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ABSTRACT: 

The article presents a contribution to the current debate on the probabilistic representation of the wind speed 

extremes for calibration of the partial safety factor covering wind action. The requirements for the probabilistic 

model are formulated. The Gumbel distribution is shown to represents best the 10-minutes mean wind velocity 

yearly maxima based on theoretical considerations and analyses of real data with different statistical techniques. 

Data from locations across a large geographical region indicate that the coefficient of variation of the distribution 

varies over the territory. A method is proposed for accounting this variation in order to calibrate a single partial 

safety factor for the whole territory. The distribution location is indirectly given in design standards through the 

georeferenced characteristic wind speed values. A solution for including the uncertainty affecting these values is 

suggested. The findings are implemented in an illustrative calibration exercise. The proposed methods and 

concepts might be applied to other environmental actions such as the snow loads.  
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1 Introduction 

Modern structural design codes or standards as the Eurocodes [1] provide simple and safe basis for the design 

of structures. The simplicity is achieved mainly by the fact that structural safety is checked by comparing the 

design values of action effects with the design value of the resistance. Semi-probabilistic design equations in the 

Load Resistance Factor Design format (LRFD, see e.g. [2]) use partial safety factors (PSFs) applied on the 

resistance and action sides. These factors control the reliability of the corresponding design solutions. Their values 

are selected by code committees in order to achieve the desired level of safety [2, 3, 4, 5]. In the present version 

of the European Standards (The Eurocodes [1]), for example, one single partial safety factor ( 1.50Q  ) is 

recommended for all unfavourable environmental variable actions such as snow and wind. However, it has been 

shown in [6] that a wind load dominated structure designed with 1.50Q   has a reliability lower than the 

Eurocode target, which requires a yearly target reliability index 
t  equal to 4.70 (for consequence class 2). It also 

appears reasonable to differentiate the partial safety factors of the environmental actions, such as snow, wind and 

temperature, since these actions originate from different physical phenomena and are represented by different 

models involving various random variables.  

Modern calibration methods are based on reliability theory considering fully probabilistic models [3, 4, 7]. If 

wind action is involved, this requires models representing the wind action on structures from the basic physical 
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phenomenon (i.e. the geostrophic wind), and the representation of the governing variables, which may have a 

deterministic or a random nature. A widely accepted model is the Alan G. Davenport wind load chain [8] illustrated 

in Figure 1. Many semi-probabilistic codes such as the Eurocode 1 [9] represent wind actions on structures based 

on this model. The chain model includes five fundamental aspects, shortly: i) the wind climate comprising the 

weather systems generating geostrophic winds due to temperature gradients on the Earth surface; ii) the influence 

of terrain, which modifies the wind flow in the atmospheric boundary layer; iii) the aerodynamic effects depending 

on the structure shape; iv) the dynamic effects of the structure, and v) the criteria for verifying the predicted load 

models. More details are given in [10, 11].  

 

 

Figure 1 – Alan G. Davenport wind loading chain. 

Although the model is widely accepted, challenges are still faced when defining the probabilistic models 

representing different aspects. In fact, several probabilistic models for representing the aspects in the Davenport 

chain have been proposed for calibration of design codes, see e.g. [12]. Therefore, this article discusses some open 

issues related to the stochastic modelling of the 10-minutes mean wind velocity yearly maxima ( ,maxbV ) used for 

representing the wind climate for code-calibration purposes. In detail, the following aspects are addressed: 

• The selection of the type of distribution function representing ,maxbV . This is still openly discussed in the 

scientific community since several distributions seem to fit well the available data, but they result in different 

calibrated safety factors due to the so-called tail sensitivity problem affecting the reliability analyses. Gumbel, 

Generalised extreme, Weibull, three-parameters Lognormal and other distributions are proposed in the 

literature, see for example [11, 13, 14].  

• The estimation of the distribution parameters that are relevant for the calibration of partial safety factors. 

These parameters are the coefficient of variation ( COV ) and the uncertainty on the distribution location. 

The former should include the aleatory uncertainty (random nature of wind) and the epistemic uncertainties 

(originated by the lack of knowledge and a limited amount of information). The latter should include the 

uncertainties originated from the (surrogate) models utilized for creating the wind maps included in the design 

codes.  

• The representation and inclusion of the b,maxV  space-variation in the partial safety factor calibration. This is 

required since a single partial safety factor for wind action is used for large geographical areas, although the 

wind climate is highly regional dependent. 

The selection of the distribution type, the estimation of its parameters and their variation over a vast territory are 

addressed in Section 2 of the article. The second part of the article proposes a method for integrating, in the partial 

safety factor calibration, both the space-variation of the wind characteristics and the uncertainty on the distribution 

location. Wind speed records from five weather stations across Norway were analysed for catching the space-

variation. The uncertainty on the distribution location was estimated based on measurements in several places over 

the territory. The findings are implemented in an illustrative calibration exercise. 

2 Representation of the wind climate 

2.1 Requirements of the model 

The variation of the wind climate can be described by the wind velocity averaged over a period corresponding 

to frequencies in the spectral gap of the horizontal wind speed spectra [10, 15]. Periods of 10 minutes to 1 hour 

are typically used [16]. In the European Standard Eurocode 1 Part 1-4 (EC1-1-4) [9], the wind climate variation is 

represented by the basic wind velocity ( bV ) which is defined as the 10-minutes mean wind velocity, irrespective 

of wind direction and time of the year, at 10 meters above the ground level in open terrain. The reliability 
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assessment of a structure exposed to wind actions is a time-variant problem since the wind is varying in time. The 

reliability problem can be simplified to a time-invariant problem, if it can be assumed that the resistance is 

independent of the wind process, by the so-called time-integrated approach (see [2]) considering the 
bV  yearly 

maxima ,maxbV . 

As any random variable, ,maxbV  might be represented by a distribution function, which is in general defined by 

the type of distribution and its parameters. The parameters determine the location, scale and shape of the 

distribution, while the type determines the tail behaviour. 

The type of distribution and the coefficient of variation COV  (i.e. the scale or scatter independent of the 

location) play an important role in reliability-based code calibration. This role can be observed in Eq. (1) where 

the partial safety factor for a Gumbel distributed variable X  is determined using the design value method [1]. In 

the Equation, 
t  is the target reliability,   is the sensitivity factor (see, e.g., [2]), 

kp  is the fractile corresponding 

to the characteristic value,     is the standard normal cumulative density function and 0.5772EMa   is the 

Euler-Mascheroni constant. The analytical expressions of the distributions functions utilised in the article are given 

in Appendix A. 

