next, we will present some results (Sec. V). We
then discuss some of the computational challenges of this
method (Sec. VI), and, finally, in Sec. VII we draw some
conclusions.

II. SCATTERING GEOMETRY

We consider a system where a rough surface separates
two regions (Fig. 1). Region 1 is assumed to be vacuum
(ε1 = 1), and region 2 is filled with a metal or dielec-
tric characterized by a complex dielectric function ε2(ω),
where the angular frequency is ω = 2π/λ, with λ be-

x1

x2

x3

q

k

q‖
k‖

φs

φ0

θs
θ0

FIG. 1. A sketch of the scattering geometry assumed in this
work. The figure also shows the coordinate system used, an-
gles of incidence (θ0, φ0) and scattering (θs, φs), and the cor-
responding lateral wavevectors k‖ and q‖, respectively.

ing the wavelength of the incident light in vacuum. The
height of the surface measured in the positive x3 direc-
tion from the x1x2-plane is given by the single-valued
function x3 = ζ(x‖), where x‖ = (x1, x2, 0), which is as-
sumed to be at least once differentiable with respect to
x1 and x2. Angles of incidence (θ0, φ0) and scattering
(θs, φs) are defined positive according to the convention
given in Fig. 1.

In principle, the theory presented in Sec. III can be
used to calculate the scattering of light from any surface,
provided it is not too rough. However, in this paper,
we will consider randomly rough surfaces where ζ(x‖)
constitutes a stationary random process defined by〈

ζ(x‖)
〉
= 0,〈

ζ(x‖)ζ(x‖′)
〉
= δ2W (x‖ − x‖′).

(1)

In writing Eqs. (1) we have defined the root-mean-square

height of the surface, δ =
〈
ζ2(x‖)

〉1/2
, and W (x‖ − x‖′)

denotes the height-height auto-correlation function of the
surface, normalized so that W (0) = 1 [19]. According to
the Wiener-Khinchin theorem [47], the power spectrum
of the surface profile function is given by

g(k‖) =
∫

d2x‖ W (x‖) exp
(−ik‖ ·x‖) . (2)

The power spectra that will be considered in this work
are of either the Gaussian form [33]

g(k‖) =
√
πa1a2 exp

(
−k21a

2
1

4
− k22a

2
2

4

)
, (3)

where ai (i = 1, 2) denotes the lateral correlation length
for direction i, or the cylindrical form [38]

g(k‖) =
4π

k2+ − k2−

[
θ(k‖ − k−)θ(k+ − k‖)

]
, (4)
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where k‖ = |k‖|, θ denotes the Heaviside unit step func-
tion, and k± are wavenumber cutoff parameters, with
k− < k+. The cylindrical form in Eq. (4) is a two-
dimensional generalization of the power spectrum used
in the experiments of West and O’Donnell [21] that con-
firmed the existence of the enhanced backscattering phe-
nomenon for weakly rough surfaces.

III. SCATTERING THEORY

We consider a linearly p- or s-polarized plane wave
which is incident on the surface from region 1, with the
electric field given by Einc(x; t) = Einc(x|ω) exp(−iωt)
where

Einc(x|ω) = E inc(k‖) exp
[
ik‖ ·x‖ − iα1(k‖)x3

]
, (5a)

with

E inc(k‖) = − c

ω

[
k̂‖α1(k‖, ω) + x̂3k‖

]
E incp (k‖)

+
(
x̂3 × k̂‖

)
E incs (k‖),

(5b)

and

α1(k‖) =
(
ω2

c2
− k2‖

)1/2

, Reα1 ≥ 0, Imα1 ≥ 0. (5c)

Here, and in the rest of the paper, a caret over a vector
indicates a unit vector. The expressions in front of the
amplitudes E incα (k‖) (α = p, s) in Eq. (5b) correspond to
unit polarization vectors for the incident light of linear
polarization α. Moreover, k‖ = (k1, k2, 0) denotes the
lateral component of the wave vector k = k‖ − α(k‖)x̂3.
When the lateral wavenumber satisfies k‖ ≤ ω/c, it is
related to the angles of incidence according to

k‖ =
ω

c
sin θ0 (cosφ0, sinφ0, 0) , (6)

where c denotes the speed of light in vacuum and θ0
and φ0 are the polar and azimuthal angles of incidence,
respectively (Fig. 1). When writing the field of inci-
dence [Eq. (5)], we included a harmonic time dependence
exp(−iωt). For convenience, a similar time dependence
will be assumed in all field expressions, but not indicted
explicitly.

Above the surface roughness region, i.e., for x3 >
max ζ(x‖), the scattered field can be written as a super-
position of upwards propagating reflected plane waves:

Esc(x|ω) =
∫

d2q‖
(2π)2

Esc(q‖)

× exp
[
iq‖ ·x‖ + iα2(q‖)x3

]
,

(7a)

where

Esc(q‖) =
c

ω

[
q̂‖α1(q‖)− x̂3q‖

] Escp (q‖)

+
(
x̂3 × q̂‖

) Escs (q‖).
(7b)

The integration in Eq. (7a) is over the entire plane,
including the evanescent region q‖ > ω/c. Therefore,
both propagating and evanescent modes are included in
Esc(x|ω).
We will assume that a linear relationship exists be-

tween the amplitudes of the incident and the scattered
fields, and we write (for α = p, s)

Escα (q‖) =
∑
β=p,s

Rαβ(q‖|k‖)E incβ (k‖). (8)

Here we have introduced the so-called scattering am-
plitude Rαβ(q‖|k‖) which describes how incident β-
polarized light characterized by a lateral wave vector k‖
is converted by the surface roughness into scattered light
of polarization α and lateral wave vector q‖.

When q‖ ≤ ω/c, the wave vector q‖ is related to the
angles of scattering (θs, φs) by

q‖ =
ω

c
sin θs (cosφs, sinφs, 0) . (9)

Below the surface region, i.e., for x3 < min ζ(x‖), the
transmitted electric field can be written as

Etr(x‖|ω) =
∫

d2p‖
(2π)2

Etr(p‖)

× exp
[
ip‖ ·x‖ − iα2(p‖)x3

] (10a)

with

Etr(p‖) =
1√
ε2(ω)

c

ω

[
p̂‖α2(p‖)− x̂3p‖

] Etrp (p‖)

+
(
x̂3 × p̂‖

) Etrs (p‖).
(10b)

In writing Eqs. (10) we have introduced wave vectors of
the transmitted field p = p‖ − α2(p‖)x̂3, where

α2(p‖) =
[
ε2(ω)

ω2

c2
− p2‖

]1/2
,

Reα2 ≥ 0, Imα2 ≥ 0.

(11)

In complete analogy to what was done for reflection, a
transmission amplitude Tαβ(p‖|k‖) may be defined via
the following linear relation between the amplitudes of
the incident and transmitted fields (α = p, s)

Etrα (p‖) =
∑
β=p,s

Tαβ(p‖|k‖)E incβ (k‖). (12)

Since the form of the electric fields given by Eqs. (5),
(7), and (10) apply far away from the surface region,
they are referred as the asymptotic form of the electric
field. These equations satisfy the boundary conditions at
infinity.

In passing we note that once the incident field has been
specified, the scattered and transmitted fields are fully
specified outside the surface roughness region if the re-
flection [Rαβ(q‖|k‖)] and transmission [Tαβ(p‖|k‖)] am-
plitudes are known. We will now address how the reflec-
tion amplitude can be calculated.



4

A. The Rayleigh Hypothesis

Above the surface, i.e., in the region x3 > max ζ(x‖),
the total electric field is equal to the sum of the inci-
dent and the scattered field, Einc(x|ω) + Esc(x|ω). Be-
low the surface, in the region x3 < min ζ(x‖), it equals
the transmitted field, Etr(x|ω). In the surface rough-
ness region, min ζ(x‖) ≤ x3 ≤ max ζ(x‖), these forms
of the total field will not generally be valid. In partic-
ular, when we are above the surface but still below its
maximum point, ζ(x‖) ≤ x3 < max ζ(x‖), the expres-
sion for the scattered field will also have terms contain-
ing exp

[
iq‖ ·x‖ − iα1(q‖)x3

]
. Similarly, the transmitted

field in the surface region, has to contain an additional
term similar to Eq. (10a) but with the exponential func-
tion replaced by exp

[
iq‖ ·x‖ + iα2(q‖)x3

]
.

If the surface roughness is sufficiently weak, however,
the asymptotic form of the fields, Eqs. (5), (7), and (10),
can be assumed to be a good approximation to the total
electric field in the surface roughness region. This as-
sumption is known as the Rayleigh hypothesis [10, 11, 17],
in honor of Lord Rayleigh, who first used it in his
seminal studies of wave scattering from sinusoidal sur-
faces [10, 11]. For a (one-dimensional) sinusoidal sur-
face, x3 = ζ0 sin(Λx1), the criterion for the validity of
the Rayleigh hypothesis, and thus equations that can be
derived from it (like the reduced Rayleigh equation to be
introduced below), is known to be ζ0Λ < 0.448, indepen-
dent of the wavelength of the incident light [48, 49]. For
a randomly rough surface, however, the absolute limit
of validity of this hypothesis is not generally known,
though some numerical studies have been devoted to find-
ing the region of validity of this hypothesis for random
surfaces [50]. Even if no absolute criterion for the validity
of the Rayleigh hypothesis for randomly rough surfaces is
known, it remains true that it is a small-slope hypothesis.
In particular, if the randomly rough surface is character-
ized by an rms height, δ, and a correlation length a (see
Sec. II and Ref. [19] for details), there seems to be a con-
sensus in the literature on the Rayleigh hypothesis being
valid if δ/a � 1 [17, 50]. We stress that the validity of
the Rayleigh hypothesis does not require the amplitude

of the surface roughness to be small, only its slope.

B. The Reduced Rayleigh Equations

Under the assumption that the Rayleigh hypothesis
is valid, the total electric field in the surface region,
min ζ(x‖) < x3 < max ζ(x‖), can be written in the form
given by Eqs. (5), (7) and (10) [with Eqs. (8) and (12)].
Hence, these asymptotic fields can be used to satisfy the
usual boundary conditions on the electromagnetic field
at the rough surface x3 = ζ(x‖) [51, 52]. In this way, one
obtains the so-called Rayleigh equations, a set of coupled
inhomogeneous integral equations, which the reflection
and transmission amplitudes should satisfy.

In the mid-1980s, it was demonstrated by Brown et
al. [34] that either the reflection or transmission ampli-
tude could be eliminated from the Rayleigh equations
resulting in an integral equation for the remaining am-
plitude only. Since this latter integral equation contains
only the field above (below) the rough surface, it has
been termed the reduced Rayleigh equation for reflection
(transmission). Subsequently, reduced Rayleigh equa-
tions for two-dimensional film geometries, i.e., a film of
finite thickness on top of an infinitely thick substrate,
where only one interface is rough was derived by Soubret
et al. [39, 40] and Leskova [43, 44]. Moreover, reduced
Raleigh equations for reflection from clean, perfectly con-
ducting, two-dimensional randomly rough surfaces [53]
and reduced Raleigh equations for transmission through
clean, penetrable two-dimensional surfaces [42] have been
derived.

For the purposes of the present study, we limit our-
selves to a scattering system consisting of a clean,
penetrable, two-dimensional rough surface x3 = ζ(x‖)
(Sec. II). If the scattering amplitudes are organized as
the 2× 2 matrix

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
, (13)

the reduced Rayleigh equation for this geometry can be
written in the form [38–40]

∫
d2q‖
(2π)2

I
(
α2(p‖)− α1(q‖)|p‖ − q‖

)
α2(p‖)− α1(q‖)

M+(p‖|q‖)R(q‖|k‖) = −
I
(
α2(p‖) + α1(k‖)|p‖ − k‖

)
α2(p‖) + α1(k‖)

M−(p‖|k‖), (14a)

where

I(γ|Q‖) =
∫

d2x‖ exp
[−iγζ(x‖)] exp (−iQ‖ ·x‖) , (14b)

and

M±(p‖|q‖) =
(

p‖q‖ ± α1(q‖)α2(p‖)p̂‖ · q̂‖ −ω
c α2(p‖)

[
p̂‖ × q̂‖

]
3

±ω
c α1(q‖)

[
p̂‖ × q̂‖

]
3

ω2

c2 p̂‖ · q̂‖

)
, (14c)

where the integrals in Eqs. (14a) and (14b) are over the entire q‖-plane and x‖-plane, respectively.
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As mentioned previously, reduced Rayleigh equations
for transmission, or film geometries with only one rough
interface, will have a similar structure to Eq. (14) [39, 40].
Hence, for the purpose of introducing a formalism for
solving the reduced Rayleigh equation numerically, we
have decided to treat the simplest geometry consisting
of the scattering of light from a clean, penetrable two-
dimensional rough surface. Reduced Rayleigh equations
corresponding to other geometries can therefore be solved
in a completely analogous fashion.

It should be mentioned that the reduced Rayleigh
equation can serve as a starting point for most, if not
all, perturbation theoretical approaches to the study
of scattering from rough surfaces [19]. For example,
McGurn and Maradudin studied the scattering of light
from two-dimensional rough surfaces based on the re-
duced Rayleigh equation, going to fourth order in the
expansion in the surface profile function, and demon-
strating the presence of enhanced backscattering [38].

C. Mean Differential Reflection Coefficient

The solution of the reduced Rayleigh equation deter-
mines the scattering amplitudes Rαβ(q‖|k‖). While this
quantity completely specifies the total field in the region
above the surface, it is not directly measurable in exper-
iments. A more useful quantity is the mean differential
reflection coefficient (DRC), which is defined as the time-
averaged fraction of the incident power scattered into the
solid angle dΩs about the scattering direction q. The
mean DRC is defined as [38]

〈
∂Rαβ

∂Ωs

〉
=

1

L2

ω2

4π2c2
cos2 θs
cos θ0

〈∣∣Rαβ(q‖|k‖)
∣∣2〉 , (15)

where L2 is the area covered by the surface. In this work,
we are mainly interested in diffuse (incoherent) scatter-
ing. Since we consider weakly rough surfaces, the spec-
ular (coherent) scattering will dominate, and it will be
convenient to separate the mean DRC into its coherent
and incoherent parts. By coherent scattering, we mean
the part of the scattered light which does not cancel when
the ensemble average of Rαβ is taken, i.e., the part where
the scattered field is in phase between surface realiza-
tions. Conversely, the incoherent part is the part which
cancels in the ensemble average. The component of the
mean DRC from incoherent scattering is [38]

〈
∂Rαβ

∂Ωs

〉
incoh

=
1

L2

ω2

4π2c2
cos2 θs
cos θ0

×
[〈∣∣Rαβ(q‖|k‖)

∣∣2〉− ∣∣〈Rαβ(q‖|k‖)
〉∣∣2] . (16)

The contribution to the mean DRC from the coher-
ently scattered light is given by the difference between
Eqs. (15) and (16).

D. Conservation of energy

As a way to check the accuracy of our results, it is use-
ful to investigate energy conservation. If we consider a
metallic substrate with no absorption, the reflected power
should be equal to the incident power. The fraction of
the incident light of polarization β which is scattered into
polarization α is given by the integral of the correspond-
ing mean DRC over the upper hemisphere:

Uαβ =

∫
dΩs

〈
∂Rαβ

∂Ωs

〉
. (17)

For a non-absorbing metal, if we send in light of polar-
ization β, we should have∑

α

Uαβ = 1, (18)

if energy is conserved. While the conservation of energy
is useful as a relatively simple test, it is important to
note that it is a necessary, but not sufficient condition
for correct results.

IV. NUMERICAL SOLUTION OF THE
REDUCED RAYLEIGH EQUATION

The starting point for the numerical solution of the re-
duced Rayleigh equation is a discretely sampled surface,
from which we wish to calculate the reflection. We will
limit our discussion to quadratic surfaces of size L × L,
sampled on a quadratic grid of Nx × Nx points with a
grid constant

Δx =
L

Nx
. (19)

In this paper, we will present results for numerically
generated random surfaces. These are generated by what
is known as the Fourier filtering method. Briefly, it con-
sists of generating uncorrelated random numbers with
a Gaussian distribution, transforming them to Fourier
space, filtering them with the square root of the surface
power spectrum g(k‖), and transforming them back to
real space. See, e.g., Refs. [25, 33].

The next step towards the numerical solution of the
reduced Rayleigh equation is the evaluation of the inte-
grals I(γ|Q‖) defined in Eq. (14b). These integrals are
so-called Fourier integrals and care should be taken when
evaluating them due to the oscillating integrands [54].
Using direct numerical integration routines for their eval-
uation will typically result in inaccurate results. In-
stead, a (fast) Fourier transform technique with end
point corrections may be adapted for their evaluation,
and the details of the method is outlined in Ref. [54].
However, these calculations are time consuming, since
I(γ|Q‖) must be evaluated for all values of the arguments
γ = α1(p‖)− α2(q‖) and γ = α1(p‖)− α2(k‖) [55].



6

Instead, a computationally more efficient way of evalu-
ating I(γ|Q‖) is to assume that the exponential function

exp
[−iγζ(x‖)], present in the definition of I(γ|Q‖), can

be expanded in powers of the surface profile function, and
then evaluating the resulting expression term-by-term by
Fourier transform. This gives

I(γ|Q‖) =
∞∑

n=0

(−iγ)n
n!

ζ̂(n)(Q‖), (20a)

where ζ̂(n)(Q‖) denotes the Fourier transform of the nth
power of the profile function, i.e.,

ζ̂(n)(Q‖) =
∫

d2x‖ζn(x‖) exp
(−iQ‖ ·x‖) . (20b)

In practice, the sum in Eq. (20a) will be truncated at a
finite value n = J , and the Fourier transforms are calcu-
lated using a fast Fourier transform (FFT) algorithm.

The advantage of using Eqs. (20) for calculating
I(γ|Q‖), rather than the method of Ref. [54], is that the
Fourier transform of powers of ζ(x‖) can be performed
once, and changing the argument γ in I(γ|Q‖) will not re-
quire additional Fourier transforms to be evaluated. This
will be seen to result in a significant reduction in com-
putational time. The same method has previously been

applied successfully to the numerical solution of the one-
dimensional reduced Rayleigh equation [35–37].

It should be noted that the Taylor expansion used to
arrive at Eq. (20) requires that

∣∣γζ(x‖)∣∣ � 1 to con-
verge reasonably fast, putting additional constraints on
the amplitude of the surface roughness which may be
more restrictive than those introduced by the Rayleigh
hypothesis. Hence, surfaces exist for which the Rayleigh
hypothesis is satisfied, but the above expansion method
will not converge so that the more time-consuming ap-
proach of Ref. [54] will have to be applied.

