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Abstract

We study the effect of an impurity potential on spin-memory loss in graphene.

Various general methods for finding the spin-orbit related effect of a slowly

varying impurity potential on a semiconductor have been examined. We have

also revisited problems concerning electronic properties and spin relaxation in

graphene. To this end, the bandstructure for graphene has been calculated

through analytical and computational methods. The following results have been

reproduced: Low energy excitations behave like massless relativistic particles

with an effective speed of light at roughly 106 m/s. Intrinsic spin-orbit coupling

splits the bands at the Fermi level. The importance of the d orbitals for this effect

is also shown. Extrinsic spin-orbit coupling induced by a perpendicular electric

field give rise to a Rashba type Hamiltonian. Our novel results are related to

extrinsic effects from an impurity. We have calculated the renormalised impurity

induced spin-orbit coupling due to mixing of the conduction bands and the other

bands. This renormalisation is at most comparable to the vacuum term, and

thus cannot explain the experimental results on spin relaxation.
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Sammendrag

Vi ser p̊a effekten av et urenhetspotensial p̊a spinnlevetid i grafen. Ulike generelle

metoder for å finne den effektive spinn-bane-relaterte virkningen av et langsomt

varierende urenhetspotensial p̊a en halvleder er blitt undersøkt. Vi har ogs̊a sett

p̊a løste problemer ang̊aende elektroniske egenskaper og spinnlevetid i grafen.

Med dette for øye har vi funnet b̊andstrukturen til grafen ved analytiske og

numeriske metoder. De følgende resultatene har blitt reprodusert: Lavenergi

eksitasjoner oppfører seg som masseløse fermioner med en effektiv fart p̊a 106

m/s. Den intrinsiske spinn-bane-koblingen splitter b̊andene ved ferminiv̊aet.

Betydningen d-orbitalene har p̊a denne effekten har blitt vist. Den ekstrinsiske

spinn-bane-koblingen indusert av et ortogonalt elektrisk felt gir en Rashba-type

Hamilton-operator. V̊are nye resultater er relatert til de ekstrinsiske effektene av

en urenhet. Vi har regnet ut den renormaliserte urenhetsinduserte spinn-bane-

koblingen p̊a grunn av miksing av ledningsb̊andene og de andre b̊andene. Denne

renormaliseringen er høyst sammelignbar med vakuumleddet, og kan dermed

ikke forklare de eksperimentelle resultatene p̊a spinnlevetid.
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1 Introduction

Carbon is the building block of life on earth. It is the fourth most abundant

element in the universe. Carbon is a nonmetal with four valence electrons avail-

able to form covalent bonds. This opens up a world of chemical compounds

and allotropes, with a wide range of properties. Diamond, a cubic structure of

carbon, is the hardest material found in nature and it does not conduct elec-

tricity. Graphite on the other hand is one of the worlds softest materials, and it

conducts electricity. Synthetically made allotropes, such as spherical fullerenes

or buckyballs [1] and carbon nanotubes [2] have been a hot topic in physics and

chemistry for more than twenty years. In 2004, a breakthrough in the field of

nanomaterials was made. Graphene, the world’s first free-standing 2D material,

was discovered by mechanical exfoliation of graphite [3][4]. It has since been the

subject of intense research activity. Geim and Novoselov, graphene’s discoverers,

were awarded the 2010 Nobel Prize in Physics ”for groundbreaking experiments

regarding the two-dimensional material graphene” [5].

Graphene can be imagined as a single layer of graphite and in that capacity

it has been known as a theoretical construct for calculating the bandstructure

of graphite since Wallace first investigated so called ”monolayer graphite” in

1947 [6]. It was long held as an absolute that a free-standing two-dimensional

material was a physical impossibility; Peierls and Landau argued that such a

material would be thermodynamically unstable and would collapse into a three-

dimensional structure [7][8]. The impossiblity of two-dimensional crystalline

long-range order was further reinforced by Mermin [9]. So it caused no small

amount of commotion when Geim and Novoselov announced the discovery of

graphene, the experimental realisation of Wallace’s model two-dimensional sys-

tem. Other early theoretical work was done by McClure [10] and Slonczewski

and Weiss [11]. The spin-orbit coupling in graphite was examined by Slonczewski

[12] in 1955, McClure and Yafet [13] in 1960 and Dresselhaus and Dresselhaus

[14] in 1965, while the relativistic behaviour at the Dirac points was described

by DiVincenzo and Mele [15] and Semenoff [16] in 1984.
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Bilayer graphene has its own exotic properties, but this is outside the scope of our

investigation and thus bilayer graphene will not be treated in this thesis.

As mentioned, graphene was first isolated using mechanical exfoliation of graphite,

in what has been dubbed the ”scotch tape” method. An adhesive tape was used

to split the graphite crystal and remove layer after layer until a single layer was

left [4]. This technique can be automated by using ultrasonic cleavage [17][18].

This is however not the only way to make graphene; graphene can also be pro-

duced by a variety of methods, including epitaxial growth on silicon carbide by

thermal decomposition, where silicon carbide is heated to evaporate Si [19], soni-

fication and reduction of graphite oxide [20], and chemical vapor deposition on

metal substrates [21]. In 2010, a method for producing arbitrarily large graphene

sheets was discovered [22]. In this roll-to-roll ”printing press” method, chemical

vapor deposition on copper was preformed and if done at very low pressure the

growth automatically stops after a single layer.

A wide variety of extraordinary properties have been reported for graphene.

Graphene is the thinnest known material in the universe, one atom thick [17].

It is the strongest material in terms of the Young’s modulus ever measured

[23] [17]. At the same time, it is one of the softest materials [24]. The optical

transmittance is independent of the frequency and is very high with a value

of ≈ 1 − πα ≈ 97.7%, where α is the fine structure constant [25]. The heat

conductance surpasses that of any other material [17]. It has the highest mea-

sured carrier mobility at room temperature [26]. A graphene oxide membrane

is impermable to gasses even as elementary as He, H2, N2 and Ar, however,

surprisingly water evaporates through the membrane unimpeded as if it was

an open container [27]. Following this experiment, Geim et al. sealed a bot-

tle of vodka with a graphene membrane and returned later to find the solution

stronger than they had left it, hinting at possible room-temperature distillation

or filtration applications for graphene in the future [28]. Graphene exhibit phe-

nomena associated with quantum electrodynamics, such as the Klein tunneling

[29]. An anamalous half-integer quantum Hall effect has been observed at room
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temperature [30][31]. In addition, the fractional quantum Hall effect has been

observed at low temperatures [32][33]. Spin injection has been demonstrated at

room temperature [34].

Graphene display promising electronic properties. A 100GHz graphene transis-

tor was produced by IBM in 2010 [35], a performance much higher than that of

a silicon transistor [36]. In 2011, the first graphene integrated circuit was made

by IBM, a broadband radio-frequency mixer unaffected by temperatures up to

400 K [37]. Graphene’s optical transmittance also means that it can be used for

transparent electrodes in for instance LCD screens or solar cells.

Spintronics

The electron spin is an intrinsic form of angular momentum [38]. In 1924,

Pauli postulated a new two-valued degree of freedom for the electron without a

classical analogy and used it to formulate the Pauli exclusion principle [39]. The

following year, seeking to explain the anomalous Zeeman effect, Kronig proposed

to Pauli the idea of a spinning electron, who outright rejected it on the grounds

that the electron would have to rotate many times faster than the speed of light

to produce the necessary angular momentum. Kronig then abandoned his idea,

and it would be Uhlenbeck and Goudsmit under the supervision of Ehrenfest

later that year who first published a theory of the electron spin [40][41]. They

correctly proposed that this could explain both the anomalous Zeeman effect

and deviations from Sommerfeld’s theory of the atomic fine structure observed

in emission spectra at the time. While the theory of spin did qualitatively explain

these deviations, Heisenberg was quick to point out there was a discrepancy of

a factor of two from the experimental result [42]. The following year, Thomas

showed [43] that this was due to the use of an incorrect rest frame for the

electron, the rest frame should be rotating relative to the laboratory frame of

reference, and introduced what is now called Thomas precession. Convinced

by this breakthrough, Pauli then developed a quantum mechanical theory of

the spin with the spin matrices that bear his name, and Dirac later showed
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that this can also be seen as a direct result of his relativistic description of

quantum mechanics. The first direct experimental evidence of the electron spin

oddly enough happened before the events described above. This was the famous

Stern-Gerlach experiment in 1922 [44], where silver atoms were passed through

a magnetic field, resulting in a splitting of the beam into two. At the time, it

was thought that this was due to the orbital angular momentum of the silver

atoms, an incorrect assumption. After the discovery of the electron spin, these

results could be explained.

Spintronics is the detection and manipulation of the spin degree of freedom

[45][46]. While the term spintronics is a recent invention, it was coined in 1996 by

Wolf as a portmanteau of spin transport and electronics [47][46], the theory be-

hind it is much older. Lord Kelvin first discovered what is now called anisotropic

magnetoresistance (AMR) in 1857 [48][49], namely that the resistance increased

when the current was flowing in the same direction as the magnetic field and

decreased when it was perpendicular to the magnetic field. However, that this

was due to the spin-orbit interaction was of course not realised until much later

by Bloch and Gentile [50], after the discovery of the electron spin. Another ef-

fect, tunneling magnetoresistance (TMR), was discovered by Julière in 1975 [51],

where a tunneling barrier was inserted between two ferromagnetic conductors.

By individually controlling the magnetisation of the ferromagnetic conductors to

be parallel or antiparallel of each other, this allows switching the device between

two states of different electrical resistance. The big breakthrough, however, came

with the discovery of the giant magnetoresistance (GMR) in 1988 by Grünberg

et al. [52] and Fert et al. [53], for which Grünberg and Fert recieved the 2007

Nobel Prize in Physics. In GMR, the ferromagnetic layers are seperated by a

non-ferromagnetic metal. It was soon realised that GMR could be used to im-

prove read heads in modern hard disk drives for the personal computer [54] ;

the first GMR read heads were developed by Parkin at IBM and reached the

market in 1997 [55]. This caused a manyfold increase in the area density of

storage media. The last decade TMR based read heads have begun replacing

read heads based on GMR [38].
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Magnetoresistive random-access memory (MRAM) is a new spintronics-based

non-volatile type of memory, non-volatile meaning it retains its information

even when the power is turned off. It is predicted to be a candidate for a

”universal memory”, that is, a replacement for the multiple different memory

technologies currently in use [56]. Commercially available MRAM are made

from magnetic tunneling junctions using TMR, however using this method for

writing to the memory suffers greatly when the size of the device is reduced

[57]. A possible solution to this problem is using spin-transfer torques (STT)

where a spin current transfers a torque on the magnetisation of the ferromagnetic

material that stores the information. STT was first discussed by Slonczewski

[58] and Berger [59].

A parallel line of inquiry for spintronic devices came with the experimental

demonstration of spin injection by Johnson and Silsbee in 1985 [60]. In 1976,

Aronov and Pikus proposed [61] spin injection into semiconductors, which was

not achieved until 1999 by groups lead by Molenkamp [62] and Awschalom

[63]. Spin injection is the injection of a nonequilibrium spin ensemble into a

nonmagnetic material, e.g. a paramagnet or semiconductor [64]. By using spin

injection in combination with spin detection and spin manipulation in the form

of a gate-controlled spin-orbit coupling, it is possible to envision a spin field-

effect transistor (SFET). This was first proposed by Datta and Das in 1989 [65]

and has motivated a huge interest in the field, but still has not seen experimental

realisation [46].

The lifetimes of the spin accumulations are important for many spintronic de-

vices. Spin relaxation is a process that reduces the spin accumulation. There

are four major mechanisms of spin relaxation: Elliot-Yafet, D’yakonov-Perel’,

Bir-Aronov-Pikus and the hyperfine interaction [46] [38].

Elliot-Yafet: As we shall later see, Bloch states, i.e. solutions of the Schrödinger

equation for a periodic potential, are not necessarily spin eigenstates [38]. In-

stead, the states are a combination of opposite spin states. For each wavevector,

there are two mutually orthogonal spin orientations; however, spin orientations
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from different wavevector are not necessarily paralell or anti-parallel, but may

have any angle between them. This means that a momentum scattering event

caused by for instance an impurity, boundary or phonon changes the spin ori-

entation along with the momentum. In other words, the spin relaxation time is

proportional to the momentum relaxation time, τEY ∝ τm.

D’yakonov-Perel’: As mentioned, the spin-orbit interaction induces a momentum-

dependent effective magnetic field. This effective magnet field causes the spin

to precess in an analogy to Larmor precession. This precession does not by it-

self cause spin relaxation; it changes the direction of the spin polarisation, but

not the magnitude of the ensemble averaged spin [38]. However, momentum

scattering causes the magnetic field to change direction and magnitude [46].

This again changes the precession of the spin, and the spin phase experiences a

random walk. Frequent collisions slows down the electrons, which reduces the

effective magnetic field and thereby suppress the D’yakonov-Perel’ mechanism.

Thus, for the D’yakonov-Perel’ mechanism, the spin relaxation time is typically

inversely proportional to the momentum relaxation time, τDP ∝ 1/τm

Bir-Aronov-Pikus: The Bir-Aronov-Pikus mechanism is important when there

is a big overlap between the electron and hole wavefunctions. This causes an

electron-hole exchange interaction, which means that a spin-flip for the hole

induces a spin-flip for the electron. This effect is due to the Pauli exclusion

principle [38].

Hyperfine interaction: The hyperfine interaction is a result of the magnetic field

created by nuclear spins. This field interacts with the spin of the electrons and

may cause spin relaxation [38].

Spintronics offer exciting opportunities for the future, and a full understanding

of spin relaxation in materials proposed as a basis for spintronic devices is vital.

Graphene is one of the materials proposed since its small intrinsic spin-orbit

coupling should generate the long spin lifetimes necessary for practical usage

[66]. However, experiments have shown a much shorter lifetime than predicted

[67][68]. The reason for this discrepancy is still not fully understood from a
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theoretical point of view. With this as motivation, we will investigate the effects

of impurites on the spin-orbit coupling in graphene and seek to elucidate the

mechanism responsible for spin relaxation in graphene.
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2 Multiple-scale analysis

Multiple-scale analysis [69] is an effective method to find approximate solutions

to problems involving large variations in length or time-scales. We will apply this

method to find how the electronic states are affected by an impurity, when the

impurity potential is assumed to be slowly varying compared to the variation of

the periodic potential due to the lattice. We will first consider a one dimensional

case and later extend the model to three dimensions and include the spin-orbit

coupling.

