ResearchGate

See discussions, stats, and author profiles for this publication at:

Semantic access to streaming and static data at
Siemens

Article /1 Journal of Web Semantics - March 2017

DOI: 10.1016/j.websem.2017.02.001

CITATION READS
1 33

16 authors, including:

0 Siemens G Norwegian University of Science, Gjavik, Nor...

21 PUBLICATIONS 81 CITATIONS 49 PUBLICATIONS 451 CITATIONS
SEE PROFILE SEE PROFILE
Q‘*'fi‘:" Universitat zu Liibeck 3 Athens University of Economics and Business
uh
207 PUBLICATIONS 4,476 CITATIONS 119 PUBLICATIONS 3,264 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project IYOUIT

poiect Call for papers Special Issue on Interactive Web

All content following this page was uploaded by on 19 November 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/314681861_Semantic_access_to_streaming_and_static_data_at_Siemens?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/314681861_Semantic_access_to_streaming_and_static_data_at_Siemens?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/IYOUIT?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Call-for-papers-Special-Issue-on-Interactive-Web?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mikhail_Roshchin2?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mikhail_Roshchin2?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Siemens?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mikhail_Roshchin2?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmet_Soylu?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmet_Soylu?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmet_Soylu?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf_Moeller5?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf_Moeller5?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet_zu_Luebeck?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf_Moeller5?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yannis_Kotidis?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yannis_Kotidis?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Athens_University_of_Economics_and_Business?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yannis_Kotidis?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmet_Soylu?enrichId=rgreq-853b3566b1447a90720ac48e365c0f3c-XXX&enrichSource=Y292ZXJQYWdlOzMxNDY4MTg2MTtBUzo1NjIzODQ0ODcwOTYzMjBAMTUxMTA5NDMxODY5NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Semantic Access to Streaming and Static Data at Siemens

Evgeny Kharlamov?®, Theofilos Mailis®, Gulnar Mehdi®, Christian Neuenstadt?, Ozgiir Ozcep?, Mikhail Roshchin®,
Nina SolomakhinaP, Ahmet Soyluf, Christoforos Svingos®, Sebastian Brandt”, Martin Giese®, Yannis Ioannidis®,
Steffen Lamparter”, Ralf Moller?, Yannis Kotidis®, Arild Waaler®

@ University of Ozford, Department of Computer Science, Wolfson Building, Parks Road, OX1 3QD, Ozford, UK.
bSiemens Corporate Technology, Siemens AG, Otto-Hahn-Ring 6, 81739, Munich, Germany.
¢National and Kapodistrian University of Athens, Panepistimiopolis, Ilissia, 15784, Athens, Greece.

4 University of Luebeck, Ratzeburger Allee 160, 23562, Liibeck, Germany.
¢ Department of Informatics, University of Oslo, Blindern, 0316, Oslo, Norway.

INTNU — Norwegian University of Science and Technology, Teknologiveien 22, 2815, Gjpvik, Norway.

9 Athens University of Economics and Business, 76 Patission Street, 10434, Athens, Greece.

Abstract

We present a description and analysis of the data access challenge in Siemens Energy. We advocate Ontology Based
Data Access (OBDA) as a suitable Semantic Web driven technology to address the challenge. We derive requirements
for applying OBDA in Siemens, review existing OBDA systems and discuss their limitations with respect to the Siemens
requirements. We then introduce the Optique platform as a suitable OBDA solution for Siemens. The platform is based
on a number of novel techniques and components including a deployment module, BootOX for ontology and mapping
bootstrapping, a query language STARQL that allows for a uniform querying of both streaming and static data, a highly
optimised backend, ExaStream, for processing such data, and a query formulation interface, OptiqueVQS, that allows
to formulate STARQL queries without prior knowledge of its formal syntax. Finally, we describe our installation and

evaluation of the platform in Siemens.

Keywords:
Analytics, Optimisations, Siemens.

Ontology Based Data Access, Data Integration, Streaming Data, Static Data, Predictive and Reactive

1. Introduction

The growth of available information in enterprises re-
quires new efficient methods for data access by domain
experts whose ability to analyse data is at the core of mak-
ing business decisions. Current centralised approaches,
where an IT expert translates the requirements of domain
experts into Extract-Transform-Load (ETL) processes to
integrate the data and to apply predefined analytical re-
porting tools, are too heavy-weight and inflexible [I]. In
order to support interactive data exploration, domain ex-
perts therefore want to access and analyse available data
sources directly, without IT experts being involved.

Email addresses: evgeny.kharlamov@cs.ox.ac.uk (Evgeny
Kharlamov), theofilos@image.ntua.gr (Theofilos Mailis),
gulnar.mehdi@siemens.com (Gulnar Mehdi),
neuenstadt@ifis.uni-luebeck.de (Christian Neuenstadt),
oezcep@ifis.uni-luebeck.de (Ozgiir Ozgep),
mikhail.roshchin@siemens.com (Mikhail Roshchin),
nina.solomakhina@siemens.com (Nina Solomakhina),
ahmet.soylu@ntnu.no (Ahmet Soylu), c.svingos@di.uoa.gr
(Christoforos Svingos), sebastian-philipp.brandt@siemens.com
(Sebastian Brandt), martingi@ifi.uio.no (Martin Giese),
yannis@di.uoa.gr (Yannis Ioannidis),
steffen.lamparter@siemens.com (

Steffen Lamparter), moeller@ifis.uni-luebeck.de (Ralf Méller),
kotidis@aueb.gr (Yannis Kotidis), arild@ifi.uio.no (Arild
Waaler)

Preprint submitted to Elsevier

This direct data access is particularly important for
Siemens Energyﬂ that runs several service centres for
power plants. The main task of a service centre is remote
monitoring and diagnostics of many thousand appliances,
such as gas and steam turbines, generators, and compres-
sors installed in plants. Monitoring and diagnostics are
performed by service engineers and are typically conducted
in four steps: (i) engineers receive a notification about
a potential or detected issue with an appliance, (ii) they
gather data relevant to the case, (iii) analyse the data,
and finally (i) report about ways to address the issue to
the appliance owner. Currently, Step of the process is
the bottleneck consuming up to 80% of the overall time
needed by the engineer to accomplish the task. The main
reason for this is the exploratory nature of data gather-
ing that often cannot be accomplished by predefined ETL
procedures and requires new such procedures which can
only be done by highly qualified IT experts. Defining new
ETL procedures over non-trivial data is time consuming
and it slows down the diagnostic process for multiple rea-
sons including the complexity of this task, the overload
of IT experts, and even miscommunication between them
and the engineers—they simply speak different languages

Thttp://www.energy.siemens.com/

March 10, 2017

http://www.energy.siemens.com/

and think in different perspectives.

