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1 Abstract

The effects of wettability alterations in a 2D network model of a porous media
has been studied. By changing the wetting properties of the reservoir through
a developed algorithm, previously immobile oil clusters in the network are re-
mobilized, leading to significant changes in the steady state flow distribution
of the model porous media. This caused de-stabilization of percolating and
trapped clusters as the wettability was changed from an oil wet to a mixed wet
system.

A critical transition at a certain wetting angle, depending on the initial sat-
uration and lattice size of the system was found. This indicating a possible
phase transition from a percolating flow regime to a more uniform flow distri-
bution through the network model. A link between changes in fractional flow
and a percolation transition is also suspected, and using the theoretical frame-
work of percolation theory, D.Stauffer and A.Aharony [38], critical exponents
were estimated. The best estimate for a critical exponent was β = 0.13± 0.02,
which is close to the result from ordinary percolation: β = 5/36 ≈ 0.1388...
The critical transition in fractional flow, seems to obey similar scaling laws as
that of ordinary percolation. The use of finite size scaling theory to investigate
the system for various lattice sizes, yielded a rough estimate for the correlation
length critical exponent, ν ≈ 0.4, which is significantly smaller compared to the
result from ordinary percolation, ν = 4/3.
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2 Sammendrag

Effekten av å endre fuktegenskapene i en 2D nettverksmodell av et porøst
medium har blitt undersøkt. Ved å endre fuktegenskapene i reservoaret gjen-
nom en utviklet algoritme blir tidligere immobile olje-clustere re-mobilisert, og
dette fører til signifikante endringer i systemets strømningsegenskaper. Endrin-
gene fra et oljefuktende nettverk til en mix av b̊ade vann og oljefuktende, førte
til sammenbrudd av perkolerende og fangede clustere.

En kritisk overgang ved en viss fuktningsvinkel, avhengig av oljemetning
og nettverksstørrelse ble funnet. Dette indikerer en mulig faseovergang fra et
perkolerende strømningsregime, til en mer uniform strømningsfordeling gjennom
nettverket. En mulig kobling mellom endringer i oljestrømning og perkolasjon
er ogs̊a undersøkt, og ved å bruke det teoretiske fundamentet fra perkolasjon-
steori, ble kritiske eksponenter estimert. Stauffer og A.Aharony [38]. Det beste
estimatet for en kritisk eksponent var β = 0.13 ± 0.02, som er nærme resul-
tatet fra ordinær perkolasjon: β = 5/36 ≈ 0.1388... Den kritiske overgangen
i oljestrøming, oppfyller tilsynelatende lignende skalerings-lover som ordinær
perkolasjon. Ved å bruke finite-size skaleringsteori for å undersøke systemet for
forskjellige nettverksstørrelser, ble et overslag for korrelasjonslengdens kritiske
eksponent estimert til ν ≈ 0.4, som er betydelig mindre sammenlignet med
resultatet fra ordinær perkolasjon, ν = 4/3.
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3 Preface

The following thesis is submitted as part of the requirements for the Master‘s
degree in physics, and concludes my studies at the Norwegian University of
Science and Technology, (NTNU). It has been written under the supervision of
Professor Alex Hansen, and it was proposed by Erik Skjetne at Statoil ASA.
I have also been working in collaboration with post doc. Santanu Sinha at
NTNU, whose insight in the subject of network modelling has been most valu-
able. Computational resources has been found at the department of physics‘
UNIX cluster.

Complex systems has been a research field in rapid growth the last years,
but to our knowledge this kind of simulation haven‘t been conducted before.
This still being a quite simple model, but it captures the essential physics of the
system. However, there is still a way to go in further research before a direct
comparison with real oil reservoirs.

The fact that something is complicated is not a reason to give up. Rather
the contrary. Given the large impact a greater understanding of this topic could
yield, it should definitively be a focus area in time to come. In my opinion, the
motivation for studying physics is the desire to understand the world. This is
why I find the opportunity to work on this topic so rewarding. It is my hope
that our work could be part of solving the puzzle, and that continued effort will
lead to further progress in times to come.

There are recommendations on further work, and still a lot of questions
which needs to be addressed.

Trondheim, july 2012

Vegard Flovik
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5 Introduction

One of the big challenges in the time to come, is to solve the increasing energy
demands of the world. Population is increasing, and the standard of living in
developing countries is getting higher. Still, there is no way of satisfying this
need in terms of renewable energy sources. This means that fossil fuels like oil
and gas will still be very important sources of energy in many years to come.
The fact that some 20 to 60 percent of the oil remains in the reservoir after the
end of oil production, is a challenge of increasing importance in these times of
dwindling oil reserves. Roberts [5]. The reason for this loss is the formation of
oil clusters embedded in water and held in place by capillary forces, which in
turn are controlled by the wetting properties of the reservoir fluids with respect
to the matrix rock.

The production from oil reserves that today are considered immobile due to
complex reservoirs will then be an important area of focus. The easy accessible
reserves are running out, and an increasing amount of the world oil reserves are
located in challenging and complex reservoir conditions. Conducting research
in this area of improved oil recovery should thus be a focus area in the time to
come, and wetting properties of reservoirs is an important topic within the field
of Enhanced Oil Recovery, EOR. The role of formation wettability has been
reviewed during e.g. Schlumbergers Wettability Workshop in 2007, [2].

Sandstone is strongly water wet before oil migrates from a source rock into
the reservoir. When oil enters a pore, it displaces water and forms a water film
sandwiched between the oil and rock surface. This film may be several nanome-
ters thick, and results from balancing Van der Waals and electric double layer
forces, capillary pressure and grain curvature. Israelachvili [3]. A permanent
wettability alteration is believed to take place by adsorption of asphaltenes from
the crude oil to the rock, and leads to high but slow recovery through contin-
uous oil films. Kovschek et al. [4], Kaminsky et al. [10]. As the oil saturation
drops, these films can become discontinuous, leaving immobile oil clusters held
in place by capillary forces.

An important parameter which can determine the wetting properties of the
reservoir, is the salinitiy of the pore water. At low salinities, perfect water
wetting can be achieved. By increasing the salinity level of the pore water,
the wetting angle increase. Also, increase in temperature results in more water
wetness of the reservoir, which increase the oil recovery. Skauge et al. [8]. This
could also be of great importance during e.g thermal recovery methods.

Changes in the reservoir from strongly oil wet to neutral wet or water wet
conditions, show a significant increase in oil recovery depending on the stage
of recovery. Tweheyo, Holt and Torster [9]. New production methods, like low
salinity water flooding show some promising results in increasing the recovery
factor of reservoirs, and many mechanisms explaining this effect have been sug-
gested. Correlations have been shown with wetting behavior to the electrostatic
forces between the rock and oil surfaces. Buckley et al. [11]. But there is still
no consensus on that what the dominating microscopic mechanism is. Research
towards a deeper understanding of these effects could be an important effort

1



towards a more complete understanding of transport properties in reservoirs,
and has been a priority in the industry for years.

In this work, it is assumed that local wettability alterations take place, and
the consequences of this on oil recovery by re-mobilizing stuck oil clusters is
investigated. To study these effects, a two-dimensional pore scale network sim-
ulation model is used. Having bi-periodic boundary conditions, it allows the
study of steady state properties, representing the flow behavior deep inside the
reservoir. The effect of wettability alteration is introduced in the model through
a developed algorithm, continuously adjusting the wetting angles in the network
during simulation. The changes in steady state flow properties of the system as
a result of this is then studied.
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6 Theory

The main focus of this work, is the effect of pore wettability on the transport
properties of oil reservoirs. In reservoirs, there is usually a mix of oil, water and
gas which leads to multi-phase flow. This cause less efficient recovery due to the
immiscibility of the different phases, and surface tensions between the fluids.
The effect of wettability alterations in the reservoir is believed to be one of the
key parameters in achieving higher recovery. The complete physics governing
changes in wettability is not yet fully understood, and this thesis will thus focus
on the effects of this change, rather than the underlying physics of wettability
alterations itself.

This chapter will discuss the concept of wettability, and also give a general
introduction to the topic of fluid flow in porous media. Major parts of the theory
introduction is from the book by Dullien, ”Fluid transport and pore structure”
[1] , and Schlumbergers ”Fundamentals of wettability” [2].

6.1 Wettability, introduction

The definition of wettability, is the ability of one of the immiscible fluids in
multi phase systems to adhere to the surface of a solid. You have probably
witnessed the effect of wettability if you have polished your leather shoes, or
waxed your car. This wax layer makes the surface oil wetting, causing water to
form droplets on the surface which simply ”rolls off”, keeping your feet nice and
dry, and your car protected from rust.

In the context of reservoirs, this effect has important implications. If the
reservoir rock is mainly water wetting, this means is has a higher affinity to
water than oil. The result of this, is that water will occupy the smaller pores
and also cover most of the pore surfaces in the reservoir. Whereas for an oil
wet reservoir, the opposite will happen. Depending on reservoir conditions,
rock types, etc. the rock wettability can vary between strongly water wet and
strongly oil wet. An important parameter describing wettability, is the wetting
angle θ, which ranges from 0 to 180 degrees. As seen in figure 1, in the case of
a small wetting angle the system is strongly water wetting, and the oil forms a
droplet on the surface. In the complete opposite case with a wetting angle close
to 180 degrees, the oil will form a thin film which covers the surface.

Figure 1: wetting angles ranging from oil wet to water wet, where oil is shown
as green. Figure from Schlumberger [2]
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Understanding formation wettability is crucial for optimizing oil recovery.
The oil versus water wetting preference influence many aspects of reservoir per-
formance, particularly in water flooding and enhanced oil recovery techniques.
Making the assumption that a reservoir is water wet when it is not, can lead to
irreversible damage to the reservoir. The significant impact on reservoir perfor-
mance make it one of the most important parameters in reservoir engineering,
and is crucial in order to enhance oil recovery.

How to categorize the wettability in different reservoirs is still a major chal-
lenge, and there are many conflicting results, showing that the science governing
the impact of wettability is very complex. An interesting fact, is that the wet-
tability of a reservoir is not a static property. This means we can attempt
to change it in order to increase the reservoir performance, and enhance oil
recovery.

In many oil field applications, wettability is considered a binary ”switch”,
meaning the rock is either water wet, or oil wet. This if of course an extreme
simplification of the real wetting physics of the reservoir. In real reservoirs,
the wettability can be distributed between the two extremes, and will also be a
function of position in the reservoir.

6.2 Wettability types

As mentioned, uniform wettability is an idealized condition, and it depends on
previous reservoir history on geological time scales. In the case of strongly water
wet areas, the pore surface is exclusively in contact with water, while the oil
and gas will occupy only the center of larger pores.

Figure 2: Illustration of pore spaces with different wetting properties, filled by
water and oil. The tendency of water films to cover the rock grains in a water
wet reservoir is clearly seen, and also the opposite case for oil wet reservoirs.
Figure from Schlumberger [2].

In the case of strongly oil wet reservoirs, these properties are simply switched.
In more complex reservoirs some regions might have been changed, causing a
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mixing of water wet and oil wet regions. These cases are called mixed wet
reservoirs, but must not be confused with the case of intermediate wet reservoirs.
In the intermediate case, the wetting angle is considered relatively constant
throughout the reservoir, with the wetting angle in the range between oil and
water wet around 90 degrees. In this case, the rock has an equal affinity to
both oil and water. The last classification, is the fractionally wet case. This
is considered a special type of mixed wet reservoir, with a mixing of different
wetting properties. But in this case with the constraint that there exists a
continuous path of oil wet cores in the reservoir. The case of mixed wettability
is usually divided in two states, mixed wet small pores (MWS) and mixed wet
large pores (MWL), Schlumberger [2] The difference between the MWL and
MWS cases is believed to depend on the saturation history of the reservoir.
An originally water filled reservoir is believed to initially have been strongly
water wet. Oil migration into this reservoir will thus displace the brine into the
smaller pores, and oil will only be present in the larger ones. It is then believed
that the oil present in the larger pores change the wettability to more oil wet in
these pores, and is then what cause the MWL vase. In the opposite case with
an initially oil wet reservoir, we would get the MWS case.

The case which usually gives the lowest residual oil saturation, is the mixed
wet reservoir. This due to the occurrence of spontaneous imbibition of both oil
and water.

6.3 Surface roughness and apparent wetting angles

The idea of a specific wetting angle θ, is derived assuming a smooth surface.
However, the real pore space in a reservoir is far from a smooth surface. The
apparent wetting angle can thus differ significantly from the real wetting angle,
as seen in figure 3. Schlumberger [2]
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Figure 3: Wetting angle of a fluid droplet at a rough surface, showing the dif-
ference between the true and the apparent wetting angle. The apparent wetting
angle, θapparent, indicates a non wetting fluid, whereas the true wetting angle,
θtrue, indicates intermediate wetting,(≈ 90 degrees). Figure from Schlumberger
[2]

The difference between apparent and real wetting angle can be significant
when the surface area of the pore surface is large compared to the idealized
smooth surface. This is described by Wenzel‘s equation, Wenzel [25].

cos θapparent = r · cos θtrue (1)

where θapparent is the apparent wetting angle corresponding to the stable
equilibrium state and r is the roughness ratio, defined as the ratio between the
true area of the solid surface to the apparent area.

6.4 Wettability alteration by low salinity water injection

Many suggestions are proposed as the main mechanisms for incremental oil
recovery by low salinity water injection, and it is obvious that the working
mechanisms of the method is not well verified. Sorbie and Collins [26], Rivet,
Lake, Pope [27]. However, wettability alteration is considered a key factor to
affect fluid distribution in a porous media. The change of electrical charge at
oil/brine and brine/rock interfaces is one of the proposed mechanisms. Nasralla,
Bataweel, Nasr-El-Din [24].

Rock wettability is a function of the sign and magnitude of the electric
charge at oil/brine and brine/rock. These repulsive or attractive forces between
the interfaces are described by Coloumb‘s law for electric fields. A charge of
same sign at both interfaces, will result in repulsive force proportional to the
multiplication of the magnitude of the charges. In the case of opposite sign, the
force will be attractive.
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In experiments performed by Nasralla et al [24], the electrical charge at
oil/brine interfaces was measured against different brine ionic strengths using
a zeta potential technique. The change of the electro-kinetic charge of the
oil/brine interface is related to the wettability alteration caused by low salinity
water. The stability of the water film is depending on the electrical double layer
repulsion resulting from surface charges at the rock/water and water/oil inter-
faces. If these interfaces have similar charges, it will result in a repulsive force
that maintains a stable water film, giving a water wet surface. The zeta potential
is the potential at the shear plane of the electrical double layer. The magni-
tude of this potential depends on the charge at the oil/brine and brine/rock
interfaces, and the thickness of the double layer. The zeta potential in Berea
sandstone, silica and kaolinite were highly negative in fresh water. Nasralla,
Bataweel, Nasr-El-Din [24]. Low ionic strength of the NaCl solutions (low salin-
ity) resulted in stronger negative charges of brine/oil interfaces, which could be
caused by changes in the screening length of the electrical potential depending
on the ionic strength of the water. It is evident that electro-kinetic charges
of both oil/brine and brine/rock interface are of great importance for wetting
properties, even though the full theoretical description is still not completely
understood.

