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Abstract

Recent literature indicates increasing interest in deep neural
networks for use in speech enhancement systems. Currently,
these systems are mostly evaluated through objective measures
of speech quality and/or intelligibility. Subjective intelligibility
evaluations of these systems have so far not been reported. In
this paper we report the results of a speech recognition test with
15 participants, where the participants were asked to pick out
words in background noise before and after enhancement using
a common deep neural network approach. We found that, al-
though the objective measure STOI predicts that intelligibility
should improve or at the very least stay the same, the speech
recognition threshold, which is a measure of intelligibility, de-
teriorated by 4 dB. These results indicate that STOI is not a
good predictor for the subjective intelligibility of deep neural
network-based speech enhancement systems. We also found
that the postprocessing technique of global variance normalisa-
tion does not significantly affect subjective intelligibility.
Index Terms: speech enhancement, deep neural network, sub-
jective evaluation, speech intelligibility

1. Introduction

The field of speech enhancement (SE) aims to improve the qual-
ity and/or intelligibility of speech that has been degraded [1]. In
the past few years, deep neural networks (DNNs) [2, 3] have
emerged as a promising approach for SE, outperforming ear-
lier approaches. SE has been proven useful as a preprocessing
step for automatic speech recognition systems to decrease their
word error rates [4, 5, 6], but the field also aims to make de-
graded speech easier to understand and/or more comfortable to
listen to for humans [5, 7, 8].

The performance of each of these SE approaches with
respect to intelligibility improvement is typically evaluated
through objective measures. Especially popular measures are
STOI [9], PESQ [10], or the word error rates of speech recog-
nition systems. PESQ was originally designed as a measure
for speech quality rather than intelligibility, but was then found
to also correlate reasonably well with subjective intelligibil-
ity [11]. None of today’s objective measures of intelligibility
can perfectly predict intelligibility to humans, and their correla-
tion depends on the type of speech degradation present [9, 12].

Thus, listening tests are necessary to quantify the benefit of
DNN-based SE for human listeners. Listening tests for speech
quality have previously been reported in the literature with posi-
tive results [5, 7, 8]. Quality is however highly subjective, since
whether a signal sounds ‘good’ or ‘poor’ is based on listeners’
preferences. Intelligibility tests are more objective in nature as
these allow for quantitative scoring of how much information
the listener actually understood. To our knowledge, and despite
its popularity, no one has tested the predictive power of STOI
for DNN-based SE against subjective listening tests.

In this work we report the results of a series of listening
tests for intelligibility, where our test subjects attempted to com-
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prehend speech in background noise, before and after DNN-
based speech enhancement. Here, we evaluate whether STOI
correctly predicts change in subjective intelligibility for a rea-
sonably common DNN setup. Additionally, we analyse the ef-
fect of the ‘global variance normalisation’ postprocessing step
(described in sec. 2.1.3) on intelligibility.

2. Methods

2.1. DNN system overview

The speech enhancement system is loosely based on the system
Xu et al. proposed in [8], but omits pre-training with restricted
Boltzmann machines as their results indicate that the effect of
pre-training was negligible. The DNN was implemented using
Keras 1.0.5 [13].

2.1.1. Speech and noise preparation

For training, clean speech was combined with noise to ob-
tain noisy speech. The clean speech was obtained from the
Norwegian-language library ‘Sprakbanken’ [14], to ensure that
the DNN trained on the same language as used during subjec-
tive evaluation. The setup of Sprakbanken is similar to that of
the more widely used TIMIT. The clean speech database was
divided into a training set, a validation set, and a test set (not
used for this article). Care was taken to ensure that each set was
balanced with respect to gender and dialect, and that no spe-
cific speakers or sentences occurred in more than one set. The
final training set consisted of 1932 sentences from 137 unique
speakers, while the validation set contained 816 sentences from
48 speakers.

Periods of silence lasting longer than 75 ms were trimmed
to 75 ms where their levels were 40 dB or more below the peak
of the given sentence, to capture the average dynamic range of
speech [11]. The 75 ms length was arbitrarily chosen as a com-
promise between minimising the number of quiet training sam-
ples, and maintaining a clear separation between words.

Noisy speech was obtained by combining the clean speech
with the same 104 noises Xu et al. used in [8], all obtained from
either the Aurora database [15] or Guoning Hu’s collection [16].
Six different signal-to-noise ratios (SNRs) ranging from —5 dB
to 20dB, with SNRs applied at sentence level, were used for
training. This range was chosen, despite the need for lower
SNRs during speech intelligibility testing, as a DNN trained
with a more suitable SNR range, but otherwise equal hyper-
parameters, actually performed worse in terms of STOI values
at all SNRs.

