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Abstract: It is well known that when a ship sails in ice-covered regions, the ship-ice interaction process 

is complex and the associated ice loads on the hull is a stochastic process. Therefore, statistical models 

and methods should be applied to describe the ice load process. The aim of this work is to present a novel 

method for estimating the extreme ice loads which is directly related to the reliability of the vessel. This 

method, briefly referenced to as the ACER (average conditional exceedance rate) method, can provide a 

reasonable extreme value prediction of the ice loads by efficiently utilizing the available data, which was 

collected by an ice load monitoring (ILM) system. The basic idea for the ACER approach lies in the fact 

that a sequence of nonparametric distribution functions are constructed in order to approximate the 

extreme value distribution of the collected time history. The main principle of the ACER method is 

presented in detail. Furthermore, the methods based on the classic extreme value theory are also 

introduced in order to provide a benchmark study.  

Keywords: ice loads; ACER method; extreme value prediction  

1. Introduction 

Increased activities related to maritime transport and exploiting natural resources (e.g. oil 

and gas, mineral) in the arctic regions promote the requirement of ice-capable vessels and 

offshore structures (Hahn et al., 2017). For ships in the arctic, ice loads caused by ship-ice 

interaction represent the dominant load and the main structural challenge. Therefore, the 

knowledge of ice loads on the ship hull is essential for reliability-based design and operation of 
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ice-going vessels in the arctic regions.  

However, a full understanding of such knowledge is far from achieved since the ship-ice 

interaction is a fairly complex process, which depends on the ice conditions (e.g. ice thickness, 

ice strength, ice age), the ship hull geometry as well as on the relative velocity between the 

vessel and the ice (Lubbad and Løset, 2011). Generally, for the first-year ice, the ship-ice 

interaction process is initiated by a localized crushing of the free ice edge, as the ship advances 

and penetrates the ice features, the contact area and crushing forces increase. The ice eventually 

deflects and the bending stresses promote a flexural failure at a certain breaking distance from 

the crushing region (Jordaan, 2001; Valanto, 2001). However, it should be noted that, even 

though the interaction between ice features and ship hull is governed by deterministic laws of 

mechanics, ice loads on ship hull is, for all practical purposes, random by nature (e.g. Figure 

1).  

 

 

Figure 1. Stochastic nature of the ice loads measured on a frame (Lensu, 2002) 

 

There are two categories of sources causing the randomness of ice-induced loads. One is 

the variation of the ice conditions in the arctic regions, which includes physical ice properties 

(e.g. ice thickness, density, porosity, floe size, etc.) and ice mechanical properties (e.g. flexural, 

tensile, shear, uni- and multi-axial compression strength, etc.). The other is related to the 

complex ship-ice interaction process in association with the crushing, bending, friction forces 

as well as the static and hydrodynamics forces (Riska, 1987). In addition, ship operations and 

movements also affect the ice breaking process. Therefore, probabilistic models and methods 

should be applied to describe the properties of ice loads. Furthermore, full-scale field 

experiments, with the information of ice loads, ice conditions, operation situations, and 

propulsion data etc., enriched by probabilistic methods have been recommended as a reliable 

basis for studying the ice loads statistics and the responses of the ice-going vessels.  
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Within the scope of probability theory, standard methods can be applied to analyze the 

stochastic time series, such as the statistical parameters (e.g. the mean value, standard deviation, 

skewness, kurtosis), correlation functions, power spectrum, statistical distributions and also 

extreme value statistics, etc. (Newland, 1993). The extreme values of ice loads are directly 

related to the reliability of the vessels since the ultimate limit states (ULS) are generally based 

on extreme load effects (Naess and Moan, 2012). Former studies of the extreme ice loads 

prediction are mainly based on the classic extreme value theory, which includes the peak 

amplitude approach (Ralph and Jordaan, 2013) and the asymptotic method (Lensu, 2002; 

Suominen et al., 2015; Suyuthi et al., 2012). In the former method, statistical models are 

introduced to describe the parent (initial) distribution of loads based on the measured peak 

amplitudes of the ice-induced loads. When the parent distribution is known, the extreme value 

distribution is given in the form of the power of encountered number of events. Kujala and his 

colleagues suggested that the Weibull probability distribution (Suominen and Kujala, 2010; 

Suyuthi et al., 2013) or the exponential distribution or lognormal distribution (Kujala and 

Vuorio, 1986) would give the best fit to the data collected in the Baltic Sea. In addition, (Jordaan 

et al., 1993) applied the  event-maximum method and found that the tail of ice loads collected 

in the North Chukchi sea can be fitted as an exponential distribution by using probability paper. 

However, from the full-scale measurements of KV Svalbard in the sea area of Spitsbergen in 

2007 and 2008, Suyuthi et al. (2014) mentioned that some sets of peak amplitudes cannot be 

well modeled by the traditional statistical models, such as the exponential and Weibull model. 

In their study, a generalized probabilistic model, i.e. a three-parameter exponential model, was 

proposed in order to provide a better description of the measured data. On the other hand, a 

proper number of time windows with equal duration are required for the asymptotic approach. 

The measured time series are then divided and the maxima values in each time window are 

identified for usage. Based on the available maxima data, an empirical cumulative distribution 

is estimated from the order statistics. Subsequently, extreme value models, such as the Gumbel 

distribution, are used for extreme value prediction (Lensu, 2002; Suominen et al., 2015).  