The next step towards the numerical solution of the
reduced Rayleigh equation is to truncate and discretize
the integral over q‖ in Eq. (14a). We discretize q‖ on a
grid of equidistant points, with spacing Δq, such that

q‖ij =
(
−Q

2
+ iΔq,−Q

2
+ jΔq, 0

)
, (21)

where i, j = 0, 1, 2, . . . , Nq − 1, and Q = 2Δq(Nq − 1).
Here, Nq denotes the number of points along each axis
of the grid. Additionally, we limit the integration over
q‖ to the region q‖ < Q/2. The choice of a circular inte-
gration domain reduces the computational cost, and will
be discussed in more detail in Sec. VIB. Converting the
integral into a sum by using a two-dimensional version
of the standard mid-point quadrature scheme, we get the
equation:

(
Δq

2π

)2 ∑
q‖ij

≤Q/2

I
(
α2(p‖)− α1(q‖ij)|p‖ − q‖ij

)
α2(p‖)− α1(q‖ij)

M+(p‖|q‖ij)R(q‖ij |k‖) =

− I
(
α2(p‖) + α1(k‖)|p‖ − k‖

)
α2(p‖) + α1(k‖)

M−(p‖|k‖).

(22)

Here, the sum is to be taken over all q‖ij such that

q‖ij ≤ Q/2, where q‖ij =
∣∣∣q‖ij

∣∣∣. This sum yields a ma-

trix equation where the unknowns are the four compo-
nents of R(q‖ij |k‖). It is evident from Eq. (8) that if we

consider incident light of either p or s polarization, we
need only calculate two of the components of the scatter-
ing amplitude to fully specify the reflected field. Hence,
we solve separately for either p-polarized incident light,
i.e., Rpp and Rsp, or s-polarized incident light, i.e., Rss

and Rps. In either case, we have twice as many unknowns
as the number of values of q‖ij included in the sum in

Eq. (22). Note that the coefficient matrix of the equation
system is the same for both incident polarizations, and
will also remain the same for all angles of incidence, as
k‖ only enters at the right hand side of Eq. (22).

In order to solve for all unknowns, we need to discretize
p‖ as well, to obtain a closed set of linear equations. Us-

ing the same grid for p‖ as for q‖ will give us the neces-
sary number of equations, as Eq.(22) yields two equations
for each value of p‖. Since we integrate over a circular
q‖ domain, with q‖ discretized on a quadratic grid, the
exact number of values of q‖ij will depend on the par-

ticular values of Q and Nq, but will be approximately
(π/4)N2

q .

In order to take advantage of the method for calculat-
ing I(γ|Q‖) described by Eq. (20), it is essential that all
possible values of p‖ − q‖ and p‖ − k‖ [see Eq. (22)] fall
on the grid of wave vectors Q‖ resolved by the Fourier
transform of the surface profile we used in that calcula-
tion. First, we note that when p‖ and q‖ are discretized
on the same grid, the number of possible values for each
component of p‖ − q‖ will always be an odd number,
2Nq − 1. Thus, by choosing Nq such that 2Nq − 1 equals
the number of elements along each axis of the FFT we
used to calculate the integrals in Eq. (20b), we ensure
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that the required number of points is resolved by the
FFT. Hence, we choose

Nq =

⌊
Nx + 2

2

⌋
, (23)

where �x� is the floor function of x, which is equal to the
largest integer less than or equal to x.

Next, we let Δq equal the resolution of the FFT [54],
i.e.,

Δq =
2π

L
(24)

and we letQ be equal to the highest wavenumber resolved
by the FFT [54],

Q = Δq�Nx/2�. (25)

In the end, we get the equation

(
Δq

2π

)2 ∑
∣
∣
∣q‖ij

∣
∣
∣≤Q/2

I
(
α2(p‖kl)− α1(q‖ij)|p‖kl − q‖ij

)
α2(p‖kl)− α1(q‖ij)

M+(p‖kl|q‖ij)R(q‖ij |k‖mn
) =

− I
(
α2(p‖kl) + α1(k‖mn

)|p‖kl − k‖mn

)
α2(p‖kl) + α1(k‖mn

)
M−(p‖kl|k‖mn

),

(26)

where q‖ij , as well as p‖kl and k‖mn
, are defined on the

grid given by Eq. (21), with i, j = 0, 1, 2, . . . , Nq − 1, and
where Nq, Δq and Q are given by Eqs. (23), (24) and
(25), respectively.

Evaluating Eq. (26) for all values of p‖kl satisfying

p‖kl ≤ Q/2 [with k, l = 0, 1, 2, . . . , Nq − 1], and assuming
one value of k‖mn

as given by the angles of incidence by

Eq. (6), results in a closed system of linear equations in
R(q‖ij |k‖mn

).

By generating a realization of the surface profile func-
tion by the method of Refs. [25, 33], the functions
I(γ|Q‖) can be calculated from Eq. (20a) as discussed
earlier. Hence, the full coefficient matrix and right-hand-
side of the linear system can readily be evaluated and its
solution is R(q‖ij |k‖mn

). With the reflection amplitudes

Rαβ(q‖ij |k‖mn
) available, the contribution to the mean

differential reflection coefficient from the light that has
been scattered incoherently is obtained from Eq. (16) af-
ter averaging over an ensemble of surface realizations.

In passing we note that to avoid loss of numerical pre-
cision by operating on numbers with widely different or-
ders of magnitude, we have rescaled all quantities in our
problem to dimensionless numbers. When considering an
incoming wave of wavelength λ, angular frequency ω and
wave vector k, we have chosen to rescale all lengths in our
problem by multiplying with ω/c, and all wavenumbers
by multiplying with c/ω, effectively measuring all lengths
in units of λ/2π, and the magnitude of wave vectors in
units of ω/c.

V. RESULTS

To demonstrate the use of the formalism for solving the
reduced Rayleigh equation, the first set of calculations we
carried out was for two-dimensional randomly rough sil-
ver surfaces characterized by an rms-height of δ = 0.025λ
and an isotropic Gaussian power spectrum [Eq. (3)] of
correlation lengths a1 = a2 = 0.25λ. In Figs. 2 and
3 we present simulation results for the contribution to
the mean differential reflection coefficients from light of
wavelength (in vacuum) λ = 457.9 nm that was scattered
incoherently from a rough silver surface of size 25λ×25λ,
discretized into 319× 319 points. The dielectric function
of silver at this wavelength is ε2 = −7.5 + 0.24i, and the
angles of incidence where θ0 = 18.24◦ and φ0 = 45◦.

Figure 2 shows the in-plane scattering for this system.
The enhanced backscattering peak, a multiple scatter-
ing phenomenon, is clearly visible, and is as expected
strongest in p→ p scattering, since p-polarized light has
a stronger coupling to surface plasmon polaritons [19].
Figure 3 shows the full angular distribution of the DRC
for the same system. In Figs. 3(a)–(c) and Figs. 3(d)–
(e) the incident light was p- and s-polarized, respectively.
Figures 3(c) and 3(f) show scattering into s-polarization,
Figs. 3(b) and 3(e) show scattering into p-polarization
and in Figs. 3(a) and 3(d) the polarization of the scatted
light was not recorded. The results presented in Figs. 2
and 3 were obtained by averaging the DRC over an en-
semble consisting of 14, 200 surface realizations.

A test of energy conservation was performed with the
same parameters as the silver surface presented here, ex-
cept that Im ε2 = 0, i.e., a metal surface with no absorp-
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FIG. 2. Incoherent part of the mean differential reflection
coefficient [Eq. (16)], showing only the in-plane scattering as a
function of outgoing lateral wave vector, averaged over 14200
randomly rough silver surface realizations. The wavelength
(in vacuum) of the incident light was λ = 457.9 nm, and the
dielectric function of silver at this wavelength is ε2 = −7.5 +
0.24i. The surface power spectrum was Gaussian [Eq. (3)],
with correlation length a1 = a2 = 0.25λ and rms height δ =
0.025λ. The angle of incidence was θ0 = 18.24◦, the surface
covered an area L × L, where L = 25λ, and the surface was
discretized on a grid of 319× 319 points. The position of the
specular peak (not present in the incoherent part) and the
enhanced backscattering peak are indicated by the vertical
dashed lines.

tion. We found |U −1| ≤ 0.0003, i.e., energy is conserved
to within 0.03%. As a further test, we simulated a set of
surfaces with the same parameters as those presented in
Figs. 2 and 3, except that the rms-roughness δ, was var-
ied between 0.0 and 0.045λ, while the correlation length
was held constant at a1 = a2 = 0.25λ. We also did the
same set of simulations for the surface with no absorp-
tion, i.e., with ε2 = −7.5. The results of these tests are
presented in Fig. 4.

As mentioned previously, the reduced Rayleigh equa-
tion is only valid for surfaces with small slopes. We have
found that for the parameters described above, our code
gives good results for an rms-roughness to correlation-
length ratio δ/a � 0.12. For larger ratios δ/a, the results
look qualitatively much the same, but the ratio of re-
flected to incident power starts increasing past 1, as seen
in Fig. 4.

The next set of calculation we performed was for a di-
electric substrate, characterized by ε2 = 2.64. Otherwise,
all parameters where the same as for the silver surface
presented in Figs. 2 and 3. These results are presented

−0.5

0.0

0.5

1.0

q 2
/(

ω
/c
)

p → �

(a)

s → �

(d)

−0.5

0.0

0.5

1.0

q 2
/(

ω
/c
)

p → p

(b)

s → p

(e)

−0.5 0.0 0.5 1.0
q1/(ω/c)

−0.5

0.0

0.5

1.0

q 2
/(

ω
/c
)

p → s

(c)

–1.0
–1.0

−0.5 0.0 0.5 1.0
q1/(ω/c)

s → s

(f)

0.000 0.008 0.016 0.024
〈∂Rαβ/∂Ωs〉incoh

FIG. 3. Incoherent part of the mean differential reflection
coefficient [Eq. (16)], showing the full angular distribution as
a function of outgoing lateral wave vector. All parameters are
the same as in Fig. 2. The specular position is indicated by
the white dots.

in Fig. 5. Comparing these data to those presented in
Fig. 3, we notice that the dielectric has less reflection
(the figures show only the incoherent scattering, but the
same holds for the coherent part), which is as expected.
The ratio of reflected to incident power for these data was
U = 0.0467 for p-polarized light at an angle of incidence
of θ0 = 18.24◦. Note that for a transparent substrate,
it is impossible verify the conservation of energy without
also calculating the transmitted field. Additionally, we
notice the absence of the enhanced backscattering peak,
which is also as expected, since this phenomenon (on a
weakly rough surface) depends on surface guided modes.

So far, we have considered surfaces with statisti-
cally isotropic roughness. For the results presented in
Fig. 6, we simulated scattering from a silver surface
with the same parameters as for the surface presented
in Figs. 2 and 3, except the surface power spectrum was
anisotropic, with correlation lengths a1 = 0.25λ in the
x1 direction and a2 = 0.75λ in the x2 direction and an
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FIG. 4. Ratio of reflected power to incident power, U , as
a function of ratio between rms-roughness and correlation
length, δ/a. Surface size and resolution were the same as
for Fig. 2, and the surface was randomly rough with a Gaus-
sian power spectrum, correlation length was kept constant at
a = a1 = a2 = 0.25λ, while the rms-roughness δ was var-
ied from 0.0 to 0.045λ. The Fresnel coefficients have been
included for comparison.

rms-roughness of δ = 0.025λ. The figure shows the inco-
herent part of the mean DRC averaged over 6800 surface
realizations. In this case, there is more diffuse scatter-
ing along the x1 direction, which is to be expected, since
the shorter correlation length means the height of the
surface changes faster when moving along the surface in
this direction.

Finally, for the results presented in Fig. 7, we have
simulated the scattering of light from a surface of size
25λ × 25λ, discretized into 319 × 319 points, with ε2 =
−16 + 1.088i, corresponding to silver at λ = 632.8 nm.
The surface power spectrum was cylindrical [See Eq. (4)],
with k− = 0.82ω/c, k+ = 1.97ω/c and rms-roughness
δ = 0.025λ. The figure shows the in-plane, incoherent
part of the mean differential reflection coefficient aver-
aged over 7000 surface realizations. The angles of inci-
dence were (φ0 = 45◦, θ0 = 1.6◦).

From perturbation theory [17, 19], we know that for an
incident wave with lateral wave vector k‖ to be scattered
via single scattering to a reflected wave vector q‖, we
must have g(q‖ − k‖) > 0, where g(k‖) is the surface
power spectrum [Eq. (2)]. Since the power spectrum in
this case was zero for |q‖ − k‖| < 0.82ω/c, we have no
single scattering between θs = −53.5◦ and θs = 56.7◦
(for the angles of incidence used here). The enhanced
backscattering peak, which is due to double scattering,
is still clearly visible.

The results presented here were obtained on shared-
memory machines with 24 GB of memory and two six-
core 2.4 GHz AMD Opteron processors. Solving for one
surface realization required 12 GB of memory, and took
approximately 17 CPU minutes.
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FIG. 5. The same as in Fig. 3, except that ε2 = 2.64, and the
results are averaged over 21800 randomly rough surfaces.

VI. DISCUSSION

A challenge faced when performing a direct numerical
solution of the reduced Rayleigh equation for the scat-
tering of light from two-dimensional surfaces is the nu-
merical complexity. In this section, we detail and discuss
some of these issues.

A. Memory

Part of the challenge of a purely numerical solution of
the reduced Rayleigh equation in the way described in
this paper, is that it requires a relatively large amount
of memory. With approximately N = (π/4)N2

q possible
values for q‖, the coefficient matrix of the equation sys-

tem will contain approximately (2N )2 elements, where
the factor 2 comes from the two outgoing polarizations.
Hence, the memory required to hold the left hand side of
the equation system will be 4N 2η, where η is the number
of bytes used to store one complex number. If each ele-
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FIG. 6. The same as in Fig. 3, except the correlation length
of the Gaussian roughness, which is a1 = 0.25λ in the x1

direction and a2 = 0.75λ in the x2 direction, and the results
are the average of an ensemble of 6800 surface realizations.

ment is a single precision complex number, which is what
was used for the results presented in this paper, then
η = 8 bytes, and the matrix will require approximately
2π2N4

q bytes of memory. For instance, for Nx = 319,
which has been used for all the results presented in this
paper, the coefficient matrix takes up approximately 12
GB of memory. Note that if we had used a square in-
tegration domain for the integral over q‖ in Eq. (??),
the number of elements in the coefficient matrix would
have been (2N2

q )
2. Hence, due to the circular cutoff in

the integral over q‖, the memory footprint is reduced by

approximately a factor π2/16 ≈ 0.62.

When determining the system size, we can freely
choose the length of the edge of the surface L, and
the number of sampling points along each direction Nx.
These parameters will then fix the resolution of the sur-
face, Δx, the resolution in wave vector space, Δq, the
number of resolved wave vectors, Nq, and the cutoff in
the q‖ integral, Q [see Eqs. (19), (24), (23), and (25)].

−90 −60 −30 0 30 60 90

θs [◦]

0

2

4

6

8

10

12

14

16

〈∂
R

α
β
/
∂
Ω

s
〉 in

c
o
h

×
1
0
3

p → p

s → p

p → s

s → s

±θ0

FIG. 7. Incoherent part of the mean differential reflection
coefficient [Eq. (16)], showing only the in-plane scattering as
function of outgoing lateral wave vector, averaged over 7000
surface realizations with dielectric constant ε2 = −16+1.088i,
which corresponds to silver at λ = 632.8 nm. The surface
power spectrum was of the cylindrical type [Eq. (4)], with
k− = 0.82ω/c, k+ = 1.97ω/c, and rms-roughness δ = 0.025λ.
The angles of incidence were θ0 = 1.6◦ and φ0 = 45◦.

The combination of Δq andQ then determines how many
of the resolved wave vectors actually fall inside the prop-
agating region, |q‖| < ω/c, which is identical to the num-
ber of data points used in, e.g., Figs. 5–7.

As we are not free to choose all the parameters, it is
clear that some kind of a compromise is necessary. Nx,
and by extension Nq, determines the amount of memory
needed to hold the coefficient matrix, as well as the time
required to solve the system, which means it is likely to
be limited by practical considerations. It is then possi-
ble to choose L to get good resolution of the surface, at
the cost of poor resolution in wave vector space, or vice
versa. Note also that changing L will change Q. If Q
is not large enough to include evanescent surface modes,
multiple scattering will not be correctly included in the
results. The optimal compromise depends on the system
to be studied.

B. Time

The simulations presented in this paper were per-
formed on shared-memory machines with 24 GB of mem-
ory and two six-core 2.4 GHz AMD Opteron processors,
running version 2.6.18-194.32.1.el5 of the Linux operat-
ing system. Our program is parallelized with the MPI
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TABLE I. Walltime spent to solve the RRE for various Nx on
a shared-memory machine with two six-core 2.4 GHz AMD
Opteron processors. Included are total time (ttot), time to
setup the coefficient matrix of the equation system (tLHS) and
the time to solve the equation system (tsolve). Also included
is the size of the coefficient matrix of the equation system for
each run (MLHS).

Nq tLHS(s) tLU(s) ttot(s) MLHS(GB)
199 9.8 58 69 1.8
239 28 171 200 3.8
279 56 429 486 7.0
319 97 946 1, 045 12.0
369 154 1, 916 2, 074 19.2
399 266 3, 625 3, 895 29.4

library, and the equation setup runs on all 12 cores in the
timing examples given. The solver used was a parallel,
dense solver based on LU-factorization (PCGESV from
ScaLAPACK), which also runs efficiently on all 12 cores.
Setting up the equation system scales almost perfectly
to a large number of cores, while the solver scales less
well, due to the need for communication. Numerically
solving the reduced Rayleigh equation for one surface of
319×319 points, as in the results presented in this paper,
uses 12 GB of memory, and takes approximately 17 min-
utes on the architecture described above. Of this time,
approximately 100 seconds is spent setting up the equa-
tion system, 950 seconds is spent solving the equation
by LU decomposition system, and typically less than 1
second is spent on other tasks, including writing data to
disk. See Table I for further timing details.

The ratio of the time spent solving the equation system
to the total time increases with increasing system size, as
the time to set up the equation system is O(N4

x), while
the time to solve the system scales as O(N6

x). For any
surface of useful size, however, the runtime is completely
dominated by the time spent in solving the equation.

Since the time to solve the equation system dominates,
we investigated whether we could improve the perfor-
mance by using an iterative solver instead of one based
on LU decomposition. For example, Simonsen et al. [56]
report good performance using BiCGStab [57] on a dense
matrix of a similar size. We found that convergence with
BiCGStab was slow and unreliable, though it should be
noted we did not use a preconditioning scheme. Addi-
tionally, as can be seen from Eq. (14a), changing the
angle of incidence or the incident polarization changes
the right hand side of the equation only. The advantage
of using LU decomposition is that the additional time
to solve the system for several right hand sides is negli-
gible, while the time spent with an iterative solver like
BiCGStab will scale linearly with the number of right
hand sides (and thus angles of incidence). For these rea-
sons, we have chosen to use an LU-based solver.

