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Abstract

Coupling an energy storage to a photovoltaic (PV) system not only increases the self-consumption but also

solves the over-voltage issues if the cycling of the storage is properly controlled. Whatever the application

the storage is used for, the primary concern of the system owner is to maximize the profits. Therefore,

this paper addresses an energy management system for a PV system coupled with battery energy storage,

which maximizes the daily economic benefits while curtailing the power injection to the grid in such a way

that helps to mitigate over-voltage problems caused by reverse power flow. A time dependent grid feed-in

limit is proposed achieve this objective. The daily operational cost that includes the energy cost and the

battery degradation cost is considered as the objective function. The non-linear constrained optimization

problem is solved using dynamic programming. The analyses are made to investigate the economic benefits

of charging the battery from the grid. It is found that there is a possibility for these systems for participating

in load-levelling if batteries are charged from the PV system. In order for that to be feasible, the peak-hour

sell-back price for the energy from storage should be higher than the off-peak utility electricity price.

Keywords: Dynamic programming, energy management, load-levelling, photovoltaic systems, voltage

quality

1. Introduction

Building integrated PV systems have continued to make rapid progress around the world over the past

few years. Increasing the PV penetration level in the low voltage (LV) grid creates several technical issues

mainly related to the power quality [1–4]. The most critical problem is the voltage rise because of the reverse

power flow [5]. A significant percentage of the energy generated from the PV system is injected into the grid

because of weak correlation between residential load and the power production from the PV system. This

results in reverse power flow. In the early stages, power curtailment was used to deal with this problem

[6, 7]. Even though this is a feasible solution, this increases the payback time of the PV system because
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part of the energy generation from the system is wasted. Later, new standards came in to effect such as

VDE-AR-N 4105 [8], allowing inverters to operate in voltage regulation mode by absorbing reactive power

from the grid when the power injection from the PV system goes above a certain threshold [9]. However, as

the number of PV generators connected to the LV grid increases, the total losses in the network will also

increase as a result of higher consumption of reactive power by the PV inverters [10–12].

The power penetration into the grid from renewable energy systems especially wind and solar is increasing

rapidly. The power output of these systems is highly intermittent and fluctuating in nature. As the total

capacity of such sources becomes significant, the complexity of controlling the system increases. Therefore,

utilities will need to adopt energy storage solutions to help integrate these renewable sources into the grid

[13, 14]. The future grid essentially requires energy storage to balance the generation and consumption

as well as to maintain the grid stability. The main applications of grid level storage are capacity firming,

spinning reserve, load-levelling, improving power quality, and frequency regulation [15, 16].

Recently, a growing trend to increase the self-consumption in residential level PV systems has been

observed. This is mainly due to customers’ desire for independence from the grid electricity, continuous

increases in electricity prices, a decrease in feed-in-tariffs, and various kinds of incentives provided in some

countries. According to IHS technology, a tenfold increase in the global market demand for residential PV

systems coupled with battery energy storage (BES) is expected over the next three years, where the current

capacity is 90 MW.Currently, lithium-ion batteries dominate this market. The major barrier preventing

the market from taking off is the high price of the lithium-ion batteries. However, a reduction in the

average price is expected in the coming years, making storage more attractive. In addition to increasing

self-consumption, these small systems can have several other applications: improving power quality, peak

shaving, and load-levelling. Whatever the application they are being used for, the system owner’s primary

objective is to increase the economic benefits besides energy independence. Therefore, if these systems are

going to be used for utility applications, a profitable business case should be available from the utility side

and a proper energy management system that maximizes the economic benefits should be available from

the system owner’s side.

Several studies have been presented on the literature on the topic of optimal energy management for

grid-connected PV systems coupled with energy storage. All of them involve solving optimization problems

subject to certain constraints, assuming the day-ahead forecasts of load profile, PV power production profile,

and the energy prices are available. The objective function varies depending on the application of the storage,

and the choice of the optimization algorithm depends on the complexity of the objective function and the

constraints. In [17], the optimum energy dispatch schedule is found where the storage is utilized for peak

shaving. The main purpose is to minimize the demand charge. The net energy exchanged with the grid

over the planning horizon has been considered as the objective function, and the dispatch schedule that

minimizes the objective function has been found using linear programming. Ref. [18] also describes the
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optimum dispatch schedule with the same purpose, but there the objective function is the energy cost.