Enabling direct data access for engineers in Siemens is a
challenging task, primarily due to the Big Data dimensions
as well as the conceptual mismatch between the language
and structures that the engineers use to describe the data,
and the way the data is actually expressed and structured
in databases. The data accessible from Siemens service
centres naturally reflects the variety, volume, and veloc-
ity dimensions of Big Data: it is stored in several thou-
sand databases possibly under many different schemata;
its size is in the order of hundreds of terabytes; and it cur-
rently grows at an average rate of 30 GB per day. Regard-
ing the conceptual mismatch, it occurs because industrial
schemata are often integrated from independently evolving
databases adapted by different organisational units over
years. The result is usually shaped by the IT aspect of the
integration effort rather than the needs of the domain ex-
perts ultimately using the schema. Only IT experts fully
understand this evolving structure of databases and thus
currently only they can write queries over these databases
in order to extract information relevant for engineers.

Ontology Based Data Access (OBDA) [2] has been re-
cently proposed as a means to enhance end-user direct
data access. The key idea behind OBDA is to use ontolo-
gies, i.e., semantically rich conceptual domain models, to
mediate between users and data. Ontologies describe the
domain of interest on a higher level of abstraction and in
terms that are clear for domain expertsﬂ In OBDA users
formulate their information needs as queries using terms
defined in the ontology and ontological queries are then
automatically translated into SQL or some other database
query languages and executed over the data, without an
IT expert’s intervention. To this end a set of mappings
is maintained that describe the relationship between the
ontological vocabulary and the schema of the data. Note
that OBDA follows the classical data integration paradigm
that requires the creation of a common ‘global’ schema
that consolidates ‘local’ schemata of the integrated data
sources and mappings that define how the local and global
schemata are related [IJ.

The main benefit of OBDA is that the combination of
ontologies and mappings allows to ‘hide’ the technical de-
tails of how the data is produced, represented, and stored
in data sources, and to show only what this data is about.
This allows us to formulate each Siemens diagnostic task
via only one ontological query instead of a collection of
hundreds data queries that today have to be written or
configured by IT specialists. Note that this collection of
queries does not disappear: the automatic translation by
an OBDA system will compute it from the the high-level
ontological query. Another important benefit of OBDA is

20Ontologies have become a common and successful mechanism
to describe application domains in, e.g., biology, medicine, and the
(Semantic) Web [3]. This success is partially due to a number of
available formal languages for describing ontologies, including the
Web Ontology Language (OWL) standardised by W3C [4].

modularity and compositionality of its assets: each map-
ping relates one ontological term to the data, which al-
lows the mappings to be constructed independently and
on demand; and the same ontological term can be used
in different queries, so defining mappings for even a few
terms enables the evaluation of many different ontological
queries.

Existing OBDA techniques and systems are tailored to-
wards queries over static relational data. At the same
time, monitoring and diagnostic routines at Siemens re-
quire hybrid queries that combine live data streams, histor-
ical time-stamped information, and static relational data.
In order to meet Siemens requirements, we had to ex-
tend the traditional OBDA to handle hybrid queries and
we shall refer to our approach as Ontology-Based Stream-
Static Data Integration (OBSSDI).

The first contribution of this work that required a huge
effort is:

(i) assessing Siemens data access needs, and consolida-
tion of corresponding system requirements.

On the technical side our two main contributions are:

(ii) a query language STARQL that natively supports
OBSSDI hybrid queries and

(i4i) a highly efficient and scalable OBSSDI backend
EXASTREAM to process such queries.

STARQL embeds (a fragment of) SPARQL and has
a dedicated safe temporal first-order logic which allows
to formulate many of the relevant monitoring patterns
that arise in industrial use cases as that of Siemens. In
contrast to most of the RDF stream approaches that ex-
tend SPARQL with stream operators, STARQL does not
rely on a simple snap-shot semantics—which has its lim-
its when handling functionality constraints—but instead
provides a timestamp-preserving window semantics and
on top of it a useful sequencing abstraction which al-
lows for a flexible specification of window-internal group-
ings of timestamped RDF tuples. Despite this additional
layer, STARQL queries are feasible (at least in the case of
standard sequencing, see Section because, within the
transformation process to queries in the language of the
backend system EXASTREAM, the abstraction layer can
be eliminated without causing significant blowup.

EXASTREAM is a novel distributed Data Stream Man-
agement System that meets the data processing require-
ments of Siemens. EXASTREAM provides low latency an-
swers to queries on high-velocity live streams and high-
volume static data sources. It is built as a streaming ex-
tension to the SQLite database engine. As a result, it
takes advantage of existing database optimisations that
are blended with several novel optimisation techniques for
efficiently processing analytical queries on streaming and
static information. EXASTREAM has several important

features such as: the ability to run in a distributed en-
vironment that can scale up in order to meet user de-
mands; a declarative language, extending the SQL syntax
for querying live streams and relations; native support of
user defined functions with arbitrary user code for execut-
ing complex analytical workflows; and native support for
streaming and static data integration.
Next important contributions of this work are

(iv) a system OPTIQUEVQS that allows end-users to con-
struct STARQL queries without any prior knowledge
of semantic technologies and the formal syntax of the
language,

(v) a full-fledged implementation of our techniques in the
OPTIQUE platform and

(vi) both end-user and performance evaluation of the plat-
form at Siemens.