The main objective of our work is to provide a reasonable extreme value estimation of ice-

induced loads on the ship hull by utilizing available collected data from the full-scale 

measurements. The principles, feasibilities and weakness of the above two methods, i.e. the 

peak amplitude method and the asymptotic approach are given in the following sections in 

detail. In this work, a novel approach, namely the ACER (average conditional exceedance rate) 

method, is introduced for the extreme value prediction of the collected ice loads. Unlike the 
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former methods based on the parametric distribution functions, this method estimates the exact 

extreme value distribution by constructing a sequence of nonparametric distribution functions, 

i.e. the ACER functions. Then, the empirical ACER functions estimated from the measured 

data are combined with an optimization procedure for the purpose of predicting long return 

period design values. This extrapolation method is based on an assumed tail behavior of the 

extreme value distribution consistent with the form of the asymptotic extreme value distribution, 

thereby allowing for sub-asymptotic data to be included and still retain asymptotic consistency 

(Næss and Gaidai, 2009). All the underlying ice load data available points to the Gumbel 

distribution as the correct asymptotic distribution in the case of stationary data, and, in fact, 

also for the long term, nonstationary case. This method has been well benchmarked against 

existing conventional methods and it has been applied for predicting the extreme wind speed 

(Karpa and Naess, 2013), wave height (Gaidai et al., 2017) , and ship roll response (Gaidai et 

al., 2016). 

The present paper is organized as follows. Section 2 describes the full-scale measurement 

of the KV Svalbard in the winter of 2007. The collected time series of ice-induced loads and 

associated information with respect to the expedition route are presented. Principles of different 

extreme value prediction methods are described in Section 3, and Section 4 shows the relevant 

results of extreme ice loads prediction. The advantages of the ACER method are shown by 

relevant examples. The method proposed as well as the results and conclusions obtained in this 

work could hopefully promote the development of reliability-based design and operation for 

ice-going vessels.          

2. Full-scale measurement for the ice loads  

A growing number of full-scale measurement campaigns have been carried out in various 

ice-covered regions since 1970s and most of the full-scale measurements have been 

summarized in the Arctic Technology report (ISSC, 2015). The full-scale measurements can be 

classified as long-term and short-term in general. Long-term measurements are usually taken 

over several winter seasons and they can be applied to study the relationship between the 

prevailing ice conditions and the ice-induced loads. However, long-term measurements have 

been performed only in the Baltic Sea (such as MS Kemira voyages during the winters from 

1985 to 1988) and the Antarctic Sea (Kujula, 1994). Basically, most of the full-scale 

measurements are based on the short-term measurement in which the time period is hours or 
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minutes and ice loads collected by short-term measurements have been widely used for extreme 

ice load prediction and fatigue damage evaluation of the vessels sailing in ice-covered regions.       

In this work, the short-term full-scale measurement onboard the Norwegian coastguard 

vessel KV Svalbard is selected for extreme ice load prediction. This Polar-10 icebreaker has 

been used for scientific expeditions in the Barents Sea and around the Svalbard islands in recent 

years. During the years 2006-2008, Det Norske Veritas (now DNV·GL) launched an Ice Load 

Monitoring (ILM) project in the sea area of Svalbard islands (Leira et al., 2009). In this project, 

an ILM system was installed in order to collect the data of ice conditions along the expedition 

route, the navigation data (e.g. ship speed, propulsion power) and records of ice-induced loads 

on the hull, etc. (Nyseth, 2006). As a part of the ILM project, a two-week expedition was 

performed in the vicinity of Svalbard islands in March 2007 and an ice load time series of six 

hours was selected from the expedition for current study.                                                                                                                                                                                

Generally, ice-induced loads can be divided into the local ice load and the global ice load. 

The former term refers to the loads induced by the ice on the ship’s shell structure and acting 

on the transverse frames during the ice-breaking process and the latter term refers to the loads 

that causes a global structural response in the hull girder. In the ILM project, the fiber optic 

strain sensors were instrumented in order to record the local ice loads in the bow region (L1-

L4 in Figure 2) and the bow intermediate region (L5-L8) where the loading levels are 

significantly higher than other regions. The measured shear strain is converted into shear stress 

and then the total shear force can be obtained by integrating the (pre-assumed) shear stress 

distribution over the cross section of the frame. Therefore, the local ice load can be taken as the 

difference between the shear forces at the upper and lower parts of the frame. The load on a 

transverse frame has a unit [kN], but for practical applications it is usually treated as a line loads 

by dividing the load by the frame spacing of the transverse frame and then the new unit is 

[kN/m] (Suyuthi et al., 2012). 

L1
L3L5L7

L2
L4

L6L8  

Figure 2. Strain sensor arrangement (L1 represents location number 1) 
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As mentioned in Section 1, due to the variations in the ice conditions and the complex ship-

ice interaction process, the magnitude of ice loads changes significantly even in short-term 

expeditions. For each location number shown in Figure 2 in the bow and the bow intermediate 

regions, the time series of ice loads with a duration of 6 hours, recorded on March 28, 2007 

from 12:30 to 18:30 pm, are selected for analyse in this work. The corresponding route for the 

expedition in the vicinity of Svalbard islands is presented in Figure 3. 

