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Abstract

In this thesis we theoretically examine spin-polarized non-local transport in two
junctions built up by materials with superconducting and magnetic properties. The
first consists of a Zeeman-split superconductor placed between two normal metals.
We find that such systems can generate a spin-polarized non-local current even when
the injected current is unpolarized. The effect is however mostly geometric and take
place also when the superconductor is switched with a normal metal. The second
system is built up by two ferromagnetic wires coupled by a superconductor via
spin-active interfaces. We investigate the circumstances which allow for an inverse
spin-valve effect. For certain parameter ranges we find that a crossover between
positive and negative magnetoresistance is possible as a function of temperature.
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Chapter 1

Introduction

Superconductivity is the complete disappearance of electrical resistivity and ex-
pulsion of the magnetic field at temperatures below a material-dependent critical
temperature. The current in conventional superconductors is carried by a conden-
sate of Cooper pairs, consisting of two electrons at the Fermi level with opposite
spins and zero center of mass momentum. This condensate is seperated from the
one-particle states of the superconductor by the superconducting gap ∆. To break
a pair and create particle excitations above the condensate an energy of at least 2∆
is required.

Superconductivity was discovered hundred years ago in 1911. Since then many the-
oretical and experimental studies have been performed to investigate this special
property. For some years superconducting hybrid structures have got a lot of at-
tention. Systems built up by layers of normal metals and superconductors show
interesting transport properties, and can lead current also when the energy of the
incoming particles are below the superconducting gap energy.

Since the 1990s spintronics has been a growing field of research. Spintronics combine
the two fundamental properties of the electron, namely charge and spin. One thus
looks at the combined effect of electronics and magnetism. Usually this is based
on ferromagnetic materials, which to some extent can give spin-polarized currents.
A spintronic device is strongly dependent of the degree of spin polarization in the
current and the performance improves for increasing polarization. Therfore one of
the main research activities in spintronics is how to obtain and manipulate spin-
polarized currents.

A recent idea is to combine superconducting properties with spin manipulation. This
subfield of spintronics is by some called superspintronics. In the most usual form of
superconductors the Cooper pairs have antiparallel spins and thus have a total spin
of zero, and the superconductor is said to have a spin-singlet symmetry. A magnetic
field will try to align the spins with the field. Magnetism and superconductivity are
thus opposing effects in the normal case. However, as we see in chapter 3 magnetic
and superconducting properties can correlate under certain conditions. Another
option that will not be given much space in this thesis are the so called spin-triplet
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2 Chapter 1. Introduction

superconductors that can have parallel spin alignment of Cooper pairs.

This thesis will consentrate on two specific systems coupling magnetic and supercon-
ducting properties. The first system is motivated by a paper [1] that theoretically
investigates a hybrid structure built up by a Zeeman split superconductor in contact
with a normal metal. Zeeman split superconductors offer a synthesis between mag-
netic and superconducting correlations coexisting in the same material. They find
the possibility to obtain a strongly polarized current in that system. We will look
at a system where the Zeeman split superconductor is placed between two normal
metals. As far as we know the spin properties of this system has not previously been
studied in the literature. Since the density of states in the superconductor in this
case will be spin-dependent we may look at processes such as spin-polarized crossed
Andreev reflection. Of special interest is it to investigate if an injected unpolarized
current could give rise to a spin-polarized non-local current, and which conditions
that would have to be fulfilled.

The second system is also a novel system in the literature. It consists of a su-
perconductor placed between two ferromagnets, where the barrier potentials at each
interface is spin-dependent. A recent experiment [2] has indicated that such a sytem
can give a transition between positive and negative magnetoresistance as a function
of temperature and of barrier strength. We want to give this a thorough and sys-
tematic investigation to find what criteria must be fulfilled for this to happen.

This thesis is organized as follows. Chapter 2 will give a short introduction to
superconductors and processes taking place in superconducting hybrid structures.
In chapter 3 we will take a look at how superconducting and magnetic properties
can coexist. The N-ZS-N system will be the focus of chapter 4 while the F-S-F
system with spin-dependent interface potentials is investigated in chapter 5. Finally
a conclusion is given in chapter 6.

The reader is assusmed to have some knowledge in the subject of quantum theory of
solid matters. Readers familiar with superconductors and the correlations between
superconducting and magnetic properties may skip ahead to chapter 4. Vectors will
be given in bold-face notation, e.g. k. Throughout most of the text we will use the
convention ~ = 1.



Chapter 2

Superconductors

This chapter will give a brief review of the theory for describing superconductors. In
the coming chapters we are going to use this to find the wave functions and excita-
tion energies of systems where correlations between superconducting and magnetic
properties are present. Since many of the same transport processes are present in
different hybrid structures with superconducting layers, we will briefly explain the
concept behind these processes.

2.1 BCS-theory

The BCS-theory is a theory describing the properties of superconductors on a micro-
scopic level. It was introduced by Bardeen, Cooper and Schrieffer in 1957 [3, 4]. They
used quantum theory to investigate the coupling between electrons and phonons
which is essential to understand superconductors. An incoming electron that col-
lides with an ion causes a temporarily dipole moment around the lattice point. A
second electron can be attracted by this dipole moment if the first electron has
moved so far that the Coulomb repulsion between them is weaker than the attrac-
tion. We thus have a phonon mediated attractive interaction (see Fig. 2.1). This
is possible if the two electrons are close to the Fermi surface and on the opposite
sides of it, that means electrons with momenta k and −k. Such pairs of electrons
are called Cooper pairs [5], and the BCS-theory explains superconductivity as a
condensation of such pairs into a superconducting condensate.

e−

Ze+

⇒

e−

Ze+

⇒
Ze+

e−

Figure 2.1: Classical picture of the phonon mediated attractive interaction between
two electrons. This interaction was the first interaction used to describe supercon-
ductivity.
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4 Chapter 2. Superconductors

Based on this a Hamiltonian for superconductors can be derived. It is named the
BCS-Hamiltonian and in second quantized form it can be written as:

H =
∑

k,σ

εkc
†
kσckσ +

∑

k,k′

Vkk′c†k↑c
†
−k↓c−k′↓ck′↑ (2.1)

where εk and k are the electrons kinetic energy and momentum respectively. ↑ and ↓
represents spin up and spin down. Vkk′ is the two-electron effective interaction (not
specified at this point). c†kσ and ckσ are Fermi creation and annihilation operators

fulfilling the usual anticommutator relations
{

ckσ, c
†
k′σ′

}

= δk,k′δσ,σ′ , with all other

anticommutators equal to zero.

By using a mean-field approximation and introducing a new fermion basis we can
write

H = H0 +
∑

k

Ek

(

γ†k↑γk↑ − γ†−k↓γ−k↓

)

(2.2)

where the γ-operators are quasiparticle operators given by
( γk↑

γ
†
−k↓

)
=
(

u v
−v u

)( ck↑

c
†
−k↓

)
.

u and v are the superconducting coherence factors describing the electron and hole
part of the quasiparticle states respectively. The excitation energies are given by
Ek =

√

ε2k + |∆k|2, and the density of states of simple s-wave superconductors is

Ns(E)

N(0)
=

dε

dE
=

{
E

(E2−∆2)
1
2

E > ∆

0 E < ∆
(2.3)

The quantity ∆ is called the superconducting gap parameter, and is given by

∆k = −
∑

k′

Vkk′∆k′

tanh
(

βE
k′

2

)

2Ek′

(2.4)

This is the BCS gap-equation. The physical interpretation of ∆ is a gap in the
quasiparticle spectrum at the Fermi surface. There are available two-particle states
for Cooper pairs at the Fermi level, while the quasiparticles must have an energy
greater than the superconducting gap.

k

Ek

|∆k|

Figure 2.2: A sketch of the excitation spectrum of the superconducting state (solid
line) compared to the excitation spectrum of the normal state (dashed line). The
energies are measured relative to the chemical potential µ.
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As we see at the end of section 3.2 the quasiparticle states of the superconductor
will be a mix between electron states and hole states. The wave functions in the
superconductor will then consist of an electron-like part and a hole-like part, which
distinguishes the superconductor from a semiconductor.

2.2 Superconducting hybrid structures

In our context hybrid structures are systems built up by both superconductors and
other materials. There have been many papers of hybrid structures built up by
normal metals and superconductors, one of the most famous being Blonder, Tin-
kham and Klapwijk’s paper from 1982 [6]. We are going to examine structures
which contain both superconducting and magnetic elements. This alters some of
the transport mechanisms, but the principles are the same and will be explained in
this section. All the considered mechanisms take place for energies below the super-
conducting gap energy. Above this energy an incoming particle may be transmitted
via the quasiparticle states in the superconductor. Normal reflection is present for
all energies.

2.2.1 Andreev reflection

The first and simplest process is Andreev reflection [7]. Across an N-S junction
energy must be conserved. Since no one-particle states with energies lower than
the energy gap exist in superconducting materials, incoming particles with these
energies can not be transmitted into the quasiparticle states of the superconductor.
However, there is still a possibility for transmission of charge. As already explained
the current in superconductors is carried by Cooper pairs at the Fermi energy. An
incoming electron with momentum q+, spin σ and energy EF + εq will pair up with
an electron with momentum −q−, spin −σ and energy EF − εq. Together their
total energy equals 2EF , and the pair will tunnel into the superconducting layer as
a Cooper pair with momenta k and −k and spin σ and −σ. An empty state is left
at −q− in the metal. This corresponds to a hole at q− with spin −σ. This hole
will be retroreflected in the metal. A hole in the spin down band is the same as a
missing electron in the spin down band, which effectively is the same as a spin up
excitation. The hole in the −σ band will then have spin σ.

2.2.2 Non-local transport mechanisms

When the superconductor is placed between two metals there are also some non-
local processes taking place [8]. For a given energy the possible wave numbers in

a superconductor are k± =
√

2m(µ±
√
∆2 − E2). At an excitation energy less

than the superconducting gap there is an imaginary part in the momentum. An
electron arriving at the junction with too low energy will then result in an evanescent
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wave in the superconductor. The wave decays over a length of same order as the
superconducting coherence length.

If the superconducting film has a width that is less than the coherence length the
evanescent wave will have a finite amplitude when arriving at the second interface.
Here it will occupy a single particle state if such a state is available. This process is
called elastic cotunneling and is coherent tunneling from one metal through virtual
quasiparticle states in the superconductor into the other metal.

The last process is called crossed Andreev reflection and are similar to normal An-
dreev reflection. When the width of the superconducting film is less than the co-
herence length the evanescent wave of an incoming electron will overlap with the
evanescent wave of an electron in the other metal. These two electrons may then
form a Cooper pair and following the discussion of normal Andreev reflection a hole
will be backreflected in the second metal.



Chapter 3

Superconducting and magnetic

correlations

In both the systems we are going to consider the interplay between superconducting
and magnetic correlations are important. By including magnetic fields and poten-
tials the two spin bands will no longer be degenerate, and the spin dependence of
the processes described in the previous chapter become more apparent. Before we
can start to consider the actual systems we are going to investigate, a theoretical
foundation is necessary. In this chapter we will look at the most important theory
for superconducting and magnetic correlations.