The paper is organised as follows. In Section[2} we anal-
yse reactive and predictive diagnostics at Siemens and de-
rive six Siemens direct data access requirements. In Sec-
tion [3] we introduce classical OBDA, show that it con-
ceptually satisfies the Siemens requirements, while the
existing OBDA systems are not mature enough to ful-
fil the aforementioned six requirements and thus cannot
be used in Siemens. In Section [we introduce our OB-
SSDI components: syntax and semantics of STARQL
queries; how these queries can be transformed into SQL-
like data queries of our backend EXASTREAM; and how
EXASTREAM processes data queries. In Section [5] we
introduce the OPTIQUE platform developed as a part
of a large European project [5H8]. OPTIQUE supports
STARQL queries, has EXASTREAM as one of its backends,
offers a native SPARQL query builder OPTIQUEVQS, and
offers a number of dashboards that we developed for tur-
bine diagnostics. In Section [6] we present our deployment
of the OPTIQUE platform over Siemens data and a user
evaluation. In Section [7 we present lessons learned, con-
clusions, and discuss future work.

Delta from Previous Publications. This paper extends our
previous publications in several important ways. First,
based on our evaluation experience with Siemens, we re-
alised that the stream-only processing support that we ini-
tially developed was not sufficient, and thus we extended
our use-case analysis of [9] by introducing Requirement 4
(see Section about Stream-Static Data Processing;
and 5 about a Data Stream Management System; more-
over, in this submission we give more use-case related
explanations and examples. Second, the section about
STARQL extends previously presented material [9] [10]
with an in-depth comparison with existing approaches and
systems, as well as with more details and explanations of
the language. Third, most of the EXASTREAM techniques
and the evaluation over the Siemens data are presented
in this paper for the first time and were not reported in

previous papers [I1] [12]. Fourth, the OPTIQUEV QS sec-
tion is significantly extended compared to our earlier pa-
per [9] since the system became much more mature over
time. Finally, the OPTIQUE implementation has become
much more mature and in particular the dashboards that
we present in this paper have not been published before.

2. Siemens Monitoring and Diagnostic Service

Siemens produces a variety of rotating appliances, in-
cluding gas and steam turbines, generators, and compres-
sors. These appliances are complex machines and typically
used in different critical processes including power gener-
ation where each hour of downtime may cost thousands
of euros. Thus, these appliances should be under con-
stant monitoring that requires an in-depth knowledge of
their components and setup. Siemens provides such moni-
toring via service centres and operates over fifty such cen-
tres worldwide, where each centre is responsible for several
thousand appliances. Typical monitoring tasks of a service
centre include: (i) reactive and preventive diagnostics of
turbines which is about offline data analysis applied after a
malfunction or an abnormal behaviour such as vibration,
temperature or pressure increase, unexpected events, or
even unexpected shutdowns, of a unit is detected; (i) pre-
dictive analysis of turbine conditions which is about real-
time data analysis of data streams received from appli-
ances. We now discuss these monitoring tasks in detail
and present requirements to enhance them.

2.1. Reactive and Preventive Diagnostics

Reactive diagnostics is usually applied after a malfunc-
tion of a unit has occurred, e.g., the abnormal shutdown
of a turbine. Complementarily, the preventive diagnostic
task is performed before a malfunction of a unit, when
its abnormal behaviour is detected, e.g., high vibration or
temperature increase. Diagnostic tasks are triggered either
when a customer sends a service ticket claiming assistance
or an automated diagnostic system creates such a ticket.
Fig. [I] depicts a general process triggered when a service
ticket arrives. We now discuss each step of the process in
detail.

Arrival of a service ticket. A service ticket typically con-
tains information on when a problem occurred and its fre-
quency. In some cases the ticket isolates the location of
the problem in the appliance and its cause, but often it
has no or few details.

Example 1. An example of a reactive monitoring request
from a customer is:

Figure out why the turbine failed to start during
the last five hours, with the goal of checking that
there will be no fault of the turbine. |

A typical preventive monitoring request could be

?"!Ssaao.ld
“d ejeq

Figure 1: High-level view on the turbine service process

Will there be a failure of the turbine after the
observed temperature increase? [

Data acquisition. Service engineers gather relevant data
by querying databases that are updated every hour, or
on demand, and contain sensor and event data. In order
to support data gathering, Siemens equips service centres
with more than 4,000 predefined queries and query pat-
terns of different complexity. Engineers use the queries by
setting parameters such as time periods, names of events
or sensors, sensor types, etc.

Example 2. Based on the service ticket of Example
the engineer formulates the following information need and
has to find appropriate queries to cover it:

Return the most frequent start failure and warn-
ing messages of the gas turbine T01 during the
last week. Moreover, find analogous cases of fail-
ures for turbines of the same type as T01 in the
last three months.]

Query result visualisation. Sensor data is visualised with
the use of standard diagrams, and event messages are pre-
sented as a list, i.e., as an Excel spreadsheet, with times-
tamps and additional attributes.

Data preprocessing. The queried data is preprocessed us-
ing generic procedures such as sensor check (i.e., whether
sensor data quality is appropriate), threshold and trend
analysis. Independent from the concrete ticket, these pre-
processing steps are done manually, e.g., over the visu-
alised Excel spreadsheets, or using specialised analytic
tools.

Data analysis. The engineer uses sophisticated diagnostic
models and tools for complex analysis, e.g., Principal Com-
ponent Analysis or other statistical methods, to detect and
isolate the given problem based on the preprocessed data.
Typically, analytical tasks are executed individually for

each ticket. The gathering and analysis steps are often
carried out iteratively, i.e., the results from one iteration
are used to pose additional queries.

Report preparation. This process terminates when an ex-
planation for the problem in the service ticket is estab-
lished. In this case the engineer provides the customer
with a report aggregating the result of the analysis and
describing possible further actions.

2.2. Predictive Analysis

In predictive analysis, in contrast to the diagnostic pro-
cess described above, appliances are continuously moni-
tored, i.e., without prior service tickets, using online pro-
cessing of the incoming sensor data. The other process
steps of predictive analysis are similar to the ones de-
scribed in the previous section, but have to be applied
online to streaming data with minimal user intervention.
The purpose here is to analyse the current condition of
an appliance by combining operating information, system
data, specifications of concrete product lines, and tempo-
ral phases of operating regimes. This information allows to
predict whether some parts of an appliance should be re-
paired soon, assess risks related to the use of these parts,
and adjust maintenance intervals for each part by auto-
matically integrating this information into service schedul-
ing, thus, minimizing maintenance cost.