         

 

Figure 3. Route of the expedition on March 28, 2007 (6 hours ice loads records started from 

12:30 to 18:30 pm) 

 

It has been observed in former studies (Leira et al., 2009; Lensu, 2002; Suominen et al., 

2017) that the time series of the measured ice-induced load looks like a sequence of impulses 

with sharp peaks, e.g. Figure 1. The generation of ice loads which closely relates to the ice-

breaking process can explain this phenomenon. Generally, ice-induced loads can be divided 

into three stages (see Figure 4): approaching stage, crushing stage and the disengaging stage 

(Kotilainen et al., 2017). The first stage begins when the ice-induced load starts increasing. At 

this stage, the transvers frame is not in contact with the ice, but the force is the influence from 

other frames. In the crushing stage, when the hull gets in contact with the ice edge, a crushing 

failure mechanism takes place first and then the load increases with the ship hull penetration 

process. When the accumulated force is high enough to initiate bending failure of the ice, a 

sudden drop of the load can be observed in the disengaging stage. At this stage, the measured 

load is mainly caused by the reflections from the other frames (Varsta, 1983). Afterwards, such 

three-stage process will be repeated when the ship hull contacts with subsequent ice edges. In 

addition, the peak value of the load during the interaction event is referred to as the ice load 
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peak. By recording the values of ice load peaks during the expedition, the extreme value of ice 

loads can be estimated. 

 

Figure 4. Three stages of ice loads generation process 

 

 

Figure 5. Ice load peaks during the selected period for L4, represented as stem plots 

 

In this work, in order to identify the start and end of the force peak, a lower threshold of 25 

kN/m is selected and the method for identification of ice load peaks can be found in Suominen 

et al. (2017). Figure 5 presents an example of the records for the ice load peaks for L4 during 

the expedition shown in Figure 3. It is of some importance to note that the sample record from 

L4 location contains outlying observations which are pointed out in Figure 5. Such ice loads 

Ice Load peak

Approaching 

stage
Crushing Stage Disengaging Stage
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could be caused by extremely serious ice conditions (such as the ice ridges) encountered by the 

vessel or by measurement error of the sensors. Such outliers would affect the performance of 

the classic extreme value theory and their influence should not be ignored. In the subsequent 

studies, these outlies values are incorporated in the data sets for numerical analysis.    

 

3. Extreme value prediction 

3.1 Problem description 

In this part, the problem of determining the extreme value distribution is described. 

Consider a stochastic process X(t), which has been observed over a time interval [0, T]. Assume 

that values X1, …, XN, which were derived from the observed process, are allocated to the 

discrete times t1, …, tN in the time interval [0, T]. This could be simply the observed values of 

X(t) at each ti, i=1, …, N, or it could be average value or peak values over small time intervals 

centred at the ti’s (e.g. the ice load peaks shown in Figure 5). The extreme value among the N 

outcomes of the stochastic process X(t) is defined as: MN =  1max , , NX X and the extreme value 

distribution for large values of η is expressed as: 

       1Pr ob Pr ob , ,       N NP M X X                                        (1) 

This paper is focused on accurately determining the extreme values from observed ice load 

peaks during the expedition. The values X1, …, XN in the following parts are taken as the 

recorded ice load peaks and the principles of the peak amplitude approach, the asymptotic 

method and the ACER method are introduced in this Section.    

3.2 Peak amplitude approach 

This method requires that the random variables X1, …, XN are independent and identically 

distributed with common distribution FX(x). If the initial distribution function, FX(x) is known, 

the extreme distribution can be evaluated directly and accurately through the classic extreme 

value theory (Ochi, 1990): 

         1

1

Pr ob , , Pr ob ( )    


     
N

N

N i X

i

P X X X F                           (2) 

where N is the number of ice load peak events for a specific duration under consideration.  
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Figure 6 presents the relationship between the initial distribution and the extreme value 

distribution, which are given in the form of the probability density function (PDF). For a certain 

small level of exceedance probability level λ, the corresponding extreme value is given as: 

  
1

1 (1 )N
XF 
 

  
 

                                                                  (3) 

Statistical analysis is required to obtain the initial distribution and relevant former studies 

are mentioned in Section 1. However, there is one critical point limiting the application of the 

peak amplitude approach: the requirement of stationarity for the measured ice load peaks. 

Specifically, the ice loads are influenced by the  random ice conditions to a large extent.  

However, nonstationary cases of the ice condition and the ice loads are very common during 

the full-scale measurements, even for short-term cases. The statistical models for the measured 

data require some form of stationarity, which can only be satisfied for some ideal cases with 

respect to prevailing ice conditions and ship operation characteristics (Suyuthi et al., 2013). 

Furthermore, small discrepancies in the estimates of the initial distribution FX(x), such as the 

influence from the outliers in the time series, can lead to substantial discrepancies of the extreme 

value distribution since N >> 1.   