The peak shaving is achieved by setting a constraint on the power drawn from the grid. As they have

considered different tariffs for energy from the PV and the grid, the objective function becomes non-linear,

hence dynamic programming is used to solve the optimization problem. Ref. [19] presents optimal control

strategies for battery storage considering different objectives such as maximizing battery life, maximizing

self-consumption, and minimizing energy cost. They have also used dynamic programming. Ref. [20]

addresses the problem of over-voltages due to reverse power flow. They minimize the net power injection to

the grid over the planning horizon using quadratic programming aiming to minimize the impact on the grid

from PV systems. In addition, they also maximize the economic benefits by introducing selectable weights

in the objective function which are calculated based on greedy-search heuristic algorithm.

In this work, our objective is to maximize the economic benefits for the system owner while optimally

contributing to over-voltage mitigation in the grid. Further, we investigate whether residential PV systems

coupled with BES can participate in grid load-levelling and identify the requirements for utilizing them for

such applications. A scenario where a distribution grid has a high PV penetration, but with limited storage,

is considered. As the amount of storage is limited, the objective is to use it optimally, storing as much power

as possible, while giving high priority to the period where the over-voltage issues are most likely to occur.

Two different configurations of a residential PV system coupled with BES have been considered for the sake

of comparison of the performances.

The paper is organized as follows. Section 2 describes the system configuration and Section 3 presents the

methodology used. Section 4 details the mathematical formulation of the problem and Section 5 describes the

application of dynamic programming for solving the optimization problem. Finally, results of a simulation

study are provided in section 6, and we conclude that the proposed algorithm can successfully optimize the

operational cost while limiting the power injection into the grid helping it to mitigate possible over-voltage

issues caused by high PV penetration.

2. System Configuration

Two different configurations of residential PV systems coupled with BES can be found: DC- and AC-

coupled systems [21]. In a DC-coupled system, the battery bank is connected to the intermediate DC link

directly or through a bi-directional converter. The grid converter could be bi-directional if the batteries are

supposed to be charged not only from the PV array but also from the grid. In a AC-coupled system, the

battery bank and the PV array are connected to the AC bus via a bi-directional battery converter and an

inverter respectively. Fig. 1 illustrates the two different configurations. In this study, both configurations

are considered in order to compare the performances. The grid converter in the DC-coupled configuration

is considered bi-directional.
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(a) (b)

Figure 1: Configurations of PV systems coupled with batteries (a) DC-coupled, (b) AC-coupled. Arrows indicate the direction

of positive power flow.

3. Methodology

Our objective is to maximize the economic benefits for the system owner while helping the grid to

maintain the voltage profile within acceptable level. The cause of the voltage rise problem is the reverse

power flow due to high PV power penetration. However, it should be noted that the PV production profile

over the day approximately takes the shape of a quadratic function having maximum around solar noon, on

a clear sky day. Hence, PV systems affect the grid voltage quality principally around solar noon. Having

energy storage units in the network, the active power injection into the grid can be controlled. As stated in

the introduction, in this study we consider a case with a significant amount of PV penetration but a limited

amount of storage. As not all the PV generators are coupled with BES, the existing storage units should

be optimally controlled so that the negative impact on the grid voltage quality is minimized. In this work,

we do not consider coordinated control of energy storage units. Instead, we optimize the operation of the

individual PV systems with BES independently.

The system has a hierarchical control, in which the optimization or the energy management layer lies

on top. Every day before midnight, the energy management system (EMS) optimizes the scheduling of the

battery bank for the next 24 hours using the forecasted load profile, PV generation profile and the day-

ahead electricity pricing information. The EMS calculates the average power transfer to the battery and

the energy transfer over the selected time intervals and sends this information to the power management

system. Then the power management system calculates instantaneous references (power references, current

references and/or voltage references) for the component level controllers.

4. Mathematical Formulation of the Problem

The notations used to represent the power flow averaged over a specific time interval of ∆t measured at

points A, C, D, and E are represented in Fig. 1 along with the sign convention. The arrows in the figure
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indicate the direction of positive power flow. According to this sign convention, battery discharging and

power injection into the grid are considered as positive. ηcj , j = {1, 2, 3, 4} represents the efficiencies of the

converters adopted in two different configurations. A typical efficiency characteristic of a power electronic

converter is shown in Fig. 2. Usually this is available in the product data sheet. It can be represented by a

rational function

η =
a1P

2
n + a2Pn + a3
Pn + b1

, (1)

where Pn =
Pout

Prated

, Pout is the converter output power, Prated is the converter rated output power and

a1, a2, a3, b1 are constants.
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Figure 2: Typical efficiency characteristic of a power electronic converter.