Example 3. For predictive analysis of turbines, the
diagnostic engineer may want to be automatically notified
when a turbine shows repetitive start failures combined
with increased vibration values during its operating time.
This can be formulated as follows:

Notify me if a turbine that had more than three
start failures in the last two weeks addition-
ally shows abnormal vibration values in operative
phases.]

2.8. Siemens Requirements

The main bottleneck for diagnostics is the data gather-
ing part, which takes up to 80% of the overall diagnostic
time. The main reason is that finding the right data for an-
alytics is very hard due to limitations of predefined queries,
complexity of data, complexity of query formulation, and
limitation to explicitly stated information. In Fig. [2] we
schematically depict the complex process of data access
that requires to determine the right DB location, then the
right schemata, and the corresponding data collectors and
controllers deployed in turbines. Moreover, often diagnos-
tic tasks involve up to dozens of turbines and thus this
process should be done for each of them. Based on these
observations we now derive concrete requirements that a
system for diagnostic processing should fulfil.

’ - location

Application

Engineer

Machine configuration

DB Data Control
Schema collector system

Figure 2: Current approach to diagnostics

R1: Integrated Data Access. Siemens data over which
the queries are formulated naturally reflects the variety,
volume, and velocity dimensions of Big Data. The data is
stored in so-called data centres, each responsible for sev-
eral thousand appliances such as turbines, where a typical
turbine has about 2,000 sensors constantly producing mea-
surements. This data can be roughly grouped into three
categories: (i) sensor and event data from appliances;
(#) analytical data obtained as results of monitoring tasks
conducted by service centres for the last several years; and
(i4i) miscellaneous data, typically stored in XML, contain-
ing technical description of appliances, types of configu-
rations for appliances, indicates in which databases in-
formation from sensors is stored, history of weather fore-
casts, etc. All in all the data is stored in several thousand
databases having a variety of different schemata. The size
of the data is in the order of hundreds of terabytes, e.g.,
there are about 15 GB of data associated to a single tur-
bine, and they currently grow with the average rate of 30
GB per day. At the moment there is no unified access
point to the Siemens data and it is required.

R2: Flexible Definition of Queries. Existing prede-
fined queries in the Siemens query catalogue, about 4,000
queries, are often not sufficient to cover information needs
as they are often either too general, thus yielding an over-
load of irrelevant information, or too specific, thus not
providing enough relevant data. For gathering relevant
data, service engineers often have to use several queries
and combine their results. When this is not sufficient, ex-

isting queries have to be modified or new queries should
be created. To this end the engineer contacts an I'T expert
and this leads to a complex and time-consuming interac-
tion that takes up to weeks. The reason why it takes so
long is miscommunication, high workload of IT personnel,
complexity of query formulation, and long query execution
times. In average up to 35 queries require modification ev-
ery month, and up to 10% of queries are changed through-
out a year. Moreover, several new queries are developed
monthly. Therefore, flexible modification and definition of
queries is one of the strong requirements for the improve-
ment of the diagnostic process.

Example 4. Continuing with the query in Example[3, in
order to answer it first about the turbine TO01, the engi-
neer spent two days and found three queries @1, @2, and
Q3 which, taken together, partially answer his information
need. All three queries ask about start failures of some, but
not all components. Moreover, Q1 and Qo ask about T01,
while Q3 asks about a cluster of turbines, e.g., T01 and
T02 located in the same factory. By tuning parameters of
these queries, the engineer manages to retrieve 70% of rel-
evant answers with Q1 (since it asks about some parts of
the turbine only), and an overlapping 40% with Qz, giving
him a coverage of only 90% of relevant answers in total.
The cluster-based query Qs covers only 50% of relevant an-
swers for TO1 and additionally returns irrelevant answers
about T02. FEven though the union of answers from @1,
Q2, and Q3 gives all the relevant answers, the engineer
has to request the IT staff to produce extra queries: He

either needs a query that retrieves the remaining 10% of
answers for the combination of Q1 and Q2, or a query to
filter out the irrelevant answers from the combination of
all three queries.

Even in this relatively simple scenario, the engineer will
typically not have enough information on the many DBs
involved, despite the fact that he has a conceptual un-
derstanding of the missing 10% of answers and also un-
derstands what to filter out in the combination of three
queries. By contrast, IT support has a clear picture of all
DBs available, but lacks domain knowledge for expressing
the engineer’s information needs. This leads to an itera-
tive process and query development times in the region of
days.]

R3: Utilising implicit information. In databases it
is typically assumed that only explicit data matters, i.e.,
the data which is stored in the system. From a formal per-
spective, the so-called closed-world semantics is adopted,
meaning that exactly the information stated is true, and
anything not stated is false. While this perspective may
be valid in the context of controlled systems, completeness
of data is hardly ever the case in practical industry appli-
cations such as the ones in Siemens. Here, the fact that we
do not have a measurement tuple for a certain time point
does not mean there is no measurement. This could be re-
flected by the so-called open-world semantics, that allow to
derive implicit information from the data stated explicitly,
typically using some forms of background knowledge. This
implicit information logically follows from what is stated
explicitly, and its use can greatly increase the practical
benefit of a diagnostic system.

Example 5. In our example we have that symptoms of
start failures are already recorded in the DBs, while there is
no explicit indication that there was a start failure. Hence,
the engineer has to query not only for start failures, but
also for relevant symptoms. There are several hundred
symptoms of start failures. For example, symptoms of
start failures such as low temperature and pressure are ex-
plicitly recorded, and they implicitly indicate that a start
failure will occur within the next two minutes.]

R4: Ontology Based Stream-Static Data Process-
ing. Predictive analysis requires the use of both static in-
formation from the past and streaming information on the
current status of appliances. Access to historical data al-
lows to detect, for instance, seasonal patterns. Continuous
monitoring of the streaming data provides prognosis for
key performance indicators and countermeasures before a
system shutdown occurs. Currently, service engineers do
not have direct access to streaming data. However, en-
gineers often need to access event and sensor data from
several appliances, and stream processing for each related
turbine. One of the requirements for the predictive analy-
sis is the possibility to integrate sensor and event stream-
ing data from several turbines and diagnostic centres and
provide the use of continuous queries on data streams.