 

Initial distribution

Extreme value distribution

η

λ=1-P(η)

P
D

F

x  

Figure 6. Illustration of the relationship between the initial distribution and the extreme value 

distribution 
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3.3 Asymptotic method 

In this method, the time series of the ice load peaks is divided into a certain number, K, of 

intervals with equal duration t (e.g. 1 minute, 5 minutes) and the maxima value in each interval 

Yj (j=1, …, K=T/t) are identified. Based on the collected maxima data, an empirical cumulative 

distribution is estimated and then the type I asymptotic extreme value distribution, i.e. the 

Gumbel distribution, is applied to estimate the extreme value by fitting the empirical cumulative 

distribution (Lensu, 2002). Therefore, the extreme distribution is given as: 

     ( )YP G                                                                    (4) 

in which GY(y) is the Gumbel distribution with the following expression: 

  ( ) exp exp ( )




   
    

  
Y

y
G y                                                                   (5) 

where α and β are the parameters for the Gumbel distribution and they can be estimated by 

ordinary fitting of the empirical cumulative distribution, such as least square fitting in a 

probability paper, the method of moment or maximum likelihood method.   

This method is also known as the Gumbel method and the Gumbel probability paper is 

applied in this work to estimate the parameters. For the small level of exceedance probability 

λ, the corresponding extreme value is given as: 

    1 1YG K                                                                     (6) 

and correspondingly, the extreme value η can be estimated by extending the line to the value of 

the cumulative distribution function 𝐺𝑌(𝜂) = (1 − 𝜆/𝐾).   

 

3.4 ACER method 

The above two methods are based on the parametric distribution functions, while the ACER 

method estimates the extreme value distribution by constructing different orders of the ACER 

functions, which are available for both the stationary and non-stationary data sets. The principle 

and development of the ACER functions are presented in Appendix.  

With the time series of the ice load peaks, the extreme value can be expressed in the following 

manner (Gaidai et al., 2016):     

  
   

 

( ) exp ( 1) ACER ( )

ˆexp ( 1) ( )

k k

k

P P N k

N k

  

 

     

    
                                       (7) 
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where k is the order of the ACER function, which is presented as Equation A.11. 𝜀̂k(η) is the 

empirical ACER function of order k, which can be obtained by applying the existed time series. 

As the order k increases, the accuracy of Equation 7 improves, but the amount of data for 

calculating 𝜀̂k(η) reduces.  

Next, an efficient extrapolation scheme is introduced in order to provide a reasonable 

estimation of the extreme value. The extrapolation approach for the purpose of extreme 

response prediction derives from the fact that for ships and marine structures being considered, 

the mean upcrossing rate and the ACER functions of response level η are in general highly 

regular in the tail region (Chai et al., 2016; Naess and Moan, 2012). Specifically, in the tail 

region (e.g. η ≥ η0), the ACER function behaves similarly to exp{-a(η-b)c}, where a > 0, b ≤ η0, 

and c >0 are suitable constants. Therefore, it may be assumed: 

  0( ) exp{ ( ) },       kc

k k k kq a b                                                         (8) 

where ak, bk, ck and qk are suitable constants, that in general will be dependent on the order k. 

Note that any form of the ACER function of the type given by Eq. (8) will provide an extreme 

value distribution that is asymptotically of the Gumbel type, but yet avoids the limitation of 

assuming a global Gumbel distribution for the measured extremes, which in reality are rarely 

asymptotic.  

In order to find the optimal values for the parameters ak, bk, ck and qk, an optimized fitting on 

the log level is selected. These parameters can be determined by minimizing the following mean 

square error function: 

  
2

1

ˆ( , , , ) ln ( ) ln ( )   


   
M

c

k k k k j k i i

i

F q a b c q a b                                             (9) 

where ηi, i =1, …, M are levels at which the ACER functions have been empirically estimated, 

ρj denotes a weight factor that puts more emphasis on the more reliable data points. This is in 

agreement with the principle of best linear unbiased estimator (BLUE) for uncertain data using 

weighted linear regression (Montgomery et al., 2012). In this paper we shall use a modified 

version that fits the purpose here, viz.  ρi = (lnCI+(ηi)-lnCI-(ηi))
-2, where CI+ and CI- are the 

bounds of the 95% confidence interval (CI) determined by Equation A.19.  

In the following part, a simplified and transparent two-parameter optimization method 

based on the Levenberg-Marquardt method is introduced. This is realized by considering 

Equation 9 when the values of bk and ck are obtained, the optimization problem reduces to a 

standard weighted linear regression problem. That is, with given values of bk and ck, the optimal 
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values of ak and lnqk are found using closed form weighted linear regression formulas in terms 

of ρi, yi = ln𝜀̂k(ηi) and xj=(ηj-b)c. The optimal values of ak and qk are given by the relations: 

1

2

1

( )( )
( , )

( )





 



 
 







M

i i ii
k k k M

i ii

x x y y
a b c

x x
                                                          (10) 

and    

 ln ( , ) ( , )  k k k k k kq b c y a b c x                                                                                                                  (11) 

where
1 1
 

 
 

M M

i i ii i
x x and

1 1
 

 
 

M N

i i ii i
y y . 

 In order to calculate the final optimal set of parameters, the Levenberg-Marquardt method 

can now be applied to the function in order to find the optimal values of 𝑏𝑘
∗and 𝑐𝑘

∗ , and then the 

corresponding 𝑞𝑘
∗ and𝑎𝑘

∗ can be calculated from Equations 10 and 11. For estimation of a 

confidence interval for a predicted value of the ACER function provided by the optimal curve, 

the empirical confidence band is reanchored to the optimal curve. The fitted curves to the 

reanchored confidence band boundaries can be used to determine an optimized confidence 

interval of the predicted value. As a final point, the predicted value is not very sensitive to the 

choice of the tail maker η0, provided it is chosen with some care. With the assistance of the 

efficient extrapolation scheme, which is based on the assumption of regularity of the ACER 

functions in the tail regions, the empirical estimations of the ACER functions with respect to 

the far tail region can be achieved with reliable accuracy for most practical prediction purposes.  