C. GPU implementation

Currently, performing simulations like those presented
in this paper on a single desktop computer is pro-
hibitively time consuming. However, the increasing avail-
ability of powerful Graphics processing units (GPUs) has
the potential make computing power comparable to that
of a powerful parallel machine available at a fraction of
the cost. As the most time-consuming part of our simu-
lations is the LU factorization of the system matrix (see
Table I), this is where effort should be made to opti-
mize the code, and for this reason the simulation code
was adapted to (optionally) employ version 1.0 of the
MAGMA library [58] for GPU-based LU factorization.
Performance was compared between a regular supercom-
puting service and a GPGPU (General Purpose GPU)
testbed. When our simulations were run on the regular
service, the code was running on a single compute node
containing two AMD 2.3 GHz 16-core processors and 32
GB of main memory. On the GPGPU testbed, the hard-
ware consisted of a single Nvidia Fermi C2050 processor
with 3 GB of dedicated memory and 32 GB of main sys-
tem memory. For these two computer systems, initial
performance testing indicates that the LU factorization
took comparable time on the two architectures (the dif-
ference was less than 10%) for a system of size Nq = 100,
including transfer of the system matrix and factorization
to and from the Fermi card. This demonstrates that
there is a possibility of performing simulations such as
those used to generate the figures in this paper without
resorting to supercomputing resources.

VII. CONCLUSION

We have introduced a formalism for performing a non-
perturbative, purely numerical, solution of the reduced
Rayleigh equation for reflection from two-dimensional
penetrable rough surfaces, characterized by a complex
dielectric function ε(ω). We believe this will prove an
important addition to the collection of available meth-
ods for numerical simulations of the scattering of light
from rough surfaces.

As an example, we have used this formalism to carry
out simulations of the scattering of p or s polarized light
from two-dimensional randomly rough surfaces charac-
terized by Gaussian [Eq. (3)] and cylindrical [Eq. (4)]
power spectra. From the scattering amplitude, we calcu-
late the mean differential reflection coefficient, and we ob-
tain the full angular distribution of scattered light, with
polarization information.

We have presented the results of these calculations
(Figs. 2-7), and we find our simulation code, within the
validity of the reduced Rayleigh equation, to give reliable
results. In particular, for a non-absorbing metal the con-
servation of energy is explicitly checked and found, for
the physical parameters assumed, to be satisfied within
0.03%, or better. We also observe phenomena such as en-
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hanced backscattering which are expected from previous
experimental and theoretical work.
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Abstract: A nonperturbative, purely numerical, solution of the reduced
Rayleigh equation for the scattering of p- and s-polarized light from a
dielectric film with a two-dimensional randomly rough surface deposited
on a planar metallic substrate, has been carried out. It is found that satellite
peaks are present in the angular dependence of the elements of the mean
differential reflection coefficient in addition to an enhanced backscattering
peak. This result resolves a conflict between the results of earlier approxi-
mate theoretical studies of scattering from this system.
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In the earliest analytic [1] and computer simulation [2,3] studies of the multiple scattering of
light from clean one-dimensional randomly rough surfaces of perfect conductors or of penetra-
ble media, the focus was on the phenomenon of enhanced backscattering. This is the presence
of a well-defined peak in the retroreflection direction in the angular dependence of the intensity
of the light that has been scattered incoherently (diffusely).

In subsequent work on the multiple scattering of light from free-standing or supported films
with a one-dimensional randomly rough surface that support two or more guided waves, new
effects were discovered [4]. These include enhanced transmission, which is the presence of a
well-defined peak in the anti-specular direction in the angular dependence of the intensity of
the light transmitted through the film [5]. Perhaps more interesting was the discovery of satel-
lite peaks in the angular dependence of the intensity of the light scattered from or transmitted
through the film. These are well-defined peaks present on both sides of the enhanced backscat-
tering and enhanced transmission peaks, respectively, that arise from the coherent interference
of guided waves with the frequency of the incident light, but with different wavenumbers [6].

It should be noted, however, that the prediction of these satellite peaks was first made in the
context of the scattering of electromagnetic waves from a dielectric film containing a random
distribution of volume scatterers [7], rather than from a randomly rough surface, when the
thickness of the film is small compared to the mean free path of the electromagnetic wave in
the random medium.

In analytic [8–10] and computer simulation calculations [11–13] of the multiple scattering
of light from clean two-dimensional randomly rough surfaces of perfect conductors and pen-
etrable media, enhanced backscattering was observed in the results. However, when attention
turned to the scattering of light from a perfectly conducting surface coated with a dielectric
film, conflicting results were obtained. In these studies the dielectric-perfect conductor inter-
face was assumed to be planar, while the vacuum-dielectric interface was assumed to be a
two-dimensional randomly rough interface. In the first of these studies Kawanishi et al. [14]
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applied the stochastic functional approach to this problem and found no evidence for satellite
peaks in their results. They suggested that the ensemble averaging of the intensity of the scat-
tered field restores isotropy in the mean scattering plane, and thereby eliminates the occurrence
of special scattering angles at which satellite peaks could occur. In subsequent work in which
the reduced Rayleigh equation for scattering from this structure [10,15] was solved in the form
of expansions of the amplitudes of the p- and s-polarized components of the scattered field in
powers of the surface profile function through terms of third order, satellite peaks were found.
However, the contribution to the scattering amplitudes associated with the third-order term was
larger than that from the first-order term for the roughness and experimental parameters as-
sumed in that work. It is therefore possible that these values fell outside the ranges for which a
perturbative solution of the reduced Rayleigh equation is reliable.

Although satellite peaks were observed in experiments carried out by Méndez et al. [16] that
utilized the double passage of polarized light through a random phase screen, the experimental
conditions were sufficiently different from those studied theoretically in Refs. [10, 14], that
these results could not be used to support the predictions of either of these studies.

In an effort to resolve the issue of whether satellite peaks do or do not exist in the scattering
of light from a rough dielectric film deposited on the planar surface of a metal, in this paper we
carry out a nonperturbative, purely numerical, solution of the reduced Rayleigh equation [17]
for the scattering of p- and s-polarized light from a structure consisting of a dielectric film
deposited on a metal substrate when the dielectric-metal interface is planar, while the vacuum-
dielectric interface is a two-dimensional randomly rough interface. This is an approach that
was used successfully in recent calculations of the scattering of p- and s-polarized light from
a two-dimensional randomly rough interface between a dielectric and a metal [17, 18], which
prompts its application to the present problem.

The system we study consists of vacuum (ε1) in the region x3 > d + ζ
(
x‖
)
, where x‖ =

(x1,x2,0); a dielectric film (ε2) in the region 0 < x3 < d + ζ
(
x‖
)
; and a lossy metal (ε3) in

the region x3 < 0. The surface profile function ζ
(
x‖
)

is assumed to be a single-valued function
of x‖ that is differentiable with respect to x1 and x2, and constitutes a zero-mean, stationary,
isotropic, Gaussian random process defined by〈

ζ (x‖)ζ (x′‖)
〉
= δ 2W

(∣∣∣x‖ −x′‖
∣∣∣) . (1)

The angle brackets here denote an average over the ensemble of realizations of the surface

profile function, and δ =
〈
ζ 2
(
x‖
)〉1/2

is the rms height of the surface roughness.
The electric field in the vacuum

[
x3 > d+ζ

(
x‖
)]

is the sum of an incident field and a scat-
tered field, E(x; t) = [E(x|ω)inc +E(x|ω)sc]exp(−iωt), where

E(x|ω)inc =

{
c
ω
[
k̂‖α1(k‖)+ x̂3k‖

]
Bp(k‖)+

(
x̂3× k̂‖

)
Bs(k‖)

}
× exp

(
ik‖ ·x‖ − iα1(k‖)x3

) (2a)

E(x|ω)sc =

∫ d2q‖
(2π)2

{
c
ω
[
q̂‖α1(q‖)− x̂3q‖

]
Ap(q‖)+

(
x̂3× q̂‖

)
As(q‖)

}
× exp

(
iq‖ ·x‖+ iα1(q‖)x3

)
,

(2b)

while the subscripts p and s denote the p-polarized and s-polarized components of these fields
with respect to the local planes of incidence and scattering. A caret over a vector indicates that
it is a unit vector, and the vector k‖ is defined as k‖ = (k1,k2,0) (with similar definitions for q‖

(C) 2012 OSA 7 May 2012 / Vol. 20,  No. 10 / OPTICS EXPRESS  11338



and p‖). The functions αi(q‖) (i = 1,2,3) are defined by

αi(q‖) =
[

εi

(ω
c

)2
−q2

‖

]1/2

, Reαi(q‖)> 0, Imαi(q‖)> 0. (3)

A linear relation exists between the amplitudes Aα(q‖) and Bβ (k‖) (α,β = p,s), which we
write as

Aα(q‖) = ∑
β

Rαβ (q‖|k‖)Bβ (k‖) (4)

where Rαβ is the scattering amplitude for incident β -polarized light scattered into α-polarized
light. The convention we use with respect to the polarization subscripts is

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
. (5)

It has been shown by Soubret et al. [10] and Leskova [19] that the scattering amplitudes[
Rαβ (q‖|k‖)

]
satisfy the matrix integral equation

∫ d2q‖
(2π)2 M(p‖|q‖)R(q‖|k‖) =−N(p‖|k‖), (6)

called a reduced Rayleigh equation because it is an equation for only the scattered field in the
medium of incidence, and not for the fields in the film and in the substrate.The effects of the
latter two fields are contained in the elements of the matrices M(p‖|q‖) and N(p‖|k‖). With the
shorthand notation α(q‖,ω) ≡ α(q‖), the elements of these matrices in the forms obtained by
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Leskova [19] are

Mpp(p‖|q‖) =
[
p‖q‖+α2(p‖)(p̂‖ · q̂‖)α1(q‖)

]
×Γp(p‖)exp

(−i
[
α2(p‖)−α1(q‖)

]
d
) I
(
α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

+
[
p‖q‖ −α2(p‖)(p̂‖ · q̂‖)α1(q‖)

]
×Δp(p‖)exp

(
i
[
α2(p‖)+α1(q‖)

]
d
) I
(−[α2(p‖)+α1(q‖)

] |p‖ −q‖
)

α2(p‖)+α1(q‖)

(7a)

Mps(p‖|q‖) =−
ω
c

α2(p‖)
(
p̂‖ × q̂‖

)
3(

Γp(p‖)exp
(−i

[
α2(p‖)−α1(q‖)

]
d
) I
(
α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

− Δp(p‖)exp
(
i
[
α2(p‖)+α1(q‖)

]
d
) I
(−[α2(p‖)+α1(q‖)

] |p‖ −q‖
)

α2(p‖)+α1(q‖)

) (7b)

Msp(p‖|q‖) =
ω
c
(
p̂‖ × q̂‖

)
3

α1(q‖)(
Γs(p‖)exp

(−i
[
α2(p‖)−α1(q‖)

]
d
) I
(
α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

+ Δs(p‖)exp
(
i
[
α2(p‖)+α1(q‖)

]
d
) I
(−[α2(p‖)+α1(q‖)

] |p‖ −q‖
)

α2(p‖)+α1(q‖)

) (7c)

Mss(p‖|q‖) =
ω2

c2

(
p̂‖ · q̂‖

)
(

Γs(p‖)exp
(−i

[
α2(p‖)−α1(q‖)

]
d
) I
(
α2(p‖)−α1(q‖)|p‖ −q‖

)
α2(p‖)−α1(q‖)

+ Δs(p‖)exp
(
i
[
α2(p‖)+α1(q‖)

]
d
) I
(−[α2(p‖)+α1(q‖)

] |p‖ −q‖
)

α2(p‖)+α1(q‖)

)
,

(7d)
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and

Npp(p‖|k‖) =−
[
p‖k‖ −α2(p‖)(p̂‖ · k̂‖)α1(k‖)

]
×Γp(p‖)exp

(−i
[
α2(p‖)+α1(k‖)

]
d
) I
(
α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

− [p‖k‖+α2(p‖)(p̂‖ · k̂‖)α1(k‖)
]

×Δp(p‖)exp
(
i
[
α2(p‖)−α1(k‖)

]
d
) I
(−[α2(p‖)−α1(k‖)

] |p‖ −k‖
)

α2(p‖)−α1(k‖)

(8a)

Nps(p‖|k‖) =−
ω
c

α2(p‖)
(
p̂‖ × k̂‖

)
3

×
(

Γp(p‖)exp
(−i

[
α2(p‖)+α1(k‖)

]
d
) I
(
α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

− Δp(p‖)exp
(
i
[
α2(p‖)−α1(k‖)

]
d
) I
(−[α2(p‖)−α1(k‖)

] |p‖ −k‖
)

α2(p‖)−α1(k‖)

) (8b)

Nsp(p‖|k‖) =
ω
c
(
p̂‖ × k̂‖

)
3

α1(k‖)

×
(

Γs(p‖)exp
(−i

[
α2(p‖)+α1(k‖)

]
d
) I
(
α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

+ Δs(p‖)exp
(
i
[
α2(p‖)−α1(k‖)

]
d
) I
(−[α2(p‖)−α1(k‖)

] |p‖ −k‖
)

α2(p‖)−α1(k‖)

) (8c)

Nss(p‖|k‖) =
ω2

c2

(
p̂‖ · k̂‖

)
×
(

Γs(p‖)exp
(−i

[
α2(p‖)+α1(k‖)

]
d
) I
(
α2(p‖)+α1(k‖)|p‖ −k‖

)
α2(p‖)+α1(k‖)

+ Δs(p‖)exp
(
i
[
α2(p‖)−α1(k‖)

]
d
) I
(−[α2(p‖)−α1(k‖)

] |p‖ −k‖
)

α2(p‖)−α1(k‖)

)
.

(8d)

In writing Eqs. (7) and (8) we have introduced the functions

Γp(p‖) = ε2α3(p‖,ω)+ ε3α2(p‖,ω) (9a)

Δp(p‖) = ε2α3(p‖,ω)− ε3α2(p‖,ω) (9b)

and

Γs(p‖) = α3(p‖,ω)+α2(p‖,ω) (10a)

Δs(p‖) = α3(p‖,ω)−α2(p‖,ω), (10b)

as well as

I
(
γ|Q‖

)
=
∫

d2x‖ exp
(−iQ‖ ·x‖

)
exp

[−iγζ
(
x‖
)]
. (11)

The scattering amplitudes
[
Rαβ (q‖|k‖)

]
play a central role in the present theory because the

mean differential reflection coefficient, an experimentally measurable function, can be ex-
pressed in terms of these amplitudes. The differential reflection coefficient (∂R/∂Ωs) is defined
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such that (∂R/∂Ωs)dΩs is the fraction of the total time-averaged flux incident on the surface
that is scattered into the element of solid angle dΩs about the scattering direction (θs,φs). Since
we are studying the scattering of light from a randomly rough surface, it is the average of this
function over the ensemble of realizations of the surface profile function that we need to calcu-
late. The contribution to the mean differential reflection coefficient from the incoherent (diffuse)
component of the scattered light, when incident light of β polarization whose wave vector has
the projection k‖ on the mean scattering surface is scattered into light of α polarization whose
wave vector has the projection q‖ on the mean scattering surface, denoted

〈
∂Rαβ/∂Ωs

〉
incoh, is

given by

〈
∂Rpp

∂Ωs

〉
incoh

=
1
S

√
ε1

4π2

ω
c

α2
1 (q‖)

α1(k‖)

[〈∣∣Rpp(q‖|k‖)
∣∣2〉− ∣∣〈Rpp(q‖|k‖)

〉∣∣2] (12a)

〈
∂Rps

∂Ωs

〉
incoh

=
1
S

ε3/2
1

4π2

ω
c

α2
1 (q‖)

α1(k‖)

[〈∣∣Rps(q‖|k‖)
∣∣2〉− ∣∣〈Rps(q‖|k‖)

〉∣∣2] (12b)

〈
∂Rsp

∂Ωs

〉
incoh

=
1
S

1
4π2√ε1

ω
c

α2
1 (q‖)

α1(k‖)

[〈∣∣Rsp(q‖|k‖)
∣∣2〉− ∣∣〈Rsp(q‖|k‖)

〉∣∣2] (12c)

〈
∂Rss

∂Ωs

〉
incoh

=
1
S

√
ε1

4π2

ω
c

α2
1 (q‖)

α1(k‖)

[〈∣∣Rss(q‖|k‖)
∣∣2〉− ∣∣〈Rss(q‖|k‖)

〉∣∣2] , (12d)

where S is the area of the plane x3 = 0 covered by the rough surface. The two-dimensional
wave vectors k‖ and q‖ are defined in terms of the polar and azimuthal angles of incidence
(θ0,φ0) and scattering (θs,φs), respectively, by k‖ =

√
ε1(ω/c) sinθ0 (cosφ0,sinφ0,0) and

q‖ =
√

ε1(ω/c)sinθs(cosφs,sinφs,0). Thus these wave vectors in Eq. (12) are restricted to the
domains k‖ <

√
ε1(ω/c) and q‖ <

√
ε1(ω/c) of the q1q2 plane.

