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Abstract

The van der Waals interaction energy is derived for a homogenous fluid of polariz-
able particles. Low-temperature corrections to the van der Waals interaction energy
are computed numerically for three cases: Dilute media with radiative interactions, ar-
bitrarily dense media without radiative interactions, and arbitrarily dense media with
radiative interactions. The validity of the model used to calculate the corrections at
arbitrary densities is argued for, by comparison with the results for low densities.
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Sammendrag

Van der Waals-kraften utledes for et homogent fluid med polariserbare
partikler. Korreksjoner til van der Waals-kraften ved lav temperatur bereg-
nes numerisk for tre tilfeller: Medier med lav tetthet og str̊alingsvekselvirkning,
medier med vilk̊arig tetthetet men uten str̊alingsvekselvirkning, samt me-
dier med vilk̊arig tetthet og str̊alingsvekselvirkning. Gyldigheten til mod-
ellen brukt for å beregne korreksjonene ved vilk̊arige tettheter argumenteres
for, ved sammenligning med resultatene for lave tettheter.
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1 Introduction

To study the chemical properties of fluids, knowing the free energy con-
tained in the fluids is useful. This quantity lets us know the amount of
work that can be done by the fluid when interacting with external ele-
ments, and thus helps predict whether a reaction will be spontaneous, and
lets us know if a specific arrangement is stable or will degenerate.

A commonly considered situation is a homogenous fluid of polarizable par-
ticles. In this situation, the particles will act as dipoles, and interact with
eachother through dipole interaction. Usually, the approach to this prob-
lem would be to assume that the fluid is dilute, and that the dominating
interaction between the particles is the instantaneous dipole interaction.
Taking this approach leads to the well known van der Waals interaction
energy.

In this thesis, we will examine corrections to this approach, in the cases
where we can no longer assume a dilute fluid, as well as the case where we
no longer neglect radiative contributions to the interaction energy.

Considering radiative contributions implies that our problem becomes dy-
namic, which normally would mean that a method using the canonical
distributions of statistical mechanics would fail. We shall apply a method
that will allow us to bypass this problem, giving accurate results for the
Casimir energy per particle in the fluid.

In the case of arbitrary, homogenous, densities, we will be making use of
the Ornztein-Zernike equation under the conditions of the mean spherical
approach. This will give us a set of equations to be used for determining
the free energy of the particles numerically. In the case where radiative
interactions are neglected, we will show analytically that our result indeed
corresponds to the van der Waals energy as density approaches zero.
In the case where radiative interactions are taken into account, we will
produce computations for a lower order correction, while giving a full ex-
pression in the appendix.

In all cases, explicit computations will be made numerically, and compared
to the van der Waals interaction energy.

This thesis builds on work done for the autumn project of the author,
which is important to the understanding of the work done in the thesis.
Sections from that project will be quoted and expanded upon without of-
fering a citation.

1.1 Units and conventions

To simplify graphing, good quantities are needed. Most importantly, we
want the graphed quantities to be dimensionless. For the most part, this
is achieved by normalizing results. For instance, distance from the center
of a particle, r is normalized by the hard-sphere radius of the particle, R,

r → r∗ = r/R. (1)

This implies that distance becomes a unitless quantity, necessarily trans-
forming also other quantities. I shall attempt to clarify how key equations
are transformed when going from a such normalized description, to a non-
normalized view.
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Perhaps most importantly, this thesis will use gaussian units (transforming
from SI-units to gaussian units is a matter of writing 4πε0 = 1). This is
done to keep it consistent with the majority of the cited works. When
works that do not use gaussian units are cited, care will be taken to make
note of any difference.

1.2 The van der Waals interaction energy

Let us first begin by calculating the van der Waals interaction energy at
low density. We shall do this by using a statistical mechanical approach,
which will then be altered as we move on to the more involved problems.
The van der Waals interaction energy is found by considering electric dipole
interaction between molecules with a net charge of zero. The dipole mo-
ments are assumed to be induced by an external electric field, and have
a polarizability which fluctuates thermally. These harmonic fluctuations
result in a distribution function for the dipole moment of each molecule
which, assuming a static polarizability α, is equal to

ρ(s) = exp

(
−βs

2

2α

)
(2)

where β = 1/kBT .

Assuming perfect dipoles, the interaction energy of two dipoles seperated
by a displacement r can be shown to be [1]

V (r) =
1

r3
[s1 · s2 − 3(s1 · r̂)(s2 · r̂)] (3)

where si is the dipole moment of particle i, and where the hats are used to
denote a unit vector.

The partition function is found by considering a system describing the
possible configurations of two molecules, perturbing the configuration with
the dipole interaction energy [2]

Z =

∫
d3s1d3s2ρ(s1)ρ(s2)exp(−βV (r)), (4)

yielding a free energy per interaction

F = −3α2

βr6
, (5)

the van der Waals interaction. We note that this is linear in temperature,
and is expected to disappear as T → 0. If we were not to normalize r
according to the hard-sphere radius, this equation should still be of the
same form. In accordance with this, we see that when normalizing the
radius we also normalize the polarizability,

α→ α∗ = α/R3. (6)

The energy calculated here assumes that we have a dilute medium, and
that the dipole interaction happens instantaneously, that is, that there is
no radiative term. Obviously, this assumption has the advantage of being
computationally easy. What is more, it seems like a robust assumption - re-
sults obtained from calculations using it seem to fit well with experimental
results. Regardless, investigating the deviation this approach yields from a
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more thorough approach is of interest. To do this, we will calculate energy,
first keeping radiative interactions, secondly dropping radiative interactions
but using arbitrarily high (but physical) densities, and finally using arbi-
trarily high densities as well as a radiative term. All the computations will
be made at T → 0.
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2 Radiative interactions, dilute media

In this section, we shall calculate the radiative correction to the van der
Waals interaction defined in the preceding section. We begin by finding a
new expression for the interaction energy, later stating the change made to
the partition function and the resulting free energy.

2.1 Altered interaction energy

Wanting to find the radiative correction, we first need to find the interaction
energy. This is done by considering Maxwell’s equations, as in [3]:

∇×E = −1

c

∂B

∂t
, ∇(E + 4πP) = 0,

∇×B =
1

c

∂

∂t
(E + 4πP), ∇B = 0 (7)

We make the ansatz

E = E(r, t) = E′(r)eiω
′t+δt = E′(r)eiωt

P = P(r)eiωt, B = B′(r)eiωt (8)

where ω has an infintesimal imaginary part, to ensure that as t→ −∞⇒
E(r, t)→ 0, meaning that we only consider time-retarded solutions. Using
this ansatz, we can eliminate B, yielding

∇× (∇×E′) = −
(ω
c

)2

(E′ + 4πP′), ∇(E′ + 4πP′) = 0 (9)

By Fourier transform, this becomes

k2[Ẽ− k̂(kẼ)] =
(ω
c

)2

(Ẽ + 4πP̃), k̂(Ẽ + 4πP̃) = 0 (10)

Leading to an expression for the fourier transform of the induced electric
field,

Ẽ = −4π

3

k2

k2 − ω2/c2
[3k̂(k̂P̃)− P̃] +

4π

3

(
2ω2/c2

k2 − ω2/c2
− 1

)
P̃. (11)