 

4. Numerical results and discussions 

4.1 Prediction by the ACER method 

In this part, time series of ice load peaks recorded at locations L4 and L7 during the 6-hour 

expedition are selected for analysis, where Figure 5 shows an example of ice load peaks 

measured at L4. Figures 7 and 8 present the empirical ACER functions, 𝜀̂k(η), for different 

orders of k and 𝜀̂k(η) is plotted versus the ice load amplitudes with different values of k for these 

two locations. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

13 

 

 

Figure 7. ACER functions with different order k at location L4 

 

 

Figure 8. ACER functions with different order k at location L7 

 

From Figures 7 and 8, it may be seen that for the lower range of ice load values there is an 

effect of dependence between the data points. However, this effect does vanish in the tail, 

indicating that all the ACER functions will coalesce in the deep tail. This allows the use of the 

first ACER function 𝜀̂ 1(η) for extrapolation purposes. This is advantageous since the first 

ACER function is the one which is most accurately estimated because more data are available 

for its estimation, thereby enhancing the precision. This illustrates the usefulness of the ACER 

function plot as a diagnostic tool for investigating the influence of possible dependence between 

data in the ice load time series for these two cases. Another important observation to be drawn 

from the ACER plots in Fig. 8, is that the empirical ACER functions are all close to linear in 
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the tail. This would indicate that the assumption of a Gumbel distribution to describe the 

extreme value data would work fairly well for the ice load peaks collected at L7, because a 

Gumbel distribution would correspond to a straight line in the ACER plot. However, it should 

be noted that one of the requirements for adopting it is violated: the ice load time series is 

clearly not stationary for the current case. 

The target exceedance probability during the expedition is selected to be 0.1, which means 

1-Prob (MN ≤ η) = 0.1. Correspondingly, the 90% fractile value can be predicted by applying 

Equation 7. Tables 1 and 2 present the estimated extreme ice loads based on different orders of 

ACER functions and different values of tail maker η0 for L4 and L7, respectively. The tail maker 

η0 represents the start point of the tail region and the extrapolation scheme, a sensitive study 

should be executed in order to determine its value. It is seen in Table 1 that for the empirical 

ACER1 function, the estimated 90% fractile values present a clear manifestation of convergence 

when η0 ≥ 45 kN/m. Similarly, as given by Table 2, the predicted 90% fractile values based on the 

empirical ACER1 function tend to converge when η0 ≥ 50 kN/m. Subsequently, Figures 9 and 

10 present the estimations for extreme ice loads based on the ACER1 functions for L4 and L7, 

respectively. The fitted ACER1 functions in the far tail regions and the corresponding fitted 

95% confidence intervals are also presented in these two figures. 

Table 1. Predicted extreme ice loads (kN/m) for L4 by the ACER method with different order 

k and different values of tail maker η0 (kN/m)    

Order k η0=45 η0=50 η0=55 η0=60 η0=65 

1 185.2 186.9 186.3 185.3 188.4 

2 178.7 182.5 185.8 184.7 184.1 

3 167.9 172.5 176.6 180.9 178.7 

4 162.7 164.8 167.2 170.9 174.7 

5 154.6 157.5 160.3 163.1 167.4 

 

Table 2. Predicted extreme ice loads (kN/m) for L7 by the ACER method with different order 

k and different values of tail maker η0 (kN/m)    

Order k η0=45 η0=50 η0=55 η0=60 η0=65 

1 225.7 219.3 219.3 206.6 210.7 

2 202.1 207.7 216.3 217.6 219.7 

3 192.7 199.2 205.1 212.3 209.4 

4 189.1 195.2 200.9 208.5 208.6 

5 191.0 194.6 203.5 210.3 213.0 
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Figure 9. Extreme ice load prediction based on 𝜀̂1(η) for L4, with the starting point, η0=50.0, q1 

= 0.6336, a1 = 0.0011, b1 =19.99, c1 = 1.346, (CI+-CI-)/ηACER = 35.7%.  

 

 

Figure 10. Extreme ice load prediction based on 𝜀̂1(η) for L7, with the starting point, η0=62.5, 

q1 = 0.3097, a1 = 0.0501, b1 =40.9, c1 = 1. 0, (CI+-CI-)/ηACER = 36.3%. 

 

It is shown in Figures 9 and 10 that the ACER method for prediction of the extreme value 

is implemented by expressing the extreme value distribution in terms of the average conditional 

exceedance rate and the tail behavior of the empirical extreme value can be accurately captured 
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by fitting a parametric function to the empirical exceedance rate. The fitting procedure puts 

more weight on the empirical estimates when they are more accurate. This implies that the 

ACER method is not sensitive to the outliers in the time series of ice load peaks and relevant 

example is given by the extreme value prediction for L4 (see Figures 5 and 9).   