6.5 Surface tension and capillary pressure

The capillary pressure is defined as the pressure across the interface between two
immiscible fluids, and thus defined as pc = pnon−wettingphase − pwettingphase.
The starting point to obtain the expression for the capillary pressure in this
network model, is from deriving the Young Laplace equation, Laplace [12]. This
is a non linear partial differential equation, that describes the capillary pressure
across an interface of two static fluids due to the phenomenon of surface tension.
The Young Laplace equation relates the pressure difference between the two
fluids, to the shape of the surface separating them. This equation is thus a
statement of normal stress balance for static fluids meeting at an interface,
where this interface is treated as a surface (zero thickness).

An arbitrary surface, where gravitational effects are neglected is considered
in this case. Dullien [1].
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Figure 4: Capillary equilibrium of a nonspherical cap. Figure from Dullien [1].

Consider a point P on the surface (see figure 4) and draw a curve at a
constant distance ρ from P. This curve forms the boundary of a cap, spanned
by the points A, B, C, D, for which we shall find the equilibrium condition as ρ
tends to zero. Through P we draw the two principal curvature sections AB and
CD on the surface. Their radii of curvature at P, are R1 and R2. At the point
A, an element δl of the boundary line is subjected to a force σδl, where σ is the
surface tension. φ is defined in figure 4 and is considered to be small, as one let
ρ tend to zero. The projection of this force along the normal PN is then:

σδlsin φ ≈ σ ρ
R 2

δl (2)

If one consider four elements δl of the periphery at A, B, C, and D, they will
contribute with a force:

ρσδl

(

2

R 1
+

2

R 2

)

(3)

This expression is independent of the choice of AB and CD, and can thus
be integrated around the circumference. Since four orthogonal elements are
considered, the integration is performed over one quarter revolution, giving:

F1 = πρ2σ

(

1

R1

+
1

R 2

)

(4)
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The force on the surface element caused by the pressure difference over the
surface, ∆p , is given by F2 = ∆pπρ2. Equating these forces to each other, gives
the Young Laplace equation. Laplace [12]

∆p = σ

(

1

R 1

+
1

R 2

)

(5)

A simple and widespread model representation of reservoir rocks, is a bundle
of capillary tubes. If a non wetting fluid is to displace a wetting fluid in these
tubes, a pressure difference ∆p, called the capillary pressure has to be overcome.

∆p = pc = pnw − pw (6)

Where the subscripts nw and w refer to the pressures of non wetting and
wetting phases. An increase in capillary pressure, allows more of the non wetting
fluid to penetrate into the system. By measuring the pressure difference between
the phases, the capillary pressure can be determined. The capillary pressure in
a tube is found from the Young Laplace equation, and depends on the contact
angle between the two fluids, θ (shown in figures 1 and 5), and the interfacial
tension σ.

Figure 5: Menisci in a capillary tube. R is the radii of curvature, a is the tube
radius and θ the wetting angle

In a sufficient narrow tube with a circular cross section, the fluid interface
forms a meniscus that is part of a surface of a sphere with radius R (figure 5).
From eq.(5), the pressure drop across the surface will then be:
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∆p =
2σ

R
(7)

The radius of this sphere will depend on the contact angle θ and the radius
of the capillary tube, a, as seen in figure 5.

R =
a

cosθ
(8)

The pressure drop can thus be written as:

∆p = pc =
2σcosθ

a
(9)

6.6 Displacement in two phase flow in porous media

The two essential types of displacement in two phase flow in porous media are
drainage and imbibition. Drainage means that a non wetting fluid displace a
wetting fluid. E.g, if a reservoir is originally water filled and considered water
wet, drainage is the process when oil is entering the pore space. For imbibition
it‘s the opposite case, that wetting fluid displace a non wetting fluid. As would
be the case during water injection into an oil filled water wet reservoir.

The capillary pressure curve seen in figure 6 show the displacement of the
wetting phase by the non wetting phase, starting from full saturation to irre-
ducible saturation (point A). This is the process called primary drainage and
is, as mentioned above, the equivalent of the process where oil migrate from the
source rock into a water filled reservoir. The term irreducible wetting satura-
tion, is when the wetting phase saturation seems independent of further increase
in the capillary pressure. This means the remaining water in the pore space is
trapped at this point.
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Figure 6: Capillary pressure curve for a water wet system showing both
drainage, spontaneous imbibition and forced imbibition. Capillary pressure on
the y-axis, and water saturation given by percentage of the total pore volume
on the x-axis. Figure from Anderson [13].

If the capillary pressure, initially at a large positive value is gradually de-
creased to zero, this will allow the wetting phase (water) to imbibe. (Curve
from point A to B in figure 6). The non wetting residual saturation reached
when pc = 0 (residual oil saturation) is referred to as the zero-capillary-pressure
non wetting saturation. Curve 3 in this figure is the forced imbibition curve,
where the capillary pressure is decreased from zero to a large negative value.
When the capillary pressure is negative, this cause the pressure of the wetting
phase (water) to be greater than in the non wetting phase (oil), forcing water
into the core. This will continue up to the point of irreducible non-wetting
phase saturation, where the non wetting phase looses its hydraulic continuity.
That is, the saturation of the non wetting phase reaches the level where it is
no longer continuously connected through the reservoir. In the case of a wa-
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ter flooding process to displace oil, this is the point where the remaining oil is
trapped as clusters held in place by capillary forces. Further oil recovery is then
only possible by enhanced recovery methods.

6.7 Relative permeability

Permeability in fluid mechanics and the earth sciences, is a term used to describe
the conductivity of a porous media with respect to flow by a Newtonian fluid.
However, permeability used in this general sense is of limited usefulness because
its value in the same porous medium may vary with the properties of the fluid
present, and the mechanism of permeation. It is more useful to separate out
the parameter which measures the contribution of the porous medium to the
conductivity, and is independent of both fluid properties and flow mechanisms.
This is a purely geometrical quantity, and is uniquely determined by the pore
structure of the reservoir. This quantity is the specific permeability, often de-
noted by k. In the following this is referred to as simply the permeabiltiy, and
it is defined by Darcy‘s law: Dullien [1].

Q = −kA
µ

(∇P − ρg) (10)

Where Q is the volumetric flow rate, A the normal cross section area of
the sample, k the permeability tensor, µ the fluid viscosity, ∇P the pressure
gradient, ρ the fluid density and g the gravitation vector.

Relative permeability on the other hand, is an important quantity which
not only depends on the pore geometry, but also which fluids are present in the
system. The relative permability is expressed as fractions of the permeability
k of the system. For instance, the relative permeability of oil is defined as the
following:

kro =
ko
k

(11)

Where kro is the relative permeability of oil, ko is the permeability of oil and
k is the absolute permeability. Thus, the relative permeability of oil describes
the effective permeability of the oil phase compared to the absolute permeability
of the system.

If one assumes that the effect of gravity is negligible and that the pressure
gradient across the system is linear, one gets another version of Darcys law:

u0 = −kkro
µ0

δP

δx
(12)

Where uo is the flow velocity of oil, driven by the pressure gradient across
the system, δP/δx.

When studying recovery methods, relative permeability curves are of great
importance. The relative permeabilities are dependent on the wetting properties
of the fluids, and changes in the wettability have significant impact on the effect
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of water flooding. In the case of water wet cores, they will produce a very low
water fraction until water breakthrough, and then experience a sudden increase
in water production. Mixed wet systems will produce oil with a higher but
more constant water fraction until the oil saturation becomes very low. Water
flooding of a neutrally wet reservoir gives the highest total oil recovery, while
oil wet systems give the lowest recovery after flooding of a few pore volumes.

There exists several contradictory results on how to relate wettability and
permeability, and the relevant transport mechanisms are not as easy to un-
derstand as first assumed. The coupling between wettability and permeability
might not be a direct link, but a more indirect effect from which the dominant
mechanisms are still unknown.

6.8 Washburn equation

To calculate the flow rates in the model, a version of the Washburn equation is
used. For small capillaries, one may assume Hagen-Poiseuille flow. White [28].
This takes the following form when neglecting air resistance: Washburn [19]

dV =
π
∑

P

8µl
(r4 + 4εr3)dt (13)

where dV is the volume flowing through a cross section of the capillary in a
time dt, l is the length of the column of liquid in the capillary, µ the viscosity,
∑

P the total effective pressure acting on the liquid, and ε the slip coefficient
(see eq.(15) and figure 7). By using that the permeability is given by k = r2/8,
one gets the following expression for the flow rate q:

q =
πr2k

∑

P

µl
(1 +

4ε

r
) (14)

The last term in eq.(14) can be of great significance in flow through nano-
porous media, where the effective permeability can vary in orders of magnitude
depending on the wetting properties of the liquid. Barrat and Bocquet [20].
Experiments have been performed where this effect can be seen also in the case
of pore sizes in the micro meter range. The presence of thin wetting films
covering the pore surface leads to slip boundary conditions, which is believed to
significantly increase the relative permeability of the non-wetting phase. Berg,
Cense, Hofman, Smits [21].
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Figure 7: Velocity profiles showing the difference between no slip boundary
conditions, and slip boundary conditions. Figure from Berg, Cense, Hofman,
Smits [21]

From the velocity profile seen in figure 7, the slip length ε is defined as:

ε ≡ −v(r = R)

(

∂v

∂r

∣

∣

∣

∣

r=R

)−1

(15)

For simplicity, it is initially assumed that the slip length ε is small compared
to the typical pore radius r. Meaning that in the following, no slip boundary
conditions for both the wetting and non-wetting phase is used. The last term
is then assumed to be insignificant, and can dropped from the expression.

q ≈ πr
2k
∑

P

µl
(16)

6.9 capillary and viscous forces

The interplay between the capillary and viscous forces in a system is very im-
portant, and is characterized through the capillary number.

Ca = v
µeff
γ

(17)

Where the velocity v is the mean velocity through the porous media, and is
defined as the total flow rate Qtot divided by the inlet area

∑

, v = Qtot/
∑

. γ is
the interfacial tension between the two phases, and µeff is the effective viscosity,
defined as the weighted average of the different fluid viscosities present in the
system, µeff = Swµw + Snwµnw.
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The capillary number can be used to classify systems into different flow
regimes. There is usually a crossover point at a capillary number of approx-
imately 10−4, indicating the transition between a capillary dominated flow
regime for lower values of Ca, and one dominated by viscous forces for higher
values of Ca. Also, in the capillary dominated flow regime, thin film flow is
important and needs to be accounted for. Another important parameter in ad-
dition to the effective viscosity of the system, is the viscosity contrast between
the wetting and non wetting phase.

M =
µnw
µw

(18)

The viscosity ratio is of great importance when estimating the behavior of
injecting one fluid into a system containing the other fluid. Depending on the
viscosity ratio the system can behave very differently, and end up in various
regimes like viscous fingering, stable piston like displacement, etc.

6.10 Displacement mechanisms

6.10.1 Pore level

Usually, displacement in two phase flow in porous media is divided into essen-
tially two different categories. In the case of drainage displacement, the non
wetting invading fluid displaces the wetting fluid. This is the case for the sim-
ulations performed in this thesis, where water is displacing oil in an initially
oil wet reservoir. In the opposite case of imbibition, the wetting fluid displace
the non wetting phase. The mechanisms behind the displacement in these two
regimes are quite different, and they should not be confused.

Imbibition is defined as the displacement of one fluid by another immiscible
fluid. This process is controlled and affected by a variety of factors. In spon-
taneous imbibition of wetting liquids into porous media, the capillary pressure
created as a result of interplay between the liquid and solid surface energies
at pore level, is responsible for the spontaneous suction of the liquids. The
capillary number (Ca) and the mobility ratio (M) have the greatest importance.

Typically, the process of slow displacement is characterized by a piston like
motion inside the pores, where the invading non-wetting fluid only enters the
pore if the capillary pressure is equal to or greater than the threshold pressure of
that pore. Lenormand, Zarcone, Starr [29]. The threshold pressure corresponds
to the capillary pressure in the narrowest part of the pore. However, during
imbibition at low injection rates, the invading fluid will enter the most narrow
pores first as the injected fluid is the wetting phase, and thus displace the non
wetting phase from these pores. Lenormand, Zarcone, Starr [29]

6.10.2 Transient flow conditions

Multiphase flow in porous media is usually divided into different subgroups of
transient and steady state flow conditions. The initial injection of a fluid into a
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system saturated with another fluid, will cause a transient displacement struc-
ture. For a drainage process, the transient displacements are usually divided in
different flow regimes depending of the capillary number. The main flow regimes
are viscous fingering (high Ca nr.), stable displacement (intermediate Ca nr.)
and capillary fingering (low Ca nr.).

Lenormand et al. [30] introduced the concept of ”phase diagrams” for
drainage displacements, where various experiments and simulations were plot-
ted on logarithmic scale in a plane with Ca along the y-axis and the viscosity
ratio M along the x-axis. see figure 8.

Figure 8: Phase diagram of various flow regimes as a function of Ca and mobility
ratio M. Figure from Lenormand, Touboul and Zarcone [30].

Viscous fingering

In the case of high Ca number where the viscous forces of the defending fluid
are dominant, one is in the viscous fingering regime. As seen from the formula
for capillary number, eq.(17), this condition can be obtained by the injection
of a fluid with low viscosity into a medium of higher viscosity at a high rate.
The resulting displacement front will have the shape of fluid fingers invading
the system, as seen in figure 9
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Figure 9: Numerical simulation of viscous fingering. Injection of a fluid of low
viscosity (black) into a fluid of higher viscosity (white). Figure from Homsy [44]

in 1987, Paterson [31] was the first to discover a remarkable parallel be-
tween the behavior of viscous fingering in porous media and diffusion limited
aggregation, DLA. DLA is a process in which particles are left to wander at
random far away from initial placement in the system. If the random walker
collide with the initial particle, they stick together. This leads to an aggregate
of particles to form (the invading fluid). This structure looks surprisingly like
viscous fingering. In the continuum limit, DLA is described by the diffusion
equation

∂C

∂t
= D∇2C (19)

Where C is the concentration of particles as a function of time and position.
With a steady flux of particles from a source far away from the aggregate of
stuck particles, we have that ∂C

∂t
= 0. This results in the reduction of the DLA

equation to the Laplacian:

∇2C = 0 (20)

This is the equivalent of viscous fingering in porous media when the defend-
ing fluid has a much greater viscosity than the invading fluid. (M → 0). In this
limit, the pressure gradient of the invading fluid can be approximated by zero.
The fluid flow is then described by Darcy‘s equation applied to the defending
fluid only.

