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Abstract

Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA)
signals in its last exon, resulting in messenger RNAs (mRNAs) with different 39 untranslated region (UTR) lengths. Different
39UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression.
The APA process is part of human cells’ natural regulatory processes, but APA also seems to play an important role in many
human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that
are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important
mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA
signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 39UTR length, miRNA
regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals.
Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with
alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered
gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important
hereditary causes for disease.
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Introduction

In protein-coding genes, the polyadenylation process consists of

cleaving the end of the 39 untranslated region (UTR) of precursor

messenger RNA (pre-mRNA) and adding a polyadenylation

(polyA) tail. Alternative polyadenylation (APA) can occur when

several polyadenylation (polyA) signals lie in the last exon of a

protein-coding gene. Many APA signals are evolutionary con-

served [1], and Expressed Sequence Tag (EST) data suggest that

54% of human genes have alternative polyadenylation signals [1].

The polyA signals themselves are hexamer DNA sequences that

usually lie 10 to 30 nucleotides upstream from the cleavage site [2],

but a GU-rich region 20 to 40 nucleotides downstream of the

cleavage site is also important for the polyA-process [2].

One functional consequence of APA is transcripts with different

39UTR lengths and different microRNA (miRNA) regulation

[3,4]. Shortened transcripts tend to have increased expression

compared with longer transcripts, and the same expression

increase can be achieved by deleting miRNA target sites in non-

shortened transcripts [5].

Data on APA can be used as an efficient biomarker for

distinguishing between cancer subtypes and for prognosis [6], and

seems to play an important role in gene deregulation and in many

human diseases [7]. One such mechanism for deregulation is

mutations in the polyA signal or GU-rich downstream region [7].

A single nucleotide polymorphism (SNP) in the GU-rich region

downstream of an alternative polyA signal in the FGG gene has for

example been shown to affect the usage of this polyA site, and has

been associated with increased risk for deep-venous thrombosis

[8]. Similarly, a mutation in the 39UTR of the CCND1 gene has

been shown to create an alternative polyA signal and is associated

with increased oncogenic risk in mantle cell lymphoma [9].

Hypothesizing that mutations in DNA elements such as the

polyA signal can be an important cause of altered APA, we

investigated to what extent SNPs can create or disrupt APA signals

(APA-SNPs). Specifically, we tested whether APA-SNPs can give

shorter 39UTRs, increased gene expression through loss of

miRNA regulation (Fig. 1), and be associated with disease. Our

hypothesis focuses on shorter 39UTRs rather than longer ones,

because the loss of functional miRNA sites in the 39UTR is more

likely than the gain of new sites downstream of the gene.

First, by analysing EST data, we found that SNPs can create

polyA motifs and affect 39UTR length. Second, differential allelic

expression from RNA-seq data, as well as mRNA and miRNA

microarray expression data revealed an association between

alternative polyA site strength (signal and GU-content), loss of

miRNA target sites, and transcript expression. Third, based on

these analyses we also identified significant APA-SNPs. Fourth, we
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mapped the identified SNPs to disease-associated SNPs and found

that APA alleles were significantly correlated with disease-risk

alleles. Together, these results suggest that APA-SNPs can be a

significant causative mechanism in disease (Fig. S1).

Results

SNPs can create and delete polyadenylation signal motifs
The distribution of SNPs within 39UTRs is fairly uniform [10]

(Fig. S2A). The main exceptions are microRNA target sites and

the start and end of the 39UTR, which have decreased SNP

diversity that is consistent with these regions containing functional

elements under selective pressure [10]. Indeed, when specifically

investigating the region around the transcription end site, we

found that the position containing the polyA signal has a markedly

decreased SNP density (Fig. S2B,C), indicating that SNPs arising

there could have a high functional impact.

To analyse SNPs in alternative polyadenylation signals, we first

identified a set of SNPs that potentially create new APA signals in

39UTRs. Specifically, we searched for any Hapmap SNP [11] that

could create or disrupt one of the 13 known polyA signal hexamers

[1] in any coding gene’s 39UTRs (see Methods). We found 1954

Author Summary

Variants in DNA that affect gene expression—so-called
regulatory variants—are thought to play important roles in
common complex diseases, such as cancer. In contrast to
variants in protein-coding regions, regulatory variants do
not affect protein sequence and function. Instead, regu-
latory variants affect the amount of protein produced. The
39 untranslated region (UTR) is one gene region that is
critically important for gene regulation; cancers for
example, often express genes with shortened 39UTRs that,
compared with full-length 39UTRs, have higher and more
stable expression levels. We have investigated one kind of
regulatory variant that can affect the 39UTR length and
thereby cause disease. We identified several such variants
in different genes and found that these variants affected
the genes’ expression. Some of these variants were also
strongly linked with known markers for disease, suggest-
ing that these regulatory variants are important hereditary
causes for disease.

Figure 1. A model of the effect of APA-SNPs in the 39UTR of a gene. (A) For the C allele, the second cleavage site (CS) is used, because the
first polyA signal (PAS) is not functional. For the A allele, the first PAS is functional, therefore the pre-mRNA can be cleaved at the first CS, resulting in a
loss of functional miRNA target sites downstream (indicated with loss of Argonaute (AGO) binding), and increased gene expression (B). (C) EST
sequences enable identifying APA-SNP alleles and 39UTR length. (D) RNA-seq reads enable genotyping APA-SNPs and quantifying expression
patterns.
doi:10.1371/journal.pcbi.1002621.g001
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SNPs, including 755 SNPs that are mono-allelic in the CEU

population from Hapmap [11] (see Datasets). We kept only the

APA-SNPs that change from no signal to one signal in the locus,

by discarding loci with several signals in the 40 nucleotides around

the SNP, discarding SNPs that change one signal into another,

and discarding mono-allelic SNPs. After filtering, 412 SNPs that

can create or delete potential polyadenylation signals remained.

We will from now refer to them as our candidate SNPs.

EST data indicate that SNPs can give functional
alternative polyA sites

To investigate whether SNPs can create functional alternative

polyA sites, we analysed the EST-based polyA sites from the

PolyA_Db database [12,13]. In the PolyA_Db database, there are

several polyA sites which do not have any noticeable polyA signal

(according to the reference genome) in the 40, 80, and 100

nucleotides upstream from the reported cleavage site position

(Table S1). In those regions, we used different SNP data to look for

SNPs that could create a polyA signal with the non-reference

allele. When considering regions of 100 nucleotides and SNPs

from NCBI dbSNP Build 130 [14], we could identify polyA signals

with the alternative allele for more than 2% of the missing signals.

Some of the remaining sites can probably be explained by SNPs

further upstream, and some other by exon splicing, by alterations

in ESTs that are not registered in dbSNP, or as false positive sites.