 
  
  
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



     


  
  (1) 

The distributions location or magnitude is not affecting the partial safety factor when the extreme wind speeds 

are originated from a single physical phenomenon. In this case, standardised random variables can be used for PSF 

calibration as in [5]. For the wind, this is advantageous since the magnitude varies considerably in space due to 

different local climates and exposures. Design codes provide the regional magnitude or distribution location 

through the ,maxbV  characteristic value. In the Eurocode 1 [9], the characteristic value corresponds to the 98 % 

fractile (i.e. 0.98kp  ) of the yearly extreme value distribution and is referred to as the fundamental value of the 

basic wind velocity ,0bv . The regional distribution of ,0bv  is given in the Eurocode 1 National Annexes in the form 

of tables or maps. It has to be highlighted that the uncertainties affecting ,0bv  do influence the calibration of the 

partial safety factor. Thus, a good probabilistic representation of these uncertainties is of importance.  

Correspondingly, in the authors’ view, the distribution function representing ,maxbV  should have the following 

properties:  

a) The distribution function type should represent ,maxbV  in the whole geographical application area of 

the standard under consideration. 

b) The distribution function type and parameters have to be validated by recorded time series over an 

adequate period, say, longer than 15 years [17].  

c) The distribution function type must agree with the phenomena generating randomness.  

d) The stochastic model should be suited for the reliability methods used in the calibration procedure. 

Usually, a parametric probability distribution is sought since the first order reliability method 

(FORM) is commonly used in calibration of partial safety factors because of its accuracy and its low 

computational cost. 

e) It should include the statistical uncertainties which arise from the lack of data and the model 

uncertainties in order to estimate the predictive reliability index, see e.g. [18].  

f) It should be accurate in the upper tail defined as the surroundings of the design point. The fractile 

corresponding to the design point is approximatively equal to   45 10t      , which is the 

fractile associated with the design point of the wind induced action obtained with 0.7   and 

4.7t   according to [1].  

In principle, different types of distributions can be fitted to the data upper tail, and the best one can be 

individuated by using statistical tools, probabilistic reasoning and judgment. Nevertheless, the point c) above is of 

particular importance especially due to the lack of observations in the surrounding of the design point. The 
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application of extreme value theory (see e.g. [19, 20]) does limit the choice of distribution function type 

correspondingly, see also [21] for further discussion. 

In the following, different analyses techniques are selected and utilised for individuating the distribution 

function representing the wind speed yearly maxima having all the properties listed above. These techniques differ 

in the basic assumptions, data considered and output. The techniques are divided into two main groups. The first 

group is based on the classical extreme value theory, which proposes different asymptotic distributions 

representing maxima under some specific assumptions that are discussed and assessed. The asymptotic 

convergence is improved when the parent distribution is considered. The distribution parameters are estimated 

from the yearly maxima, implying that one measurement for each year is considered only. The second group of 

techniques makes use of a larger amount of data by analysing the rate of threshold exceedance. These techniques 

allow to estimate the parameters as well as to evaluate the type of distribution that best represents the maxima.  

The three-parameters lognormal (LN3) is proposed as a possible candidate distribution type for the 

representation of extreme wind phenomena [13]. The authors believe that, compared to other distributions 

discussed later, the distribution provides just a better fit to some samples of data due to the third parameter. In any 

case, the goodness of fit in the upper tail region of interest cannot be assessed due to lack of data. Nevertheless, 

the 3LN distribution was excluded because the distribution representing the N -years maxima ( ,maxb NV ) derived 

from LN3-distributed yearly maxima, as 
, ,b max N b max

N
V VF F , is not of the type LN3. This is neither reasonable nor 

practicable since the type of distribution should not change with the selected reference period (for reference periods 

that are long enough to ensure independence between maxima). Therefore, this distribution is excluded in this 

paper since no theoretical background is found supporting its use. 

2.2 Data set 

Records from the Norwegian Meteorological Institute (MET) [22] of the highest hourly and 6-hours 10-

minutes mean wind speed (MET code: FX_1 and FX, respectively) were analysed. In detail, the 10-minutes mean 

wind speed was measured for each 10-minutes, and only the highest in each hour or in each 6-hours-period was 

recorded. FX records cover time periods between 25 and 58 years long. The data are of poor quality since the 

records are affected by rough rounding especially before 1980 (see Table 1). Nevertheless, no better data are 

available in Norway for periods long enough to support the probabilistic modelling of yearly maxima. Five stations 

across Norway were selected (see Figure 2) for representing different geographical regions. For illustration 

purposes, the data for Torsvåg Fyr (TOR) are reported in Table 1. FX_1 records (Figure 3) are more accurate since 

rounded at  0.05 0.1m s kn   but they are available for periods not longer than 22 years. In general, a good 

agreement between FX and FX_1 was observed in periods covered by both datasets. The data were quality checked, 

and two corrections were done for TOR data that included two entries equal to 45.2m s . These measurements 

were considered erroneous because of the extreme magnitude and due to the absence of reports on major storms 

in the corresponding period. Linear interpolation between previous and posterior entries was used for correcting 

the corresponding records.  
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Figure 2 – Weather stations (from Google My Maps). 

 

Table 1 – FX values for TOR in m s converted from knots (kn) (rounding:*  2.31 4.5m s kn  , §  1.80 3.5m s kn   , 

 0.26 0.5m s kn   otherwise). 

Year bv  Year bv  Year bv  Year bv  

1957 26.75* 1969 22.64§ 1981 30.87§ 1993 36.01 

1958 30.87§ 1970 26.75* 1982 27.78 1994 22.64 

1959 34.98* 1971 26.75* 1983 25.72 1995 26.75 

1960 22.64§ 1972 26.75* 1984 27.78 1996 34.98 

1961 22.64§ 1973 26.75* 1985 26.75 1997 34.98 

1962 22.64§ 1974 30.87§ 1986 24.18 1998 27.78 

1963 26.75* 1975 26.75* 1987 26.75 1999 22.12 

1964 22.64§ 1976 26.75* 1988 25.72 2000 29.32 

1965 26.75* 1977 26.75* 1989 33.95 2001 26.24 

1966 22.64§ 1978 26.75* 1990 34.98 2002 24.18 

1967 22.64§ 1979 22.64§ 1991 39.10 2003 26.75 

1968 30.87§ 1980 26.75* 1992 25.21 2004 23.15 

 

 

Figure 3 - FX_1 series for TOR station with station coordinates and percentage of missing measurements (units: m s ). 