Q = −k
µ
∇p (21)
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Where Q is the flow rate, k is the permeability, µ the viscosity and ∇p the
pressure gradient across the defending phase. Then, by assuming an incom-
pressible fluid (∇ ·Q = 0), one gets the following:

∇2p = 0 (22)

Which is the same as eq.(20), with C being replaced by p. But, even though
there are similarities, there is still a big difference. The disorder of the DLA
process is caused by random walkers, while the disorder in the porous media is
given by the pore size distribution. There is no one to one correspondence be-
tween DLA and the viscous fingering process, but simulations and experiments
have found that the fractal dimension of the structures produced by DLA is
similar to that found in experiments in porous media. Chen and Wilkinson [33].
Måløy, Feder, Jøssang [34].

Stable displacement

Also in the stable displacement regime the main force involved is the viscous
force, but in this case of the invading fluid, meaning the process is basically the
opposite of that for viscous fingering. The displacement structure is an almost
flat front between invading and defending fluid. The cluster size is limited by
the roughness of the displacement front, and only small clusters are able to
develop. See figure 10.

Figure 10: Stable displacement front. Figure from Aker [43]

The connection between Anti-DLA and stable displacement was also found
by Paterson in 1984, [31]. The anti-DLA process consists of having a compact
aggregate of initial particles (the defending fluid) and leave random walkers close
by. The particles then move until they reach an initial particle of the aggregate.
In this case, both the random walker and the aggregate particle are removed,
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causing the aggregate to be ”eaten away”. The anti-DLA process is only valid in
the limitM →∞, where the viscosity of the invading fluid is much higher than
that of the defending fluid. The structures obtained from anti-DLA and stable
displacement have been confirmed by Lenormand et al. in 1988, [30]. As for
the DLA process, there is no one to one correspondence between anti-DLA and
stable displacement, and the reason for these similarities is not well understood.

Capillary fingering

Capillary fingering is obtained by injecting the invading fluid at a very low
injection rate. This causes the viscous forces to become negligible, and the
dominant force is due to capillary forces of the interface between the invading
and defending fluid. This cause a displacement structure consisting of a wide
and rough front, with trapped clusters of defending fluid ranging from pore size
to system length, see figure 11. Due to the increased dominance of capillary
forces, the wetting properties of the two fluids become very important.

Figure 11: Cluster generated by injecting a non-wetting fluid (white) in a net-
work filled by a wetting fluid (black). Figure from Lenormand and Zarcone
[36]

There has been much effort in relating the structures observed during cap-
illary fingering to percolation theory. Inspired by the study of flow in porous
media, invasion percolation was developed to take into account the fluid trans-
port process. Wilkinson and Willemsen, [35]. The idea is to map the threshold
pressure of each pore to an occupation probability. In an ideal medium, the pore
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network may be viewed as a regular lattice where the sites and bonds represent
the pores and throats. The random structure of a pore network is implemented
by assigning a random nr. fp to each site and bond, corresponding to the
threshold pressure. Thus, fp is analog to the occupational probability indicat-
ing whether the actual site/bond is filled with the invading fluid at the capillary
pressure corresponding to fp. The invasion percolation process proceeds by let-
ting the displacing fluid grow each time step by occupying accessible sites along
the front having the smallest nr., fp. This will cause regions of defending fluid
to become disconnected from the outlet, and the sites of these trapped clus-
ters can then not be invaded. The process is stopped when the invading fluid
first percolates the system (forms a connected path through inlet and outlet).
This process is only valid in the case of very slow displacement (Ca → 0). In
this limit, the capillary pressure due to the pore interface is only invaded by
the displacing fluid if the pressure is equal to or larger than the corresponding
threshold pressure.

6.10.3 Steady state

Steady-state two-phase flow in porous media has received very little attention
compared to the instabilities that occur in connection with flooding, i.e. when
the porous medium is initially saturated with one of the fluids whereas the
other fluid is injected into it displacing the first, leading to e.g. viscous fingering.
However, inside a real reservoir the flow is described as a steady state, where the
configuration of the phases entering an element is the same as the ones leaving
it. At low flow rates, steady state flow essentially consists of one fluid being held
in place by capillary forces whereas the other fluid moves. At higher flow rates,
both fluids will move and there will be an increasing breakup and merging of
fluid clusters. In this regime, the flow settles into a state which is independent
of the initial conditions, and determined only by the flow parameters. In this
state, the fluids rearrange and flow simultaneously. There will be fluctuations in
the global pressure around a mean value, and a fractional flow condition of the
phases will settle. The fractional flow is defined as follows: Fnw ≡ Qnw/Qtot
and Fw ≡ Qw/Qtot, and is among the key properties investigated in this thesis.

6.11 Fractional flow

Darcy‘s equation, eq.(10), derived earlier is a macroscopic equation based on
average quantities, and derived for one phase flow. When describing two phase
flow in porous media some difficulties arise. The microscopic interactions be-
tween the fluids (capillary pressure) cause fluctuations in the pressure gradient
on a local level inside the sample. Also, when two fluids are present, the ability
of one fluid to flow is depending on the local configuration of the other fluid. A
famous way of describing two phase flow, incorporating these effects in Darcy‘s
equation, is the Buckley-Leverett displacement. Buckley and Leverett [47].

Consider a reservoir filled with oil, which is displaced by water. The absolute
permeability of the reservoir is k, and the viscosities of oil and water is denoted
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as µo and µw. Initially, only the defending phase (oil) flows out of the medium
until the invading phase (water) breaks through, and both phases are produced
at the outlet. The system eventually reaches a steady state where both oil and
water flow through the system in a fixed configuration. Thus, water and oil
basically flow in an effective porous medium that does not have the full pore
space available. If Qw is the flow of water, and Qo is the flow of oil, Darcy‘s
equation for the two phases become (when neglecting gravity effects):

Qw = −kkrwA
µw
∇Pw (23)

Qo = −kkroA
µo
∇Po (24)

where krw is the relative permeability of water defined as krw = kw
k , and

similarly for kro. The pressure in water, pw, differs from that of oil, po, but the
exact difference is only known when there is no flow. Then the menisci between
the fluids will be adjusted due to interfacial tension between the water and oil
phase, as derived in section 6.5

The saturations are defined as Sw and So, and is the volume fraction of each
liquid in the system. The effective permeabilities depend on the corresponding
saturations. In the limit where water displaces all the oil, Sw = 1, one expect
krw = 1 and kro = 0, as only water is present in the system. Conservation of
pore volume then give:

Sw + So = 1 (25)

As long as the fluids are flowing in steady state, these equations are valid.
In Buckley-Leverett displacement the idea is to use these equations outside the
stationary regime and solve them for one dimensional flow, where the flow rates
and saturations are a function of the position along the system. Buckley and
Leverett [47].

To keep track of the changes in saturation, one requires the mass balance
equations for water and oil:

φ
∑ ∂Sw
∂t

+
∂Qw
∂x

= 0 (26)

φ
∑ ∂So
∂t

+
∂Qo
∂x

= 0 (27)

Where φ is the porosity, defined as φ = pore volume/matrix volume,
∑

is
the cross sectional area of the sample and x is the position along the system.

Now, the five equations (23)-(27) contain 6 unknowns. To obtain the final
equation needed, Buckley and Leverett suggested that the capillary pressure pc
is a function of the saturation of water only, S ≡ Sw.

pc(S) = pw − po (28)
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Also, they assumed dpc/dS = 0 is a sufficient approximation, causing the
pressure gradients of water and oil to be equal:

∂pw
∂x

=
∂po
∂x

+
∂pc
∂x

=
∂po
∂x

+
dpc
dS

∂S

∂x
=
∂po
∂x

(29)

Having introduced the concept of fractional flow, Buckley and Leverett de-
rived the equation for the saturation of water S(x, t), often called the Buckley-
Leverett equation: Buckley and Leverett [47].

∂S

∂t
+ U(S)

∂S

∂x
= 0 (30)

Where

U(S) ≡ Q
φ
∑

(

df

dS

)

(31)

Here, f denotes the fractional flow of water, and Q is the total volume flow
rate, Q = Qw + Qo. Thus, f ≡ fw = Qw/Q. The fractional flow of water
is a function of saturation S, since the relative permeabilities krw and kro are
assumed to depend only on the saturations Sw and So.

The relative permeabilities as a function of water saturation behave typically
as shown in figure 12.

Figure 12: Rel. perm. of water and oil as a function of water saturation. krw is
the curve ”Water”, and kro the curve ”Oil”. Figure from Buckley and Leverett,
[47]
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If only oil is being produced and no water flows out of the system, krw = 0
and kro ≈ 1. As the water first breaks through, krw starts to increase towards
1. As water displaces oil, the relative permeability of oil goes to zero, and when
all oil has been displaced, kro = 0 and krw = 1. Usually, not all oil will be
produced and some will be left in the system at the water saturation Soc, where
kro = 0. Further injection of water is not able to displace more oil, causing the
residual oil in the system to become Sor = 1− Soc.

From Darcy‘s equations for oil and water, eq.(23) and (24), the fractional
flow of water is given by the following:

f = f(S) =
Qw

Qw +Qo
=

1

1 + kro
krw

µw
µo

(32)

Where one has used that the pressure gradient in the water is equal to the
one in oil, as shown in eq.(29). The fractional flow is given by using the expected
functions for krw(S) and kro(S), and a typical fractional flow curve f(S), can
be seen in figure 13.

Figure 13: The fractional flow of water, f(S), as a function of water saturation.
Figure from Kleppe [48].
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6.12 Percolation theory

The application of percolation theory in the context of transport properties of
porous media is a well established area. A nice introduction to percolation
theory can be found in the book by Shauffer and Aharony, ”introduction to
percolation theory” [38], and for a closer link to applications in porous media,
a paper by Berkowitz and Ewing [41] is recommended. The main use of per-
colation theory in this thesis, is the application of finite size scaling theory to
investigate critical transitions at the percolation threshold pc. This can relate
how quantities of interest behave in a finite system compared to an infinite
system. In the following, a brief introduction to finite size scaling of a site per-
colation problem will be outlined.

We consider a percolation problem for p 6= pc, where the correlation length
ξ is finite.

ξ ∝ |p− pc|−ν ⇒ |p− pc| ∝ ξ−1/ν (33)

Where ξ is the correlation length, p is the site occupation probability, pc is
the critical site occupation probability, and ν is the correlation length critical
exponent.

The strength,P (p) of the infinite network, is defined as the probability that
an arbitrarily selected site is connected to infinity by occupied sites. This can
then be expressed in terms of the finite correlation length:

P (p) ∝ (p− pc)β ∝ ξ−β/ν (34)

Where β is defined as the critical exponent for the percolation strength.

These results are in infinite lattices with L = ∞. The interesting thing in
our case is what happens when L <∞. As long as L � ξ nothing happens, as
ξ is still the only relevant length scale. However, if L� ξ, L will set the length
scale. Thus, one expects it to obey the following: Shauffer and Aharony, [38].

P (L, ξ) = ξ−β/νf(L/ξ) (35)

Where the scaling function is defined as

f(L/ξ) ∝
{

(L/ξ)−β/ν for L/ξ � 1
const for L/ξ � 1

(36)

An example of the strength, P (p), measured in a 2d square lattice as a
function of occupation probability p, can be seen in figure 14.
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Figure 14: Percolation strength as a function of site occupation probability for
different lattice sizes. Figure from Christensen [42]

When p is far away from the threshold pc, L � ξ, and the strength is de-
termined by ξ−β/ν . When one approaches the transition point pc however, one
can see the finite size effect, (figure 14). P (p) then decay with system size as
L−β/ν . The importance of this finite size effect, is that by investigating the
percolation transition at various lattice sizes and using results from finite size
scaling theory, one can extract the exponent β/ν .

However, when using a relatively small lattice size, it is found that the data
fit the expected laws of P (p) ∝ (p − pc)β better if one uses a shifted value of
pc instead. Since the sample is finite, there is finite probability of finding a
spanning cluster at any finite concentration. To generalize, let Π(p, L) be the
probability that a lattice of size L percolates at p. for a system where L =∞,
Π will be a simple step function with Π = 0 below pc, and Π = 1 above pc.
The quantity dΠ/dp then gives the probability that the lattice percolates if p is
increased from p to p+dp. One then gets the following more general expression:

Π = Φ[(p− pc)L1/ν ] (37)

Where the scaling function Φ increase from 0 to 1 if the argument increase
from −∞ to +∞ (from far below the percolation threshold to far above the
threshold). The derivative then gives:

∂Π

∂p
= L1/νΦ′[(p− pc)L1/ν ] (38)
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Which approach a delta function in the case of an infinite lattice. The
average value, pavg, where a percolating cluster appear the first time is defined
as:

pavg =

∫ 1

0

p

(

∂Π

∂p

)

dp (39)

By doing several experiments for the same value of L and check when the
system percolates for the first time, one can determine pavg. The effective
percolation threshold pavg for system size L approach the exact value pc for
infinite systems. This connection can be found from combining eq.(37), (38)
and (39):

pavg − pc ∝ L−1/ν (40)

This means that from plotting pavg vs L−1/ν for various trial values for ν
until one finds a linear fit for large L, the exponent ν can be estimated.

Not only pavg approach pc as L−1/ν. If one defines an effective percolation
threshold for finite lattices as the point where curve P (p) has an inflection point,
(maxima of ∂P∂p ), this threshold will approach the true pc as L−1/ν.

Also the width of the transition region depends on system size. The width,
∆, of the transition region between large and small probabilities Π can be defined
simply as the difference between the value of p where Π is 0.1 and 0.9, or any
other suitable numbers to define the width. However, from eq.(37) one gets
that ∆, independent of the details of its definition, varies for large L as L−1/ν.
This means that by investigating the width of the percolation transition, one
can estimate the correlation length critical exponent ν . Shauffer and Aharony
[38]

∆ ∝ L−1/ν (41)
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7 Numerical techniques

7.1 Conjugate gradient method

In mathematics, the conjugate gradient method is an algorithm to obtain a nu-
merical solution to systems of linear equations. A introduction to the method
can be found in e.g the book ”Numerical recipes” [52]. The method can be ap-
plied to systems whose matrix is positive definite and symmetric. The conjugate
gradient method is an iterative method, and is suited to sparse systems that
are to large to be handled by direct methods. Consider the following system of
linear equations:

Ax = b (42)

It is assumed that A is a n × n matrix which is symmetric and positive
definite. That A is positive definite, means that xTAx > 0 for all non zero
vectors x in Rn. In the following, it will not actually be proven that the system
of equations to be solved for this network model fulfills these properties. The
goal is rather to explain the basics of the numerical methods used, starting with
some linear algebra needed. This can be found in any standard textbook on
linear algebra, e.g H.Anton and C.Rorres: ”Elementary Linear Algebra with
Supplemental Applications” [14].