Up to now Eq. (6) has been solved by small-amplitude perturbation theory through terms
of third order in the surface profile function [10, 20]. Here we present results for the mean
differential reflection coefficient and for the full angular distribution of the intensity of the
scattered light obtained by a nonperturbative, purely numerical solution of Eqs. (6)–(11), as
described in Ref. [17]. This was done by generating a realization of the surface profile func-
tion numerically on a grid of N2

x points within a square region of the x1x2 plane of edge L, so
that the (linear) sampling interval was Δx = L/Nx. A two-dimensional version of the filtering
method used in [17, 21] was used to generate the profile function [13]. The function I(γ|Q‖)
was then evaluated by expanding the integrand in powers of the surface profile function ζ (x‖),
and calculating the Fourier transform of ζ n(x‖) by the fast Fourier transform. In evaluating the

integral over q‖ in Eq. (6) the infinite limits were replaced by finite ones:
(
q2

1 +q2
2

)1/2 ≤ Q/2.
The Nyquist sampling theorem requires that |q1| and |q2| be smaller than Qc = π/Δx [22, p.
605]. The components of the vector p‖ −q‖ entering I(γ |p‖ −q‖) lie in the interval [−Q,Q],
so we have chosen Q = Qc. A grid with a grid constant Δq1 = Δq2 = Δq = 2π/L was con-
structed within the circular region of the q1q2 plane where

(
q2

1 +q2
2

)≤ Q/2. The integral over
this region in Eq. (6) was carried out by a two-dimensional version of the extended midpoint
method [22, p. 161] and the values of Rαβ (q‖|k‖) were calculated for values of q‖ at the points
of this grid for a given value of k‖, which was also a point on this grid. The resulting matrix
equations were solved by LU factorization and backsubstitution. The values of Rαβ (q‖|k‖) and
|Rαβ (q‖|k‖)|2 were then calculated for Np realizations of the surface profile function. An arith-
metic average of the Np results for each of these functions yielded the averages

〈
Rαβ (q‖|k‖)

〉
and

〈|Rαβ (q‖|k‖)|2
〉
, from which the incoherent contribution to the mean differential reflection

coefficients were calculated according to Eq. (12).
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We apply this approach to the scattering of p- and s-polarized plane waves, whose wave-
length is λ = 633 nm, incident from vacuum (ε1 = 1) on a dielectric film (ε2 = 2.6896+0.01i)
coating a silver surface (ε3 = −18.28 + 0.481i) [23]. The mean thickness of the film is
d = 0.756λ = 478.5 nm. The roughness of the vacuum-dielectric interface is characterized
by a two-dimensional version of the West–O’Donnell power spectrum [24] given by [8]

g(|k‖|) =
4π

k2
+− k2−

θ(|k‖|− k−)θ(k+−|k‖|), (13)

where θ(x) is the Heaviside unit step function, and k− = 0.82(ω/c), k+ = 1.97(ω/c). The
rms height of the surface roughness was assumed to be δ = λ/40 = 15.82 nm, the surface
was discretized on a grid of resolution Δx1 = Δx2 = 0.123λ = 77.6 nm and the edge of the
(quadratic) surface was L = 55λ = 34.8 μm.

The contribution to the mean differential reflection coefficient
〈
∂Rαβ (q‖|k‖)/∂Ωs

〉
incoh

from single-scattering processes
[
second order in ζ (x‖)

]
is proportional to g(|q‖ − k‖|) [8].

Since the power spectrum (13) is identically zero for |k‖| < k−, there is no contribution to the
mean differential reflection coefficient from the light scattered incoherently by single-scattering
processes when the wave vectors q‖ and k‖ satisfy the inequality |q‖ −k‖| < k−. The contri-
bution to

〈
∂Rαβ (q‖|k‖)/∂Ωs

〉
incoh

when this condition is satisfied is due only to multiple-
scattering processes, including the enhanced backscattering peak and the satellite peaks. These
features are more clearly visible in this case because they do not ride on a large background
due to single-scattering processes. This is the reason that the calculations whose results are
presented here were carried out on the basis of the power spectrum (13).

In Fig. 1(a) we present the contribution to the mean differential reflection coefficient from
the light scattered incoherently as functions of the polar scattering angle θs for the in-plane
(φs = φ0 = 45◦) co-(p→p, s→s) and cross-(p→s, s→p) polarized scattering when a p- or s-
polarized plane wave is incident on the dielectric surface at angles of incidence (θ0,φ0) given
by (0.74◦,45◦). (In figures showing in-plane or out-of-plane scattering, we depart from the com-
monly accepted principle of not using negative polar angles, in that we allow for negative θs.).
An arithmetic average of results obtained for Np = 11,165 realizations of the surface profile
function was carried out to produce these figures. In Fig. 1(b) we present the analogous results
for out-of-plane (φs = φ0± 90◦) scattering when the roughness and experimental parameters
have the values assumed in generating Fig. 1(a).

In the results depicted in Fig. 1(a) [1(b)] single-scattering processes give no contributions to
the mean differential reflection coefficient for −53.8◦ < θs < 56.4◦ (−55.08◦ < θs < 55.08◦).
In both figures a well-defined enhanced backscattering peak is seen in the retroreflection direc-
tion. In addition, in Fig. 1(a) additional peaks are seen on both sides of the enhanced backscat-
tering peak in the s → s co-polarized scattering contribution to the mean differential reflection
coefficient. These peaks are identified as satellite peaks.

We base this identification on the following consideration. It was shown in [6] that in the in-
plane co-polarized scattering of light of frequency ω from a one-dimensional randomly rough
surface of a film system when the plane of incidence is perpendicular to the generators of the
surface, satellite peaks occur at scattering angles given by

sinθ (m,n)
s =−sinθ0± c

ω
√

ε1
[qm(ω)−qn(ω)] . (14)

The wave numbers q1(ω),q2(ω), . . . ,qN(ω) are the wavenumbers of the guided waves sup-
ported by the film structure at the frequency of the incident light. Not all of the peaks predicted
by Eq. (14) may be present in the mean differential reflection coefficient. This happens when the
absolute value of the right-hand side of Eq. (14) is greater than unity. Then the corresponding
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Fig. 1. (a) The contributions to the mean differential reflection coefficient as functions of
the polar scattering angle θs from the in-plane (φs = φ0) co-polarized (p→p, s→s) and
cross-polarized (p→s, s→p) scattering of light incident on the two-dimensional randomly
rough surface of a dielectric film deposited on the planar surface of silver, whose dielectric
constant is ε3 = −18.28+ 0.481i. The wavelength of the incident light is λ = 633 nm,
the angles of incidence are (θ0,φ0) = (0.74◦,45◦). The dielectric constant of the film is
ε2 = 2.6896+0.01i, and its mean thickness is d = 478.5 nm. The roughness of the surface
is characterized by the power spectrum in Eq. (13), with k− = 0.82(ω/c), k+ = 1.97(ω/c),
and its rms height is δ = λ/40 = 15.82 nm. (b) The same as (a) for out-of-plane (φs =
φ0 +90◦) scattering.
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peak lies in the nonradiative region of the q1q2 plane. In addition, among the real satellite peaks
that should appear in the radiative region, not all may be sufficiently intense to be observable.

The scattering angles defined by Eq. (14) are expected to give the angles at which satellite
peaks occur in the in-plane co-polarized scattering from the two-dimensional randomly rough
surface of the film system studied here.

In the absence of absorption and roughness the {qj(ω)} are the solutions of the dispersion
relation

α2(q‖,ω) =
1

2ε1ε3

(
ε2
[
ε1β3(q‖,ω)+ ε3β1(q‖,ω)

]
cot

[
α2(q‖,ω)d

]
±{ε2

2

[
ε1β3(q‖,ω)+ ε3β1(q‖,ω)

]2
cot2

[
α2(q‖,ω)d

]
+4ε1ε2

2 ε3β1(q‖,ω)β3(q‖,ω)
}1/2

) (15a)

in p polarization, and

α2(q‖,ω) =
1
2

([
β1(q‖,ω)+β3(q‖,ω)

]
cot

[
α2(q‖,ω)d

]
±{[β1(q‖,ω)+β3(q‖,ω)]2 cot2

[
α2(q‖,ω)d

]
+4β1(q‖,ω)+β3(q‖,ω)

}1/2
) (15b)

in s polarization. In these equations βi(q‖,ω) =
[
q2
‖ − εi(ω/c)2

]1/2
for i= 1,3, while α2(q‖,ω)

is defined in Eq. (3). The film structure studied in this paper is found to support two guided
waves in p-polarization, whose wave numbers are

q1(ω) = 1.4391(ω/c), q2(ω) = 1.0119(ω/c), (16a)

and two guided waves in s polarization, with wave numbers

q1(ω) = 1.5467(ω/c), q2(ω) = 1.2432(ω/c). (16b)

These results predict satellite peaks at scattering angles θs = −25.22◦ and 23.74◦ in p polar-
ization and at θs = −18.13◦ and 16.65◦ in s polarization when we are considering in-plane
scattering, assuming the same angles of incidence as in Fig. 1. These scattering angles are in-
dicated by vertical dotted lines in Fig. 1(a). The peaks at θs = −18.13◦ and 16.65◦ are seen
in the s→s co-polarized scattering contribution to the mean differential reflection coefficient.

There is no evidence of satellite peaks at θ (1,2)
s =−25.22◦ and 23.74◦ in the p→p co-polarized

scattering contribution to the mean differential reflection coefficient, presumably because they
are too weak to be seen. These results disagree with those of [10], in which no satellite peaks
were found in the in-plane s→s scattering contribution to the mean differential reflection coef-
ficient (although they are present in this contribution when the dielectric film is deposited on a
planar perfectly conducting surface). However, in [10] the surface roughness was characterized
by a Gaussian power spectrum, not the West–O’Donnell power spectrum assumed here. The
results of earlier calculations [25] of the scattering of p- and s-polarized light from a film with
a one-dimensional randomly rough surface characterized by a Gaussian power spectrum that
is deposited on a planar perfectly conducting surface, display satellite peaks more weakly than
when the roughness is characterized by a West–O’Donnell power spectrum [26].

Turning now to the results for out-of-plane scattering presented in Fig. 1(b), we see that an
enhanced backscattering peak is present in each scattering configuration. It is cut off in each
configuration. This is an artifact of the present calculation that results from the line defined by
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φs = φ0± 90◦ being exactly one grid point away from the backscattering direction. It is im-
portant to note that in out-of-plane scattering the predominant contribution to the differential
reflection coefficient is in the cross-polarized part. We see that the satellite peaks are now ob-
served in the p→s scattering configuration, meaning that incident p-polarized light excites both
of the s-polarized guided modes with wave vectors in the φ = φ0±90◦ directions, which sub-
sequently interfere to cause satellite peaks in out-of-plane scattering. Hence, the well-known
“satellite peaks” found in scattering from 1D surfaces turn into a kind of “satellite rings” for
scattering from 2D surfaces, where part of the ring is co-polarized (s→s in-plane) and part of
the ring is cross-polarized (p→s out-of-plane).

In Fig. 2 we present contour plots of the complete angular distribution of the mean differential
reflection coefficient for the light scattered incoherently from the film system studied here. The
material and experimental parameters used in producing these results have the same values used
in obtaining Fig. 1.

Light of p polarization (left column) or s polarization (right column) is incident on the struc-
ture. In Figs. 2(a) and 2(d) all of the scattered light is recorded; in Figs. 2(b) and 2(e) only the
p-polarized scattered light is recorded; while in Figs. 2(c) and 2(f) only the s-polarized scat-
tered light is recorded. In Fig. 2(f) we see two regions of high intensity in the in-plane polar-
ized (s→s) intensity distribution, centered at radii of approximately 0.29(ω/c) at φs = 45◦, and
0.31(ω/c) at φs = 225◦. These are the satellite peaks seen in the plot of 〈∂Rss/∂Ωs〉incoh pre-
sented in Fig. 1(a). No such regions of high intensity are seen in Fig. 2(b) at radii of 0.34(ω/c)
at φs = 45◦ and 0.52(ω/c) at φs = 225◦, where satellite peaks are predicted by Eq. (14) for
in-plane co-polarized scattering of p-polarized incident light. This result is consistent with the
absence of satellite peaks in the result for

〈
∂Rpp/∂Ωs

〉
incoh presented in Fig. 1(a). The intensity

maxima in the out-of-plane cross-polarized (p→s) scattering intensity distribution depicted in
Fig. 2(c) correspond to the peaks at θs ≈ 19◦ seen in the plot of

〈
∂Rsp/∂Ωs

〉
incoh presented in

Fig. 1(b).
The result that satellite peaks are observed in scattering processes in which the scattered light

is s polarized, independent of the polarization of the incident light, is an interesting result of the
present calculations. It may be connected with the fact that s-polarized light is reflected more
strongly from a dielectric surface than is p-polarized light.

In Fig. 3 we present results analogous to those presented in Fig. 1, but for angles of incidence
(θ0,φ0) = (5.19◦,45◦). In Fig. 3(a) we present results for the in-plane (φs = φ0) co-(p→p,
s→s) and cross-(p→s, s→p) polarized scattering, while in Fig. 3(b) we present results for out-
of-plane (φs = φ0± 90◦) co-(p→p, s→s) and cross-(p→s, s→p) polarized scattering. In the
results presented in Fig. 3(a) [3(b)] single-scattering processes give no contribution to the mean
differential reflection coefficient for −46.85◦ < θs < 65.57◦ (−54.59◦ < θs < 54.59◦). The
limits of these angular regions are clearly seen in these figures.

A well-defined enhanced backscattering peak is seen in the results plotted in Fig. 3(a). Satel-

lite peaks are predicted by Eq. (14) to occur (in-plane) at θ (1,2)
s = −31.18◦ and 19.68◦ for

p-polarized incident light, and at θ (1,2)
s = −23.20◦ and 12.30◦ for s-polarized incident light,

when the angles of incidence were the same as in Fig. 3. These scattering angles are indi-
cated by vertical dotted lines in this figure. Peaks at θs =−23.20◦ and θs = 12.30◦ are present
in the s→s co-polarized scattering contribution to the mean differential reflection coefficient.
There is no suggestion of peaks at θs =−31.8◦ and 19.68◦ in the p→p co-polarized scattering
contribution to the mean differential reflection coefficient, nor any suggestions of peaks in the
cross-polarized (p→s, s→p) contribution to it.

The results for out-of-plane scattering presented in Fig. 3(b) show no enhanced backscat-
tering peaks. The reason for this is simply that since the abscissa points along φ = φ0± 90◦,
it does not cut through the backscattering peak, localized at (θs,φs) = (θ0,φ0 + 180◦). We do
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Fig. 2. The complete angular distribution of the mean differential reflection coefficient
〈∂Rαβ /∂Ωs〉incoh for the light scattered incoherently from the film structure. The material
and experimental parameters assumed here are those used in obtaining the plots presented
in Fig. 1. Light of either p (left column) or s (right column) polarization is incident on the
structure. In (a) and (d) all (diffusely) scattered light is recorded. In (b) and (e) only the
p-polarized scattered light is recorded, while in (c) and (f) only the s-polarized scattered
light is recorded. The dark dot in each panel indicates the enhanced backscattering peak.
Note that the gray scale bar is cut at both ends in order to enhance the satellite rings. Also
note that the contribution from single scattering is suppressed, i.e. the differential reflection

coefficient is artificially set to 0 for
∣∣∣q‖ −k‖

∣∣∣> k−.
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Fig. 3. The same as Fig. 1, but for angles of incidence given by (θ0,φ0) = (5.19◦,45◦).

see some remainders of the satellite ring structure; the low peaks around θs ≈ ±20◦ are part
of the rings to the upper left in Fig. 4. As the rings decay in strength away from the direction
φ = φ0±90◦, they are weaker than what is seen in-plane.

As a necessary, but not sufficient, condition of the validity of our simulation results is energy
conservation. If all materials in the scattering system are lossless, i.e. Im(εi) = 0 (i = 1,2,3),
the power of the scattered light has to be equal to the power of the incident light. Under these
conditions, energy was conserved within 0.03% in our simulations.

In conclusion, in this paper we have presented a nonperturbative approach to the solution of
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Fig. 4. The same as Fig. 2, but for angles of incidence given by (θ0,φ0) = (5.19◦,45◦).
Note that the color bar is cut at both ends in order to enhance the satellite rings. Also
note that the contribution from single scattering is suppressed, i.e. the differential reflection

coefficient is artificially set to 0 for
∣∣∣q‖ −k‖

∣∣∣> k−.
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the reduced Rayleigh equation for the scattering of polarized light from a dielectric film with
a two-dimensional randomly rough surface deposited on a planar metallic surface. We have
applied this result to calculate the contributions to the mean differential reflection coefficient
from the in-plane co- and cross-polarized components of the light scattered incoherently, as
well as from the out-of-plane co-and cross-polarized components of the light scattered incoher-
ently. The out-of-plane scattering contributions have not been calculated in earlier perturbative
studies of this problem [10, 14]. In addition, we have calculated the full angular distribution of
the intensity of the scattered light, which has helped to refine the conclusions drawn from the
calculations of the mean differential reflection coefficient. The main physical result obtained
in this work is the demonstration that satellite peaks (or rings) can arise in scattering from the
film structure studied here. This result is in agreement with the results of Soubret et al. [10]
but not with those of Kawanishi et al. [14]. A detailed study of the conditions under which
satellite peaks occur is lacking, but perhaps the approach developed here will be used to deter-
mine them. The work reported here also opens the door to the possibility of calculating other
properties of the light scattered from the film system studied here, such as all the elements of
the associated Mueller matrix, and offers the possibility of designing such structures to possess
specified scattering properties. These are problems that have to be left to the future.
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Plasmonic resonances at interfaces patterned by nanoparticle lattices
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We present theoretical studies of the nature of the collective plasmon resonances of surfaces upon
which ordered lattices of spherical metallic particles have been deposited. The collective plasmon
modes, excited by light incident on the surface, are explored for both square and rectangular lattices
of particles. The particular resonances excited by an incident beam of light depend on the frequency,
polarization, and angles of incidence. We show that one can create surfaces for which the polarization
of the reflected light is frequency dependent. The form of the polarization dependent spectra can
be tuned by choosing materials and the parameters of the nanoparticle array.

PACS numbers: 78.67.-n, 78.20.Bh, 78.68.+m, 41.20.Cv

I. INTRODUCTION

It is of great interest to create surfaces whose response
to incident light can be controlled to produce desirable
effects of various sorts. This may be accomplished in
diverse ways. For instance one may modulate the sur-
face profile. Very striking and remarkable reflectivity
properties are found in systems containing surfaces whose
roughness is prepared according to prescriptions provided
by theoretical simulations [1]. We refer the reader to a
recent review wherein the scattering of light from rough-
ened surfaces is discussed in detail [2].
In addition to modulating the profile of a surface in a

controlled fashion, one may also deposit material onto it
in a structured manner. For instance, to enhance pho-
tocurrents in solar energy devices, metallic nanoparticles
are deposited on or near the surface of solar devices [3, 4].
We remark that the nanoparticle arrays in these systems
are very highly disordered. On a related note, disor-
dered structures generated by laser bombardment has
been shown to modify the color of metallic surfaces in
a profound way [5].
Recently, progress has been made towards using the

plasmonic properties of nanowires [6, 7] or nanoparti-
cles [8, 9] as optical polarizers, in a fashion reminiscent
of wire-grid polarizers. This work promises to make po-
larizers that are microscopic in size, and which possess
other interesting properties. For instance, the spectral re-
sponse of nanoparticles can be tuned according to their
shape [10] or internal structure [11], allowing the fabri-
cation of optical components with new and interesting
properties. In all these studies, the properties of struc-
tures on the nanoscale, notably nanoparticles, lead to
macroscopic optical effects [12–14].
In this paper, we explore a very different kind of

nanoparticle-coated surface, namely, a dielectric sub-

∗ paul.anton.letnes@gmail.com
† ingve.simonsen@ntnu.no

strate upon which an ordered array of sub-wavelength
metallic nanoparticles [15] has been deposited [16–18].
As we shall see from the calculations presented below,
such a surface exhibits striking optical properties that
may be tuned by varying the character of the nanoparti-
cle array.