2.3 Assumptions and limitations 

The data were analysed under the following assumptions, limitations and simplifications.  

a) Data from one location were considered sampled from the same population although the physical 

phenomena producing extreme wind velocity realisations might be different (e.g. extra-tropical 

cyclones, thunderstorms, etc.). This simplification was set to be consistent with the level of detail of 

the current version of the Eurocode 1, which includes a unique model for wind loads based on extra-

tropical cyclone generated winds.  

b) The wind climate was considered independent from the influence of terrain since the latter creates 

turbulences characterised by temporal frequencies that differ from the wind climate frequencies by 
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one or two orders of magnitude, see e.g. [11]. This approximation is also considered in the Eurocode 

1 [9]. 

c) Despite the fact that wind direction is important when the structural resistance and the wind are 

direction-dependent, see e.g. [23], wind directionality was not considered in the analyses. The reasons 

are that i) considering structures with direction-independent resistance only (or equivalently 

considering the wind worst direction) is conservative; ii) directionality is highly location-dependent 

reducing the generality of the model which is sought; iii) the basic wind velocity in the Eurocode 1 

is not conditional on a specific wind direction that is accounted by the direction factor.  

d) The number of missing measurements is low for all the stations (see Figure 3) and it was assumed 

that the lack of registration was not correlated to extreme wind speeds.  

e) The five selected measurement locations are located in small islands close to the shore or on the coast. 

The locations are surrounded by open terrain and by open sea. The latter has a lower roughness 

compared to open country. Nevertheless, when extreme wind speeds are registered, the sea is 

assumed in “ultimate limit state” and, hence, presenting the same roughness as the open country (see 

[16] Annex C). Therefore, the surroundings of the measuring stations are assumed to have a terrain 

roughness equivalent to the category II of the Eurocode 1, which is the reference category for deriving 

the basic wind velocity (
bV ) according to [9]. 

f) The effects of the climate change on the wind speed are not considered, i.e. the wind is assumed to 

be an ergodic process. Although the climate change is predicted to affect the wind speed in future 

(see e.g. [24]), its inclusion in the design standards should involve several disciplines [25] and was 

not part of the current study.  

2.4 Classical extreme value theory 

According to the classical extreme value theory, the maxima of independent, identically distributed variables 

tend to a Gumbel distribution (see Eq. (A.1)) under the following assumptions [19]: i) the number of independent 

realisations is constant, and ii) the parent distribution has an exponential tail. These assumptions do not seem to 

be strictly verified for the 10-minutes mean wind speed since the number of independent weather systems and the 

parent distribution representing the 10-minutes mean wind speed differ from year to year. However, for practical 

analyses, the annual maxima present a linear behaviour in the Gumbel plot meaning that the assumptions are not 

strongly violated [17] and suggesting the Gumbel as the asymptotic distribution. The most accurate method for 

fitting the Gumbel distribution to the data is the so-called Gumbel-Lieblein method as shown in [26]. Nevertheless, 

the distribution parameters were estimated in this work utilizing the maximum likelihood (ML) method since it 

allows accounting for the rough rounding characterising the data under consideration. The likelihood is formulated 

as a function of the distribution parameters conditional to the observations and the selected distribution function. 

The validity of the assumed distribution can be assessed based on the magnitude of the maximum (also relative to 

the maxima that correspond to different assumed distribution types). The deviation of the (unknown) real 

distribution is partly reflected (and considered) by the covariance of the parameters. In addition, the ML method 

provides the estimates of the parameters uncertainty which is integrated into the predictive distribution  Xf x  in 

Eq. (2), 

      | |X Xf x f x f d  Θ Θ

Θ

    (2) 

where: Θ  is a vector with the distribution parameters and  f
Θ
  is the joint density function representing the 

parameter uncertainties. These uncertainties might be significant when the data are limited in number or have poor 

quality. The ML method also allows considering the rounding and the left censoring by using the likelihood 

function reported in Eq. (A.2). The use of left censored data allows to fit better the upper tail but it requires an 

adequate number of years of records for having a sufficient number of observations in the tail. The selection of the 
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censoring threshold is not trivial. In fact, high thresholds lead to significant variance in the estimates while low 

thresholds produce estimations biased toward the central part of the distribution.  

The distributions fitted to the measurements in TOR are illustrated in Figure 4. Data censoring improved the 

upper tail fit, and simultaneously increased the statistical uncertainty leading to a fatter tail of the predictive 

distribution. The predictive distributions were obtained with Eq. (2). The integral was approximated numerically 

by Monte Carlo (MC) sampling. Consequently, the predictive could not be represented in a closed form. Therefore, 

its upper tail was approximated by a Gumbel distribution obtained fitting the highest 30 % of the sampled values 

(i.e. the values characterised by   ,max
ln ln 1.0

bVF    in Figure 4) since these data were observed lying on a 

straight line in the Gumbel probability plot. The estimated COVs  of the Gumbel distribution are displayed in 

Figure 5 as a function of the censoring threshold 
cv . Their order of magnitude agrees with the values given in [27]. 

FX data were used only when the more precise FX_1 data were missing. The largest censoring thresholds were 

approximatively corresponding to the 70 % fractile values.  

 

 

Figure 4 – Gumbel probability plot with measured data (FX and FX_1) for weather station TOR and fitted Gumbel 

distributions. Data sorted according to the central values of the rounding intervals. Predictive distributions approximated by 

Montecarlo sampling with 105 simulations. 

 

Figure 5 – 
,b maxVCOV  for Gumbel distributions estimated varying left-censoring threshold 

cv  on FX and FX_1.  

2.4.1 Classical extreme value theory considering parent distribution 

A significant amount of information contained in the weather data is not utilized when yearly maxima are 

analysed. Additional information can be included considering the underlying statistic. The probability distribution 

representing the 10-minutes mean wind speeds (i.e. the basic wind velocity bV ) is referred to as the “parent 
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distribution” in the following. The parent distribution is the distribution from where the extreme wind speeds are 

“sampled”. In Europe, the distribution that best represents 
bV  is the Weibull (see Eq. (A.4)) with shape parameter 

   1.8,2.2w bb V   as extensively reported in the literature and supported theoretically by the study of Harris and 

Cook [28]. It follows that the so-called preconditioned random variable wb

bV  is exponentially distributed (i.e. 