That two vectors u and v are conjugate with respect to the matrix A, means
that uTAv = 0. Since it is assumed that A is symmetric and positive definite,
this defines the inner product:

〈u, v〉A = 〈Au, v〉 = 〈u, AT v〉 = 〈u, Av〉 = uTAv (43)

Two vectors are considered conjugate if they are orthogonal with respect to
the inner product. Assume {pk} is a set of n conjugate directions. This set
will then form a basis of Rn, and the solution x̃ to the problem Ax = b can be
expanded in this basis.

x̃ =

n
∑

i=1

αipi (44)

The expansion coefficients αi are given by:

b = Ax̃ =

n
∑

i=1

αiApi (45)

pTk b = pTkAx̃ =

n
∑

i=1

αip
T
kApi = αkp

T
kApk (46)

The last step following from the fact that the set of basis vectors {pk} are
mutually conjugate. From this, the expansion coefficients α is found:
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αk =
pTk b

pTkApk
=
〈pk, b〉
〈pk, pk〉A

=
〈pk, b〉
‖pk‖2A

(47)

Using these properties, the conjugate gradient method can be implemented
as an iterative method to solve these kinds of problems by choosing the conju-
gate vectors pk carefully. This choice can then give a good approximation to
the solution x̃, without the need of all the vectors pk.

The starting point for the iteration process is an initial guess, x0, for the
real solution x̃. Starting from this x0, the search for the solution starts, and in
each iteration one needs a metric to tell if one is getting closer to the solution
or not. The idea is now that the solution x̃ for the initial problem Ax = b, is
also the minimizer of the quadratic function f(x):

f(x) =
1

2
xTAx− xT b, x ∈ Rn (48)

From this, one take the first basis vector p1 to be −∇f(x) at x = x0. x0

can be set to 0 without any loss of generality, meaning that p1 = b. The other
vectors in the basis will be conjugate to the gradient, which is the reason for
the name conjugate gradient method.
For the exact solution, one has that b− Ax̃ = 0. In the iteration, rk is defined
to be the residual at step k, rk = b − Axk. The search directions for each
iteration, pk, is conjugate to each other, and are also required to be built out of
the current residue and all previous search directions. From these conditions,
one gets the following expression for the search vectors pk.

pk+1 = rk −
∑

i≤k

pTi Ark
pTi Api

pi (49)

Following this search direction, one gets the new value for x:

xk+1 = xk + αk+1pk+1 (50)

with α given by:

αk+1 =
pTk+1b

pTk+1
Apk+1

=
pTk+1(rk + Axk)

pTk+1
Apk+1

=
pTk+1rk

pTk+1
Apk+1

(51)

The last step following from the fact that pk+1 and xk are conjugate.

The above algorithm gives a straightforward explanation of the conjugate
gradient method. But, the required storage of all previous search directions
and residue vectors, and many matrix multiplications can result in a computa-
tionally expensive code. Doing a slight modification of the condition to obtain
the last residue vector, not by minimizing the metric following from the total
previous search direction, but rather by making it orthogonal to the previous
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residue does the trick. Minimizing the metric, f(x), is then automatically ob-
tained. The algorithm then only requires storage of the two previous residue
vectors, rk−1 and rk, and the previous search direction pk. Pseudocode for the
algorithm can then be written as the following.

r0 = b− Ax0

p0 = r0
k = 0
repeat:

αk =
rTk rk
pT
k
Apk

xk+1 = xk + αkpk
rk+1 = rk − αkApk
if rk < presicion exit loop

βk =
rTk+1rk+1

rT
k
rT
k

pk+1 = rk+1 + βkpk
k = k + 1
if k > max iterations end repeat

return xk

The conjugate gradient method can theoretically be viewed as a direct
method as it produces the exact solution after a finite number of iterations,
which is limited by the size of the matrix. Unfortunately, this is in an ideal
world without any roundoff errors in the calculations. In reality, the method is
unstable to small perturbation caused by these errors, and the exact solution
will never be obtained. However, the conjugate gradient method used as an
iterative method will produce monotonically improved approximations, xk, to
the exact solution, x̃. This solution may reach the required accuracy for the
problem after a relatively small number of iterations compared to the problem
size.

7.2 Runge-Kutta method

Assume one has the derivative of a function yn(xn) : dydx = f(xn , yn). One then
wants to obtain the solution yn+1 at the position xn+1. The formula for the
Euler method is simply:

yn+1 = yn + h · f(xn, yn) (52)

Where h is defined as the step-size in x, ∆x. This is the simplest Runge-
Kutta method, but is not very accurate. This method will advance the solution
through an interval h, but uses the derivative of the function only at the be-
ginning of the interval. However, for the application in this network model it is
considered sufficient.
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7.3 Central difference approximation

The derivative of a function f at a point x, is defined by the limit:

f ′(x) = lim
h→0

f(x + h) − f(x)
h

(53)

If one has a set of discrete values for f(x), one needs an estimate for the
derivative given these data. When using a dataset of discrete values with spac-
ing h, the derivative can be estimated using the central difference approximation:

f ′(x) =
f(x + h) − f(x − h)

2h
+O(h2) ≈ f(x + h)− f(x − h)

2h
(54)

Where the error scales as h2.

7.4 Box-Muller algoritm

The idea behind the Box-Muller algorithm is to take two samples from an uni-
form distribution on the interval [0, 1] (from a standard random nr. generator),
and map them to two standard, normally distributed samples. Box and Muller
[46].

In many cases, it would be convenient to get a standard normal distribution
from a standard uniform distribution by inverting the distribution function.
However, the problem is that such a closed form formula for this distribution
does not exist.

P (X < x) =
1√
2π

∫ x

−∞

dx̃ e−x̃
2/2 (55)

The Box-Muller method is a trick to overcome this problem, by using two in-
dependent standard uniform distributions to produce two independent standard
normal distributions. It is based on the 1D to 2D transformation of Gaussian
integrals of the form:

I =

∫ +∞

−∞

dx e−x
2/2 (56)

This integral does not have an algebraic solution of elementary functions.
The trick is to rather calculate I2:

I2 =

∫ ∞

−∞

dx e−x
2/2

∫ ∞

−∞

dy e−y
2/2 =

∫ ∞

−∞

∫ ∞

−∞

e−
x2+y2

2 dxdy (57)

This can be evaluated using polar coordinates and a simple substitution,
giving:

I2 = 2π

∫ ∞

u=0

e−udu = 2π (58)

The Box Muller algorithm then uses this trick. If one has 2 independent
standard normals (X,Y), then the probability density is a product:
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f(x, y) =
1√
2π
e−x

2/2 × 1√
2π
e−y

2/2 =
1

2π
e
−(x2+y2)

2 (59)

This is radially symmetric, and one uses the same trick as before, using polar
coordinate random variables (R,Θ). Θ is uniformly distributed in the interval
[0, 2π], and can be mapped using Θ = 2πU1. Where U1 is a random nr. from
the uniform distribution. Unlike the original distribution function P (X < x),
there now exists a simple expression for the R distribution function. This can
be solved using a simple substitution, and give the following:

P (R < r) =

∫ r

r̃=0

∫ 2π

Θ=0

1

2π
e
−r̃2

2 r̃dr̃dΘ = 1− e−r
2

2 (60)

R can then be sampled from solving the distribution function equation:

1− e−R
2

2 = 1− U2 (61)

Where U2 is a random nr. from the uniform distribution. This is then solved
for R, giving:

R =
√

−2log(U2) (62)

The Box Muller algorithm then uses these independent uniform variables U1

and U2, and map them to the independent standard normal variables X and Y
using the formulas: Θ = 2πU1, R =

√

−2log(U2), X = R cosΘ, Y = RsinΘ.
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8 Pore network model

To build models representative of fluid transport in porous media is not a
straight forward task. In the study of fluid dynamics for intermediate capillary
numbers, network models have proven to be a good solution. They are built up
by using various nodes and tubes, with different connectivities. The pressure
distribution among these tubes then has to be solved to obtain the dynamical
evolution of fluid flows by integrating the local flow rates. The numerical models
used, represents a simplified ideal model of a porous media. They do not include
all details of microscopic structures, but still prove to be a good approximation
which is able to replicate the main features of fluid transport in porous media.
Also, as this is a 2D model, it is not able to capture effects of thin film flow.
This could be important to capture all effects of wettability, as the presence of
wetting films covering the rock surface would be more physically correct com-
pared to real reservoir conditions. However, to capture this the model would
have to be on a whole other level of complexity. It is believed that a simple 2D
model is still able to capture the dominant effects of transport properties in the
porous media, and this is thus the scope of this work.

8.1 Initializing the model

The model is based on the idea of using a 2D network of tubes to represent
the porous media. The disorder of the system is incorporated using tubes of
random radii from a chosen pore radius distribution. The network consists of
capillary tubes oriented 45 degrees relative to the overall flow direction from
bottom to top. The volume of both throats and pores is contained in the tubes,
which then intersect in volumeless node points. (See figure 15).
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Figure 15: Network of capillary tubes oriented 45 degrees to the overall flow
direction shown as Q, where the tubes intersect in volumless node points. pi
and pj is the pressures at node i and j, and qij is the flowrate between node i
and j.

A simple 2d representation of a porous media consist of grains with channels
in between, as seen in figure 16.

Figure 16: Simple model of a 2d pore space, consisting of grains with channels
in between. Figure from Tør̊a, Ramstad and Hansen, [39].

From this, one can see that the channels connecting the regions between the
grains, have an hour glass shape. This is incorporated in the model such that
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with respect to the capillary pressure of menisci, the tubes are hour glass shaped.
That is, the local capillary increase when menisci move into narrower parts of
the tubes are taken into account. This makes the model closer to dynamics of
drainage dominated flow, where thin film flow can be neglected. A modified
Young Laplace equation give: Dullien [1]. Aker et al. [17]

pc =
2γcosθ

r
(1− cos(2πx)) (63)

Figure 17: Capillary pressure in an hourglass shaped tube as defined in eq (63).
With x running from 0 to 1, and θ denoting the wetting angle

Such a network of tubes corresponds to the pores and throats in a real
porous medium. The radii of the pores, rij are either randomly distributed
within chosen boundaries, rij = [λ1, λ2]d Where the disorder of the porous
medium is represented by the width of the radii distribution (see figure 18), or
given by a Gaussian distribution with defined mean value and variance. (see
figures 19 and 20)
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Figure 18: Tube radii, [mm], uniform distribution
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Figure 19: Tube radii, [mm], Gaussian distribution
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With the capillary pressure given by eq.(63), the local flow rate q is given
by the Washburn equation: (see derivation of eq.(16) in section 6.8)

qij = −
kijπr

2
ij

µeff

(∆pij −
∑

pc)

l
(64)

Where kij = r2ij/8 is the permeability, rij is the radius of the tube connecting
node i and j, and ∆pij = pj−pi is the pressure difference between node i and j.
∑

pc is the sum of the capillary pressures of the menisci in the tube and µeff is
the weighted viscosity according to the volume fraction at the beginning of each
time step in each tube. The reason for summing over the capillary pressures
of the menisci, is because the present model allows for a total of 3 bubbles of
oil/water in each tube. This is illustrated in figure 21.
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Figure 21: Presence of bubbbles in the hourglass shaped tubes.

In this case, the area of interest is what happens in a system far from inlets
and outlets. That is, given a very large system, a small piece located some-
where in the middle is taken out, and its properties investigated. This is done
by implementing bi-periodic boundary condition (2d lattice forms a torus, see
figure 22). As the network is connected between the inlet and outlet row, time
evolution of the system is done by applying the global pressure field, ∆P over
the row where the original outlet and inlet row meets.

The straightforward appliance of a global pressure between the inlet row and
the outlet row in invasion simulations needs modification. One could do this by
adding one row of ghost nodes on both sides of the system. The pressure would
be fixed on these two rows as before. The equations would be solved as before,
only with the additional constraint that the outgoing flux in each tube between
the last row and its ghost row should equal the incoming flux in the respective
tube between the other ghost row and the first row. This method works, but
has two drawbacks. One is that it gives more complicated computer code. The
other is the fact that the pressure is still fixed to have the same value along
a straight line through the system, thus giving a boundary effect. Therefore,
instead of using ghost nodes with fixed pressures as the driving force, a jump
in the pressure over all the tubes on the boundary has been made. This has
previously been implemented in random resistor networks, Batrouni and Hansen
[32].

38



Figure 22: Biperiodic boundary conditions, 2d network forms a torus. Figure
from Ramstad and Hansen [40]

In practice, these boundary conditions works such that simulation can go on
forever, and still conserve the volume of the two fluids during simulation. From
this, the system will reach a steady state after a certain amount of time. The
intrinsic properties of the system can then be investigated, giving information
about properties like fluid distribution within the pore space, fractional flow,
etc.

8.2 solving the flow field

Since the fluids are considered incompressible, Kirchoff‘s law is applied, and net
flux in a single node is set to zero due to mass conservation.

∑

j

qij = 0 (65)

Where qij is the flow through a tube connecting nodes i and j, and the sum-
mation j runs over the nearest neighbors of i. This give a large set of linear
equations to be solved. By inserting eq.(64) in the Kirchoff equation, one gets
the following expression:

∑

j

gij(pj − pi −
∑

pc) = 0 (66)
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Where the tube mobility gij = πr2ijkij/µeff , has been introduced.

These equations and assumptions, give a large set of linear equations to be
solved in order to calculate the local pressures in the nodes with respect to the
global pressure drop ∆P across the network. These sets of equations are solved
using a conjugate gradient method. (Batrouni and Hansen [16]). If a constant
total flow Q is imposed, the flow can be written as:

Q = A∆P +B (67)

Where the first term is from Darcy‘s equation, and the second term is from
capillary effects. The unknown parameters are found from calculating nodal
pressures for two different global pressure with corresponding injection rates.
Global pressure is then found from ∆P = (Q−B)/A. Global capillary pressure
is defined as Pc = −B/A

Menisci positions are changed according to a forward integration of eq.(64)
(explicit Euler integration). There is a limit of maximum menisci movement of
one tenth of the length of a single tube, lij, which limits the size of the time
steps. When a menisci reaches the end of a tube it is redistributed among
the neighboring tubes, where the basic processes of snap off and coalescence of
bubbles have been considered. See Knudsen, Aker, and Hansen [22] for more
detailed information.

8.3 wettability alterations

The theoretical explanation behind increased oil recovery due to wettability
alterations is still not fully understood. Many believe that it is associated with
electrostatic forces depending on the ionic strength of the water. See section 6.4
for a brief discussion.

In previous work by Ødeg̊arden [15], the wettability altering mechanism was
a simple flipping of the sign of the capillary pressure to mimic a change in the
wetting angle θ from 0 to 180 degrees in eq.(63), and occurred in randomly
chosen capillary tubes. In this model, a more physical plausible mechanism to
alter the wettability of the system is introduced. Instead of using a simple flip
of the sign of the capillary pressure, a distribution function to mimic the effect
of continuously changing wetting angles is implemented.