For the system shown in Fig. 1(a), the power balance equation at the kth time step: {k ∈ Z
+} can be

written as follows:

ηc1 Ppv(k) + Pbat(k) =







Pload(k) + Pgrid(k)

ηc2

; ηc1 Ppv(k) + Pbat(k) ≥ 0

ηc2
(
Pload(k) + Pgrid(k)

)

; ηc1 Ppv(k) + Pbat(k) < 0

(2)

For the system shown in Fig. 1(b), the power balance equation is:

ηc3 Ppv(k) =







Pload(k) + Pgrid(k)− ηc4 Pbat(k)

; Pbat(k) ≥ 0

Pload(k) + Pgrid(k)−
Pbat(k)

ηc4

; Pbat(k) < 0

(3)

The operation of the system components is limited by a set of physical constraints including rated power,

rated capacity, maximum current, and maximum and minimum voltage. In a DC-coupled configuration, the
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battery discharging and charging rate is determined by the ratings of the battery itself. In addition, the

power flow through the grid converter should be below or equal to the grid converter rating. Hence, for the

DC-coupled configuration the following constraints hold.

Battery constraints:

−Ichrg,rated ≤ Ibat(k) ≤ Idischrg,rated (4)

Grid converter constraints:

ηc1 Ppv(k) + Pbat(k) ≤ PconG,rated

Pgrid(k) + Pload(k) ≥ −PconG,rated

(5)

Ichrg,rated is the rated charging current and Idischrg,rated is the rated discharging current of the battery.

PconG,rated is the rated capacity of the grid converter.

In the AC-coupled configuration, the battery charging/discharging rate is determined by the battery

converter rating, given that the rated charging/discharging capacity of the battery is below the battery

converter rating.

−ηc4 PconB,rated ≤ Pbat(k) ≤ PconB,rated , (6)

where PconB,rated is the rated capacity of the battery converter.

The state of charge (SOC) of the battery should be maintained within certain limits to prolong the

battery lifetime. This constraint does not depend on the configuration and can be stated as follows.

SOCmin ≤ SOC(k) ≤ SOCmax (7)

The net energy transfer from the battery during a planning horizon is set to zero, in order to maintain

the continuity of the battery operation. This constraint can be represented as follows.

N∑

k=1

Pbat(k) ∆t = 0 (8)

or

SOC(0) = SOC(N)

N is the total number of discrete intervals per optimization time horizon. N = T
∆t

, where T is the

optimization time horizon.

4.1. Battery State of Charge

Fig. 3 illustrates the steady state equivalent circuit of the battery where Eb is the open circuit voltage

(OCV) and Rbat is the internal resistance. In this study, we consider a lithium-ion battery. The open

circuit voltage vs the SOC characteristic of a lithium-ion battery (12 V,100 AH - SB100 from Smart Battery

company) is shown in Fig. 4. Unlike other battery types, the voltage profile of a lithium-ion battery is very
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Figure 3: Equivalent battery model.

flat in the SOC range 20-90 %, and the voltage is relatively high close to the fully charged state. High voltages

cause the cells to deteriorate, therefore shortens the battery lifetime. Hence, it is not desirable to fully charge

lithium-ion batteries. As the OCV over the acceptable operating range does not vary significantly, it can

assumed to be constant. Then the battery voltage is:

Vbat = Eb − IbatRbat, (9)

where a negative Ibat means a battery charging.

From coulomb counting, the SOC of the battery at the kth time step k = {1, 2, 3, ..., N} can be found as:

Ibat(k) < 0 (charging):

SOC(k) = SOC(k − 1)− ηchrg Ibat(k) ∆t

Cbat

, (10)

Ibat(k) > 0 (discharging):

SOC(k) = SOC(k − 1)− Ibat(k) ∆t

ηdischrg Cbat

, (11)

where Cbat is the nominal capacity or the usable capacity of the battery in Ah, whereas ηchrg and ηdischrg

are the charging and discharging efficiencies (coulomb efficiency) of the battery, respectively. The battery

efficiency depends on the battery current. It is lower at higher currents and vice versa. However, for

simplification we assume that the battery efficiency is constant at different operating conditions. Further,

we assume that the charging and discharging efficiencies of the battery are the same and equal to the

square-root of the battery round-trip efficiency (ηbat,rt).