3.1 Superconductor in a magnetic field

One of the two defining properties of a superconductor is the Meissner effect. It is the
complete expulsion of an applied magnetic field from the bulk of the superconductor.
Superconductivity and magnetism are thus two competitive properties. When the
strength of the applied magnetic field is increased beyond a critical field strength HC

the Meissner effect breaks down. The superconductor shows two distinct behaviours
as the field is increased beyond this critical field strength. The simplest behaviour
is shown by the type I superconductors, which return to the normal state of full
penetration of magnetic field. Type II superconductors on the other hand have two
critical field strengths. At HC1 the state goes from the superconducting state to a
state of partial penetration of magnetic flux. The penetration increases continously
until full penetration (normal state) at HC2.

Even though the magnetic field is expelled from the bulk of the superconductor
at field strengths lower than the critical field, the magnetic field is not completely
excluded at the surface. Within a distance, λ, called the London penetration depth,
a small magnetic field can be measured.

7



8 Chapter 3. Superconducting and magnetic correlations

3.1.1 Singlet and triplet superconductivity

The normal BCS-type superconductor is a so called spin-singlet superconductor.
They are characterized by having Cooper pairs with zero center of mass momentum,
zero total spin (a spin-singlet) and a charge of 2e as current carriers. An applied
magnetic field can destroy singlet superconductivity by the means of the orbital effect
and the paramagnetic effect. The orbital effect makes use of the Lorentz force. Since
the two electrons in the Cooper pair have opposite momenta the Lorentz force will
act in different directions pulling the pair apart. The paramagnetic effect causes the
spins to align along the direction of the applied field.

b b

−k

k

F −F

H

Figure 3.1: The applied magnetic field pulls the pair apart because the two electrons
have opposite momentum. This is the orbital effect.

Another form of superconductivity is found in the triplet superconductors. They are
characterized by that the electron pair inhabits a spin-triplet state, that is a state
with a total spin of 1. Such superconductors may require another form of attractive
interaction than the phonon mediated interaction in singlet superconductors. Two of
the three spin-triplet states have parallel spins. These states will not be destroyed by
the paramagnetic effect since the spins already are aligned. In such superconductors
one may find that both superconducting and ferromagnetic properties are present
at the same time [9].

When the paramagnetic effect is too large for spin-singlet superconductivity to sur-
vive the Cooper pair has two options not too be destroyed. It must either turn into
an equal-spin pair or it can keep the spins antiparallel ant get a non-zero center of
mass momentum. The exchange splitting of the spin bands leads to a shift in the
momenta at the Fermi surface that differs for the spin up and the spin down band;
kF↑ = kF + Q

2
and kF↓ = kF − Q

2
. The center of mass momentum will then be ±Q.

This leads to a modulation of the pair amplitude with position R, and the result is a
state that is a mixture between spin-singlet states (↑↓ − ↓↑) and spin-triplet states
with antiparallel spins (↑↓ + ↓↑). This state is called an FFLO-state [10, 11]. It is
theoretically shown that this state could exist in ferromagnetic superconductors.
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3.1.2 Clogston-Chandrasekhar limit

As already mentioned there are two magnetic effects destroying the superconduct-
ing state, orbital and paramagnetic (the Zeeman effect). Usually it is the orbital
effect that dominates over the paramagnetic one and thus is the most restrictive.
The orbital effect can be directly related to the vortex formation in type II super-
conductors. At field strengths larger than HC1 the magnetic field penetrates the
superconductor in form of magnetic vortices, so called Abrikosov vortices, of quan-
tized circulation [12]. Superconductivity is destroyed at the center of each vortex,
where the density of Cooper pairs is zero. The supercurrent is travelling around the
vortex cores. Hence the magnetic field goes to zero when moving away from the
center of each vortex. As a result of these vortices some Cooper pairs will break and
energy is lost destabilizing the superconducting state. Increasing the field beyond
HC2 there will be a transition to a normal state. In type I superconductors the
transition goes directly from the state of no penetration to the normal state.

For some geometries it is possible to suppress the orbital effect. This is achieved by
applying an external magnetic field in-plane of a thin superconducting film [13, 14].
The radius of the vortex is of the same order as the penetration depth while the
radius of the vortex core is described by the superconducting coherence length. To
suppress the orbital effect the thickness of the film must be much smaller than
the size of the vortex core. In a type II superconductor ξ < λ, where ξ is the
coherence length and λ is the penetration depth. By choosing a geometry where the
superconductor is thinner than the coherence length there will be no room to form
vortices and superconductivity can coexist with the magnetic field up to a critical
exchange field h known as the Clogston-Chandrasekhar limit [15, 16].

The limiting value can be found by setting the polarization energy of the normal

electron gas χnH
2

2
equal to the condensation energy of the superconductor

N(0)∆2
0

2
,

where χn is the spin susceptibility, N(0) is the normal density of states and ∆0 is
the zero temperature gap. Using χn = gsµ

2
BN(0), where gs ≈ 2 is the gyromagnetic

factor and µB is the Bohr magneton, the limiting value is obtained H = ∆0√
2µB

or in

terms of the field energy

h =
∆0√
2

(3.1)

This critical field strength is valid for s-wave superconductors of both type I and II.
Type I superconductors do not let magnetic flux penetrate further then the pene-
tration depth, and we must then have a superconducting film with thickness much
less than the penetration depth. As λ < ξ for type I superconductors, a general
requirement for coexistence between superconductivity and the magnetic field is
that the thickness of the film is much less than the coherence length. Normal s-
wave superconductors will not be polarized when the field strength is lower than the
Clogston-Chandrasekhar limit. A thin sample will however allow the field to pene-
trate the sample homogenously and induce a Zeeman splitting of the quasiparticle
bands.



10 Chapter 3. Superconducting and magnetic correlations

3.1.3 Zeeman effect

A single particle with charge q and mass m in a homogenous magnetic field B along
the z-direction is subject to the following magnetic perturbation

H ′ = − q

2m
BLz +

q2B2

8m
(x2 + y2)− gsq

2m
BSz (3.2)

The second term can be small compared to the other two if the magnetic field is not
to strong, and can be neglected. When we are looking at a thin superconducting
film with an in-plane magnetic field we have concluded that the orbital effect is
negligible compared to the paramagnetic effect caused by the spin. We can then
remove the first term and are left with the last one. This is a Zeeman interaction
that can spin polarize the system and split the energy levels for excitations with
spin parallel and antiparallel to the magnetization vector. The energy splitting is
given by twice the Zeeman energy.

The magnetic moment of a particle is a quantity that determines the torque a mag-
netic field will exert on the particle. Electrons have an intrinsic magnetic moment
commonly known as the electron spin S. Placed in a magnetic field the spin of
the electron will try to align with the field lines giving a paramagnetic effect. An
electron circulating an atom has also a magnetic moment, µL associated with the
orbital angular momentum. It may be incorparated in the model by using an effec-
tive magnetic moment µeff taking account of both the spin and the orbital angular
momentum. In principle this will only change the required field strength necessary
for giving a particular field energy.

For an electron with mass m and charge −e placed in a homogenous magnetic
field along the z-direction the energy associated with the magnetic moment will be
−µS ·H, where the spin magnetic moment is given by

µS = −gS
e

2m
S (3.3)

The additional energy to the electron will then be

∆E = −µS ·H =
1

2

gSe

2m
HSz = gSµBHσZ (3.4)

where µB = e~
2m

= 0.579 · 10−4 eV/T is the Bohr magneton and σz = ±1 (from here
on we will drop the z-index). Introducing the Zeeman energy h = 1

2
gSµBH we can

write in second qantized form

HZeeman = −
∑

k,σ

hσc†kσckσ (3.5)

This term will come as an additional term in the BCS-Hamiltonian, (2.1).
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3.2 Zeeman split superconductor

We are now interested in finding the wave functions and energy excitations of a
Zeeman split superconductor. The treatment of such superconductors follows the
same procedure as the original BCS theory. The difference is the introduction of
the Zeeman field which give an additional term (3.5) to the BCS-Hamiltonian.

The Hamiltonian with Zeeman field is given by:

H =
∑

k,σ

εkσc
†
kσckσ +

∑

k,k′,σ,σ′

Vkk′c†kσc
†
−kσ′c−k′σ′ck′σ (3.6)

where the usual kinetic energy term is exchanged for a spin dependent term given
by εkσ = εk−σh. Here h is the Zeeman energy expressed by h = 1

2
gsµBB. The rest

of the terms are defined as in equation (2.1).

At this point we will do a mean-field approximation to simplify the potential term.
With a mean-field approximation we can write the product of four creation and
annihilation operators as a sum of terms with a product of two operators. The
approximation is justified by the fact that the effective interaction potential Vkk′

we are considering is an interaction between particles close in space, which means a
long-range k-space potential. We write

c−kσ′ckσ = bkσσ′ + c−kσ′ckσ − bkσσ′

︸ ︷︷ ︸

δ
bkσσ′

(3.7)

Here the statistical meanvalue bkσσ′ = 〈c−kσ′ckσ〉 is introduced. This is inserted into
the second term in (3.6). If we neglect all terms of second order and higher in δbkσσ′

we get

H =
∑

kσ

(εk − σh)c†kσckσ +
∑

k,k′,σ,σ′

Vkk′

[

b†kσσ′c−k′σ′ck′σ + bk′σσ′c†kσc
†
−kσ′ − b†kσσ′bk′σσ′

]

(3.8)

We now introduce the superconducting gap parameter by the relations

∆†
k′σσ′ = −

∑

k

Vkk′b†kσσ′

∆kσσ′ = −
∑

k′

Vkk′bk′σσ′ (3.9)

The mean-field approximation of the Hamiltonian for a Zeeman split superconductor
can then be written

H =
∑

kσ

(εk − σh)c†kσckσ −
∑

kσσ′

(

∆†
kσσ′c−kσ′ckσ +∆kσσ′c†kσc

†
−kσ′ −∆kσσ′b†kσσ′

)

(3.10)
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A chemical potential can be introduced into the Hamiltonian by εk → εk − µ. The
many-particle problem is now reduced to a self-consistent one-particle problem that
can be solved exactly and non-perturbatively.

The next step will be to write the Hamiltonian in matrix form.

H = H0 +
∑

k

φ†
k







εk − h 0 0 ∆k

0 εk + h −∆k 0

0 −∆†
k −εk + h 0

∆†
k 0 0 −εk − h







︸ ︷︷ ︸

Ak

φk (3.11)

As ∆kσ−σ and b†kσ−σ are not operators H0 =
∑

k

(

εk + h+∆k↑↓b
†
k↑↓ +∆k↓↑b

†
k↓↑

)

is just a constant energy term. In writing down (3.11) we have chosen the basis

φk =
(
ck↑ ck↓ c

†
−k↑

c
†
−k↓

)T
.

We find the eigenvalues by solving the characteristic equation |A − λI| = 0. Doing

this we end up with four eigenvalues given by λ = ±Ekσ = ±
(√

ε2k +∆2 − σh
)

.

As with the normal BCS superconductor treatment we end up with an energy gap.
The difference is that in addition there is a splitting between bands corresponding
to spin up particles and spin down particles. For each spin species there is a gap of
2∆ between the positive and negative energies, and between the positive energies of
spin up and spin down particles there is a splitting of 2h. A sketch of the positive
excitation energies are given in Fig. 3.2.

Ek

k
∆+ h ∆− h

Figure 3.2: The positive excitation spectrum of the spin up particles (solid line) and
spin down particles (dashed line) relative to the chemical potential µ. The splitting
between the bands is 2h where h is the exchange field energy.