The idea behind this algorithm is that for wettability alterations to occur,
low salinity water needs to be in contact with the pore space. This claim is
rather trivial, as one can not expect any change if the wettability altering agent
is not present in the reservoir. The next assumption, is that the magnitude of
change in the wetting angle depends on the cumulative flow of low salinity water
that has passed through each pore. This means that if a certain pore is flooded
by large amounts of fresh water, the wetting angle should change more than in a
pore which has very little water flooded through. That is, all tubes in the model
are initially oil wet, and by tracking the flow of low salinity water through each
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tube, a new wetting angle is assigned depending on this cumulative flow value,
Qi(t) for tube i at time t.

This is implemented by summing up the flow rates in each capillary tube
over a certain ”wettability altering time span”, τ = [t0, t1] (Illustrated in figure
31). t0 is the time when the injection of low salinity water is initiated, and the
algorithm starts tracking the flow rates in each tube. At time t1, the system
reaches a state with a static wetting angle distribution. To make sure that only
the flow of low salinity water affects the wettability, and not the flow of oil, the
flow rate in tube i at time t, qi(t), is multiplied with the water saturation in the
tube at the same time step, Γi(t). This gives the cumulative flow of low salinity
water in tube i at time t:

Qi(t) =

t≤t1
∑

t0

qi(t̃)Γi(t̃)∆t̃ (68)

Qi(t) is then used to assign a continuously changing wetting angle for each
tube, updated every time step in the range [t0, t1] during simulation. This was
done by replacing the cos θ term in eq.(63) by a distribution function depend-
ing on Qi(t). The distribution chosen has approximately the range [-1,1], to
represent the cos θ term with θ in the range [180,0].

cos θ → 2

π
tan−1

[

20

Qthri
(Qi(t)−Qthri )

]

(69)

The pre-factor 2

π is a normalization constant to set the range [-1,1], the nr.
20 is just a parameter to adjust the slope of the distribution function, and Qthr

a certain threshold value needed to significantly change the wetting angle.
The idea behind the Qthr factor, is that in order to alter the pore wettability

by injecting low salinity water, a certain amount needs to be injected before it
significantly affects the wetting angle. Because of the random size distribution
of the pore space in a porous media, this threshold value should also depend
on the pore size. Intuitively, one expects that more low salinity water needs to
be injected in a large pore compared to a small pore to alter the wettability
significantly. This threshold value is thus defined as a constant η, times the
corresponding pore volume.

Qthri = ηπr2i l (70)

where ri is the pore radii of tube i, l is the pore length, and η is the parameter
defining how many pore volumes of low salinity water needs to be injected
through each pore to reach the threshold value.

As this model does not include thin film flow, the wetting angle will not
be either 0 or 180 degrees. Rather, the starting point of ≈ 165 degrees was
chosen. In this case, the threshold valueQthr is the zero point of the distribution
function, and represents the state when θ is changed from the initial value to
90 degrees.
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This distribution gives the wetting angle for tube nr. i at time t, as a function
of the amount of low salinity water injected, Qi(t). See figure 23.
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Figure 23: Wetting angle for each tube as a function of Qi(t)

With these changes, the capillary pressure given by eq.(63) is replaced by:

pc(t) ≈
4γ

πri
tan−1

[

20

Qthri
(Qi(t) −Qthri )

]

(1− cos(2πx)) (71)

Where Qi(t) is given by eq.(68). The value of Qi(t) is updated between each
time step, meaning that the wettability is continuously changing as a function
of time. This represents that the wetting angles are gradually changing in the
various tubes, as more low salinity water has been in contact with the reservoir
surface.
Qthr is a fitting parameter, depending on how much low salinity water needs

to be injected through a pore to cause significant changes to its wetting prop-
erties. This is a parameter which could possibly be fitted against experimental
results. But, as such experiments have not been performed yet, this was treated
as a tuning parameter in the following work.

The model is first run for a sufficient amount of time steps to reach steady
state conditions. Then, the effect of wettability alterations is introduced follow-
ing from the described algorithm. After a significant amount of time the system
is set to static wetting properties, and the model is again run to steady state.
This wettability alteration causes a perturbation to the system, which leads to
permanent changes in the static flow properties.
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9 Simulation procedure

In these kind of simulations computational time is a big issue, as large models
are very demanding, and the computational time incrase significantly with larger
lattice sizes. The most time consuming part of the program, is the solution of
the flow equations using the conjugate gradient algorithm (see section 7.1). The
goal is then to find the balance between sufficient size to obtain good results,
but still small enough as to limit the computational time.

It was found that a network size of 40x40 was sufficient to obtain good results,
and most simulations was thus limited to this size. However, for some of the
illustrations (Figures 24, 25, 27, 28, 29, 30, 35, 36, 37, 38, 39, 52 ), the lattice
size was increased to 80x80 in order to make the details more visible. For these
figures only a few simulations had to be performed, and computational time was
thus not an issue. However, in order to gather statistical data for the fractional
flow curves etc, several thousand simulations were performed. The simulations
were performed using 5 different seeds, giving new network geometries. This
was done to get a better statistical average for the data obtained in the various
simulations.

All simulations were performed with Ca = 10−3, viscosity contrast M = 1,
and surface tension γ = 3 dyne/mm.

For a 40x40 network, using 600.000 time steps and 5 runs with different
seeds, the simulation time for each parameter set was in the order of 24 hours.
When doing thousands of these simulations, computational time is obviously
an issue. However, access to the department of physics UNIX cluster made
it possible to run several simulation jobs at the same time, limiting the total
computational time.

The results for fractional flow plotted in 2d is showing either the maximum
change in fractional flow as a function of oil saturation, or the change in frac-
tional flow as a function of time steps/injected pore volumes. The results plotted
in 3d, show the changes in fractional flow as a function of both oil saturation
and wetting angles. When calculating the maximum change in fractional flow,
this was taken as the difference in fractional flow at steady state before and
after wettability alterations. This was done by first taking the mean value over
10.000 time steps before the change, and then over the last 10.000 time steps of
the simulation. This then gave the discrete values as shown in e.g figure 34.
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10 Results

10.1 Transient to steady state flow: Imbibition and Drainage

At initialization, the system is divided in two separate regions of oil/water.
Following from a simultaneous process of drainage and imbibition (caused by
the bi-periodic boundary conditions), the two fluids will distribute themselves
in the network. After sufficient amount of time, the system will ultimately reach
a steady state. This process can be seen in figure 24.

(a) (b)

(c) (d)

(e) (f)

Figure 24: Showing a combined drainage and imbibition process with oil as
black, and water as white. The network is oil wetting, and the difference in
fluid invasion by a wetting vs. non-wetting fluid is clearly visible.

In the last picture of figure 24, one can see the starting development of
percolating paths of water, shown as the white branch-like structures. This will
cause trapping of oil clusters in the regions between these paths, which will then
be basically immobilized. This topic will be discussed in detail in section 10.2.2.
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10.2 Uniform radii distribution

10.2.1 Wettability alteration

Using the algorithm described in section 8.3, wettability alterations was intro-
duced in the model. Initially all tubes were oil wet (θ ≈ 165 degrees). The
system then gradually transforms to a mixed wet system with some tubes still
being oil wet, while others are changed to intermediate or water wet. This ef-
fect can be seen in figure 25. The wetting angle is drawn on a grey-scale, where
white corresponds to 180 degrees, and black to 0 degrees. This shows how the
wettability is first altered in the percolating paths in the network which domi-
nate the total flow rate. After some time, the wettability starts changing also
in regions with lower flow rates.

(a) (b)

(c) (d)

(e) (f)

Figure 25: Wetting angles in network at various time steps, starting in upper
left corner. Final state in last figure at bottom right. Shown on a grey-scale
where white corresponds to 180 degrees, and black to 0 degrees.

As mentioned in section 8.3, the degree of wettability alteration in the net-
work is controlled by the fitting parameter Qthri . It was found that by setting
Qthri = 150 · πr2i (see section 8.3 for closer description of this parameter), the
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wettability was significantly changed in about half of the tubes. Initially, all
tubes had a wetting angle of θ ≈ 165 degrees . In the final state, wetting angles
are distributed in the range θ ≈ [0, 165] degrees, as can be seen in figure 26.
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Figure 26: Final wetting angle distribution for 40x40 network, with a total of
3200 tubes.

From this angle distribution, one can define an ”average wetting angle” for
the network, defined as

θavg =
1

Ntubes

Ntubes
∑

i=1

θi (72)

This parameter will depend on the value of Qthri , and also on the lattice
disorder. For initial tests giving angle distributions like the one in figure 26,
it was found to be in the range θavg ≈ 90 − 100 degrees. However, the idea is
that the spatial correlations between regions of different wettability is of greater
importance than simply the overall average wetting angle.

10.2.2 Flowdistribution perturbation

The wettability alterations significantly affect the flow properties of the system.
figure 27 is showing the oil saturation in the network at steady state, where oil
is black and water white. If one looks closely, one can notice that there exists a
structure of narrow white paths percolating the system.
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Figure 27: Oil saturation in network at steady state before wettability is altered.

These paths dominate the total flow rate through the system, and the oil
in the regions between them are basically immobile. Comparing with the oil
saturation in the network at steady state after the wettability alteration, it is
clear that this has a great impact on the system. See figure 28.

Figure 28: Oil saturation in network at steady state after wettability has
changed to a mixed wet system

The white percolating paths seen in figure 27 have now broken down, and it
seems to be a more uniform mix of oil and water, where both phases contribute
to the total flow. These changes can easier be seen by investigating the flow
rate distribution in the network, as this shows which regions flow, and which are
basically stuck. The flow rates in the system at steady state before wettability
alterations is seen in figure 29.
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Figure 29: Flow rates in oil wet network. On normalized logarithmic scale with
1 (black) corresponding to the maximum flow rate through any tube, and white
corresponding to a flow rate of less than 10−4 compared to max flow rate.

As in figure 27 of the oil saturation, one can see the percolating paths where
the flow rate is orders of magnitude greater then in the immobile regions, which
is basically stuck (seen as white). However, as the wettability of the network is
changed to a more mixed wet system, these dominating paths appear to break
down, and is replaced by a more uniform flow distribution. The large white
regions in figure 29 which were previously ”stuck”, are now mobilized and these
regions also contribute significantly to the total flow rate. This can be seen in
figure 30, which is the flow rate corresponding to the final wetting state shown
in figure 25.

Figure 30: Flow rates in mixed wet network. On normalized logarithmic scale
with 1 (black) corresponding to the maximum flow rate through any tube. And
white corresponding to a flow rate of less than 10−4 compared to max. flow
rate.
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10.2.3 Fractional flow

The re-mobilization of oil can also be seen as an increase in the fractional flow
of oil, see figure 31. For a 40x40 network with Soil = 0.3, the system is starting
to reach steady state after the injection of approximately 5 pore volumes (total
pore volume of the network). The wettability altering algorithm is activated
after the injection of ≈ 8 pore volumes (t0, as defined in section 8.3), causing a
significant and permanent change in the fractional flow of oil.
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Figure 31: Fractional flow of oil. After injection of approximately 8 pore vol-
umes, wettability alterations is introduced in the model following from the al-
gorithm described in section 8.3. From that definition, the wettability altering
time span τ , is between ≈ 8− 15 in terms of injected pore volumes.

At steady state conditions, if one of the phases spans throughout the system
with a single phase dominated flow path, the motion of this phase require less
global pressure then the motion of two phases with interfaces. Therefore, as
single phase percolating paths break down there should be an increase in the
global pressure across the system, as there are a greater number of interfaces
moving through the network. This effect of pressure increase due to breakdown
of the percolating paths of water can be seen in figure 32.

50



 0

 50

 100

 150

 200

 250

 300

 0  5  10  15  20  25

G
lo

b
a

l 
c
a

p
ill

a
ry

 p
re

s
s
u

re
, 

[d
y
n

e
/m

m
2
]

Pore volumes injected

Global capillary pressure before and after wettability change

τt0 t1

Pressure

Figure 32: Pressure increase due to oil mobilization

The results shown so far, are for an oil saturation So = 0.3. Also for different
oil saturations, there is an increase in the fractional flow of oil in a mixed wet
network compared to an oil wet network. For various oil saturations, this can
be seen in figure 33.
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Figure 33: Fractional flow of oil before and after wettability alteration for various
oil saturations in the range 0.2-0.8. At t=200.000 time steps, the wettability
altering algorithm starts simulating the injection of low salinity water, causing
an increase in Foil as the network wettability changes to a mixed wet system.
At t=400.000 time steps, the system reaches a state of a static wetting angle
distribution. The system then settles in a new steady state with a significant
increase in Foil compared to the initially oil wet system. In this figure, time
steps rather then injected pore volumes are used as the time scale. This to
easier compare the results for various oil saturations, as the number of injected
pore volumes differ as Soil is changed.

These results can be summarized in a plot showing the change in fractional
oil flow before and after wettability alteration.
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Figure 34: Fractional flow of oil as a function of oil saturation in the range
0.1-0.9

The S-shape of these curves is resemblant of the ones found in Buckley-
Leverett fractional flow. Dullien [1], Buckley and Leverett [47]. In figure 34,
a diagonal line is added. This is the line where the fractional flow is equal to
the oil saturation. A miscible fluid mixture would follow this line, and it is
interesting to use as a reference to compare how the data points lie above or
below this line.
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10.3 Gaussian radii distribution

10.3.1 Wettability alteration

Simulations using a Gaussian radii distribution was also performed, to see how
the tube radii distribution affected the results. Following the same procedure
as for the uniform distribution, gave the following snapshots of the wettability
alteration:

(a) (b)

(c) (d)

(e) (f)

Figure 35: Wetting angles in network at various time steps, starting in upper
left corner. Final state in last figure at bottom right. Shown on a grey-scale
where white corresponds to 180 degrees, and black to 0 degrees.

Compared to the results from the uniform radii distribution, the wettability
alteration also in this case first occur in the percolating paths spanning the
network. However, these paths are distributed more uniformly throughout the
network than in the uniform radii case.

54



10.3.2 Flow distribution perturbation

Comparing the figures of oil saturation in the networks, the results are similar for
both the uniform radius distribution (figure 27) and the Gaussian distribution
(figure 36). However, the size of the stuck clusters is smaller in the Gaussian
case, as the number of percolating paths through the network is larger.

Figure 36: Oil saturation in network at steady state before wettability in altered.

Comparing with the oil saturation in the network at steady state after the
wettability alteration, it is clear that this has a great impact on the system also
in the Gaussian case. See figure 37.

Figure 37: Oil saturation in network at steady state after wettability has
changed to a mixed wet system

Since the clusters are smaller in the Gaussian system, it seems to make the
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wettability alteration able to break up basically all the clusters, causing an even
more uniform mix of oil and water in this network compared to the one with an
uniform radii distribution.