Weibull distributed with unitary shape parameter). The maxima of the exponentially distributed random variable 

wb

bV  converge faster than 
bV  to the Gumbel distribution. Consequently, the “penultimate” extreme value 

distribution for wb

bV  corresponds to the “ultimate one” [29] meaning that the error when using Gumbel asymptote 

is reduced. Cook introduced first this procedure considering a preconditioning parameter equal to 2 [24]. The 

obtained variable, 2
bV , is proportional to the 10-minutes mean wind pressure ( 21 2 bV ) and is represented by a 

Weibull distribution with    2 2w b w bb V b V .  2
w bb V  is close to one for    1.8,2.2w bb V   and, hence, 2

bV  is 

close to exponentially distributed. 

The Gumbel distribution COVs  estimated from the preconditioned data were around double than for non-

preconditioned data, see Figure 6. In addition, it was observed that the COV  variation for different censoring 

thresholds and the variation among different weather stations were of the same order of magnitude. This made the 

selection of the censoring threshold less critical as a generalised representation of the COV  was sought. The 

change of trends in Figure 5 and Figure 6 shows that the characteristics of the upper tail are caught by censoring 

fractiles above, approximatively, 50 %. For the data analysed, a censoring threshold corresponding to fractiles 

around 60 to 70 % was judged to balance the statistical uncertainty on the parameter estimates and the accuracy in 

the upper tail. The chosen censoring fractiles have no general validity since they depend on the data set under 

consideration and on the part of the distribution that is of interest (see Section 2.1), therefore they are case specific. 

In general, higher censoring thresholds might be selected when longer time series are available and data have better 

quality.  

 

 

Figure 6  – 2
b,max

V
COV  for Gumbel distributions estimated varying left-censoring threshold 

cv  on FX and FX_1. Predictive 

distributions approximated by Montecarlo sampling with 105 simulations. 

The knowledge on the parent distribution allows estimating the error affecting the use of asymptotic 

distributions. Assuming that the Weibull parent distribution XF  is known, the (theoretically) exact distribution of 

maxima is obtained from Eq. (3), where r  is the number of independent events per years. 

    | ,
max

r

X w wX
F x F x a b     (3) 

This derivation is not directly used since small errors on , ,w wr b a  lead to significant errors in 
maxX

F . Nevertheless, 

Eq. (3) can be utilised for estimating the errors induced by approximating the exact 
maxX

F  with a Gumbel 

distribution. The error affecting the design point resulting from this approximation is depicted Figure 7 (reproduced 

after [29]). The error is in the order of 2%  for a Weibull distributed variable with 1wb   like 2
bV , and much 
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larger for a variable with 2wb   like 
bV . Therefore, it can be concluded that the use of the preconditioned wind 

speed is advantageous for calibration of codified design since the convergence error on the part of the upper tail 

of interest is almost eliminated. The values of 2
b,maxV

COV  obtained from Eq. (3) are depicted in Figure 8 and are 

compared with the Gumbel asymptote obtained with asymptotic parameters given in [30]. They agree quite well 

with the values obtained in the data analysis, see Figure 5. This verifies the hierarchical model which considers 

Weibull parent and Gumbel maxima. More importantly, the results obtained from this hierarchical model (Figure 

8) suggest that the 2
b,maxV

COV  values over the territory of interest are not expected to differ much from the ones 

obtained analysing the five selected locations since the same weather system is originating the wind over the 

territory under consideration. Therefore, the use of few representative locations is sufficient for individuating a 

generic representation of the wind climate. 

 

Figure 7 – Error in percentage affecting the design value         1 1 1

max max maxX t X t X tF F F                 for 

0.7  , 4.7t   and 
maxXF  being the Gumbel distribution approximating the exact distribution of maxima 

maxXF . Grey 

areas represent possible domains of r  and 
wb  for wind speed. 

 

Figure 8 – Yearly maxima distribution COV  from exact formula Eq. (3) (dashed line) and Gumbel asymptotic 

approximation (continuous line). Grey areas represent possible domains of r  and 
wb  for wind speed. 

2.4.2 Generalised extreme value distribution 

A more general application for the analysis of extreme wind velocity data makes use of the Generalised 

Extreme Value distribution which includes three types of distributions (Gumbel, Fréchet and Weibull maxima) 

characterised by three different tail behaviours. The data indicates which type of distribution is better through 

inference on the shape parameter ( GEV ) (see e.g. [20]). The uncertainty on the estimated parameter ( ˆ
GEV ) can 

be interpreted as the uncertainty on the distribution and tail type. It has to be noted that, when the statistical 
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uncertainty is neglected, the GEV distribution always fits better the data compared with the Gumbel distribution 

due to the third additional parameter. Nevertheless, due to the asymptotic property of GEV, convergence errors 

still affect the estimate, see e.g. [29]. As reported in the literature, 0GEV   is typical for 10-minutes mean wind 

speed yearly maxima, implying that the distribution tail converges to a limit value being the domain right-bounded 

 ; GEVa b   .  

The GEV shape parameters estimated from the data were affected by high uncertainty. A standard deviation 

in the order of 0.3 was obtained. In addition, some most likely values of the shape parameters were positive (see 

Table 2) corresponding to distributions defined on a lower bounded domain. Unreasonable and very unstable 

COV  and ˆ
GEV  were estimated from censored data with different censoring threshold. All these results were 

believed to be a consequence of the fact that the limited number of data points and their low quality led to 

considerably high statistical uncertainty on the parameter estimates. In fact, it is shown in the literature that a 

limited amount of data leads to unreasonable GEV parameters [31]. This deficiency is related to the ML estimation. 

In case the GEV distribution was to be used, the Bayesian estimation could have provided better parameter 

estimates combining the available measurements with the experts’ belief by selecting appropriate priors. However, 

this technique was not applied since the GEV distribution was excluded based on the analyses presented in the 

remaining part of the article. 

The results obtained from non-censored data need careful interpretation. The authors believe that GEV 

provides only a better empirical fit to the data for two reasons. The first is that the GEV distribution always 

provided greater Akaike Information Criteria ( AIC ) scores compared to the Gumbel and, thus, Gumbel is to be 

preferred [32]. The largest differences in AIC  scores were observed for censored data. In detail, 

  ˆˆ2 2ln | ,AIC k L x M  θ , where M  is the selected statistical model with k  parameters (e.g., Gumbel with 

2k  , and GEV with 3k  ), and  ˆˆ | ,L x Mθ  is the maximum likelihood of the data x  (corresponding to the 

parameters θ̂  estimated with the ML). The second reason is that, as also commented in [29], the domain limits for 

GEV distributions representing 2
b,maxV  and ,b maxV  were inconsistent, and did not correspond to the natural domain 

limits of the variables, see Table 2. For example, for OBR location, the parameters estimated from b,maxV  gave a 

domain upper bound equal to 44.1m s , while the estimates from 2
,maxbV  gave an upper bound of 

 
2

2 2746 (52.4 )m s m s . Further, in [29] it was proven that Weibull parents with 2wb   and 1 give 

0.1GEV    and 0, respectively. The fact that the average values of ˆ
GEV  in Table 2 are very close to these values 

and that all the ˆ
GEV  90 % confidence bounds contain -0.1 can be seen as an indirect proof that the assumption of 

a Weibull distributed parent and therefore asymptotically Gumbel distributed maxima leads to a good 

representation of data. Based on the observations above, the use of GEV distribution is excluded. 