The noisy speech, along with clean speech (with ‘infinite
SNR’), was used as input for the DNN. This lead to a total of
1984 hours of training data. Noisy speech for validation was
obtained by combining the clean validation speech with the 15
unseen noises Xu et al. specified in [8], obtained from either the
Aurora or NOISEX-92 databases [15, 17]. This resulted in 98
hours of validation data. Both the noisy and clean speech sig-

http://dx.doi.org/10.21437/Interspeech.2017-1041



Pre- Select 1
S. 1 processing . window
............ ' y
Pe
_____________ \ 4
Pre- Select 21 Y Loss
S, . processing | windows K Model 1= function

]
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Figure 2: Diagram of preprocessing steps

nals were down-sampled to 8 kHz, as this was the lowest sam-
pling rate of any of the original signals.

2.1.2. Training

Figure 1 shows a block diagram of the training procedure. The
model learns in a supervised manner, with the standard mean
squared error (MSE) loss function
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where g5, and yi represent the kth frequency bins of the en-
hanced and clean log-power spectral features, respectively. The
features were obtained through the preprocessing steps shown
in Figure 2. During preprocessing, the signal is first separated
into windows that overlap by 50 %. The windows consist of
256 samples, and thus represent a timeframe of 32 ms at 8 kHz.
The Hann window function is then applied to each window be-
fore the result is Fourier transformed. Redundant information
above the Nyquist frequency is discarded from the resulting
magnitude spectrum to obtain a single-sided output. Finally,
log-power spectrum features are calculated for each window.
After preprocessing, the input vector is obtained by stacking
21 sequential 50 % overlapping windows that contain the log-
power spectral features. This provides the DNN with 160 ms
historic and 160 ms future context. The phase of both clean and
noisy speech is ignored during training. No normalisation of
input or output was applied.

The DNN model is a multi-layer perceptron, a feedforward
neural network with fully connected layers. It has three hidden
layers, each with 2048 nodes and LeakyReLU activation func-
tions. The model is trained with 50 % dropout on the hidden
layers using the Adam optimiser with a learning rate of 10°.
The activation function of the output layer is linear.

Training continued until the STOI value reached a maxi-
mum for the validation set at the 8th epoch. The model’s state at
this epoch was used for enhancement. We also trained a number
of different models with different hyperparameters; the model
described here was selected due to its better STOI performance.
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Figure 3: Diagram of enhancement procedure
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Figure 4: Diagram of postprocessing steps

2.1.3. Enhancement

After training, the model could be used to enhance noisy
speech. Figure 3 shows the enhancement procedure, and Fig-
ure 4 shows the postprocessing steps.

Postprocessing mainly consists of reversing the steps that
were taken during preprocessing, using the noisy phase for
waveform reconstruction. The first step, global variance nor-
malisation (GVN), is the exception to this reversal. This step
aims to prevent over-smoothing by enforcing the variance of
the enhanced speech to be equal to the variance of actual clean
speech. During GVN, the DNN’s output features are multiplied
with a frequency bin independent factor calculated as

varm,k[yr(m)]
varm,k[Jr (m)]

B = ; (€3

where var,, , represents the variance over all values of m and
k, with m indexing examples in the training set, and k indexing
frequency bins. Furthermore, from the law of total variance we
can calculate this variance as

yﬂag[ak (m)] = % ; V%I‘[Cbk (m)] + var (vyzzr[ak(m)]) , (3)

s

where K equals the total number of frequency bins and ax(m)
represents either yx(m) or gx(m). This specific method for
the calculation of the global variance combines readily with
Welford’s online algorithm for variance computation, which is
well suited to working with large data sets [18]. Two systems
were tested for this work; one with, and one without the GVN
step.

2.2. Objective evaluation

The short-term objective intelligibility (STOI) measure [9] was
used to test the model’s performance. The advantages of STOI
include a documented strong correlation with subjective speech
intelligibility [9] and the possibility to compare obtained results
with earlier publications [8]. Additionally, unlike with some
other popular objective measures like PESQ, use of STOI is not
restricted by licencing.

Objective evaluation results were obtained both for the val-
idation set and for the signals used during subjective testing.

2.3. Subjective evaluation

The subjective evaluation of intelligibility was performed us-
ing a speech recognition test. Figure 5 shows the user interface
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Figure 5: The GUI of the Norwegian-language subjective test

implemented in MATLAB [19]. Random five-word sentences,
all uttered by the same male speaker, were presented at differ-
ent SNRs to determine the speech recognition threshold (SRT).
All sentences were in Norwegian and structured the same way:
[Name], [Verb], [Numeral], [Adjective], [Noun], with 10 op-
tions for each. The subjects’ task was to pick out which word in
each category was in the sentence they just heard. The speech
material has been taken from @ygarden’s hearing in noise test,
which is based on Hagerman sentences [20].