To find the wave functions corresponding to particles with different spins it is nec-
essary to diagonalize (3.11). This task can be simplified by observing that the
four-component system can be decoupled into two two-component systems. We use

a basis φkσ =
(
ckσ c

†
−k−σ

)T
where σ = ±1 represents spin up and down respectively.

The new 2x2-matrix which holds for both two-component systems then reads
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Akσ =

(
εk − σh σ∆
σ∆† −εk − σh

)

(3.12)

To diagonalize Akσ we introduce new fermion operators by the transformation φ̃k =
( γkσ

γ
†
−k−σ

)
=
( uσ v−σ

−v−σ uσ

)( ckσ

c
†
−k−σ

)
, where u2σ + v2−σ = 1. This represents a rotation of

the original basis. u and v are called the superconducting coherence factors and are
defined by

u2σ =
1

2

(

1 +

√

(E + σh)2 −∆2

E + σh

)

v2−σ =
1

2

(

1−
√

(E + σh)2 −∆2

E + σh

)

(3.13)

The total Hamiltonian of the system can then be written

H = H0 +
∑

kσ

˜
φ†
kσ

(√

ε2k +∆2 − σh 0

0 −
√

ε2k +∆2 − σh

)

˜φkσ (3.14)

The coherence factors give information about the quasiparticle states of the super-
conductor. Since we could decouple the Hamiltonian there will be no correlation
between spin σ electrons and spin σ holes. Instead of the four-component wave
vector that one usually needs when working with spin dependent particles we can
therefore use a two component wave vector composed of a spin σ electron part and
a spin −σ hole part. The wave function is then given as a sum of a electron-like
part and a hole-like part

ψ = ψe

(
uσ
v−σ

)

eikσx + ψh

(
v−σ

uσ

)

e−ikσx (3.15)

3.3 Proximity effect

When a superconductor is brought in contact with a material that is not a supercon-
ductor some physical properties may change in the materials. In the area around the
junction the wave function of the superconductor side influences the wave function
of the other material and vice versa. This is called the proximity effect. The reason
that the wave functions influence eachother is tunneling. Cooper pairs may tunnel
into the other material while electronic excitations tunnel the other way. Supercon-
ductivity will then be suppressed over a distance of the order of the coherence length
from the junction. The effect will be reduced by an insulating barrier between the
two sides.

If the other material is a ferromagnet the proximity effect will lead to correlations
between superconductivity and magnetism. The pair amplitude of the superconduc-
tor will leak into the ferromagnet. The spin splitting of the electron states in the
ferromagnet will give Cooper pairs with a finite center of mass momentum as in the
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FFLO state. The FFLO amplitudes oscillate and penetrate over a length scale that
decreases fast with increasing exchange field in the ferromagnet [17]. Because the
proximity effect takes place on both sides of the interface there will also be a mixing
of triplet and singlet Cooper pairs on the superconductor side of the junction.

To be able to make strongly spin-polarized currents the exchange field of the fer-
romagnet must be strong. This will give a short-ranged proximity effect. What
we want is a long-ranged proximity effect coexisting with the spin properties. Such
long-ranged proximity amplitudes could lead to long-ranged spin-polarized super-
currents. The two electrons of the Cooper pair would then need to have equal spin.
A possible solution will be spin-active interfaces.

The scattering potential at the interface between a ferromagnet and a superconduc-
tor can in general be spin-dependent. This can be a result of the energy splitting of
the spin bands in the ferromagnetic region [18]. Transmission probabilities for spin
up and spin down electrons will then differ both in magnitude and phase, and one
of the spin species will be favoured tunneling-wise. The phase shifts may introduce
spin-triplet correlations. If the spin-active potential has a component in a direction
that is not parallel or antiparallel to the polarization of the magnetic field of the
ferromagnet there will be spin-flip processes at the interface. There will be a cer-
tain probability that incoming spin up particle will be reflected or transmitted as a
particle with spin down. A spin-active potential may be modelled by a function of
the following form

V = σh (3.16)

where σ is the vector of Pauli matrices and h is the magnetization vector. In chapter
5 we will use the concept of spin-active interfaces when examining the magnetore-
sistance in F-S-F hybrid structure.



Chapter 4

Zeeman split superconductors and

spin polarization

A system built up by a thin superconducting film placed between two semi-infinite
normal metals is a system that has been given a lot of attention in the literature,
eg. [19]. In this first of two main chapters we will look at a variant of this system.
We apply a static and uniform magnetic field, H, to the superconducting part of the
junction. The thickness of the superconducting film is chosen to be less than the
superconducting penetration depth. From the arguments of chapter 3 we then know
that the field will penetrate the bulk of the superconductor homogenously, and super-
conductivity will coexist with the Zeeman field up to the Clogston-Chandrasekhar
limit (3.1). This will result in a Zeeman splitting of the two spin bands as has been
previously showed. Hopefully this splitting will give rise to new features compared
to the same system with a normal superconductor. Of special interest is the spin
properties of the structure. A sketch of the setup is given in Fig. 4.1.

N S N

H

Figure 4.1: A superconducting film of width much less than the penetration depth
is placed between to semi-infinite normal metals. An in-plane magnetic field with
field strength lower than the Clogston-Chandrasekhar limit is applied. This gives a
Zeeman splitting of the excitation spectrum of the superconductor.

To ensure ballistic transport the transverse dimension of the junction is chosen to
be much smaller than the mean free path in the normal metal and the coherence
length of the superconductor. This type of junction is called a Sharvin contact [20].
We can then consider acceleration of particles without needing to consider other

15
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scattering events than those at the juction. Scattering potentials other than at the
N-ZS interfaces will be neglected.

Since the superconducting material is just a thin film placed between two semi-
infinite normal metals, it is the metals that will behave as reservoirs. There will
therefore be an inverse proximity effect taking place which suppresses supercon-
ductivity close to the metals giving a varying order parameter. To simplify the
calculations we will not consider this effect.

For simplicity we will also only consider one-dimensional problems and s-wave su-
perconductors of type I. Examples of such superconductors are aluminium (Al) and
lead (Pb). Pure aluminium has a coherence length of 1600 nm and a penetration
depth of 16 nm [21]. To get a Zeeman splitted superconductor the width of the
superconducting film should then be much less than 16 nm, giving a ratio between
the coherence length and the width of the superconductor to be of the order of 10−2.
Pure lead on the other hand has λ = 37 nm and ξ = 83 nm [21]. Then one need
L
ξ
∼ 10−1. As we will see this ratio affects the different transport coefficients of the

system and will hence have some impact upon the properties of the junction.

4.1 Bogoliubov deGennes equations

At the interface between the metal and the superconductor there will be some kind
of insulating barrier, which may be a result of an oxide layer at the surfaces. This
introduces a potential barrier at the junction. Techniques exist to make the junction
more or less transparent. With a highly transparent junction particles can propagate
freely through the junction. The less transparent the junction is the higher will the
potential barrier be. From quantum mechanics we know that particles then will have
to tunnel between the two sides. These differences must be taken into account when
calculating the transport properties of our system. The usual method is the one
explained in the classical paper on the ’normal metal - superconductor’ system by
Blonder, Tinkham and Klapwijk (BTK) [6]. They introduced a delta-barrier with a
given strength. By changing the strength of the barrier one can distinguish between
junctions with high and low transparency, as well as the intermediate regime. Setting
the barrier strength to zero gives a perfect junction.

To set up the wave functions in the different parts of the system we need to look at
the excitation energies for particles travelling in them. The two metals are assumed
to be of the same type. The exchange field energy is less than ∆0√

2
. Since ∆0 ∼ 1

meV for a typical type I s-wave superconductor the field is far to weak to split the
energy bands of the metals. The wave functions in the metals will then be well
approximated by ususal free electron wave functions.

In the superconductor the contribution of h can give imaginary parts in the wave
number, and h can not be neglected. The wave function in the superconducting
film will be a solution of the Bogoliubov deGennes equations. These equations may
be found from (3.11) following the same procedure as [22]. As for the Hamiltonian
we can decouple the equations into a pair containing electron-like particles in the
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spin σ band and hole-like particles in the spin −σ band. If ψσ(x, t) represents
the electron-like part and ψ†

−σ(x, t) represents the hole-like part the Bogoliubov
deGennes equations reads

(
H0 − σh ∆

∆† −H0 − σh

)(
ψσ(x, t)

ψ†
−σ(x, t)

)

= i
∂

∂t

(
ψσ(x, t)

ψ†
−σ(x, t)

)

(4.1)

where H0 = −∇2

2m
− µ(x) − V (x). µ(x) is the chemical potential, while V (x) is

the barrier potential. We see that the Bogoliubov deGennes equations reduce to
two decoupled Schrödinger equations when ∆ → 0. As trial solutions we choose
plane waves with energy Ekσ; ψσ(x, t) = uσe

ikx−iEkσt and ψ†
−σ(x, t) = v−σe

ikx−iEkσt.
Solving the coupled system of equations give the excitation energy of the BCS quasi-
particles

Ekσ = ±





√
(
k2σ±
2m

− µ

)2

+∆2 − σh



 (4.2)

There are four wave numbers, ±kσ±, that give the same excitation energy. These
are

±kσ± = ±
√

2m
(

µ±
√

(E + σh)2 −∆2
)

(4.3)

The first sign-choice gives the propagation direction of the wave while the second
determines if it is an electron-like or hole-like wave. σ is the spin of the incoming
particle.

The prefactors uσ and v−σ can be defined in the same way as the BCS coherence
factors of equation (3.13). Wave numbers larger than the Fermi momentum, |k+| >
|kF|, will make uσ > v−σ and give electron-like quasiparticles, while wave numbers
smaller than the Fermi momentum, |k−| < |kF|, make uσ < v−σ and give hole-like
quasiparticles.

4.2 Transport coefficients

When we send an electron into the junction we can observe the same processes as
in the N-S-N junction: Andreev reflection, normal reflection, transmission as an
electron and transmission as a hole. Let the probability amplitudes for these pro-
cesses be, a, b, c and d respectively. The probability amplitudes for the intermediate
quasiparticle states in the superconductor are given by e, f , g and h. In Fig. 4.2 a
schematic energy diagram for the junction is given. As a barrier potential we choose
a delta potential at each interface; V (x) = W (δ(x) + δ(x − L)) where W is the
strength of the potential and L is the thickness of the superconducting film. Based
on the arguments in the previous section the wave functions in the three parts will
be
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ψN1 =

(
1
0

)

eiq+x + a

(
0
1

)

eiq−x + b

(
1
0

)

e−iq+x, x < 0

ψZS =
(
eeikσ+x + fe−ikσ+x

)
(
uσ
v−σ

)

+
(
geikσ−x + he−ikσ−−x

)
(
v−σ

uσ

)

, 0 < x < L

ψN2 = c

(
1
0

)

eiq+x + d

(
0
1

)

e−iq−x, x > L

with kσ± given by (4.3) and q± = qF

√

1± E
EF

.

The boundary conditions are given by ψ(0+) = ψ(0−), ψ(L+) = ψ(L−), ψ′(0+) −
ψ′(0−) = 2mWψ(0) and ψ′(L+) − ψ′(L−) = 2mWψ(L) [23, ch. 3]. This gives a
system of 8 equations with 8 unknowns.