Table 2 – Estimated GEV shape parameter and coefficient of variation from FX and FX_1. 

 GEV – 
b,maxV  GEV – 2

,maxbV  

 ˆ
GEV  

COV 

(conditional) 

Domain ˆ
GEV  

COV 

(conditional) 

Domain 

HEL -0.313 0.14  ;37.3  -0.256 0.26  ; 1391   

OBR -0.191 0.13  ; 44.1   -0.087 0.26  ; 2746   

SKR 0.068 0.11  6.1;   0.161 0.25  33.1;   

TOR 0.135 0.14  22.4;   0.234 0.32  134.2;   

SUL -0.326 0.14  ; 41.5   -0.209 0.28  ; 1942   

 

2.5 Threshold exceedance analysis  

The analysis of yearly maxima excludes a significant amount of available data in contrast with methods based 

on analysing exceedances, exceedance rates and peaks over threshold as illustrated in Figure 9. Certain results are 

reported in this Section for the weather station TOR only, similar trends and behaviours were observed for the 

other four stations. 
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Figure 9 – FX_1 time-series between 01-01-2000 and 31-12-2004 with all recorded values, yearly maxima and 

independent peaks over the threshold 15 sectv m . 

2.5.1 The mean upcrossing rate 

The mean upcrossing rate  tv   functional relationship with the threshold 
tv  provides significant 

information about the distribution of maxima. The starting point is Eq. (4) which relates 
b,maxV

F  to  tv  , where 

T  is the reference period equal to one year. 

     
,

exp
b max

t tV
F v v T      (4) 

The up-crossing rate for large enough thresholds ,0t tv v  is usually related to 
tv  through a function of the 

form       exp
c

t t tv q v a v b     ; where , ,a b c  are constants and  tq v  is near-constant [33]. The case 

1c   gives   ln tv   linear in 
tv  and corresponds to Gumbel asymptote. On the contrary, cases with 1c   

represent sub-asymptotic behaviours.  

Up-crossings of a threshold are in general dependent. De-clustering is performed for extracting independent 

events considering clusters to start (and end) when at least 
cn  consecutive values are below a threshold 

tv , see 

e.g. Coles [20]. The average number of up-crossings (or cluster) over a defined period (e.g., one year) is referred 

to as the average conditional exceedance rate (ACER)  
cn tv . The empirical ACER functions are estimated from 

the data by the ACER method and can be used instead of  tv   in the above equations [34].  

The plots of   ln
cn tv  versus tv  for the analysed data show the dependencies between up-crossings. It was 

observed that 4cn   eliminates the dependency without affecting the upper tail, see Figure 10. Thus, upcrossings 

separated by 4 or more hours are considered independent or, equivalently, belonging to different storm events. On 

the contrary, upcrossings separated by less than 4 hours might belong to the same storm and thus be dependent. 

This is in accordance with the average duration of a storm that is indicated in [27] to be in average 8 hours. For 

4cn   the fitted line had 1c   for 
bV  meaning sub-asymptotic behaviour and 1c   for 2

bV . This further proves 

that the wind speed maxima are sub-asymptotic while the preconditioned wind speed converges to the asymptote 

in the tail. 
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Figure 10 - Logarithm of the ACER versus threshold for wind speed (right) and wind speed squared (left) at TOR weather 

station obtained with the Matlab-based free software [35]. Estimated parameters with 4cn   for 
tv : 0.20a  , 13.58b  ,

1.27c  , 0.01q  ; and for 2
tv : 0.01a  , 64.59b  , 1.00c  , 0.04q  . 

2.5.2 Peaks over threshold 

Threshold exceedance analysis can also be utilised for evaluating the use of the GEV distribution and for 

estimating its parameters. In detail, the GEV shape parameter GEV  is estimated by the Pickands method [36] 

analysing the peaks over threshold (POT). For large enough thresholds ,0t tv v  and under the assumptions that 

the realisations are independent, identically distributed and their maxima have a GEV domain of attraction, the 

distribution function of the exceedance b tY V v   conditional on b tV v  is represented by a generalised Pareto 

distribution (GPD). Pickands [36] proved that the GPD and the GEV distribution have the same shape parameter 

GEV GPD   asymptotically. Maximum likelihood estimates of ˆ
GPD  are reported in plots A in Figure 11. Data 

dependencies were eliminated by declustering data as described before. In this case, the largest value in each 

cluster was kept while the rest were discarded.  

The POT analysis presents the non-trivial task of selecting the right threshold tv . Different methods for 

threshold selection are proposed in the literature, see e.g. [37]. As discussed in [20], the following is valid for 

thresholds ,0t tv v : i) the mean of the exceedances y  is linear in tv ; ii) ˆ
GPD  is near-constant and the Pareto scale 

parameter   is linear in tv ; iii) the reparametrized GPD scale parameter * ˆ
tv GPD tv     is constant. These three 

points can be used inversely for finding the appropriate ,0tv . For the TOR data, a minimum threshold ,0tv  of 

approximatively 15m sec  was judged to satisfy all these three requirements as illustrated in plots B, C and D in 

Figure 11. Thresholds tv  larger than, but close to, ,0tv  should be selected for balancing statistical uncertainty and 

precision in the upper tail. Trends exactly equal to the theoretical ones cannot be expected due to inherent 

variability and the limited amount of data. The assessment of the appropriate threshold must be performed for each 

case and may be highly subjective and arduous in real problems.  

 

Figure 11 – ML estimates of ˆ
GPD  from POT method (A) and plots for selecting threshold ,0tv  (B, C and D) for wind speed 

(top) and wind speed squared (bottom) for weather station TOR. 90 % confidence intervals drawn with light grey lines for 

illustrating the statistical uncertainty; dotted lines were drawn manually for representing identified trends. 