There are two important features of such an array.
First, let � be a length that characterizes the size of the
unit cell, and assume that light of wavelength (in vac-
uum) λ illuminates the structure. If λ/� > 1, a condition
satisfied for sub-wavelength arrays, there will only be a
single reflected specular beam, very much as realized for
a perfectly flat surface. For particle arrays with linear di-
mensions in the range of the wavelength or larger (� � λ),
one realizes additional reflected beams in the form of
Bragg waves. As the distance between the nanoparticles
decreases into the sub-wavelength regime, the additional
Bragg waves collapse into evanescent waves confined to
the near vicinity of the surface, leaving a single specular
reflected beam, once again very much as for a perfectly
smooth surface.

A metallic nanoparticle array also supports plasmonic
resonances that may be excited by incident light. For
an isolated nanoparticle of radius a � λ made from a
“plasmonically active” material such as silver (Ag), the
optically active plasmonic (Mie) resonance lies in the ul-
traviolet (at �ω ≈ 3.5 eV for Ag, where ω is the an-
gular frequency of the incident light). Depositing par-
ticles onto a substrate will cause inter-nanoparticle and
particle-substrate interactions that red-shifts the Mie res-
onance so it can lie in the visible, as illustrated by previ-
ous work; see Fig. 9 in Refs. 19 and 20.

More important for the present study is the role of in-
teractions between nanoparticles in a dense array. These
produce collective plasmonic bands whose dispersion re-
lations and effects on polarization are controlled by the
properties of the array. As we shall see, these collec-
tive plasmon modes can be excited by the incident light,
with the consequence that the reflectivity of the surface
becomes highly dependent on both the frequency, the
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angles of incidence, and the polarization of the incident
light. If the surface is illuminated with unpolarized light,
the reflected light will be polarized, but the degree of po-
larization can be strongly frequency dependent, as illus-
trated by the calculations presented below. By altering
the microstructure of the array, one may in principle tune
the polarization characteristics of the reflected light. The
purpose of this study is to explore these effects, and to
demonstrate how such effects can be simulated in a way
that is not computationally demanding.
A classic and frequently used model to obtain the opti-

cal response of nanoparticle patterned surfaces is the po-
larizable dipole model [21]. In this model, each nanopar-
ticle is treated as a polarizable point dipole, and the effect
of the substrate is accounted for via image dipoles. For
nanospheres with intersphere spacing as small as those
of our geometries, such an approximation is very poor.
There are highly localized patches of induced charge
localized around the points of closest contact between
neighboring spheres, and also around the closest point of
contact between the sphere and the substrate. One can
appreciate this from our previous calculation of the spa-
tial dependence of enhanced fields near an Ag dimer on a
dielectric surface, as illustrated in Fig. 10 of Refs. 19 and
20. Also in Fig. 5 of Ref. 22 one sees a detailed presenta-
tion of the electric field near the point of closest contact
between two spheres when they are excited at their plas-
mon resonance. It is essential to include higher order
multipole moments in the description of interactions be-
tween nearby nanospheres, and between nanospheres and
a substrate upon which they are deposited, as we have
done in the results displayed below.
A more direct approach is that of the discrete dipole

approximation (DDA) [23], which can be expanded to
include retardation and substrate effects [24]. The DDA
is a direct numerical method, relying on discretizing the
volume of particles into polarizable dipoles. In contrast,
the method used in this work relies on multipole expan-
sion of the quasistatic potential [25]. The advantage of
this method is that it gives results closer to analytical
mathematics, as well as being computationally efficient,
assuming that one does not need to include very high
multipole orders.
The organization of this paper is as follows. Section II

contains the necessary theoretical formalism. In Sec. III,
we present our studies of the plasmon collective modes of
arrays of Ag particles supported by an aluminium oxide
(alumina, Al2O3) substrate, and in Sec. IV we discuss
the optical reflectivity of two model systems. Concluding
remarks are presented in Sec. V.

II. THEORY

The system we study consists of a periodic array of
non-overlapping Ag nanoparticles supported by an Al2O3

substrate as depicted in Fig. 1. The global Cartesian co-
ordinate system r = (x, y, z) is chosen such that the plane

z = 0 coincides with the (flat) surface of the substrate
that is located in the region z < 0 and characterized by
the dielectric function ε−(ω). The ambient (z > 0) is
assumed to be vacuum, and therefore ε+ ≡ 1.

A set of identical Ag nanospheres of radius a are ar-
ranged on a regular lattice close to the surface of the
substrate. For each spherical nanoparticle, we associate
a position vector Rij = (xij , yij , h+ a) pointing from
the origin of the (global) coordinate system to the center
of each particle, where the particles are indexed i, j =
0,±1,±2, . . .. For later convenience, we assume a small
but finite positive value for the parameter h [Fig. 1(b)].
The particle i = j = 0 is assumed to be located on the
z-axis so that R00 = (0, 0, a + h). Furthermore, each
sphere ij has associated with it a (local) coordinate sys-
tem Sij that has its origin located at the center of that
sphere and its axes oriented parallel to those of the main
coordinate system. The position vector in Sij we denote
by rij = (rij , θij , φij).

The Ag nanospheres are characterized by the dielec-
tric function ε(ω). Corrections to the dielectric function
of the particles due to, e.g., finite size and temperature
effects are necessary in order to obtain good agreement
between theoretical predictions and experimental mea-
surements [26]. This will not be done here, however,
since comparison to experimental data will not be our
main concern. Hence, for reasons of simplicity, we have
assumed bulk values for all dielectric functions.

In the following we shall consider both square and rect-
angular lattice structures. Without loss of generality, the
coordinate system can be oriented so that the lattice con-
stants bx and by, corresponding to the directions x̂ and
ŷ, respectively, obey bx ≤ by [see Fig. 1(a)]. Here, a caret
above a vector indicates that it is a unit vector. Further-
more, since the spheres are non-overlapping, we also have
that 2a < bx.

Although in general square lattices are formally a sub-
set of rectangular lattices, we will here restrict the term
“rectangular lattice” to lattices for which bx < by. A
comparison between square and rectangular lattices will
provide us with an assessment of the range of electro-
static coupling between the spheres in the lattice. More-
over, in the limit by � a, where interactions between the
spheres in the ŷ direction safely can be neglected, the sys-
tem essentially consists of non-interacting, parallel, linear
chains of nanoparticles [27]. Moreover, the word “chains”
will be used about the lines of spheres parallel to the x
axis, as bx < by.

A. Multipole expansion

In this work we will focus on systems for which by � λ,
where the quasistatic approximation applies [25]. Then,
if all materials are assumed to be non-magnetic, the elec-
tromagnetic properties of the system is fully described by
the electrostatic potential, ψ(r), satisfying the Laplace
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(a) The nanoparticle lattice seen in the xy plane.

x

z
Ambient (ε+)

Substrate (ε−)

2a bx

h

d
. . .

(b) A view of the lattice in the xz plane.

FIG. 1. (a) Nanospheres of radius a are arranged on a
rectangular lattice with lattice constants bx and by. The z
axis points out of the substrate, and we always assume bx ≤
by. (b) The ambient-substrate interface is located at z = 0.
The definitions of d, the effective film thickness; a, the sphere
radius; bx, the lattice constant along x̂; and the parameter
h are indicated. The spheres are all characterized by the
dielectric function ε(ω). Note that h is exaggerated for clarity.

equation:

∇2ψ(r) = 0.

Also, the appropriate boundary conditions [25] on the
surfaces of each sphere and at the interface between the
substrate and the ambient have to be fulfilled. By def-
inition, the electric field can be calculated from E(r) =
−∇ψ(r) [25]. Finally, we assume that the incident optical
radiation can be modeled as a spatially uniform electric
field E0 of angular frequency ω = 2πc/λ. As we are em-
ploying the quasistatic approximation, ω only appears
in the frequency dependence of the dielectric functions
ε±(ω) and ε(ω).
In what follows, we adapt the multipole expansion for-

malism presented in detail in Ref. 19, only modifying it
where necessary to take into account the symmetries and

the infinite nature of the lattice. The structure of the lat-
tice requires the potential to satisfy the Bloch–Floquet
theorem [28]. Let ψij(rij) denote the scalar potential
of the particle located at Rij (in the global coordinate
system) and expressed in terms of its local coordinate
system, rij . We assume that the potential from each
nanoparticle, ψij , is identical save for a phase factor, due
to the phase of the incident electric field:

ψij(rij) = ψ00(rij)e
ik‖·ΔRij . (1)

In writing Eq. (1), we have introduced the lattice vector
ΔRij ≡ Rij −R00 = (ibx, jby, 0) describing the periodic
array of spheres, and k‖ denotes the component of the
wave vector k of the incident electric field that is parallel
to the xy plane: k‖ = x̂kx + ŷky. Equation (1) signi-
fies that once the scalar potential of sphere i = j = 0
is known, it is essentially known for all spheres of the
lattice. This is a consequence of the Bloch–Floquet the-
orem, and the form (1) is similar to the tight binding
description of electron energy bands in solids. The Bloch
phase factor is also assumed to be present in the poten-
tial of the corresponding image multipole. In passing, we
note that Eq. (1) also predicts that the potential ψij(rij)
is invariant under a replacement of k‖ by k‖+Gmn where
Gmn = 2π(m/bx, n/by, 0) denotes a reciprocal lattice
vector (with m and n integers). This invariance follows
from the fact that a scalar product of a primitive lattice
vectors from direct space, and one from reciprocal space,
equals an integer multiple of 2π [28]. Hence, for the sake
of the calculation of the potentials, it suffices to consider
wave vectors k‖ in the first Brillouin zone. Moreover,
since this work considers the limit λ� by ≥ bx, one may
when calculating the potentials take the limit |k‖| → 0.

In the formalism presented in Ref. 19, the total poten-
tial in the ambient, ψ+(r), is expressed as a superposition
of the potential corresponding to the background electric
field (E0), the potential scattered from each nanoparti-
cle, and the potential from an image multipole designed
to take the substrate into account:

ψ+(r) = −r ·E0 +

∞∑
i=−∞

∞∑
j=−∞

ψij(rij)

+
∞∑

ī=−∞

∞∑
j̄=−∞

ψīj̄(rīj̄).

Here the indices ī and j̄ indicate that the quantity ψīj̄

represents contribution to the potential from image mul-
tipoles associated with the sphere ij, and r is the posi-
tion vector in the global coordinate system. With the

shorthand notation
∑

lm =
∑∞

l=0

∑l
m=−l, the multipole

expansion we use for the scalar potential is given by [25]:

ψ00(r00) =
∑
lm

Almr−l−1
00 Y m

l (θ00, φ00),

ψ0̄0̄(r0̄0̄) =
∑
lm

A
(R)
lm r−l−1

0̄0̄
Y m
l (θ0̄0̄, φ0̄0̄).
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Here, the symbols Alm and A
(R)
lm are multipole expansion

coefficients to be determined. The symbol Y m
l refers to

the spherical harmonic functions as described by Ref. 25.
By symmetry arguments and by matching the boundary
conditions at z = 0 [29], the coefficients Alm are related

to the coefficients A
(R)
lm by the relation

A
(R)
lm = (−1)l+m ε+ − ε−

ε+ + ε−
Alm.

We note that the sum over l for practical reasons has to
be truncated at a finite value Lmax, meaning that only
terms for which l ≤ Lmax are included in the sum. It
should be stressed that local fields may not have con-
verged fully for this cutoff; however, the observed col-
lective resonances and reflectivity are less sensitive to
the details of the local fields. This is especially true
when considering large arrays of metallic nanoparticles,
in which the interparticle interactions are stronger than
the particle-substrate interactions. The potential origi-
nating from other nanoparticles (and images), ψij , can
be found from ψ00 and Eq. (1). In order to determine
the Alm coefficients, one forms a linear system of equa-
tions which couples all multipole orders l. How to form
and solve this system of equations is given in detail in
Ref. [19].
Although we are working with lattices that have dis-

crete translational symmetry with respect to the lattice
vector, there is little to be gained by use of a Fourier rep-
resentation of the relevant lattice sums. In mathematical
terms, the vector Rīj̄ − Rkl pointing from sphere kl to

image īj̄ does not lie in the xy plane: Its polar angle will
vary depending on the relative position of the image mul-
tipoles and the sphere on the z-axis. Hence, the presence
of the substrate, and thus the image multipoles, leads to
terms in the lattice sums lacking the symmetry needed
to use the Fourier transform. For this reason, the nec-
essary sums over spheres [19] are performed directly in
real space, up to N = 10 unit cells away from the sphere
on the z-axis. We stress that these sums include both
nanoparticles and nanospheres out to N unit cells.
In all of our simulations, we have kept a finite value of

the parameter h to ensure convergence of the spherical
harmonics expansion. This is because a singularity arises
at the bottom of the sphere if we choose h = 0 [30]. In the
simulations we present here, we have elevated the layer
of spheres off the substrate by the amount h = 0.01a.
We then find very good convergence in terms of the col-
lective excitations and reflectivity behavior. It should
be stressed that global behavior, such as the reflectiv-
ity of the lattice, does not depend on the details of h,
even though the convergence of the local fields is more
sensitive to the parameters Lmax and h.
As a proxy for the optical response of nanoparticles or

clusters of nanoparticles, we use the dipole moment, p,
or its dimensionless analog defined as (in SI units) [19]

p̄(ω) =
p(ω)

a3ε0E0
, (3a)

and its absolute value

p̄ (ω) =
(
p̄†p̄

)1/2
, (3b)

where the superscript † on a quantity indicates its Her-
mitian conjugate. The components of the dipole moment
vector can be found from [19]

p̄x =

(
3

8π

)1/2
A1,−1 −A1,1

a2
, (4a)

p̄y = −i
(

3

8π

)1/2
A1,−1 +A1,1

a2
, (4b)

and

p̄z =

(
3

4π

)1/2
A1,0

a2
. (4c)

The ith component of the dipole moment is related to the
incident electric field (E0) in the vicinity of the particle
by

pi =

3∑
j=1

αijE0,j , (5)

where αij denotes the polarizability tensor of one of the
nanoparticles.
In passing we note that even though the dipole mo-

ment only depends on the lowest order (l = 1) expansion
coefficients, it carries information on higher order reso-
nances, as the system of equations for the Alm coefficients
couple coefficients of all orders [19]. Moreover, for ease
of comparison, we will below always refer to the dipole
moment of a single particle.

B. Surface reflectivity

The most readily observable quantity that gives an
indication of plasmonic activity is the surface reflectiv-
ity. The reflectivity of the system we consider can be
calculated via several routes. The first approach that
will be mentioned is due to Bedeaux and Vlieger [29]
(see also Refs. 26, 31–35). It introduces an equivalent
geometry consisting of the same ambient and substrate
as the original geometry, but without the nanoparticles.
The influence of the latter is accounted for through effec-
tive boundary conditions for the electromagnetic field on
the ambient–substrate interface. These boundary con-
ditions depend on so-called surface susceptibilities that
contain, for instance, the effect of the size, shape, aspect
ratio, and location of the nanoparticles. The surface sus-
ceptibilities are obtained from the multipole coefficients
Alm that were shown above how to calculate. The ap-
proach of Bedeaux and Vlieger [29, 31, 33] has proven to
produce accurate results for the surface reflectivity that
compares quantitatively well to experimental measure-
ments [31, 33, 35]. It has been used successfully to in-
terpret and invert experimental reflectivity data [26, 35].
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Recently, this has opened for the possibility of detailed
in situ and real time studies of the growth of supported
nanoparticles during deposition [35]. However, the ac-
curacy of the Bedeaux–Vlieger method comes at a cost:
The approach is somewhat technical, and may be chal-
lenging to grasp for those not familiar with it.
Since our main concern in this study is not quantita-

tive interpretation of experimental reflectivity measure-
ments, we will instead follow a simpler and more qualita-
tive route towards obtaining the surface reflectivity. To
this end, we define above the substrate a thin film region
of thickness d [Fig. 1(b)] that contains the nanoparticles,
and when it is homogenized [36–38], an effective medium
results. The classic Maxwell Garnett theory [36–40] or
the Bruggeman theory [41] for such films are essentially
only sensitive to the volume fraction of particles and the
(bulk) dielectric functions of the materials of the parti-
cles and substrate, and not to the shape and environment
(e.g., the ambient-substrate interface) surrounding the
particles of the lattice. Instead of employing the Maxwell
Garnett or Bruggeman theories directly, we construct an
effective medium theory that does depend on other pa-
rameters, such as the local environment, via the calcu-
lated polarizability of the metallic particles. The starting
assumption of our effective medium model is that the lat-
tice of nanospheres can be represented as an anisotropic
thin film of thickness d = 2a+ h ≈ 2a [Fig. 1(b)].
Due to the symmetry properties of the two-dimensional

rectangular (or square) lattice, the dielectric tensor (
↔
ε )

will in our choice of coordinate system be diagonal:

↔
ε=

⎛
⎝εx 0 0

0 εy 0
0 0 εz

⎞
⎠ . (6)

where εx, εy, and εz are the principle dielectric constants.

Hence, the polarizability tensor,
↔
α, must also be diag-

onal. The macroscopic polarization, P, defined as the
total dipole moment per unit volume, is thus given by

Pi =
1

bxbyd

3∑
j=1

αijE0,j , (7)

where Pi denotes the ith component of P, and subscript
indices i = 1, 2, 3 correspond to subscripts x, y, z, respec-
tively. Moreover, bxbyd is the volume of the effective thin
film covering one unit cell of the 2D lattice. In SI units,
the displacement field, D, is given by

D = ε0E+P. (8)

By inserting Eq. (7) into Eq. (8), we obtain

Di = ε0E0,i + Pi = ε0

⎛
⎝E0,i +

1

bxbyd

3∑
j=1

αijE0,j

⎞
⎠

=

3∑
j=1

ε0

(
δij +

1

bxbyd
αij

)
E0,j =

3∑
j=1

ε0εijE0,j ,

so that we get for the component of the dielectric tensor

εij = δij +
1

bxbyd
αij . (9)

The polarizability tensor components, αij , that appears
in Eq. (9), can be related to the multipole coefficients
Alm by comparing Eq. (5) to the multipole expansion of
ψ(r) [25]. This yields the formulas

αxx =

(
3

2π

)1/2

A1,−1, (10a)

αyy = −i
(

3

2π

)1/2

A1,−1, (10b)

αzz =

(
3

4π

)1/2

A1,0, (10c)

and αij = 0 for i �= j. Note that the formula for αxx

[Eq. (10a)] is only valid for E0 ‖ x̂, and the same applies
to the pairs (αyy,E0 ‖ ŷ) and (αzz,E0 ‖ ẑ). Hence, each
component of the polarizability tensor is determined by
one simulation each. This is the reason why Eq. (10)
seems to disagree with Eq. (4). After determining the
elements of the dielectric tensor, standard theory can be
applied to the model thin film system in order to deter-
mine reflectivity from the nanoparticle lattice on top of
the substrate.
After determining all components of the dielectric ten-

sor describing the (effective medium) thin film, the re-
flectivity of the system can be readily calculated from
standard theory [40]. In the following, we will denote the
surface reflectivity Rβ(ω) where the subscript β = p, s
indicates the linear polarization of the incident light. Fi-
nally, we note that whereas we can assume

∣∣k‖∣∣ = 0 for
the solution of the Laplace equation, the lateral wave
vector enters as

k‖ =
ω

c
sin θ0(cosφ0, sinφ0, 0)

in the reflectance formulas. This is a consequence of the
well known fact that the reflectance in general depends
on the angle of incidence.