Example 6. In our example the data relevant for start
failures are live data streams produced by sensors installed
in turbines, relevant sensor data from the past, and turbine
structure. []

R5: Data Stream Management System. All the pre-
viously mentioned requirements should be accompanied
by a backend system that supports low latency answering
of queries on high-velocity live streams and high-volume
static data sources. The aforementioned system should
poses the following features: (i) scalability: the ability to
run in a distributed environment and its capacity to easily
add and remove queries without disrupting existing query
execution; (ii) declarative semantics: the backend system
should provide a declarative language, extending the SQL
syntax and semantics for querying live streams and re-
lations; (4ii) user defined functions: the backend system
should natively support user defined functions with arbi-
trary user code; (iv) stream and static data integration:
based on its architecture and implementation, the back-
end system should natively support streaming and static
data integration.

Summing up on the requirements above, Siemens needs
a solution that: naturally integrates streaming and
archived data as well as static information; allows for flex-
ible query definition; exploits both explicit and implicit
data; and allows for effective data processing.

3. Ontology Based Data Access

Ontology Based Data Access (OBDA) is a prominent ap-
proach for end-user oriented access to databases. OBDA
relies on Semantic Web technologies and it has been heav-
ily studied by the Semantic Web community [2].

The main idea behind OBDA is to provide a user
with access to the data via an ontology that is specific
to the user’s domain. The ontology can be written
in some ontology language, e.g., in the Web Ontology
Language OWL 2 standardised by W3C. This ontology
hides from the user technical details about the database
schemata while it exhibits to the user a domain specific
vocabulary of classes and properties i.e., unary and binary
predicates, that the user is familiar with. This vocabulary
is related to the database schemata via mappings, which
are declarative specifications, similar to view definitions in
databases. There are several mapping languages available,
e.g., R2RML standardised by W3C. Fig. [3| presents a
general conceptual diagram illustrating OBDA: its main
components and the workflow of query answering in
OBDA systems.

The user formulates queries over ontologies in terms of
the classes and properties. The standard query language
for ontologies is SPARQL 1.1 standardised by W3C. An
ontological query @; is evaluated over databases in three
steps. First, @)1 is expanded with relevant information
from the ontology in order to retrieve both explicit and im-
plicit answers from the databases. This is accomplished by

OBDA Components

Ontology 8@6

Mappings

Databases

OBDA Query Answering

Q2: Enriched
i Onto Query

Figure 3: OBDA: components and a general idea of query processing

query rewriting, which takes the query (1 and the ontol-
ogy, and produces the query Q2. Note that Q) is logically
equivalent to)1 with respect to the ontology while it “ab-
sorbs” a fragment of the ontology necessary for retrieving
all answers relevant to Q1. We refer the reader to, e.g., [13],
for details on query rewriting techniques. OBDA systems
typically do rewriting of so-called conjunctive queries with
ontologies that fall in the OWL 2 QL profile of OWL 2.
This profile is specifically tailored for data access and al-
lows for efficient query processing [13]. At the second step,
the query @) is translated using mappings into a query Q3
over the database schemata, e.g., into SQL when the data
is relational. This step is referred to as unfolding. Finally,
Q3 is executed over the data by a DBMS and the answers
are returned to the user.

We now illustrate OBDA on the following example
which is based on the ontology and mappings that we de-
veloped for the Siemens use case. Note that, for the sake
of clarity, the example is based on simplified versions of
these ontology and mappings.

Example 7. The ontology in Fig.[4) says that turbines can
be either gas or diesel. A gas turbine may have the follow-
ing parts: (i) a control system that in turn has a control
unit of types ART or ART2, (ii) inner turbine, (iii) lube-
oil system that may have several sensors for measuring
pressure, and (i) gearbox. Moreover, a gas turbine can
be located in a place such as a desert, or a frost, etc. For
the sake of simplicity, we assume that diesel turbines are
modelled in the same way as the gas ones.

The query in Fig. |4] asks: “Return the pressure mea-
sured by sensors of lube oil systems in turbines.” This is

an ontological query which corresponds to Q1 in Fig. [3
This query can be written in SPARQL as follows:

SELECT 7Measurement

WHERE {?X rdf:type siemens:Turbine.
?X siemens:hasPart 7Y.
?Y rdf:type siemens:Lube0ilSystem.
?Y siemens:hasSensor 7Z.
?Z rdf:type siemens:Sensor.
?Z siemens:hasPressure 7Measurement.}

Query rewriting techniques applied to this query and the
turbine ontology produce two more queries that have the
same structure, as Q1, but the first query has Gas Tur-
bine and the second one has Diesel Turbine in the place of
Turbine. The query Qo is the union of Q1 with these two
queries. In terms of SPARQL, Qo can be obtained from Q1
by substituting the first triple of its WHERE clause with
the following expression:

{ 7X rdf:type siemens:Turbine } UNION
{ ?X rdf:type siemens:GasTurbine } UNION
{ ?X rdf:type siemens:DieselTurbine }

There are two mappings in Fig. [§ The left one says
how to “populate” the property hasPressure: one has to
project tuples of the table Measurement, where the value
of the attribute Type is “pressure”. The projection on the
attribute SensorID gives the subject and on the attribute
Valuel gives the object of hasPressure. The right mapping
says how to “populate” the class LubeQilSystem: one has
to project tuples of the table System where the Purpose is
“Lubricant Delivery” on the SystemID attribute. These
mappings can be used to unfold the SPARQL query Qs
into an SQL query Q3. We do not give Q3 here due to
space limit since this would require to introduce six more
mappings. []

3.1. How OBDA Can Help in Improving Data Access in
Siemens

In Section we presented five Siemens data access
requirements. We will discuss now how OBDA naturally
addresses all of them and thus we believe that OBDA has
the potential of improving data access in Siemens.

OBDA naturally addresses Requirement R1 on inte-
grated data access since one ontology can mediate the user
and several databases with different formats via mappings.
Regarding Requirement R2 on flexible definition of queries,
since ontologies describe the domain of end users, formula-
tion of queries over ontologies is conceptually much easier
than over databases. Thus, by relying on intuitive query
formulation tools, users can combine existing queries and
write new queries without any knowledge of the schemata
of multiple databases residing behind the ontology. Re-
garding Requirement R3 on utilising implicit information,
OBDA naturally does so via logical reasoning during the
query rewriting process. Regarding Requirement R4 on
stream-static data processing, OBDA does not impose any
restriction on the type of data to be integrated. Finally,
Regarding Requirement R5 of a data stream management
system, OBDA separates reasoning over queries and on-
tologies (that takes place before unfolding) from data pro-
cessing (that takes place after the unfolding), thus, it opens
doors for the development of highly optimised backends.