As for the uniform radii case, these changes are easier to notice when inves-
tigating the flow rates instead of the oil saturation. In figure 38 you see the flow
rates in the network at steady state before the wettability alteration.

Figure 38: Flow rates in oil wet network before wettability is altered. On
normalized logarithmic scale with 1 (black) corresponding to the maximum flow
rate through any tube, and white corresponding to a flow rate of less than 10−4

compared to max. flow rate.

Using a Gaussian radii distribution, the flow pattern is more uniform than for
the uniform radii network.(See figure 29), with a higher number of percolating
paths. However, the existence of white regions representing stuck clusters is still
present in this case. Changing the wettability to a more mixed wet system cause
perturbations also to this system, leading to a more uniform flow distribution
in the network (figure 39).
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Figure 39: Flow rates in mixed wet network after wettability alteration. On
normalized logarithmic scale with 1 (black) corresponding to the maximum flow
rate through any tube, and white corresponding to a flow rate of less than 10−4

compared to max. flow rate.

The reason for the initially more uniform flow patterns in the Gaussian case,
is probably from the reduced disorder of the network. From the tube radii
distribution (figure 20), the probability for the radii to be located in the middle
of the distribution is a lot larger than being close to the upper/lower limit.
This will thus cause a less disordered system than for the uniform radii model.
Considering this, the results are not that surprising. However, investigating
the effect of changing the tube radii distribution is still interesting, as this
distribution is what one actually use to represent the physical reservoir rock
with a certain pore radius distribution which may, or may not, be known.

Investigating the changes in fractional flow using the Gaussian distribution
compared to the uniform radii case, did not show any big differences. Since
these results did not show anything perticularly interesting, it was decided to
not perform a more detailed investigation at this point.
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10.4 Critical behavior

In the simulation results shown so far, the wetting angles of the final mixed
wet system are in the approximate range of [165,0]. However, the magnitude of
wettability alteration due to low salinity water injection is not well understood.
It is thus interesting to investigate how much the wetting angles have to change
to cause any significant effect on the system. In previous work by Ødeg̊arden
[15], the fractional flow of oil was found to depend linearly with the wettability w
of the system. Fw(S) ∝ w, where w is defined as the ratio between the number
of oil wet tubes and total number of tubes, w = Noil−wet/Ntotal. From this, and
from the expression for the capillary pressure, eq.(63), one could expect a similar
connection between fractional flow and wetting angle, F θ(S) ∝ cosθ. One
should then get smooth changes in the fractional flow as the wetting angles of the
system change. Instead of having the wettability altering algorithm operating
in the full range as shown in figure 23, a cutoff angle θmin was introduced. As
before, all angles initially start at 165 degrees. However, as the wetting angles
change according to the algorithm, they are not allowed to change to values
lower than θmin . By doing many simulations with θmin in the range between
the initial 165 degrees and 0 degrees, a critical wetting angle was found. At
angles above this critical value, the system is basically unaffected by wettability
alterations. When the wetting angles reach the critical value, this suddenly
cause dramatic changes to the system, see figure 40.
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Comparing this result with the percolation strength measured in a 2d square
lattice (figure 41), there are several similarities.

Figure 41: Percolation strength as a function of occupation probability. Figure
from Christensen [42]

The transition is not as sharp as the one in the main red line in figure 41,
but this could be caused by finite size effects (see section 6.12) ”smoothing the
transition”, since the lattice size in this case is only 40x40. This behavior could
indicate some kind of phase transition at the critical point. The idea of phase
transitions of flow regimes in porous media has also been addressed by previous
work. Cieplak and Robbins [37], Koiller, Ji and Robbins [49]. During capillary
displacement in a 2D porous media, they found indications of a dynamical crit-
ical transition as the contact angle of the invading fluid varies. This transition
causing a divergence of the invading fingers, transforming the system from one
dominated by fractal growth patterns as in the invasion percolation model, to
a uniform flooding of the system. See figure 42.
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Figure 42: Divergence of invading fingering width at a critical angle. Where the
curves A,B and C are for different porosities. Figure from Cieplak and Robbins
[42]

From their work, they also estimated critical exponents at the transition
point. They found the transition to shift depending on the lattice disorder, and
that the critical exponents estimated also depend on the amount of disorder,
believed to be caused by finite size effects from percolation theory. Ji and
Robbins [49].

If the changes in fractional flow can be described as a percolation transition,
one can use relations from percolation theory to investigate the system. Possibly
obtaining estimates of critical exponents, scaling relations and other details
helping to understand a possible phase transition of flow regimes.

10.4.1 Critical exponents

The connection between percolation theory and cluster formation has been in-
vestigated previously by Ramstad and Hansen [40], using a similar network
model. Since the increase in fractional flow of oil caused by wettability alter-
ations seems to be caused by the breakdown of oil clusters, a connection between
cluster strength in percolation theory and fractional flow is suspected. Assum-
ing the transition in fractional flow can be described as a percolation transition,
a similar relation between fractional flow and wetting angle as between perco-
lation strength and percolation probability shown in eq.(34) is proposed.

Foil(θ) ∝ |θ − θcrit|β (73)

Hence, by plotting log Foil(θ) vs. log (|θ − θcrit|) in the critical region, one
can obtain an estimate for the critical exponent β. Shauffer and Aharony, [38].
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In the following, the parameter ∆θ ≡ |θ − θcrit| is introduced, and log Foil(θ)
vs. log∆θ is then plotted. Also, one needs to know the critical wetting angle
θcrit. As mentioned in section 6.12, this can be shifted compared to the exact
value due to finite size effects. However, in these plots the effective θcrit is found
from the inflection point of the curve ∆Foil vs. θmin , as seen in figure 40. Due
to some uncertainty in determining θcrit accurately, log∆θ vs. log Foil(θ) was
plotted for θcrit = 85, 84, 83, 82. According to the suspected power law behavior
from eq.(73), the data points should collapse to a linear curve. It was found
that a value of θcrit = 84 gave the best linear fit when plotted on log-log scale.
See figure 43.
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Figure 43: Plot of log∆Foil(θ) vs. log∆θ, where ∆θ ≡ |θ − θcrit|. Showing
a linear fit, obtaining an estimate for the critical exponent β. ∆θ is in the
range [1, 15], and each data point in the plot is the average value of 5 lattice
initializations. Making the number of data points 75, rather then the apparent
15.

The estimate from the curve fitting is β = 0.13± 0.02, which is close to the
result from ordinary percolation, β = 5/36 ≈ 0, 1388... However, the estimates
for β are quite sensitive with respect to the choice of θcrit, and the power law
assumption is only valid in a narrow range. The limited domain of validity, can
be seen in figure 44.

61



 0.001

 0.01

 0.1

 1

 1 10 100 1000

 ∆
F

 /
 ∆

F
m

a
x

θmin, [degrees] 

Critical transition in Fractional flow

Power law behaviour,

Foil= C∆θ
β

datapoints

Figure 44: Showing the limited range of validity for the power law assumption.
This is seen as the linear region of ∆Foil plotted on logarithmic scale. In this
case for L = 40 and Soil = 0.3

In order to investigate the critical transition in more detail, it was decided
to use relations from finite size scaling theory as derived in section 6.12 to
investigate the system for various lattice sizes L, and from this obtain a better
understanding of the critical behavior of the system.
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Lattice size effects

Performing simulations with Soil = 0.3 and lattice size L in the range 20 − 40,
gave indications of the dependence of finite size effects.
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Figure 45: Change in fractional flow as a function of θmin for lattice size L =
20, 30, 40

From figure 45 one notice that for a lattice size of L = 40, the transi-
tion is quite smooth, whereas for smaller lattice sizes, the fluctuations become
more dominant. The transition was studied in more detail by investigating the

derivative ∂
(

∆F
∆Fmax

)

/∂θ to estimate θcrit from the inflection point, given as

the maxima of the derivative.
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∂
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/∂θ. The peak indicating the inflection point, and thus the value of

θcrit. In this figure using a best fit curve for L = 40, and a central difference
approximation to estimate the derivative

There are some fluctuations, but a distinct peak at θ ≈ 85 is seen in fig-
ure 46. Even when averaging over 5 samples there are some fluctuations, es-
pecially in the region after the critical transition. This becomes significantly
worse as one decrease the lattice size L. Simulations were performed for L =
20, 26, 30, 36, 40, 46, and the fluctuations were dominating for small lattice sizes.

The transition is located in the region θ ≈ 50 − 100 degrees. From the
fluctuations in this region for smaller lattice sizes, it was decided to neglect
data for L < 30. Using only the data for L > 30 gave some better results, and
the change in fractional flow for L = 30 and 40 can be seen in figure 47.
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Figure 47: Change in fractional flow as a function of θmin for L = 30, 40. In
this figure, a best fit curve for the datapoints is used.

Comparing the curves for L = 30 and L = 40 in figure 47, one observes
similar effects as that of finite size scaling for the percolation threshold seen in
figure 41, that the transition is ”smoothed out” over a larger region for smaller
lattice sizes. From finite size scaling in percolation theory, as derived in section
6.12, the transition width ∆ depends on the lattice size L:

∆ ∝ L−1/ν (74)

Where ν is the correlation length critical exponent. If this system obeys
similar scaling laws, this means that by investigating the width of the transition,
∆, one can estimate the correlation length critical exponent ν . Shauffer and
Aharony [38]. The transition width ∆ can be defined in any suitable way, and
in this case it is simply defined as the difference between the value of θmin where
∆F/∆Fmax is 0.2 and 0.6, as shown in figure 48.
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Figure 48: Figure indicating the definition of the transition width, ∆. Here
shown for L = 40.

By plotting log(∆) vs log(L), for various lattice sizes L, one can thus extract
an estimate for ν . Due to the large fluctuations in the results for small lattice
size L, only data for L = 30, 36, 40, 46 was used.
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Figure 49: Change in transition width ∆ as a function of lattice size L. Each
data point is the average value obtained from 5 lattice initializations.

From the data used, the estimate for the correlation length critical exponent
is ν ≈ 0.4. Compared to the result for ordinary percolation, ν = 4/3, this is
significantly smaller.

Another approach to obtain the critical exponents β and ν , is from the
scaling law for the percolation strength, P (L, ξ) ∝ Lβ/ν at the critical point,
Shauffer and Aharony [38]. If the transition in fractional flow obeys similar
scaling laws as that of the percolation strength, one could expect the following
relation at the critical transition point, θcrit:

Foil(L) ∝ Lβ/ν (75)

Meaning that the fractional flow of oil at θcrit should depend on the lattice
size L. Hence, by plotting log Foil(L) vs. log L, one can extract the ratio of the
critical exponents, β/ν .
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Figure 50: Change in fractional oil flow at θc as a function of lattice size L.
Each data point is the average value obtained from 5 lattice initializations.

Using the result for β obtained in section 10.4.1, β ≈ 0.13, one gets an
estimate for the correlation length critical exponent consistent with the result
using the transition width ∆, that ν ≈ 0.4. However, as seen in figure 50, the
linear fit using this last method to extract β/ν is not as good as the one using
the transition width ∆. The reason for this could be that in the estimation of
Foil at θcrit, it has not been taken into account that the value of θcrit might shift
slightly depending on the lattice size, due to finite size effects as discussed in
section 6.12. A more accurate determination of the critical point for the various
lattice sizes, could thus yield a better fit to the expected power law behavior
from eq.(75).

The estimate using these methods is far off the value from ordinary perco-
lation, but the system still seems to obey similar scaling laws as a function of
lattice size. The reason for this large difference in the estimates for ν , could be
caused by the limited number of data points. The fluctuations at the critical
transition, makes it important to perform many simulations in order to gather
sufficient statistical data. In this case, only 5 simulations for each lattice size
L were performed. This giving a total number of only 20 data points, which
give large uncertainties in determining the critical exponents. It could be that
performing more simulations, and for larger lattice sizes, would yield better
data.
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Saturation effects

In order to understand the transition better, investigating how the oil saturation
affects the critical behavior is also important. Comparing simulations with oil
saturations in the range Soil = 0.1− 0.6 yield some interesting results.
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Figure 51: Change in fractional flow as a function of θmin, indicating the critical
transition for various oil saturations. Each data point used for the curve fitting,
is the average value obtained from 5 different lattice initializations.

From figure 51, it is apparent that the transition is smoothest for an oil
saturation of Soil ≈ 0.3. The behavior for Soil = 0.3 and 0.4 are quite similar,
even though there are more fluctuations for Soil = 0.4. One notice that for oil
saturations in the range 0.1−0.4, the transition shifts to lower angles for higher
saturations, before it increases for Soil = 0.5 and 0.6. For Soil = 0.4− 0.6 there
is a peak at ≈ 90 degrees, which is most likely due to numerical instabilities
caused by the vanishing capillary pressure at this wetting angle.

The reason for the differences in critical transition depending on oil satura-
tion is a bit unclear, but could be related to the saturation threshold in cluster
formation, which according to work by Ramstad and Hansen [40] is for a non
wetting saturation Snw ≈ 0.7 for Ca = 10−3. This corresponds to an oil satura-
tion, Soil ≈ 0.3 in this initially oil wet system. From this, it could be expected
that cluster formation is most dominant for Soil ≈ 0.3, and that for higher oil
saturations, the clusters should eventually disappear. Investigations for Soil in
the range 0.2-0.5 confirms this behavior.
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(a) Saturation, Soil = 0.2 (b) Flowrates, Soil = 0.2

(c) Saturation, Soil = 0.3 (d) Flowrates, Soil = 0.3

(e) Saturation, Soil = 0.4 (f) Flowrates, Soil = 0.4

(g) Saturation, Soil = 0.5 (h) Flowrates, Soil = 0.5

Figure 52: Oil saturations and flow rates for Soil in the range 0.2-0.5. Oil
saturation pictures in the left column, and corresponding flow rate picture in
the right column. Starting with Soil = 0.2 at the top, and Soil = 0.5 at the
bottom.

In the case of Soil = 0.2, one can see that the oil saturation is quite low, as
the saturation picture is dominated by white paths through the system. How-
ever, one can still notice the presence of a few oil clusters in the network. The
flow rates confirm what is seen in the saturation picture, that there are perco-
lating paths dominating the total flow rate of the system, with small clusters in
between. For Soil = 0.3, the formation of clusters is easier to notice, seen as the
dark regions surrounded by white paths in the saturation picture. In the flow
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rate picture, one also notice the percolating paths, and the regions in between
these paths which are almost immobile. As initially expected, the cluster for-
mation become less apparent for the higher oil saturations of 0.4 and 0.5, For
Soil = 0.4, a few white percolating paths can be seen in the saturation picture,
where as in the case of Soil = 0.5, it seems oil and water is basically uniformly
distributed in the system. This is also the case when noticing the flow rates,
which is more uniform for higher oil saturations.