Zeeman split superconductorNormal metal

bb b b

bcA

B F E

∆− h

−q+ −q− q− q+ −k−−k+ k− k+

I

Normal metal

−q+ −q− q− q+

bb GH C

D bc

b

∆+ h

Figure 4.2: Schematic energy diagram for the N-ZS-N junction. I represents an
incoming electron, A is an Andreev reflected hole, B is a reflected electron, C is
a transmitted electron and D is a transmitted hole. E, F, G and H represents
quasiparticles in the superconductor. The holes are here illustrated by the missing
electrons and thus have opposite momenta of what is indicated by the figure.

It is difficult to solve the system analytically without some approximations. A
natural assumption is that E

EF

� 1 and ∆
EF

� 1. We can then introduce the

approximations k+ ≈ k− ≈ kF and q+ ≈ q− ≈ qF . These approximations are
justified since the interesting energies are of the same order of magnitude as the
superconducting gap. The gap is known to be small compared with the Fermi
energy ( ∆

EF

∼ 10−3) and the momenta will then be close to the Fermi momentum.
These approximations are performed everywhere except in the exponents where
the neglection of small terms may lead to the loss of oscillations in the transport
coefficients. The probability amplitudes that are of interest is a, b, c and d.

To simplify the notation it is convenient to introduce the following quantities ζ− =
(k+ − k−)L, ζ+ = (k+ + k−)L, κ = qF

kF
, A± = K1 ±K2, B± = 1±K1K2, C+ = 2K2,

D± = 1 ±K2
2 , K1 = κ + iZ, K2 = κ − iZ, Z = 2mW

kF
and Ω =

√

(E + σh)2 −∆2.
The common denominator of all the probability amplitudes is given by



4.2. Transport coefficients 19

Γ = ∆2A2
+ − ((E + σh)2A2

+ + Ω2B2
+) cos ζ− + Ω2(A2

− +B2
−) cos ζ+

+ 2iΩEA+B+ sin ζ− − 2iΩ2A−B− sin ζ+ (4.4)

After solving the system the expressions for the probability amplitudes can be writ-
ten

a =
4κ∆sin

(
ζ−
2

)

Γ

[

(E + σh)A+ sin

(
ζ−
2

)

+ iB+Ωcos

(
ζ−
2

)]

b =
1

Γ

[
Ω2B+D− cos ζ− + Ω2(A−C+ − B−D+) cos ζ+

− iΩ(E + σh)A+D− sin ζ− + iΩ2(A−D+ −B−C+) sin ζ+
]

c =
4κΩe−iq+L

Γ

[

i(E + σh)(D+ cos
ζ+
2

+ iC+ sin
ζ+
2
) sin

ζ−
2

− Ω(C+ cos
ζ+
2

+ iD+ sin
ζ+
2
) cos

ζ−
2

]

d =
4κ∆Ωeiq

−L

Γ
i

[

B− cos
ζ+
2

− iA− sin
ζ+
2

]

sin
ζ−
2

(4.5)

The probability current is obtained from j = <(ψ∗ ~

im
∇ψ) and requiring conservation

of probability. For the four different processes we then find probabilities given by
A = q−

q+
|a|2, B = |b|2, C = |c|2 and D = q−

q+
|d|2.

4.2.1 Energy dependence

To understand the results in the coming sections it is important to understand the
energy dependence of the transport coefficients. The energy enters in the expres-
sions for A, B, C and D only through ζ± (which depends on kσ±) and Ω. In all these
expressions the energy is found through terms which have the form E + σh. This
means that the Zeeman splitting of the quasiparticle states only gives a translation
in energy compared to the same junction with a normal superconductor. The energy
shifting has magnitude σh. An incoming particle with spin up will then have prob-
abilities that are shifted in negative energy direction corresponding to the lowering
of the energy gap (∆− h). Similarly an incoming particle with spin down will have
probabilities that are shifted in the positive energy direction corresponding to the
increase in the energy gap (∆ + h). A plot of the coefficients for some values of Z
is given in Fig. 4.3.

All coefficients oscillate with a frequency that depends on energy and the width of
the superconducting film. The higher the barrier potential is the more dominant
is the normal reflection coefficient. In the tunneling limit (Z = 100) it is the only
non-zero coefficient in the plot. If we were to examine the coefficients with a higher
accuracy there would however be small peaks in the A, C and D coefficients and
a corresponding drop in the B coefficient. This corresponds to the peak observed
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Figure 4.3: Plot of the transmission and reflection coefficients as a function of energy.
The energy scale is shifted with σh compared to the same junction with a normal
superconductor. The energy scale for spin up electrons is given by σ = 1 and for
spin down electrons by σ = −1. In this plot we have chosen κ = 1, ∆

EF

= 10−3 and

kFL = 103 (corresponding to L
ξ
= 0.5).

in C at Z = 5.0 and the corresponding large drop in B. In the tunneling limit
these effects are small and have no consequenses for the charge transport, but will
be important for the polarization of the spin current as we will se in section 4.3.2.

It is also observed that transmission as a hole (called crossed Andreev reflection for
subgap energies) is a small effect compared to transmission as an electron (called
elastic cotunneling for subgap energies) for low barrier strengths. At high barrier
strengths they are comparable.

4.2.2 Charge conductance

There are two methods to compute the charge conductance of the three-layer system
we are investigating. Which one to use depends on the external potentials in the
system. The first possible choice is to put a voltage eV on the left metal and ground
the superconductor and the right metal [24]. This is the simplest setup and we get a
differential charge conductance proportional to 1+A−B in the left metal and C−D
in the right metal. Since probability conservation requires A+B+C+D = 1 these
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two expressions can not be equal, unless A = −D which would be non-physical. As
a result of this the current of the system will not be conserved in this setup. The
current found in each metal will be given by

IL ∝
∫ ∞

−∞
dE[f0(E − eV )− f0(E)][1 + A(E)−B(E)]

IR ∝
∫ ∞

−∞
dE[f0(E − eV )− f0(E)][C(E)−D(E)] (4.6)

Often charge conservation is one of the properties we are interested in. When looking
at charge transport it is therefore common to put a voltage of + eV

2
on the left side

metal and a voltage − eV
2

on the right side metal and ground the superconductor
[25, 26]. This means that an electron is injected from the left side, and a hole from
the right side. Following this approach will guarantee charge conservation, and the
chemical potential of the superconductor can be found self-consistently. To do this
we compute the current through each of the metal/superconductor interfaces and
require that they should be equal. Calling the probabilities for transmission as hole
and electron for C̃ and D̃ in the case of hole injection the current can be written

I ∝
∫ ∞

−∞
dE

[

f0

(

E − eV

2

)

− f0

(

E +
eV

2

)] [

1 + A−B + C̃ − D̃
]

(4.7)

In the zero-temperature limit the Fermi distribution function f0(E) simplifies to the
step function 1− θ(E).

We are then left with two different set-ups giving different currents. Each of them in-
volve important aspects of the transport process that should be considered. Looking
at spin transport we choose to put a potential of eV on the left metal.

4.2.3 Spin conductance

When a system is spin-dependent it will often be of more interest to examine the
transport of spin rather than the charge transport. Different definitions of spin
current has been given in the literature. Especially when spin-flip processes are
involved the definition of spin current can be ambiguous. The system we are in-
vestigating does not allow spin-flip processes. Such processes would have lead to
terms in the Hamiltonian which would have prohibited the decoupling of the Bo-
goliubov deGennes equations. That no spin-flips occur is an important aspect and
we can understand it by a quick examining of the particles that are the results of
the four processes we have. Normal reflection and elastic cotunneling (transmission
as electron) give electrons in the same spin band as the incoming electron. Andreev
reflection and crossed Andreev reflection give a hole in the opposite spin band, which
have the same effective spin as the incoming electron; that is all particles have the
same effective spin as the injected particle.

Giazotto and Taddei wrote a paper on the normal metal/Zeeman splitted supercon-
ductor juntion [1]. They use the normal charge current of Eq. (4.6) when examining
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the spin polarization. The same approach is used in [27]. This calculation in-
volves the charge of the particles and thus subtracts a rightward hole current from
a rightward electron current. One thus get the actual amount of total charge that
is transported through the junction. On the other hand one lose information on the
total spin.

Another approach is used in [28, 29]. There the spin conductance is given as 1 −
A−B = C +D. Since the transmitted electrons, C, and the transmitted holes, D,
have the same effective spin, calculating the current by this approach gives the total
spin that is transported in the system. Both electrons and holes (with the same
spin) will then give a positive current as long as they are moving rightwards. From
probability conservation we see that the total spin (in contrast to the total charge)
is a conserved quantity when a potential of eV is applied to the left metal.

Our interest is for the non-local spin current, that is the spin current observed in
the right metal. The two definitions for conductance will then be GC = C −D for
the charge current and GS = C +D for the spin current. As the magnitude of D is
small compared to C for small and intermediate values of Z the two definitions will
qualitatively give the same result when calculating the spin polarization by the use
of Eq. (4.8) for weak barriers. We will use the spin current throughout this text.

Of great importance to the field of spintronics is the concept of a pure spin current.
Pure spin currents are currents which transport spin, but no charge [30]. If we want
to obtain a pure spin current we must have an equal flow of identically spin-polarized
electrons and holes in the same direction giving cancellation of charge current. This
would give a spin conductance which is larger than zero and a charge conductance
equal to zero.

4.3 Spin current and polarization

We want to examine if it is possible to obtain a spin-polarized non-local current on
the right side of our junction when an unpolarized current is injected on the left
side. An unpolarized current is a current that on average has the same number of
spins pointing upwards as downwards. A polarized current on the other hand will
have a majority of one type of spin. In the extreme limit of a 100% spin-polarized
current all spins will be pointing in the same direction.

For a general spin-resolved quantityX one can find the polarization from the formula

PX =
X↑ −X↓
X↑ +X↓

(4.8)

By the use of this formula one can calculate the spin polarization of both the charge
current and the spin current and any other quantity one want to examine. In the
following sections our focus will be on the polarization of the spin current ISσ .

The expression for the spin current can be obtained in the same way as for the charge
currents in Eq. (4.6) and (4.7). For incoming electrons with spin σ the non-local
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spin current is given by

ISσ ∝
∫ ∞

−∞
dE[f0(E − eV )− f0(E)][C(E) +D(E)] (4.9)

This current is the foundation of the plots and discussions in the following sections.
A plot of ISσ against the bias voltage is given in Fig. 4.4.

Z=1.0

Z=0

Z=5.0 Z=100

Figure 4.4: The spin current through the system vs bias voltage for different barrier
strengths at T = 0. The solid line is for injection of spin up electrons, and the
dashed line is for injection of spin down electrons. RN is the normal state resistance.
h
∆
= 0.4, κ = 1, ∆

EF

= 10−3 and kFL = 103.

4.3.1 Spin polarization

Figs. 4.5 and 4.6 displays the polarization of the non-local spin current against the
bias voltage V at T = 0 for different strengths of the exchange field and several
values of Z. P (V ) is strongly dependent on L and Z and it is an antisymmetric
function of bias voltage. We will therefore only consider positive voltages. Vari-
ous superconductors have a different ratio between the penetration depth and the
coherence length. We restrict ourselves to type I superconductors and must have
λ < ξ. To show the L-dependence of the polarization our plots are based on two
superconductors requiring different thickness of the film compared to the coherence
length to obtain coexistence between magnetic and superconducting correlations.
Superconductors such as aluminium will require a thinner film compared to the co-
herence length than e.g. lead since the penetration depth is very small compared
to the coherence length. The first set of plots (Fig. 4.5) have L

ξ
= 0.5. This will

require a penetration depth that is almost as large as the coherence length, and the
superconductor will be partly a type II superconductor. The second set of plots
(Fig. 4.6) have L

ξ
= 0.05. Both set of plots have L < ξ and thus gives coherent

transport with crossed Andreev reflection and elastic cotunneling for energies below
the gap energy.