Approximating the molecules of the fluid as point dipoles, we have P′(r1) =
s1δ(r1), implying that P̃ = s1. From this, the fourier transformed interac-
tion energy becomes

Ṽ (12) = −s1s2ψ̃(12),

ψ̃(12) = ψ̃D(k)D̃(12) + ψ̃∆(k)∆̃(12),

ψ̃D(k) = −4π

3

k2

k2 − ω2/c2
, ψ̃∆(k) =

4π

3

(
2ω2/c2

k2 − ω2/c2
− 1

)
,

D̃(12) = 3(k̂ŝ1)(k̂ŝ2)− ŝ1ŝ2, ∆̃(12) = ŝ1ŝ2, (12)

Inverting the transform, we end up with

ψD(r) =
eiωr

r3
[1 + i

ωr

c
− 1

3

(ωr
c

)2

]

ψ∆(r) =
2

3

(ω
c

)2 eiωr

r
− 4π

3
δ(r) (13)
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2.2 Calculation of free energy per interaction

Following [2], we now replace equation (2), with

ρ({Sq}) = Cexp

{
−
N−1∑
p=0

[
1

2

σ

η
(sp+1 − sp)2 +

η

2α
s2
p

]}
(14)

with σ = M/(~e)2, M being the nucleus mass and e being its charge, and
where N is the number of particles and η = β/N .

We should note that we are no longer using classical methods, as this
distribution stems from the propagator solution to the Schrödinger equa-
tion for a harmonically oscillating dipole, with i~β being interpreted as
imaginary time. The reason for doing this is our desire to consider the
radiative interactions by means of statistical mechanics. Normally, this
would be problematic, as the radiative interactions represent a dynamic
problem, which we cannot handle by means of statistical mechanics. How-
ever, in obtaining this distribution, we interpret our particles no longer
as point-particles, but as polymer rings forming closed loops of length β.
Thus, imaginary time is interpreted not as a temporal, but as a spatial di-
mension. In this way, we find that we can still apply the tools of statistical
mechanics to the problem.
What is more, it is only this part that needs to be calculated using quantum
mechanics. Once we use this distribution, the remaining elements of the
problem can be viewed clasically. So, by using this distribution, we have
gone from a dynamic interaction between two point-particles, to a static
interaction between all the elements on two polymers.

This distribution, combined with the new interaction energy, leads to a

different partition function, and by introducing τ = iωr
c = |K|r

~c and K =
2πn/β, n ∈ Z, this will lead to an expression for the free energy per inter-
action

βF = − 3

2r6

∞∑
n=−∞

e−2τ [2(1 + τ +
1

3
τ2)2 + (

2

3
τ2)2]α2

K (15)

where

αK =
α

ασK2 + 1
=

1

σ(K2 + (~ω0)2)
, (16)

is the effective polarization and ω0 can be viewed as the eigenfrequency
of the oscillator, ω2

0 = (ασ~2)−1. Considering the limit T → 0, we have∑→ 2(β~c/2πr)
∫∞

0
dτ , yielding

F = − 3~c
2πr7

∫ ∞
0

dτe−2τ [2(1 + τ + 1
3τ

2)2 + ( 2
3τ

2)2]

σ2( (~c)2τ2

r2 + (~ω0)2)2
(17)

which can be rewritten as

F = − 3

2(~c)3πr3

∫ ∞
0

dτe−2τ [2(1 + τ + 1
3τ

2)2 + ( 2
3τ

2)2]

σ2(τ2 + (ω0r
c )2)2

(18)

or as

F = − 3

2πr6

∫ ∞
0

dKe−2 Kr
~c

[2(1 + Kr
~c + 1

3 (Kr~c )2)2 + ( 2
3 (Kr~c )2)2]

σ2(K2 + (~ω0)2)2
. (19)

The energy obtained as a function of the distance between the two molecules
is described in figure 1. From this figure it is apparent that the largest con-
tributions to the free energy happen if the particles are close to eachother.

9



1 2 3 4 5 6 7 8 9 10
r

−0.0016

−0.0014

−0.0012

−0.0010

−0.0008

−0.0006

−0.0004

−0.0002

0.0000

F
/h̄
c

Figure 1: Free energy per particle to particle interaction, calculated as a function of the
distance, r between the two molecules

We can consider this result further, by checking how quickly the energy
diminishes. To better understand our result, we shall consider the two
asymptotic cases of letting ω0 → 0 and ω0 →∞, respectively:

If ω0r
c << 1, we get, using equation (19)

F = − 3

2πr6
α2

∫ ∞
0

dK
2

σ2(K2 + (~ω)2)2
(20)

yielding F = − 3
4r6α

2~ω0. If we set ω0 to 0, we obtain the expected result
of equation (5), so we see that letting ω0 → 0 gives us the expected result
for the van der Waals interaction. In this van der Waals limit, the radiative
term does not contribute to the energy.

If we let ω0r
c →∞, we get, using equation (18)

F = − 3~c
2πσ2(~ω0)4r7

α2

∫ ∞
o

dτ [2(1 + τ +
1

3
τ2)2 + (

2

3
τ2)2] (21)

yielding F = − 23~cα2

4πr7 . This limit is purely radiative, and independent of
ω0, implying that letting ω0 grow large will lead to a constant expression.
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2.3 Calculation of free energy per particle

We now consider the total free energy per particle in the fluid, f , using the
equation

f =
1

2

∫
dV ρ(~r)F (~r) (22)

where ρ(~r) denotes the particle density, and in this case is set to be constant,
ρ(~r) = ρ. We note that a density would have dimensions of inverse volume,
so we normalize as before, ρ → ρ∗ = ρR3 The factor 1/2 is obtained by
noting that the energy contained in each interaction is shared between two
particles. Noting that there is no angular dependency in F , we recall that
assuming hard spheres, F = 0 for r < 1.

f = 2πρ

∫ ∞
1

dr

(
− 3

2βr4

∞∑
n=−∞

e−2τ [2(1 + τ +
1

3
τ2)2 + (

2

3
τ2)2]α2

K

)
(23)

Swapping order of summation and integration, and using that τ = |K|r
~c ,

we are able to calculate the integral analytically, applying that∫ ∞
τ

dτ ′
e−2τ ′

τ ′n
=
e−2τ

2τn
−
∫ ∞
τ

dτ ′
n

2

e−2τ ′

τ ′n+1
(24)

we find

f = −πρ
β

∞∑
n=−∞

e−2τ [τ3 + 2τ2 + 4τ + 2]α2
K (25)

with τ having a slightly altered form after r was integrated out, τ = |K|
~c .

We again consider the limiting case as T → 0; implying that

f = −ρα2~c
∫ ∞

0

dτe−2τ [τ3 + 2τ2 + 4τ + 2]

σ2((τ~c)2 + (~ω0)2)2
(26)

Introducing the dimensionless quantity λ = 2π c
ω0R

and inserting for σ =

(α(~ω0)2)−1 we then get

f = −ρα2~c
(2π)4

λ4

∫ ∞
0

dτe−2τ [τ3 + 2τ2 + 4τ + 2]

(τ2 + (2π/λ)2)2
(27)

This expression is a complete expression for the Casimir energy at low
densities. When going to arbitrary densities, this will be a useful reference
value, and we label it fCas(ρ = 0). Here, ρ = 0 should not be understood
as an argument of the function, but rather as shorthand, informing us that
we are using an expression assuming low densities.