2.1 One dimension

Let us consider an infinite chain of atoms with a lattice spacing a. This gives

rise to a periodic potential V (x) = V (x + a). The Schrödinger equation for an

electron on this chain is[
− ~2

2m0

∂2

∂x2
+ V (x)

]
ψnk(x) = εnkψnk(x), (2.1)

where ψnk are the Bloch functions and n denotes the band. These states form a

complete basis with the normalisation∫
dxψ∗nkψn′k′ = δ(k − k′)δnn′ . (2.2)

We are now interested in the effect of a slow-varying potential, U(x), caused by

an impurity. To solve this we use multiple-scale analysis, following the method

presented by Pedersen [70]. The Schrödinger equation is then[
− ~2

2m0

∂2

∂x2
+ V (x) + U(x)

]
ψ(x) = Eψ(x). (2.3)

A natural energy scale for the unperturbed Hamiltonian is the typical kinetic

energy EK = ~2/(2m0a
2), and in the same way the impurity potential will

have an energy which is proportional to the inverse square of some length scale

L � a. We use the smallness parameter ε ≡ a/L as a measure of how slowly
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the impurity potential varies. Dividing the Schrödinger equation by EK to get

it on a dimensionless form and introducing the dimensionless variable ξ = x/a,

we have that

U(x)

EK
= ε2Ũ(εξ), (2.4)

and by defining the second length scale, η = εξ, we find

− ψ′′(ξ, η) + [Ṽ (ξ) + ε2Ũ(η)]ψ(ξ, η) = Ẽψ(ξ, η). (2.5)

We now seek to find a perturbative solution to Eq. (2.3) by expanding ψ in

terms of ε

ψ = ψ(ξ, η) = ψ(0)(ξ, η) + εψ(1)(ξ, η) + ε2ψ(2)(ξ, η) +O(ε3), (2.6)

and the same for the energy,

Ẽ = Ẽ0 + εẼ1 + ε2Ẽ2 +O(ε3). (2.7)

Using the chain rule, we find

ψ′′ =
∂2ψ(0)

∂ξ2
+ ε

(
2
∂2ψ(0)

∂ξ∂η
+
∂2ψ(1)

∂ξ2

)
+ ε2

(
∂2ψ(0)

∂η2
+ 2

∂2ψ(1)

∂ξ∂η
+
∂2ψ(2)

∂ξ2

)
+O(ε3).

(2.8)

Neglecting terms of order three and higher in ε, Eq. (2.5) becomes

−
[
∂2ψ(0)

∂ξ2
+ ε

(
2
∂2ψ(0)

∂ξ∂η
+
∂2ψ(1)

∂ξ2

)
+ ε2

(
∂2ψ(0)

∂η2
+ 2

∂2ψ(1)

∂ξ∂η
+
∂2ψ(2)

∂ξ2

)]
+Ṽ (ξ)

(
ψ(0) + εψ(1) + ε2ψ(2)

)
+ ε2Ũ(η)ψ(0)

= Ẽ0ψ
(0) + ε

(
Ẽ1ψ

(0) + Ẽ0ψ
(1)
)

+ ε2
(
Ẽ0ψ

(2) + Ẽ1ψ
(1) + Ẽ2ψ

(0)
)
.

(2.9)

Separating the terms by order of ε, we find

(H0 − Ẽ0)ψ(0) = 0, (2.10)

(H0 − Ẽ0)ψ(1) = 2
∂2ψ(0)

∂ξ∂η
+ Ẽ1ψ

(0), (2.11)

(H0 − Ẽ0)ψ(2) =
∂2ψ(0)

∂η2
+ 2

∂2ψ(1)

∂ξ∂η
+
(
Ẽ2 − Ũ(η)

)
ψ(0) + Ẽ1ψ

(1), (2.12)
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with

H0 = − ∂2

∂ξ2
+ Ṽ (ξ) (2.13)

Eq. (2.10) is the Schrödinger equation without an impurity. It is solved by

ψ(0)(ξ, η) = ψnk(ξ)F (η), (2.14)

where ψnk(ξ) are the solutions to the unperturbed problem with the correspond-

ing eigenvalues Ẽ0 = εnk, and F (η) is an arbitrary function of η. We now de-

mand that the solutions to Eq. (2.11) do not contain any secular terms, that is,

terms growing without bound. This is done by setting the inhomogeneity of Eq.

(2.11), the right-hand side, to be orthogonal to the solutions of the homogenous

equation (2.10).[69] We assume that Ẽ1 = 0; since the perturbing potential is

quadratic in ε, any correction to the energy must be at least of the second order

in ε. Because of the periodicity of the Bloch functions, ψnk, we integrate only

over a unit cell. This leads to the condition

pnn = 0, (2.15)

where

pnn′ = 2π

∫
cell

dξψ∗nk0
1

i

∂

∂ξ
ψn′k0 , (2.16)

is the dimensionless momentum matrix element. This gives us a restriction

on which wave vectors we allow, a restriction which is actually equivalent to

demanding that εnk has a minimum at k = k0. We will prove this for a system

of arbitrary dimensions in Section 3. Expanding the solution about the band

minimum is of course the favourable choice, as conduction electrons with energies

close to the minimum energy dominate the low temperature electronic properties

which is the subject of our investigation. We thus have

ψ(1) = 2iF ′(η)
∑
l 6=n

pln
εlk0 − εnk0

ψlk0(ξ). (2.17)

Inserting Eqs. (2.14) and (2.17) into Eq. (2.12) we get

(H0 − Ẽ0)ψ(2) =
{
F ′′(η) +

[
Ẽ2 − Ũ(η)

]
F (η)

}
ψnk0(ξ)

+ 4iF ′′(η)
∑
l 6=n

pln
εlk0 − εnk0

∂

∂ξ
ψlk0(ξ).

(2.18)
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Demanding again that the right-hand side is orthogonal to the solutions of the

homogeneous equation, ψlk0 , we get(
1− 4

∑
l 6=n

|pln|2

εlk0 − εnk0

)
F ′′(η) +

[
Ẽ2 − Ũ(η)

]
F (η) = 0. (2.19)

With dimensions restored and by defining X = εx = aη, this may be written

as

− ~2

2m∗
F ′′(X) + U(X)F (X) = E2F (X), (2.20)

which we can see has the form of a Schrödinger equation for F (X) with an

effective mass

1

m∗
=

1

m0

− 2

m2
0

∑
l 6=n

|pln|2

εlk0 − εnk0
. (2.21)

The effective mass is determined by the matrix element of the momentum op-

erator and the energies at k = k0. This result can easily be generalised to three

dimensions so that x→ x.

2.2 Spin-orbit coupling

By introducing the spin-orbit coupling we get an additional term to the Hamil-

tonian of the form

λσ · (∇Vtot(x)× p), (2.22)

where

λ ≡ ~
4m2

0c
2

(2.23)

is the spin-orbit coupling constant for vacuum and Vtot(x) = V (x) +U(x) is the

total potential. As in the preceeding section we rewrite everything in dimension-

less form. With p = −i(∇ξ + ε∇η), Ṽtot(ξ,η) = Ṽ (ξ) + ε2Ũ(η) and λ̃ = λ~/a2,
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Eq. (2.22) yields

λ̃σ · (∇Ṽtot(ξ,η)× p) =λ̃σ ·
[
(∇ξṼ (ξ)× pξ) + ε(∇ξṼ (ξ)× pη)

+ε3(∇ηŨ(η)× pξ) + ε4(∇ηŨ(η)× pη)
] (2.24)

=λ̃σ · (∇ξṼ (ξ)× pξ) + ελσ · (∇ξṼ (ξ)× pη) +O(ε3).

(2.25)

The Hamiltonian to the second order in ε is then

H = p2+Ṽtot(ξ,η)+λ̃σ ·(∇Ṽtot(ξ,η)×p) = H0+επ̃ ·pη+ε2pη+ε2Ũ(η), (2.26)

where we have introduced the dimensionless velocity operator,

π̃ = −2i∇ξ + λ̃σ ×∇ξṼ (ξ), (2.27)

and

H0 = p2
ξ + Ṽ (ξ) + λ̃σ · (∇ξṼ (ξ)× pξ). (2.28)

Separating the dimensionless Schrödinger equation by order of ε

(H0 − Ẽ0)ψ(0) =0, (2.29)

(H0 − Ẽ0)ψ(1) =− π̃ · pηψ
(0), (2.30)

(H0 − Ẽ0)ψ(2) =− p2
ηψ

(0) − π̃ · pηψ
(1) + (Ẽ2 − Ũ(η))ψ(0). (2.31)

Eq. (2.29) is again the unperturbed Schrödinger equation. It is solved by

ψ(0)(ξ,η) = ψnk(ξ)F (η), (2.32)

with corresponding eigenvalues εnk and where n now runs over the different spin

and orbital states.

Demanding that the right-hand side of Eq. (2.30) should be orthogonal to the

solutions of Eq. (2.29) requires that

π̃nn · pη = 0, (2.33)
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where π̃nn′ are the matrix elements of the velocity operator evaluated at k = k0,

π̃nn′ = (2π)3

∫
cell

dξψ∗nk0
πψn′k0 . (2.34)

We then get

ψ(1) = −
∑
l 6=n

π̃ln · pηF (η)

εlk − εnk
ψlk(ξ). (2.35)

Inserting this into Eq. (2.31), we get

(H0 − Ẽ0)ψ(2) =
[
−p2

ηF (η) +
(
Ẽ2 − Ũ(η)

)
F (η)

]
ψnk(ξ)

+ π̃ · pη

∑
l 6=n

(π̃ln · pη)F (η)

εlk − εnk
ψlk(ξ).

(2.36)

By demanding that the right-hand side is orthogonal to ψnk,

0 = −p2
ηF (η) +

(
Ẽ2 − Ũ(η)

)
F (η) +

∑
l 6=n

(π̃ln · pη)(π̃nl · pη)

εlk − εnk
F (η), (2.37)

we obtain the following effective Schrödinger equation for F (X) with dimensions

restored

− ~2

2m∗αβ
∇X,α∇X,βF (X) + U(X)F (X) = E2F (X), (2.38)

where we have introduced the effective mass tensor

1

m∗αβ
=

1

m0

δαβ − 2
∑
l 6=n

παlnπ
β
nl

εlk − εnk
, (2.39)

with π = π̃Ek
a
~ . Thus, the only change we get when introducing the spin-orbit

coupling is that the velocity operator takes the place of the momentum operator,

pαln → m0π
α
ln. Eq. (2.38) is analogous to the result of the one dimensional case,

Eq. (2.20), however, by introducing three dimensions, we have to use an effective

mass tensor instead of a scalar effective mass, as was to be expected.

When it comes to finding the lowest order correction to the Scrödinger equation,

the method we have employed is simple and efficient. As can be seen from Eq.

(2.24) the third and fourth order corrections will include a coupling of spin

and the impurity potential, a so called extrinsic spin-orbit coupling. Terms like
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these could prove interesting, even though we expect them to be small. However,

we will let this conclude our treatment using multiple-scale analysis, since we

identify that the method becomes increasingly cumbersome when higher order

corrections are to be included. For this purpose, the other methods we will

include are superior.
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3 Luttinger-Kohn

We will now present the Luttinger-Kohn model. The Luttinger-Kohn model is

widely used in the study of the electronic properties of semiconductors. Our

treatment follows closely the seminal paper Motion of Electrons and Holes in

Perturbed Periodic Fields by Luttinger and Kohn, published in 1954 [71]. This

model will be our main tool for calculating the electronic states in the presence

of slowly varying impurity potentials. For the sake of simplicity, we have set

~ = 1.

3.1 Non-degenerate bands

We first consider a semiconductor with a band minimum at the center of the

first Brillouin zone, k = 0. The Schrödinger equation for an electron in the

periodic potential is

H0ψnk = εnkψnk, (3.1)

where H0 = p2

2m0
+ V , V is the periodic potential due to the crystal, εnk is the

eigenenergy and ψnk are Bloch functions. Our interest is in how an impurity,

described by an additional potential U , modifies the electron states. In other

words, we want to solve the Schrödinger equation

(H0 + U)ψ = εψ. (3.2)

Instead of expanding the solution of this equation in the Bloch functions,

ψnk = eik·runk, (3.3)

we choose the Luttinger-Kohn basis,

χnk = eik·run0. (3.4)

Here unk(r) is a function with the same periodicity as the crystal potential.

Before proceeding we shall show that the Luttinger-Kohn basis is complete. To
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this end, we consider an arbitrary function, f(r), which can be expanded in

ψnk,

f(r) =
∑
n

∫
dkgn(k)ψnk

=
∑
n

∫
dkgn(k)eik·runk. (3.5)

Because un0 is a complete basis with respect to the periodic functions we can

expand any of the unk functions in this basis,

unk =
∑
n′

bnn′(k)un′0. (3.6)

Combining this with Eqs. (3.5) and (3.4), we get

f(r) =
∑
n′

∫
dkg̃n′(k)χn′k, (3.7)

with

g̃n′(k) =
∑
n

gn(k)bn′n(k). (3.8)

Eq. (3.7) implies we can expand an arbitrary function in terms of the Luttinger-

Kohn basis. The Bloch functions form an orhonormal basis,

〈ψnk|ψn′k′〉 = δnn′δ(k− k′). (3.9)

We shall now see that this is also the case for the Luttinger-Kohn basis.

〈χnk|χn′k′〉 =

∫
ei(k

′−k)·ru∗n0un′0dr. (3.10)

First, we note that the product u∗n0un′0 has the same periodicity as the lattice

potential, which means we can Fourier-expand it using only the reciprocal lattice

vectors, Km,

u∗n0un′0 =
∑
m

Bnn′

m e−iKm·r, (3.11)

where Bnn′
m are coefficients that depend on the indices n and n′ as well as the

reciprocal lattice vector Km. We then get

〈χnk|χn′k′〉 =

∫
drei(k

′−k)·r
∑
m

Bnn′

m e−iKm·r

= (2π)3
∑
m

Bnn′

m δ(k′ − k−Km). (3.12)
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Here we have used the fact that the δ-function can be expressed as

δ(k) =
1

(2π)3

∫
eik·rdr. (3.13)

In the sum appearing in Eq. (3.12), only the term with m = 0 is non-zero, since

k and k′ both are in the first Brillouin zone. This implies that k′−k−Km = 0 is

only fulfilled when Km = 0. Multiplying Eq. (3.11) with eiKm·r and integrating

over the unit cell with a volume Ω we get

Bnn′

m =
1

Ω

∫
cell

dreiKm·ru∗n0un′0, (3.14)

so that we may insert

Bnn′

0 =
1

Ω

∫
cell

u∗n0un′0dr =
1

(2π)3
δnn′ , (3.15)

into Eq. (3.12). This means

〈χnk|χn′k′〉 = δ(k′ − k)δnn′ . (3.16)

We have now shown that the Luttinger-Kohn basis is complete and orthonormal.

These properties are important for what follows.