Since EST-based annotated polyA sites can be affected by

SNPs, we wanted to test whether alleles in polyA sites could be

associated with EST ending positions. Specifically, we first took the

intersection between the polyA signals from our 412 candidate

SNPs, and the polyA sites from PolyA_Db database [12,13]. We

identified 18 intersecting polyA sites that have a polyA signal for

either the reference or the non-reference allele. These sites

corresponded to 18 SNPs in 18 genes. Five SNPs were discarded

because they lie within the 20 last nucleotides of the reference

39UTR. The following 13 genes remained: ABCC4, AKAP13,

FANCD2, KY, MIER1, OSTM1, PNN, RASGRP3, RHOJ, SELS,

SHMT1, SLBP, and SLC11A2. Second, for each of these genes, we

identified and imputed (see Methods) alleles at the SNPs in the

EST sequences when possible, and tested if the proportion of

alleles with polyA signal (APA alleles) was different for EST

sequences ending within the interval ½{30,z50� nucleotides

around the polyA site, compared to EST sequences ending further

downstream (see Methods). The two genes MIER1 (SNP

rs17497828) and PNN (SNP rs532) were significant (Fig. 2,

Table 1). After correcting for multiple testing (Benjamini &

Hochberg correction), the genes remained significant when

including alleles imputed based on haplotype (Table 1).

For MIER1, 12 of the 16 EST sequences ending near the

annotated APA site had the APA allele (including 2 with a clear

polyA tail), whereas 3 had the non-APA allele (none of them had a

clear polyA tail). Similarly, for PNN, all of the 34 EST sequences

ending near the annotated APA site had the APA allele (including

10 with a clear polyA tail). Together, these results suggest that

SNPs can create functional APA sites and thereby affect 39UTR

length.

RNA-seq data indicate that SNPs in polyA sites can affect
transcript length and give increased transcript expression

EST data can be used to identify alleles and transcript ending

positions (Fig. 1), but EST data seldom have sufficient resolution to

quantify transcript expression levels. In contrast, RNA-seq data

can both be used to genotype SNPs [15] and to analyse transcript

length and expression patterns. The main challenge with RNA-seq

data compared with ESTs, however, is the shorter sequence reads,

which makes it challenging to distinguish between homozygotes,

heterozygotes with strong expression differences between its alleles

(allelic imbalance), sequencing errors, and alignment errors.

To explore whether RNA-seq data could reveal whether APA-

SNPs affect transcript expression, we therefore developed and

validated an RNA-seq-based genotyping approach (see Supporting

Text S2). We then used this approach to show that APA-SNPs can

affect transcript expression and that this effect is associated with

loss of miRNA regulation. Specifically, we first show that

homozygous APA-SNPs have significantly shorter 39UTRs than

have heterozygous or homozygous wildtype SNPs. Second, we

show an association between allelic imbalance of heterozygous

APA-SNPs and the two following important features of polyA sites:

signal strength and GU level downstream of the cleavage site.

Third, we show that the loss of miRNA target sites can be the

missing link in this association. Fourth, we use allelic imbalance to

detect potentially functional APA-SNPs. Fifth, we show that APA-

SNPs at strong sites (strong APA signal and high GU level) that

have a strong predicted effect on miRNA regulation, have higher

allelic imbalance and higher transcript expression than have other

APA-SNPs.

Transcripts are shorter for genes with homozygous APA-

SNPs. RNA-seq data give the opportunity to both genotype

exonic SNPs and determine transcript structure. We therefore

decided to use the Burge RNA-seq data to determine whether

APA-SNPs had a significant effect on transcript length. Moreover,

as the Burge RNA-seq data set consists of samples from both

highly proliferating cell lines and highly differentiated human

tissues and as transcripts in proliferating cells tend to have shorter

39UTRs, we also wanted to determine the effect that the cell’s

proliferation status had on transcript length. Specifically, we first

estimated for each gene and RNA-seq sample, the transcript’s 39

end position and its distance from the 39 end of the longest

annotated transcript (see Methods). Second, we divided the RNA-

seq samples into two groups such that the five cancer cell lines and

one immortalized cell line were defined as proliferating, whereas

the 16 other tissue samples were defined as non-proliferating.

Third, from the 412 candidate APA-SNPs, we discarded those

that share the same gene and those that lie upstream of the longest

39UTR (to avoid combinations of alternative splicing and

alternative polyadenylation), resulting in 362 SNPs. In total, 262

unique SNPs had 39 end estimates and genotypes available (6852

data points). To analyse the impact of APA-SNPs on 39 end

positions, we only considered SNPs that lie far enough (at least

1500 bp upstream) from the annotated 39end. This final

requirement gave 93 unique SNPs (2340 data points).

Fourth, we ran correlation analyses between the genotype (WT

homozygous: 0, heterozygous: 1, and APA homozygous: 2) and the

negative logarithm of the distance between the estimated and the

annotated transcript end (see Methods). As expected, we found a

significant negative correlation (Pearson’s correlation coefficient

r~{0:15, p-value p~3:9 � 10{13, sample size n~2340), which

shows that APA homozygotes are shorter than the WT ones.

Then, we tested the correlation between the negative log distance

and the proliferation status of the cell types (proliferating: 1; non-

proliferating: 0). Again, as expected, we found a significant

negative correlation (r~{0:19, pv2:2 � 10{16, n~2340). When

sub-grouping the samples based on proliferation status (Fig. S3),

we could not detect a significant genotype correlation in the

proliferating cells—possibly because transcripts are already short

in these cells due to other factors. For non-proliferating cells,

however, we found that APA homozygotes were significantly

shorter than the two other genotypes (r~{0:17,

SNPs Creating Alternative Polyadenylation Signals
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p~1:01 � 10{13, n~1883). This result confirms our previous EST

results that APA SNPs can affect transcript length.

Heterozygous SNPs affecting strong polyA sites have an

increased imbalance towards APA alleles. Since RNA-seq

data can genotype our candidate SNPs and at the same time

determine transcript expression levels, we decided to analyse ratios

of allele expression (allelic imbalance). According to our hypothesis

(Fig. 1), APA alleles can shorten transcripts, resulting in loss of

miRNA targeting and increased transcript expressions. To test this

hypothesis, we investigated allelic imbalance of our APA-SNPs in

19 of the samples from the Burge RNA-seq data; we excluded the

three samples (MAQC, MAQC UHR, and MD435) that were a

mixture of several individuals. We expected increased transcript

expression for the APA allele compared to the non-APA allele;

that is, a positive log ratio of the APA allele expression over the

non-APA allele expression. Moreover, we expected this allelic

imbalance to depend on two important polyA site features: polyA

signal strength and downstream GU level.