The most interesting thing to notice in both sets of plots is the region with 100%
polarization. This happen for a certain energy range in the tunneling limit. It is
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Figure 4.5: Plot of the polarization of the spin current for different barrier strengths
and exchange fields when κ = 1, ∆

EF

= 10−3 and kFL = 103 (corresponding to
L
ξ
= 0.5).

thus possible to obtain highly spin-polarized currents in N-S-N junctions when the
superconductor is subject to a Zeeman field. In the first set of plots there is also a
second peak of high polarization. We will come back to the cause of this result in
section 4.3.2.

We see that the spin polarization is almost zero for the metallic interface (Z = 0).
There is no transmission as a hole at this Z-value and the spin current is determined
solely from C. Because of the gap of 2h between the spin up and spin down band the
polarization is determined from C(E + h) for spin up and C(E − h) for spin down.
In Fig. 4.3 we see that C varies slowly at Z = 0, and the difference between the
C-coefficient at the two energies will be small. Then the magnitude of the difference
between the spin current transported by incoming spin up and spin down electrons
will be small, leading to a very low polarization. This small difference between the
spin-dependent currents is easily observed in Fig. 4.4.

As the barrier potential is increased the maximum achievable polarization increases.
This is caused by a larger variation in C than we had for Z = 0. Since the contri-
bution of C dominates over the contribution of D when Z is not to high this will
cause a larger difference between the spin up and spin down currents. The maximum
polarization is where we find the largest difference between the curves in Fig. 4.4.
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Figure 4.6: Plot of the polarization of the spin current for different barrier strengths
and exchange fields when κ = 1, ∆

EF

= 10−3 and kFL = 100 (corresponding to
L
ξ
= 0.05).

For the highest Z-values there is a transition between negative and positive polariza-
tion in Fig. 4.5. This behaviour is nontrivial and is difficult to explain completely.
As we see in Fig. 4.7 the spin down current dominates up to eV

∆
≈ 1.46. At this

point the spin up current starts to increase much faster and passes the spin down
current, causing the switch in the sign of the polarization. In Fig. 4.4 it can be
seen that the spin down current get this same fast increase at an energy that is 2h
larger (which is explained by the energy splitting of 2h). The cause of this sudden
increase will be explained when examining the limiting values of C and D for large
Z-values.

Both set of plots show the behaviour of the polarization for increasing exchange
field, h. The most important effect of increasing h is to increase the width of the
region of full polarization in the tunneling limit. This width is 2h. Another effect
taking place at larger exchange fields is the enhancement of the maximum achievable
polarization for low and intermediate barrier strengths. Most apparent in our plots
is the Z = 5.0 curve where the polarization increases from about 60% for h

∆
= 0.2

to over 80% for h
∆

= 0.5. As a consequence of this increase the voltage interval of
large polarization becomes wider.

When no voltage is applied there will be no current in the system, and naturally no
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Figure 4.7: A closer look at Fig. 4.4 for Z = 100 at small voltages. The spin down
current dominates until eV

∆
≈ 1.46 where the spin up current become larger. This

gives a switch between negative and positive polarization.

spin polarization. However, we see from the plots that there is a jump to an initial
polarization P0 taking place when a small voltage is applied. The polarization is thus
discontinous at eV = 0. Since the only effect of a negative voltage will be to switch
the sides at which holes and electrons are injected, the current and the polarization
will be antisymmetric functions of eV . Then there will be a discontinuity of 2P0

between the positive and negative side of the zero volage point. This was not the case
for the N-ZS system where there was a continious change in the spin polarization
across eV = 0 [1]. In Fig. 4.5 P0 is positive for small barrier strengths and then
become increasingly more negative when the barrier strength increases. In the case
of the thinner superconducting film in Fig. 4.6 P0 is negative for low Z-values and
positive for high Z-values. It is also observed that the absolute value of P0 increases
with increasing exchange field. From this we can clearly deduce that the initial
polarization depends on barrier strength, the width of the superconductor and the
exchange field in some nontrivial manner. An analytic expression is to complicated
to gain much information.

From the plots for kFL = 1000 it may seem as if there are more regions with negative
polarization then those at low voltages. This is not the case, but is caused by the
the thickness of the lines. At large voltages the polarization goes to zero in all cases.
In the case of kFL = 100 the polarization is on the other hand negative in more
cases. For Z = 1.0 the polarization is negative for all energies given in the plot, and
the Z = 5.0 curve gets negative for the largest energies.

Some other differences are observed in Fig. 4.6 compared to Fig. 4.5. The maximum
polarization is much lower for barrier potentials that is well below the tunneling
limit. We also find these maxima at a lower voltage, which is the opposite of what
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we observe for the tunneling case where a much larger voltage is needed to achieve
full polarization. Apart from that the qualitative behaviour is much the same as
for the thicker film. The full polarized current is achieved at a bias voltage about 5
times larger than in the case of the thicker film, but the width of the peak is still
2h. The reason for this is that the oscillations of the probabilities for the transport
processes are strongly dependent on the width of the film. Small L-vaules give very
slow oscillations which will delay the appearance of the peak. There will be a second
region with a peak in the polarization as we had for kFL = 1000. It is not observed
in these plots, but will enter at an energy that is far to large to be considered in this
system (about 51 eV). At such large energies the energy term in the denominator
of C and D will be large, and the peak will be low.

4.3.2 Tunneling limit

To understand the polarization results obtained in the tunneling limit (Z = 100)
we must examine the behaviour of the transport coefficients in the high Z limit.
From Fig. 4.3 we see that the normal reflection coefficient, B, is dominating. This
is as we would expect from classical physics where reflection is the only possible
process when the barrier is higher than the energy. All other coefficients are zero
to first order. Since normal reflection give neither spin nor charge transport both
the spin and the charge current will be zero. Eq. (4.10) shows that the corrections
are proportional to Z−4 and will give no notable contributions for most energies.
Even though this contribution is really small for high Z-values a weak current will
flow. This current will give rise to the polarization observed in the plots. And since
the polarization is the percentage difference between the spin up current and the
spin down current compared to the total spin current (and do not depend on the
magnitude of the current) the current need not be strong to give high polarization.

The limiting values for the transport coefficients are given by

A =
16∆2 cos2 ζ−

2
sin2 ζ−

2

((E + σh)2 −∆2)Z4(cos ζ− − cos ζ+)2

B = 1− A− C −D

C =
16(Ω cos ζ−

2
sin ζ+

2
− (E + σh) cos ζ+

2
sin ζ−

2
)2

((E + σh)2 −∆2)Z4(cos ζ− − cos ζ+)2

D =
16∆2 cos2 ζ+

2
sin2 ζ−

2

((E + σh)2 −∆2)Z4(cos ζ− − cos ζ+)2
(4.10)

We can understand the reasons for the regions with full and high polarization by
examining the denominator in the expressions of C and D given in Eq. (4.10).
The expression (cos ζ− − cos ζ+)

2 in the denominator is plotted in Fig. 4.8. It is a
function of energy that oscillates with periodic points of zero.

If we compare the first zero point for spin up in Fig. 4.8 with the start of the full
polarization region in Fig. 4.5 we find a correspondence. Similarily the end of the
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Figure 4.8: The oscillating part of the denominator of C and D in the high barrier
limit when ∆

EF

= 10−3, kFL = 1000 and h
∆
= 0.4.

full polarization region correspond to the first zero point of the spin down curve.
To get a better understanding of the spin current we want to find an expression
for these zero points. By using trigonometric rules for addition and subtraction of
angles the oscillationg part of the denominator can be rewritten as

cos ζ− − cos ζ+ = 2 sin (k+L) sin (k−L) (4.11)

If the denominator should be zero either sin (k+L) or sin (k−L) must be zero. Both
equations give the same requirement

(E + σh) =

√
√
√
√E2

F

((
nπ

kFL

)2

− 1

)2

+∆2 (4.12)

where n is a whole number. For κ = 1, ∆
EF

= 10−3 and kFL = 1000 the smallest

positive point is given by n = 318 with the value E+σh
∆

≈ 2.19, and the next by
E+σh

∆
≈ 4.45. That the denominator is zero means that there is a divergence and C

and D will become larger than 1. What we must remember is that this is not an
exact result. If we include the next term in the high Z-limit the denominator reads
(cos ζ− − cos ζ+ + 4

Z
sin ζ+)

2 which would take care of the divergence, but still have
near zero points.

At these points the expression for the non-local spin conductance C +D suddenly
increases fast. This in return will give a many-doubled value for the spin current.
Since the probabilities for the spin down transmission processes are shifted by 2h
realtive to the spin up probabilities this increase in spin current will also be shifted
by the same amount, thus taking place at an energy E + 2h. The spin up current
sets in at
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eV+ =

√
√
√
√E2

F

((
nπ

kFL

)2

− 1

)2

+∆2 − h (4.13)

while the spin down current starts at an energy

eV− =

√
√
√
√E2

F

((
nπ

kFL

)2

− 1

)2

+∆2 + h (4.14)

Over a short energy interval around eV+ the spin up current increases from ∼ 10−7 to
∼ 10−4, while the spin down current remains at ∼ 10−7. An increase in three orders
of magnitude results in an almost fully polaraized current as we see in Fig. 4.5.
At the energy eV− = eV+ + 2h the spin down current undergoes the same increase
and the polarization falls back to zero. There will thus be full polarization between
the energies eV+

∆
= 1.79 and eV−

∆
= 2.59 when κ = 1, ∆

EF

= 10−3, kFL = 1000 and
h
∆
= 0.4.

Further zero points can be found from the requirements. The common denominator
of C and D (in the high Z limit) also includes a factor (E + σh)2 − ∆2. This
will reduce the maximum value obtainable by C + D and give a smaller increase
in the spin current than what was observed at the first zero point. Again the spin
up current will lead by 2h and we get a polarization of about 90.2%. More peaks
will follow at higher energies, but the maximum polarization will decrease as energy
increases.

For the N-ZS case full polarization was achieved in the tunneling limit for energies
|eV −∆| ≤ h [1]. Here we see that we get a more complicated condition in the N-ZS-
N case. It seems like the interval of full polarization depends on the geometry (the
width of the superconductor compared to the coherence length), the ratio between
the gap energy and the Fermi energy and on the magnitude of the Zeeman energy.

There is one other limit we will give some attention. If we switch the superconductor
with a normal metal, that is ∆ → 0, we get a structure with a Zeeman splitted
normal metal between two normal metals. In this limit we get a remarkable result.
It turns out that there still is an interval with nearly full polarization. The interval is
still of width 2h, but is translated along the energy axis compared to the case of finite
∆. As a control the same results are obtained when we calculate the transmission
and reflection coefficients without ever including a superconductor. These results
are remarkable in the sense that we can get a strongly spin polarized current from a
system consisting of only normal metals when the applied field is small. From this
we can conclude that this interval of full polarization mainly is a geometric effect.
It is nevertheless interesting to use superconductors as they give the possibility of
processes like crossed Andreev reflection.
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Chapter 5

Magnetoresistance and spin-active

interfaces

Magnetic correlations may be introduced into a superconducting hybrid structure
in other ways than through a Zeeman splitting of the quasiparticle energies of the
superconductor. Of much interest has been systems built up by a superconductor
placed between two ferromagnetic metals. Such systems have been the subject of
many papers, both theoretical and experimental (see for example refs. [25, 26, 31, 32]
and [33, 34, 35] respectively). These systems show many of the same properties as
the N-S-N system, but new spin-dependent behaviour is also present.