   

4.2 Prediction by the Gumbel method 

The performance of the asymptotic method, i.e. the Gumbel method, even if it is strictly not 

applicable, is studied in this part. As a justification, we refer to the observation mentioned in 

Section 4.1, that the tail of the empirical nonparametric extreme value distribution provided by 

the ACER method, is linear in the tail in Figure 10, which would correspond to a Gumbel 

distribution shape in the tail. Since the Gumbel method is based on the maximum value in each 

time window with equal duration, the influence of the duration of the time window t, on the 

extreme value prediction is investigated at first.  

The target 90% fractile value during the expedition can be obtained by Equation 6 in which 

the number of time windows K is equal to the ratio between the exposure period T and the 

duration of time window t. The probability paper with linear regression is applied to estimate 

the extreme values based on different time windows. Figure 11 shows the results of extreme 

value predictions by the Gumbel method for different values of t based on the time series of ice 

load peaks collected at L7. It is seen in Figures 10 and 11, for the ice load peaks collected at 

L7, the Gumbel method provides close estimations of the extreme value to the results provides 

by the ACER method and the length of the time window t can influence the estimated value to 

some extent. Also, it is seen in Figure 11 that the slopes appear to be quite sensitive to the fitting 

ranges, while the ACER method shown in Figure 10 has satisfactory performance due to the 

robustness of the extrapolation scheme.      

In the meantime, the uncertainties associated with the Gumbel method should be considered. 

Similar to the ACER method, the 95% confidence interval of the estimated extreme value is 

introduced in order to qualify the uncertainties and an estimate of the confidence interval can 

be obtained by applying a parametric bootstrapping method (Davison and Hinkley, 1997). 

Table 3 shows the 95% confidence intervals for the extreme values provided by the Gumbel 

method with different length of time intervals based on 100,000 bootstrap samples and Figure 

12 presents the empirical PDF of the predicted extreme value based on the samples with t =5 

minutes. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

17 

 

 

 

Figure 11. Gumbel method for the extreme value prediction based on different time windows 

for L7 

Table 3. Predicted extreme ice loads for L7 by the Gumbel method with different time windows 

Time window t ηGumbel (KN/m) 95 % CI (KN/m) (CI+-CI-)/ ηGumbel 

2 minutes 210.1 (187.5, 235.1) 22.65 % 

5 minutes 212.5 (179.5, 249.4) 32.89 % 

10 minutes 228.3 (180.2, 283.5) 45.30 % 
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Figure 12. The empirical PDF of the predicted extreme value based on the samples with 5 

minutes of time windows for L7, the * indicates the limit of 95% confidence interval.  

It is seen in Table 3 that the uncertainty of the Gumbel method increases with the time 

window t. Uncertainties, i.e. the ratio between the confidence interval width and the estimated 

value are directly related to the size of each sample. From this aspect, the value of t = 2 minutes 

provides the best performance with respect to the uncertainties. On the other hand, it is seen in 

Figure 11, decreased length of the time window corresponds to increased number of lower loads 

in the probability paper and the performance of the linear fitting in the upper tail will be 

influenced. Therefore, based on the above considerations, the length of time window t is 

recommended to be 5 minutes for the following study. In addition, it is also seen in Table 3 and 

Figure 10, the ratios between the confidence interval width to the estimated extreme value 

provided by the ACER method (k =1) and the Gumbel method with t =5 minutes two methods 

are very close. However, it should be realized that the uncertainty estimation for the Gumbel 

method by parametric bootstrapping is based on the rather unrealistic assumption of a global 

Gumbel distribution for the observed data. This would typically tend to underestimate the real 

uncertainty. 

 

  

Figure 13. Gumbel method for the extreme value prediction based on the samples with 5 

minutes of time windows for L4 

 

Furthermore, the Gumbel method with t = 5 minutes is applied to predict the extreme value 

of ice load peaks collected at L4 and relevant probability paper is presented in Figure 13. In 

this case, the 90% fractile value is 244.5 KN/m which is significant higher than 188.4 kN/m 
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provided by the ACER method. There are two reasons to explain the difference. Firstly, it is 

seen in Figure 13 that the Gumbel method is affected by the large outliers in the upper tail 

region to some extent and its influence will be strengthened as the size of the sample decreased. 

Also, it is found that for such case shown in Figure 13, the overall performance of linear 

regression for the sample data in the probability paper is not satisfactory. The major weakness 

of the asymptotic approach is that the asymptotic extreme value theory itself cannot be used in 

practice to decide to what extent it is applicable for the observed data (Næss and Gaidai, 2009). 

       

4.3 Extreme ice loads on different locations 

As mentioned before, the ship-ice interaction is a complex process which relates to multiple 

factors, thus extreme ice load prediction at different locations could provide some valuable 

information to understand the ice-breaking process as well as for the aspects relevant to the  

reliability of the vessel. The ice-breaking process is highly related to the three-stage ice loads 

generation process described in Section 2 and the process can also be divided into three phases. 

The initial breaking phase starts when the ship movement brings the hull in contact with the ice 

features. Then the ice features are break, pushed aside and slide along the hull. The last phase 

is associated with the cleaning of the ice features. As a supplement to the description of the ice-

breaking process, two examples of the ice-breaking by the KV Svalbard in the ice-covered 

regions are shown in Figure 14. 