Some polyadenylation signals occur more frequently upstream

of known polyA sites than other signals do [1]. By assuming that

this frequency of occurrence correlate with signal strength, such

that frequent signals have a higher probability of causing

polyadenylation than have rare signals (Table S4), we expected

that frequent (strong) signals would have a higher allelic ratio (AR)

than rare (weak) signals. We compared the distribution of allelic

ratios of APA allele over non-APA allele for each signal, ordered

Figure 2. SNPs can affect 39UTR length. Panels (A) and (B) show 39 ends of the MIER1 and PNN genes as annotated in PolyA_Db (39 ends of the
horizontal lines), and their candidate APA SNP. The four other graphs show the inverse cumulative distribution of EST sequence ending position for
APA alleles (triangles) and non-APA alleles (circles). The dashed vertical line shows the threshold separating short and long transcripts. The transcript
proportion is decreasing before the threshold for APA alleles, compared to non-APA alleles. This decrease indicates that APA alleles are more likely to
produce shorter transcripts. Panels (A), (C) and (E) show the MIER1 gene. Panels (B), (D) and (F) show the PNN gene. Several unknown alleles could be
imputed through haplotypes (included in Panels (C) and (D)).
doi:10.1371/journal.pcbi.1002621.g002

SNPs Creating Alternative Polyadenylation Signals
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by strength rank such that strong (frequent) signals had a low rank.

As expected, we found that signal rank is negatively correlated

with log allelic ratio (r~{0:144, p~0:013, n~300) (Fig. 3A).

Strong signals tend to have high and positive log AR; that is, a

higher expression of the APA allele than of the non-APA allele.

This fits our hypothesis that transcripts with an APA allele can

escape miRNA targeting, resulting in increased gene expression.

In addition to having strong polyA signals, functional polyA sites

tend to have a GU-rich region downstream of the cleavage site [2].

We therefore expected that SNPs creating alternative polyadenyl-

ation signals with a GU-rich region downstream of the signal had a

higher allelic imbalance than the ones with no particular GU-rich

region.

We computed the GU level for each of our candidate SNPs. As

the background value outside the GU-rich region is about 0.51

(Fig. S4), we used a threshold of 0.55 to define SNPs that have a

downstream GU-rich region. Then, in each of the two GU groups,

we investigated the allelic ratio distribution for each signal. We still

found a negative correlation between the signal rank and the log

allelic ratio for the SNPs with a GU-rich region (r~{0:195,

p~0:032, n~122) (Fig. 3B). In contrast, for the SNPs without a

GU-rich region, log AR did not correlate with signal rank

(r~{0:104, p~0:17, n~178) (Fig. 3C). This indicates that

increased allelic imbalance at APA-SNPs requires both a strong

signal and a GU-rich downstream region.

To further evaluate the connection between signal strength, GU

level, and allelic imbalance, we grouped the SNPs according to

their GU level and their signal strength (Fig. 4; strong: rankƒ6;

weak: rankw6). Compared with the other three groups, APA-

SNPs with a strong signal and a GU-rich region had a significantly

higher mean and median log AR (Student’s t-test, p~0:025;

Wilcoxon rank sum test, p~0:036). Together, these results

suggested that alternative polyadenylation can give increased

expression of APA alleles.

The loss of miRNA target sites can explain an important

part of allelic imbalance. Increased expression of APA allele

transcripts is consistent with loss of miRNA regulation, but other

factors such as RNA-binding proteins could potentially also

explain these results. We therefore wanted to test whether loss of

miRNA regulation could be a significant factor in the increased

allelic imbalance. Specifically, we matched the miRNA expression

data of the MCF7, BT474, and T47D breast cancer cell lines from

Landgraf et al. [16] with the allelic ratios from the corresponding

cell lines from the Burge dataset (24 unique SNPs, 34 allelic

imbalance values in the 3 cell lines). Given the miRNA profile of

the considered cell line, we then for each SNP computed a score

which predicted the potential effect that a cleavage site at the SNP

locus would have on miRNA regulation (see Methods). Finally, we

ran several linear regression analyses with the log allelic ratios as

response variable and the signal rank, the GU level, and the

miRNA score difference as dependent variables.

Basic linear models with signal rank, GU level, or miRNA score

alone showed that these variables could explain 3:84%, 3:55%,

and 6:73% of the response variance, respectively. A model with

signal rank and GU level decreased the partial explained variance

for each of the two variables compared to the two individual

models. In contrast, adding the miRNA variable to the Signal rank

model, or the GU level model increased all partial r2 values,

indicating that the dependent variable is a conjunction of these

variables. Similarly, adding the miRNA variable to the Signal

rank+GU level model could increase all the partial r2 as well. In

Table 1. Significant genes in the EST analysis.

no correction
Benjamini&Hochberg
correction

Gene imputation no imputation imputation no imputation

MIER1 0.004* 0.016* 0.032* 0.103

PNN 0.005* 0.004* 0.032* 0.058

*shows significant p-values.
P-values for 262 x2{test comparing the proportion of alleles with APA signal
for short versus long EST sequences. The MIER1 and PNN genes were significant
(including and not including imputed alleles). After correcting for multiple test-
ing, the proportions including imputed alleles remained significantly different
between short and long ESTs.
doi:10.1371/journal.pcbi.1002621.t001

Figure 3. Increased allelic imbalance correlates with signal strength and depends on downstream GU-content. Log allelic ratio
distribution of APA allele over non-APA allele for each polyA signal ordered by strength. Panel (A): log allelic ratio is negatively correlated with signal
rank for all APA-SNPs. Compared with all APA-SNPs, APA-SNPs with a GU-rich region (Panel (B)) have a stronger negative correlation between log
allelic ratio and signal rank. For APA-SNPs without a GU-rich region (Panel (C)), there is no significant correlation between signal rank and log allelic
ratio. The graphs include data from the 19 non-mixed cell lines and tissues. The line in each panel shows the linear regression line; the corresponding
Pearson correlation coefficient r is in the panel’s upper left corner.
doi:10.1371/journal.pcbi.1002621.g003

SNPs Creating Alternative Polyadenylation Signals
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that full model, the miRNA variable could explain 12:39% of the

response variance (p-value p~0:04). This indicates that loss of

miRNA target sites can partly explain the increased allelic

imbalance for APA-SNPs in strong APA signals with high

downstream GU content.

Allelic expression can detect potentially functional APA-

SNPs. Having established that APA-SNPs can give allelic

imbalance by affecting miRNA regulation, we set out to identify

functional APA-SNPs. We identified SNPs from the 19 non-mixed

samples from the Burge dataset that were classified as heterozygous

when mapping reads to both the reference and non-reference allele-

based genomes and that had at least 10 allele counts in total. This

resulted in 75 individual/SNP pairs (36 unique SNPs), which we

tested individually for significant positive imbalance; that is, an APA

allele count significantly greater than the non-APA allele count. We

used a x2 goodness-of-fit test (1 degree of freedom) to test if the allele

counts fit the hypothesis of an equal proportion. Three heterozy-

gotes were significant and after correcting for multiple testing by

using the Benjamini & Hochberg correction, two heterozygotes

remained significant. The two individual/SNP pairs had both a

positive log-ratio, a GU-rich region and a strong APA signal. After

correcting with the more stringent Bonferonni method, the same

two pairs remained. Those two individual/SNP pairs were actually

the same SNP (rs2269123 in gene MRPS34) from two breast cancer

cell lines (BT474 and MCF-7; p-values 5:53 � 10{3 and

1:09 � 10{11, respectively), suggesting that this SNP gives a

functional APA signal that strongly affects host gene expression.