The plots in Figure 11 present trends that further support the selection of the Gumbel for representing the 

extremes of a Weibull parent. In details, the signs of ty v   are equal to ˆ
GPD  as expected when the parent is 

Weibull as demonstrated in [38]; ty v   for bV  decreases to zero with increasing tv , and it is (near-)constant for 

2
bV . This is in accordance with the relations derived in [29] based on the assumption of Weibull parent, and the 

ˆ
GPD  is negative for bV  (around - 0.1) and close to zero for 2

bV  reflecting the behaviour shown in [29]. In 

conclusion, all results from exceedance analyses were consistent with the assumption of Weibull parent and 

indicated Gumbel for representing maxima, as concluded from the analysis of yearly extremes. 
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An alternative approach for identifying the distribution type uses the tail heaviness index that is proportional 

to the negative of the curvature of the minus log-exceedance plot [30, 39]. In the authors’ view, the method is a 

useful decision-making tool for selecting the distribution representing maxima when lacking information on the 

underlying phenomenon and theoretical background supporting one or another distribution type. Consequently, 

application of this method was not documented in this article since the knowledge on the underlying phenomenon 

originating wind extremes allowed proofing theoretically that the Gumbel distribution is best for representing 

maxima. 

3 Inclusion of wind climate spatial variation in code calibration  

The first part of the article shows that the partial safety factor depends on the COV  (see Eq. (1)) and that the 

COV  varies in space. At the same time, semi-probabilistic codes typically include only one partial safety factor 

for the wind actions over the entire territory. Therefore, this Section proposes a framework for calibrating the wind 

partial safety factor and suggests a method for accounting the space-variation of the climatic actions.  

3.1 Representation of the wind action on structures 

Reliability-based calibration of the wind partial safety factor uses reliability analyses where the wind action is 

represented probabilistically. The models given in [27], that have been used in other calibration works [14], were 

adopted in this work. The model is based on the Alan G. Davenport wind load chain illustrated in Figure 1. The 

wind action on structure yearly maxima (
maxW ) is modelled as 21 2max d r a g b,maxW C C C C V . The air density (  ) 

is considered deterministic since its scatter is small at large wind speeds [40]. The influence of the terrain is 

accounted by the roughness factor 
rC  and by the gust factor gC . The former describes the variation of the mean 

velocity pressure with height, the latter is the ratio between the peak velocity pressure to the mean velocity pressure. 

The aerodynamic effect is accounted for by the shape factor 
aC  that is named external pressure coefficient peC  

when 
maxW  is the external pressure. Similarly, the internal pressure and friction are obtained with the 

corresponding factors piC  and frC . The structural dynamic effect is accounted for by the dynamic factor 
dC . The 

C -factors are affected by aleatory and epistemic uncertainties, the details on the stochastic models representing 

them can be found in [27]. 

3.2 Reliability based calibration of partial safety factors 

Following the methodology proposed by the JCSS [5], the partial safety factor (PSF) calibration is performed 

using a normalised and generalised limit state function as the one given in Eq. (5). The event of structural failure 

is characterised by   0l x .  

    2 2, , , , , , , 1R d pe g r b,max R Q d pe g r b,maxl x r g c c c c v z x r g x c c c c v         (5) 

In the limit state function,   is a parameter representing different proportions between permanent action g  and 

wind action w , r  is the material property dominating the failure mode, 
Rx  is the resistance model uncertainty, 

Qx  the wind-load model uncertainty and z  is the design variable governing the failure mode. This limit state 

function is generalised, i.e. it represents, with a satisfactory level of detail, different failure modes. For example, 

failure of a timber beam in bending is represented by r  being the timber bending strength and 
Rx  the model 

uncertainty on the bending capacity of timber elements. In addition, the limit state function is normalized, i.e. the 

random variables R , G  and 2
,maxbV  have unitary mean. This allows for the simultaneous consideration of 

materials with different grades, and different load intensities. The normalisation and scaling of random variables, 

as for example by the factor 1 2 , are ‘absorbed’ by z  and simplify the problem without affecting the calibration 

outcome as discussed in the introduction.  

The generic structural element is designed with a semi-probabilistic approach. An example of a design 

equation corresponding to the limit state equation in Eq. (5) is given in Eq. (6), where the Eurocode 0 [1] safety 
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format is used. , ,M G Q    are the material, permanent action and variable action partial safety factors, respectively. 

The subscript “ k ” indicates the characteristic value of the random variable. 

     2
, , , , ,0, , 1M

M G Q k G Q d k pe k g k r k b

k

z z g c c c c v
r


              (6) 

In EC1-1-4, for example, the fundamental value of the basic wind velocity ,0bv  or velocity squared 2
,0bv  is defined 

as the 98 % fractile of ,maxbV  or 2
,maxbV , respectively. 2

,0bv  is calculated in Eq. (7) for the normalised 2
,maxbV  (i.e. 

2 1.00
b,maxV

  ) and a given geographical location (i.e. known 2
,maxbV

COV ). The statistical uncertainty is integrated 

into the distribution and therefore included in the coefficient of variation hereinafter. 

  
   2 2

2
2 2
,0 ,0

6 6ln ln 0.98 6

6

b,max b,max

b,max

EM V V

b b V

a COV COV
v v COV





  
     (7) 

The reliability index   associated with the limit state function in Eq. (5) is a function of the partial safety factors 

through the design parameter z , i.e.   z  γ . The calibrated safety factors are obtained imposing 

   tz γ , where 
t  is the target reliability index. When several design situations are considered 

simultaneously, calibration is performed by minimising the penalty function subject to the partial safety factors. 

Further details on calibration of design standards can be found in [2, 3, 5, 7, 41]. 

3.3 Wind action space-variation 

Code calibration is generally performed for large interregional areas that correspond to the validity domain of 

the code format to be calibrated. In this area, the 2
,maxbV

COV  is varying as shown in Section 2 and this has to be 

taken into account in the calibration process. A possible strategy for providing a unique safety factor could be to 

choose conservatively a large 2
,maxbV

COV  which results in a large Q . The selection of the largest value over the 

entire domain covered by the code under consideration includes some obvious difficulties. Alternatively, the 

variation of the 2
,maxbV

COV  in space is accounted by treating the 2
,maxbV

COV  explicitly as a random variable in the 

limit state function. The variation of the 2
,maxbV

COV  can include not only the variation over the space but also the 

statistical uncertainty and the uncertainty related to the selection of the appropriate censoring threshold. The new 

limit state function is given in Eq. (8) was obtained by including Eq. (7) in Eq. (6) and by expressing the random 

variable 2
,maxbV  in Eq. (5) as a function of a normal standard variable U  and the distribution parameters a  and b . 