ηchrg = ηdischrg =
√
ηbat,rt

The usable battery capacity drops as the battery ages mainly because of cycling and calendrical ageing.

It is also influenced by various other factors such as inefficient charging, excessive charging voltages, deep

discharging, and temperature. The state of health (SOH) indicates the current usable battery capacity with

respect to the nominal capacity of the battery when it was new. The impact of battery capacity variation

because of ageing should be taken into account when calculating the SOC. However, over the planning

horizon it can be assumed constant as the planning horizon is typically a short period (e.g. a day). But at
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Figure 4: Open circuit voltage of a lithium-ion battery vs SOC.

the end of the day, the SOH should be taken into account for the next planning horizon. Either an analytical

model or a measurement based model can be used to estimate the SOH of the battery [22–24].

4.2. Grid Constraints

As mentioned before, in this study we consider a distribution grid with high PV penetration, but where

the number of storage units is much less than the number of PV systems. The clear-sky solar resource over

the day is deterministic with the peak around solar noon, therefore, the over-voltage problem principally

occurs at this time. The optimal way to use the storage to eliminate the power quality problem is to store as

much power as possible during peak generation hours and less at other times. Generally, the grid feed-in is

limited to a constant threshold level, or the inverters are operated in voltage regulation mode by absorbing

reactive power from the grid when the power injection to the grid exceeds the threshold. Having storage

units reduces the need for voltage control based on reactive power absorption, because the system can control

the active power injection to the grid, the origin of the problem.

Instead of setting a constant value for the upper limit of the variable Pgrid, we propose a time-dependent

upper limit as follows.

Pgrid,ub(k) =







a(k −Ksn)
2 + Pgrid,ub,min

;Km ≤ k ≤ Ke

Pgrid,ub,max

; otherwise

(12)

where Pgrid,ub(k) ≥ 0 and Ksn {Ksn ∈ Z
+} is found from the solar noon time Tsn as:

Ksn =
Tsn

∆t

Km and Ke {Km,Ke ∈ Z
+} are given by

Km =
Tsn −∆tpk/2

∆t
; Ke =

Tsn +∆tpk/2

∆t
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∆tpk is the peak generation period and Pgrid,ub,max is the maximum value of the upper limit of the grid

power injection as shown in Fig. 5. These two parameters are set constant for a given system. Pgrid,ub,min

is the minimum value of the upper limit of the grid power injection and it depends on the load and the

generation profile. The method for choosing the optimal value for this parameter is described in Section 5.1.

In this way, the time around the peak generation hour (with respect to the generation profile on a clear-sky

day) is given highest priority. Therefore, we utilize the existing storage units in an optimal way so that the

power injection into the grid during the hours of high PV generation is minimized.
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Figure 5: An adjustable, time-dependent grid feed-in limit.

4.3. Electricity Bill

The most common pricing mechanisms for residential PV systems are feed-in-tariffs (FITs), net billing,

and net metering [25, 26]. Under a FIT mechanism, a guaranteed price is paid for all the electricity produced

by the system and electricity is bought at a standard price to supply the residential load. In net metering,

customers are billed for their net energy at the end of the billing period. The net billing system measures

energy in and out separately including time stamp, therefore can account the TOU dynamic electricity price

when calculating the cost of energy. In this study, we consider the net billing mechanism with a flat sell-back

price for the energy feed-in to the grid from the PV system. A TOU energy price is applied for the energy

from the utility and the energy from the storage. The following notations are used to denote the different

electricity prices.

γb(k) - TOU utility electricity price.

γs,pv - Flat sell-back price for PV system generated electricity.

γs,bat(k) - TOU sell-back price for the energy from the storage.

The energy feed into the grid at the kth time interval can comprise energy from the PV array as well as

energy from the battery. The cost of energy flowing through the meter (E) in Fig. 1 can be calculated as

follows, where C(k) denotes the billed cost for the kth time interval.