We once more consider two asymptotic limits, both of which can be cal-
culated analytically. These will then be compared to the asymptotics that
were previously found, such as to verify our calculations. Then, the free
energy per particle is calculated numerically.

Considering the limit as λ→∞, we only consider lowest-order terms in τ ,
and have

f = −ρα2~c
2π

λ4

∫ ∞
0

dτ
2

(τ2 + (2π/λ)2)2
. (28)

This can be evaluated using trigonometric substitution, yielding f = −2ρπ2α2~c/2λ,
complying with what was found in equation (20). This value is useful for
comparison to other results, as it is non-zero if we do not put restraints
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on ω0, meaning that we can compare it to other results from the quantum
mechanical distribution function and maintain a sensible result. We write

fvdW (ρ = 0) = −2ρπ2α2~c/2λ. (29)

again, with ρ = 0 implying that the expression has been derived in the
low-density limit, and not that we set ρ equal to zero.

Moving on, we notice that we can expand to second order in τ , result-
ing in the equation

f = −ρα2~c
(2π)4

λ4

∫ ∞
0

dτ
2− 2τ2

(τ2 + (2π/λ)2)2
(30)

yielding f = −πρα2~c
(

2π
λ − ( 2π

λ )3
)
/2. This is the lowest order radiative

correction to the van der Waals interaction. In fact, trying to expand to
higher orders does not seem to be possible, as higher order terms in τ would
result in a divergent integral. Regardless, the integral converges when the
full expression is used, as the exponential term in this case will be domi-
nating.

Considering the limit as λ→ 0, we obtain

f = −ρα2~c
∫ ∞

0

dτe−2τ [τ3 + 2τ2 + 4τ + 2] (31)

yielding f = −23~cρα2/8, complying with the results obtained from (21).
This expression is fully radiative; being in this limit means that the contri-
bution from an instantaneous dipole interaction would be zero. We denote
this limit fRad.

In figure 2, we illustrate how the energy calculated from equation (27)
varies between the radiative regime and the van der Waals regime. We no-
tice that the transistive region between the two occurs in the area between
λ ∼ 10−1, and λ ∼ 101. Incidentially, in this area the first order correction
to the van der Waals energy would start failing completely, as the correc-
tive term would cancel out the van der Waals-term when 2π/λ = 1. When
going to higher densities, we will have problems describing this regime. We
will thus limit ourselves to consider the regime where λ ≥ 10 henceforth.

In figure 3, the energy is plotted as a function of λ. It can be seen that the
energy goes to zero as λ → ∞, as was expected, whereas λ → 0 yields a
very steep decline to a constant and negative value for f .

12



10−2 10−1 100 101 102

λ

0.0

0.2

0.4

0.6

0.8

1.0

fCas/fvdW

fCas/fRad

Figure 2: The energy calculated from (27), normalized by the energy in the purely radiative
limit, and the van der Waals limit, respectively. In the area 10−1 ≤ λ ≤ 101 the free energy
is dominated by neither radiative or instantaneous interactions.
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Figure 3: Free casimir energy at low density, normalized by the van der Waals interaction
energy at low density, as a function of λ. As λ increases, the energy approaches the van der
Waals level. As λ decreases, however, the radiative terms provide a significant correction.

14



3 Arbitrary densities, instantaneous dipole
interaction

Rather than considering the dilute limit, we can consider a model for ar-
bitrary, but constant particle densities. First, we shall consider the static
dipole interaction. We begin by introducing the Ornstein-Zernike equation,
then state results needed to make our computation. We briefly discuss er-
rors made in our numerical computation due to using a cutoff, but show
that this should lead to a negligible error. Explicit calculations are then
made, showing how the correction changes with density and polarizability
of the fluid.

3.1 The Ornstein-Zernike equation

As the fluid is no longer assumed to be dilute, we can not assume that the
interactions between two particles are unaffected by other particles. We
thus need to alter our model. We shall make use of the Ornstein-Zernike
(OZ) equation,

h(r12) = c(r12) + ρ

∫
h(r13)c(r23)d~r3 (32)

where rij = |~ri− ~rj |. Here h(r) is defined as the total correlation function,
h(r) = g(r) − 1, where g(r) is the normalized pair distribution function,
while c(r) is defined the direct correlation function. By using this relation-
ship, we will be able to consider multi-particle interactions, as can be seen
by considering the second term on the left hand side, which clearly couples
interactions between two particles to the interactions between other parti-
cles.

In this project, we use the mean spherical approach, in which we make
the approximation

c(r) = −βV (r). (33)

The OZ-equation for dipole interactions has been solved by Wertheim,
and we shall make use of his solution in order to better understand the
subsequent results, giving a heuristic description of the alterations that
will be made to his results. In [5], a system of dipoles with common dipole
moment |s| = m is considered. This system differs from our system, in that
the dipole moments are not assumed to be fluctuating harmonically. The
solutions to the problem are given by

h(12) = h0(r) + s1s2(hD(r)D(12) + h∆(r)∆(12))

c(12) = c0(r) + s1s2(cD(r)D(12) + c∆(r)∆(12)). (34)

Where we have used s1 and s2 in order to ease the understanding of later
changes. Making fourier transforms, we introduce the variables c1, c2, h1

and h2, with

c1(r) = (3κ)−1[ĉD(r) +
1

2
ĉ∆(r)],

c2(r) = (3κ)−1[ĉD(r)− ĉ∆(r)], (35)

and where a similar expression is valid for h1 and h2. In these expressions,
we have introduced κ, defined by

κ =

∫ ∞
1

drr−1h∆(r) (36)
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The problem is through this reduced to decoupled equations;

h1(r)− c1(r) = 2κρ(h1 ∗ c1)

h2(r)− c2(r) = −κρ(h2 ∗ c2), (37)

where the ∗ refers to the convolution between the two functions. The
boundary conditions are

c1(r) = c2 = 0, r > R

h1 = h2 = −1, r < R. (38)

Equation (32) has now been reduced to two hard-sphere OZ-equations, the
solutions for which are the same as those for the hard-sphere Percus-Yevick
equation

c1 = cs(r, 2κρ), h1 = hs(r, 2κρ) (39)

c2 = cs(r,−κρ), h2 = hs(r,−κρ) (40)

of interest here is the cs(r, ρ), as c1 and c2 give an expression for c∆, which
will be used later in the expression for the free energy of the fluid. In [7] a
solution is shown to be of the form

cs(r, ρ) = −(1− η)−4[(1 + 2η)2 − 6η(1 +
1

2
η)2r + η(1 + 2η)2 1

2
r3]. (41)

Here, η = π
6 ρR

3, and we see that by inserting for the values in equation
(40), and defining ξ = κπ6 ρR

3 we obtain

c1 = −(1− 2ξ)−4[(1 + 4ξ)2 − 12ξ(1 + ξ)2r + 2ξ(1 + 4ξ)2 1

2
r3]

c2 = −(1 + ξ)−4[(1− 2ξ)2 + 6ξ(1− 1

2
ξ)2r − ξ(1− 2ξ)2 1

2
r3]. (42)

In order to follow [4], we shall make two changes to the model that was
solved by Wertheim. First, we introduce a harmonically fluctuating poten-
tial for the dipole moments, as was done for our calculations of the van
der Waals interaction energy in the introduction. By making this change,
we can no longer say that s1s2 = m2, and must instead consider the av-
erage value; < s2 >. This leads to a slightly different solution, similar
to Wertheim’s in form, but where the density is replaced by an effective
density, which will be a function of a version of α which itself is modified
due to the manyparticle interactions. We can denote this effective density
R, safe in the knowledge that it will not be confused for the hard-sphere
radius, as we are about to replace it with an effective effective density.