III. THE COLLECTIVE PLASMON MODES OF
NANOPARTICLE ARRAYS

In order to estimate how the interactions between the
nanoparticles influence their plasmonic resonances, we
compare the dimensionless dipole moment [Eq. (3)] of
an Ag nanoparticle when it is situated in various en-
vironments in Fig. 2. The dipole moment of a single
Ag nanoparticle (with no substrate present) is shown in
Fig. 2(a) and it exhibits a peak at �ω ≈ 3.5 eV. This
is the well-known Mie resonance [42] in the quasistatic
regime. We note that in obtaining the results of Fig. 2 a
cutoff of Lmax = 30 was used in the calculations. More-
over, the same value of Lmax was assumed in obtaining
all results that will be presented in this paper.
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E0 ‖ ẑ
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FIG. 2. The absolute value of the dimensionless dipole moment of a single nanosphere in the following environments: (a)
“hovering” in vacuum, (b) supported by an Al2O3 substrate, (c) in an Ag dimer with an interparticle center-center distance
of 2.2a on top of an Al2O3 substrate, (d) in an Ag lattice [Figs. 1(a) and 1(b)] with bx = 2.2a and by = 4bx supported by an
Al2O3 substrate. For comparison, a perfect metal sphere (of radius much smaller than λ) in vacuum excited by a homogeneous
E0 has p̄(ω) ≡ 1. The parameters common to all subfigures were h = 0.01a and Lmax = 30.

When the Ag monomer is supported by a semi-infinite
Al2O3 substrate (ε− ≈ 2.76 at 3 eV, with little disper-
sion), its dipole moment response is as shown in Fig. 2(b).
By comparing Figs. 2(a) and 2(b), it is observed that
the presence of the substrate leads to a red-shift of the
Mie resonance when the electric field is perpendicular to
the substrate (E0 ‖ ẑ), but is almost unchanged in the
case when the electric field is parallel to the substrate
(E0 ⊥ ẑ). The Mie resonance splits due to the breaking
of symmetry caused by the presence of a substrate. Note
that in this case, full convergence was not obtained. Nev-
ertheless, the results are shown for easy comparison with
the other subfigures of Fig. 2. For a detailed discussion
of this system, see Ref. [43].

Next, we consider two supported Ag particles placed in
a dimer configuration with the distance between the par-
ticle centers being 2.2a and the dimer axis being oriented
along the x axis. We also assume that it is “hovering”
h = 0.01a above an Al2O3 substrate. We observe that
the resonance for E0 ⊥ ẑ splits into two resonances, lo-
cated at different photon energy for E0 ‖ x̂ relative to

the E0 ‖ ŷ case [Fig. 2(c)]. This happens because we
no longer have rotational symmetry about the z axis. If
instead the incident electric field is oriented along the
dimer axis (E0 ‖ x̂), one gets a redshift of approximately
0.45 eV (relative a corresponding isolated particle) and a
significant enhancement of the resonance. The particle-
substrate interactions are not particularly strong for the
Al2O3 substrate we consider; it only leads to a small red-
shift and broadening of the resonance when the incident
electric field is directed normal to the surface (E0 ‖ ẑ).
When the incident electric field is directed normal to
both the surface of the substrate and the dimer axis,
i.e., E0 ‖ ŷ, the spectrum looks very similar to the case
E0 ⊥ ẑ of an isolated nanoparticle supported by the same
substrate [Fig. 2(b)].

Finally, we study the case when the neighborhood of
the particle becomes a two-dimensional rectangular lat-
tice of (identical) nanoparticles with lattice constants
bx = 2.2a and by = 4bx, supported by an Al2O3 substrate
(h = 0.01a). In this case, the Mie resonance for E0 ‖ x̂
undergoes further redshift and enhancement [Fig. 2(d)].
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FIG. 3. The absolute value of the dimensionless dipole mo-
ment for a sphere in a rectangular lattice, with anisotropy
parameters by/bx = 1.15 to by/bx = 4; bx was kept constant
at 2.2a. For reference, the dipole moment of a sphere in a
square lattice (bx = by) is shown in gray shade. In each plot,
the exciting electric field is directed along different axes: (a)
E0 ‖ x̂, (b) E0 ‖ ŷ, and (c) E0 ‖ ẑ. Note that the scale of
the second axis in (c) is different from the scales used for the
equivalent axes of the other two subfigures.

As expected, successively longer chains of particles cause
stronger interactions between the particles, causing more
redshift and resonance enhancement. When the incident
electric field is transverse to the chains and to the surface
normal, i.e., E0 ‖ ŷ, the interactions between the “chains
of particles” are rather weak and cause no significant red-
shift. Finally, for E0 normal to the substrate (E0 ‖ ẑ),
the particle-substrate interactions mainly serve to kill off
the resonance. This may be understood by recalling that
the induced dipole in the particle and the image dipole in
the substrate will have opposite directions and therefore
partly cancel the effect of each other.

By comparing the results for the different ratios by/bx
shown in Fig. 2, we see that the local environment can
significantly alter the optical response of nanoparticles.

In particular, periodic lattices strongly influence the opti-
cal response of nanoparticles to an incident electric field.
In Sec. IV, we will discuss how this can be observed in a
reflectivity experiment.
By studying the dipole moment of a single nanosphere

in a rectangular lattice, one aims at better understand-
ing how the lattice affects the strength and position of
particle resonances and under which conditions the rect-
angular lattice turns into a collection of non-interacting
chains. Hence, in Fig. 3 we show the (single particle)
dipole moment as a function of the anisotropy parameter
by/bx of the lattice. As this parameter increases, the in-
tersphere interactions along the y-axis weaken [Fig. 3(b)],
leading to reduced resonance strength and less red-shift
of the resonance. We observe that from by/bx = 2.64
to by/bx = 4, there is little change in both resonance
strength and position. Results for intermediate values,
i.e., 2.64 < by/bx < 4, are virtually indistinguishable
from those of by/bx = 4. From this result, we conclude
that for by ≥ 4bx, one may ignore interactions between
the nanosphere chains altogether (at least for our choice
of bx).
When examining Fig. 3(a), it is clear that if the elec-

tric field is directed along x̂, the change in by does not
affect the plasmon resonances significantly. This is be-
cause the interactions between neighbouring particles is
strongest along the direction of the incident field. For
the case when E0 ‖ ẑ [Fig. 3(c)], however, the anisotropy
affects the plasmonic resonances by increasing the reso-
nance strength. This effect is mainly caused by the re-
duced density of particles on the substrate, as neighbour-
ing particles cause damping of the resonance. This damp-
ing effect can be explained in a “hand-waving” fashion
by considering the fact that side-by-side parallel dipoles
counteract polarization of each other.
Simulations have also been run for lattices where the

anisotropy was kept at by/bx = 4, but bx (and thus, by)
was increased. As would be expected, increasing the lat-
tice constants reduces interparticle interactions, and the
dipole moment behavior becomes more similar to that of
Fig. 2(b). Hence, for lattice constants larger than what
has been explored here, one can safely assume that a
lattice with by/bx > 4 can be approximated as a set of
non-interacting linear chains of nanoparticles.
Finally, we have investigated the effects of finite

∣∣k‖∣∣.
While the effects of a phase difference between neigh-
bouring particles can be significant, we do not include
any results in this paper. The reason is that we are pri-
marily interested in optical fields, where

∣∣k‖∣∣ � π/by.

Results of simulations for small, but finite,
∣∣k‖∣∣, indicate

that the approximation
∣∣k‖∣∣ = 0 is a good one.

IV. REFLECTIVITY OF NANOPARTICLE
ARRAYS

The reflectivity of an interface is an experimentally
accessible quantity for probing the nanoparticle sys-
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FIG. 4. Reflectivity of a square lattice of spheres sup-
ported by an Al2O3 substrate for angles of incidence (a)
(θ0, φ0) = (0◦, 0◦) and (b) (θ0, φ0) = (45◦, 0◦). The lattice
parameters were a = 10nm and bx = by = 2.2a. The isotropic
nature of the square lattice means that the reflectivity is iden-
tical for p-polarized and s-polarized light at normal incidence.
The dashed lines shows the reflectivity of a substrate with no
nanoparticles.

tem. Optical methods have the advantage of being non-
destructive, and can be used in situ in various challenging
environments, e.g., vacuum chambers. For these reasons,
we have calculated the surface reflectivity of a square and
a rectangular two-dimensional lattice of Ag nanoparticles
supported by an Al2O3 substrate. In these calculations,
the incident field is assumed to be a plane wave that is
either p- or s-polarized. At normal incidence, we define
a p-polarized (s-polarized) field by E0 ‖ x̂ (E0 ‖ ŷ). The
lattice constants were bx = by = 2.2a for the square lat-
tice and bx = 2.2a, by = 2bx for the rectangular lattice.
In both cases, a = 10nm was the radius of the spheres.
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FIG. 5. Reflectivity of a rectangular lattice of spheres
on top of an Al2O3 substrate. The lattice parameters were
a = 10nm, bx = 2.2a, and by = 2bx. The dashed lines
shows the reflectivity of a substrate with no nanoparticles.
(a) At normal incidence [(θ0, φ0) = (0◦, 0◦)] we define p-
polarized light to be polarized along the x-axis, and (b)
(θ0, φ0) = (45◦, 0◦).

First we address normal incidence. Figures 4(a)
and 5(a) present the calculated reflectivity [Sec. II B] for
the square and rectangular lattices, respectively, at an-
gles of incidence (θ0, φ0) = (0◦, 0◦). The red solid curve
in Fig. 4(a) depicts the reflectivity from the square lat-
tice at normal incidence, whereas the dashed line shows
the reflectivity from a flat, clean Al2O3 surface. From
this figure it is observed that there is no difference (at
normal incidence) between p- and s-polarized reflected
light, as is to be expected due to the symmetry of the
lattice. Moreover, the presence of the metallic particles
cause the reflectivity to increase relative to the reflec-
tivity of the clean dielectric substrate. This increase is
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FIG. 6. The reflectivity of an isotropic and homogeneous
Ag film at angles of incidence (a) θ0 = 0◦ and (b) θ0 = 45◦

(as the film is isotropic, φ0 is irrelevant). The film thickness
was assumed to be 4.3 nm, which is equivalent to the mass
thickness of the rectangular lattice shown in Fig. 5.

especially pronounced near the redshifted Mie resonance.

For the rectangular lattice at normal incidence, the re-
flectivity of p-polarized light looks rather different from
the reflectivity of s-polarized light [Fig. 5(a)], caused by
bx �= by. Since by = 2bx was assumed, the particles will
interact more strongly along the x-direction than along
the y-direction. Based on what was found in Fig. 3, the
system can be thought of as a set of weakly interact-
ing linear chains oriented along the x-axis. Along the
chain, the interactions are strong (p-polarized light has
a component along x̂), whereas between the chains (s-
polarized light is polarized along ŷ) the interactions are
much weaker. This can be seen directly in the reflectiv-
ity curves: for p polarization, a large red shift relative

to the isolated, single particle Mie resonance is observed
due (mainly) to interparticle interactions. However, for s
polarization there is essentially no redshift, meaning that
the resonance occurs close to the single particle Mie reso-
nance. Note that the interparticle interactions along the
chain (x̂) in p polarization produce a much stronger res-
onance, and hence higher reflectivity, than the interchain
interactions in s polarization.
We now turn to non-normal incidence, (θ0, φ0) =

(45◦, 0◦), for which results are presented in Figs. 4(b)
and 5(b). In this case, the two polarization states give
rise to different reflectivity curves even for the square lat-
tice. From Fig. 4(b), it is observed that the reflectivity for
s polarization is systematically higher than the reflectiv-
ity for p polarization. Moreover, the difference between
the two curves is almost independent of energy, and the
relative change in the reflectivity as a function of energy
follows closely that of normal incidence. This behavior
is due to the difference in reflectivity at non-normal in-
cidence for the two linear polarizations, as indicated by
the dashed lines in Figs. 4(b) and 5(b).
For the same angles of incidence [(θ0, φ0) = (45◦, 0◦)],

Fig. 5(b) shows that the reflectivity from the rectangu-
lar lattice is both quantitatively and qualitatively differ-
ent from that of the square lattice. As the interactions
between the particles are now significantly stronger for
electric fields polarized along the x axis, the p-polarized
reflectivity still has a significantly redshifted peak. For s-
polarized light, however, the redshift is negligible. This
means that this surface acts as a spectral polarizer: it
reflects predominantly p polarized light at around 2.9
eV, whereas at around 3.5 eV, s-polarized light domi-
nates. The reflectivity can be increased by simply using
a greater “mass thickness” (the equivalent thickness of
a homogeneous Ag thin film) of Ag, i.e., by using larger
nanoparticles. However, the results will be affected by re-
tardation effects if the nanoparticle radius increases too
much.
For comparison, we present in Fig. 6 the reflectivity

of a continuous, isotropic, and homogeneous Ag film of
thickness 4.3 nm. This is the equivalent mass thickness
of the rectangular lattice with by = 2bx. By comparing
the results of Figs. 5(b) and 6 it is readily observed that
the corresponding reflectivity curves are rather different.
Thus, it is feasible to separate the case of a continu-
ous thin film from that of isolated metallic island films
through reflectance measurements. In fact, the reflec-
tivity of the thin continuous film is much closer to the
reflectivity of the clean substrate, where few features of
interest can be observed.

V. CONCLUSION

In this paper, we have investigated the collective
excitations in square and rectangular two-dimensional
lattices of Ag nanoparticles supported by a dielectric
(Al2O3) substrate. In particular, we have established
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that for lattices where the lattice constant is greater than
approximately 4 sphere diameters (by/bx > 4), the sys-
tem can be approximated as a collection of independent,
non-interacting linear chains. It has also been demon-
strated that if the incident field is polarized along the
shortest lattice vector, the anisotropic nature of the lat-
tice leads to collective resonances that are significantly
redshifted relative to the single particle Mie resonance.
We have also presented results showing the reflectiv-

ity of surfaces patterned by such nanoparticle lattices. If
the lattice is rectangular, the surfaces exhibit the inter-
esting property that the reflected light possesses different
colors in the two linear polarizations (p and s). It is rea-
sonable to assume that similar behavior will be apparent
in transmission. For technological applications, the ad-
vantage of the rectangular lattice configuration is that no
control is necessary over the nanoparticle orientation (cf.
anisotropic particles on a square lattice), and that reso-
nance positions can be tuned via the lattice constants.
Since rectangular lattices of nanoparticles leave much

room for tunability of the plasmonic and polarization
characteristics of an interface, we believe further studies
are in order to gain more insight. Tunability can further
be extended by employing other materials; nanoshells,
which allow for tunability through the core and shell

radii; or through use of truncated spheres or otherwise
anisotropic particles. For spherical nanoshells, the the-
ory sketched in this paper could be applied with relatively
straightforward modifications. The effects of randomness
on the properties of such lattices is also a topic of in-
terest [44], relevant to experimental conditions in which
some element of randomness is inevitable. The approach
here is not very computationally demanding, and should
thus be suited for exploration of random effects.
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Coherent effects in the scattering of light from two-dimensional rough metal surfaces

P. A. Letnes,∗ T. Nordam,† and I. Simonsen‡
Department of Physics, The Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway

We investigate numerically multiple light scattering phenomena in two-dimensional randomly
rough metallic surfaces, where surface plasmon polaritons mediate several surface scattering ef-
fects. The scattering problem is solved by numerical solution of the reduced Rayleigh equation for
reflection. The multiple scattering phenomena of enhanced backscattering and enhanced forward
scattering are observed in the same system, and their presence is dependent on surface plasmon po-
lariton excitation. The numerical results discussed are qualitatively different from previous results
for one-dimensionally rough surfaces, as one-dimensional surfaces have a limited influence on the
polarization of light.

PACS numbers: 42.25.-p, 41.20.-q, 78.20.-e, 78.20.Bh

I. INTRODUCTION

A hot topic in the electronics and photonics community
is plasmonics, due to the prediction that surface plasmon
polaritons (SPP) can carry information faster and with
less energy loss than electronic circuits [1]. Surface plas-
mon polaritons can have a penetration depth in metal on
the order of 10 nm, i.e., two orders of magnitude smaller
than the wavelength of visible light in vacuum. This
means that plasmonics allows light to be concentrated
and manipulated by structures well below the diffraction
limit from classical optics.

Surface plasmon polariton excitation is also being in-
vestigated as a way to improve the performance of pho-
tovoltaic devices. For thin solar cells, with a thickness
on the order of 1 μm, the path length of light travelling
through the cell is insufficient to absorb more than a
small fraction of the incident energy. By converting light
into SPPs which can propagate along the dielectric-metal
interface at the back of the photovoltaic cell, it is possible
to absorb a larger fraction of the incident energy [2].

Since SPPs propagate along the interface of a metal,
they are sensitive to conditions on the surface, making
SPPs well suited for sensor applications. Such devices
are often called surface plasmon resonance (SPR) sen-
sors, and can be used for, e.g., microarray analysis of
proteins [3] or DNA [4].

At a flat interface, incident light cannot couple to
SPPs due to momentum mismatch. By manipulating
the surface roughness, however, it is possible to con-
trol the coupling of incident light into SPPs. In this
paper, we will consider light reflected from randomly
rough surfaces with particular statistical properties, and
look at multiple scattering phenomena which arise due to
SPPs. Several multiple scattering phenomena have been
predicted theoretically and/or confirmed experimentally.
For example, enhanced backscattering was predicted by

∗ paul.anton.letnes@gmail.com
† tor.nordam@ntnu.no
‡ Ingve.Simonsen@ntnu.no

McGurn et al. [5] and later confirmed experimentally by
West and O’Donnell [6]. The enhanced backscattering
phenomenon is a double scattering phenomenon, caused
by constructive interference between a wave scattered (at
least) twice by the surface, and its time-reversed partner.
Usually, the excitation of SPPs is involved in this process.
For weak (low rms) surface roughness, scattering pro-
cesses are usually dominated by single scattering. Hence,
West and O’Donnell designed a surface whose roughness
had a power spectrum which suppresses single scattering
in a certain angular range, allowing multiple scattering
effects to be seen more clearly [6]. The surface in ques-
tion had a surface profile function dependent on only one
of the axes in the surface plane; colloquially, we refer
to such surfaces as “one-dimensional”. This power spec-
trum is now known as the West–O’Donnell spectrum or
the rectangular spectrum.