        , , , , , , , , 1 ln lnR d pe g r a R Q d pe g r al x r g c c c c x u z x r g x c c c c x a b u         
  

  (8) 

The parameters a  and b  for the normalised 2
,maxbV  are a function of the random variable 2

,maxbV
COV : 

2 6
b,maxV

b COV   and 21 6
b,max

EM V
a a COV   . It is highlighted that the 2

,maxbV
COV  enters the limit state 

function through both the design parameter and the wind action term. The ,0bv  (or 2
,0bv ) value for a specific 

location is, indeed, obtained from Eq. (7) with the 2
,maxbV

COV  characterising the maxima in that location. 

The random variable 
aX  in Eq. (8) represents the uncertainty on the location of the distribution function 2

,maxbV
F  

or, equivalently, the uncertainty on the fundamental value of the basic wind velocity squared 2
,0bv  provided in wind 

maps and tables. Therefore, 
aX  depends on the model used by the code committees for deriving the ,0bv  or 2

,0bv  

values over the territory. Statistical analyses of wind speed in several locations across the territory, or surrogate 

models (as in [42]) might be used to make the wind maps or the tables with ,0bv  or 2
,0bv  values. 

3.4 Calibration example 

A calibration example is reported in this Section for illustrating the application of the findings. The calibration 

was performed considering the design equation in Eq. (6) and the limit state function in Eq. (8). The probabilistic 

models and the PSFs are summarized in Table B1. All variables were assumed uncorrelated. Only structures loaded 

by permanent load and external wind pressure without dynamic effects were considered, since they represent the 

most common design situations.  

The partial safety factor covering wind actions for the Norwegian territory was calibrated. Therefore, the 

uncertainties aX  affecting the 2
,0bv  values corresponding to the ,0bv  values given in the Norwegian National 
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Annex to EC1-1-4 were estimated. The ,0bv  values for the Norwegian territory were derived in [42] based on 

hindcast data collected at defined grid points over the North Sea, Norwegian Sea and Barents Sea for the period 

1955-1997. In detail, sea surface pressure data were used to produce geostrophic wind data, and from the data the 

10-minutes mean wind velocity averaged over area units of 275 75km  was determined four times a day (at 00, 

6, 12 and 18 UTC). Successively, transformation parameters calibrated against real wind records were used to 

transform the data to point-in-time and point-in-space values for the standard terrain roughness ( 0.05z m ). The 

Gumbel-Lieblein method was used to fit a Gumbel distribution to the generated wind speed squared data [29, 43] 

and deriving the 2
,0bv  values. 

The uncertainty on the distribution location, 
aX , is represented by a Lognormal distribution with parameters 

estimated with Maximum Likelihood method from the realisations ,a ix  computed according to Eq. (9), where 

 2
,0 ,b M i

v  and  2
,0 ,b HC i

v  are the characteristic values (98 % fractiles) obtained from in-land measured and 

hindcast-generated time series, respectively. The values in 21 locations on the Norwegian coast given in [42] were 

used for estimating the distribution parameters. The statistical uncertainty was integrated by Eq. (2), and the 

integral was approximated by Monte Carlo simulations. The parameters of the lognormal distribution 

approximating the predictive distribution were found to be 0.96
aX   and 0.14

aXCOV  .  

 
 

 

2
,0 ,

,
2
,0 ,

b M i

a i

b HC i

v
x

v
   (9) 

The calibrated Q  was obtained solving the minimization problem in Eq. (10), where: 
i  and ,iw  are the 

reliability index and the weight associated with a certain 
i ; ,m jw  is the weight associated with the thj  material, 

and 
t  is the target reliability. A target reliability 4.7t   was chosen as given in [1] and in [44]. Three material 

properties were considered simultaneously: the structural steel yielding strength ( ,1 0.4mw  ), the reinforced 

concrete compression strength ( ,2 0.4mw  ) and the glulam timber bending strength ( ,3 0.2mw  ). These three 

construction materials are the most used in Europe. The associated weights were estimated subjectively. Ten values 

of   equally spaced between 0 and 1 and equally weighted represented a broad range of design situations, from 

light structures ( 0  ) to gravity-based structures ( 1  ). The material and permanent load PSFs were fixed, see 

Table B1. 

    
3 10 2

, ,

1 1

argmin , ,
Q

m j i i M G Q t

j i

w w z


    
 

  
  

  
    (10) 

The solution of the minimization problem gave Q  values varying from 1.57 to 1.80 in the relevant range of 

2
,maxbV

COV  values, say  0.15,0.5 , see Figure 12. The selection of the 2
,maxbV

COV  was therefore crucial for the 

accurate calibration.  

The limit state function in Eq. (8) with unknown 2
,maxbV

COV  represented by a normal distribution with 

2
0.25

V
b,max

COV   and 
2

0.2
V

b,max

COVCOV   gave 1.60Q  . This value corresponds, with good approximation, to the 

PSF calibrated with known coefficient of variation equal to the mean ( 2 0.25
b,maxV

COV  ). In fact, the 2
,maxbV

COV  

omission sensitivity factor [45] was found to be very close to 1, and the FORM sensitivity factor was 

approximatively equal to zero. Hence, the 2
,maxbV

COV  design point was close to its mean value. Therefore, the 

random variable could be substituted by its mean value in the limit state function. This made the distribution 

representing 2
,maxbV

COV  of little interest, and avoided the selection of a distribution type that is a non-trivial task 

since there is no theoretical evidence supporting one or another distribution. In addition, the use of the 2
,maxbV

COV  

mean value reduced the possible values of the calibrated Q  to the range  1.57,1.65  (corresponding to 

 
2

0.2,0.3
V

b,max

COV   ). A conservative selection of 
2

0.3
V

b,max

COV   led to 1.65Q   that could be considered an 

upper limit. The reliability indices before and after calibration are illustrated in Figure 13.  
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Figure 12 - Calibrated partial safety factor for wind action from the accurate calibration with Eq. (10) and the limit state 

function in Eq. (8).  

 

  

Figure 13 – Reliability indices associated with 1.50Q   (grey lines) and 1.60Q   (black lines). 

4 Discussion 

The accuracy and goodness of the distribution representing the wind climate were not assessed in the classical 

absolute sense. However, the criteria related to the accuracy and goodness were defined in Section 2.1, and a model 

that satisfies all these points was considered accurate, good in a Bayesian sense, i.e. as a basis for engineering 

decision making.  