This change is due to our second alteration, in which we return to the
quantum mechanical partition function, for which we saw in the low-density
case that α became replaced by αK . Making this alteration here leads to
a similar change, and thus we replace R with RK , which will be defined in
short order.

Having done this, we end up with a set of useful relations [4]:

cK∆(0) = −2κ[q1 − q2] = −16ξ, (43)

1

3
(q1 − q2) =

4π

9
RK (44)
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qi =
(1 + 2ξi)

2

(1− ξi)4
(45)

ξ1 = 2ξ, ξ2 = −ξ (46)

ξ =
π

6
κRK (47)

RK =
3ρ

σK2 + 1/α+ cK∆(0)
(48)

with RK now acting as an effective density for each mode K, where each
mode K, in turn, is treated as having an effective polarizability αK .

3.2 Calculation of the free energy per particle

Using equation (76) of [4], the full internal energy per molecule is set to be

βu = 3
∑
K

σ~2ω2
0 + cK∆(0)

σ(K2 + ~2ω2
0) + cK∆(0)

. (49)

Being interested in the free energy due to interactions, we subtract from
equation (49) the zero-density energy;

3
∑
K

σ~2ω2
0

σ(K2 + ~2ω2
0)

(50)

thus obtaining the internal energy obtained from interaction,

βuint = 3
∑
K

σK2cK∆(0)

(σ(K2 + ~2ω2
0) + cK∆(0))σ(K2 + ~2ω2

0)
(51)

At zero temperature, the internal energy should be equal to the free en-
ergy. Thus, at low densities and at zero temperature, this result should
correspond to that of equation (28). Going to low densities, equation (44)
becomes (observing that low densities imply low values for ξ)

24ξ =
4πρ

σ(K2 + ~2ω2
0)
. (52)

Inserting for equation (43), we thus have

βuint =
∑
K

−8R−3πρσK2

(σ(K2 + ~2ω2
0))3

(53)

Letting T → 0, we now get

f = −8ρα2

R3

∫ ∞
0

dK
K2/(~ω0)2

(K2/(~ω0)2 + 1)3
= −8ρα2~ω0

R3

∫ ∞
0

dK
K2

(K2 + 1)3

(54)
resulting in f = −πρα2~ω/2R3, the same as the result from equation (28).
To see that these two equations are indeed equivalent, we add and subtract
1 in the numerator of the fraction, yielding

f = −8ρα2~ω0

R3

∫ ∞
0

dK

(
1

(K2 + 1)2
− 1

(K2 + 1)3

)
. (55)

We then do a partial integration,∫ ∞
0

dK

(K2 + 1)2
=

K

(K2 + 1)2
+4

∫ ∞
0

dK

(
1

(K2 + 1)2
− 1

(K2 + 1)3

)
(56)
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implying that
∫∞

0
dK

(K2+1)3 = 3
4

∫∞
0

dK
(K2+1)2 , resulting in

f = −2ρα2~ω0

R3

∫ ∞
0

dK

(K2 + 1)2
, (57)

identical to equation (28).

No longer considering the dilute limit, equation (51) must be calculated
numerically. We proceed, by dividing the integral into a sum over small
increments of K, and using equation (44) to calculate a value for ξ for
each K numerically, by use of Newton’s method. To be able to make
this numerical calculation, it is necessary for ξ to be an injective function
of K2, in the region where K2 goes from 0 to ∞. By letting ρ → 0, and
noting that 0 < ξ < 1/2 [5], we see that a strict upper limit for α/R3 is 1/8.

Since we are approximating an integral to ∞ with a sum, a cutoff for
K must be made. From equation (57), we know that the integrand goes
as 1/K4 for low densities. Further, as K increases, the effective density
RK decreases, so this relationship should hold also for higher densities for
a high enough K. Using that 0 < ξ < 1/2, we can replace ξ with 1/2; this
will lead to an upper bound for the integrand, so we have shown that the
integrand will go as 1/K2 - decreasing rapidly. Keeping this in mind, the
summation is made to K = 50. Figure 4 shows the contributions made by
the various K-modes to the total f . From this, it seems apparent that a
summation to K = 50 is more than sufficient. Figures 5 and 6 plot f com-
pared with the low-density approximation, f0. We see that even when ρ
and α are chosen to be very high, the correction is only approximately 5%,
and that it decreases linearily with ρ, and linearily with α for sufficiently
small α.
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Figure 4: Contributions to the total free energy per particle as a function of K for static
dipole interactions, arbitrary density for ρ = 3/π, α = 1/8
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Figure 5: Comparison of van der Waals energy calculated for arbitrary density compared
to the result obtained when assuming low density, as a function of density, ρ. Note that
for higher values of α, the lines seem to be entangled, a result which makes sense when
viewing figure 6.
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Figure 6: Comparison of van der Waals energy calculated for arbitrary density compared
to the result obtained when assuming low density, as a function of polarizability α. The
difference between the two results increases steadily until a point of inflection, when it
flattens out and ultimately decreases slightly.
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4 Arbitrary densities, radiative correction

The next step of interest is to take into account radiative terms, as was
done in section 2. This implies changing the interaction potential, to that
defined by equations (12) and (13). Following Høye and Stell, we shall only
consider the lowest order radiative correction, implying that λ be chosen
very large. To illustrate some pitfalls, we shall first use a naive approach,
showing that it does not in fact lead to a correct solution, before finally
introducing corrections to the approach.

4.1 New Ornstein-Zernike equation

In [3], Høye and Stell once more reduce the problem to equation (37). This
time, however, the boundary conditions are

c1 = 0, r > R

c2 = (1/3κ)(
KR

~c
)2(e−Kr/~c/r), r > R

h1 = h2 = −1, r < R (58)

While the equation for c1 remains a hard-sphere equation, the equation for
c2 is now a one-Yukawa problem. This is solved generally by Waisman in
[8]. In [6] Høye and Stell expand further upon it, and give calculations for
the case when λ → ∞. We should be able to use this result to obtain a
lowest order radiative correction, which should correspond to equation (30)
when ρ→ 0.

4.2 Calculation of the free energy per particle

Introducing radiative terms, as in [3], and assuming that λ >> 1 equation
(44) instead becomes

1

3
(q1 − a2) = 0, (59)

while (43) becomes

cK∆(0) = −2κ[q1 − (a2 + v2)] = 2κv2 (60)

where a2 is defined by equation (2.1) of [6], while v2
Ky

is defined by equation

(2.43) of the same.