 

(a) (b)
 

Figure 14. KV Svalbard in ice-covered seas 

 

Based on the time series of ice load peaks collected at different locations, the extreme values 

of the ice loads estimated by the ACER method and the Gumbel method are presented in Figure 

15 and Table 4. In addition, for the ACER method, k = 1 is selected and the time window t = 5 
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minutes is applied in the Gumbel method. It is shown in Figure 15 and Table 4 that the Gumbel 

method is able to provide satisfactory estimation of the extreme value for some cases but its 

performance depends on the observed data at different locations. The discrepancies of the 

estimated extreme values (e.g. L1 and L4) are caused by different principles behind the ACER 

method and the Gumbel method.  

 

 

Figure 15. 90% fractile values of the ice load peaks collected at different locations during the 

6-hour expedition 

 

Table 4. Numbers of ice load peaks recorded (N) at different locations and the 90% fractile 

values of the ice load peaks estimated by the ACER method and the Gumbel method    

Location N ηACER (kN/m)  ηGumbel (kN/m) 

L1        565 
 

147.5 180.8 

L2 456 182.8 193.4 

L3 539 206.7 214.9 

L4 545 188.4 244.5 

L5 1210 249.1 245.2 

L6 2148 242.0 249.8 

L7 1501 210.7 212.4 

L8 708 173.7 181.1 

 

From the results obtained by the ACER method, it is found that there exist certain 

differences of the estimated extreme values on the locations L1 and L2, L7 and L8, even though 

these locations are symmetrical with respect to the centerline of the ship. An explanation for 
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this phenomenon could be that the prevailing ice conditions in the transverse direction of the 

vessel are different and vary significantly during the expedition.  

Also, it is interesting to notice in Figure 15 and Table 4, for the current vessel, the extreme 

ice loads in the bow intermediate region (especially at L5 and L6) are much severer than in the 

bow area. The bow region is the first region to contact and break the ice features during the ice-

breaking process. However, it is observed in Table 4, the ship-ice interaction process occurs 

more frequently in the bow intermediate area. In reality, there are many possible explanations 

for the difference of the extreme ice loads in different regions, such as the bow hull shape, e.g. 

the vertical frame angles can change rapidly along the hull and the capacity of icebreaking in 

the bow intermediate area is inferior to the bow region which has well-designed structure type 

(see Figure 14) to ensure the efficiency and capacity of icebreaking. Also, this difference could 

be explained by the fact that some broken ice features do not slip along the ship hull and then 

the accumulated broken ice features disturb the ice-breaking process in this region. However, 

the real reason for such difference cannot be easily explained with the current short-term data.  

 

5. Conclusions 

In this work, the ACER method was introduced to predict the extreme ice loads by utilizing 

the records of ice load peaks collected by a full-scale measurement in the vicinity of Svalbard 

islands. The parametric distribution function-based Gumbel method were introduced for 

comparison. 

The ACER method is implemented by expressing the extreme value distribution in terms 

of a sequence of nonparametric ACER functions, and then an efficient extrapolation scheme is 

applied to capture the tail behaviour of ACER functions for extreme value prediction. Based on 

the numerical studies and discussions above, it has been found that the ACER method has the 

following advantages when compared with the peak amplitude method and the Gumbel method.   

Firstly, for the ACER method, both the stationary and non-stationary data sets can be 

analysed, while for the peak amplitude approach, stationary is required for the ice load peaks. 

Moreover, the ACER method with different order k can serve as an effective diagnostic tool to 

reveal the dependence of the neighbouring maxima, which could also influence the performance 

of the peak amplitude approach. Since relevant predictions are based on the assumption of 

stationarity of the ice loads process, the peak amplitude approach is not recommended for 

extreme ice loads prediction.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

22 

 

Secondly, the Gumbel method is based on the asymptotic assumption but its performance 

depends on the observed data. For some cases, the overall performance of linear regression in 

the probability paper is not satisfactory and its performance could also be affected by the large 

outliers in the upper tail. On the other hand, for the ACER method, the extreme value prediction 

is realized by fitting a parametric function to the empirical exceedance rate in the tail region 

and the tail behavior can be accurately captured by applying a fitting procedure which puts 

more weight on the empirical estimates the more accurately they are. The ACER method can 

provide satisfactory results for the extreme ice loads prediction without sensitive to the outliers 

which derives from the use of a modified version of the BLUE (best linear unbiased estimator) 

principle.  

Thirdly, based on the time series of the ice load peaks at different locations, it is found that 

for current ship, the extreme ice loads in the bow intermediate region are much severer than in 

the bow area. Even though such phenomenon cannot be explained thoroughly with current data 

sets, it should be considered in reliability-based design and operation of the ice-going vessels.     

Furthermore, within the scope of reliability for ice-going vessel, the relationship between 

the extreme ice loads, fatigue damage due to the ice loads actions and the prevailing conditions, 

such as the ice thickness can be studied by means of probabilistic methods, which will be a 

future work beyond current study.          
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Appendix: the ACER functions 

According to Section 3.1, the extreme value among the N outcomes of the stochastic process 

X(t) is defined as: MN =  1max , , NX X and the extreme value distribution is expressed as: 
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(A.1) 

Then, the cascade of conditioning approximations, i.e., a sequence of nonparametric 

distribution functions, is introduced to approximate the exact value distribution P(η). The first 

approximation of the cascade is obtained by assuming that all variables Xj are statistically 

independent and then:   

     1

1 1

Pr ob 1 ( )   
 

    
N N

j j

j j

P X  (A.2) 

where    

 1 ( ) Pr ob   j jX  (A.3) 

and  

     1 1

1

exp   


 
   

 


N

j

j

P P  (A.4) 

where P1(η) is defined by the last equality in Equation A.4. Note that the approximation exp(-

ζ) ≈ 1- ζ is accurate to within 0.5% for values of | ζ | as high as 0.1 and the accuracy is rapidly 

increasing for decreasing values of | ζ |. 