The calibration method and the probabilistic modelling approach proposed in the paper are able to account for 

the following epistemic uncertainties. 

• The uncertainties on the choice of distribution type. These uncertainties are reduced by a careful and profound 

assessment of the phenomenon originating the wind and the underlying statistics. Different analyses 

techniques, based on various basic assumption, provide the same result.  

• The uncertainties on the distribution parameters due to the limited number of measurements and the poor 

quality of measurements. These uncertainties are integrated into the distribution function.  

• The uncertainty affecting the characteristic values of the wind maps for Norway due to their estimation with 

numerical model used. This uncertainty is represented by a stochastic variable that is included in the 

calibration of the safety factors. 

The values of the partial safety factor proposed in the calculation example are sensitive to the chosen 

probabilistic models and are relative to the assumptions made. In particular, Q  is highly sensitive to both the 
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resistance and the wind model biases (e.g. , ,
R pe g r d Q aX C C C C X X       ). For example, the Eurocode 1 model 

includes hidden safety as reported in [14]. The inclusion of the model bias is crucial for an accurate calibration. 

Therefore, further research and investigations are needed for modelling probabilistically the influence of terrain, 

the aerodynamic effects and the dynamic effects links of the Davenport chain in order to calibrate Q  more 

accurately. In addition, the calibration of Q  was performed keeping the material and self-weight partial safety 

factors constant. More homogeneous reliability and a different value for Q  would be obtained optimising all the 

three partial safety factors simultaneously. Nevertheless, the scope of the example was to illustrate the proposed 

method, rather than proposing final values of Q . 

5 Conclusions 

The analyses of the wind data with different statistical techniques indicated the use of Gumbel distribution for 

representing the 10-minutes mean wind speed squared yearly maxima 2
,maxbV  in reliability analyses for calibration 

of design codes. All techniques indicated that this distribution is accurate in the upper tail, consistent with the 

underlying statistic and minimising the asymptotic errors. No theoretical evidence was found supporting the use 

of the three-parameters Lognormal distributions. The variations of the distribution coefficient of variation COV  

in space and for different censoring thresholds were found to be of the same order of magnitude. Values between 

0.20 and 0.35 were observed for the COV  of 2
,maxbV  in the analyses. The location or magnitude of the distribution 

is given in design standards through tables or wind maps. The uncertainty affecting the values provided in the 

Norwegian National Annex to the Eurocode 1 was estimated. A method for accounting both this uncertainty and 

the space-variation of the distribution coefficient of variation in the calibration of partial safety factors was 

proposed. The method can be used for solving similar problems in code calibration such as the space-variation of 

the snow load characteristics.  

In a calibration exercise, it was found that the space-variation can be accounted with good approximation by 

using the mean value of the coefficient of variation in the reliability analyses. The use of the average parameter 

avoided the need of modelling the parameters variation in space probabilistically. The calibrated partial safety 

factor for wind actions was found to be around 1.60. The high sensitivity of the calibrated safety factor to the 

biases affecting the load and resistance models implemented in the codes was discussed, and the need for detailed 

probabilistic modelling of these uncertainties was highlighted. Although the present work focused on the European 

standards (Eurocodes), the analyses techniques, modelling principles and the proposed calibration method have 

general validity. 

Appendix A. Equations and formulas 

Generalised Extreme Value (GEV) distribution (support  GEVx a b    for 0GEV   (Fréchet);  ,x    

for 0GEV   (Gumbel) and  , GEVx a b     for 0GEV   (Reversed Weibull or Weibull maxima)): 

  

1

exp 1 0

| , ,

exp exp 0

GEV

GEV GEV

X GEV

GEV

x a

b
F x a b

x a

b



 





                   
    

     
   

  (A.1) 

 

Likelihood for rounded values ˆ
r,ix  corresponding to the (unknown) measured value  ˆ ˆ ˆ;i i ix x x   with: 

,
ˆ ˆ

i r ix x   , ,
ˆ ˆ

i r ix x    and   being half the rounding interval. 

    
1

ˆ ˆ| |
n

r r,i

i

L L x


x    (A.2) 

With: 
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


           

  (A.3) 

where 
cx  is the censoring threshold, ˆ

rx  is the sample of rounded values,   is the vector of parameters and  Pr A  

is the probability of the event A . 

 

Weibull distribution (support 0x  ): 

  | , 1 exp

wb

X w w

w

x
F x a b

a

  
    
   

  (A.4) 

 

Generalized Pareto distribution (GPD) (support 0x   for 0GPD  , 
GPDx     for 0GPD  ):   

  

1

1 1 0

| ,

1 exp 0

GPD
GPD

GPD

X GPD

GPD

x

F x
x





 




  
       
  
   

 

  (A.5) 

Appendix B. Stochastic models used in the example calibration 

Table B1 – Stochastic models representing the basic random variables (from [27] unless otherwise stated) and partial 

safety factors (a [46] b[47], c[48], d[49], e[50], f[51], g[14], h[1], i[16], *range of possible values given in [27]) 
 

Description Distribution 
type 

Mean COV Characteristic 
fractile 

Partial safety 
factor (   ) 

RX   
Model 
uncertainty 

Structural steel 
element in 
compression a 

Lognormal 1.15 5 % / / 

Reinforced concrete 
element in 
compression a 

Lognormal 1.20 15 % / / 

Glulam timber 
element in bending 

Lognormal 1.00 15 % / / 

R   
Material 
property 

Struct. Steel yielding 
strength 

Lognormal 1.00 7 % 5 % 1.00 b  

Concrete compression 
strength 

Lognormal 1.00 15 % c 5 % 1.50 d 

Glulam timber 
bending strength 

Lognormal 1.00 15 % 5 % 1.25 e  

rC   Roughness factor Lognormal 0.80 
15 %  

(10 to 20%)* 
 

r rC CF    / 

gC  Gust factor Lognormal 1.00 
15 %  

(10 to 15%)* 
 

g gC CF   / 

peC   External pressure coefficient  Gumbel f 1.00 
25 % g 

(10-30%)* 
80 % i / 

G   Permanent action Normal 1.00 10 % 50 % 1.35 h 

2
,maxbV  Mean wind speed (1yr max) Gumbel  1.00 2

,b maxV
COV  98 % 

To be 
calibrated 

aX   
2
,maxbV

F  location uncertainty Lognormal 0.96 0.14  1
aXF  / 

2
,b maxV

COV  2
,maxbV  coefficient of variation Normal 0.25 0.20 / / 

QX   Wind load model uncertainty a Normal 0.80 0.20  1
QXF  / 
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