First, we wish to eliminate the κ of equation (60), as was done in sec-
tion 3. This is done by comparing equation (1.1.c) of [6] with equation
(38) of [3]. Now, the z’s are identified with the ωs, while the Kys are cho-
sen by z-parametrization, so that Ky = Ky0z

2. Comparing equations (9)

to (11) of [3] with equation (15), we have z = |K|R
~c = 2π|K|

~ω0λ
. As z → 0, the

van der Waals result should be obtained. Consequently, we have

Ky =
z2e−z

3κ
. (61)

From equations (2.22), (2.34), (2.35), (2.39), (2.42) and (2.43) in [6], we
have

A(x) = (1− x)2a(x); p(x) =
(1 + 2x)2

(1− x)2
(62)

U0(x) =
6x

Ky

(
z + 2

z

)2

(Ky − σyv(x))2 (63)
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σy =
1

2z

[
z − 2

z + 2
+ exp(−z)

]
(64)

A(x)− p(x) = −
[

1−
1
4z

2

(
√
p(x) + 1

2z)
2

]
U0(x) (65)

U1

U0
= 2−

√
p(x)−

1
4z

2√
p(x) + 1

2z
(66)

and

v(x)

Ky
=

[(4 + 2z)(U1/U0)− (4 + 2z − z2)]2z

2[(z − 2) + (z + 2)e−z](U1/U0)− [(z2 + 2z − 4) + (4 + 2z − z2)e−z]
.

(67)
Inserting for equations (59) and (60) as well as defining

(1− x)2g(x) = z2e−z
(
z + 2

z

)2
[

1−
1
4z

2

(
√
p(x) + 1

2z)
2

](
1− σv(x)

Ky

)2

,

(68)
we now obtain

1

3
(q1 − q0

2) =
π

9
RKg(−ξ) (69)

and

cK∆(0) =
2

3
z2e−z

v(−ξ)
Ky

. (70)

We are interested in the behavior of cK∆(0) when taking the radiative cor-
rection into account, as this can tell us something about how the radiative
term affects the free energy-contributions from larger Ks. Expecting the
deviation to increase with increasing values of ρ and α, we make the com-
parison at α = 1/8, ρ = 3/π. Further, λ is chosen to be relatively large,
λ = 100. As illustrated in figure 7, cK∆(0) > 0.9cK∆(0)0, K < 5. Apparent
from figure 4, this is where the main contribution to the free energy is
found in the static case.

Naively, we can now proceed as in section 3, using equation (51), to cal-
culate free energy at zero temperature numerically. It turns out, however,
that our approach fails to yield the expected results when the density and
polarizability approach zero. This is illustrated in figures 8 and 9. In the
following sections, we shall discuss and amend this flaw.
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Figure 7: cK∆(0)/cK∆(0)0 for ρ = 3/π, α = 1/8, λ = 100
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Figure 8: Calculation of Casimir energy for arbitrary densities, normalized by the known
expression for Casimir energy at low density, as a function of the density, ρ. As ρ ap-
proaches zero, the result converges, but not to the expected value of 1. λ = 100.
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Figure 9: Calculation of Casimir energy for arbitrary densities, normalized by the known
expression for Casimir energy at low density. When α approaches zero, the result con-
verges, but not to the expected value of 1. λ = 100.
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4.3 Proper expression for free energy

The primary reason for the disrepancy lies in the derivation of the expres-
sion for internal energy. We shall now do this derivation explicitly so as to
highlight why we get a deviation.

Starting with equation (68) of the same article, we have

−βρf =
3

2
ρ
∑
K

ln

(
σRK
3ρη2

)
− 1

2

1

(2π)3

∑
K

∫
dk[ln(1−RK c̃K1 (k))

+ 2ln(1−RK c̃K2 (k))] + I0 (71)

From basic statistical mechanics[9], we have that the internal energy of a
particle, u is related to the free energy of the particle by the relation

u =
∂

∂β
(βf) (72)

We thus have

βρu = β
∂

∂β
(βρf)

= −3

2
ρ
∑
K

β
∂

∂β
ln

(
σRK
rρη2

)
(73a)

− 1

2

1

(2π)3

∑
K

∫
dkβ

∂

∂β

[
ln(1−RK c̃K1 (k)) + 2ln(1−RK c̃K2 (k))

]
(73b)

Because β = Nη and K = 2πn/β, we have that β ∂
∂β = η ∂

∂η = −K ∂
∂K .

Equation (73a) now becomes

−3

2
ρ
∑
K

[
−K ∂

∂K
ln(σRK)− η ∂

∂η
ln(3ρη2)

]
= −3

2
ρ
∑
K

[−K
RK

∂

∂K
RK − 2

]
(74)

Inserting for the derivative of RK ,

∂

∂K
RK =

∂

∂K

3ρ

σK2 + 1/α+ cK∆(0)
= −R

2
K

3ρ
(2σK +

∂

∂K
cK∆(0)) (75)

we find that equation (73a) gives the contribution to βρu∑
K

[
3ρ− σK2RK −

1

2
RKK

∂

∂K
cK∆(0)

]
(76)

We now consider the contributions from equation (73b). We have (changing
β ∂
∂β to −K ∂

∂K , and canceling the negative sign)

1

2

1

(2π)3

∑
K

∫
dkK

∂

∂K

[
ln(1−RK c̃K1 (k)) + 2ln(1−RK c̃K2 (k))

]
=

1

2

1

(2π)3

∑
K

∫
dk

{
1

1−RK c̃K1 (k)

[
K

∂

∂K
(RK c̃

K
1 (k))

]
+2

1

1−RK c̃K2 (k)

[
K

∂

∂K
(RK c̃

K
2 (k))

]}
(77)
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which we rewrite, using h̃Ki (k) =
c̃Ki (k)

1−RK c̃Ki (k)
as

∑
K

1

2

1

(2π)3

∫
dk

{
h̃K1 (k)K

∂

∂K
RK + 2h̃K2 (k)K

∂

∂K
RK (78a)

+R2
K h̃

K
1 (k)

∂

∂K
c̃K1 (k) + 2R2

K h̃
K
2 (k)

∂

∂K
c̃K2 (k) (78b)

+RKK
∂

∂K
(c̃K1 (k) + 2c̃K2 (k))

}
(78c)

where the last two equations are obtained by rewriting

RK
1−RK c̃Ki (k)

=
RK

1−RK c̃Ki (k)
+RK −Rk =

R2
K c̃

K
i (k)

1−RK c̃Ki (k)
+RK (79)

Using that h̃K1 (k) + 2h̃K2 (k) = h̃K∆(k), we rewrite equation (78a)∑
K

1

2

1

(2π)3
K

∂

∂K
RK

∫
dkh̃K∆(k). (80)

This integral we can write as∑
K

1

2

1

(2π)3
K

∂

∂K
RK

∫
dkh̃K∆(k)e−ik0 =

∑
K

1

2
K

∂

∂K
RKh

K
∆(r = 0) = 0

(81)
so we see that equation (78a) vanishes. We next consider equation (78c).
Similar as the previous part, we note that c̃K1 (k)+2c̃K2 (k) = c̃K∆(k), yielding