MicroRNAs link higher proportion of APA alleles to

higher gene expression. Since heterozygous SNPs in strong

APA signals can have an increased imbalance towards APA alleles,

we investigated whether positive allelic imbalance can be

associated with increased gene expression; that is whether a

higher proportion of APA alleles than non-APA alleles was

associated with an increased total allele count. We focused on the

12 samples from the Burge dataset that we could match to miRNA

expression data in similar cell types from Landgraf et al. [16]; these

were the 3 breast cancer cell lines (MCF7, BT474 and T47D), and

the liver, heart, testis, and 6 cerebellum samples. In those 12

samples, we identified 174 allelic ratios (97 unique SNPs) that were

classified as heterozygous when mapping to both the reference and

non-reference allele based genomes. Given the miRNA profile, we

then assigned a miRNA score which predicted the potential effect

that a cleavage site at the SNP locus would have on miRNA

regulation (see Methods).

Based on the 174 allelic ratios, we compared SNP expression

(sum of APA and non-APA allele counts) for groups with higher

APA allele proportion (positive log AR) with groups with higher

non-APA allele proportion (negative log AR; Fig. 5). We found

that SNPs with strong APA signal, high GU level, and high

miRNA score had a significant log SNP expression difference

between positive log ratios and negative log ratios. This indicates

that APA alleles of SNPs with strong APA sites and high miRNA

scores can upregulate gene expression (Fig. 6). This links positive

allelic imbalance to higher gene expression.

MicroRNAs link genotype to increased gene expression
To confirm the results from the RNA-seq-based allelic imbalance

analyses, we turned to gene expression data from the well

characterised Hapmap population. We looked at human gene

expression profiling of EBV-transformed lymphoblastoid cell lines

from 270 unrelated Hapmap individuals [17], and genotypes of the

same individuals, from the Hapmap database [11]. Specifically, we

Figure 4. Allelic imbalance distributions according to signal
strength and downstream GU levels. Allelic imbalance is increased
towards APA alleles for APA-SNPs in strong (S) signals with high
downstream GU levels. The graph shows a box-plot of the log AR
distribution of APA-SNPs grouped by signal strength (weak (W) and
strong (S)) and downstream GU levels.
doi:10.1371/journal.pcbi.1002621.g004

Figure 5. SNP expression difference between SNPs with
positive and negative log allelic ratios. Logarithm of SNP
expression median difference between SNPs with positive log allelic
ratios and those with negative log allelic ratios, in several groups (low
and high GU level, low (LMS) and high (HMS) miRNA score, and weak
(W) and strong (S) signal). Crosses show median differences. Boot-
strapping median differences gives 95% CI. Only one CI does not
contain zero: the one with high GU, HMS and S, indicating that positive
allelic imbalance for SNPs in strong polyA sites and affecting miRNA
target sites, is associated with increased SNP expression, and therefore
increased gene expression.
doi:10.1371/journal.pcbi.1002621.g005

SNPs Creating Alternative Polyadenylation Signals
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first investigated whether genotypes of SNPs in strong polyA sites

that affect miRNA targeting in general are associated with increased

gene expression. Second, we investigated whether individual APA-

SNP genotypes correlate significantly with gene expression.

Genotype of SNPs in strong polyA sites and the loss of

miRNA target sites can explain increased gene

expression. From the Hapmap expression profiles and our

412 potential APA-SNPs, we identified 333 SNPs that could be

mapped to 315 unique probe IDs. Discarding SNPs sharing the

same probe IDs, resulted in 299 unique SNPs and probe IDs. We

then used human miRNA expression profiles from EBV-

transformed lymphoblastoid cell lines [18], to compute a miRNA

score that quantifies the potential effect of a polyA cleavage site at

each SNP locus on miRNA regulation (see Methods).

Simple regression analyses with mRNA expression as response

variable and with each of genotype, signal rank, local GU level

downstream of the signal, and miRNA score as dependent

variables, found that the GU level explained the most of the

mRNA variance (r2~3:3%). We therefore computed the GU level

in the whole 39UTR and ran a regression of the mRNA expression

on this variable. Surprisingly, we found that this variable was

positively correlated with higher gene expression for our 299 genes

(r~0:285, p~5:3 � 10{7) and could explain 7% of the response

variance. One possible explanation is that non-canonical polyA

sites are thought to rely mostly on downstream GU-rich elements

[19]. If this explanation is true we could expect that genes with

increased GU level in 39UTR can have a higher number of APA

sites, which could result in generally higher mRNA expression.

Indeed, based on polyA_Db, we found that 39UTR GU level is

positively correlated with the number of polyA sites in each gene

(r~0:193, pv2:2 � 10{16, n~13181). Moreover, the number of

polyA sites is also positively correlated with mRNA expression

from microarray data (r~0:200, pv2:2 � 10{16, n~11756).

Expectedly, longer 39UTRs are more likely to have more polyA

sites (correlation coefficient r~0:333, pv2:2 � 10{16, n~17298).

However, we also found that the GU level is correlated with

39UTR length (r~0:192, pv2:2 � 10{16, n~17934). All these

results suggest that the 39UTR GU level is a confounding variable

giving increased APA and thereby mRNA expression. We

therefore analysed mRNA expression data after correcting for

the general 39UTR GU level; i.e. we regressed the mRNA

expression on the 39UTR GU content and used the residuals as

the new response variable.

When comparing residual gene expression medians for the 3

genotypes (Fig. 7), we found that increased expression correlates

with the number of APA alleles in the genotype and that SNPs

with strong APA signal (S) had a significant gene expression

median difference between the 3 genotypes (Fig. 7 A). This was

particularly evident for SNPs with high miRNA score (Fig. 7 B),

which are those that are supposed to have the strongest effect on

miRNA regulation. Furthermore, a multiple regression on

transcript length from the Burge RNA-seq data showed that

APA homozygotes, cell proliferation, strong signals, and local and

global GU levels, all contribute significantly to reduced transcript

lengths (Table S5). Together, these results indicate that APA

alleles of SNPs with strong APA sites and high miRNA scores can

upregulate gene expression and link APA homozygotes to

increased gene expression.