To keep the subjective test to a manageable length, only one
noise file was used: a road traffic recording from a crossroad
in central Trondheim, a common type of background noise in
cities. Each sentence was mixed with a random section of this
noise file at the desired SNR. The SNR was calculated from the
root-mean-square (RMS) value for the sentence without noise
and the RMS value for the selected section of the noise signal.
The background noise was kept constant at a comfortable level
while the speech was varied to achieve the correct SNR. The
speaker, utterances, and noise used in this test had not been in-
cluded during DNN training nor during validation.

Each subject completed three tests. For each test case, all
material was first down-sampled to 8 kHz. One test set was
left otherwise untreated (‘Noisy’), while for the other cases
the speech was enhanced according to the method described in
sec. 2.1.3 (‘DNN with/without GVN”), where the GVN step was
only included for one of these cases. The material of each test
set was subsequently up-sampled to 44.1 kHz before being pre-
sented to the subject. All sentences were presented binaurally
with Sennheiser HDA-200 headphones via an external sound
card (Roland Edirol UA-101).

An adaptive procedure called the ¥ method [21] was used
to determine the presentation levels during testing. The method
uses the entropy of the posterior probability distribution in the
determination of the next stimuli level. The Palamedes MAT-
LAB toolbox [22] was used for the realisation of the W method.

The test was not forced choice, but the test subjects were
encouraged to guess whenever they thought they (partly) recog-
nised a word. Both the guess and lapse rate were set to 0.01 in
the method. The threshold and slope value were allowed to vary
in the estimation of the psychometric function. The stimulation
range of the SNRs was from -36 dB to 10dB, in 2 dB steps.

15 persons, with ages from 39 to 65 (Mean = 54.2, SD =
9.5), participated. The only selection criteria observed was that
all participants had to have Norwegian as their first language.
All test subjects were given a training session before the three
situations (Noisy, DNN with GVN, and DNN without GVN)
were tested and the test sequence was randomised between each
individual to reduce any further training effect that could occur
during the session. The test subjects were also allowed to take
a break during the test if they desired.
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Table 1: STOI results for the validation set. Results are aver-
aged over the 15 unseen noise types and stated together with
their sample standard deviation.

SNR Noisy DNN without GVN  DNN with GVN
20  0.95(0.01) 0.92 (0.01) 0.91 (0.01)
15 0.91 (0.02) 0.90 (0.01) 0.89 (0.01)
10 0.85(0.03) 0.86 (0.02) 0.85(0.02)

5 0.76 (0.04) 0.80 (0.02) 0.79 (0.02)

0 0.65 (0.04) 0.71 (0.03) 0.71 (0.03)

-5 0.55 (0.04) 0.61 (0.04) 0.60 (0.04)
3. Results

3.1. Objective evaluation

Table 1 shows the STOI results for the validation set. The GVN
step shows no significant effect on the STOI results. DNN pro-
cessing leads to improved scores as compared to the baseline
for all SNRs under 10dB. Looking at our unprocessed ‘noisy’
baseline, our STOI results at low SNRs are lower by 0.05 than
what Xu et al. [8] found using the TIMIT speech library. As we
use the same noise types, and we were able to reproduce their
‘noisy’ STOI scores using TIMIT, this discrepancy shows that
STOI predicts different intelligibility for the two libraries under
equal noise conditions.

Figure 6 shows a plot of the average STOI scores obtained
for the files processed for subjective evaluation. As with the
validation set results, the use of GVN did not significantly af-
fect model performance. At higher SNRs, DNN processing per-
forms worse than the noisy baseline. However, for low SNRs
STOI scores suggest improvement even outside the training
range. According to the objective evaluation, DNN processing
ought to be beneficial for all SNRs in between -14 dB and 4 dB.

3.2. Subjective evaluation

Figure 7 shows the results from the subjective tests. Specif-
ically, it shows the differences between the reference and the
two DNN models, both for the SRT and the slope of the psy-
chometric function at SRT. All test subjects performed worse
on the SRT, while the slope values are more mixed.

To assess the normality of the data, we performed an
Anderson-Darling test on all the differences. The SRT differ-
ences for the DNN without GVN failed the normality test. The
non-normality is presumably a consequence of the small sam-
ple size. To cope with this, we performed a Wilcoxon signed
rank test to compare the models with the reference. The tests
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Figure 6: STOI results for the subjective evaluation set
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Figure 7: Comparison between unenhanced reference data
and DNN data. Upper: Speech recognition thresholds (SRT).
Lower: Slope of the psychometric function at SRT.

showed a significant difference (W = 120, p = .0001 for both)
between the models and the reference; not surprisingly, since
all the test subjects performed worse on the DNN models (see
Figure 7). The differences in median SRT values were (using
Hodges-Lehman estimators) 3.8 [3.2, 4.4] and 3.9 [3.2, 4.8] for
DNN with GVN and without GVN, respectively. The numbers
in brackets are the 95 % confidence intervals.