1

2

∑
K

1

(2π)3

∫
dkRKK

∂

∂K
c̃K∆(k) =

1

2

∑
K

RKK
∂

∂K
c̃K∆(0) (82)

which cancels out the last part of equation (76). Finally, we turn to equa-
tion (78b). We write it into two parts

1

2

∑
K

R2
K

1

(2π)3

{∫
dkh̃K1 (k)K

∂

∂K
c̃K1 (k) + 2

∫
dkh̃K2 (k)K

∂

∂K
c̃K2 (k)

}
(83)

Let us first consider the first part. We fourier transform, yielding

1

2

∑
K

R2
K

1

(2π)3

∫
dkh̃K1 (k)K

∂

∂K
c̃K1 (k)

=
1

2

∑
K

R2
K

1

(2π)3

∫
dk

∫
dr1

∫
dr2h

K
1 (r1)K

∂

∂K
cK1 (r2)eik(r1+r2)

=
1

2

∑
K

R2
K

∫
drhK1 (r)K

∂

∂K
cK1 (r) (84)

where in the last step we have used
∫

dke−ik(r1+r2) = (2π)3δr1,−r2 and
the fact that c(r) is isotropic, c(−r) = c(r). Now, we note that hK1 (r) =
2κHK

1 (r) = 2κ(GK1 (r)− 1), meaning that we can rewrite this equation as

κ
∑
K

R2
K

∫
dr

{
GK1 (r)K

∂

∂K
cK1 (r)−K ∂

∂K
cK1 (r)

}
(85)

Now, for a hard sphere, we have that c(r) = 0, r > 1, while G(r) = 0, r < 1,
so the first part is zero. For the second part, we again write this as a fourier
transform around k = 0, yielding

− κ

(2π)3

∑
K

R2
KK

∂

∂K
c̃K1 (0) (86)
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we return to the second part of equation (83). We follow the same steps as
for the first part, using h2(r) = −κH2(r) = κ(1−G2(r)), ending up at

κ

(2π)3

∑
K

R2
KK

∂

∂K
c̃K2 (0)− κ

∑
K

R2
K

∫
drGK2 (r)K

∂

∂K
cK2 (r) (87)

This time, the second term does not cancel out; as we are no longer con-
sidering a hardsphere solution, but rather a Yukawa potential. Finally, we
use the relation c̃K1 (0)− c̃K2 (0) = c̃KD (0) = 0, ending up with

−κ
∑
K

R2
K

∫
drGK2 (r)K

∂

∂K
cK2 (r) (88)

Combining equations (73a) and (73b) thus gives us the expression

βρu =
∑
K

[
3ρ− σK2RK − κR2

K

∫
drGK2 (r)K

∂

∂K
cK2 (r)

]
(89)

so we see that we have a correction term compared to the expression we had
for static interactions. We can evaluate the correction term a bit further.
First, we note that GK2 (r) = 0, r < 1. Further, introducing z = |K|/~c we

have that cK2 (r) = 1
3z

2 e−zr

r , r > 1. So, we get for the correction term∑
K

[
−κR2

K

∫ ∞
1

dr(r)K
∂

∂K
cK2 (r)− κR2

K

∫ ∞
1

drHK
2 (r)K

∂

∂K
cK2 (r)

]
(90)

The first part of this we can easily evaluate by moving K ∂
∂K = z ∂

∂z outside
of the integral, integrating out and differentiating we obtain

−4π

3
R2
Kκz

2e−z. (91)

The second part is more involved. However, for low densities, we have that
H(r) = C(r), so we can write, using cK2 (r) = −κCK2 (r)

−κR2
K

∫ ∞
1

drHK
2 (r)z

∂

∂z
cK2 (r) = R2

K

∫ ∞
1

drcK2 (r)z
∂

∂z
cK2 (r) (92)

which, again, easily evaluates to π
3R

2
K(z3 − 2

3z
4)e−2z Therefore, going to

low densities, we expect the energy to be given by the expression

βρu =
∑
K

[
3ρ− σK2RK −

4π

3
R2
Kκz

2e−z +
π

3
R2
K(z3 − 2

3
z4)e−2z

]
(93)

4.4 Calculation of the free energy

Having obtained an expression for the internal, and thus free, energy, we
are faced with the same problem as in the previous problem. We have to
calculate an integral in which one function is non-linearily dependant on
the variable of integration. Specifically, we need to know how RK and κ
vary with K. We first subtract the zero-density energy, which is the same
as it was in the case of instantaneous dipole-interactions. We are left with

βuint =
∑
K

[
3

σK2cK∆(0)

(σ(K2 + ~2ω2
0) + cK∆(0))σ(K2 + ~2ω2

0)

+
9ρ

(σ(K2 + ~2ω2
0) + cK∆(0))2

(
(
4π

3
κz2e−z +

π

3
(z3 − 2

3
z4)e−2z

)]
(94)
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As before, when T → 0, this becomes an integral over K, which we then
cut off at a reasonable point. In this case, K = 50 is chosen, for the same
reasons as in the non-radiative case.

Still, however, our method does not result in a value that correctly con-
verges towards the van der Waals result as λ → ∞. The reason lies in
the derivation of an expression for cK∆(0) that was done in section 4.2. In
deriving this expression, we assumed that λ was very high. As such, we
were able to use the linearized equations (2.39)-(2.42) in [6]. It turns out,
however, that doing this will result in deviations to our final expression
that are higher than what was first expected.1 Clearly, then, we need to
use full expressions when determining the values needed.

This creates some complications. Recall, that under the assumption that
the linearized equations could be used, we needed to determine only one
equation in order to determine a single variable (ξ) for each K. This was
because the use of linearized equations allowed us to express U0 and A
directly as functions of ξ (cf. equations (62)-(70)). Now, however, we no
longer have a simple relationship between these variables and ξ. Instead,
we shall have to solve for ξ and one of the other variables simultaneously
(or, as has been done, in repeated succession).

The relevant equations to use are equations (2.22), (2.24), (2.26), (2.31),
(2.35),(2.36), (2.37) and (2.38) of [6]. Specifically:

A(x) = (1− x)2a; p(x) =
(1 + 2x)2

(1− x)2
(95)

where, as before, the x will in the final expression be replaced with −ξ.

Γ = (2−√p)U0 − U1 (96)

2
√
pΓ = (U0 +A− p)(U0 +A) +

1

4
z2(p−A) (97)

which let us express U1 in terms of U0,

U0 +A− p =
1

2
[−p− z

√
A+

√
p2 + 2pz

√
A+ z2p], (98)

letting us express U0 as a function of ξ and a2,

σy =
1

2z

[
z − 2

z + 2
+ exp(−z)

]
; τy =

1

2z

[
z2 + 2z − 4

4 + 2z − z2
+ exp(−z)

]
(99)

y =
4 + 2z − z2

2(2 + z)

U0

U1
(100)

v = Ky
1− y

σy − τyy
(101)

which we shall rewrite into v/Ky, a size which figured prominently in the
linear approach, and which is still of high significance. Finally, we have

Ky =
z2

6x(z + 2)2

[
σy − τyy

(σy − τy)y

]2

U0, (102)

1Curiosly, it seems that this approach would yield correct results if we were to remove the last term of
equation (93) and compare the resulting energy with what we would find if we removed the τ3 term in the
integrand of equation (27)
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which gives us an equation to be solved so as to determine a value for a2.