1. Power is fed into the grid and battery is discharging: Pgrid(k) ≥ 0 and Pbat(k) ≥ 0
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DC-coupled configuration:

C(k) =







(ηc1ηc2Ppv(k)− Pload(k))∆t γs,pv

+ηc2 Pbat(k)∆t γs,bat(k)

; ηc1ηc2Ppv(k) > Pload(k)

Pgrid(k) ∆t γs,bat(k)

; ηc1ηc2Ppv(k) ≤ Pload(k)

AC-coupled configuration:

C(k) =







(ηc3Ppv(k)− Pload(k))∆t γs,pv

+ηc4 Pbat(k)∆t γs,bat(k)

; ηc3Ppv(k) > Pload(k)

Pgrid(k) ∆t γs,bat(k)

; ηc3Ppv(k) ≤ Pload(k)

2. Power is fed into the grid and battery is charging: Pgrid(k) ≥ 0 and Pbat(k) < 0

C(k) = Pgrid(k) ∆t γs,pv

3. Power is drawn from the grid: Pgrid(k) < 0

C(k) = Pgrid(k) ∆t γb(k)

4.4. Objective Function

The basic objective function is the electricity bill over the planning horizon. However, the battery

capacity degrades over the time due to cycling and calendrical ageing. Inclusion of battery degradation cost

(BDC) due to cycling prevents unnecessary cycling of the battery that can be triggered by slight changes in

the electricity cost. Further, inclusion of BDC due to calendrical ageing avoids holding the operation of the

battery until higher economic benefit is achieved.

The BDC per kWh energy discharge from the battery due to cycling is calculated from the equation

γbat,cyl =
BC

Ebat,ltpt

,

where BC is the battery installation and maintenance cost over its lifetime. Ebat,ltpt is the lifetime throughput

of the battery and given by

Ebat,ltpt = Eavg ×DOD×Number of cycles to failure,
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where Eavg is the average battery capacity over the lifetime and it can be calculated by averaging the battery

capacity when it is new and the end of its life time. The threshold of the end of life capacity is generally

80 % of the nominal capacity; however, it can vary depending on the application, user preference and the

manufacture policy. DOD is the depth of discharge of the battery. γbat,cycling is derived based on the linear

relationship between the battery capacity and the number of equivalent full discharges obtained from the

experimental results [27]. As this linear relationship is obtained for discharged cycles, we assume that the

capacity degrades only during discharging. As a result, the BDC due to cycling can be expressed as follows.

BDCcyl(k) =







γbat,cyl Pbat(k)∆t ;Pbat(k) > 0

0 ;Pbat(k) ≤ 0

(13)

Calendrical ageing of the battery occurs when it is not operating. The rate of ageing is affected by SOC

and the temperature. The measurements of SOH changes for LiFePO4 battery at different temperature and

SOC levels has been presented in [28, 29]. The following relationship is obtained for SOH changes per hour

based on this results alone with the assumption that the temperature remains constant.

∆SOH = a [SOC]
2
+ b [SOC] + c , (14)

where a, b, c are constants. From the expression it can be seen that the calendrical ageing of the battry

is higher at higher SOC. The BDC per 1 kWh capacity loss of the battery can be found from the equation

γbat,calAg =
BC

Ebat − EEOL
,

where Ebat is the nominal capacity [kWh] of the battery when it is new and EEOL is the end of life

capacity [kWh] of the battery. Then the BDC due to calendrical ageing can be found from the following

equation.

BDCcalAg(k) = γbat,calAg ×∆SOH(k)× Ebat ×∆t (15)

The objective function takes the following form when including the BDC due to cycling and calendrical

ageing.

Objective function =

N∑

k=1

C(k)− BDCcyl(k)
︸ ︷︷ ︸

when Pbat(k) 6= 0

− BDCcalAg(k)
︸ ︷︷ ︸

when Pbat(k) = 0

(16)

The objective is to maximize the economic benefit for the user. Note that, according to the sign convention

used, power injection to the grid is positive. Hence, in order to maximize the economic benefit for the user,

we need to maximize the objective function.
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5. Optimization Using Dynamic Programming

The non-linear constrained optimization problem is solved using dynamic programming [30]. In dynamic

programming, the optimization problem is structured into multiple stages, where each stage is comprised of

collective states. Recursive optimization is adopted with the backward induction process, where the final

stage is analysed first and the problem is solved moving back one stage at a time until all stages are included.

In our problem, the stages represent different time periods in the problem’s planning horizon, and discretized

SOC with a step size of SOCstep corresponds to the states of the system. The number of stages is N and

the number of states per stage is
SOCmax − SOCmin

SOCstep

Fig. 6 illustrates all possible trajectories for change in SOC from one stage to the other from the initial

stage up to three stages. As shown in the figure, the allowable range of variation for the SOC is between

SOCmin and SOCmax to fulfil the constraint given in Eq. (7). Further, the SOC at the beginning and the

end of the time period must be the same to satisfy the the constraint given in Eq. (8). In the figure, ∆SOCij

represents the change in SOC along the trajectory from the ith state in the kth stage to the jth state in the

(k + 1)th stage.