Enhanced forward scattering was first predicted the-
oretically by O’Donnell [7], who termed it the en-
hanced specular peak phenomenon. O’Donnell investi-
gated the scattering of light from surfaces with weak,
one-dimensional roughness by the use of perturbation
theory, and reported an enhancement in the specular di-
rection of the intensity of the light scattered diffusely by
the rough surface. To lowest order in the surface pro-
file function, this phenomenon appears as an eight-order
contribution to the intensity within perturbation theory,
and for one-dimensional surface roughness it is caused
by constructive interference between counterpropagating
SPPs; see Fig. 10 of Ref. 7. To confirm these findings,
O’Donnell and Méndez studied surface scattering from
one-dimensional surfaces by direct solution of the one-
dimensional reduced Rayleigh equation [8]. Their find-
ings were later confirmed by Simonsen [9] who also per-
formed a detailed numerical study of this phenomenon,
focusing on the competition between how light couples
into and out from SPPs, and how one SPP can couple to
another counterpropagating SPP.

Up till now, the enhanced forward scattering phe-
nomenon has not been studied for two-dimensional ran-
domly rough surfaces neither by perturbation theory nor
by computer simulations. Also, only a few numerical
studies of enhanced backscattering have appeared in the
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literature for two-dimensional roughness. In this paper,
we investigate light scattering from two-dimensionally
rough surfaces by means of large scale computer simu-
lations, with a focus on phenomena caused by the exci-
tation and interference of SPPs. In particular, we are
interested in the enhanced backscattering phenomenon
and the less studied phenomenon of forward scattering
enhancement. The understanding of such phenomena
could be useful for the understanding and tweaking light-
plasmon coupling in plasmonic circuits. Furthermore,
two-dimensional surface roughness leads to significant
polarization effects that cannot be taken into account
in a one-dimensional model.

This paper is organized as follows. In Sec. II, we dis-
cuss the relevant theory, including how the statistical
properties of the surface roughness decide which scat-
tering processes are allowed. Section III presents results
from numerical simulations, exhibiting enhanced forward
scattering and enhanced backscattering. Finally, con-
cluding remarks are found in Sec. IV.

II. THEORY

The system under study consists of a metallic substrate
with a vacuum cladding [Fig. 1(a)]. We assume that the
vacuum-metal interface has a randomly rough structure,
and the metal is characterized by a complex dielectric
function ε2(ω). Since the cladding is vacuum, its dielec-
tric constant is ε1 ≡ 1. The height of the surface is
given by the single-valued function x3 = ζ(x‖), where
x‖ = (x1, x2, 0) is the lateral component of the position
vector, x. We assume that ζ(x‖) is at least once differen-
tiable with respect to x1 and x2. The angles of incidence
(θ0, φ0) and scattering (θs, φs) are defined positive ac-
cording to the convention given in Fig. 1(b).

In this paper, we will consider randomly rough surfaces
where ζ(x‖) constitutes a stationary random process de-
fined by 〈

ζ(x‖)
〉
= 0, (1a)〈

ζ(x‖)ζ(x′‖)
〉
= δ2W (x‖ − x′‖), (1b)

where the angle brackets denote an average over an en-
semble of surface realizations. In writing Eq. (1) we
have defined the root-mean-square height of the surface,

δ =
〈
ζ2(x‖)

〉1/2
, and W (x‖ − x′‖) denotes the height-

height auto-correlation function of the surface, normal-
ized so that W (0) = 1 [11]. In the discussion below,
and when generating realizations of the surface profile
function, it is more convenient to work with the power
spectrum of the surface, rather than using the auto-
correlation function directly. The power spectrum, g(k‖),
of the surface profile function is defined by

g(k‖) =
∫

d2x‖ W (x‖) exp
(−ik‖ · x‖) , (2)

k

θ0 θs

kspp

q

Vacuum (ε1 ≡ 1)

Substrate (silver, ε2)

x3

x1

(a) System sketch, seen in the x1x3 plane.

x1

x2

x3

q

k

q‖

k‖

φs

φ0

θs
θ0

(b) Definition of wave vectors and polar angles.

FIG. 1. (Color online) Sketches of the system under study
(surface roughness not shown). (a) The light of wave vec-
tor k incident on the surface causes scattering into various
propagating modes (of wave vector q) and the excitation of
surface plasmon polaritons (kspp). In this study, we assume
ε1(ω) ≡ 1, and ε2(ω) is taken from Ref. 10. (b) Definition
of the lateral wave vectors (k‖ and q‖) as well as the polar
angles of incidence and scattering.

where k‖ = (k1, k2, 0) is the lateral component of the
wave vector, k. The power spectra that will be considered
in this work are of the cylindrical form, where

g(k‖) = γ1g1(k‖) + γ2g2(k‖) (3a)

and gi (i = 1, 2) are given by [12]

gi(k‖) =
4π

k2+ − k2−
θ
(
k‖ − k

(i)
−
)
θ
(
k
(i)
+ − k‖

)
. (3b)

In Eq. (3a), γ1 and γ2 are real constants defined such
that γ1, γ2 ≥ 0 and γ1 + γ2 = 1. Furthermore, k‖ =

∣∣k‖∣∣,
θ(·) denotes the Heaviside unit step function, and k

(i)
±

are wavenumber cutoff parameters, with k
(1)
− < k

(1)
+ <

k
(2)
− < k

(2)
+ . The Heaviside step functions in Eq. (3b)

cause each of the gi’s to have a cylindrical shape: gi is

zero for k‖ < k
(i)
− , a positive constant for k

(i)
− ≤ k‖ < k

(i)
+ ,

and zero for k‖ ≥ k
(i)
+ . The constants γi determine the

relative balance between the outer and inner cylindrical
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parts of the power spectrum. The power spectrum de-
scribed by Eq. (3) is a two-dimensional generalization
of the one used by O’Donnell and Méndez [8] and Si-
monsen [9] in their previous numerical investigations of
enhanced forward scattering from one-dimensional ran-
domly rough surfaces. The power spectrum used by West
and O’Donnell [6] in their experimental confirmation of
enhanced backscattering is a one-dimensional special case
of Eq. (3), with γ1 = 1 and γ2 = 0.

A. The reduced Rayleigh equation

The electric field in the vacuum above the surface[
x3 > max ζ

(
x‖
)]

can be expressed as the sum of an in-
cident field and a scattered field,

E(x|t) =
[
E(0)(x|ω) +E(s)(x|ω)

]
exp (−iωt) , (4)

where ω is the angular frequency of the incident (and
scattered) light. The superscripts (0) and (s) on the elec-
tric field vectors indicate the incident and scattered field,
respectively. Furthermore,

E(0)(x|ω) =
{
− c

ω

[
k̂‖α1(k‖) + x̂3k‖

]
E(0)p (k‖) +

(
x̂3 × k̂‖

)
E(0)s (k‖)

}
exp

[
ik‖ · x‖ − iα1(k‖)x3

]
, (5a)

E(s)(x|ω) =
∫

d2q‖
(2π)2

{
c

ω

[
q̂‖α1(q‖)− x̂3q‖

] E(s)p (q‖) +
(
x̂3 × q̂‖

) E(s)s (q‖)
}
exp

[
iq‖ · x‖ + iα1(q‖)x3

]
, (5b)

where E(0)α (q‖) and E(s)β (k‖), with α, β = p, s, are the
amplitudes for the α-polarized and β-polarized compo-
nents of these fields with respect to the local planes of
incidence and scattering, respectively. The wave vector
of the incident light is k, which is of length |k| = ω/c,
where c is the speed of light in vacuum. The expressions
in front of the field amplitudes are the unit polarization
vectors. The wave vector of the scattered light, q, has
lateral component q‖ = (q1, q2, 0), and is related to the
angles of scattering as indicated by Fig. 1(b). A caret
over a vector indicates that it is a unit vector. Finally,
the functions αi(q‖), i = 1, 2 are defined by

αi(q‖) =
[
εi

(ω
c

)2
− q2‖

]1/2
,

Reαi(q‖) > 0, Imαi(q‖) > 0.

(6)

A linear relation is assumed to exist between the am-
plitudes E(s)α (q‖) and E(0)β (k‖) (α, β = p, s), which
we express in terms of the scattering amplitudes
Rαβ(q‖|k‖) [13]:

E(s)α (q‖) =
∑
β=p,s

Rαβ(q‖|k‖)E(0)β (k‖).

In order to obtain an equation for the scattering
amplitudes, we first write down an expression for the
transmitted field, E(t)(x|ω), that is valid in the region
x3 < min ζ(x‖) below the surface. We then assume the
Rayleigh hypothesis, which states that for a sufficiently
smooth surface,

∣∣∇ζ(x‖)
∣∣� 1, these asymptotic expres-

sions for the fields are valid also in the surface roughness
region [min ζ(x‖) < x3 < max ζ(x‖)] [14, 15], and can
be used to fulfill the boundary conditions satisfied by the
electric and magnetic fields at the surface x3 = ζ(x‖).
From the resulting set of coupled matrix integral equa-
tions, it is possible to eliminate the amplitudes of the
transmitted (reflected) field so that a single matrix inte-
gral equation results for the amplitudes corresponding to
the field above (below) the surface. The resulting equa-
tion is known as the reduced Rayleigh equation for reflec-
tion (transmission). For details regarding the derivation
of the reduced Rayleigh equation, we refer to Refs. 13
and 16.

If the scattering amplitudes are organized as the 2× 2
matrix

R(q‖|k‖) =
(

Rpp(q‖|k‖) Rps(q‖|k‖)
Rsp(q‖|k‖) Rss(q‖|k‖)

)
, (7)

the reduced Rayleigh equation for reflection from a two-
dimensional surface can be written in the form [12, 16, 17]

∫
d2q‖
(2π)2

I
(
α2(p‖)− α1(q‖)|p‖ − q‖

)
α2(p‖)− α1(q‖)

M+(p‖|q‖)R(q‖|k‖) = −
I
(
α2(p‖) + α1(k‖)|p‖ − k‖

)
α2(p‖) + α1(k‖)

M−(p‖|k‖), (8a)
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where

I(γ|Q‖) =
∫

d2x‖ exp
[−iγζ(x‖)] exp (−iQ‖ · x‖) , (8b)

and

M±(p‖|q‖) =
(

p‖q‖ ± α2(p‖)p̂‖ · q̂‖α1(q‖) −ω
c α2(p‖)

[
p̂‖ × q̂‖

]
3

±ω
c

[
p̂‖ × q̂‖

]
3
α1(q‖) ω2

c2 p̂‖ · q̂‖

)
. (8c)

Equation (8a) is valid for an arbitrary value of the lateral
wave vector p‖, which is a quantity used only for math-
ematical purposes. The integral in Eq. (8b) is evaluated
by expanding the exponential exp

[−iγζ(x‖)] in powers
of its argument, and integrating the resulting series term-
by-term by the fast Fourier transform (FFT). In practice,
the sum is truncated at a finite order (n = 20 was used
in this work). The integration domain used for the inte-
gral in Eq. (8a) is truncated to cover the circular region
q‖ ≤ Q/2, and the integration was converted to a finite
sum over this domain by a two-dimensional version of the
standard mid-point quadrature scheme. From this sum,
we can obtain a linear system of equations (one for each
value of p‖), which can be solved to find Rαβ(q‖|k‖).

For the simulations presented in this paper, we have
used numerically generated, discrete realizations of the
surface profile function. These realizations covered a
square area of size L× L of the x1x2 plane, determining
the integration limits in Eq. (8b). The surface realiza-
tions were discretized onto a quadratic, equidistant grid
of Nx ×Nx points. Each realization was generated by a
two-dimensional version of the Fourier filtering method
presented in, e.g., Refs. 18 and 19. For a detailed discus-
sion of how one can proceed to solve the reduced Rayleigh
equation numerically, we refer to Ref. 20.

B. Mean differential reflection coefficient

When the incident field is known, the quantity
Rαβ(q‖|k‖) completely specifies the total electromag-
netic field in the region above the surface. However,
Rαβ(q‖|k‖) is not directly measurable in experiments. A
quantity well suited for experimental studies is the mean
differential reflection coefficient (MDRC), 〈∂Rαβ/∂Ωs〉,
which is defined as the time-averaged fraction of the in-
cident power scattered into the solid angle dΩs about
the scattering direction, q̂. The relationship between
Rαβ(q‖|k‖) and the MDRC can be written as [12]〈

∂Rαβ

∂Ωs

〉
=

1

L2

ω2

4π2c2
cos2 θs
cos θ0

〈∣∣Rαβ(q‖|k‖)
∣∣2〉 . (9)

Since we are studying weakly rough surfaces, light scat-
tered coherently (specularly) by the rough surface will
dominate. However, some of the light incident on the
surface will also be scattered incoherently (diffusely) by

the rough surface. In theoretical and numerical studies,
it is advantageous to separate these two contributions.

By light scattered coherently by the surface, we mean
scattered light that is in phase from one surface real-
ization to the next, so that the intensity of light scat-
tered coherently (from β to α polarization) will be pro-

portional to
∣∣〈Rαβ(q‖|k‖)

〉∣∣2. The contribution to the
MDRC from the light that has been scattered incoher-
ently by the rough surface is defined as [12]〈

∂Rαβ

∂Ωs

〉
incoh

=
1

L2

ω2

4π2c2
cos2 θs
cos θ0

×
[〈∣∣Rαβ(q‖|k‖)

∣∣2〉− ∣∣〈Rαβ(q‖|k‖)
〉∣∣2] . (10)

The contribution to the MDRC from the light scattered
coherently is therefore given by the difference between
Eqs. (9) and (10). We will see below that enhanced
backscattering and enhanced forward scattering are both
phenomena observed in the incoherent component of the
MDRC, even if in the case of enhanced forward scattering
it is observed in the specular direction.
We also note that the quantity Rαβ(q‖|k‖) can be

used to construct the Mueller matrix for reflection from a
rough surface [21]. The Mueller matrix contains all linear
transformations of the polarization of light undergoing
scattering from a rough surface, including polarization
and depolarization.

C. Surface plasmon polaritons

Surface plasmon polaritons are electromagnetic modes
that are confined to dielectric-metal interfaces, where the
dielectric function of the cladding is positive and the
(real part of the) dielectric function of the substrate is
smaller than the negative of the dielectric function of the
cladding [22]. The dispersion relation of SPPs at a flat
vacuum-metal interface is [22]

kspp(ω) =
ω

c

(
ε2(ω)

ε2(ω) + 1

)1/2

(11)

where kspp(ω) is the length of the wave vector of the
SPP mode. For silver at wavelength λ = 457.9 nm (in
vacuum), for which the dielectric function is ε2(ω) =
−7.5+0.24i [10], it follows that kspp = (1.074+0.003i)ω/c
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(ω = 2πc/λ). The imaginary part of kspp can be in-
terpreted as an inverse decay length of the SPP mode,
whereas the real part corresponds to the wave number of
the mode.

Multiple scattering phenomena such as the enhanced
backscattering and enhanced forward scattering are, for
weakly rough surfaces, typically caused by the incident
light exciting SPPs that are subsequently scattered zero
or more times before coupling into a mode propagat-
ing away from the surface [11]. In particular, in one-
dimensional small-amplitude perturbation theory, the
lowest order contribution to the enhanced forward scat-
tering peak in the mean DRC has its origin in quadruple
scattering processes [7, Fig. 10].

D. Allowed and forbidden scattering processes

From small amplitude perturbation theory [11, 23], it
can be shown that a single scattering event from lateral
wave vector k‖ to q‖ is allowed only if the power spectrum
evaluated at the wave vector transfer ksc is non-zero, i.e.,

g (ksc) > 0, ksc = q‖ − k‖. (12)

This condition holds for scattering between propagating
modes; between evanescent modes; and from propagating
to evanescent modes, and vice versa. For isotropic power
spectra, such as those studied in this paper [Eq. (3)], the
requirement (12) simplifies to

g (|ksc|) > 0. (13)

To better understand the physical implications of con-
dition (13), and to facilitate our interpretation of the sim-
ulation results presented later in this paper, we present a
visual model for discussing relevant scattering processes
in Fig. 2. Before starting the discussion, we remind the
reader that modes for which k‖ ≤ ω/c are propagating
in the vacuum, whereas for k‖ > ω/c, the correspond-
ing fields are evanescent. Moreover, at the wavelength
λ = 457.9 nm, assumed in the simulations presented be-
low, the vacuum-silver interface supports surface plas-
mon polaritons of lateral wave vector kspp = 1.074ω/c
(see Sec. II C). For simplicity, we have neglected the
imaginary part of the wave number, as it is small com-
pared to its real part.

In passing, we note that the polarization state of light
can be modified at each scattering event, subject to the
requirement that SPPs are always p-polarized. We will,
however, not discuss polarization effects of single scatter-
ing events in this section.

We will now discuss Fig. 2, which was produced un-
der the assumption that the surface power spectrum was
identical to that in Eq. (3), and characterized by the

values for k
(i)
± to be used in later simulations (Sec. III).

The annular regions, indicated by blue shaded regions in
Fig. 2, represent the nonzero parts of the surface rough-
ness power spectrum.

First, we consider the scattering process k‖ → q‖
[Fig. 2(a)] that corresponds to the lateral wave vector (or
momentum) transfer ksc. In Fig. 2(a) the incident lateral
wave vector, k‖, is placed so that it starts at the origin
of wave vector space, O; the same is done for q‖. We su-
perpose blue shaded regions representing the power spec-
trum so that the center of the power spectrum is located
at the end of k‖. Thus, if ksc indicates a point inside the
blue shaded regions (the power spectrum), the scatter-
ing process k‖ → q‖ is allowed. Moreover, at the same
time, if q‖ ≤ ω/c, the process k‖ → q‖ results in a scat-
tered mode that can propagate away from the surface.
On the assumption that both k‖ and q‖ are propagating
in vacuum, one realizes that k‖ [for the value of k‖ used
in Fig. 2(a)] can be converted into q‖ through a single
interaction with the surface roughness (single scattering)
only within a crescent-like region. This region is defined
by the shaded blue region which resides inside the circle
q‖ = ω/c, indicated in black in Fig. 2(a). Outside this
crescent region, the scattering process is either not al-
lowed or q‖ > ω/c, meaning that the mode is evanescent
(non-propagating). When later studying the full angular
distribution of the scattered light (Fig. 3), we will see
that this observation is important.