Gene expression can detect potentially functional APA-

SNPs. Since genotype of SNPs in strong polyA sites and the loss

Figure 6. SNP expression distributions according to allelic
imbalance direction. SNPs in strong APA signal, with high GU level
and high miRNA score, have a significantly higher logarithm of SNP
expression for SNPs with imbalance towards APA allele (positive (P) log
allelic ratio), compared to SNPs with imbalance towards non-APA allele
(negative (N) log allelic ratio).
doi:10.1371/journal.pcbi.1002621.g006

Figure 7. APA homozygotes have an increased gene expres-
sion for strong polyA signals and high miRNA score. Gene
expression medians in several groups are shown: Median differences
between the APA homozygotes and non-APA homozygotes (Rhombus),
and between heterozygotes and non-APA homozygotes (Cross). 95% CI
for median differences are shown. Expression of APA homozygotes is
generally higher, followed by heterozygotes, and then finally non-APA
homozygotes. (A): genes where alternative polyadenylation does not
affect miRNA targeting (low miRNA score). Strong signals (S) have a
slightly higher median difference compared to weak signals (W). (B):
genes where alternative polyadenylation affects miRNA targeting (high
miRNA score). Strong signals have a significantly higher median
difference.
doi:10.1371/journal.pcbi.1002621.g007
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of miRNA target sites can be associated with increased gene

expression, we decided to use correlation to detect potentially

functional APA-SNPs. Of the 333 candidate SNPs that mapped to

gene probes, we discarded SNPs that were in genes whose

maximum expression value among the 270 individuals was lower

than the total expression median, to remove from the analysis

genes that are very low or unexpressed in all the individuals. 243

SNPs remained and we tested these separately in a correlation

analysis of genotype and mRNA expression.

We found 47 SNPs (on 47 genes) that were significantly different

from 0 (see Table S6). All had a positive coefficient, indicating a

positive correlation between genotype and gene expression. This

fits both previous results where APA was associated with increased

expression levels [4] and our RNA-seq results. After correcting for

multiple testing with the Benjamini & Hochberg correction, 19

SNPs remained significant; 13 SNPs remained if correcting with

stringent Bonferroni correction.

Potentially functional APA alleles are positively correlated
with risk alleles from disease-associated SNPs

Since SNPs can alter polyadenylation and affect miRNA target

sites and gene expression, we wondered whether they can also play

an important role in human diseases. We therefore tested if any of

our APA-SNPs were linked to trait-associated SNPs from the

NHGRI GWAS catalogue [20,21], which consists of SNP-trait

associations from published genome-wide association studies

(GWAS) (accessed Apr. 18, 2011). Specifically, we mapped our

412 APA-SNPs to the 4304 GWAS SNPs, by using the mapping

method described in Thomas et al. [22]. The mapping was based

on linkage disequilibrium (LD) data from the Hapmap database

(CEU population release 27). We identified 135 APA-SNP/

GWAS-SNP pairs (consisting of 84 unique APA-SNPs and 123

unique GWAS SNPs) that had available haplotype data in

Hapmap and one known and unique risk allele in the GWAS

catalogue. For each APA-SNP/GWAS-SNP pair, we computed

the correlation between the APA allele and risk allele as the LD

value r~
pAR{pA � pRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pA � (1{pA) � pR � (1{pR)
p [23], where pA, pR, and

pAR are respectively the APA allele frequency of the APA-SNP, the

risk allele frequency of the GWAS SNP, and the ‘‘APA allele risk

allele’’ haplotype frequency in the CEU Hapmap population. For

each of the 84 unique APA-SNPs, we computed r̂r as the mean of r

when an APA-SNP was linked to several GWAS SNPs, and

similarly r̂r2 as the mean of r2.

We hypothesised that if APA-SNPs play a role in diseases, then

APA alleles would be positively (̂rrw0) and strongly (high r̂r2)

correlated with risk alleles, particularly for the significant APA-

SNPs that we identified in the previous sections, as they are more

likely to be functional, and particularly those that are linked to

GWAS-SNPs from CEU-population-related studies, since the r

values are based on CEU haplotypes.

Among the 84 APA-SNPs, 60 were paired to GWAS-SNPs that

are trait-associated in CEU-related populations. Nine of those

SNPs were identified in the previous sections as significant APA-

SNPs, and those nine SNPs had a significantly high number of

positive r̂r (more positive correlations between APA and risk alleles

than expected) and a significantly high number of r̂r2 greater than

0.2 (higher number of correlations between APA and risk alleles

than expected) (Table 2). In contrast, for r̂r computed from CEU

haplotypes but for GWAS-SNPs that are trait-associated in non-

CEU-related populations, binomial test p-values were not

significant, suggesting that GWAS and haplotype data should be

matched according to population, to detect potential disease-

related APA-SNPs.

Those results show that a significantly high proportion of our

candidate SNPs is in LD with trait-associated SNPs and their APA

alleles are positively correlated with risk alleles of trait SNPs. This

suggests that those APA-SNPs can potentially be the cause of their

corresponding disease-association signals measured and registered

in the GWAS catalogue.

Discussion

Our analyses confirmed the hypothesis (presented in Fig. 1) that

SNPs can create functional alternative polyadenylation signals and

thereby affect miRNA-based gene regulation and give increased

gene expression. Both EST and RNA-seq analyses supported our

hypothesis, despite some limitations. Additionally, the microarray

analysis could further confirm these results and strengthen our

hypothesis. Given the results from these three analyses, we

estimate the proportion of functional APA-SNPs to be

(2z1z13)=(13z36z243)~0:055 (5:5%).

The EST analysis supports our hypothesis but has some

limitations. Specifically, we analysed EST data for 13 genes and

found that 2 of them had an APA-SNP that could create polyA

motifs and affect 39UTR length. However, the EST analysis does

not take into account the presence of a polyA tail in the EST

sequence. Moreover, the ESTs came from a mix of tissues, which

could also affect the results. Segregating ESTs based on tissue origin

or filtering on sequences with clear tails in the ‘‘short’’ group,

reduces sample size and affects statistical power. However, when

combining sequences from our two significant genes, all of the 12

EST sequences ending at the alternative cleavage site and that have

a polyA tail, had the APA allele. This number is significant

(binomial test p-value of 0:024, where the expected proportion of

the APA allele is the combination of weighted allele frequencies of

APA alleles for the 2 SNPs), and tells that the shortened transcripts

arose from functional APA signals from the APA alleles.

Similarly, RNA-seq data from the Burge Lab, matched to

miRNA expression data showed association between alternative

polyA site strength (signal and GU-content), loss of miRNA target

sites, allelic imbalance, and transcript expression. The Burge

dataset was generated by using cDNA fragmentation, which gives

a good coverage of 39UTRs [24]. An increased allelic imbalance

towards the APA allele could come from the loss of miRNA target

sites, but also from the fragmentation method. This is because

cDNA fragmentation gives a good coverage at the end of the

transcript, and, in case of alternative polyadenylation, the

transcript is shorter for the APA allele, which results in a high

coverage at the SNP locus. In contrast, a longer transcript with the

Table 2. Potentially functional APA alleles are positively
correlated with risk alleles from GWAS SNPs.