Thus, what we need for Siemens is an OBDA system
that (i) supports distributed data processing, (i) provides
a flexible intuitive query formulation and visualisation sup-
port, (i) relies on logical reasoning to obtain both explicit
and implicit answers, (iv) accommodates static, streaming,
and historic data steams, and (v) offers a highly efficient
backend. As we see next, no such OBDA system exists.

3.2. Existing OBDA Systems and Their Limitations

We now show that, despite the recent advances in OBDA
systems, they are currently not mature enough to be ap-
plied off-the-shelf in Siemens and both theoretical and
practical developments are required. There are several
academic and industrial systems for OBDA or that are
very similar to OBDA in spirit. Mastro [14], morph-
RDB [15], and Ontop [16] support ontology reasoning
and thus address Requirement R3, while D2RQ [I7], On-
toQF [18], Virtuosﬂ SpyderEl, and Ultrawrap [19] do not
support reasoning and thus fail Requirement R3. More-
over, all these systems fail Requirement R2: Ultrawrap,
Ontop, Mastro, and morph-RDB lack user-oriented query
formulation interfaces and query visualisation, since they
only provide SPARQL end-points and predefined queries;
while OntoQF considers ontology queries as OWL state-
ments and has no visual query formulation support. Ex-
isting OBDA systems either assume that data is in (static)
relational DBs, e.g [14] [16], or streaming, e.g., [20, 21] but

Shttp://virtuoso.openlinksw.com/
4http://www.revelytix.com/content/spyder

not of both kinds. Thus, to the best of our knowledge,
there is none that fulfils Requirement R4. Finally, to the
best of our knowlege, no OBDA system supports backend
optimisation as required by R5. For example, Ontop sup-
ports query optimisation during rewriting, but it does not
compute efficient plans for unfolded queries.

We conclude that no OBDA exists that addresses
Siemens requirements and can be used as it is. In order
to meet Siemens requirements, we had to extend the tra-
ditional OBDA and we refer to our approach as Ontology-
Based Stream-Static Data Integration (OBSSDI). In the
following section we present two main components of our
proposal: a query language and processing techniques.

4. Our OBSSDI Components

In this section we present our OBSSDI Components.
First, we present the language STARQL: its syn-
tax, semantics, and how we turn STARQL ontological
queries into data queries. Then, we present our back-
end EXASTREAM tailored towards answering STARQL
queries.

4.1. STARQL Query Language

Recent efforts on temporalised [22, 23] and streami-
fied [24H3T] OBDA systems provide first steps towards
handling temporal and streaming data in industrial ap-
plications. However, none of these approaches satisfies
the requirements of the Siemens use case: either there is
no implemented and/or optimized engine or the engine is
still not fully developed (see the benchmark tests in [32]).
Below we give a comparative overview over recent RDF
engines including our stream-temporal submodule of the
OPTIQUE platform.

Streaming and Temporal ontology Access with a
Reasoning-based Query Language (STARQL) [10, 33H36)
offers a query framework allowing to deal with streams
of timestamped RDF triples on the background of map-
pings and an ontology. The development of STARQL
was inspired by the Siemens use-case requirements. The
STARQL query language framework and the prototype
streaming engine enjoy the following features:

Ezxpressivity. STARQL allows to express typical mathe-
matical, statistical, and event pattern features needed in
real-time monitoring scenarios. In spite of its expressivity,
answering STARQL queries is still efficient since these can
be transformed into relational stream queries.

Neat Semantics. STARQL comes with formal syntax and
semantics. The latter one uses certain-answer seman-
tics [2] and on top of that, first-order logic semantics as in
model checking, thereby combining open and closed-world
reasoning. A snapshot semantics for window operators [37]
is extended with a sequencing semantics that can handle
integrity constraints such as functionality assertions.

http://virtuoso.openlinksw.com/
http://www.revelytix.com/content/spyder

[Fragment of Siemens Ontology|

Turbine

Turbine
0 @)
Gas / \ Diesel
Turbine _ISA ISA_ Turbine
hasPart |, catedin hasPart
hasPart /| hasPart % N N\
hasPart | dl nas nnn naa
Control hasPart ocatedin ;
System LubeOil ¢ Place . LubeOil
I_T_l [0 System] . System (‘)
hasPart InnerTurbine | Sgengor Ge€arbox ypo type hasSensor
Control { / \ tyE)ve \ v
Unit /D\ Sensor Q Q Sensor g - Sensor (P
type type hasPressure hasPressure {desert} {frost) hasPressure
ART ART?2 Integers Integers ?Measurement
Mappings
hasPressure :- SELECT SensorlD, Value1 LubeQilSystem - SELECT SystemID

FROM Measurement
WHERE Type = "pressure"

FROM System
WHERE Purpose = "Lubricant Delivery"

Figure 4: Simplified Siemens ontology and mappings, example query

Orthogonality. Both inputs and outputs of STARQL
queries are timestamped RDF triples. Therefore, triples,
coming from the result of one query, can be used as input
when constructing another query.

Scope Locality. While producing a STARQL query, one
can select an ontology and streams over which the query
will be evaluated. This feature can be important in dif-
ferent cases, e.g., in the case of failure testing, where one
is interested in querying only the streams stemming from
sensors that are (or are not) suspected to be broken.

Library Functions. Often-used query patterns can be
stored in a special library and re-used during query con-
struction.

Same Interface for Historic and Stream Data. Roughly
the same STARQL queries can be used to query historic
data (timestamped data in a DB) or to query real-time
streams.

Now we illustrate the STARQL framework by example.

Example 8. Consider the preventive monitoring request
from Ezample[1, To fulfil it, the following sub-task should
be performed: “Detect a monotonic increase from the
temperature sensor”. We now see how this detection can
be done within the STARQL framework.