Let us first rewrite this last equation, using that Ky = z2

3κe
−z. We obtain

2x

κ
− ez

(z + 2)2

[
σy − τyy

(σy − τy)y

]2

U0 = 0, (103)

indeed necessitating an expression for κ, which is found by inverting the
second to last expression of equation (37) of [4],

κ =
6ξ

πRK
. (104)

As before, RK is given as

RK =
3ρ

σK2 + 1/α+ cK∆(o)
(105)

where care should be taken not to confuse σ with σy. Further, cK∆(0) is
still given by the expression

cK∆(0) =
2

3
z2e−z

v(−ξ)
Ky

. (106)

Here, however, the similarity ends, as we cannot express v
Ky

in the same

explicit manner as was done previously. Instead, we use equation (101) to
express v

Ky
in terms of y, which itself is determined by U0 (itself being a

function of a2). Clearly, then, equation (103) is expressable solely in terms
of a2 and ξ, but it cannot be reduced any further.Fortunately, we still have
equation (59) to use, giving us our second equation to solve for two vari-
ables.

Similarily to the previous sections, we will use Newton’s method to find
our solutions. However, the fact that we are solving for two codependent
variables complicates matters. First, we will want a good initial guess for
the values of a2 and ξ. This is obtained by solving the linearized problem,
which we expect to be close to the true value. After this is done, we hold
the value obtained for ξ fixed, and solve equation (103) to obtain a new
value for a2. This value is then plugged into equation (59), which we solve
to obtain a new value for ξ. This process is then repeated until we have
obtained what we deem to be a sufficient precision on ξ and a2.

Obviously, this process is extremely slow. However, it does converge, and
the value to which it converges is what is expected when considering the
boundary conditions of rho→ 0 and α→ 0. Further, as the value of λ in-
creases, the difference between the solution from the linear approximation
and this full approach decreases, meaning that the relative difference in
speed becomes somewhat smaller. This latter fact also allows us to make
some alteration in our approach to cut down the speed needed further. The
fact that the difference between the two solutions is a strictly decreasing
function of λ implies that it also decreases as a function of K, provided
that K is large enough. This means that for each K in our sum, we can
determine if the difference between solutions is smaller than a chosen tresh-
old value, beyond which we use the solution for the linearized problem.

Finally, we obtain the results for arbitrary density with radiative interac-
tions. First, we should check that they do indeed converge to the Casimir
result obtained in section 2 as ρ → 0. As can be seen in figure 10, this
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is indeed the case. Next, we would like to examine the dependence on ρ
and α for low values of both the variables. It was thought that as ρ and
α decreased, that f(ρ)/f(ρ = 0) would simply be dependent on ρα. As
figure 11 implies, this does not seem to be the case.
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Figure 10: Comparison of Casimir energy calculated for arbitrary density (fCas(ρ)) versus
Casimir energy calculated under the assumption that the density is zero (fCas(ρ = 0)).
As the density decreases, the two energies approach eachother. Notice how the two lower
lines entangle eachother as ρ varies; a behavior which is to be expected due to the behavior
of the energy for high values of α. For this graph, we have chosen to use λ = 20. For
different values of λ, the general behavior of the grapf will be the same, although higher
values of ρ will lead to slightly changed differences between the calculated energies.
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Figure 11: Comparison of Casimir energy calculated for arbitrary density (fCas(ρ)) versus
Casimir energy calculated under the assumption that the density is zero (fCas(ρ = 0)).
The dashed lines indicate that we have kept a fixed value of α, while varying ρ, whereas the
full lines indicate the opposite relationship. Note how the full line always has its endpoint
in the outermost dashed line, this obviously being due to said dashed line having α fixed
at 1/8. We expect the full lines to behave similarily for arbitrary values of ρ, that is to
say that they should have a slight dip, before beginning an (almost linear) increase. Also
note that the endpoint for the dip does not come for any fixed value of ρα. Finally, note
that when the full lines start their increase, they increase at a far steeper rate than any
of the dashed lines. All of these observations indicate that there is no value for ρα small
enough that the energy is predominantly ρα-dependant, rather than some other function
of ρ and α. For this graph, we have chosen to use λ = 20. For different values of λ, the
general behavior of the grapf will be the same, although higher values of ρ will lead to
slightly changed differences between the calculated energies.
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We now turn to the total correction to van der Waals interaction in
dilute media, as illustrated by figures 12 and 13. As could be expected, the
correction seems to behave similarily to that of section 3, albeit shifted by
a value, which in the limiting case of ρ→ 0 should be, and is, equal to the
correction obtained from the Casimir result calculated for dilute media in
section 2. What is curious, however, is that this shift remains constant as
a function of ρ and α. To simplify notation, we write

∆f (ρ) = fCas(ρ)− fvdW (ρ), (107)

thus defining ∆f as the difference between energy calculated when radia-
tive interactions is and is not taken into account. Since we are primarily
interested in the difference between low- and arbitrary density, we will su-
press other arguments than ρ, even though we expect ∆f not to be solely
dependant on ρ. In figures 14 and 15 we see that for sufficiently large values
of λ, ∆f is independent of ρ and α. Examining this relation further, we can
calculate ∆f (ρ = 0) for various values of λ, by using the results from the
first two sections. We can then plot this together with ∆f (ρ) as calculated
assuming arbitrary densities. As figure 16 shows, the two results are almost
identical, with only an almost indiscernable difference as λ decreases to 10.
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Figure 12: Comparison of Casimir energy at arbitrary densities (fCas(ρ)) versus van der
Waals energy at zero density (fvdW (ρ = 0)). As the density approaches zero, the ratio
approaches the known ratio for Casimir energy at zero density versus van der Waals energy
at zero density. In this figure, λ = 100, and we can see that the radiative correction is
small compared to the corrections stemming from taking density into account.
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Figure 13: Comparison of Casimir energy at arbitrary densities (fCas(ρ)) versus van der
Waals energy at zero density (fvdW (ρ = 0)). As the density approaches zero, the ratio
approaches the known ratio for Casimir energy at zero density versus van der Waals
energy at zero density. In this figure, λ = 20, and we see that the correction that is due
to including radiative terms is relatively high.