Recently an experiment [2] was carried out where the authors studied transport and
resistance between two superconductors that were bridged by two parallel ferromag-
netic wires, forming an S-F-F-S junction. Surprisingly the experiment showed that
the resistance of the junction had a re-entrant behaviour as a function of tempera-
ture; that is upon cooling the junction below the critical temperature the resistance
switched from being larger in the parallel alignment to being larger in the antipar-
allel alignment. The article presents a possible explanation in terms of spin-active
interfaces where the particles feel different barrier potentials and acquire different
phases depending on their spin.

F S F

φ

x
y

z

Figure 5.1: A superconducting film of width less than the penetration depth is
placed between to semi-infinite ferromagnets. The potential at the interfaces is
spin-dependent with a barrier moment in the yz-plane.

31
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This motivates the second system we will examine in this thesis. The set-up is
the usual one with a thin superconducting film placed between two ferromagnetic
metals, that can be in either a parallel or an antiparallel alignment. In addition the
F-S interfaces are made spin-active and thus responding differently to incoming spin
up and down particles. Based on this we want to present a theoretical investigation
of the circumstances which allow for an inverse spin-valve effect; that is a transition
from postitive to negative magnetoresistance. Note that the setup in this text (see
Fig. 5.1) differ a little bit from the setup in [2]. For simplicity we use a one
dimensional transport model, while they use two dimensions. This will have some
impact upon the magnetoresistance (MR), but it will still be possible to investigate
the transition between positive and negative MR.

The magnetoresistance is defined by

MR =
RAP −RP

RP

(5.1)

where RP and RAP are the resistances in the parallel and antiparallel alignments
respectively.

5.1 Bogoliubov deGennes equations

As for the N-ZS-N system the starting point will be to find the Bogoliubov deGennes
(BdG) equations for the system. They can be solved to find the wave functions in
the ferromagnetic and the superconducting regions respectively. We will start by
expressing the Hamilton functions of the different parts by use of second quantization
in momentum space. From these Hamiltonians it is the easy to find the real space
version from which we derive the BdG equations.

5.1.1 Second quantized form of Hamilton functions

The superconductor is a normal BCS superconductor with a Hamilton function of
the same form as (2.1). Performing a mean-field approximation along the same lines
as in section 3.2 we can write

HSC =
∑

kσ

εkc
†
kσckσ −

∑

kσσ′

[

∆†
kσσ′c−kσ′ckσ +∆kσσ′

(

c†kσc
†
−kσ′ − b†kσσ′

)]

(5.2)

Solving this give energies E2
k =

(
k2±
2m

− µ
)2

+∆2 with corresponding wave vectors

k± =

√

2m(µ±
√
E2 −∆2) (5.3)

and coherence factors u2 = 1− v2 = 1
2

(

1 +
√
E2−∆2

E

)

.
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The ferromagnets will have a Hamiltonian with an interaction between the spins of
the individual electrons. After performing a mean-field approximation on the spin
operators the ferromagnetic part of the total Hamilton function can be written as

HFM =
∑

kσ

εkc
†
kσckσ − ρ

∑

kσσ′

c†kσ(h · σ)σσ′ckσ′ (5.4)

where h is the vector describing the magnetic exchange energy and σ = (σx, σy, σz)
is the vector of Pauli matrices. ρ = ±1 when the polarization of the ferromagnet
is in the ±z-direction respectively. In this Hamiltonian we have neglected constant
energy terms, as the energy can be renormalized. In our system we limit ourselves to
ferromagnets polarized in the z-direction. That means we can write h = (0, 0,±h)
which simplifies (5.4)

HFM =
∑

kσ

(εk − ρσh)c†kσckσ (5.5)

The electron energies will then be Eq =
(

q2e
2m

− µ
)

− ρσh while the hole energies are

Eq = −
(

q2
h

2m
− µ

)

+ ρσh. The corresponding wave vectors are

qσe
h
=
√

2m (µ+ ρσh± E) (5.6)

where the + sign refer to the electron wave vectors and the − sign to the hole wave
vectors.

5.1.2 Deriving BdG equations

When deriving the BdG equations we will work in the real space domain. The real
space Hamiltonian will be based on the second quantized forms in Eqs. (5.2) and
(5.4). An advantage of the real space form of the Hamiltonian is that it is easy
to include terms that is restricted to one part of space. We can thus include the
interface potentials as well as write both the superconducting and ferromagnetic
parts in one Hamilton function. We get

Ĥσσ′ =

∫

dxψ†
σ

[

−∇2

2m
− µ(x) + V0(δ(x) + δ(x− L))

]

ψσ(x, t)

+
1

2

∫∫

dxdx′
[

∆†
σσ′(x, x

′)ψσ′(x′, t)ψσ(x, t)

+ ∆σσ′(x, x′)ψ†
σ(x, t)ψ

†
σ′(x

′, t)
]

θ(x)θ(L− x)

−
∫

dxψ†
σ(x, t)((VM + h) · σ)ψσ′(x, t) (5.7)

Constant terms have been taken care of by a renormalization. VM is the magnetic
exchange field vector of the magnetic barrier potential. When this potential is
limited to the yz-plane we can write
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VM =
(
0, V1yδ(x) + V2yδ(x− L), V1zδ(x) + V2zδ(x− L)

)
(5.8)

while the ferromagnetic exchange field is

h =
(
0, 0, h[θ(−x) + ρθ(x)]

)
(5.9)

ρ = 1 when the right ferromagnet is in parallel alignment with the left one and
ρ = −1 when the alignment is antiparallel.

The magnetic moment at the interface constitutes a spin-dependent potential with
Viy = γV0 sinφi and Viz = γV0 cosφi where i = 1, 2 gives the potential at the first
and second F-S interface respectively. The angle φ is shown in Fig. 5.1. A more
general barrier potential would include an x-component, but that would have gone
beyond the scope of this text. For simplicity we will let the two barrier potentials
be aligned giving φ1 = φ2. V0 is the non-magnetic potential, while γ = |VM|

V0
gives

the ratio between the magnitude of the magnetic and the non-magnetic potential.

The complete Hamilton operator is given by Ĥ =
∑

σσ′ Ĥσσ′ , while the field opera-

tors have the following time dependence ψ(x, t) = eiĤtψ(x)e−iĤt. The field operators
must then obey the Heisenberg equations of motion. Using the anticommutator re-
lation between fermionic operators

{
ψ†
σ(x, t), ψσ′(x′, t)

}
= δσσ′δ(x − x′) we get the

following expressions

i∂tψα(x, t) =
[

ψα(x, t), Ĥ
]

=
∑

σ′

∫ (

δ(x− x′)Ĥ0
ασ′(x′, p̂)ψσ′(x′, t) + ∆ασ′(x, x′)ψ†

σ′(x
′, t)
)

(5.10)

and correspondingly

i∂tψ
†
α(x, t) =

[

ψ†
α(x, t), Ĥ

]

=
∑

σ′

∫ (

δ(x− x′)[−Ĥ0(x′,−p̂)]Tασ′ψ
†
σ′(x

′, t) + ∆†
ασ′(x, x

′)ψσ′(x′, t)
)

(5.11)

where Ĥ0
σσ′ = −∇2

2m
−µ(x)+V0(δ(x)+δ(x−L))− [VMσ]σσ′ . We introduce Ψ(x, t) =

[

ψ↑(x, t), ψ↓(x, t), ψ
†
↑(x, t), ψ

†
↓(x, t)

]T

as basis, and assume an energy dependence of

the field operators given by Ψ(x, t) = Ψ(x)e−iEt. Eqs. (5.10) and (5.11) can then
be written more compactly

EΨ(x) =

∫

dx′H(x, x′)Ψ(x′) (5.12)

where

H(x, x′) =

(

Ĥ0(x′, p)δxx′ ∆̂(x, x′)

∆̂
†
(x, x′) [−Ĥ0(x′,−p)]Tδxx′

)

(5.13)
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In this expression ∆̂(x, x′) = iσy∆(x, x′) and δxx′ = δ(x− x′).

We consider plane wave solutions of Ψ(x) and divide out fast oscillations as in [36].
For simplicity we will not find the spatial dependence of the order parameter near
the interfaces, but perform the step function approximation ∆(x) = θ(x)θ(L−x)∆.
This means that we assume a constant gap throughout the superconductor at a
given temperature. The Bogoliubov deGennes equations will then be

ĤΨ(x) = EΨ(x) (5.14)

with

Ĥ =











H0 − h(x) + V↑(x) iVy(x) 0 ∆(x)

−iVy(x) H0 + h(x) + V↓(x) −∆(x) 0

0 −∆(x) −H0 + h(x)− V↑(x) iVy(x)

∆(x) 0 −iVy(x) −H0 − h(x)− V↓(x)











(5.15)

where H0 = −∇2

2m
− µ(x) and Vσ = V0 − σVz.

5.1.3 Transport coefficients

Solving Eq. (5.14) we get the wave functions in the left ferromagnet

ψFL(x) =







s↑

0
0
0






eiq

↑
ex +







0
s↓

0
0






eiq

↓
ex + r↑e







1
0
0
0






e−iq

↑
e

+ r↓e







0
1
0
0






e−iq

↓
e + r↑h







0
0
1
0






eiq

↑
h + r↓h







0
0
0
1






eiq

↓
h (5.16)

the superconductor

ψS(x) =







u
0
0
v







(
aeik+x + be−ik+x

)
+







0
u
−v
0







(
ceik+x + de−ik+x

)

+







0
−v
u
0







(
eeik−x + fe−ik−x

)
+







v
0
0
u







(
geik−x + he−ik−x

)
(5.17)
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and the right ferromagnet

ψFR(x) = t↑e







1
0
0
0






eiq

↑
e + t↓e







0
1
0
0






eiq

↓
e + t↑h







0
0
1
0






e−iq

↑
h + t↓h







0
0
0
1






e−iq

↓
h (5.18)

Here {s↑, s↓} = {1, 0} for an incoming spin up electron and {s↑, s↓} = {0, 1} for an
incoming spin down electron.

The boundary conditions are still continuity of the wavefunction at the interfaces
and a discontinuity of the first derivatives caused by the delta function potentials.
The discontinuity conditions will however differ from the ones we had without a spin-
active barrier potential. Since the magnetic moment of the barrier not necessarily
is aligned along the z-direction we will get off-diagonal elements in the boundary
conditions resulting in spin mixing.

ψ′(0+)−ψ′(0−) = 2mV0






I− γ







cosφ −i sinφ 0 0
i sinφ − cosφ 0 0
0 0 cosφ i sinφ
0 0 −i sinφ − cosφ












ψ(0) (5.19)

ψ′(L+)− ψ′(L−) = 2mV0






I− γ







cosφ −i sinφ 0 0
i sinφ − cosφ 0 0
0 0 cosφ i sinφ
0 0 −i sinφ − cosφ












ψ(L)

(5.20)

where I is the 4x4 identity matrix.

From these boundary conditions we get a linear system of equations with 16 un-
knowns. Some simplifications can be made. The usual approximation that k+ ≈
k− ≈ kF is made wherever they appear except in exponents. The same approxima-
tion can not be made for the ferromangetic momenta since h is near the same order
of magnitude as µ. However, the energy dependence is small and can be neglected
such that q↑e = q↑h and correspondingly q↓e = q↓h.