In general, the variables Xj are statistically dependent. In such case, a one-step memory 

approximation given by Equation A.5 is introduced: 

   1 1 1Pr ob , , Pr ob , 2,...,           j j j jX X X X X j N  (A.5) 

Therefore, by this approximation: 
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 (A.6) 

where  2 1( ) Pr ob     j j jX X for j=2, …, N.  

In order to convey a clear picture of the cascade of conditioning approximations, the third 

level of approximation is achieved by assuming that: 

   1 1 1 2Pr ob , , Pr ob , , 3,...,              j j j j jX X X X X X j N

 

(A.7

) 

By introducing the approximation A.7, it is obtained that: 
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 (A.8) 

in which the notation  3 1 2( ) Pr ob ,        j j j jX X X for j=3, …, N is introduced. 

It is realized that, a general kth approximation will be obtained by continuing the above 

conditioning process. By introducing the notation αkj(η)=Prob(Xj > η| Xj-1 ≤η, …, Xj-1+k ≤η), 1≤ 

k ≤ j ≤ N, we can obtain that: 

1

1

( ) ( ) exp ( ) ( ) , 2     


 

 
     

 
 

N k

k kj jj

j k j

P P k  (A.9) 

where αkj(η) represents the probability of exceedance of Xj conditioned on k-1 immediately 

preceding non-exceedances. Thereby, the cascade 1{ ( )} 

N

k kP of conditional probability of 

conditional probability distributions has been constructed to approximate the exact value 

distribution P(η).  

For most practical applications, N k, and
1

1

( ) 





k

jj

j

is effectively negligible compared to

( ) 



N

kj

j k

. Therefore, 
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( ) exp ( ) , 1  


 
   

 


N

k kj

j k

P k  (A.10) 

then, estimation of the extreme value distribution by the described conditioning approach 

reduces to estimation of the set of αkj(η) functions (Næss and Gaidai, 2009). 

The next step is to introduce the concept of average conditional exceedance rate of order k 

(i.e. the ACER function) as follows: 

1
( ) ( ), 1,2,

1
   



 
 


N

k kj

j k

k
N k

 (A.11) 

and in general, this ACER function also depends on the number of data points N.  

The numerical estimation of the ACER functions is based on counting the requisite events, 

and we start by introducing the following random functions: 
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where ( ) 1 1 if the event Θ is true, otherwise the indicator function will be zero. Then 
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( ) , , , ; 2,3, ,
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E
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kj

kj

A
j k N k

B
 (A.13) 

where  E  denotes the expectation operator.  

Assuming that the random process X(t) is ergodic, then obviously, εk(η) = αkk(η) = … = αkN(η) 

and it may be assumed that for the time series at hand, 

( )
( ) lim

( )

N

kjj k

k N
N

kjj k

a

b
 (A.14) 

in which akj(η) and bkj(η) are realized values of Akj(η) and Bkj(η), respectively, for the observed 

time series.  

It is clear that lim ( ) 1  
   

N

jkj k
b N k N . Hence lim ( ) ( ) 1     k k , where 

( )
( ) lim

1

N

kjj k

k
N

a

N k
 (A.15) 

The advantage of using the modified ACER function ( )k  for k ≥ 2 is that it is easier to use 

for non-stationary or long-term statistics than ( )k  . Because our focus is on the values of the 

ACER functions at the extreme levels, we may use any function that provides correct estimates 

of the ACER function at the extreme levels. 
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To see why Equation A.15 may be applicable for non-stationary time series, it is recognized 

that 
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( ) exp ( ) exp
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 (A.16) 

If the time series can be segmented into L blocks such that [ ( )]E kjA remains approximately 

constant within each block and such that [ ( )] ( )E  
 

 
l l

kj kjj C j C
A a for a sufficient range of 

η-values, where Cl denotes the set of indices for the data in block number l, l = 1, …, L, then

[ ( )] ( )
N N

kj kjj k j k
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 E . Hence, 
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where 
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N

k kj

j k
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N k

 (A.18) 

in which ˆ ( ) k is the empirical ACER function of order k, within k N and N is the total number 

of local peaks in time series. It should be noted that for a given k and a specified level η, it 

follows from Equation A.18 that it is only required to run through the whole time series and 

check for each j = k, …, N whether akj(η) is zero or one. 

As for the problem of estimating a confidence interval (CI) for ( )k  , given a general non-

stationary process, it is consistent to assume that the stream of conditional exceedances over a 

threshold constitute a Poisson process, possibly non-homogeneous. Hence, 95% CI is given by 

the following expression (Gaidai et al., 2016; Næss and Gaidai, 2009): 

1.96
ˆ( ) ( ) 1

ˆ( 1) ( )
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Research highlights 
• A novel method, i.e. the ACER method, is presented for estimating the extreme ice loads 

• Main principle of the ACER method is introduced 

• Methods based on the classic extreme value theory is applied for benchmark study 

• Extreme ice loads on different locations are studied 
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