First, assume that the data stream S_Msmt is being
received from the sensor; its sub-stream that contains data

recetved during the first five seconds is as follows:

{{s0 :wal 90}<0s> {sO :val 93}<1s>,
{s0 :val 94}<2s> {s0 :val 92}<3s>,
{s0 :val 93}<4s> {sO :val 95}<5s>}.

1)
This data is in the form of timestamped RDF triples. For
example, the first triple {sO :val 90}<0s> says that at
the time point “0s” the sensor s0 sent the value 90.

Consider the following STARQL query fulfilling the
task:

CREATE STREAM S_out_1 AS
CONSTRUCT {sO rdf:type RMInc}<NOW>
FROM S_Msmt [NOW-2s, NOW] -> 1s
SEQUENCE BY StdSeq AS SEQ
HAVING FORALL i < j 1IN SEQ, 7x, 7?y:
IF {sO :val 7x}<i>
AND {sO :val ?y}<j> THEN ?x <= 7y

Intuitively, the structure of the query is as follows:

(i) The HAVING clause specifies that the sensor’s value
should monotonically increase.

(i1) The FROM clause tells that the query performs its
check every second, considering only the data from
the stream S_Msmt in the last two seconds.

(i) The SEQUENCE BY clause groups the output triples
using some standard method StdSeq.

(iv) The CREATE clause declares the query’s output
stream S_out_1.

(v) The CONSTRUCT clause determines the format of the
timestamped RDF triples in the output stream. For
instance, the output stream corresponding to the
input data stream from Equation 18

{{s0
{s0
{s0
{s0

rdf:type RMInc}<0s>,
rdf:type RMInc}<1s>,
rdf:type RMInc}<2s>,
rdf:type RMInc}<5s>} (2)

for Recent Monotonic
Increase, so the timestamped RDF triple
{s0 rdf:type RMInc}<2s> designates that the
sensor sO has been experiencing a monotonic in-
crease for the last two seconds, from Os to 2s. (As
in SPARQL, instead of the CONSTRUCT keyword one
can also use SELECT if the output is to consist only
of tuples of variable bindings).

Under the OBDA approach, data are stored in relational
form and not in RDF format. Hence, the STARQL en-
gine operates on the virtual stream S_Msmt induced by
mappings from some actual relational streaming source. m

where RMInc stands

In order to assess the STARQL capabilities and func-
tionalities, we have extended the overview tables in [3§]
to contain all relevant streaming query languages (that we
are aware of). The results are shown in Tables [1| and

Table [1| provides a comparison of streaming languages
with respect to various SPARQL characteristics and fea-
tures. While all languages support basic functionalities
like union, join, optional and filter, some of them (includ-
ing STARQL) have already incorporated SPARQL 1.1
expressiveness with IF clauses, aggregations, arithmetic
expressions (not listed here) and more. Furthermore, all
of them, except from EP-SPARQL (which is more based
on events than time), are supporting temporal windows,
though only three of them support triple windows.

The specific streaming capabilities and operators of each
query language are presented in Table 2] We can identify
two groups of query languages, which differ in the man-
agement of time and of temporal operators in general.

On the one hand, we have a group that allows access
to timestamps by functions on each triple or object within
windows. Those include SPARQLSTREAM, C-SPARQL,
and STARQL. While SPARQLSTREAM uses reified time
with additional axioms and STARQL a non-reified ver-
sion with a semantics of temporal states, C-SPARQL uses
an in-between approach offering temporal functions on ob-
jects for retrieving their timestamps. The latter could lead
to inconsistencies, if an object occurs several times inside
a window in different temporal states.

On the other hand, we find a group of languages that
are developed with respect to temporal sequences and spe-
cific sequencing operators like in EP-SPARQL, TEF-
SPARQL, and STARQL that are tailored for complex
event processing (CEP). Though EP-SPARQL is dif-
ferent from the two other approaches as it is a more

10

CEP based language, they all share the possibility to de-
fine temporal sequences with operators. EP-SPARQL
extends SPARQL by four new binary operators: SEQ,
EQUALS, OPTIONALSEQ and EQUALSOPTIONAL; while TEF-
SPARQL defines temporal facts and STARQL makes use
of its special HAVING clause.

Finally, STARQL offers several new operators with
functionalities that have not been included in previous
systems. See Table [2] for these features. All columns ex-
cept for the column “W-to-S operator” are self-explaining.
W-S refers to the three operators Rstream, Istream, and
Dstream of [37] that describe different ways of creating
and outputting a stream from window contents. Rstream
outputs every triple in the window, Istream only outputs
triples inserted into the window, and Dstream outputs only
deleted ones. Next to cascaded streams, which can be seen
as temporal sub-queries, STARQL offers the possibility
of querying historically recorded data or even comparing
them to a live stream (see [12] 43]). Those different kinds
of input streams (possibly using different kinds of win-
dow widths and slides) can additionally be synchronized
in STARQL by one or more pulse functions, allowing for
a regular query output for possibly asynchronous input.
Moreover, due to the integration of optimized UDF's from
EXASTREAM (such as an optimized version of the correla-
tion function), STARQL offers the main components for
an analytics aware OBDA approach as described in [42).

Besides a comparative presentation of the (language)
functionalities of STARQL, we give a comparative pre-
sentation of relevant implementation features of the
STARQL engine in Table 3} Most of RDF systems men-
tioned above rely on native implementations of query pro-
cessors. CQELS for example reimplements functionali-
ties, which do already exist in DSMS and therefore can
be seen as standalone engine. EP-SPARQL is based on
logical programming and backward chaining, but is also
implemented from scratch. Finally, C-SPARQL relies on
an internal DSMS, but has no flexibility for mappings or
rewritings.

The only two systems using an OBDA approach with
mappings and a flexible back end are SPARQLSTREAM
and STARQL. As they both rely on external DSMS,
they also both suffer from the same disadvantages. Query
rewriting and translation of results can be expensive, while
the expressiveness of the underlying systems restricts the
input of the RDF streaming queries. Nevertheless, OBDA
approaches can rely on various backend optimisations to
accelerate query processing.