Now, expanding ψ in the Luttinger-Kohn basis, we get

ψ =
∑
n

∫
dk′An(k′)χnk′ . (3.17)

This expansion inserted into the Schrödinger equation (3.2) results in the fol-

lowing equation for An(k)∑
n′

∫
dk′〈nk|H0 + U |n′k′〉An′(k′) = εAn(k). (3.18)

Note that

H0χnk = eik·r(H0 +
k · p
m

+
k2

2m
)un0

= eik·r(εn +
k · p
m

+
k2

2m
)un0, (3.19)
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where εn ≡ εn(k = 0) is the energy at k = 0. Therefore, the matrix elements of

H0 are

〈nk|H0|n′k′〉 =

∫
ei(k

′−k)·ru∗n0

(
εn +

k′ · p
m0

+
k′2

2m0

)
un′0dr. (3.20)

Since u∗n0

(
εn + k·p

m0
+ k2

2m0

)
un′0 has the lattice periodicity, we may expand in

terms of the reciprocal lattice vectors in the same way as before. We then find

that

〈nk|H0|n′k′〉 =
(2π)3

Ω
δ(k− k′)

∫
cell

u∗n0(εn′ +
k′ · p
m0

+
k′2

2m0

)un′0dr

= δ(k− k′)

[(
εn +

k2

2m0

)
δnn′ +

k · pnn′
m0

]
, (3.21)

where we have used Eq. (3.15) so that (2π)3

Ω

∫
cell

u∗n0un′0 = 1 and we have intro-

duced the momentum matrix elements

pnn′ =
(2π)3

Ω

∫
cell

u∗n0pun′0dr. (3.22)

We will now derive an expression for the expectation value of the velocity oper-

ator and use this to find the intraband momentum matrix elements, pnn′ . By a

canonical transformation, we introduce

H̃0 = e−ik·rH0e
ik·r =

(k + p)2

2m0

+ V, (3.23)

so that

H̃0unk = εn(k)unk. (3.24)

Multiplying by u∗nk∇k and integrating, we get∫
dru∗nk∇k

[
H̃0un′k

]
=

∫
dru∗nk∇k [εn′(k)un′k] . (3.25)

The left hand side is then∫
dru∗nk(∇kH̃0)un′k +

∫
dru∗nkH̃0(∇kun′k) =∫

dru∗nk(∇kH̃0)un′k +

∫
dru∗nkεn(k)(∇kun′k), (3.26)
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where we have used that H̃0 is Hermitian. The right hand side is∫
dru∗nk∇k [εn′(k)un′k] =

δnn′∇kεn′(k) +

∫
dru∗nkεn′(k)(∇kun′k), (3.27)

so

δnn′∇kεn(k) + [εn′(k)− εn(k)]

∫
dru∗nk(∇kun′k) =

∫
dru∗nk(∇kH̃0)un′k

=

∫
dru∗nk(

k + p

m0

)un′k

=

∫
drψ∗nk

p

m0

ψn′k,

(3.28)

which means that we may express the intraband momentum matrix elements

as

pnn′(k) = m0∇kεn(k) +m0[εn′(k)− εn(k)]

∫
dru∗nk(∇kun′k), (3.29)

which is zero at the bottom of a band, i.e. pnn = 0. The matrix elements of U

might be found in a similar fashion, with the use of the representation of Eq.

(3.11),

〈nk|U |n′k′〉 =

∫
drei(k

′−k)·rUu∗n0un′0

=
∑
m

∫
drei(k

′−k)·rUBnn′

m e−iKm·r. (3.30)

With the use of the Fourier transform of U ,

U(k) ≡ 1

(2π)3

∫
dre−ik·rU(r), (3.31)

we may write this as

〈nk|U |n′k′〉 = (2π)3
∑
m

Bnn′

m U(k− k′ + Km). (3.32)

By assumption, the impurity potential U is slowly varying in space. It is then a

good approximation to keep only the terms with m = 0. Any term with m 6= 0



3. LUTTINGER-KOHN 23

would lead to high frequency components in the Fourier transform, which would

be small. This approximates the matrix element to

〈nk|U |n′k′〉 = (2π)3Bnn′

0 U(k− k′)

= δnn′U(k− k′). (3.33)

With this approximation of the impurity potential, Eq. (3.18) may then be

written as(
εn +

k2

2m0

)
An(k) +

∑
n′ 6=n

k · pnn′
m0

An′(k) +

∫
dk′U(k− k′)An(k′) = εAn(k).

(3.34)

This is a set of coupled equations for the expansion coefficients An(k). The only

approximation in deriving this equation is that U(k) varies slowly.

We can now get rid of the terms linear in k by carrying out a canonical trans-

formation. We may view Eq. (3.34) as a matrix equation, of the form

HA = εA. (3.35)

By letting

B = e−SA, (3.36)

we can transform the equation to

e−SHeSB = εB ≡ H̃B. (3.37)

We are interested in the eigenstate to the second order in the wave-vector k. It

will become clear that S is linear in wave-vector k to the lowest order. Expanding

H̃ to second order in S, we get

H̃ = H + [H,S] +
1

2
[[H,S], S] + · · · . (3.38)

With

H = H(0) +H(1) + U, (3.39)
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where

〈nk|H(0)|n′k〉 =

(
εn +

k2

2m0

)
δnn′δ(k− k′), (3.40a)

〈nk|H(1)|n′k〉 =
k · pnn′
m0

δ(k− k′), (3.40b)

〈nk|U |n′k〉 = U(k− k′)δnn′ , (3.40c)

we get

H̃ = H(0)+U+H(1)+[H(0), S]+[H(1), S]+
1

2
[[H(0), S], S]+[U, S]+

1

2
[[U, S], S]+· · · .

(3.41)

We now choose S so that

H(1) + [H(0), S] = 0, (3.42)

and thus all first order terms in k are eliminated. This is equivalent to choosing

the matrix elements of S to be

〈nk|S|n′k′〉 =

−
k·pnn′
m0ωnn′

δ(k− k′), n 6= n′,

0, n = n′,
(3.43)

where ωnn′ = εn − εn′ . With this choice, we also get that

[H(1), S] +
1

2
[[H(0), S], S] =

1

2
[H(1), S]. (3.44)

Expressing the identity in our basis, I =
∫
dk
∑

n |nk〉〈nk|, we find

1

2
〈nk|[H(1), S]|n′k′〉 =

kαkβ
2m2

0

[ ∑
n′′ 6=n,n′

pαnn′′p
β
n′′n′

(
1

ωnn′′
+

1

ωn′n′′

)]
δ(k− k′),

(3.45)

where there is an implicit sum over the spatial coordinates α, β ∈ (x, y, z).

Similarly we find that

〈nk|[U, S]|n′k′〉 =

U(k− k′)
(k−k′)·pnn′
m0ωnn′

, n 6= n′,

0, n = n.
(3.46)
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Admittedly these elements arising from the impurity potential are of first order

in k. However, omitting them is a good approximation; the ratio between a

typical Fourier component of U and the typical interband separation is very

small. Also the off-diagonal matrix elements of H̃ which are of second order can

be neglected, as they would only give higher order contributions when projected

onto the lowest energy bands. The result is a diagonal matrix equation for

Bn(k),(
εn +

k2

2m0

+
kαkβ
m2

0

∑
n′′ 6=n

pαnn′′p
β
n′′n

ωnn′′

)
Bn(k) +

∫
dk′U(k− k′)Bn(k′) = εB(k).

(3.47)

By using the f -sum rule from Appendix A, we see that the expression in the

bracket on the left hand side is the second order expansion of εn(k), so that

εn(k)Bn(k) +

∫
dk′U(k− k′)Bn(k′) = εBn(k), (3.48)

where εn(k) is to be expanded to second order in wave-vector k. We can now

do a Fourier transformation to real space coordinates. We therefore introduce a

function

Fn(r) ≡
∫

dkeik·rBn(k), (3.49)

or equivalently

Bn(k) =
Ω

(2π)3

∑
m

e−ik·RmFn(Rm). (3.50)

We then get

[εn(−i∇) + U(r)]Fn(r) = εFn(r). (3.51)

Note that as a zeroth order approximation we have Bn(k) ≈ An(k) so

ψ ≈
∑
n

∫
dkBn(k)eik·run0(r)

=
∑
n

Fn(r)un0(r). (3.52)

Because there is no coupling between the states Fn(r) we can now choose to look

at a single band, for example the conduction band, which takes the form

ψ = F (r)ψc(r), (3.53)
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where ψc(r) is the Bloch function at the band minimum, and F (r) is an envelope

function centered at the impurity.

3.2 Degenerate bands

If the bands are degenerate we will have to modify the procedure slightly. For

reasons of simplicity we consider a crystal which has inversion symmetry about

some point. Let us assume an r-fold degeneracy at the band minimum, which

is assumed to be located at k = 0. We denote the degenerate states φj, where

j ∈ [1, r].

H0φj = ε0φj. (3.54)

All the other bands are denoted by φi where i /∈ [1, r]. For a crystal with a center

of symmetry, the parity operator, P , commutes with the Hamiltonian, which

means that unless there is some accidental degeneracy the degenerate states, φj,

have the same parity. The momentum matrix elements between states of same

parity are zero [71],

pαjj′ = 0, (3.55)

where α denotes the spatial coordinate. Again we expand the solution of the

Schrödinger equation in the Luttinger-Kohn basis of Eq. (3.17), which leads to

the same equation for the expansion functions An(k) as Eq. (3.18):∑
n′

∫
dk′〈nk|H0 + U |n′k′〉An′(k′) = εAn(k). (3.56)

We then follow the same steps as in the case of non-degenerate bands, and with

n set to one of the degenerate bands j, we get(
ε0 +

k2

2m0

)
Aj(k) +

∑
i

kαp
α
ji

m0

Ai(k) +

∫
dk′U(k− k′)Aj(k

′) = εAj(k). (3.57)

The canonical transformation we use is then slightly modified and becomes

〈nk|S|n′k′〉 =

−
k·pnn′
m0ωnn′

δ(k− k′), ωnn′ 6= 0,

0, ωnn′ = 0,
(3.58)
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which means the matrix elements of S are zero for two states in the degenerate

bands. For n = j, this yields to second order in k

∑
j′

(
ε0δjj′ +

k2

2m0

δjj′ +
kαkβ
m2

0

∑
i

pαjip
β
ij′

ε0 − εi

)
Bj′(k)

+

∫
U(k− k′)Bj(k

′)dk′ = εBj(k).

(3.59)

Note that all off-diagonal terms represent coupling between j and j′ states,

coupling between j and i states are neglected as they would lead to higher order

terms when eliminated. We let ε be the energy measured from the bandedge by

setting the energy to be zero at ε0,

r∑
j′=1

(Dαβ
jj′kαkβ)Bj′(k) +

∫
U(k− k′)Bj(k

′)dk′ = εBj(k), (3.60)

with

Dαβ
jj′ =

1

2m0

δjj′δαβ +
1

m2
0

∑
i

pαjip
β
ij′

ε0 − εi
. (3.61)

Again, introducing the Fourier transformation of Bj(k)

Fj(r) =

∫
eik·rBj(k)dk, (3.62)

we arrive at the effective equation for the degenerate case

r∑
j′=1

[
Dαβ
jj′

(
1

i
∇α

)(
1

i
∇β

)
+ U(r)δjj′

]
F ′j(r) = εFj(r). (3.63)

This set of equations are completly analogous to Eq. (3.51), but as we can see the

fact that the bands of interest are degenerate greatly increases the complexity

of the problem.

3.3 Spin-orbit interaction

We now include the spin-orbit coupling to the Hamiltonian

HSO =
1

4m2
0c

2
(σ ×∇V ) · p, (3.64)
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where σ = (σx, σy, σz), and V is the periodic potential. The modified Hamilto-

nian,

H̄0 = H0 +HSO, (3.65)

still has Bloch waves as eigenfunctions. We denote these spin-dependent Bloch

waves as ψ̄nk = eik·rūnk, and the corresponding energy ε̄nk. We note that ūnk

now is a two-component spinor. In the same way as before we choose to expand

the solutions in the basis given by

χ̄nk = eik·rūn0, (3.66)

so that

ψ =
∑
n

∫
dkAn(k)χ̄nk. (3.67)

We now proceed in the same way as in the previous sections, the only difference

being that the matrix elements pnn′ are replaced by a spin-dependent velocity

operator πnn′ given by

πnn′ =
(2π)3

Ω

∫
cell

drū∗n0

(
1

im0

∇+
1

4m2
0c

2
(σ ×∇V )

)
ūn′0. (3.68)

Following the same steps as in Section 3.1 we may easily show that

πnn = ∇kε(k)|k=0, (3.69)

which is zero at the band minimum. The effective mass equation then takes the

same form as Eq. (3.63) with pnn′ → m0πnn′ .

3.4 Renormalised impurity induced spin-orbit coupling

We need to carry out a more careful inspection of the effect of the canonical

transformation on the impurity potential. It is this term which gives rise to a

renormalisation of the extrinsic spin-orbit coupling at impurities. To this end,

we re-consider the term

1

2
[[U, S], S] =

1

2
(USS + SSU − 2SUS), (3.70)
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which is a result of the canonical transformation. This term was neglected by

Luttinger and Kohn [71]. Let us consider the first term on the right hand side

of Eq. (3.70)

〈nk|USS|n′k′〉 =

∫
dq

∫
dq′

∑
m,m′

〈nk|U |mq〉〈mq|S|m′q′〉〈m′q′|S|n′k′〉

=

∫
dq

∫
dq′

∑
m,m′

U(k− q)δnm
qαπ

α
mm′δ(q− q′)

ωmm′

q′βπ
β
m′n′δ(q

′ − k′)

ωm′n′

=

∫
dq
∑
m′

U(k− q)
qαπ

α
nm′δ(q− k′)

ωnm′

k′βπ
β
m′n′

ωm′n′

=
∑
m

U(k− k′)
k′αk

′
βπ

α
nmπ

β
mn′

ωnmωmn′
. (3.71)

We can now use that S is anti-Hermitian and that U is Hermitian, so that with

(παnm)∗ = παmn we have

〈nk|SSU |n′k′〉 = 〈n′k′|USS|nk〉†

=
∑
m

U(k− k′)
kαkβπ

α
nmπ

β
mn′

ωnmωmn′
. (3.72)

Finally, the last term on the right hand side of Eq. (3.70) is

〈nk|SUS|n′k′〉 =

∫
dq

∫
dq′

∑
m,m′

〈nk|S|mq〉〈mq|U |m′q′〉〈m′q′|S|n′k′〉

=

∫
dq

∫
dq′

∑
m,m′

kαπ
α
nmδ(k− q)

ωnm
U(q− q′)δmm′

q′βπ
β
m′n′δ(q

′ − k′)

ωm′n′

=

∫
dq
∑
m

kαπ
α
nmδ(k− q)

ωnm
U(q− k′)

k′βπ
β
mn′

ωmn′

=
∑
m

kαπ
α
nm

ωnm
U(k− k′)

k′βπ
β
mn′

ωmn′

=
∑
m

U(k− k′)
kαk

′
βπ

α
nmπ

β
mn′

ωnmωmn′
. (3.73)

Let us now look at the contribution to the effective Schrödinger equation of

Eq. (3.51) from these terms. We again keep only terms which correspond to
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intraband coupling. The total contribution is

∫
dk

∫
dk′
∑
j′

〈jk|1
2

[[U, S], S]|j′k′〉Bj(k
′)eik·r. (3.74)

To simplify the calculations we look only at the k,k′ dependent part of the

terms, starting with the matrix element of SSU .