Predicate
Success
count

Trial
count

Success probability
under H0 p-value (w)

½̂rrw0� 8 9 32=60~0:533 0.03

½̂rr2
w0:2� 5 9 15=60~0:25 0.049

Two predicates were tested in a binomial setting: ½̂rrw0� for positive trend

correlation between APA and risk alleles, and ½̂rr2
w0:2� for the strength of the

correlation. For the 60 APA-SNPs paired to GWAS-SNPs, the proportions of r̂rw0

and r̂r2
w0:2 were respectively 0:53 and 0:25. Among the 9 SNPs identified in the

previous sections as functional candidate, respectively 8 and 5 succeeded the
Bernoulli trial. Both null hypotheses were rejected.
doi:10.1371/journal.pcbi.1002621.t002
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non-APA allele could have a higher coverage downstream, but a

lower coverage at the SNP locus. Bias from cDNA fragmentation

would therefore give an increased allelic ratio towards the APA

allele simply because of transcript length differences. Consequent-

ly, we cannot exclude that some of the overall RNA-seq trends can

be attributed to cDNA fragmentation bias.

The independent microarray data strongly support the EST and

RNA-seq results, however. Specifically, the mRNA and miRNA

microarray expression data showed association between alterna-

tive polyA site strength (signal and GU-content), loss of miRNA

target sites, and transcript expression. This microarray analysis

had the advantage of directly using genotype data from Hapmap,

instead of genotyping SNPs through mapped RNA-seq reads.

Furthermore, the microarray analysis focused on transcript

expression differences between individuals and therefore required

data from a unique cell type, whereas the RNA-seq analysis

focused on allelic expression differences within a sample and could

therefore involve different cell types. As expected, the microarray

analysis showed similar results as the RNA-seq analysis, suggesting

that the increased allelic ratios from RNA-seq data did not come

from a potential bias due to the cDNA fragmentation method, but

from the loss of functional miRNA target sites.

One clear disadvantage of using the RNA-seq data for

genotyping and allelic-imbalance-based detection, was false

positive homozygotes. We could detect potentially functional

candidate SNPs by testing for allelic imbalance, which takes into

account the number of reads and their quality, while testing for

unusual allele proportion patterns. The difficulty was to find

extreme allelic imbalance, as we could miss extreme imbalance by

classifying a locus as homozygote because of too few reads (v15%)

corresponding to the alternative allele. This was a conscious trade-

off, however, since we wanted to maximise true positive

heterozygotes and avoid false positives (i.e. predicted heterozygotes

that were in fact homozygous).

RNA-seq data enabled us to genotype SNPs in expressed genes and

compute allelic imbalance. Genotype classification could be checked

with known genotypes from the Heap dataset and with mono-allelic

SNPs. However the Heap dataset could not be used in the allelic

imbalance analysis, because the library was generated by using RNA

fragmentation, which gives a good coverage for the coding regions

[24], but not for the UTRs. Since we were interested in SNPs in

39UTRs, and particularly at the end of potentially alternative

transcripts, RNA fragmentation would affect allelic imbalance.

The whole analysis is limited to SNPs that can make the

reference 39UTR shorter, lose miRNA sites and upregulate genes,

because the loss of functional miRNA sites within the 39UTR is

more likely than the gain of new ones downstream of the

annotated 39UTR. However, it could be interesting to consider the

hypothesis where SNPs in the signals at the end of the reference

transcript could make 39UTR longer having more miRNA target

sites further downstream, and down-regulate the gene.

Alternative polyadenylation alleles play a role in 39UTR

shortening, gene deregulation, and increased disease risk (Fig. 1).

Our analyses confirm that APA is an important factor for miRNA-

mediated gene regulation [4]. EST data suggest that SNPs can

create polyA motifs and affect 39UTR length, and allelic

imbalance from RNA-seq data coupled to miRNA expression

data suggest an association between alternative polyA site strength

(signal and GU-content), loss of miRNA target sites, allelic

imbalance and transcript expression. Similarly, mRNA microarray

expression data and matched genotypes of the same individuals,

coupled with miRNA expression data could confirm association

between alternative polyA site strength (signal and GU-content),

loss of miRNA target sites, genotype and transcript expression.

Each of our analyses could also be used to detect potentially

functional APA-SNPs. The detected APA-SNPs could further be

linked to GWAS-SNP markers and a significant part of these APA-

SNPs had their APA allele positively correlated with disease-risk

alleles. We propose that these APA SNPs are potential disease-

causative variants.

Methods

Datasets
We used SNP data from the CEU population (CEPH - Utah

residents with ancestry from northern and western Europe) from the

human haplotype map project (HapMap database [11]), release 22

for haplotype data, and release 27 for the genotype, allele,

frequency, and linkage disequilibrium data. We used the human

genome assembly version 18 (hg18) [25], RefSeq gene annotations

(hg18 version), and EST sequences from the UCSC Genome

browser [26]. We used human APA sites from PolyA_Db [12,13].

We used disease-associated SNPs from the NHGRI GWAS

catalogue [20,21]. RNA-seq data came from Heap et al. [15] and

from the Burge Lab [27]. Human miRNA profiles came from

Landgraf et al. [16] (their Table S5) and from Wang et al. [18].

MicroRNA data came from the MirBase database release 16 [28].

Candidate SNPs in alternative polyadenylation signals
Thirteen polyA signal motifs are known in human genes:

AAUAAA, AUUAAA, UAUAAA, AGUAAA, AAGAAA,

AAUAUA, AAUACA, CAUAAA, GAUAAA, AAUGAA,

UUUAAA, ACUAAA, and AAUAGA [1] (ordered by strength

ranks). We detected SNPs in potential APA signals, by a motif

search that looks if any CEU Hapmap SNP in the 39UTR of any

coding gene would create/disrupt one of those 13 motifs. For a

given SNP, the motif search looks for a given motif in an mRNA

sub-sequence consisting of the SNP and its flanking sequences (6

nucleotides up/downstream), for each allele.

PolyA_Db
We downloaded the 28.857 APA sites (human) from PolyA_Db

[12,13] from the UCSC track (hg18) [26]. We downloaded

knownToLocusLink.txt and knownToRefSeq.txt from UCSC

(hg18) [26] to convert entrez gene ID to RefSeq gene ID. We

took the intersection between our APA signals and polyA sites

from PolyA_Db, by taking all the sites from PolyA_Db that lie up

to 40 bp downstream of our signals.

EST
For each of the 13 candidate genes, we downloaded the EST

sequences (Expressed sequence tag) from UCSC (hg18, tables

‘all_mrna’ and ‘all_est’) [26] that lie within their 39UTR region.

We also downloaded their alignment to their reference mRNA

sequence from UCSC [26], and the list of EST that support the

considered polyA site from PolyA_Db2 [13]. We used sequence

alignment to identify the allele and haplotype of each sequence,

when possible. Otherwise, the APA-SNP allele was imputed, by

using haplotypes from the CEU Hapmap population [11] (see

Dataset). We tested the proportion of APA alleles that support the

candidate APA site, versus longer transcripts, by using a 262

contingency table. If the 4 expected values were greater than 5: we

used the 262 x2{test, and Fisher’s exact test otherwise.