∆SOCij = SOCi(k)− SOCj(k + 1)

After establishing all possible trajectories, corresponding ∆SOCij values are calculated. Then, the

average currents flowing in or out over all trajectories are calculated from the following equations.

∆SOC < 0 (charging):

Ibat =
Cbat

ηchrg ∆t
∆SOCij

∆SOC ≥ 0 (discharging):

Ibat =
Cbat ηdischrg

∆t
∆SOCij

While doing this, all the trajectories that violate the constraint given in Eq. (4) are rejected. Then the

average power flowing to/from the battery is calculated from

Pbat = VbatIbat ,

where the battery voltage is found using Eq. (9).

Next, the average power transfer from/to the grid is calculated from Eq. (2) and Eq. (3) for DC- and AC-

coupled configurations, receptively. At this point, all the trajectories that violate the grid feed-in limitation

described in Eq. (12) and the constraints given in Eqs. (5) and (6) are rejected. After that, the associated

cost over all feasible trajectories are calculated from Eq. (16). Then, the optimum trajectory from stage 0

to stage N, which results in maximum cost, is found using backward induction.
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Figure 6: Dynamic programming: System stages, states and all possible trajectories between the stages.

5.1. Calculating the Optimal Value for the Minimum Limit of Grid Power Injection

In order to optimally utilize the energy storage units to minimize the negative impact on the grid, the

power injection to the grid should be minimized. To achieve this objective, we propose a time-dependent grid

feed-in limit as shown in Fig. 5. As our requirement is to minimize the grid feed-in as much as possible, the

optimum value for Pgrid,ub,min should be zero. However, when the net energy (difference between the energy

production from the PV array and the load) over the planning horizon is relatively high, the optimization

problem does not have a solution that satisfies all the constraints for a very low value of Pgrid,ub,min because

of the limited capacity of the battery. Therefore, we start the optimization described in Section 5 with

Pgrid,ub,min = 0, and if no solution satisfying all constraints is found, Pgrid,ub,min is increases step-wise until

convergence is reached. The corresponding value found for Pgrid,ub,min is the optimal value. That is, we get

the minimum energy injection to the grid at this optimal value. For a given battery capacity, the optimal

value of Pgrid,ub,min depends on the PV profile and the load profile; hence it can take different values for

different days.

6. Results and Discussion

Simulations were carried out for a residential PV system with BES to investigate the effectiveness of

the proposed optimum energy management algorithm. Table 1 lists the parameters of the studied system

and Fig. 7 illustrates the efficiency characteristics of the converters adopted in two different configurations.

The daily domestic electrical load profiles over a year were obtained from IEA/ECBCS Annex 42 [31]. We

assumed that these load profiles correspond to electric load profiles of a residential application in southern

Norway. The measured power production from a PV module with a peak capacity of 300 W installed on a

PV test station at the University of Agder in the town of Grimstad is used as the basis for the PV production

profiles [32]. Daily production profiles from a 4.2 kWp PV array were generated by scaling up the data

13



obtained from the 300 Wp module. The simulation model of the optimum EMS was developed in Matlab.

The parameters used in the simulation model are listed in Table 2.

Table 1: Parameters of the Studied System.

Parameter Value

PV array size 4.2 kWp

Nominal battery capacity 300 Ah/15 kWh

OCV of the battery bank 52.8 V

battery internal resistance 5 mΩ

PconG,rated 4.2 kW

PconB,rated 5 kW

Battery round trip efficiency 95 %

SOCmax 90 %

SOCmin 20 %

γbat,cycling 0.4 $/kWh

γbat,calenderAg 3200 $/kWh

∆SOH coefficients (a,b,c) 3.333 ×10−5,

2.083 ×10−5,

8.333 ×10−6

Table 2: Parameters Used in the Simulation.

Parameter Value

Initial SOC 20 %

Optimization time horizon (T) 24 hours

Simulation time step (∆t) 1 hour

SOCstep 0.4 %

Pgrid,ub,max 2 kW

peak hour period (∆tpk) 7 hours

Simulations were carried out for three different cases:(1) a case without separate sell-back price for the

energy from the storage for a day with less production from the PV system, (2) a case without separate

sell-back price for the energy from the storage for a day with high production from the PV system, (3) a

case with separate sell-back price for the energy from the storage.
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Figure 7: Efficiency characteristics of the converters: Converters in the DC-coupled configuration are shown to the left, and

the converters in the AC-coupled configuration are shown to the right.