∫
dk

∫
dk′U(k− k′)kαkβB(k′)eik·r

=−
∫

dk

∫
dk′U(k− k′)B(k′)∇α∇βe

ik·r

=−∇α∇β [U(r)F (r)] . (3.75)

We continue in the same way for SUS,

∫
dk

∫
dk′U(k− k′)kαk

′
βB(k′)eik·r

=− i∇α

[∫
dk′k′β

∫
dkU(k− k′)eik·rB(k′)

]
=− i∇α

[
U(r)

∫
dk′kβe

ik′·rB(k′)

]
=−∇α [U(r)∇βF (r)] , (3.76)

and finally for SSU ,

∫
dk

∫
dk′U(k− k′)k′αk

′
βB(k′)eik·r

=U(r)

∫
dk′k′αk

′
βe

ik′·rB(k′)

=− U(r)∇α∇βF (r). (3.77)
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We may then write down the total contribution from the term in question to

Eq. (3.51).∫
dk

∫
dk′
∑
j′

〈jk|1
2

[[U, S], S]|j′k′〉Bj′(k
′)eik·r

=
∑
j′

1

2

{
− U(r)∇α∇βFj′(r)−∇α∇β [U(r)Fj′(r)]

+ 2∇α [U(r)∇βFj′(r)]
}∑

m

παjmπ
β
mj′

ωjmωmj′

=
∑
j′

1

2

{
− [∇α∇βU(r)]Fj′(r)

+ [∇αU(r)]∇βFj′(r)− [∇βU(r)]∇αFj′(r)
}∑

m

παjmπ
β
mj′

ωjmωmj′
. (3.78)

Because ∇α∇β = ∇β∇α the first term is symmetric with respect to exchange to

α and β, and with

[∇αU(r)]∇βFj′(r)− [∇βU(r)]∇αFj′(r) =

− {[∇βU(r)]∇αFj′(r)− [∇αU(r)]∇βFj′(r)} ,
(3.79)

we see that the two other terms form an anti-symmetry part. The contribution

will no doubt be very small, but depending on the momentum matrix elements it

could be qualitatively important in that it renormalises the spin-orbit coupling

at extrinsic impurities.

3.5 Germanium

The germanium crystal has a diamond structure. The choice of coordinate

axes are shown in Figure 1. If we neglect the effect of the spin-orbit coupling,

germanium has a three-fold degeneracy in the highest valence bands at k = 0.

Because of the diamond structure symmetry, the eigenfunctions corresponding

to these bands contain only p orbitals, and the conduction band only s orbitals.

We will first show how the effect from a single impurity in absence of spin-orbit

coupling on the valence band can be calculated using the method presented.
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Secondly, we will show how the splitting of the valence bands due to the spin-

orbit coupling affects the conduction band (see Figure 2).

Figure 1. Unit cell of germanium lattice with coordinate axes. It has a diamond

structure, or equivalently a face centered cubic lattice with a basis (0, 0, 0) and
1
4
(1, 1, 1).

Valence bands in the absence of the spin-orbit coupling

First we now will look at the form of the equations of the valence bands, thus

giving a coupled set of equations to describe the holes, disregarding the effect of

the spin-orbit coupling. We also here follow the method outlined by Luttinger

and Kohn [71]. The three degenerate valence states are denoted by the index

j and the conduction band s state by i. Finding the equations for the three

valence bands is now just a matter of finding the matrix D, defined by

Djj′ = kαkβD
αβ
jj′ . (3.80)
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We choose our basis to be (X, Y, Z) where X contains only px orbitals and so

on. Let us first look at the (X,X) element.

DXX = kαkβ(
1

2m0

δXXδαβ +
1

m2
0

∑
i

pαXip
β
iX

ε0 − εi
). (3.81)

Because of cubic symmetry∑
i

pyXip
y
iX

ε0 − εi
=
∑
i

pzXip
z
iX

ε0 − εi
. (3.82)

pβαi will only be non zero if state i is anti symmetric in both α and β, and

symmetric in γ 6= α, β, from this it follows that

pyXip
z
iX = 0. (3.83)

We can then write down a simple expression for the matrix element of Eq.

(3.81),

DXX = Ak2
x +B(k2

y + k2
z), (3.84)

where

A =
1

2m0

+
1

m2
0

∑
i

pxXip
x
iX

ε0 − εi
, (3.85a)

B =
1

2m0

+
1

m2
0

∑
i

pyXip
y
iX

ε0 − εi
. (3.85b)

And for the (X, Y ) component by using the same arguments we find that

DXY = Ckxky, (3.86)

where

C =
1

m2
0

∑
i

pxXip
y
iY + pyXip

x
iY

ε0 − εi
. (3.87)

The other matrix elements now easily follow from cyclic change of coordinates,

and we get

D =


Ak2

x +B(k2
y + k2

z) Ckxky Ckxkz

Ckxky Ak2
y +B(k2

x + k2
z) Ckykz

Ckxkz Ckykz Ak2
z +B(k2

x + k2
y)

 , (3.88)

which determines the equation for the functions Fn.
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Effect of an impurity on conduction band with the spin-orbit cou-

pling

We will now look at how the valence band affects the conduction band when the

spin-orbit coupling is included, neglecting the effect of the other bands as in the

Kane model [72][73], and also how the term presented in Section 3.4 give rise to

an impurity-induced effective spin-orbit coupling.

Figure 2. Illustration of the effective bandstructure of germanium. The spin-

orbit coupling splits the valence bands.εg is the bandgap and ∆ is the spin-orbit

splitting. The two valence bands named heavy-hole and light-hole due to the

curvature give a fourfold degeneracy at k = 0.

The spin-orbit Hamiltonian in a basis (|px ↑〉, |py ↑〉, |pz ↑〉, |px ↓〉, |py ↓〉, |pz ↓〉)
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is

HSO =
∆

3



0 −i 0 0 0 1

i 0 0 0 0 i

0 0 0 −1 i 0

0 0 −1 0 i 0

0 0 −i −i 0 0

1 i 0 0 0 0


, (3.89)

where ∆
3

is the spin-orbit coupling constant. Because the p states are degenerate

in the absence of spin-orbit coupling at k = 0, we simply need to diagonalise

HSO to diagonalise the entire Hamiltonian of the previously degenerate states.

This is done by a unitary transformation, so that

H̃SO = U †HSOU (3.90)

is a diagonal matrix. We find

U =



1√
3

0 − 1√
2

0 0 i√
6

i√
3

0 0 0 0
√

2
3

0 − i√
3

0 i√
2

1√
6

0

0 i√
3

0 0
√

2
3

0

0 1√
3

0 1√
2

i√
6

0
1√
3

0 1√
2

0 0 i√
6


, (3.91)

and

H̃SO =



∆
3

0 0 0 0 0

0 ∆
3

0 0 0 0

0 0 ∆
3

0 0 0

0 0 0 ∆
3

0 0

0 0 0 0 −2∆
3

0

0 0 0 0 0 −2∆
3


. (3.92)

As can be seen from Eq. (3.92), we now have a quadruplet and a doublet,

where the doublet has an energy ∆ lower than the quadruplet, see Figure 2.

The conduction band is of course not affected by the spin-orbit coupling since
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it only contain s orbitals, and remains a doublet, |s ↑〉, |s ↓〉. We proceed to

discuss the electronic properties at finite wave-vectors. We will now look at

the contribution from the valence band to the sum. Let the energy difference

between the conduction band and the quadruplet be denoted εg. We may then

write

pαcvp
β
vc′

m2
0ωcvωvc′

=

−
pαcvp

β

vc′
m2

0ε
2
g
, if the v state is in the quadruplet,

− pαcvp
β

vc′
m2

0(εg+∆)2
, if the v state is in the doublet,

(3.93)

where the subscript c, c′ denotes states of the conduction band, and v, v′ the

valence band. We now insert the eigenfunctions defined by the transformation

matrix given in Eq. (3.91) and define the matrix element of the momentum

operator between a state containing only px orbitals, |x〉, and a state containing

only s orbitals, |s〉, to be

P ≡ 〈x| px
m0

|s〉. (3.94)

Using a computational tool like Mathematica we get the explicit form of Eq.

(3.93),

∑
v

pαcvp
β
vc′

m2
0ωcvωvc′

=

−|P |
2

3

[
δαβ

(
2

ε2g
+

1

(εg + ∆)2

)
+2iεαβγ〈c|Sγ|c′〉

(
1

(εg + ∆)2
− 1

ε2g

)]
,

(3.95)

where Sγ is the γ component of the spin operator S. We may then write the

term

∫
dk

∫
dk′
∑
j′

〈jk|1
2

[[U, S], S]|j′k′〉Bj′(k
′)eik·r (3.96)
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in matrix form,

− |P |
2

3

[
δαβ

(
2

ε2g
+

1

(εg + ∆)2

)
+ 2iεαβγSγ

(
1

(εg + ∆)2
− 1

ε2g

)]
× 1

2

{
−
[
∇α∇βU(r)

]
F (r)−

[
∇βU(r)

]
∇αF (r) +

[
∇αU(r)

]
∇βF (r)

}
=
|P |2

6

[
∇2U(r)

]
F (r)

(
2

ε2g
+

1

(εg + ∆)2

)
− i2|P |2

3

[
S×∇U(r)

]
· ∇F (r)

(
1

(εg + ∆)2
− 1

ε2g

)
=

{
∇2U(r)

4m∗E1

+
g∗

2m0E2

[
S×∇U(r)

]
· (−i∇)

}
F (r), (3.97)

where

E1 =
εg(εg + ∆)(3εg + 2∆)

3ε2g + 4εg∆ + 2∆2
, (3.98a)

E2 =
εg(εg + ∆)

2εg + ∆
, (3.98b)

1

m∗
=

1

m0

+
2|P |2

3

{
3εg + ∆

εg(εg + ∆)

}
, (3.98c)

g∗ = g0 −
4m0|P |2

3

{
∆

εg(εg + ∆)

}
, (3.98d)

and F (r) is a spinor. The definitions of E1, E2, the effective mass and the effec-

tive g-factor is the same as in Ref. [74], detailed in the next section. The first

term is not that interesting, as it will only give some overall change to the po-

tential. The second term is on the other hand very interesting as it renormalises

the spin-orbit coupling at the extrinsic impurity, so that the coupling constant

for vacuum is replaced, 1/4m2
0c

2 → g∗/2m0E2. In germanium this renormalised

coupling constant is much stronger than that of vacuum.
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4 The method of Nozières and Lewiner

To get a different notion of how the Luttinger-Kohn method works, and also

how time dependence may be introduced, we will work out the theory in an

alternate way. To this end, we follow a method first presented by Nozières and

Lewiner [74].

4.1 General approach

We still consider a semiconductor, and we are interested in the behaviour of elec-

trons in the conduction band near the band minimum at k = k0. An arbitrary

state, Ψ = ψ1 + ψ2, has components of both the conduction band wavefunc-

tion

ψ1 =
∑
j∈c

∫
dkAj(k)χ̄jk(r) (4.1)

and the other bands

ψ2 =
∑
i∈v

∫
dkAi(k)χ̄ik(r). (4.2)

Ψ satisfies the time dependent Schrödinger equation,

iΨ̇ = HΨ. (4.3)

Before employing the Luttinger-Kohn model we will look at how we may acquire

an effective equation for the conduction bands. The Schrödinger equation may

be written as two coupled equations, where h, h† is the coupling between the

conduction band states and the other band states,

iψ̇1 = H1ψ1 + hψ2, (4.4a)

iψ̇2 = h†ψ1 +H2ψ2. (4.4b)

H2 is a sum of two components, one which gives us the energy gap measured

from the conduction band at the band minimum, Hg, and one which describes

any coupling between the other bands, H ′2, resembling H1,

H2 = Hg +H ′2. (4.5)
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Hg is considered to be large compared to the other components of H. To elimi-

nate ψ2 from Eq. (4.4a), we solve Eq. (4.4b) for ψ2 by using an iteration scheme

up to second order in 1/H2,

ψ2 = − 1

H2

h†ψ1 +
i

H2

ψ̇2

= − 1

H2

h†ψ1 −
i

H2
2

(
ḣ†ψ1 + h†ψ̇1

)
+O(

1

H3
2

). (4.6)

Expanding Eq. (4.6) in the inverse of the bandgap, 1/Hg, up to second or-

der

ψ2 =

[
− 1

Hg

h† +
1

Hg

H ′2
1

Hg

h† − i

H2
g

ḣ†
]
ψ1 −

i

H2
g

h†ψ̇1 +O(
1

H3
g

). (4.7)

We can now eliminate ψ2 by inserting the expression for ψ2 from Eq. (4.7) into

Eq. (4.4a) and get

i(1 + Λ)ψ̇1 = H̄ψ1, (4.8)

with

Λ = h
1

H2
g

h†, (4.9)

and

H̄ = H1 − h
1

Hg

h† + h
1

Hg

H ′2
1

Hg

h† − ih 1

H2
g

ḣ†. (4.10)

We thus have a Schrödinger-like equation for ψ1. Due to normaliasation of Ψ and

the orthogonality of ψ1 and ψ2, we have to the second order in 1/Hg that

1 = 〈ψ1|ψ1〉+ 〈ψ2|ψ2〉

= 〈ψ1|(1 + Λ)|ψ1〉. (4.11)

We now introduce an effective wave function for the conduction band

ψeff = (1 +
Λ

2
)ψ1, (4.12)

which as we can see from Eq. (4.11) is normalised.
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Taking the time derivative and using Eq. (4.8) to second order in 1/Hg

ψ̇eff =

(
1 +

Λ

2

)
ψ̇1 +

Λ̇

2
ψ1

= −
(

1 +
Λ

2

)
i(1− Λ)H̄ψ1 +

Λ̇

2
ψ1

= −i
(

1− Λ

2

)
H̄ψ1 +

1

2

(
ḣ

1

H2
g

h† + h
1

H2
g

ḣ†
)
ψ1

= −i
(

1− Λ

2

)
H̄

(
1− Λ

2

)
ψeff +

1

2

(
ḣ

1

H2
g

h† + h
1

H2
g

ḣ†
)(

1− Λ

2

)
ψeff

= −i
(
H̄ − Λ

2
H̄ − H̄Λ

2
+
i

2
ḣ

1

H2
g

h† +
i

2
h

1

H2
g

ḣ†
)
ψeff. (4.13)

This gives us the following effective Schrödinger equation

iψ̇eff = Heffψeff, (4.14)

with

Heff = H0 + δH, (4.15)

where

H0 = H1 − h
1

Hg

h†, (4.16)

and

δH = −ΛH0 +H0Λ

2
+ h

1

Hg

H ′2
1

Hg

h† +
i

2

[
ḣ

1

H2
g

h† − h 1

H2
g

ḣ†
]
. (4.17)

Now that we have found the desired effective equation for the conduction bands,

we again look to the Luttinger-Kohn model. Introducing the functions

Gn(r) =

∫
dkAn(k)eik·r, (4.18)

Eqs. (4.1) and (4.2) takes the form

ψ1 =
∑
n∈c

Gn(r)unk0 , (4.19a)

ψ2 =
∑
n∈v

Gn(r)unk0 . (4.19b)
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The Hamiltonian for the functions Gn(r) are readily obtained by Fourier trans-

forming Eq. (3.34).

H = E +
~2k2

2m0

+ ~k · π, (4.20)

where k = −i∇, E is a diagonal matrix with elements εn and π is a matrix with

elements

πnn′ = 〈nk0| −
i~
m0

∇+
~

2m2
0c

2
S×∇V |n′k0〉, (4.21)

where S = σ/2 is the spin operator. By letting εn be the energy measured from

the bottom of the conduction band we have that Hg = E . We then have all the

components necessary for finding the effective Hamiltonian.

4.2 Germanium with time dependent electric and mag-

netic field

For a better illustration we again turn to germanium. We now make the system

time dependent by turning on a spatially uniform, time dependent E and B

field. The Hamiltonian for the envelope functions is

H = E +
~2k2

2m0

+ g0βS ·B + ~k · π, (4.22)

where we get an extra term due to the coupling between the magnetic moment

caused by spin and the surrounding magnetic field, with the free space g-factor

for an electron g0 ≈ 2, and the Bohr magneton β = e~/(2m0). Also the canonical

wavevector is modified, and now includes an additional term due to the vector

potential A(r, t),

k = −i∇+
eA

~
, (4.23)

which means its components no longer commute,

[kα, kβ] = −ie
~
εαβγBγ. (4.24)

The matrix elements of the velocity operator π at k = 0 are

πnn′ = 〈n0| − i~
m0

∇+
~

2m2
0c

2
S×∇V |n′0〉, (4.25)
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but we disregard the spin-dependent part as this is a very good approximation

for germanium [74], and write

m0πnn′ → pnn′ = 〈n0| − i~∇|n′0〉. (4.26)

Since we are doing an expansion in the inverse of the bandgap, neglecting con-

tributions from other bands than the valence bands is a good approximation.