Allele imputation in EST data
Given a 39UTR region of a gene of interest, we took all the

phased SNPs from Hapmap [11] in that region, as well as their

haplotypes in the CEU population [11]. For each of those SNPs,
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we identified the allele in the EST sequence when possible, to

identify the EST haplotype. We discarded EST haplotypes that

had zero identified allele. For each remaining EST haplotype, we

selected haplotypes from Hapmap that fit the identified alleles in

the EST haplotype. The APA-SNP could be imputed if there was

only one unique allele at that SNP in all the selected haplotypes

from Hapmap.

RNA-seq data
We downloaded RNA-seq data from human primary CD4zT

cells from 4 individuals [15] (Short read archive accession number:

SRA008367), reads in FASTQ format, length of 45 bp. We

downloaded Burge lab RNA-seq [27] (Short read archive:

SRA002355, and Gene expression omnibus: GSE12946): Human

tissue samples (brain, liver, heart, skeletal muscle, colon, adipose,

testes, lymph node, breast, MAQC, 6 Cerebellum), immortalised

and cancer cell lines (BT474, HME, MCF-7, MD435, T47D,

MAQC UHR), reads in FASTQ format, length of 36 bp. MAQC

is a mixture of brain cell types from several donors, MAQC UHR

is a mixture of several cancer cell lines, and MD435 is thought to

be contaminated by the M14 melanoma cell line. Therefore those

3 cell lines were discarded from the allelic imbalance analysis.

RNA-seq mapping
We mapped RNA-seq reads using the RMAP software [29],

with option ‘-Q’ for position weight matrix matching, based on

quality score. Alignment was stored in BED files. We used the

default options: 2 mismatches allowed in the 32 first nucleotides,

10 mismatches allowed in the whole read. Ambiguous reads were

discarded. Paired-End reads were mapped as Single-End reads.

We mapped those reads to 39UTR +50 bp: the reference

sequence is all 39UTR DNA sequences (from the human genome

assembly HG18 [25]) from all coding genes (excluding Y

chromosome because of overlap with X), including introns,

extended of 50 nucleotides up- and downstream. Overlapping

sequences were merged (19012 regions). We mapped reads to a

second version of the reference sequence, where reference alleles

of APA-SNPs were replaced by non-reference alleles.

RNA-seq genotyping
We counted base calls based on base quality probability score

and sequence alignment score: We discarded reads mapped with

an alignment score sw4, and reads that had a quality score v99%
accuracy at the SNP. Quality score probability of accuracy at a

SNP was computed as follows: p~1{10{ord(Q{33)=10, where Q is

the ASCII character of one base call in a read in FASTQ file

format [30]. We computed the mapping score as m~1{(s=5),
where s is the alignment score given by RMAP. We counted alleles

as
P

p �m for each allele (for all the FASTQ files of each

individual). We discarded alleles that do not fit Hapmap bi-allelic

SNPs. If there was only one allele left, we classified the SNP as

homozygous. If there were two alleles left, with both proportions

greater than 0.15, we classified the SNP as heterozygous. If there

were two alleles but one had its proportion lower than 0.15, we

classified the SNP as homozygous with the allele having the biggest

proportion.

RNA-seq transcript end estimation
We mapped reads from the Burge dataset using the alignment

software Bowtie [31] version 0.12.7 with default options. Bowtie

generated alignments in the SAM format [32]. The transcript

assembly software Cufflinks version 1.3.0 [33] was then used with

the SAM files to generate a list of expressed exons for each run

(default options). Those exons were then mapped back to

annotated RefSeq genes. Exons that mapped to several different

genes were discarded; the corresponding genes they overlapped

were also discarded. For a given gene and a given run, the 39 end

of the exon that mapped the most downstream on the gene was

used as an estimate of the gene’s 39 end. Finally, the distance

between the estimate and the annotated transcript end was

computed for each gene and each run. This distance D is negative

when the transcript is shorter than the annotation and had a

logarithmic distribution for negative Ds. Few transcripts were

longer than the annotated transcription end site, resulting in

positive D values. To handle these few positive D values, we put a

threshold at 30, so that all D§30 were truncated to 29. We then

converted the Ds to the logarithm scale by using the following

formula: {log({Dz30).

Allelic imbalance
Log Allelic Ratio for each heterozygous SNP is defined as

log AR~log
DAPAalleleD

DnonAPAalleleD
, where counts of alleles are comput-

ed in a similar way as in the genotyping section (by taking base

quality and alignment score into account). log AR is positive when

the transcripts with APA alleles are up-regulated compared to

non-APA allele.

However, to avoid that a mapping bias towards reference alleles

affects allelic ratios, we used a corrected allelic imbalance in our

analyses, by combining allelic ratios computed from reads mapped

to the reference genome with reference alleles, and allelic ratios

computed from reads mapped to the same genome but with non-

reference alleles at candidate SNPs. We defined it as the mean of

the two log-ratios:

log2 AR~log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR

BR

ANR

BNR

s

where AR is the allelic ratio, AR and ANR are the counts of APA

alleles mapped to respectively the genome with reference alleles,

and the one with non-reference alleles. Similarly BR and BNR are

the counts of non-APA alleles.

GU-rich regions
We took all the known coding genes from the UCSC RefSeq

gene database (hg18) [26]. To define the precise region of GU-

analysis, for each gene, we computed the GU proportion in a 5-

nucleotide long window sliding from the polyA signal downstream

in a 70-nucleotide long region. Those curves represent the

variation of GU proportion in the region for each gene. We then

took the mean of all the curves, which showed that the increased

GU region was from the 25th window to the 45th window (Fig. S4).

We therefore defined the GU level as the mean of the GU-

proportions in the 5-nucleotide windows, from the 25th to the 45th

downstream of the polyA signal.

Scoring APA for miRNA regulation
MicroRNA expression in Burge samples. Human miRNA

profiles from Landgraf et al. [16] (their Table S5) were matched to

Burge samples. We grouped and summed miRNA expression for

mature miRNAs that have the same seed sequence and identified

117 seeds having a non-null expression.
MicroRNA expression in Hapmap cell lines. We took

human miRNA profile from Wang et al. [18] (Gene expression

omnibus: GSE14794), consisting of miRNA expression for EBV-

transformed lymphoblastoid cell lines for 90 samples. For each of
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the 735 miRNA probes, we took the mean expression value

among the 90 samples, resulting in one expression value per probe.

We then computed the mean expression value among miRNA

probes, and discarded all probes being smaller than the mean: 275

probes remained. We mapped probe IDs to miRNA seeds using

the Illumina annotation file HumanMI_V1_R2_XS0000122-

MAP. A total of 215 miRNA seeds remained. For each seed, we

summed the exponential of expression values of the corresponding

probes, since they were at a logarithm scale. We used these scores

to compute the proportion of expression for each seed. We

discarded seeds that do not have reference mature miRNAs in the

MirBase database release 16 [28]. 163 seeds corresponding to 285

mature miRNAs remained.