Connecting the behavior of this system to the percolation transition of
cluster formation depending on Snon−wetting as investigated by Ramstad and
Hansen [40], can be understood by the fact that when adjusting the wetting an-
gles of the system, one is basically determining which phase is the wetting phase
in those tubes. In a region which is originally oil wet and has an oil saturation
of 0.3, one could expect clusters to form according to the threshold value for
Soil ≈ 0.3. Then, by adjusting the wetting angles in this region to a water wet
system, one effectively changes the non wetting saturation from 0.7 to 0.3, as
water is now the wetting phase. This moves the system away from the critical
non wetting saturation, Snw ≈ 0.7 proposed by Ramstad and Hansen [40], and
one would then expect clusters in this region to break up. This is consistent
with what the results so far have shown. Comparing figures 27 and 28, one can
clearly see that changes to the wetting properties of the system cause the initial
clusters of oil in figure 27 to break up, and become mobilized.
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10.5 Phase diagram

As seen in figure 51 in section 10.4.1, the transition in fractional flow depends
on Soil , where the critical region shifts for various values of the oil saturation.
This can be seen as a ”phase diagram”, showing in which region the wettability
alteration will have an effect on the fractional oil flow in the system.
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Figure 53: Phase diagram, showing when the system experience a change in
Foil, depending on the oil saturation

To get a better understanding of how both oil saturation and wetting angles
affect the system, a plot of the fractional flow of oil as a function of both Soil
and the wetting angle θmin is useful. As seen in figure 54.
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Figure 54: fractional flow of oil as a function of Soil and the wetting angle θmin.

Notice that for low oil saturations before the wettability is altered, Foil ≈ 0.
This indicating that basically all oil in the system is contained in stuck clusters,
as also seen in figure 52. When the wetting angle reach the critical region,
these clusters become mobilized, which can be seen as a sudden increase in Foil
in figure 54. To better compare the various transition regions for different oil
saturations, it is convenient to investigate the normalized change in fractional
flow, ∆F/∆Fmax, as seen in figure 55.
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Figure 55: normalized change in fractional flow of oil, as a function of Soil and
the wetting angle θmin.

From figure 55, one can se that the transition is smoothest for Soil ≈ 0.3,
as discussed earlier. Also, the anomalies at θmin ≈ 90 degrees become more
dominant for Soil ≥ 0.4. However, as the focus is on the role of wettability
alterations in re-mobilizing stuck oil clusters, the results for low oil saturations
are of greatest interest. Due to the dominance of cluster formation at low oil
saturations, it could be that the validity of describing changes in fractional flow
using percolation theory is limited to this region.

Assuming that the transition in fractional flow obeys similar scaling laws as
that of a percolation transition, and using the framework of percolation theory,
the idea is that the correlation length ξ, diverge as the critical wetting angle is
approached:

ξ ∝ ∆−νθ (76)

Where ∆θ ≡ |θ− θcrit|. This means the fractional flow of oil can be written as
follows:

Foil(θ) =

{

∆βθ f(L/ξ) for θ < θcrit
0 for θ > θcrit

(77)

Where the scaling function f(L/ξ) is defined as:
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f(L/ξ) ∝
{

(L/ξ)−β/ν for L/ξ � 1
const for L/ξ � 1

(78)

10.6 Lattice disorder effects

The details concerning how the lattice disorder influence the system is inter-
esting, as the chosen pore size distribution is what actually represents the real
reservoir rock. In previous work by Ji and Robbins [49], it has been suggested
that the critical behavior in similar systems to this one, is highly dependent
on lattice disorder. Using a network model, they show a shift in the critical
wetting angle as a function of lattice disorder R. Where R is defined as the ratio
between the largest and smallest pore diameter d, R ≡ dmax/dmin. This effect
can be seen in figure 56

Figure 56: Shift in the critical wetting angle, θc, as a function of lattice disorder
R. Figure from Ji and Robbins [49]

Their model, consisted of a 2D network of rectangular shaped ducts. With
a disorder ratio of R = 2, they found a critical wetting angle θc = 86 degrees.
In this thesis work, a uniform pore radius distribution, r ε[0.1, 0.4]µm is used in
most simulations. This would correspond to a disorder of R = 4, and the critical
wetting angle was found to be θc ≈ 84 degrees. As this model investigates
changes in fractional flow at steady state conditions rather than an invasion
process, that difference is not unsuspected. However, doing simulations with
other pore radius distributions and network disorder should show if there are
any similar connections in this model.
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11 summary

Through this thesis, results are shown that indicate dramatic influence on trans-
port properties of porous media depending on the wettability of the system. In
the first part, investigations whether a change in the system wettability causes
sufficient perturbations to the system to re-mobilize previously stuck oil clusters
were performed. Indicating it is indeed able to do so, following from the devel-
oped algorithm. The changes in fractional flow etc. agree with previous work by
Ødeg̊arden [15]. In that case, the wettability altering mechanism was a simple
flipping of the sign of the capillary pressure in randomly chosen tubes. Meaning
the wettabiltiy could be changed also directly inside the stuck oil clusters, this
possibly being the reason causing them to break down. In this model, there are
correlations between wetting states in the various tubes, following from a more
physically plausible mechanism. As this is based on the flow-rates of low salin-
ity water through the network, it will not initially change the wettability inside
the stuck oil clusters, which are not flooded by low salinity water. However,
this mechanism is still able to cause sufficient perturbations to the system as
to break down the clusters, and transform the system to one of a more uniform
flow distribution. This showing that the effects of wettability alterations is still
able to re-mobilize oil clusters when plausible correlations between the wetting
properties throughout the network have been included.

Another interesting result, is the discovery of the systems critical behavior as
a function of wetting angles. This was initially not expected, and investigation
of these properties gave further insight to the problem. A possible link between
a percolation threshold and changes in fractional oil flow was found. This con-
nection, give the interesting possibility of using the theoretical framework of
percolation theory to describe the system. Giving new ways of understanding
the critical behavior, and the use of connections between various properties,
scaling laws, universality etc. However, the link to percolation theory needs
further investigation, as the amount of statistical data gathered so far seemed
insufficient in accurately determining the critical exponents.
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11.1 further work

The simulations performed were for systems with a constant Ca of 10−3. The
situation in a real reservoir is usually lower values of Ca, and this could be
interesting to test in the model. It is suspected that wetting properties become
increasingly important at lower capillary numbers, as the capillary forces will
dominate over the viscous forces in the system. The main reason this is not
performed yet, is due to the increase in computational time. The time it takes
the system to reach steady state conditions, depends on the capillary nr., and
for low values of Ca this time increase significantly. Also, for Ca ≤ 10−4, it is
believed that thin film flow is important. This is not included in the present
model, and the possible results for low Ca might then not be very reliable. The
presence of wetting films is believed to be important in the context of wettability
alterations, and it would be very interesting to upgrade the model to a 3D model
including the effects of thin film flow. However, this model would be on a whole
other level of complexity, and it is possible that the computational resources
required for this would be very demanding.

Regarding the critical transition in fractional flow, it is possibly linked to a
threshold in cluster formation as mentioned in work by Ramstad and Hansen
[40]. It could thus be interesting to use a cluster identifying algorithm to inves-
tigate the connection between system wettability and cluster formation directly,
rather than via the effect cluster formation has on changes in fractional flow.
This could possibly yield more accurate results describing the critical behavior
of the system, and give better estimates for the critical exponents. To clarify the
connection to a percolation transition, needs further numerical work. A larger
number of simulations in order to gather statistical data is thus recommended.

Due to lack of time, the full investigation of the dependence of lattice dis-
order was not performed. The details how this influence the system could be
interesting, as the lattice is what actually represents the real reservoir rock. If
the system is very dependent on the lattice disorder, this means one must use
pore size distributions obtained from experiments in order to connect numerical
simulations to real reservoir behavior.

As initially suspected, the progress made and the questions answered, have
initiated more new questions than the ones answered. The way forward is still a
long one before direct comparison between simulations and real life applications.

The future is indeed exciting!
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12 Appendix

12.1 Code

The code developed during this thesis was not included in the appendix, as
the conversion to correct format would make it hard to read, and fill many
pages. The complete code for the network model is included as an additional
file in the electronic hand in of the thesis. Also, the author can be contacted
at: vegardflovik@yahoo.no for access to the code.

12.2 Paper proposal

A preliminary proposal for a publication from the thesis work is appended.
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The impact of wettability alterations on oil release and transport mechanisms in a 2D

porous medium

Vegard Flovik1, ∗

1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

(Dated: July 20, 2012)

The effects of wettability alterations in a 2D network model of a porous media has been studied. By
changing the wetting properties of the reservoir through a developed wettability changing algorithm,
previously stuck regions in the network are re-mobilized, leading to significant changes in the steady
state flow distribution of the model porous media This caused de-stabilization of percolating and
trapped clusters as the wettability was changed from an oil wet to a mixed wet system. A critical
transition at a certain wetting angle, depending on the initial saturation and lattice size of the system
was found. This indicating a possible phase transition from a percolating flow regime to a more
uniform flow distribution through the network model. A link between changes in fractional flow
and a percolation transition is also suspected, and using the theoretical framework of percolation
theory, D.Stauffer and A.Aharony [38], critical exponents were estimated. The best estimate for
a critical exponent was β = 0.13 ± 0.02, which is close to the result from ordinary percolation:
β = 5/36 ≈ 0.1388... The critical transition in fractional flow, seems to obey similar scaling laws
as that of ordinary percolation. The use of finite size scaling theory to investigate the system at
various lattice sizes, yielded a rough estimate for the correlation length critical exponent, ν ≈ 0.4,
which is significantly smaller compared to the result from ordinary percolation, ν = 4/3.

PACS numbers: 47.56.+r,47.61.Jd

INTRODUCTION

The fact that some 20 to 60 percent of the oil remains
in the reservoir after the end of oil production is a chal-
lenge of increasing importance in these times of dwindling
oil reserves. Roberts [5]. The reason for this loss is the
formation of oil clusters embedded in water and held in
place by capillary forces, which in turn are controlled by
the wetting properties of the reservoir fluids with respect
to the matrix rock.

The production from oil reserves that today are con-
sidered immobile due to complex reservoirs will then be
an important area of focus. Wetting properties of reser-
voirs is therefore an important topic within the field of
Enhanced Oil Recovery, EOR, and the role of formation
wettability has been reviewed during e.g. Schlumbergers
Wettability Workshop in 2007, [2]

Sandstone is strongly water wet before oil migrates
from a source rock into the reservoir. When oil enters
a pore, it displaces water and form a water film sand-
wiched between the oil and rock surface. This film may
be several nanometer thick, and results from balancing
Van der Waals and electric double layer forces, capillary
pressure and grain curvature. Israelachvili [3]. A perma-
nent wettability alteration is believed to take place by
adsorption of asphaltenes from the crude oil to the rock,
and leads to high but slow recovery through continuous
oil films. Kovschek et al. [4], Kaminsky et al. [10]. As
the oil saturation drops, these films can become discon-
tinuous, leaving immobile oil clusters held in place by
capillary forces.

An important parameter which can determine the wet-

ting properties of the reservoir, is the salinity of the pore
water. At low salinities, perfect water wetting can be
achieved. By changing the salinity level of the pore wa-
ter, the wetting angle increase. Also, increase in tem-
perature results in more water wetness of the reservoir,
which increase the oil recovery. Skauge et al [8]. This
could also be of great importance during e.g thermal re-
covery methods.

Changes in the reservoir from strongly oil wet to neu-
tral wet or water wet conditions show a significant in-
crease in oil recovery depending on the stage of recovery.
Tweheyo, Holt and Torster [9]. New production meth-
ods, like low salinity water flooding show some promis-
ing results in increasing the recovery factor of reservoirs,
and many mechanisms explaining this effect have been
suggested. Correlations have been shown with wetting
behavior to the electrostatic forces between the rock and
oil surfaces. Buckley et al. [11]. But there is still no con-
sensus on that what the dominating microscopic mecha-
nism is. Research toward a deeper understanding of these
effects could be an important effort towards a more com-
plete understanding of transport properties in reservoirs,
and has been a priority in the industry for years.

In this work, it is assumed that local wettability alter-
ations take place, and the consequences of this on oil re-
covery by re-mobilizing stuck oil clusters is investigated.
To study these effects, a two-dimensional pore scale net-
work simulator model is used. Having bi-periodic bound-
ary conditions, it allows the study of steady state flow,
representing the flow behavior deep inside the reservoir.
The effect of wettability alteration is introduced in the
model through a developed wettability changing algo-
rithm, continuously adjusting the wetting angles in the



ii

network during simulation. The changes in steady state
flow properties of the system as a result of this is then
studied.

MODEL

The disorder of the system is incorporated using tubes
of random radii from a chosen pore radius distribution to
represent the porous medium. The network consists of
capillary tubes oriented 45 degrees relative to the over-
all flow direction from bottom to top. The volume of
both throats and pores is contained in the tubes, which
then intersect in volumeless node points. With respect
to the capillary pressure of menisci, the tubes are hour
glass shaped. That is, the local capillary increase when
menisci move into narrower parts of the tubes are taken
into account. This makes the model closer to dynam-
ics of drainage dominated flow, where thin film flow can
be neglected. A modified Young Laplace equation give:
Dullien [1]. Aker et al. [17]

pc =
2γcosθ

r
(1− cos(2πx)) (1)

With the capillary pressure given by eq.(1), the local
flow rate q is given by the Washburn equation. Washburn
[19]

qij = −
kijπr

2
ij

µeff

(∆pij −
∑

pc)

l
(2)

Where kij = r2ij/8 is the permeability, rij is the radius
of the tube connecting node i and j, and ∆pij = pj − pi
is the pressure difference between node i and j.

∑

pc is
the sum of the capillary pressures of the menisci in the
tube and µeff is the weighted viscosity according to the
volume fraction at the beginning of each time-step in each
link. The reason for summing over the capillary pressures
of the menisci, is because the present model allows for a
total of 3 bubbles of oil/water in each tube. Menisci
positions are changed according to a forward integration
of eq.(2) (explicit Euler integration). There is a limit of
maximum menisci movement of one tenth of the length
of a single tube, lij , which limits the size of the time
steps. When a menisci reaches the end of a tube it is
redistributed among the neighboring tubes, where the
basic processes of snap off and coalescence of bubbles
have been considered. See Knudsen, Aker, and Hansen
[22] for more detailed information.

The equations and assumptions mentioned above, give
a large set of linear equations to be solved in order to
calculate the local pressures in the nodes with respect
to the global pressure drop across the network. These
sets of equations are solved using a conjugate gradient
method. Batrouni and Hansen [16].

Simulation is done considering a network of 40x40
nodes, which is sufficient to be in the asymptotic limit
for the range of parameters used, and an average over 5
different samples has been taken for each simulation.

The simulations are performed under a constant flow
rate Qtot , which sets the capillary number. Initially, the
system is purely oil-wet and filled with a given oil and
water saturation, which remains constant throughout the
simulation. Due to the bi-periodic boundary conditions
both drainage and imbibition take place simultaneously,
leaving wetting and non-wetting fluid clusters in the sys-
tem. After reaching steady state, wettability alterations
are introduced following from the developed algorithm.