Because

〈v| 1

Hn
g

|v′〉 =

δvv′ 1
(−εg)n

, v is in the quadruplet,

δvv′
1

(−εg−∆)n
, v is in the doublet,

(4.27)

we get the following relation by inserting the identity, I =
∑

n |n〉〈n|, and com-

paring with Eq. (3.95),

1

m2
0

〈c|pα
1

Hn
g

pβ|c′〉 =
|P |2

3

[
δαβ

{
2

(−εg)n
+

1

(−εg −∆)n

}
+2iεαβγ〈c|Sγ|c′〉

{
1

(−εg −∆)n
− 1

(−εg)n

}]
,

(4.28)

where as before P ≡ 〈x|px/m0|s〉. Since the momentum operator has no ele-

ments coupling between the conduction bands or between the valence bands we

recognise H1 and H ′2 to be

H1 = H ′2 =
~2k2

2m0

+ g0βS ·B, (4.29)

and the coupling

h =
~k · p
m0

. (4.30)

Using Eq. (4.28), we may then with ease calculateH0 defined by Eq. (4.16),

H0 =
~2k2

2m0

+ g0βS ·B− ~2

m2
0

kαpα
1

Hg

pβkβ

=
~2k2

2m0

+ g0βS ·B− ~2kαkβ
|P |2

3

[
δαβ

{
2

(−εg)
+

1

(−εg −∆)

}
+2iεαβγSγ

{
1

(−εg −∆)
− 1

(−εg)

}]
.

(4.31)



4. THE METHOD OF NOZIÈRES AND LEWINER 43

Because the Levi-Cevita tensor is anti-symmetric in all indices, εαβγkαkβ =

εαβγ(kαkβ − kβkα)/2. Using this and the commutation relation Eq. (4.24), we

get

H0 =
~2k2

2m0

+ g0βS ·B + ~2kαkβδαβ
|P |2

3

{
2

εg
+

1

εg + ∆

}
+

~2|P |2

3
2i
εαβγ(kαkβ − kβkα)

2
Sγ

{
1

(εg + ∆)
− 1

εg

}
.

=
~2k2

2

[
1

m0

+
2|P |2

3

{
3εg + ∆

εg(εg + ∆)

}]
+

[
g0βS ·B− |P |

2

3
iεαβγ

ie

~
εαβδBδSγ

{
−∆

εg(εg + ∆)

}]
,

(4.32)

which, by using the relation εαβγεαβδ = 2δγδ, results in H0 given in the neat

form

H0 =
~2k2

2m∗
+ g∗βS ·B, (4.33)

with an effective mass and g-factor given by

1

m∗
=

1

m0

+
2|P |2

3

{
3εg + ∆

εg(εg + ∆)

}
, (4.34)

g∗ = g0 −
4m0|P |2

3

{
∆

εg(εg + ∆)

}
. (4.35)

For germanium |g∗| � g0 and m∗ � m0, so we may neglect g0 and 1/m0. Using

the same procedure, Eq. (4.9) may then be written as

Λ =
~2

m2
0

kαpα
1

H2
g

pβkβ

=~2kαkβ
|P |2

3

[
δαβ

{
2

(−εg)2
+

1

(−εg −∆)2

}
+2iεαβγSγ

{
1

(−εg −∆)2
− 1

(−εg)2

}]
=

~2k2

2m∗E1

+
g∗β

E2

S ·B, (4.36)
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with as in Section 3.5

E1 =
εg(εg + ∆)(3εg + 2∆)

3ε2g + 4εg∆ + 2∆2
, (4.37a)

E2 =
εg(εg + ∆)

2εg + ∆
. (4.37b)

We note that Eq. (4.17) contains the time derivative of h. This gives rise to

terms that are dependent on the electric field, E = −∂A/∂t:

ḣ =
~
m0

∂k · p
∂t

=
e

m0

∂A

∂t
· p = −eE · p

m0

. (4.38)

We disregard terms of order k4 since it is irrelevant for the spin-related effects

that are the subject of our investigation. The constant term (B · S)2 = B2/4 is

also ignored. Since we here only consider spatially uniform E and B fields, k2

will commute with both B and E. Eq. (4.17) then becomes

δH =− ΛH0 +H0Λ

2
+

~2

m2
0

kαpα
1

Hg

H ′2
1

Hg

pβkβ

− ie~
2m2

0

[
Eαpα

1

H2
g

pβ~kβ − ~kαpα
1

H2
g

pβEβ

]
=− ΛH0 + ΛH ′2 −

i~2e

2m2
0

pα
1

H2
g

pβ[Eαkβ − kαEβ]. (4.39)

The second term in Eq. (4.39) will be negligible compared to the first in the

limit m∗ � m0 and |g∗| � g0.

δH =−
[

~2k2

2m∗E1

+
g∗β

E2

S ·B
] [

~2k2

2m∗
+ g∗βS ·B

]
− ie~2|P |2

6

[
δαβ

(3εg + 2∆)

εg(εg + ∆)E1

− 2iεαβγSγ
∆

εg(εg + ∆)E2

]
[Eαkβ − kαEβ]

=− ~2k2

2m∗
g∗β

E0

S ·B− g∗β~
E2

(k× E) · S, (4.40)

where 1/E0 = 1/E1 + 1/E2.

As in Section 3 we now introduce the impurity potential U(r), which is assumed

to be spin independent and slowly varying in space. To keep track of the origin
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of the terms, we distinguish between the potential in H1 and H2, even though

they are the same,

U1 = U2 = U(r). (4.41)

The contribution from this impurity to the effective Hamiltonian will according

to Eq. (4.15) reduce to

Ueff =U1 −
ΛU1 + U1Λ

2
+

~2

m2
0

kαpα
1

Hg

U2
1

Hg

pβkβ

=U1 +
i~2(∇U1) · k

2m∗E1

+
~2(∇2U1)

4m∗E1

− U1
~2k2

2m∗E1

− U1
g∗β

E2

S ·B

+ kαU2kβ
~2|P |2

3

[
δαβ

(3εg + 2∆)

εg(εg + ∆)E1

− 2iεαβγSγ
∆

εg(εg + ∆)E2

]
.

(4.42)

With U1 = U2, this reduces to

Ueff =U1

(
1− g∗β

E2

S ·B
)

+
~2(∇2U1)

4m∗E1

+
ig∗β~
eE2

εαβγSγkαU2kβ (4.43)

=U1

(
1− g∗β

E2

S ·B
)

+
~2(∇2U1)

4m∗E1

− ig∗β

eE2

U2εαβγSγ
ie

2
εαβδBδ

+
g∗β~
eE2

εαβγSγ(∇U2)αkβ,

where we have commuted kα with U2 and again used the relation εαβγkαkβ =

εαβγ(kαkβ − kβkα)/2 together with the commutation relation from Eq. (4.24).

We then get

Ueff =U1 +
~2(∇2U1)

4m∗E1

+
g∗β

E2

S ·B (U2 − U1) +
g∗β~
eE2

(∇U2) · (k× S). (4.44)

Discarding the non-spin-dependent correction and again with U1 = U2 this re-

duces to

Ueff = U1 +
g∗β~
eE2

(∇U2) · (k× S). (4.45)

The total effective Hamiltonian becomes

Heff = H0−
~2k2

2m∗
g∗β

E0

S ·B +
g∗β~
E2

(k× S) ·E +U1 +
g∗β~
eE2

(k× S) ·∇U2. (4.46)

This is the same result as in Section 3.5, but with additional terms due to the

electric and magnetic field.
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By introducing a scalar electrostatic potential, φ = −E · r and an effective

position operator

reff = r + ρ, (4.47)

with

ρ =
g∗β~
eE2

k× S, (4.48)

we can see that the effective Hamiltonian, Eq. (4.46), reduces to

Heff = H0 −
~2k2

2m∗
g∗β

E0

S ·B + eE · reff + U(reff). (4.49)

Here U(reff) is to be expanded to the first order in ρ. The correction to the

position operator due to the spin-orbit coupling may then be considered as an

electric dipole moment, µ = −eρ, as can clearly be seen from Eq. (4.46).
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5 Bandstructure of graphene

Graphene is a one-atom-thick two-dimensional layer of carbon atoms arranged in

a honeycomb structure. Carbon atoms have four valence electrons. In graphene,

three of these, namely the 2s, 2px, and 2py orbitals, are used to make chemical

bonds to the three nearest neighbours through a sp2 hybridisation. These are

called the σ bands and are responsible for the strong chemical bonds in graphene

and the exceptional mechanical properties. The remaining 2pz orbital form

the π bands which govern the electronic properties of graphene. We will first

concentrate on the π bands and later investigate what effects the σ bands as

well as the d orbitals have on the π bands.

5.1 π bands

The honeycomb structure of graphene is equivalent to a system of two interlock-

ing triangular sublattices, which we will label as A and B, respectively. We use

the primitive lattice vectors

a1 =
a

2
(1,
√

3) , (5.1a)

a2 =
a

2
(−1,

√
3), (5.1b)

where a = |a1| = |a2| = 2.46 Å is the lattice constant of the triangular sublat-

tices, i.e. the next-nearest neighbour distance of graphene.

We find the reciprocal lattice vectors, Gi, by using the well-known relation

ai ·Gj = 2πδij,

G1 =
2π√
3a

(
√

3, 1) , (5.2a)

G2 =
2π√
3a

(−
√

3, 1). (5.2b)
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Figure 3. The graphene lattice has a honeycomb structure. The A sites (red)

and the B sites (blue) each form a Bravais lattice with the primitive lattice

vectors a1 and a2. The grey parallelogram is a unit cell with a basis of two

carbon atoms.

The nearest neighbour vectors for the A sites in the honeycomb lattice depicted

in Figure 4 are

δ1 =
a√
3

(0,−1) , (5.3a)

δ2 =
a√
3

(

√
3

2
,
1

2
) , (5.3b)

δ3 =
a√
3

(−
√

3

2
,
1

2
). (5.3c)

The second quantised form of the tight-binding Hamiltonian in the nearest neigh-
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Figure 4. The nearest neighbour vectors in graphene for an A atom, corre-

sponding to Eq. (5.3).

bour approximation for the π bands is

Hπ = −t
∑
〈ij〉

[
a†ibj + b†jai

]
, (5.4)

where a†i (ai) creates (anihilates) an electron at site i of sublattice A, b†j (bj)

creates (anhiliates) an electron at site j of sublattice B and t = 3.033 eV is the

hopping integral. We use the Fourier transformation

a†k =
1√
N

∑
i

eik·Ria†i , (5.5a)

a†i =
1√
N

B.Z.∑
k

e−ik·Ria†k , (5.5b)

and similarly for the operators bj, where Ri is the position of the ith lattice

site and N the number of lattice sites of the sublattices. Since we are consid-
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Figure 5. The first Brillouin zone is a hexagon. The points of high symmetry

have been marked. In the center of the hexagon (Γ) we have k = 0. The top

right corner is the K point, and the left corner is the K ′ point. In between K

and K ′ we have M .

ering an infinitely large graphene sheet, any expression containing N should be

understood in the limit N →∞. We may express Eq. (5.4) as

Hπ = − t

N

∑
〈ij〉

∑
k,k′

e−ik·Ria†ke
ik′·Rjbk′ +H.c. (5.6)

We now choose there to be no phase difference for hopping to nearest neighbour

1, e.g. for hopping from an A site to the nearest neighbour δ1 from Eq. (5.3a).

This is just a simple unitary transformation and does not change the physics.

By introducing Rj = Ri +δj−δ1 and summing over nearest neighbours, j, this
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is

Hπ = − t

N

∑
〈ij〉

∑
k,k′

eiRi·(k′−k)eik
′·(δj−δ1)a†kbk′ +H.c. (5.7)

= − t

N

∑
i

∑
k,k′

eiRi·(k′−k)(1 + eik
′·a1 + eik

′·a2)a†kbk′ +H.c. (5.8)

(5.9)

Using that 1
N

∑
i e
iRi·(k′−k) = δkk′ , we get

Hπ = − t
∑
k,k′

δkk′(1 + eik·a1 + eik·a2)a†kbk +H.c.

= − t
∑
k

(1 + eik·a1 + eik·a2)a†kbk +H.c., (5.10)

or in a matrix form

Hπ =
∑
k

(
a†k b†k

)( 0 −tf(k)

−tf ∗(k) 0

)(
ak

bk

)
, (5.11)

where f(k) = 1 + eik·a1 + eik·a2 = 1 + 2ei
√
3
2
kya cos kxa

2
. Diagonalising, we obtain

the eigenenergies

ε±k =± t|f(k)|

=± t

√
3 + 2 cos (kxa) + 4 cos

(√
3

2
kya

)
cos

(
1

2
kxa

)
. (5.12)

This has been plotted in Figure 6. The corresponding eigenfunctions are

u± =
1√
2

(
1

∓ f∗(k)
|f(k)|

)
, (5.13)

given in a basis of (|pzA〉, |pzB〉).

The two energy bands touch at the so-called Dirac points,

K = (
2π

3a
,

2π√
3a

), K′ = (
4π

3a
, 0) , (5.14)
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Figure 6. Bandstructure of the π bands in the first Brillouin zone as a function

of the momentum k. At the K and K ′ points where the bands touch they form

Dirac cones.
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and are characterised by a linear (conical) dispersion relation close to these

points. There are actually six points like these in the first Brillouin zone, but

only two of them are unique; the remaining are connected to K and K ′ by the

reciprocal lattice vectors b1 and b2.

Expanding around the K point, we get for small momenta q = k−K

f(q) = 1− 2ei
√
3

2
qya cos(

π

3
+
qxa

2
)

= 1− 2(1 + i

√
3

2
qya+O(q2

y))(
1

2
−
√

3

4
qxa+O(q2

x))

=

√
3a

2
(qx − iqy) +O(q2). (5.15)

In the limit |aq| � 1, Eq. (5.11) can then be approximated to linear order in

q,

Hπ(K) =−
√

3

2
ta

∑
|q|�1/a

(
a†K+q b†K+q

)( 0 qx − iqy
qx + iqy 0

)(
aK+q

bK+q

)

=−
√

3

2
ta

∑
|q|�1/a

Ψ†σ · qΨ, (5.16)

where σ = (σx, σy) are Pauli matrices acting on the sublattice A/B pseudospin

space and

Ψ =

(
aK+q

bK+q

)
. (5.17)

Eq. (5.16) describes a coupling of momentum to the pseudospin degree of free-

dom. Similarly for small momentum about k = K′ ,

Hπ(K′) =

√
3

2
ta

∑
|q|�1/a

Ψ†σ∗ · qΨ. (5.18)

We then get the linear dispersion in the vicinity of the Dirac points,

ε(q) = ±~vF |q| , (5.19)

where we have introduced a Fermi velocity vF =
√

3
2
ta/~ ≈ 106 m/s. Thus,

the low energy excitations behave as massless fermions described by the Dirac

equation.
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Table 1. Slater-Koster hopping integrals, tµ,ν , where l = x/r = cosφ, m =

y/r = sinφ and n = z/r = cos θ. n = cos θ = 0 since we are only considering

flat graphene. [75][76]

ts,s Vssσ

ts,x lVspσ

tx,x l2Vppσ + (1− l2)Vppπ

tx,y lmVppσ − lmVppπ

tx,z lnVppσ − lnVppπ

Table 2. Hopping parameters taken from [77][78].