We want to investigate the sign of the magnetoresistance of the system. It is then
necessary to find expression for the conductance. When we looked at the spin current
in the previous chapter, we chose to put a voltage on the left side and ground the
superconductor and the right side. Now we want to examine charge current, and
want this current to be conserverd throughout the system. We then apply a voltage
of eV

2
on the left side and a voltage − eV

2
on the right side. This corresponds to

incoming electrons from the left and incoming holes from the right. As incoming
particles with spin up and down give different reflection and transmission amplitudes
we must then compute the four reflection and four transmission coefficients for
incoming electrons and holes with spin up and spin down, resulting in 32 coefficients.
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With spin-active interfaces there will be few symmetries and we can not assume that
some of these coefficients will be equal. The expressions for the transport coefficients
are far too complicated to give analytically, and all following results are numerical.

To find the conductance we follow the same lines as [25]. First we write down the
currents that can be found through the left and the right FM-S interface respectively

IL = e(µL − µ)
∑

σ

Pσ[1−Reσe↑ −Reσe↓ +Reσh↑ +Reσh↓

+ Thσh↑ + Thσh↓ − Thσe↑ − Thσe↓ ]

(5.21)

IR = e(µ− µR)
∑

σ

Pσ[1−Rhσh↑ −Rhσh↓ +Rhσe↑ +Rhσe↓

+ Teσe↑ + Teσe↓ − Teσh↑ − Teσh↓ ]

(5.22)

Using that µL = µR and that IL = IR we find that the conductance at zero temper-
ature can be written

G = GN [P↑ (1−Re↑e↑ −Re↑e↓ +Re↑h↑ +Re↑h↓ + Th↑h↑ + Th↑h↓ − Th↑e↑ − Th↑e↓)

+ P↓ (1−Re↓e↑ −Re↓e↓ +Re↓h↑ +Re↓h↓ + Th↓h↑ + Th↓h↓ − Th↓e↑ − Th↓e↓)]
(5.23)

where P↑ =
1
2
(1 + h

EF

) and P↓ =
1
2
(1− h

EF

).

5.1.4 Temperature dependence

For finite temperatures we must take into account that the distribtuion function no
longer is a step function. We need the Fermi distribution function f0(E) given by

f0(E) =
1

1 + e
E

kBT

(5.24)

Then the current at the desired temperature can be found by integrating the con-
ductance over energy

I(eV, Z, γ, φ, ρ, T ) =
1

e

∫ ∞

−∞
dE

[

f0

(

E − eV

2

)

− f0

(

E +
eV

2

)]

G(E,Z, γ, φ, ρ, T )

(5.25)

In order to perform this integration we need the temperature dependence of the gap
parameter. The gap parameter for s-wave superconductors must be a monotonic
decreasing function obeying the limiting conditions ∆(0) = ∆0 and ∆(TC) = 0. A
usual assumption is the relation [37]

∆(T ) = ∆0 tanh

(

1.74

√

TC
T

− 1

)

(5.26)



38 Chapter 5. Magnetoresistance and spin-active interfaces

The temperature dependence of ∆ given in Eq. (5.26) is shown in Fig. 5.2. That
the energy gap gradually become smaller has important consequences for the trans-
mission and reflection coefficients. All processes involving either Andreev reflection
or crossed Andreev reflection become less likely to happen with a lower energy gap,
and as T → TC the probabilities go to 0. This is because these processes need
the superconducting Cooper states which cease to exist when the superconducting
state is destroyed above the critical temperature. Since conservation of probability
is necessary processes involving normal reflection and transmission will then become
more probable.

Figure 5.2: The energy gap as a function of temperature.

5.2 Magnetoresistance

All the necessary theory we need for examining the magnetoresistance is now pre-
sented. We want to find if spin-active interfaces can give a switch between positive
and negative MR, and if that is possible to find the reasons for this behaviour.

5.2.1 Parameter values

The magnetoresistance depends on many different parameters, and it will be beyond
the scope of this thesis to find the full dependence on all of them. We will therfore
limit ourselves to certain values for some parameters. The superconductor is an
s-wave superconductor where a simple and natural choice is to set ∆

EF

= 10−3. The
ratio between the Fermi momenta is set to κ = qF

kF
= 1. Of reasons soon to be

explained we choose Z = 0.35, corresponding to a weakly transparent interface, in
all plots (apart from Fig. 5.9) of MR as a function of temperature.



5.2. Magnetoresistance 39

We have assumed the standard step function approximation for the gap parameter
in the superconductor. Doing this we have neglected the proximity effect at the
interfaces. For an exact solution we would have to find a self-consistent solution for
the gap function. This would show some partial depletion of ∆0 near the interfaces,
caused by the ferromagnets. In order to justify this approximation we will only
consider small voltages eV

∆0
� 1 since larger voltages would lead to a substantial

accumulation of spin in the superconductor. This would suppress the gap and even-
tually destroy the superconducting properties. For eV

∆0
� 1 a self-consistent solution

for the gap is not required [38]. The approximation will also improve for increasing
thickness of the superconducting layer. As long as L ≥ 2ξ the approximation should
be reasonable. This prevents the approximation from being good in the coherent
case, that is when the width of the superconductor is less than the superconduct-
ing coherence length. A reasonable choice according to these criteria will then be
kFL = 4000 corresponding to L

ξ
= 2.0. This value is used in all of our results, and

should give reasonably good results.

We are then left with four parameters; γ giving the ratio between the magnetic and
the non-magnetic barrier potential, φ which gives the alignment of the magnetic
interface potential, h giving the strength of the exchange field in the ferromagnets,
and last the temperature T . The following discussion will try to investigate how the
magnetoresistance depends on these four parameters.

5.2.2 Zero temperature

At zero temperature the MR can (as in [38]) easily be evaluated by use of the
conductance instead of the resistance. Then the conductance is given by the inverse
of the resistance. By direct substitution in (5.1) we find that the MR is

MR =
GP −GAP

GAP

(5.27)

This will simplify the calculations as the zero temperature conductance can be found
directly from Eq. (5.23). As a control of the calculations we let γ = 0 (that is no
spin-active interfaces) and plot the conductance in the parallel and the antiparallel
alignment. This reproduces the results for the simple F-S-F system given in [25]
(their Z equals the half of ours). The plot is given in Fig 5.3.

As we see in Fig. 5.3 the two conductance curves have the same phase, but with
largest conductance in the parallel alignment. This gives a positive magnetoresis-
tance which is what we intuitively would expect. In the antiparallel alignment the
two ferromagnets favours opposite spin. Since the two electrons of a Cooper pairs
should have opposite spin, crossed Andreev reflection will be enhanced when the
ferromangets have exchange fields pointing in opposite directions. Crossed Andreev
reflection is however a weak effect compared to elastic cotunneling, or direct trans-
mission, which is the process that is favoured in the parallel alignment.
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Figure 5.3: A plot of the conductance normalized by the conductance of the normal
state (GN) for T = 0, γ = 0, Z = 2, ∆

EF

= 10−3, kFL = 5000 and h
EF

= 0.5. This
reproduces the results of [25]. The solid line is for the parallel alignment, while the
dashed line is for the antiparallel alignment.

In Figs. 5.4 and 5.5 the magnetoresistance is plotted against the non-magnetic
barrier potentials for different strengths of the exchange field. In the first set of
plots γ = 0.1 which give a weak magnetic potential compared to the non-magnetic
potential. For the two strongest ferromagnets (x = 0.2 and x = 0.5) the MR is
observed to be positive for all values of Z for both given directions of the magnetic
barrier. With such strong exchange fields a magnetic barrier which is just 10% of
the normal barrier will be to weak to alter the transport processes in such a degree
that there will be a change in the preferred ferromagnet alignment. We observe that
the magnitude of the MR is small, which means that the difference in conductance
between the two alignments is small. At increasing exchange field the magnitude of
the MR also increases.

Figure 5.4: The magnetoresistance as a function of the non-magnetic barrier poten-
tial for four different exchange fields (x = h

EF

) at T = 0 and γ = 0.1. The inset
panels give a clearer view of the sign changes for small Z.
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With weaker ferromagnets we see that there is a change in sign of the MR. For
φ = 0.25π the MR drops under zero in a small interval around Z = 1.0 before it
again becomes positive. In this case the magnetic barrier has a positive z-component
which should favour transport in the parallel alignment since the magnetic potential
will be lower for spin up particles. The y-component of the barrier will however
introduce an extra phase-difference. This phase-difference gives oscillations which
might give negative MR. It is easier to understand the negative MR for φ = 0.75π.
The magnetic potential will have a negative z-component which reduces the total
barrier for down spins, and increases the probability for spin-flip processes which in
turn will increase the conductance in the AP alignment.

Figure 5.5: The magnetoresistance as a function of the non-magnetic barrier poten-
tial for four different exchange fields (x = h

EF

) at T = 0 and γ = 0.5. The inset
panels give a clearer view of the sign changes for small Z.

The set of plots given in Fig. 5.5 is for γ = 0.5, that is a magnetic potential with
half the strength of the non-magnetic one. A similar, but clearer, Z-dependence is
found here. The region with negative MR for φ = 0.25π is narrower but with larger
maximal negative magnitude, and now the magnetic potential is strong enough to
make the MR negative for the two strongest fields. For φ = 0.75π we clearly see
that the oscillation has nearly the opposite phase of the φ = 0.25π case. This can be
explained by the trigonometric relation cos(π

2
−θ) = − cos(π

2
+θ). The z-component

of the barrier potential for spin up particles is thus increased in the φ = 0.75π case
with the same amount as it decreases for φ = 0.25π, and opposite for spin down
particles. The y-component is the same for the two angles. The three weakest fields
give an initial negative MR before it becomes positive, and then all curves turn
negative for the largest Z-values. As the MR has a complex dependence on many
parameters it is difficult to explain this behaviour, but it might be caused by the
reduced dominance of elastic cotunneling compared to crossed Andreev reflection for
increasing values of Z. In both sets of plots the MR will stabilize as Z is increased,
and no more sign changes are observed at T = 0 for larger Z.

The clearest change in sign in MR as a function of Z for zero temperature is observed
for large γ and large φ. It is thus preferrable to have a strong magnetic barrier that
favours spins directed opposite to the first ferromagnet to obatin a clear change of
sign in magnetoresistance as a function of Z at T = 0.
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5.2.3 Comparison of transport coefficients

As we shall see in the magnetoresistance plots it is even more difficult to explain
the behaviour for finite temperatures. To get some understanding we need to know
how the transport processes for different incoming particles behave as a function
of the angle and of temperature. There are too many coefficients and a too large
parameter space to show all, but in Fig 5.6 we give the difference between the
reflection coefficients for incoming spin up electrons in the two alignments, and
corresponding plots for the transmission coefficients of incoming spin up holes. The
plots are given for γ = 1 as a strong magnetic barrier most likely will give the
clearest picture of the processes. The plotted coefficients are given since they are
the most dominating ones (see Eq. (5.23)). Corresponding coefficients for incoming
particles with spin down are very similar, but with a few important differences. The
curve for normal reflection without spin flip for incoming spin down and φ = 0.25π
is e.g. almost a reflection across the line T = 0 of the same process for incoming spin
up with φ = 0.75π. We have chosen to plot the difference in probability between the
two alignments since curves for parallel and antiparallel alignment lies really close
and would be difficult to distinguish.