Wettability alteration

In previous work by Ødeg̊arden [15], the wettability
altering mechanism was a simple flipping of the sign of
the capillary pressure to mimic a change in the wetting
angle θ from 0 to 180 degrees in eq.(1), and occurred in
randomly chosen capillary tubes. In this model, a more
physical plausible mechanism to alter the wettability of
the system is introduced. Instead of using a simple flip
of the sign of the capillary pressure, a distribution func-
tion to mimic the effect of continuously changing wetting
angles is implemented.

The idea behind this algorithm is that for wettability
alterations to occur, the low salinity water needs to be
in contact with the pore space. This claim is rather triv-
ial, as one can not expect any change if the wettability
altering agent is not present in the reservoir. The next as-
sumption, is that the magnitude of change in the wetting
angle depends on the cumulative flow of low salinity wa-
ter that has passed through each pore. This means that
if a certain pore is flooded by large amounts of fresh wa-
ter, the wetting angle should change more than in a pore
which has very little water flooded through. That is, all
tubes in the model are initially oil wet, and by tracking
the flow of low salinity water through each tube, a new
wetting angle is assigned depending on this cumulative
flow value, Qi(t) for tube i at time t.

This is implemented by summing up the flow rates in
each capillary tube over a certain ”wettability altering
time span”, τ = [t0, t1] (Illustrated in figure 3). t0 is the
time when the injection of low salinity water is initiated,
and the algorithm starts tracking the flow rates in each
tube. At time t1, the system reaches a state with a static
wetting angle distribution. To make sure that only the
flow of low salinity water affects the wettability, and not
the flow of oil, the flow rate in tube i at time t, qi(t), is
multiplied with the water saturation in the tube at the
same time step, Γi(t). This gives the cumulative flow of
low salinity water in tube i at time t:
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Qi(t) =

t≤t1
∑

t0

qi(t̃)Γi(t̃)∆t̃ (3)

Qi(t) is then used to assign a continuously changing
wetting angle for each tube, updated every time step in
the range [t0, t1] during simulation. This was done by re-
placing the cos θ term in eq.(1) by a distribution function
depending on Qi(t). The distribution chosen has approx-
imately the range [-1,1], to represent the cos θ term with
θ in the range [180,0].

cos θ →
2

π
tan−1

[

20

Qthri
(Qi(t)−Q

thr
i )

]

(4)

The pre-factor 2
π is a normalization constant to set the

range [-1,1], the nr. 20 is just a parameter to adjust
the slope of the distribution function, and Qthr a certain
threshold value needed to significantly change the wetting
angle.

The idea behind the Qthr factor, is that in order to
alter the pore wettability by injecting low salinity water,
a certain amount needs to be injected before it signifi-
cantly affects the wetting angle. Because of the random
size distribution of the pore space in a porous media, this
threshold value should also depend on the pore size. In-
tuitively, one expects that more low salinity water needs
to be injected in a large pore compared to a small pore
to alter the wettability significantly. This threshold value
is thus defined as a constant η, times the corresponding
pore volume.

Qthri = ηπr2i l (5)

where ri is the pore radii of tube i, l is the pore length,
and η is the parameter defining how many pore volumes
of low salinity water needs to be injected through each
pore to reach the threshold value.

As this model does not include thin film flow, the wet-
ting angle will not be either 0 or 180 degrees. Rather,
the starting point of ≈ 165 degrees was chosen. In this
case, the threshold value Qthr is the zero point of the
distribution function, and represents the state when θ is
changed from the initial value to 90 degrees.

This distribution gives the wetting angle for link nr i at
time t, as a function of the amount of low salinity water
injected, Qi(t). See figure 1.

With these changes, the capillary pressure given by
eq.(1) is replaced by

pc(t) ≈
4γ

πri
tan−1

[

20

Qthri
(Qi(t)−Q

thr
i )

]

(1− cos(2πx))

(6)
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FIG. 1: Wetting angle for each tube as a function of Qi(t)

Where Qi(t) is given by eq.(3). The value of Qi(t) is
updated between each time step, meaning that the wetta-
bility is continuously changing as a function of time. This
represents that the wetting angles are gradually changing
in the various tubes, as more low salinity water has been
in contact with the reservoir surface.

Qthr is a fitting parameter, depending on how much
low salinity water needs to be injected through a pore to
cause a significant change in its wetting properties. This
is a parameter which could possibly be fitted against ex-
perimental results. But, as such experiments have not
been performed yet, this was treated as a tuning param-
eter in the following work.

The model is first run for a sufficient amount of time
steps to reach steady state conditions. Then, the ef-
fect of wettability alterations is introduced following from
the equations above. After a significant amount of time
the system is set to static wetting properties, and the
model is again run to steady state. This wettability al-
teration causes a perturbation to the system, and perma-
nent changes in the static flow properties.

RESULTS

Changes in the network wettability caused significant
perturbations to the system. As seen in figure 2, oil is ini-
tially located in stuck clusters surrounded by white per-
colating paths of water. This is also seen from the flow
rates, which is dominated by a few paths where the flow
rates are orders of magnitude greater than in the stuck
clusters in between. The wettability alteration cause
these percolating paths to break down, re-mobilizing the
oil clusters and transforming the network to one with a
more uniform flow distribution.

The re-mobilization of oil can also be seen as an in-
crease in the fractional flow of oil, see figure 3. Where
the fractional flow of oil is defined as the ratio be-
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(a)Oil saturation before wettability alterations

(b)Flowrates before wettability alterations

(c)Oil saturation after wettability alterations

(d)Flowrates after wettability alterations

FIG. 2: Oil saturations and flow rates before and after wettability
is altered. In the saturation pictures, oil is black and water white.
The flow rate pictures are on a normalized logarithmic scale, with
black=1 and white less then 10−4.

tween the flow of oil, Qoil, and the total flow Qtot, as
Foil ≡ Qoil/Qtot.

For various oil saturations, these results can be sum-
marized in a plot showing the change in fractional oil flow
before and after wettability alteration, as seen in figure
4.
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The S-shape of these curves is resemblant of the ones
found in Buckley-Leverett fractional flow. Dullien [1],
Buckley and Leverett [47]. In figure 4, a diagonal line is
added. This is the line where the fractional flow is equal
to the oil saturation. A miscible fluid mixture would
follow this line, and it is interesting to use as a reference
to compare how the data points lie above or below this
line.

To this point, the wetting angles of the final mixed wet
system are in the approximate range of [165,0] degrees.
However, the magnitude of wettability alteration due to
low salinity water injection is not well understood. It is
thus interesting to investigate how much the wetting an-
gles have to change to cause any significant effect on the
system. Instead of having the wettability altering algo-
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rithm operating in the full range as shown in figure 1, a
cutoff angle θmin was introduced. As before, all angles
initially start at 165 degrees. However, as the wetting
angles are adjusted according to the algorithm, they are
not allowed to change to values lower than θmin. By
doing many simulations with θmin in the range between
the initial 165 degrees and 0 degrees, a critical wetting
angle was found. At angles above this critical value, the
system is basically unaffected by the wettability alter-
ations. When the wetting angles reach the critical value,
this suddenly cause dramatic changes to the system, see
figure 5
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FIG. 5: Critical transition in fractional flow as a function of θmin,
indicating possible connections to a percolation threshold

The connection between percolation theory and clus-
ter formation has been investigated previously by Ram-
stad and Hansen [40], using a similar network model.
From figure 4 one notice that for oil saturations below
Soil ≈ 0.3, basically all oil in the system is contained in
stuck clusters, as Foil ≈ 0. Since the increase in fractional
flow caused by wettability alterations seems to be caused
by the breakdown of oil clusters, a connection between
cluster strength in percolation theory and fractional flow
is suspected. It could thus be possible to describe this
transition using percolation theory when the oil satura-
tion is low. Assuming the increase in fractional flow can
be described as a percolation transition, a similar rela-
tion between fractional flow and wetting angle as between
percolation strength and percolation probability is pro-
posed, D.Stauffer and A.Aharony [38]

Foil(θ) ∝ |θ− θcrit|
β (7)

Hence, by plotting log Foil(θ) vs. log (|θ − θcrit|) in
the critical region, one can obtain an estimate for the
critical exponent β. In the following, the parameter ∆θ ≡
|θ− θcrit| is introduced. The effective θcrit is found from
the inflection point of the curve ∆Foil vs. θmin, as seen in
figure 5. According to the suspected power law behavior

from eq.(7) the data points should collapse to a linear
curve, where the critical exponent β is extracted from
the slope. It was found that a value of θcrit = 84 gave
the best linear fit when plotted on log-log scale. See figure
6.
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The estimate from the curve fitting is β = 0.13± 0.02,
which is close to the result from ordinary percolation,
β = 5/36 ≈ 0, 1388...

By investigating the model for various lattice sizes,
similar effects as that from finite size scaling theory for
ordinary percolation was found, that the transition is
”smoothed out” over a larger region for small lattice sizes
L. From finite size scaling analysis in percolation theory,
the transition width ∆ depends on the lattice size L,
D.Stauffer and A.Aharony [38]:

∆ ∝ L−1/ν (8)

Where ν is the correlation length critical exponent. If
this system obeys similar scaling laws, this means that by
investigating the width of the transition, one can estimate
the correlation length critical exponent ν . The transition
width ∆ can be defined in any suitable way, and in this
case it is simply defined as the difference between the
value of θmin where ∆F/∆Fmax is 0.2 and 0.6.

From the data available, the estimate for the correla-
tion length critical exponent is ν ≈ 0.4. Compared to
the result for ordinary percolation, ν = 4/3, this is sig-
nificantly smaller.

Another approach to obtain the critical exponents β
and ν , is from the fact that the percolation strength,
P (L, ξ) ∝ Lβ/ν at the critical point, Shauffer and
Aharony [38]. If the transition in fractional flow obeys
similar scaling laws as that of ordinary percolation, one
expects the following relation at the critical transition
point, θcrit:
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Foil(L) ∝ Lβ/ν (9)

Hence, by plotting log Foil(L) vs. log L, one can ex-
tract the ratio of the critical exponents, β/ν .
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FIG. 8: Change in fractional oil flow at θc as a function of lattice
size L. Simulations were performed for L = 30,36,40,46, and each
data point is the average value obtained from 5 lattice initializa-
tions.

Using the previous result, β ≈ 0.13, this estimate for
the correlation lenght critical exponent is consistent with
the result using the transition width ∆, that ν ≈ 0.4.
However, as seen in figure 8, the linear fit using this last
method to extract β/ν is not as good as the one using
the transition width ∆. The reason for this could be that
in the estimation of Foil at θcrit, it has not been taken
into account that the value of θcrit might shift slightly
depending on the lattice size, due to finite size effects. A
more accurate determination of the critical point for the
various lattice sizes, could thus yield a better fit to the
expected power law behavior from eq.(9).

The estimates using these methods are small compared
to the value from ordinary percolation, but the system
still seems to obey similar scaling laws as a function of
lattice size.

To get a better understanding of how both oil satura-
tion and wetting angles affect the system, a plot of the
fractional flow of oil as a function of both Soil and the
wetting angle θmin is useful, as seen in figure 9.
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Notice that for low oil saturations before the wettabil-
ity is altered, Foil ≈ 0. This indicating that basically all
oil in the system is contained in stuck clusters, as also
seen in figure 2. When the wetting angle reach the crit-
ical region, these clusters become mobilized, which can
be seen as a sudden increase in Foil in figure 9. To bet-
ter compare the various transition regions for different oil
saturations, it is convenient to investigate the normalized
change in fractional flow, ∆F/∆Fmax, as seen in figure
10.
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From figure 10, one notice some anomalies at θmin ≈
90 for Soil ≥ 0.4. This is probably caused by numerical
instabilities due to the vanishing capillary pressure at this
wetting angle. However, as the focus is on the role of
wettability alterations in re-mobilizing stuck oil clusters,
the results for low oil saturations are of greatest interest.

As seen in figure 9, for saturations below Soil ≈ 0.3,
Foil ≈ 0 for θ > θcrit. Before wettability alterations,
basically all oil in the system is contained in stuck clusters
at such low oil saturations. Due to the dominance of
cluster formation at low oil saturations, it could be that
the validity of describing changes in fractional flow using
percolation theory is limited to this region.

Assuming that the transition in fractional flow obeys
similar scaling laws as that of a percolation transi-
tion, and using the framework of percolation theory,
D.Stauffer and A.Aharony [38], the idea is that the
correlation length ξ, diverge as the critical wetting angle
is approached:

ξ ∝ ∆−νθ (10)

Where ∆θ ≡ |θ − θcrit|. This means the fractional flow
of oil can be written as follows:

Foil(θ) =

{

∆βθ f(L/ξ) for θ < θcrit
0 for θ > θcrit

(11)

Where the scaling function is defined as:

f(L/ξ) ∝

{

(L/ξ)−β/ν for L/ξ � 1
const for L/ξ � 1

(12)

CONCLUSIONS

In this paper, results are shown that indicate dramatic
influence on transport properties in porous media de-
pending on the wetting properties of the system. In the
first part, investigations whether a change in the system
wettability is able to re-mobilize previously immobile oil
clusters was performed. Indicating it is indeed able to
do so, following from the developed wettability altering
algorithm. Changing the wetting properties cause signif-
icant perturbations to the systems flow distribution, and
destabilize percolating and trapped clusters appearing in
the steady state.

Another interesting result, is the discovery of the sys-
tems critical behavior as a function of wetting angles. A
possible link between a percolation threshold and changes
in fractional oil flow was found, and critical exponents

were estimated. Several critical exponents were inves-
tigated, but due to lack of sufficient data, not all esti-
mates were reliable. The best exponent obtained, was
β = 0.13 ± 0.02, which is close to the result from ordi-
nary percolation: β = 5/36 ≈ 0.1388.. The critical tran-
sition in fractional flow, seems to obey similar scaling
laws as that of ordinary percolation. The use of finite
size scaling theory to investigate the system at various
lattice sizes, yielded a rough estimate for the correlation
length critical exponent, ν ≈ 0.4, which is significantly
smaller compared to the result from ordinary percolation,
ν = 4/3

The reason for this large difference in the estimates for
ν , could be caused by the limited number of data points.
The fluctuations at the critical transition, makes it im-
portant to perform many simulations in order to gather
sufficient statistical data. In this case, only 5 simulations
for each lattice size L were performed. This giving a total
number of only 20 data points, which give large uncer-
tainties in determining the critical exponent. It could be
that performing more simulations, and for larger lattice
sizes, would yield better data.

This connection give the interesting possibility to use
the theoretical framework of percolation theory to de-
scribe the system. However, this needs to be investigated
further, as the amount of statistical data gathered so far
showed insufficient in accurately estimating the critical
exponents.
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