Parameter Energy (eV)

εs -8.868

εp 0

Vssσ -6.769

Vspσ +5.580

Vppσ +5.037

Vppπ -3.033

5.2 σ bands

Up until this point, we have just considered the pz orbitals that generate the π

bands. We will now consider the effect of the s, px and py orbitals that form the

σ bands. We use the same procedure as for the π bands, but we now have to

distinguish between the on-site atomic energies of the s orbitals, εs, and the p

orbitals, εp. Also the hopping integrals depend on the relative angles, see Table

1 and Figure 7.

As can be seen from Table 1, because we are only considering flat graphene,

there is no hopping between pz and s, px, or py orbitals. The π bands and the
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Figure 7. The relative angles which enters into the calculation of the hopping

matrix elements for hopping from orbital 1 to orbital 2.

σ bands can then be treated separately,

H = Hπ +Hσ. (5.20)

The Hamiltonian for the σ bands can be split into an on-site atomic part and a

hopping part,

Hσ = Hσa +Hσh , (5.21)

where, using the same convention as before by labelling the states for the A and
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B lattices independently,

Hσa =
∑
i

∑
µ;χ=↑,↓

εµ

(
a†iµχaiµχ + b†iµχbiµχ

)
, (5.22a)

Hσh =
∑
〈ij〉

∑
µ;ν;χ=↑,↓

tµνij a
†
iµχbjνχ +H.c. , (5.22b)

where µ, ν ∈ (s, px, py) and χ denotes spin. Our Hamiltonian, H, is an 8 × 8

matrix. a†iµχ(aiµχ) denotes the creation (annihilation) operator for a µ orbital

with spin χ on the ith atom of sublattice A. tµνij is the hopping integral for an

electron going from the state ν on site j to the state µ on site i. Eq. (5.22b) has

been calculated in Mathematica using the two-center Slater-Koster approxima-

tion [76][79], with the general hopping integrals given in Tables 1 and 2. The

bandstructure of the π and σ bands has been plotted in Figure 8.

Figure 8. Energy of the σ bands (blue) and the π bands (red) in the near-

est neighbour approximation as a function of momentum k between the high

symmetry points K, Γ, M and back to K. See Figure 5.
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Evaluated at the K-point, the Hamiltonian for the σ-bands is

HσK =



εs 0 0 0 ±iα α

0 εp 0 ∓iα −β ∓iβ
0 0 εp −α ∓iβ β

0 ±iα −α εs 0 0

∓iα −β ±iβ 0 εp 0

α ±iβ β 0 0 εp


, (5.23)

where α = 3/2Vspσ and β = 3/4(Vppσ − Vppπ).

As mentioned there is no coupling between the π and σ bands when neglecting

the spin-orbit interaction. Thus, the s, px and py orbitals do not directly con-

tribute to the low-energy electronic properties of graphene. Furthermore, this

also means that any effective contribution from the spin-orbit coupling from

the σ bands on the π bands will consequently have to be be quadratic in the

spin-orbit coupling constant.

5.3 π bands with d orbitals

Since the pz orbitals do not hybridise with s orbitals or the other p orbitals, one

may be inclined to stop here and be satisfied with the result obtained above for

the π band. However, it was shown by Slonczewski et al. [11] using group theo-

retical arguments that the pz orbitals hybridise with orbitals of a higher principal

quantum number than 2, most importantly 3d orbitals. We will therefore extend

our model to include the effect of these orbitals.

We will now consider the π bands to be formed by pz, as well a small contribution

from dxz and dyz to be determined [77].

The Hamiltonian at k = K for the π bands with d orbitals has an on-site part

and an inter-atomic hopping part,

Hπ = Hπa +Hπh , (5.24)
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Table 3. Slater-Koster hopping integrals tµ,ν where l = x/r = cosφ, m =

y/r = sinφ, as before. The terms containing n have been dropped since n =

z/r = cos θ = 0 for flat graphene. [77][76]

tz,z Vppπ

tz,xz lVpdπ

tz,yz mVpdπ

txz,xz l2Vddπ +m2Vddδ

txz,xz m2Vddπ + l2Vddδ

txz,yz lmVddπ − lmVddδ

with

Hπa =
∑
i

∑
µ;χ=↑,↓

εµ

(
a†iµχaiµχ + b†iµχbiµχ

)
, (5.25a)

Hπh =
∑
〈ij〉

∑
µ;ν;χ=↑,↓

tµνij a
†
iµχbjνχ +H.c. , (5.25b)

where µ, ν ∈ (pz, dxz, dyz). By using the hopping integrals in Table 3, we get the

following Hamiltonian for the pz orbitals and the relevant d orbitals, evaluated at

the Dirac points and given in a basis of (pz,A, dxz,A, dyz,A, pz,B, dxz,B, dyz,B):

HπK =



εp 0 0 0 iτγ γ

0 εd 0 −iτγ δ iτδ

0 0 εd −γ iτδ −δ
0 iτγ −γ εp 0 0

−iτγ δ −iτδ 0 εd 0

γ −iτδ −δ 0 0 εd


, (5.26)

where γ = 3
2
Vpdπ, δ = 3

4
(Vddδ − Vddπ), and τ = 1 for K and −1 for K ′. The

two lowest eigenvalues of this matrix correspond to two degenerate states which
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form the π bands,

|1〉 ≈ 1√
N

[
|pz,A〉+

γ

εd − εp
(iτ |dxz,B〉 − |dyz,B〉)

]
, (5.27a)

|2〉 ≈ 1√
N

[
|pz,B〉+

γ

εd − εp
(iτ |dxz,A〉+ |dyz,A〉)

]
, (5.27b)

where we have used that γ � (εd− εp). The corresponding eigenvalues are

ε1,2 ≈ εp −
2γ2

εd − εp
. (5.28)

Including hybridisation of pz and the d orbitals gives a small overall shift of the

eigenenergies of the π bands at the Dirac points. We see that the correction to

the energies with respect to εp is quadratic in the pz-d hopping γ.

The remaining d orbitals, dz2 , dxy and dx2−y2 , hybridise with s, px and py, but

not with pz in flat graphene. The effect of these three d orbitals will be neglected

hereafter. The Slater-Koster tight-binding parameters for s, px, py, dz2 , dxy and

dx2−y2 are given in Table 4 for reference.



62

Table 4. Slater-Koster hopping integrals, tµ,ν for the σ band with d orbitals

where l = x/r = cosφ, m = y/r = sinφ, as before. The terms containing n

have been dropped since n = z/r = cos θ = 0 for flat graphene. [76]

ts,z
2 −1

2
(l2 +m2)Vsdσ

ts,xy
√

3lmVsdσ

ts,x
2−y2 −1

2

√
3(l2 −m2)Vsdσ

tx,z
2 −1

2
l(l2 +m2)Vpdσ

tx,xy
√

3l2mVpdσ +m(1− 2l2)Vpdπ

tx,x
2−y2 1

2

√
3l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ

ty,z
2 −1

2
m(l2 +m2)Vpdσ

ty,xy
√

3lm2Vpdσ + l(1− 2m2)Vpdπ

ty,x
2−y2 1

2

√
3l(l2 −m2)Vpdσ −m(1 + l2 −m2)Vpdπ

tz
2,z2 [−1

2
(l2 +m2)]2Vddσ + 3

4
(l2 +m2)2Vddδ

tz
2,xy −1

2

√
3lm(l2 +m2)Vddσ − 1

2

√
3lmVddδ

tz
2,x2−y2 −1

4

√
3(l2 −m2)(l2 +m2)Vddσ + 1

4

√
3(l2 −m2)Vddδ

txy,xy 3l2m2Vddσ + (l2 +m2 − 4l2m2)Vddπ + l2m2Vddδ

txy,x
2−y2 3

2
lm(l2 −m2)Vddσ + 2lm(m2 − l2)Vddπ + 1

2

√
3lm(l2 −m2)Vddδ

tx
2−y2,x2−y2 3

4
(l2 −m2)2Vddσ + [l2 +m2 − (l2 −m2)2]Vddπ + 1

4
(l2 −m2)2Vddδ

6 Spin-orbit coupling in graphene

6.1 π-σ spin-orbit coupling

We will now consider the spin-orbit coupling between the π and σ bands, or

more specifically between the p orbitals. This gives rise to a new term in the

Hamiltonian of the form

HSO = λ(s×∇V ) · p, (6.1)
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where s are Pauli matrices acting on the electron spin; σ is in this section

reserved for pseudospin. Assuming the periodic potential to be spherically sym-

metric in the vicinity of each atom, and that the electron-atom distance does

not vary much, we may approximate this to an on-site effect with

HSO = ∆L · S, (6.2)

where ∆ is the coupling constant with dimension energy, and L and S = s/2

are the dimensionless angular momentum and spin operator respectively.

The spin-orbit coupling leads to a partial splitting of the degenerate π bands

at the Dirac points. We expect the new π bands to be doubly degenerate at

the Dirac points when considering intrinsic spin-orbit coupling; according to

Kramers theorem, inversion symmetry gives Ek↑ = E−k↑ and time-reversal sym-

metry gives Ek↑ = E−k↓, which put together yield Ek↑ = Ek↓.

The s and p orbitals expressed by the orbital and magnetic quantum numbers

are

|s〉 = |` = 0,m` = 0〉, (6.3a)

|px〉 =
1√
2

(|` = 1,m` = −1〉 − |` = 1,m` = 1〉) , (6.3b)

|py〉 =
i√
2

(|` = 1,m` = −1〉+ |` = 1,m` = 1〉) , (6.3c)

|pz〉 = |` = 1,m` = 0〉 . (6.3d)

Letting the spin-orbit operator ∆L · S act on the s and p states, Eq. (6.3), we

get the following addition to the Hamiltonian

HSO = ∆


0 0 −iSy iSx

0 0 0 0

iSy 0 0 −iSz
−iSx 0 iSz 0

 , (6.4)
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which acts on Ψ,

Ψ =


|pz〉
|s〉
|px〉
|py〉

 , (6.5)

where the elements of Ψ are spinors, e.g.

|pz〉 =

(
|pz ↑〉
|pz ↓〉

)
. (6.6)

Because ∆ is small compared to the typical matrix elements of the tight-binding

Hamiltonian, we will treat the spin-orbit part as a perturbation. We then use

a canonical transformation to find the effective contribution from the spin-orbit

coupling to the π band Hamiltonian. The procedure is then as follows, let H0

be the diagonalised Hamiltonian and H1 the perturbation. With a change of

basis using the unitary tranformation matrix eC , where C is anti-Hermitian we

get

eC(H0 +H1)e−C = H0 +H1 + [C,H0] + [C,H1] +
1

2
[C [C,H0]] + . . . . (6.7)

To get rid of the first order term we choose C so that

H1 + [C,H0] = 0. (6.8)

The elements of C are then

Cnn′ =
(H1)nn′

εn − εn′
. (6.9)

We then arrive at the effective Hamiltonian,

Heff = H0 +
1

2
[C,H1] + . . . . (6.10)

The spin-orbit coupling between the π and σ bands thus gives an effective con-

tribution to the π bands. This can be seen as a result of virtual hopping between

the two bands. The first correction to the π band Hamiltonian is then a result
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of a virtual process where the electron hops to the σ bands and back again via

the spin-orbit coupling. This correction is therefore necessarily quadratic in the

spin-orbit coupling constant, and is of the form τλSOσzsz, where τ is +1 and −1

for the K and K ′ points respectively, λSO = 1
18

∆2 |εs−εp|
V 2
spσ

and σi, si are the Pauli

matrices acting on the pseudo spin and the electron spin respectively.

By applying an external perpendicular electric field, E, the inversion symmetry

of graphene is broken and an extrinsic Bychkov-Rashba spin-orbit coupling is

induced through the atomic Stark effect. This couples the s and pz orbitals,

giving the following contribution to the total Hamiltonian

〈s|H|pz〉 = eEzsp, 〈pz|H|s〉 = eEzsp. (6.11)

With the spin-orbit coupling this leads to an additional contribution to the

effective Hamiltonian,

Hext =


0 0 0 eEzsp

0 0 0 0

0 0 0 0

eEzsp 0 0 0

 , (6.12)

which further splits the bands by λR(τσxsy − σysx) where λR = 1
3

eEzsp∆

Vspσ
and

zsp = 〈s|ẑ|pz〉 ∼ 0.15Å [77].

The results we have obtained for the intrinsic and the extrinsic effects agrees

with the results of Konschuh et al. [77] and Min et al. [75] taking different

definitions of ∆ into account. The form agrees with the results obtained by

Kane and Mele [80] and Huertas-Hernando et al. [81]. Using the values in Table

2, we find that λSO ≈ 1µeV and λR ≈ 5.4µeV for a typical electric field of

E = 1V/nm.

The effective Hamiltonian in the vicinity of the Dirac points may then be written

as

Hπeff = −τ~vFσ(τ) · q + λR(τσxsy − σysx) + τλSOσzsz , (6.13)
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where σ(τ) = σ,σ∗ for K and K ′ respectively. The eigenvalues evaluated at

the Dirac points are

επ1 =(1− τ)λR + τλSO , (6.14a)

επ2 =− (1− τ)λR + τλSO , (6.14b)

επ3 =(1 + τ)λR − τλSO , (6.14c)

επ4 =− (1 + τ)λR − τλSO , (6.14d)

with the coresponding eigenvectors

ψπ1 =
1√
2

(i, 0, 0, 1), (6.15a)

ψπ2 =
1√
2

(−i, 0, 0, 1), (6.15b)

ψπ3 =
1√
2

(0, i, 1, 0), (6.15c)

ψπ4 =
1√
2

(0,−i, 1, 0), (6.15d)

in a basis A ↑, A ↓, B ↑, B ↓. By changing the electric field strength, we can

tune λR, which in turn means we can directly tune the band gap of graphene

through the extrinsic spin-orbit interaction. There are four interesting cases [82]:

for λR = 0 we get two doubly degenerate states with a gap of 2λSO as posited

initially; for λR < λSO the degenaracy of the two lowest bands is lifted, that

is, επ3 6= επ4 for K and επ1 6= επ2 for K ′; for λR = λSO three of the bands are

degenerate, namely 1, 2 and 3 for K and 1, 3 and 4 for K ′, and the energy gap

to the last band is 4λSO; and finally for λR > λSO we have the same degeneracy

as for λR < λSO, but now επ3 > επ1 = επ2 > επ4 for K and επ1 > επ3 = επ4 > επ2

for K ′. These four cases are plotted in Figure 9.
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6.2 Spin-orbit coupling with d-orbitals

By including d orbitals the full Hamiltonian takes the form

HK =

(
HπK 0

0 HσK

)
+HSO, (6.16)

where HπK is now given in a basis of (pz, dxz, dyz) and HσK in a basis of

(s, px, py, dz2 , dxy, dx2−y2).