35



0.0 0.2 0.4 0.6 0.8 1.0
ρ

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

∆
f
(ρ

)/
f v
d
W

(0
)

λ = 100

λ = 90

λ = 80

λ = 70

λ = 60

λ = 50

λ = 40

λ = 30

λ = 20

λ = 10

Figure 14: The difference between Casimir and van der Waals energy, ∆f , calculated for
arbitrary density is plotted as a function of ρ. To normalize our values, we have divided by
fvdW (ρ = 0). Different stripes correspond to different values of λ. The difference remains
constant as a function of ρ, except in the case where λ = 10, where there is a slight change
as ρ→ 0. In this graph, α = 0.075.
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Figure 15: The difference between Casimir and van der Waals energy, ∆f , calculated for
arbitrary density is plotted as a function of α. To normalize our values, we have divided by
fvdW (ρ = 0). Different stripes correspond to different values of λ. The difference remains
constant as a function of α, except in the case where λ = 10, where there is a slight change
as α→ 0. In this graph, ρ = 0.5.
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Figure 16: ∆f (ρ) and ∆f (ρ = 0) plotted as a function of λ in the same graph. The two
values overlap completely for higher values of λ, with only a barely percieveable deviation
as λ approaches a value of 10. For this computation, we have used ρ = 0.5 and α = 0.035
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5 Conclusion

Free energy in polarizable fluids has been calculated at low and arbitrary
densities. Calculations have been made for radiative interactions, as well as
non-radiative interactions. At low densities, we have shown that the lowest
order correction to van der Waals-energy due to radiative interactions goes
as 1

λ2 , and that no higher order corrections can be made except for the full
expression, which we have calculated numerically. We have demonstrated
that the free energy in general becomes relatively smaller as λ increases.

For arbitrary densities, we have made use of the Ornstein-Zernike equa-
tion to calculate corrections that occur from multiparticle interactions.
We shown analytically that our expression for the van der Waals inter-
action at arbitrary densities corresponds to that found for low densities
as ρ → 0. Numerically, we have demonstrated that the energy decreases
slightly, as the density increases. We have shown that when the polar-
izability α changes, this too leads to a decrease in the energy - until an
inflective point close to the maximal allowed value for α, after which the
energy decrease stops, and for some values of ρ is even reverted.

Lastly, we have calculated the radiative corrections at arbitrary densities.
We have demonstrated that for reasonable values of λ, the radiative correc-
tion is independent of density. For low values of λ, there is an indication
that there will be a correction that is density- and polarizability depen-
dent, but the calculations made have not been accurate enough for such
low values of λ to make any decisive remarks.
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A Full expression for final term

In this section, we shall compute the full expression for the free energy
per particle. This shall be done using known expressions for the Laplace
transform of the direct and total correlation functions. We start off with the
expression we found in equation (89) for the internal energy per interaction:

βρu =
∑
K

[
3ρ− σK2RK − κR2

K

∫
drGK2 (r)K

∂

∂K
cK2 (r)

]
. (108)

The first two parts of the sum are well known, as they constitute the expres-
sion for the internal energy per interaction when considering instantaneous
dipole interactions. The interesting part is the integral, which gives us the
corrective term, and which we had previously approximated to lower order
in equation (93). Thus, we aim to find an expression from

−κR2
K

∫
drGK2 (r)K

∂

∂K
cK2 (r). (109)

First, we should combine κ and GK2 (r) to obtain gK2 (r) = −κGK2 (r). Next,
we will make use of the fact that g and c are only radially dependant, as
well as the identity z ∂

∂z = K ∂
∂K to write our corrective term as

4πR2
K

∫ ∞
0

drr2gK2 (r)z
∂

∂z
cK2 (r). (110)

Further, we make use of

gK2 (r) = 0, r < 1

cK2 (r) =
1

3
z2 e
−zr

r
(111)

to write this equation as

4π

3
R2
K

∫ ∞
0

drrg(r)z
∂

∂z
(z2e−zr), (112)

which, taking the derivative, yields us

4π

3
R2
K

∫ ∞
0

drrg(r)e−zr(2z2 − rz3). (113)

We now turn to the appendix of [10], where the Laplace transform of the
correlation functions (and thus, the pair distribution function) have been
defined as

ĉ(s) =

∫ ∞
0

drrc(r)e−sr

ĝ(s) =

∫ ∞
0

drrg(r)e−sr. (114)

Using this, as well as the property of Laplace transforms that L (f(r)) =

f̂(s)⇒ L (rf(r)) = f̂ ′(s) we can express equation (113) as

lim
s→z

4π

3
R2
Kz

2(2ĝ(s)− z3ĝ′(s)). (115)

where the lim-notation has been used to clarify that ĝ(s) still depends on
z, implying that we should take the derivative with regards to s, and then
let s → z, rather than just differentiating with regards to z. Henceforth,
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we will use ĝ′(z) to signify this, and if the need arises we will write the
other case as ∂

∂z ĝ(z).

Following the text of said appendix, we know that ĝ(z) can be expressed
in terms of v2, from the identity

v2 = −24ξKye
z

∫ ∞
1

dre−zrg2(r) (116)

(c.f. equation (2.4) in [6]), from which we obtain

ĝ(z) = − v2

Ky

e−z

24
(117)

Obtaining ĝ′(z) is more involved, for the aforementioned reasons. How-
ever, following the appendix of [10], we can make an expansion of the
formal expression for ĝ(s), eventually yielding

ĝ′(z) =
ĝ(z)[ĉ0(−z)− ĉ0(z)]

Kyez
(118)

in which

ĉ0(s) = ĉ(s)−Kye
z 1

s+ z
e−(s+z), (119)

ĉ(s) =− a2
1

s2
[1− (1 + s)e−s]− b2

1

s3
[2− (2 + 2s+ s2)e−s]

+
1

2
ξa2

1

s5
[24− (24 + 24s+ 12s2 + 4s3 + s4)e−s]

− v2

z

[
1

s
(1− e−s)− 1

z + s
(1− e−(s+z))

]
− v2

2

4Kyz2ez

[
1

s− z (1− e−(s−z)) +
1

s+ z
(1− e−(s+z))− 2

1

s
(1− e−s)

]
+Kye

z 1

s+ z
e−(s+z) (120)

and where ĉ0(±z) = lims→±z ĉ0(s). In order to take this limit, we note
that

lim
s→z

1

s− z (1− e−(s−z)) = lim
s→−z

1

s+ z
(1− e−(s+z)) = 1, (121)

so finally we have

ĉ0(−z)− ĉ0(z)

=
a2

z2

[
(1− z)ez − (1 + z)e−z

]
+
b2
z3

[
4− (2− 2z + z2)ez − (2 + 2z + z2)e−z

]
−1

2
ξa2

1

z5

[
48− (24− 24z + 12z2 − 4z3 + z4)ez − (24 + 24z + 12z2 + 4z3 + z4)e−z

]
+
v2

z

[
1

z
(2− ez − e−z) + 1 +

1

2z
(1− e−2z)

]
+

v2
2

4Kyz2ez

[
1

2z
(2− e2z − e−2z)− 2

z
(2− ez − e−z)

]
. (122)
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Here, the ξ and a2 will have to be computed numerically, as has been
detailed previously, while v2 can be expressed from equation (101) (keeping
in mind that v2 = v(−ξ)), and b2 can be found using equations (2.7) and
(2.10) of [6];

−6ξb2 = (1 + 8ξ − 2ξ2)a2 + u− 1, (123)

u = 24ξ

[
v2

1

z

{
1

2
+

1

z2
[(1 + z)e−z − 1]

}
+

v2

2Kyz2ez

{
sinhz

z
− coshz − 1

z2
− 1

2

}
− Ky(1 + z)

z2

]
(124)

Here, care should be made not to confuse u with the internal energy, as
used in the preceding sections. In this case, u is mostly related to the U0

that was seen in the derivation of v2
Ky

.

In the end, we can combine these results with equation (115) to obtain
the full radiative correction to the expression for free energy.
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