The slope of psychometric functions were compared using
a two sample F-test. Neither DNN with GVN (F4,14 = .91,
NS), nor DNN without GVN (F14,14 = .69, NS) showed any
significant difference from the reference.

4. Discussion

The STOI results for unprocessed noisy validation files from the
Norwegian database (Table 1) differ from those obtained for the
TIMIT database by Xu et al. [8]. This complicates comparing
model performance directly. However, the results are similar
to those of Xu et al. in the sense that STOI improvement is
arguably insignificant for SNRs of 10 dB and above. For lower
SNRs, STOI predicts our system will achieve improvements of
up to 6 percent on the subjective scale. This is less than Xu et
al. achieved, but significant enough to predict that subjective
SRTs ought to decrease, or at the very least, stay the same.

The DNN model was not trained at SNRs below -5 dB, but
surprisingly, the STOI results shown in Figure 6 indicate that
the model enhances noisy speech with SNRs up to 9dB be-
low its training range. This means that during subjective test-
ing, 93.8 % of sentences presented to the listener had an SNR
that fell in the functional range of the model (from -14 dB to
4dB). All test subjects also achieved SRT values within this
range. Nonetheless, the results from the subjective testing
showed that the DNN models performed significantly worse
(SRTs increased with approx. 4 dB) than the unprocessed sen-
tences. Even from a conservative perspective where we could
say that the changes the model attains in STOI are insignificant,
the SRTs should not have increased this much. Thus, STOI sig-
nificantly overestimates the speech intelligibility of our DNN-
based speech enhancement system.

On the other hand, STOI correctly predicts that GVN has no
significant effect on speech intelligibility. According to Xu et
al. [8], PESQ results are, in contrast, significantly affected when
GVN is used during postprocessing of a DNN-based speech en-
hancement system. This may indicate that GVN matters more
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to speech quality, but we did not investigate this further.

Our DNN model was selected because it obtained better
STOI scores than similar networks trained for a larger range of
SNRs or with different hyperparameters. Our results however
indicate that STOI fails to predict the intelligibility of a DNN-
based speech enhancement system. This directly undermines
our model selection criterion. It is therefore possible that one of
our other models would have lead to better subjective scores.

All test sentences were uttered by the same male speaker;
it is likely that the DNN model will perform differently for dif-
ferent speakers. Similarly, the results are presumably affected
by the choice of background noise. We expect that the traffic
noise used here performs better than for example noise that con-
sists mainly of human speech (babble), since the DNN models
might try to enhance some of the speakers in the noise as well.
Similarly, other types of noise may again be easier for the sys-
tem to handle. A more comprehensive study of the suitability of
STOI as an objective evaluation measure for DNN-based speech
enhancement would need to include a variety of speakers and
noises. Such a comprehensive study will be time-consuming
and the material for the speech-in-noise tests will need to be
carefully constructed for unbiased results.

The choice of sampling frequency (8 kHz) might also have
affected the results. Increasing the sampling frequency to
16 kHz, or higher, would probably have improved the speech
recognition for all the tests [23], but it is not clear if this would
have changed the results of this study.

Another possible bias in this study is the effect of hearing
loss. As the analysis of the subjective testing looked at the dif-
ference between a reference and the DNN models, we assumed
that a hearing loss would not alter the results. Only one test
subject had a hearing aid, but this was not used during the sub-
jective test. Since the test subjects’ ages were relatively high
(mean = 54.2) it can be assumed that several of the test sub-
jects were affected by presbycusis. Even if the intra-subject
change in SRTs should be independent of hearing impairment,
this may have affected results.

Our analysis is limited to speech intelligibility, and does not
consider the effect of DNNs on speech quality. The relation-
ship between these two parameters is not fully understood. For
many communication systems, intelligibility may be approach-
ing 100 %, while user satisfaction is still limited. Here, listening
effort tests, where a speech intelligibility test is combined with
another task, may provide a good compromise between provid-
ing objective results for the more quality related question of how
comfortable or easy it is to listen to the enhanced speech.

5. Conclusion

We have tested a DNN-based speech enhancement system with
listening tests to determine the subjective intelligibility of pro-
cessed noisy speech. Our results show a significant degrada-
tion in intelligibility, even though STOI scores predicted other-
wise. Therefore we advise against solely relying on STOI when
designing DNN-based speech enhancement systems for human
listeners. Our results further show that the postprocessing tech-
nique of global variance normalisation does not significantly af-
fect subjective intelligibility.
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