The d orbitals written in terms of the orbital and magnetic quantum numbers

are

|dz2〉 = |` = 2,m` = 0〉, (6.17a)

|dyz〉 =
i√
2

(|` = 2,m` = −1〉+ |` = 2,m` = 1〉) , (6.17b)

|dxz〉 =
1√
2

(|` = 2,m` = −1〉 − |` = 2,m` = 1〉) , (6.17c)

|dxy〉 =
i√
2

(|` = 2,m` = −2〉 − |` = 2,m` = 2〉) , (6.17d)

|dx2−y2〉 =
1√
2

(|` = 2,m` = −2〉+ |` = 2,m` = 2〉) . (6.17e)

By using Eq. (6.17), we again find the matrix elements for the spin-orbit op-

erator L · S, this time for the d orbitals. We use a different coupling constant,

∆ and ∆d, for the p and d orbitals respectively. The results are given in Table

5.

As can be seen from Eq. (6.16), even taking d orbitals into account, there is

no coupling between the π and σ bands other than the spin-orbit interaction,

since all the hopping terms coupling these states are proportional to n = z/r

which is zero for flat graphene. This means that any effective contribution

to the π bands arising from spin-orbit coupling with the σ bands will still be

quadratic in ∆ at most and thus comparable to the results already obtained

above. However, spin-orbit coupling between the dxz and dyz orbitals in HπK

may lead to processes that are linear in ∆d. This would dominate the intrinsic

spin-orbit coupling.
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Table 5. Matrix elements for the spin-orbit operator L · S for the s, p and d

orbitals.

Orbital pz px py s

pz 0 −iSy iSx 0

px iSy 0 −iSz 0

py −iSx iSz 0 0

s 0 0 0 0

Orbital dz2 dyz dxz dxy dx2−y2

dz2 0 i
√

3Sx −i
√

3Sy 0 0

dyz −i
√

3Sx 0 iSz −iSy −iSx
dxz i

√
3Sy −iSz 0 iSx −iSy

dxy 0 iSy −iSx 0 2iSz

dx2−y2 0 iSx iSy −2iSz 0

Using a Löwdin transformation (see Appendix B for details), we find that the

effective Hamiltonian for the π bands is

H̃0 ≈ λSO,dσzsz −
9V 2

pdπ

2(εd − εp)
, (6.18)

with

λSO,d =
9V 2

pdπ

4(εd − εp)2
∆d . (6.19)

The spin-independent term in Eq. (6.18) is the correction already found in Eq.

(5.28). With 3Vpdπ/2(εd − εp) ≈ 0.0871 [77], λSO,d ≈ 24µeV. This does indeed

dominate the intrinsic spin-orbit coupling.

When applying an extrinsic perpendicular electric field, the d orbitals would give

an additional coupling of the π and σ bands, more specifically between the dz2

and pz orbitals. The effective contribution from this will be linear in the electric

field strength and linear in spin-orbit coupling constant for d orbitals at most
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and is thus negligible compared to the result obtained for extrinsic spin-orbit

coupling for just s and p orbitals.

6.3 Spin relaxation

To get a better insight in spin-relaxation in graphene we have studied articles

dealing with both the theoretical [66][68][83][84][85] and experimental [67][86]

aspects of this. The in-plane spin relaxation rate for the Elliot-Yafet mechanism

due to the intrinsic spin-orbit coupling is [68]

1

τEY‖
≈ λ2

SO

ε2F

1

τm

, (6.20)

where τEY‖ is the in-plane Elliot-Yafet spin relaxation time, εF is the Fermi

energy and τm is the momentum relaxation time. The Fermi energy is

εF = ~vFkF = ~vF
2π

λF
= ~vF

√
2πn, (6.21)

where kF is the Fermi wavevector, λF =
√

2π/n is the Fermi wavelength and

n is the carrier density [83]. Using the λSO we have found (=24 µeV) and a

typical value for the carrier density, n ≈ 3.6 × 1016 m−2 [83] the Elliot-Yafet

relaxation time is estimated to be of the order 102 ns, comparable to other

estimates [68]. Since the effective intrinsic spin-orbit interaction commutes with

sz, the out-of-plane spin should not relax, i.e. τEY⊥ → ∞ [68]. Experiments

[67][86] have shown that the spin diffusion length is proportional to the elastic

mean free path, as is expected for the Elliot-Yafet mechanism, however the same

experiments also show a spin lifetime of the order 102 ps and that the out-of-

plane spins relax much faster than the in-plane spins, contrary to the theoretical

estimates.

For the D’yakonov-Perel’ mechanism we expect the out-of-plane spins to relax

faster than the in-plane spins [83], as experiments show, but the spin relax-

ation time should be inversely proportional to the momentum relaxation time

[83][68]
1

τDP

≈ λ2
R

~2
τm. (6.22)
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Thus neither the intrinsic spin-orbit coupling nor a typical Rashba extrinsic

spin-orbit coupling can explain the experimental results. This motivates the

study of impurity effects.

Furthermore, assuming weak scatterers, the momentum relaxation time scales

as τm ∝ ε−1
F [83][85]. This means that

1

τEY‖
∝ λ2

SO

εF
, (6.23)

thus the Elliot-Yafet spin relaxation time scales linearly with εF . Again, as-

suming weak scatterers, the spin relaxation rate due to the D’yakonov-Perel’

mechanism is
1

τDP

∝ λ2
R

εF
, (6.24)

which means the Elliot-Yafet and D’yakonov-Perel’ mechanism scale with

εF ∝
√
n in the same way. This might make it difficult to distinguish between

the two mechanisms [85].
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7 Impurity effect in graphene

We are now interested in how an impurity located above the graphene plane

influences both the electronic and spin related properties. We will then use the

Luttinger-Kohn k · p perturbation theory, as presented in Section 3. First we

investigate the impurity problem without any relativistic effects present, and

later extend this treatment to include also the spin-orbit interaction.

7.1 Effective Hamiltonian in the absence of relativistic

effects

As a first attempt to solve this problem, we use the eigenbasis of the unperturbed

Hamiltonian from Eq. (5.13) for the π bands. Our Luttinger-Kohn basis is

then

χnk = eik·r(eiK·runK) = eik·rψnK, (7.1)

where ψnK is the Bloch function at k = K. We denote the two eigenstates for

the π bands with n = j ∈ {+,−}, using the notation from Eq. (5.13), and for

the σ bands n = i 6= j. With this choice of basis we arrive at the following

equation for the π band envelope functions

[επ(−i∇+ K) + U(r)]Fn(r) = εFn(r), (7.2)

where επ(−i∇+ K) is to be expanded to the first order in −i∇, which of course

poses a problem since the derivative of επ is singular at k = K. A possibility

would be to do a change of coordinates to exploit the rotational symmetry of the

problem, but also this will yield equations which are difficult to work with.

A more natural choice of basis for the π bands is Bloch functions located at the

two sub-lattices, A and B [15]. Because of the degeneracy at the K points also

this will be an eigenbasis of the unperturbed Hamiltonian. We denote the two
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Bloch waves ψAπk and ψBπk, so that

ψAπk(r) = eik·ruAπk(r), (7.3)

ψBπk(r) = eik·ruBπk(r). (7.4)

The Luttinger-Kohn basis is then the same as before for the σ band, and for the

π bands we have

χAπk = eik·r(eiK·ruAπK) = eik·rψAπK, (7.5)

χBπk = eik·r(eiK·ruBπK) = eik·rψBπK. (7.6)

In the absence of the spin-orbit coupling there is no coupling between the π

and σ bands, which means the momentum operator has no elements connecting

these bands. For now, it is therefore sufficient to look at the equation

[Hπ + U(r)]ψπ = εψπ, (7.7)

where Hπ is the Hamiltonian from Eq. (5.11). Expanding in terms of the

Luttinger-Kohn basis we may write the general solution as

ψπ(r) =

∫
dk
{
gA(k)χAπk(r) + gB(k)χBπk(r)

}
. (7.8)

We then follow the rather straightforward steps as presented in section 3. Pro-

jecting Eq. (7.7) on χAπk and χBπk, we find the equation for the coefficient func-

tions to the first order in momentum k,

~
m0

k·

(
pAA pAB

pBA pBB

)(
gA(k)

gB(k)

)
+

∫
dk′ U(k− k′)

(
gA(k′)

gB(k′)

)
= ε

(
gA(k)

gB(k)

)
,

(7.9)

where pAA = (2π)3

Ω

∫
cell
ψA∗πK(r)pψAπK(r)dr and so on for AB, BA and BB. To find

the momentum matrix elements we use the fact that, when neglecting relativistic

corrections (such as the spin-orbit coupling), we have the relation

p =
m0

~
∇kH(k), (7.10)
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where H(k) is the Hamiltonian in k space. So in our case we have that(
pAA pAB

pBA pBB

)
=
m0

~
∇k

(
0 −tf(k)

−tf ∗(k) 0

)
|k=K

= −m0

~

√
3ta

2

(
0 x̂− iŷ

x̂+ iŷ 0

)
. (7.11)

Inserting this into Eq. (7.9) we get

−
√

3ta

2

(
0 kx − iky

kx + iky 0

)(
gA(k)

gB(k)

)

+

∫
dk′ U(k− k′)

(
gA(k′)

gB(k′)

)
= ε

(
gA(k)

gB(k)

)
.

(7.12)

By Fourier transforming to real space, we get

i

√
3ta

2

(
0 ∂x − i∂y

∂x + i∂y 0

)(
GA(r)

GB(r)

)
+ U(r)

(
GA(r)

GB(r)

)
= ε

(
GA(r)

GB(r)

)
(7.13)

or equivalently

[i~vF∇ · σ + U(r)] G(r) = εG(r), (7.14)

where

G(r) =

(
GA(r)

GB(r)

)
=

∫
dkeik·r

(
gA(k)

gB(k)

)
. (7.15)

The resemblance between Eq. (7.14) and Eq. (5.16) is of course no surprise.

If the effect of orbitals of a higher principal quantum number is neglected the

higher order corrections are zero. This is due to the fact that the π and σ band

do not mix in the absence of relativisic effects.

7.2 Renormalised impurity induced spin-orbit coupling

If we now include the spin-orbit interaction, we replace the momentum operator

with the spin-dependent velocity operator, p → m0π. The equation for the
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coefficient functions is then(
εj +

~2k2

2m0

)
gj(k) +

∑
n

~kαπαjngn(k) +

∫
dk′U(k− k′)gj(k

′) = εgj(k), (7.16)

where the sum runs over both the π bands and the σ bands, and j ∈ {|z ↑〉A,
|z ↓〉A, |z ↑〉B, |z ↓〉B}. We may now do the transformation given by Eq. (3.58),

to get rid of the coupling to the σ bands. The equation for the transformed

coefficient functions, hj ≡ e−Sgj, is then

∑
j′∈π

(
ε0δjj′ + ~kαπαjj′ +

~2k2

2m0

δjj′ + ~2kαkβ
∑
i∈σ

παjiπ
β
ij′

ε0 − εi

)
hj′(k)

+

∫
dk′U(k− k′)hj(k

′) +

∫
dk′
∑
j′∈π

〈jk|1
2

[[U, S], S]|j′k′〉hj′(k′) = εhj(k).

(7.17)

What we now are interested in is to see if the last term on the left hand side

of this equation give rise to any significant impurity induced spin effects. First,

we observe that the additional term in Eq. (7.17) due to the coupling to the

σ bands is quadratic in momentum k and quadratic in the interband velocity

matrix elements πji. Looking at Eq. (3.78), we see that we need simply to find

the values of the tensor ∑
i∈σ

παjiπ
β
ij′

ωjiωij′
, (7.18)

for the different combinations of j, j′ and α, β. For graphene the spin-orbit

splitting is very small, so assuming the spin-orbit coupling leaves the energy

gap between the π bands and any of the σ bands unchanged is a very good

approximation. This is different from the case of germanium, where the change

in the velocity operator is negligible, but the change in the energy gap is not.

Defining a set of 4× 4 matrices, Παβ with elements

(
Παβ

)
jj′
≡
∑
i∈σ

παjiπ
β
ij′

ωjiωij′
=
(
Sαβ

)
jj′

+
(
Aαβ

)
jj′
, (7.19)
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where S and A denotes the symmetric and antisymmetric part respectively, so

that

Sαβ =
Παβ + Πβα

2
, (7.20a)

Aαβ =
Παβ − Πβα

2
. (7.20b)

We then need to know the spin-orbit correction to the elements of the velocity

operator between the π bands and the σ bands. We will follow the procedure

presented by Lew Yan Voon and Ram-Mohan [87]. Using the definition of the

velocity operator,

π ≡ i

~
[H, r] , (7.21)

and the relation

〈nk|r|mk〉 =
i

εmk − εnk
〈nk|∇kH(k)|mk〉, (7.22)

we find that

〈nk|π|mk〉 =
1

~
〈nk|∇kH0|mk〉

− 1

~
∑
n′ 6=m

〈nk|HSO|n′k〉〈n′k|∇kH0|mk〉
εmk − εn′k

− 1

~
∑
n′ 6=n

〈nk|∇kH0|n′k〉〈n′k|HSO|mk〉
εnk − εn′k

+O((λ/ω̄)2). (7.23)

Here ω̄ is a typical energy gap between the π and σ bands, and λ = ~/(4m2
0c

2)

is as before the spin-orbit coupling strength for vacuum. The matrix elements

of the velocity operator which enters into Παβ are only between the π and σ

states. Since the only coupling between these two bands are through the spin-

orbit coupling, the first term of Eq. (7.23) is zero for the matrix elements in

question. We calculate Παβ using Mathematica, for details see Appendix C. We
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then arrive at the following result

Axy = −iaσz − ibsz − icσxsz, (7.24a)

Sxy = −dσy, (7.24b)

Sxx = −e+ fσx − gσzsz, (7.24c)

Syy = −h− jσx − kσzsz, (7.24d)

where σi and si are Pauli matrices acting on pseudospin and electron spin re-

spectively. By adding the terms from Eq. (6.11) to the correction of the velocity

operator of Eq. (7.23) we get also the effect of an extrinsic perpendicular electric

field. We then get the additional contribution, Παβ
ext = Sαβext +Aαβext, where we find

Axyext = iãσz − ia′σzsy, (7.25a)

Sxyext = −b̃σy − b′sx + c′(σxsx − σysy), (7.25b)

Sxxext = −c̃− d̃σx − d′sy − e′(σxsy + σysx)− f ′(σxsy − σysx), (7.25c)

Syyext = −ẽ+ f̃σx + g′sy + h′(σxsy + σysx)− j′(σxsy − σysx). (7.25d)

The coefficents a, b, c... are proportional to ∆2, the primed coefficients are pro-

portional to ∆eEzsp and the ones marked with tilde are proportional to (eEzsp)
2.

The signs are chosen so that all these coefficients are positive, see Tables 6, 7

and 8 for numerical values. The asymmetry between the x and y direction is a

consequence of our choice of coordinates. We have chosen the coordinate system

so that the the matrix elements of the tight-binding Hamiltonian at the K points

are either strictly real or strictly imaginary. At the cost of loosing this property,

we could make the impurity corrections completely symmetric with respect to

x and y; a rotation of 45◦ makes Sxx = Syy and Sxxext = Syyext. For the sake of

simplicity we refrain from doing this rotation.