MicroRNA scores. For each of the candidate SNPs and their

corresponding RefSeq genes, we defined a short 39UTR as the

exonic region from the mRNA stop codon to the SNP, and a long

39UTR, as the reference 39UTR. We computed miRNA target

predictions on those short and long sequences using the prediction

tool from Saito et al. [34] for all mature miRNA sequence

corresponding to the seed sequences identified in the considered

cell line. The tool scores the mRNA/miRNA pairs, according to

how a miRNA targets an mRNA: a high score means that the

miRNA is more likely to down-regulate the mRNA. To compare

scores for long and short UTRs, we normalised scores using the

normalising method described in Thomas et al. [22]. Then for a

given pair of miRNA seed and a UTR sequence, we took the score

mean when one miRNA seed motif corresponded to several

mature miRNAs, to have one score per seed. Then for a given

UTR sequence, we computed a global score taking all expressed

miRNAs into account: we summed scores for all the seeds,

weighted by their proportion of expression in the considered cell

line. When a gene corresponded to several RefSeq transcripts we

took the score mean, resulting in having one long UTR score and

one short UTR score for each candidate SNP. We could then

compute the score difference for each SNP: this quantifies the

potential effect of a cleavage site at the SNP locus on miRNA

regulation.

Messenger RNA expression and genotype
We downloaded human gene expression profiling of EBV-

transformed lymphoblastoid cell lines from 270 unrelated Hapmap

individuals [17] (Gene expression omnibus: GSE6536, data

normalised across populations), and genotypes for the same

individuals, from the Hapmap database release 27.

We mapped probe IDs to RefSeq genes using the BioConductor

package for R [35,36] (R version 2.10.1, AnnotationDbi package

version 1.8.2 [37] and the annotation file illuminaHumanv1.db

version 1.4.0). One candidate SNP could have one or several

RefSeq gene IDs, which could be mapped to one or several probe

IDs. Among those probe IDs, we selected the one with maximum

variance across all the individuals in the dataset, and assigned it to

the given SNP in the 39UTR.

Genotype was encoded as 0, 1, and 2 for non-APA homozy-

gotes, heterozygotes, and APA homozygotes, respectively.

Bootstrapping median differences
We computed bootstraps of median differences: Given two

groups with different sizes, we resampled with replacement in each

group with their actual original size. We took the median in each

resampling and computed the difference. We repeated this

procedure 1000 times to create a median difference distribution,

which was then used to compute the 95% confidence interval

(95% CI).

Mapping APA-SNPs to GWAS
We mapped APA-SNPs to GWAS SNPs, using the mapping

method described in Thomas et al. [22]. The mapping was based

on linkage disequilibrium (LD) data from the Hapmap database

(CEU population release 27). The mapping parameter was the

threshold T~0 (see Thomas et al. [22]), to identify all

neighbouring APA-SNP/GWAS-SNP pairs.

Supporting Information

Figure S1 Diagram showing the workflow of our analyses and

summarizing the number of SNPs investigated in each analysis.

(PDF)

Figure S2 Distribution of Hapmap SNPs within 39UTRs of all

RefSeq genes. Panel (A) shows the SNP distribution as a function

of relative position within the 39UTR (coding end site at position 0

and transcript end site at position 1). The SNP distribution, which

is based on a kernel density estimate, is relatively uniform across

the 39UTR. Panels (B) and (C) show the SNP distribution from,

respectively, 500 bp and 200 bp upstream of the transcription end

position to the first 50 bp outside the gene. The SNP density is

uniform within the 39UTR except at the polyA signal position

around 30 bp upstream of the transcript end.

(PDF)

Figure S3 Distribution of distance D between estimated and

annotated transcript ends within the Burge RNA-seq data, grouped

into six sub-groups by the samples’ cell proliferation state (non-

proliferating vs. proliferating) and the APA SNPs’ genotype (WT

Hom.: homozygous wildtype; Het.: heterozygous; APA Hom.:

homozygous APA). The distance D is shown on a negative

logarithmic scale to reflect that the estimated transcript ends are

shorter than the annotated ends. As expected, transcripts in

proliferating cells are shorter than in non-proliferating cells.

Moreover, transcripts that have homozygous APA SNPs are shorter

than other genotypes; particularly for non-proliferating cells.

(PDF)

Figure S4 GU content around transcription end site, based on

all RefSeq genes. Mean of curves defined as GU proportion in a 5-

nucleotide window sliding from the polyA signal to 70 nucleotides

downstream. The GU-rich region is located between the 25th

window and the 45th window.

(PDF)

Table S1 A portion of the EST-based polyA sites from

PolyA_Db that do not have any signal in N nucleotides upstream

of the cleavage site when looking at the reference genome, can be

explained by a SNP in the region creating a signal from the SNP’s

non-reference allele.

(PDF)

Table S2 Checking genotyping of 755 mono-allelic SNPs in 2

datasets (Heap and Burge). Columns correctHOM, incor-

rectHOM, and incorrectHET show the number and proportion

of correctly classified homozygotes and of incorrectly classified

homozygotes and heterozygotes among the total number of

genotypes, respectively; ‘correctDclassified’ shows the proportion of

correctly classified homozygotes among classified genotypes. Row

Burge CEU corresponds to individuals in the Burge dataset that

are Caucasian.

(PDF)

Table S3 Genotyping results for the 412 candidate APA-SNPs

in the Heap and Burge datasets.

(PDF)
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Table S4 PolyA signal frequencies. The first three columns show

polyA signal ranks, signal hexamers, and their frequencies in

human genes from Tian et al. [1]; columns four and five show the

hexamers’ absolute and relative frequencies in human RefSeq

39UTRs; column six shows the signal frequencies divided by the

signals’ relative frequencies in human 39UTRs; and columns seven

and eight show the counts and frequencies of our 412 candidate

APA-SNPs. PolyA signal frequency (‘‘PAS frequency’’) corre-

sponds well with how frequently the signal causes polyadenylation

(‘‘PAS frequency/Motif frequency’’).

(PDF)

Table S5 Multiple regression on distance between the estimated

and the annotated transcript end (D; see Methods) and APA SNP

genotype, cell proliferation status, APA signal strength, and local

and global GU level. We only considered SNPs that lie at least

1500 kb from the annotated 39 end. (A) All the dependent

variables contribute significantly and negatively to the response

variable (D), which means that homozygous APA SNPs,

proliferating cells, strong signals, local and global GU levels all

contribute to shortened 39UTRs. (B) We get similar results when

controlling for the global GU level. Specifically, the response

variable in this analysis was the residuals from regressing global

GU level on D.

(PDF)

Table S6 Significant APA-SNPs from the microarray, EST and

RNA-seq analyses.

(XLS)

Text S1 Translation of the Abstract into French by LFT.

(PDF)

Text S2 RNA-seq data successfully genotype known SNPs.

(PDF)
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