We now turn to the possibility of exciting SPPs by the
incident light, a situation addressed in Fig. 2(b). The ex-
citation k‖ → kspp of SPPs is subject to the constraints
in Eq. (13). In particular, we have that the excitation of
a surface plasmon polariton by the incident field charac-
terized by k‖ is only allowed if

k
(1)
− <

∣∣kspp − k‖
∣∣ < k

(1)
+ (14)

or (less relevant for the parameters used in this study,
due to the large θ0 required)

k
(2)
− <

∣∣kspp − k‖
∣∣ < k

(2)
+ . (15)

Consequently, it is only possible to excite surface plas-
mon polaritons for small (or very large) angles of inci-
dence. The excitation of a surface plasmon polariton is
shown in Fig. 2(b). The black ring indicates the length
of the possible SPP wave vectors. In the plane of inci-
dence, surface plasmon polaritons cannot be excited for
angles of incidence θ0 > 17◦. For out of plane scatter-
ing, however, SPP excitation is allowed also for θ0 > 17◦.
This is qualitatively different from scattering from a one-
dimensionally rough surface.

E. Enhanced backscattering

For weakly rough surfaces, the presence of the en-
hanced backscattering phenomenon typically requires
the excitation of surface plasmon polaritons. On the
other hand, for strongly rough surfaces it can take place
through a multiple scattering effect [24, 25]. For the
weakly rough surfaces discussed here, the SPP channel
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ω/c

k‖
q‖

ksc

O

(a) Scattering from wave vector k‖ into wave vector q‖. The
scattered mode is propagating, since |q‖| < ω/c, with ω/c

indicated by the black ring.

kspp

k‖
kspp

ksc

O

(b) Excitation of a surface plasmon polariton by incident light.
The surface plasmon polariton is not propagating in vacuum, as
kspp > ω/c. The parts of the black ring (of radius kspp) which
lie in the blue region represent legal SPP excitation processes.

ω/c

ksc

q‖

O

kspp

(c) Scattering of a surface plasmon polariton into a bulk
propagating mode. Legal propagating modes are those for

which q‖ lies inside the blue region and q‖ < ω/c.

kspp

k
(2,1)
sc

k
(2)
spp

k
(3)
spp

k
(3,1)
sc

O

k
(1)
spp

(d) Scattering of a surface plasmon polariton (k
(1)
spp). Two legal

scattered modes (k
(2)
spp and k

(3)
spp) are shown. The black ring

indicates legal wave vectors for SPPs.

FIG. 2. (Color online) Four scattering processes important for understanding the results of this study. A detailed discussion

of the figure is found in the text. All subfigures 2(a)–(d) are drawn to correct and identical scale for the parameters k
(i)
± and

ε2 used throughout this study. The blue annular regions indicate the non-zero parts of the power spectrum, i.e., the ranges of
ksc allowed by the power spectrum. The lengths of k‖ in Figs. 2(a) and (b) correspond to (θ0, φ0) = (27◦, 45◦).

is by far the dominant contribution to the backscatter-
ing enhancement. As such, the presence of the enhanced
backscattering phenomenon requires first that incident
light can couple to SPPs, i.e., g

(∣∣kspp − k‖
∣∣) > 0, as

discussed in the previous paragraph. Second, the ex-

istence of enhanced backscattering requires that SPPs
can couple out into the anti-specular direction, i.e., that
g
(∣∣−k‖ − kspp

∣∣) > 0. This implies, with the power spec-
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trum used here, that

k
(1)
− <

∣∣kspp + k‖
∣∣ < k

(1)
+ . (16)

Coupling from SPPs to vacuum propagating modes is
illustrated in Fig. 2(c). The outer cylindrical part of the
power spectrum essentially does not contribute to the

scattering process kspp → k‖, as k
(2)
− ≈ ω/c+ kspp.

For one-dimensionally randomly rough surfaces [7, 9],
the scattered wave vectors are confined to the plane of in-
cidence, and all quantities in Eqs. (12)–(16) can be writ-
ten as scalars. Thus, there is a sharp and well-defined
angular cutoff for the excitation of surface plasmon po-
laritons in this case. For two-dimensionally rough sur-
faces, however, incident light can couple to SPPs which
do not propagate in the plane of incidence. This can
allow scattering processes which would be forbidden in
the one-dimensional case, and any limits derived using
the one-dimensional model will become “fuzzy” for two-
dimensional surfaces.

F. Enhanced forward scattering

For SPPs to contribute to enhanced forward scatter-
ing, it is required that the power spectrum allows both
the excitation and counterpropagation of surface plas-
mon polaritons, as well as coupling from SPPs to vacuum
propagating modes in the specular direction.

For the scattering of an SPP of wavevector k
(1)
spp to an

SPP of wavevector k
(2)
spp to be allowed, it is required that

g
(∣∣∣k(2)

spp − k
(1)
spp

∣∣∣) > 0. For the power spectrum used in

this study, this condition is fulfilled if

k
(1)
− <

∣∣∣k(2)
spp − k(1)

spp

∣∣∣ < k
(1)
+ , (17)

or

k
(2)
− <

∣∣∣k(2)
spp − k(1)

spp

∣∣∣ < k
(2)
+ . (18)

The counterpropagation requirement is the rationale for
adding the outer annulus to the power spectrum (3). This
annulus is narrow, and centered at k‖ = 2kspp, mean-
ing that it facilitates scattering where |ksc| ≈ 2kspp, i.e.,
counterpropagation of SPPs. This corresponds to the
fulfillment of Eq. (18), and is illustrated by the green
vectors in Fig. 2(d).

We note that for two-dimensionally rough surfaces it
is possible for an SPP to be scattered out-of-plane by the
g1 part of the power spectrum. This can happen when
Eq. (17) is fulfilled, as shown in red in Fig. 2(d), where

the resulting lateral wave vector is denoted k
(3)
spp.

The principles discussed above are also valid for sys-
tems consisting of a metallic substrate on which a di-
electric thin film has been deposited, with a vacuum or
lossless dielectric cladding, where either interface of the
film is randomly rough [26]. The generalization to dif-
ferent power spectra should also be obvious. We note

FIG. 3. (Color online) The full angular distribution of the
incoherent contribution to the MDRC, assuming the surface
properties stated in the text. The angles of incidence were
(θ0, φ0) = (12.5◦, 45◦). The subplots show scattering (b) from
p polarization to p polarization, (e) s → p, (c) p → s, and
(f) s → s. In (a), the incident light was p-polarized, but the
polarization of the scattered light was not recorded, and in
(d) the incident light was s-polarized. The enhanced forward
scattering peak is most easily seen in the p → p configuration
(b). The sharp circular edge, centered on k‖, is caused by the
suppression of single scattering due to the form of the power
spectrum; see Eq. (3) and Fig. 2(a).

that if the power spectrum of the randomly rough sur-
face is, e.g., Gaussian, the single scattering contribution
to the MDRC is typically dominant. In such cases, it can
be challenging to separate single scattering effects from
multiple scattering effects.

III. RESULTS

In this section, we present results for the MDRC when
light is scattered from rough silver surfaces. For all
the results presented here, the (vacuum) wavelength of
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FIG. 4. (Color online) The in-plane (i.e., for φs = φ0) part
of the MDRC for light scattered from a rough silver surface
with rms roughness δ = 0.025λ. The angles of incidence were
(θ0, φ0) = (12.5◦, 45◦). The results were obtained by aver-
aging over 10, 825 surface realizations. The most prominent
enhanced forward scattering peak is in p → p polarization,
but a small contribution in s → p polarization can also be
seen. Enhanced backscattering is observed in all polarization
combinations.
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FIG. 5. (Color online) The p → p contribution to the MDRC
for the same surface properties as in Fig. 4, for several differ-
ent angles of incidence. In all cases, we observe the enhanced
forward scattering peak. The effect is most powerful in the
vicinity of θ0 ≈ 12◦. For polar angle of incidence θ0 = 29.5◦, it
is not possible to achieve enhanced forward scattering through
the in-plane SPP channel; hence, the peak at θs = 29.5◦ has
a different explanation.

the incident light was λ = 457.9 nm, and the dielectric
function of the Ag substrate (cladding) at this wave-
length is ε2 = −7.5 + 0.24i (ε1 = 1). The rough sur-
faces were characterized by the power spectrum (3), de-

fined by the wavenumber parameters: k
(1)
− = 0.782ω/c,

k
(1)
+ = 1.366ω/c, k

(2)
− = 2.048ω/c, and k

(2)
+ = 2.248ω/c.

Furthermore, the amplitudes γi were γ1 = 0.57 and
γ2 = 0.43, and the rms surface roughness was taken to
be δ = 0.025λ; the edge of the square region covered by
the rough surface was L = 36λ; and this region was dis-
cretized at a grid of Nx = 359 points along each of the
x1 and x2 directions.
As the Nyquist theorem [27] relates resolution in po-

sition space and wave vector space, the values of Nx

and L lead to the following numerical parameters: The
wavenumber cutoff in the integral in Eq. (8a) was Q/2 =
2.493ω/c; the resolution in q‖ was Δq = 0.0279ω/c; and
Nq = 180 values of q‖ were resolved along each of the q1
and q2 axes [20]. The results presented were obtained by
averaging the results over an ensemble of 10, 825 surface
realizations. For a discussion of the details of how the
calculations were performed, we refer to Ref. 20, where
an estimate of the computing resources required can also
be found.

In Fig. 3, we show the full angular distribution of the
MDRC, including polarization effects. Figure 3(a)–(c)
shows the MDRC for p-polarized incident light, and in
Fig. 3(d)–(f) the incident light was s-polarized. In the up-
per row, the polarization of the scattered light was not
recorded; in the second row, only the p-polarized com-
ponent of the scattered light was recorded; and in the
third row, only the s-polarized component of the scat-
tered light was recorded. The full angular intensity dis-
tribution displays important information, hidden from
the reader of in-plane or out-of-plane cuts of the MDRC
(e.g., Fig. 4). Notably, we observe that the intensity dis-
tribution depends on which linear polarization is used to
illuminate the surface, as well as which linear polarization
is recorded in the (simulated) detector. Furthermore, the
crescent regions of the MDRC of high intensity show for
which angles of scattering single scattering is allowed, as
per the theoretical discussion in Sec. IID.

One of the significant differences between the light
scattering from one-dimensional and two-dimensional
rough surfaces is the absence of polarization effects in
the former case (assuming the plane of incidence to
be perpendicular to the grooves of the surface). No-
tably, for light scattering from rough two-dimensional
surfaces, the light scattered out-of-plane is significantly
cross-polarized.

The enhanced forward scattering phenomenon ex-
presses itself as a peak in the specular direction of the
intensity of the light scattered incoherently by the rough
surface. For this reason, in Figs. 4 and 5 we present
the incoherent component of the MDRC in the plane of
incidence (i.e., for φs = φ0).

Figure 4 shows the incoherent component of the
MDRC for θ0 = 12.5◦, for all combinations of incident
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FIG. 6. (Color online) Contour plots of the incoherent, in-plane, and p → p part of the MDRC as a function of angle of
incidence (θ0) and scattering (θs). We assume φs = φ0 in these figures. (a) The enhanced backscattering peak is shown as a
purple “ridge” at θs = −θ0. (b) The enhanced forward scattering peak is shown as a purple “ridge” at θs = θ0. Note that the
color map has been truncated [cf. (a)] to show the peak more clearly.

and scattered polarizations. Since SPPs can only be ex-
cited in p-polarization, it is reasonable to assume that
light scattered through the temporary creation of an
SPP will be predominantly p-polarized. When examin-
ing Fig. 4, we only observe enhanced forward scattering,
i.e., a peak in the forward direction, for p→ p and s→ p
scattering. We also note that the enhanced forward scat-
tering peak is much more well-defined in p → p than
in s → p scattering. It is worth noting that for angles
θs > −34.4◦, in-plane single scattering of light is forbid-
den due to the power spectrum used [Eq. (3) and Fig. 2].
Consequently, the “edge” seen at the left hand side of
Fig. 4 is mainly caused by the single scattering of light
for angles θs ≤ −34.4◦.

By studying the θ0 dependence of 〈∂Rpp/∂Ωs〉 (Fig. 5),
several effects caused by the shape of the power spectrum
can be observed. The positions of the “edges” caused
by the suppression of single scattering is directly related
to the power spectrum: To leading order in the surface
profile function, the intensity of single scattering is pro-
portional to the power spectrum of the surface [11, 23].
For the surface parameters assumed here, single scatter-

ing is forbidden for
∣∣q‖ − k‖

∣∣ < k
(1)
− = 0.782ω/c. Thus,

the cylindrical shape of the power spectrum leads to a re-
gion around k‖ into which less light is scattered, as single
scattering is suppressed here.

A sharp edge is observed for the case of θ0 = 29.5◦,
at θs ≈ −60◦. The location of this edge is given by the
outer edge of the inner cylinder of the power spectrum,

k
(1)
+ . Due to the the power spectrum vanishing between

the inner and outer cylinder [Eq. (3)], single scattering is
forbidden for θs < −60◦.

Of greater interest, and one of the main points of this
paper, are the peaks observed in the forward and back-
ward directions. The vertical dotted lines in Figs. 4
and 5 show the expected positions of the enhanced for-
ward scattering peaks, and we see that in each case, these
coincide with the observed peaks. The effect is most pro-
nounced for the polar angle of incidence around θ0 ≈ 12◦.
For angles of incidence above 17◦, it is not possible for
surface plasmon polaritons to be excited in the plane
of incidence, since the power spectrum (3) is zero for

k‖ + kspp > k
(1)
+ for in-plane scattering [9]. Nevertheless,

a peak in the incoherent part of the MDRC and in the
specular direction is visible for θ0 = 29.5◦. Our interpre-
tation is that the origin of this peak is the presence of
the g2 part of the power spectrum; see Fig. 7(b) and the
corresponding discussion.

In accordance with previous work on light scattering
from two-dimensionally randomly rough surfaces [16–
18, 20, 21, 26], we observe enhanced backscattering in
Figs. 4 and 5. The enhanced backscattering peak is lo-
cated exactly at the direction of incidence, θs = −θ0.
The effect is present in both co-polarized and cross-
polarized scattering. This is in contrast to the case
of one-dimensional surface roughness, where enhanced
backscattering can only be observed in the p → p po-
larization configuration.

A complete scan of the angles of incidence for which
one observes enhanced backscattering and enhanced for-
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FIG. 7. (Color online) In plane p → p scattering for power spectra with (a) γ1 = 1, γ2 = 0 and (b) γ1 = 0, γ2 = 1. With
γ1 = 0, γ2 = 1, coupling into SPPs is suppressed. With γ1 = 1, γ2 = 0, coupling into SPPs is allowed, but not scattering from
an SPP to a counterpropagating SPP. This allows enhanced backscattering, but not enhanced forward scattering.

ward scattering is presented in Fig. 6. In these figures,
the enhanced backscattering peak and the enhanced for-
ward scattering peak are shown as “ridges” in the color
map. As the ridges follow the ±θs directions very well,
we conclude that they indeed represent the phenomena
enhanced backscattering and enhanced forward scatter-
ing. For enhanced forward scattering, which is a quadru-
ple scattering effect, the peak is somewhat broader than
the enhanced backscattering peak, which is a double (or
higher order) scattering effect. Briefly put, the two-
dimensional nature of the rough surface allows for more
freedom in the choice of scattered wave vectors, leading
to a wider peak.

For comparison with the results shown in Fig. 5, we
have also performed simulations for the cases where ei-
ther γ1 = 1, γ2 = 0 [Fig. 7(a)], or where γ1 = 0, γ2 = 1
[Fig. 7(b)]. In the former case, only the inner annulus
of the power spectrum is present, and in the latter case,
only the outer annulus is present. The other simulation
parameters were as follows. The edges of the simula-
tion domain in the x1x2 plane was L = 30λ, and was
discretized at Nx = 319 points along each of the lateral
axes. The dielectric function, the power spectrum pa-

rameters k
(i)
± , and the rms surface roughness parameters

were the same as before. The parameters Nx and L were
reduced for these simulations in order to save computer
resources. This also leads to a different discrete set of θs
being resolved (cf. Fig. 5).

The results for γ1 = 1, γ2 = 0 are presented in
Fig. 7(a). In this case, incident light can couple to SPPs,
but it is not possible to couple from an SPP to an SPP

traveling in the opposite direction (counterpropagation).
Thus, enhanced backscattering, which to lowest order is a
double scattering process, is allowed. Enhanced forward
scattering, on the other hand, is a quadruple scattering
process, dependent on scattering from SPP to counter-
propagating SPP. Hence, there is no enhanced forward
scattering peak when γ2 = 0. The shoulder visible in
Fig. 7(a) does not move as θ0 increases, meaning that
it is not related to the enhanced forward scattering phe-
nomenon, but is a result of the shape of the power spec-
trum.

In Fig. 7(b), we show the results for γ1 = 0, γ2 = 1.
In this case, both single scattering and coupling from
incident light to SPPs are prohibited. Instead, incident
light will excite evanescent modes which are not resonant
modes of the surface. These may be scattered several
times before coupling out to vacuum propagating modes.
The width of the triangular structure seen in the MDRC
in Fig. 7(b) is determined by the width of the outer an-
nulus of the power spectrum.

In order to verify the correctness of the numerical re-
sults, the total reflected power normalized by the total
incident power was calculated. In all cases it was found to
be lower than 1. If one (artificially) assumes the substrate
to be lossless, the normalized reflected power should in
principle be identical to 1. For the surface parameters
used in this study, and with Im(ε2) = 0, the normalized
total reflected power was 1.000 ± 0.007 for all angles of
incidence. We stress that the conservation of energy is a
necessary, but not sufficient, criterion for the validity of
the simulation results [20].
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IV. CONCLUSION

In conclusion, we have surveyed two phenomena ob-
served in rough surface scattering, namely enhanced for-
ward scattering and enhanced backscattering. These are
both phenomena observed in the diffuse (incoherent) part
of the mean differential reflection coefficient, and are
caused by constructive interference between surface plas-
mon polaritons propagating along a vacuum-metal in-
terface. In particular, the observation of enhanced for-
ward scattering has not previously been reported for sys-
tems containing two-dimensionally rough surfaces. The
two-dimensional nature of the rough surface studied here
gives significantly more freedom in the allowed scatter-
ing channels when compared to one-dimensionally rough
surfaces, giving less sharp “cutoffs” caused by the power
spectrum.

A simple visual model for determining which scatter-
ing processes are allowed in two-dimensionally rough sur-
faces has also been given (Fig. 2). This model can be

used to determine for which combinations of angles of
incidence and scattering enhanced backscattering and en-
hanced forward scattering can be observed.

The enhanced forward and backward scattering phe-
nomena are dependent on the presence of surface guided
modes. Enhanced backscattering has already been ob-
served in a thin film system in both polarizations [26].
We expect that enhanced forward scattering can also be
observed in thin film systems for all polarization combi-
nations, as such structures support surface guided modes
in both p and s polarizations. We leave this investiga-
tion to future work, as the required computational effort
is significant.
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