Because what we are looking at now is just a correction to the Hamiltonian we

neglect any term which is not spin-dependent. These terms are small, and would

only give rise to a small overall contribution which treats all spin states in the

same way. If we then first look only at the intrinsic part, noting that g ≈ k and
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c� b, we may write the contribution to our Hamiltonian as

Hint ≈ −icσxsz(∇U ×∇)z −
g + k

2
(∇2U)σzsz. (7.26)

If we then compare Eq. (7.26) to the vacuum term λs · (∇U × p), we see that c

plays the role of a renormalised λ. With ∆ = 6meV we have that c/~λ ≈ 2·10−2,

that is to say the effective impurity driven spin-orbit coupling is much smaller

than the corresponding vacuum term. The second term in Eq. (7.26) is of

the same order of magnitude as the first one, which means also this term is

negligible.

Looking at the contribution from the external electric field, there is as expected

no terms containing sz due to the inversion symmetry being broken. The form

of this Hamiltonian is very interesting, as the spin flip terms would contribute

to the D’yakonov-Perel’ and Elliot-Yafet mechanisms. The magnitude of these

terms are determined by the coefficients listed in Table 7, note that they are a

factor (eEzsp)/∆ larger than that of the intrinsic impurity effect. For a typical

electric field of E = 1V/nm, this ratio can be estimated to be (eEzsp)/∆ ≈ 3

[77]. In conclusion, this is not nearly sufficient to give rise to any significant

spin related effects since c/~λ ∼ 10−2. Comparing e.g. the spin-dependent term

stemming from the antisymmetric part of Παβ
ext to the Rashba term from Section

6 we have that a′
[
∇U × ∇

]
z
/λR ∼ 10−3(a/L)2Ū/eV, where Ū is the value of

the impurity potential at some typical distance from the impurity center.

For the conventional spin-orbit interaction we found the d orbitals to dominate

the intrinsic effect. In the same way we expect the d orbitals to give some

contribution to Παβ which will be at most three orders of magnitude larger than

that we have found using only the s, px, py orbitals. The numerical values of

the parameters which enters into this calculation are not readily available, and

finding them have proven to be difficult. Any analytic calculation is out of

the question due to its complexity. This said, we know that even a increase of

Παβ by three orders of magnitude would be far from sufficient to make these

terms significant. In the same way as before the d orbitals would not give any



7. IMPURITY EFFECT IN GRAPHENE 79

important contribution to the effects due to the applied electric field, so the spin

flip terms stay the same.

Table 6. Values of the ∆2 coefficients.

Coefficient\Units a2∆210−4/(eV)2

a 2.06

b 0.110

c 3.01

d 1.17

e 5.21

f 1.39

g 1.11

h 7.94

j 1.82

k 1.23

Table 7. Values of the ∆(eEzsp) coefficients.

Coefficient\Units a2∆(eEzsp)10−4/(eV)2

a′ 2.40

b′ 2.69

c′ 4.17

d′ 3.37

e′ 3.77

f ′ 2.62

g′ 4.72

h′ 2.96

j′ 5.38
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Table 8. Values of the (eEzsp)
2 coefficients.

Coefficient\Units a2(eEzsp)
210−4/(eV)2

ã 2.44

b̃ 3.49

c̃ 9.13

d̃ 0.689

ẽ 17.3

f̃ 9.04

8 Conclusion

In this thesis we have reviewed two models for calculating the effect of a slowly

varying impurity potential on a semiconductor. The multiple-scale analysis is

an excelent method for finding the lowest order correction to the effective mass

theory. However, when higher order corrections are to be included this method

becomes increasingly complicated, and defies analytical evaluation. We therefore

found it necessary to look to another method, namely the Luttinger-Kohn model.

The model is by far more rigorous than the multiple-scale analysis, and it is

superior when the aim is to calculate higher order corrections. Applying this

method on an impurity problem in germanium gives a good illustration of the

dynamics of the model, and we also see how the higher order contributions induce

an effective impurity induced spin-orbit coupling. The method of Lewiner and

Nozieres is a flavour of the Luttinger-Kohn model. This method is a good aid to

illuminate the physics of the problem, and evidently it yields the same results

as that of Luttinger and Kohn. It also demonstrates how an external time

dependent electro-magnetic field modifies this result.

The bandstructure of graphene has some remarkable properties. In the absence

of the spin-orbit coupling it is a zero gap semiconductor. The low energy exci-

tations are governed by the zero mass Dirac equations for two dimensions where

the Dirac spinor has been replaced by a pseudospinor. Thus these quasiparticles
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behave as massless fermions with an effective speed of light vF ≈ 106m/s. This

makes graphene suitable for experiments on quantum electrodymanical effects,

previously only attainable in high energy experiments. When the spin-orbit cou-

pling is included the degeneracy at the Fermi level is lifted. The s and p orbitals

contribute to a gap of 2λSO ≈ 1.1µeV. By taking into account the effect of the d

orbitals, we find a gap of 2λSO,d ≈ 24µeV, which by far dominates the intrinsic

spin-orbit coupling. Because the spin-orbit effect in graphene is so small the

dependence on the spin-orbit coupling constants is essential. This is the origin

of the quantitative difference between λSO and λSO,d: λSO ∝ ∆2 and λSO,d ∝ ∆d.

When an external perpendicular electric field is applied, the inversion symmetry

is broken, which together with the spin-orbit coupling between the p orbitals

gives rise to a Bychkov-Rashba effect. The magnitude of this effect is propor-

tional to the electric field strength, which means the gap is tunable. Here the

effect of the d orbitals is negligible in comparison.

By applying the method of Luttinger and Kohn, we investigated the effect an

impurity has on the electronic states of graphene. Here we found the choice of

basis to play an important role in the simplification of the equations. Choosing

a Luttinger-Kohn basis from Bloch functions located on the A and B sublattice

proved to give rather simple equations, avoiding problems due to the singularity

of ∇kεπk. If relativistic effects are neglected, there is no coupling between the

π and σ bands, meaning any higher order correction is zero. By including the

spin-orbit correction to the velocity operator, we were able numerically calculate

the effective impurity induced spin-orbit coupling due to the coupling to the σ

bands. These contributions are roughly 10−2 smaller than the impurity vacuum

term, making them negligible. We expect that in the same way as for the

intrinsic effect the d orbitals would give a contribution at most 103 larger. This

would at most make it comparable to the vacuum term, which is considered

negligible. A perpendicular electric field breaks the inversion symmetry, giving

rise to impurity induced spin-flip terms in the effective Hamiltonian. Analogous

to the impurity-independent Bychkov-Rashba effect previously mentioned these

terms are proportional to the product of the electric field strength and the spin-
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orbit coupling constant, and the d orbitals are expected to have a diminutive

effect. This effect is a factor (eEzsp)/∆ larger than the calculated impurity

induced spin-orbit terms. This makes it too small to give any interesting spin

related effects, even for relatively large electric fields. One of the main objectives

of this thesis was to try to shed some light on theory of spin realated impurity

effects in graphene, and thus help explain the discrepancy between the existing

theories and the experimental results. The corrections due to coupling of the

impurity potential and the spin-orbit interaction are thus found to play a limited

role in this, even when the effect of an perpendicular external electric field is

included.

Outlook: Even though we expect that the contribution from the d orbitals to

the impurity induced spin-orbit coupling is negligible, it would be interesting to

do a DFT calculation to find the relevant hopping parameters, and so find the

actual significance of these orbitals. Moreover, there are other effects of impuri-

ties which deserve a closer examination. For example we have not discussed the

effect of impurity induced curvature, leading to locally non-zero momentum ma-

trix elements between the π and the σ bands. This could result in an impurity

induced spin-orbit coupling which is linear in the coupling constant, and it could

therefore be several orders of magnitude larger than what we have found.



Appendix A

f-sum rule

Here we derive the f -sum rule as presented in the paper of Luttinger and Kohn

[71]. With spin-orbit, the Schrödinger equation, Eq. (3.24) takes the form

(
H̄0 + k · π +

k2

2m0

)
ūnk = εn(k)ūnk. (A.1)

Using the definition of the velocity operator, we have that the α-component

is

πα = i[H̄0, xα] =

{
pα
m0

+
1

4m2
0

(σ ×∇V )α

}
, (A.2)

where H̄0 is the Hamiltonian from Eq. (3.65). The matrix elements of the

commutator are

〈nk|[H̄0, xα]|n′k′〉 =
1

i
〈nk|

{
pα
m0

+
1

4m2
0

(σ ×∇V )α

}
|n′k′〉

=
1

i
παnn′δ(k− k′). (A.3)
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Using the explicit form of the matrix element we may calculate another form of

the commutator,

〈nk|[H̄0, xα]|n′k′〉

= (εn(k)− εn′(k′))〈nk|xα|n′k′〉

= (εn(k)− εn′(k′))
∫

drei(k
′−k)·rū∗nkxαūn′k′

= (εn(k)− εn′(k′))
∫

dr

(
1

i

∂ei(k
′−k)·r

∂k′α

)
ū∗nkūn′k′

= (εn(k)− εn′(k′))
{

1

i

∂

∂k′α
δ(k− k′)δnn′ −

1

i

∫
drei(k

′−k)·rū∗nk
∂ūn′k′

∂k′α

}
= (εn(k)− εn′(k′))

{
1

i

∂

∂k′α
δ(k− k′)δnn′ + iδ(k− k′)

(2π)3

Ω

∫
cell

drū∗nk
∂ūn′k
∂kα

}
.

(A.4)

Thus, combining Eqs. (A.3) and (A.4) for n 6= n′, we then have

παnn′

εn − εn′
= −(2π)3

Ω

∫
cell

drū∗nk
∂ūn′k
∂kα

. (A.5)

Multiplying by πβn′n and summing over n′ 6= n we get

∑
n′ 6=n

παnn′π
β
n′n

εn′ − εn
= −

∑
n′ 6=n

(
(2π)3

Ω

)2 ∫
cell

dr′ū∗nkπαūn′k

∫
cell

drū∗n′k
∂ūnk
∂kβ

. (A.6)

For a crystal with a center of symmetry, we have that [71]∫
cell

drū∗nk
∂ūnk
∂kα

= 0, (A.7)

so the sum on the right hand side of Eq. (A.6) can be extended to include

n′ = n, which allows us to use the completeness of ūnk,∑
n′

ūn′k(r′)ū∗n′k(r) =
Ω

(2π)3
δ(r′ − r), (A.8)

where r and r′ are in the same cell. Eq. (A.6) then becomes

∑
n′ 6=n

παnn′π
β
n′n

εn′ − εn
= −(2π)3

Ω

∫
cell

drū∗nkπα
∂ūnk
∂kβ

. (A.9)
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We now seek to simplify the expression on the right hand side of Eq. (A.9). To

that end, it is convinient to note that it is symmetric in α and β for crystals

where παnn′ = παn′n. Eq. (A.9) may then be written as∑
n′ 6=n

παnn′π
β
n′n

εn′ − εn
=− 1

2

(2π)3

Ω

{∫
cell

drū∗nkπα
∂ūnk
∂kβ

+

∫
cell

drū∗nkπβ
∂ūnk
∂kα

} (A.10)

The right hand side can now be simplified by noting its relation to a differ-

entiation of the Schrödinger equation for ūnk with respect to kα and kβ. We

have

∂

∂kα

∂

∂kβ

({
H̄0 + k · π +

k2

2m0

}
ūnk

)
=

∂

∂kα

∂

∂kβ
(εn(k)ūnk). (A.11)

The left hand side becomes

∂

∂kα

∂

∂kβ

({
H̄0 + k · π +

k2

2m0

}
ūnk

)
=πα

∂ūnk
∂kβ

+ πβ
∂ūnk
∂kα

+
1

m0

δαβūnk

+

{
H̄0 + k · π +

k2

2m0

}
∂2ūnk
∂kα∂kβ

,

(A.12)

and the right hand side

∂

∂kα

∂

∂kβ
(εn(k)ūnk) =

∂2εn(k)

∂kα∂kβ
ūnk +

∂εn(k)

∂kα

∂ūnk
∂kβ

+
∂εn(k)

∂kβ

∂ūnk
∂kα

+ εn(k)
∂2ūnk
∂kα∂kβ

.

(A.13)

Multiplying Eq. (A.11) by ū∗nk and integrating over the cell, we obtain∫
cell

drū∗nk

{
πα
∂ūnk
∂kβ

+ πβ
∂ūnk
∂kα

}
+

Ω

(2π)3

1

m0

δαβ =
Ω

(2π)3

∂2εn(k)

∂kα∂kβ
(A.14)

where we have used Eq. (A.7) and that the Hamiltonian H̄0 + k · π + k2

2m0
is

Hermitian. We can then readily see that Eq. (A.10) becomes∑
n′ 6=n

παnn′π
β
n′n

εn′ − εn
=

1

2m0

(
δαβ −m0

∂2εn(k)

∂kα∂kβ

)
(A.15)

which is the f -sum rule.
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Appendix B

Löwdin Transformation

Combining Eq. (5.26) and the spin-orbit coupling given by Table 5, we find the

total tight-binding Hamiltonian for the π bands to be

HπK =



εp 0 0 0 iγ γ

0 εp iγ −γ 0 0

0 −iγ εd −i∆dSz δ iδ

0 −γ i∆dSz εd iδ −δ
−iγ 0 δ −iδ εd −i∆dSz

γ 0 −iδ −δ i∆dSz εd


, (B.1)

here given in the basis (pz,A, pz,B, dxz,A, dyz,A, dxz,B, dyz,B). We denote the 2×2

pz part of the matrix Hπp, and the 4×4 d part Hπd, so that

HπK =

(
Hπp T

T † Hπd

)
. (B.2)

T and T † is then the coupling between pz and d orbitals. Making use of the

Löwdin transformation as presented by Konschuh et al. [77] with a unitary

anti-Hermitian matrix S,

H̃πK = e−SHπKe
S (B.3)

≈ HπK + [HπK , S] +
1

2
[[HπK , S], S], (B.4)
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where

S =

(
0 M

−M † 0

)
. (B.5)

We then set Hπp = 0 by subtracting εp from the diagonal and get

[HπK , S] =

(
−TM † −MT † −MHπd

−HπdM
† T †M +M †T

)
. (B.6)

Setting M so that HπK + [HπK , S] has a block-diagonal form,

T −MHπd = 0 (B.7)

⇒M = TH−1
πd , (B.8)

the effective Hamiltonian from Eq. (B.4) for the pz orbitals is

H̃πp ≈ Hπp − TH−1
πd T

† − 1

2
{TH−2

πd T
†, Hπp}, (B.9)

where higher-order terms in H−1
πd are neglected. Inserting Hπp = 0,

H̃πp ≈ −TH−1
πd T

† (B.10)

≈

(
− 2α2

εd−εp+Sz∆d
0

0 − 2α2

εd−εp−Sz∆d

)
. (B.11)

Assuming ∆d � (εd − εp) and expanding,

H̃πp ≈

 2α2

εd−εp

(
∆d

εd−εp
Sz − 1

)
0

0 2α2

εd−εp

(
− ∆d

εd−εp
Sz − 1

)  , (B.12)

where we have neglected terms of a higher order in ∆d.

As Sz = sz/2, this has the form,

H̃πp ≈ λSO,dσzsz −
2α2

εd − εp
, (B.13)

with

λSO,d =
α2

(εd − εp)2
∆d (B.14)

=
9V 2

pdπ

4(εd − εp)2
∆d . (B.15)
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