Case 1: Without separate sell-back price for the energy from the storage for a day with less production from

the PV system

In this case, the grid does not differentiate the energy directly fed from the PV array and the battery.

The utility electricity prices fluctuate over the day in which high prices corresponding to the time-period of

most heavily loaded grid. In this study we considered two distinct prices as shown in Fig. 8, which reflect

the time the grid is lightly and heavily loaded. A day with relatively low production from the PV array

was simulated to investigate the economic viability of charging the battery from the grid during the low

price period, and discharge during the high price period to supply the local demand. The economically

optimum cycling profile of the battery obtained for this case is shown in Fig. 8. As can be seen, for the given

price variation, the economical optimum operation is to let the battery remain idle, i.e. not to charge from

the grid in the morning when the price is low. This is because the price variation is not large enough to

recover the battery degradation cost and the cost of lost energy in the converters and battery. However, it

is important to investigate under which conditions it becomes economical to charge the battery under TOU

energy tariff. This is because if distributed storage units are going to be used for load levelling applications,

then the pricing scheme should provide economic benefits for the system owners.

The amount of energy that must be drawn from the grid for the battery at a later stage to feed Q [kWh]

amount of energy to the local load or back to the grid is

Q

η2ck ηbat,rt
kWh,

where k = 2 or 4 depending on the configuration shown in Fig. 1.

The associated cost for buying the energy from the grid and battery degradation cost due to cycling

when assuming battery capacity degrades only during discharging is

Q

(
γb,off-peak
η2ck ηbat,rt

+
γbat,cyl

ηck
√
ηbat,rt

)

,

where γb,off-peak is the utility electricity price during off-peak hours.
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Figure 8: Electricity prices, power profiles and the battery SOC variation on a day with relatively small energy production

from the PV system. There is no separate sell-back price for the energy from the battery. All the energy injected to the grid

is paid the sell-back price of PV.

The money saved or earned from feeding Q amount of energy to the local load or the grid is

Q γb,peak + γbat,calenderAg ∆T ,

where γb,peak is the utility electricity price during peak hours and ∆T is the total operating time of the

battery (charging and discharging) for handling the energy. The battery operation is economically beneficial

for the system owner if

γb,peak + γbat,calAg

∆T

Q
≥ γb,off-peak

η2ck ηbat,rt
+

γbat,cyl
ηck

√
ηbat,rt

.

Rearranging the above expression we get

γb,peak − γb,off-peak
η2ck ηbat,rt

≥ γbat,cyl
ηck

√
ηbat,rt

− γbat,calAg

∆T

Q
. (17)

Instead of holding the battery for a long time, circulating certain amount of energy during that time

can make the right hand side of the above expression much smaller than the left hand side, hence making

cycling of the battery more economical than remain idle.
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Figure 9: Electricity prices, power profiles and the battery SOC variation on a typical clear summer day. There is no separate

sell-back price for the energy from the battery. All the energy injected to the grid is paid the sell-back price of PV.

Case 2: Without separate sell-back price for the energy from the storage for a day with high production from

the PV system

A case with a slightly different utility electricity price variation compared to case 1 was considered for

a day with high energy production from the PV system. Fig. 9 illustrates the considered price variation,

power profiles and the corresponding optimum cycling profile of the battery. As the energy production from

the PV array is higher compared to the load, the system injects about 0.5 kW of average power during the

peak generation hour. The power injection into the grid follows the grid feed-in limit profile shown in Fig. 5,

which tries to minimize the power injection as much as possible while giving high priority to hours around

the peak sunshine hour. As described in Section 5.1, the optimization algorithm starts with zero for the

minimum value of the grid feed-in limit and increases it step-wise until convergence is reached. Therefore,

the battery is forced to charge to the maximum SOC limit whenever the total net energy production is higher

than the battery capacity even though the battery degradation cost is higher compared to the sell-back rate.
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The system utilizes all the energy stored in the battery to supply the local load. It is not economical to

inject energy stored in the battery to the grid because of the low sell-back price, particularly when the

sell-back price is even lower than the off-peak electricity price. Therefore, with this pricing mechanism the

utility cannot utilize the energy stored in the residential storage during peak hours for load-levelling. Even

though storage does not inject energy into the grid during peak hours, it indirectly participate for grid

load-levelling by reducing the local peak-hour demand, because the local demand is supplied by the energy

from the storage.