Figure 5.6: Two upper graphs: Difference between the reflection coefficients for
incoming spin up electrons in the parallel and the antiparallel alignment. Two lower
graphs: Difference between the transmission coefficient for incoming spin up holes
in the parallel and antiparallel alignment. Z = 0.35, γ = 1 and x = 0.1.



5.2. Magnetoresistance 43

All processes involving particle conversion (local and non-local Andreev processes) go
to zero when the temperature approaches the critical temperature. Normal Andreev
reflection favours parallel alignment up to an angle a little larger than φ = 0.5π.
The smaller γ is the larger is the angle needed before the antiparallel alignment is
favoured. Andreev reflection without spin flip gives a negative result for all angles.
The same is the result for crossed Andreev reflection with spin flip. Crossed Andreev
reflection without spin flip has a very small difference between the two alignments
and gives only a small contribution to the total result even though there is a change
in sign for small angles. Normal reflection prefers a parallel alignment for all tem-
peratures, and the difference increases with temperature apart from a small drop for
φ = 0.25π. With a spin flip the result is positive for small angles and negative for
large angles. Normal transmission is negative for small angles and changes sign from
positive to negative for large angles. Transmission with spin flip goes from positive
to negative for both angles. With these results it will be easier to understand the
most important aspects from Fig. 5.8.

5.2.4 Finite temperatures

First of all we give a plot of the resistance for both alignments for a weak barrier
potential, the same strength of the non-magnetic and the magnetic barriers, and
with the magnetic barrier along the positive z-axis. This is motivated by the exper-
imental paper [2] on the same system, where they found a change in the sign of the
magnetoresistance as a function of temperature for similar parameters.

Figure 5.7: The resistance of the parallel alignment (whole line) and antiparallel
alignment (dashed line) for Z = 0.35, γ = 1.0 and φ = 0. The inset panel zooms
in at the area where the antiparallel resistance becomes larger than the parallel
resistance. The right plot shows the experimental results from [2].

As we see in Fig. 5.7 the curves of the two aligments follow eachother closely. For
temperatures near T = 0 the resistance is largest in the parallel alignment, but
a little above T = 0.9TC the magnetoresistance changes sign. If we compare our
curves with the experimental curves the structure is much the same. There they
start out at with a low resistance before it increases towards T = TC and then have a
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drop when the curves leave the superconducting region. Differences we can observe
compared with the experimental curves is that we miss a small drop in resistance for
intermediate temperatures. This may be caused by the slightly different setup (see
the start of this chapter) we use in our text, or it may be caused by some differences
in parameter definitions. Another difference is found in the drop for temperatures
above the critical temperature. This drop is much more abrupt in the experimental
case. This is most probably explained by some numerical factor. The reason that
the magnitude of the theoretical resistance is much lower than the experimental one
may partly be explained by impurities in the materials which is not considered in
our theoretical model.

Motivated by this we investigate the magnetoresistance for different values of γ and
φ for Z = 0.35 to see how these parameters affect the sign. In Fig. 5.8 plots of the
MR is given for different γ and φ.

Figure 5.8: The magnetoresistance as a function of temperature for Z = 0.35 and
different γ and φ. The ferromagnets considered have a strength of x = 0.1.

The two weakest magnetic potentials (γ = 0 and γ = 0.25) show the same structure
as the resistance in Fig. 5.7. The curve is flat until it has a sudden increase towards
T = TC . For the three other curves we observe more interesting effects. When
the angle between the magnetic barrier and the z-axis is small all three curves
show a change in sign of the MR. They start out with negative MR, are relatively
flat until about T = 0.5TC . Then the MR decreases until a minima at about
T = 0.9TC before it increases, becomes positive and follows the same trend as the
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two first curves towards T = TC . As the angle increases this situation changes. At
φ = 0.5π the γ = 0.5 curve follows the γ = 0 and γ = 0.25 curves. The curves of
the two strongest magnetic moments are also changed. The drop at intermediate
temperatures are gone and both curves decrease towards a negative T = TC value.
There is still a change in sign for the γ = 0.75 curve since it now starts out with
a positive MR, but the γ = 1.0 curve now has a negative MR for all temperatures
in the superconducting region. As the angle is increased even more all curves give
positive MR. And when φ = π all curves show the behaviour in Fig. 5.7 up to the
critical temperature.

It seems like the re-entrant behaviour of the resistance, that is the switch in sign
of MR as a function of temperature, is dependent on a large magnetic moment at
the interface. This result is probably the one which is the easiest to understand.
When γ increases the difference in potential experienced by the two different spin
species increases and the phases differ more. The z-compent of the magnetic barrier
effectively increases or decreases the non-magnetic potential depending on spin of
particle and direction of barrier moment. As an example γ = 1 can give no barrier
for spin up particles when φ = 0. With the same parameters the barrier strength
will be doubled for spin down particles. If γ is lower the difference will not be that
large. With other parameters in the correct range a strong magnetic barrier will
then give the best possibility for change of sign in the MR.

The z-component thus raises or lowers the potential, while the y-component intro-
duces an extra phase difference. As for the overall effect of these two components,
and thus the complete angle dependence, it is more difficult to give a clear reason
for the behaviour without analytical expressions. We will however try to use the
difference in coefficients in Fig. 5.6 to give some explanation of the results we have
observed. The discussion will then mainly concern the γ = 1 curves as that is the
extreme case.

First we take a look at the φ = 0.25π plots. For low temperatures we see in Fig.
5.2 that there is almost no change in the energy gap. In this region the MR is
almost constant negative being dominated by crossed Andreev reflection and direct
transmission which at this point together are larger than the positive contribution
from normal reflection. When we approach T = 0.5TC the gap falls faster, and it is at
this point we start to see the interesting effects in our plots. Apparently the lowering
of the gap will at first enhance the favoring of one alignment for each process. The
MR then starts to fall and has a local minima between T = 0.9TC and T = 1.0TC . It
is especially normal transmission and reflection that has had the largest changes. Up
to the critical temperature the MR now increases rapidly and eventually becomes
positive. The sudden increase for these largest temperatures is caused by the very
sudden decrease we have in the energy gap. Crossed Andreev reflection which have
given a relatively large negative contribution will then disappear with the energy gap,
and direct transmission also gets a smaller magnitude. So even though transmission
with spin flip changes sign the normal reflection will dominate more and more and
give a positive MR for a temperature around T = TC .

For φ = 0.75π more of the transmission coefficients starts out with a positive dif-
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ference between the two alignments, while the opposite is seen for the reflection
coefficients. The magnitude of the difference is however smaller. This can be ex-
plained by a larger barrier for the spin up particles. For increasing temperatures
we find the same trend as for the smaller angle. The magnitude of the difference
increases until the MR has an extremal value, which in this case is a maxima. After
the maxima both transmission with and without spin flip starts to fall and become
negative. Transmission with spin flip follows almost the same curve as for φ = 0.25π
and do not seem to be noticeably affected by the change in direction of magnetic
moment. Normal transmission on the other hand ends up with a less negative mag-
nitude in this case. And when the normal reflection do not have the small drop it
had for φ = 0.25π the MR remains positive even though it falls almost to zero.

These results are for a relatively low value of Z. A change in sign of the MR is
however also found for larger barrier potentials, but it seems as if the magnetic
potential must be stronger compared to the non-magnetic one. For Z = 0.35 we
found a sign change for γ = 0.5, but for Z = 3.0 and other parameters the same
it seems like a larger γ is needed. It is still at small angles that we find the sign
changes. For γ = 0.75 the MR changes sign for both φ = 0 and φ = 0.25π as we see
in Fig. 5.9.

Figure 5.9: The magnetoresistance as a function of temperature for Z = 3.0 and
γ = 0.75. The ferromagnets considered have a strength of x = 0.1.

As a last comment in this section it is to be said that if we increase the strength of
the ferromagnets to x = 0.5 a change of sign in MR as a function of T is found also
in angles as large as φ = π.

5.2.5 Limiting cases

In the previous chapter we found that the regions of full polarization were a geometric
effect and would appear even if the superconductor was switched with a normal
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metal. It is important to examine if this is the case also for the present structure.
In Fig. 5.10 we give a couple of plots with parameters compareable to the one
we used in Fig. 5.8. First we see that the curves differ alot from the ones with
a superconductor. With a superconductor all curves undergo a rapid increase or
decrease as they approached T = TC . Without the superconductor the curves have
a slower change. We also find different sign changes of what we previously has
observed; the sign changes for φ = 0.25π occur for T > TC , while the sign change
for φ = 0.75π is not present in the superconductor plots. It thus seems like it is
necessary to include a superconductor to observe the results given in Fig. 5.8.

Figure 5.10: The magnetoresistance as a function of temperature for Z = 0.35 and
different γ and φ. The ferromagnets considered have a strength of x = 0.1, and the
superconductor is switched with a normal metal (∆ = 0).

One last imortant point to mention is the sign of the MR for γ = 0. In all the plots
given we see that in the absence of spin-active interfaces the magnetoresistance is
positive for all sets of parameters. This is in line with previous treatments of the F-S-
F structure. It would be interesting to know if spin-active interfaces are necessary to
get a change in sign of MR. The best would be to find an analytic expression for the
MR in the F-S-F structure and then check if this could be negative. Even though
it is fairly simple to find analytic expressions for the transmission and reflection
coefficients for a simple F-S-F system it is more difficult to find the corresponding
general expression for the MR since that involves an energy integration. We can for
that reason give no definite conclusion to this question, but our results indicate that
it is necessary with spin-active interfaces to observe negative magnetoresistance and
the re-entrant effect.
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Chapter 6

Conclusion

This thesis has treated the important area of correlations between magnetic and
superconducting properties of metals.

We have seen that it is possible to obtain a spin-polarized current from an injected
unpolarized current in the N-ZS-N system. A current of nearly 100% spin polariza-
tion is obtained in the limit where the normalized barrier strength Z is much larger
than 1, that is in the tunneling limit. The interval with full polarization occurs as a
consequence of the geometry of the system. At certain energies the probabilities for
elastic cotunneling and crossed Andreev reflection have large peaks. These peaks
take place at an energy 2h less for the spin up current than for the spin down cur-
rent. In the interval between these two energies the spin up current will dominate
and the current will be polarized. A surprising result was obtained when letting ∆
go to zero (that is to replace the superconductor with a normal metal) in the an-
alytical and numerical expressions. There were still an area with full polarization.
This remarkable result shows that this is mainly a geometrical effect.

The second system examined the possibility to find a re-entrant effect in magnetore-
sistance as a function of temperature in F-S-F hybrid structures. This effect was
recently proved experimentally, and we have looked at spin-active interfaces between
the layers as a possible explanation. Our model shows theoretically that this effect
can take place in certain parameter ranges. Most important is the strength of the
magnetic potential compared with the non-magnetic one. To find a clear re-entrant
effect a strong magnetic barrier is needed. This will alter the preferred alignment for
some of the transport processes and can, mainly for small angles between the barrier
moment and the z-axis, give temperature regions with negative magnetoresistance.

During the last years many steps have been taken in the research of low-temperature
spintronics, and it will still be an important field of research for the coming years.
The systems considered in this text and other similar and more complex systems
will need more theoretical and experimental study. Hopefully this can give new and
important insight that can lead to a development in the physical understanding of
spin transport, and perhaps new applications.

49
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