Case 3: With separate sell-back price for the energy from the storage

In this case, different sell-back price for the energy injected from the storage to the grid is introduced,

which allow utility to draw energy from the residential storage due to higher economic benefits for the system

owner against local consumption. The considered utility electricity price, sell-back price for the energy from

the PV system and the storage is shown in Fig. 10. Here, we considered a varying utility price that reflects

the peak and off-peak hours of the utility as before. As the grid needs energy from the storage during peak

hours, a high sell-back price which follows the same variation as the utility electricity price was considered.

As the grid does not need energy from the storage during off-peak hours, off-peak sell-back price was set

to zero. Fig. 10 illustrates the economical optimum charging-discharging profile obtained for the battery.

In this case, more economic benefits can be gained by injecting all the excess energy into the grid during

peak hours. The battery reaches the minimum SOC limit at the end of the peak period. Therefore, the

local off-peak demand is fully supplied by the grid. This operation is economically beneficial for the system

owner as long as the peak hour sell-back price for the energy from the storage is higher than the off-peak

utility electricity price. Hence, if the utility wants to draw energy from the residential storage units in the

distribution grid during peak-hours, then the utility should buy energy from the storage at a price which

is higher than the off-peak utility electricity price. Nevertheless, in addition to injecting excess energy into

the grid, the storage indirectly participates in grid load-levelling by reducing local electricity demand during

peak hours, because it is fully supplied by the storage.

6.1. Operation of the Battery for Consecutive Days

In the above study, we have selected 24 hours as the planning period and 1 hour as the time step. However,

both parameters can be changed depending on the availability of load and PV production forecasts. Fig. 11

illustrates the results obtained for planning period of 3 days. On the second day, the power generation from

the PV system is relatively small when compared to the load. Therefore, instead of discharging the battery

to minimum SOC level by the end of the first day, keeping the energy to supply the following day peak-time

load results higher economic benefits. However, PV and load forecasts of several days are required in order

to shift the energy among consecutive days. If we allow end of the day SOC to be flexible without knowing
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Figure 10: Electricity prices, power profiles and the battery SOC variation on a typical clear summer day with separate sell-back

price for the energy from the battery.

the forecasts of the following day, then the EMS will attempt to reduce discharging of the energy from the

battery due to higher battery cycling degradation cost compared to the electricity price and the calendrical

ageing battery degradation cost.

6.2. Comparison of Economics Between the Two System Configurations

Optimum operational costs of DC- and AC-coupled systems were calculated in order to compare the

performance of the two different system configurations. Fig. 12 illustrates the daily operational cost of two

different configurations for 60 distinctive days. From the results it can be seen that the differences in the

daily costs of the two different systems are negligible. Therefore, in terms of daily operational cost, the

performance of the both systems are the same. Hence, efficiency of the configuration is not a critical factor

to be considered when deciding on a configuration should be chosen. However, the AC configuration has

several advantages over the DC configuration. It is more flexible in the planning and development stage,
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Figure 11: Electricity prices, power profiles and the battery SOC variation for three consecutive days of operation.
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Figure 12: Daily operational cost comparison of AC- and DC-coupled systems.

easily expandable without replacing any converters, and the battery bank and the battery converter can be

sized independently of the PV inverter.
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7. Conclusion

An optimum energy management system for a battery coupled to a PV system based on dynamic

programming, is proposed. The EMS maximizes the economic benefits while curtailing the power injection

into the grid in such a way that helps the grid to maintain the voltage profile within the limits during

the period of high PV penetration. An adjustable time-dependent grid feed-in limit, which is treated as a

constraint in the optimization algorithm, is proposed to minimize the power injection to the grid particularly

around peak generation hours. The objective of this is to minimize the reverse power flow that leads to

over-voltage issues by utilizing the storage units connected to the grid. The adjustable grid feed-in limit

ensures charging the battery to the maximum SOC limit whenever the excess energy is higher than the

battery capacity, even though the battery degradation cost is higher compared to the sell-back price.

It is found that the utility has the possibility to buy energy from the residential storage to supply the

peak demand as long as they pay a price which is higher than the off-peak electricity price for the energy

they buy from the storage. This shows the potential of utilizing residential storage for grid load-levelling.

Moreover, the daily energy cost comparison for two common system configurations (DC- and AC-coupled)

did not show a significant difference. Therefore, the difference in the overall efficiency of the system does

not contribute much to the daily energy cost, hence it should not be a critical factor to be considered when

designing the system.
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