4.2. Streaming and Static Relational Data Processing

The queries produced by the STARQL translator
are processed and answered by OPTIQUE’s dedicated
Data Stream Management System (DSMS), EXASTREAM.
EXASTREAM has been designed for efficiently processing
on both static and streaming information and the corre-
sponding queries produced by the STARQL engine. It is

Table 1: Comparison of RDF-stream query languages (Part 1)

Name Data Model

Union, Join, Optional, Filter IF Expression Aggregate Property Paths

Time Windows Triple Windows

STREAMING SPARQL [24] RDF streams

Yes

C-SPARQL [3911391140] RDF streams

Yes

CQELS [28] RDF streams Yes No Yes No Yes No
SPARQLSTrEAM [26][38]HI] (virtual) RDF streams Yes Yes Yes Yes Yes No
EP-SPARQL [29] RDF streams Yes No Yes No No No
TEF-SPARQL [31} RDF streams Yes No Yes No Yes Yes

STARQL [3411361142] (virtual) RDF streams ~ Yes

Table 2: Comparison of RDF-stream query languages (Part 2)

Name W-to-S Operator Cascading Streams Intra window time Sequencing Synchronized Pulse Historic data
STREAMING SPARQL RStream No No No No No
C-SPARQL RStream No Yes No No No
CQELS RStream No No No No No
SPARQLSTREAM RStream, IStream, DStream No Yes No No No
EP-SPARQL RStream No No Yes No No
TEF-SPARQL RStream No No Yes No No
STARQL RStream Yes Yes Yes Yes Yes
embedded in EXAREMH} a system for elastic large-scale . ~ > W
dataflow processing on the cloud [44] [45] that has been Gateway Master
. . . V
publicly available as an open source project under the MIT Resource i logy v
: . : Parser M ’: lhul)? 11(1711” i
License. We give a short presentation on some key aspects anager
of EXASTREAM, for a more detailed description, the user Execution . /
Engine | | Registry | |Scheduler N al
may refer to [I1]. g 101G 10020
’u 10101 1111“ r
Data Model. An EXASTREAM topology describes the flow '
!
of streaming and static records between computational 1 g 030 i
8 . . p. . Worker Worker Worker h lniéi o g
nodes. Computational nodes are logical processing units Blggy o101

that have one or more live-stream or static-data inputs and
one output. They execute a set of operations on their in-
put to produce the corresponding output. Computational
nodes can be classified as either having exclusively live-
stream inputs, exclusively static-data inputs, and hybrid
inputs. Similarly they can be classified to being streaming
or static, based on the form of their output.

Declarative Semantics for Computations. Computational
nodes may perform several operations on data streams
such as filtering, aggregation, joining, and interacting with
data sources and databases, to produce the desired out-
put. EXASTREAM takes advantage of existing Database
Management technologies and optimisations by providing
a declarative language, namely SQL®, extending the SQL
syntax and semantics for querying live streams and re-
lations. In contrast to most DSMSs, the user does not
need to consider low-level details of query execution. In-
stead, the system’s query planner is responsible for choos-
ing an optimal plan depending on the query, the avail-
able stream/static data sources, and the execution envi-
ronment. KXASTREAM’s optimiser makes it possible to
process SQL® queries that blend streams with static and
historical data (e.g., archived streams).

In order to incorporate the algorithmic logic for trans-
forming SQL into SQL® several operators and statements
have been implemented:

Shttps://www.exareme.org

11

Compute Cloud

001001
011610AL
010010
e
100

Storage Cloud

anmal |

011 ozo
010010

/ 001101
010010
20017,

001101
010010
20017,

e JD
11100
001103
010019
100111

Figure 5: Distributed Stream Engine Architecture

Live Streams

(i) Create Stream: The create stream statement allows
to add a new computational node to our topology
that outputs a live stream.

TimeSlidingWindow: The specific operator, imple-
mented as a user defined function, groups tuples from
the same time window and associates them with a
unique window identifier corresponding to the Wid
attribute.

WCache: WCache creates the indexing structures
for answering efliciently equality constraints on the
Wid and Time attributes when processing infinite
streams. WCache will then produce results to mul-
tiple queries accessing different streams.

(i)

(iii)

Architecture € Implementation. EXASTREAM supports
parallelism by allocating processing across different work-
ers in a distributed environment. Its architecture is shown

Table 3: Comparison of RDF stream engines

Language Input Execution Query Optimization Stored Data Reasoning
STREAMING SPARQL RDF streams physical stream algebra Static plan optimization Yes No

C-SPARQL RDF streams DSMS based evaluation with triple store Static plan optimization Internal triple store RDF entailment
CQELS RDF streams RDF stream processor Adaptive query processing operators Stored linked data No

SPARQLSTREAM Relational streams external query processing Static algebra optimizations, host evaluator specific ~Data source dependent No

EP-SPARQL RDF streams logic programming, backward chaining rules No No RDFS, Prolog equivalent
TEF-SPARQL RDF streams Yes No Yes Yes

STARQL Relational streams — external query processing Static algebra optimizations, host evaluator specific ~Datasource dependent Yes (DL-Lite4)

in Fig. Queries are registered through the Gate- now give an overview of the platform. Details on the archi-

way Server. FEach registered query passes through the
EXASTREAM parser and then is fed to the Scheduler mod-
ule. The Scheduler places data and compute operators (in-
cluding UDF's and relational plans) on worker nodes based
on each worker’s load. These operators are executed by an
SQLiteﬂ database engine instance running on each worker.

EXASTREAM offers different types of parallelism de-
pending on the type of operations performed within a
query. Inter-query parallelism is supported for queries
with an exclusively streaming input. This means that
all the operations of a single query are executed on the
same worker, while parallelism is achieved by distribut-
ing queries across workers. For computational nodes with
a static input, EXASTREAM provides intra-query paral-
lelism. This means that each operation of a query is dis-
tributed on multiple workers.

The EXASTREAM system natively supports User De-
fined Functions (UDFs) with arbitrary user code. The
engine blends the execution of UDF'S together with rela-
tional operators using Just-In-Time tracing compilation
techniques. This greatly speeds-up the execution as it re-
duces context switches, and most importantly, only the rel-
evant execution traces are used, allowing the engine to per-
form optimizations at runtime that are not possible when
the query is pre-compiled. UDFSs allow to express very
complex dataflows using simple primitives. Communica-
tion with external sources, window partitioning on data
streams, and data mining algorithms such as the Locality-
Sensitive Hashing technique [46] for computing the corre-
lation between values of multiple streams are implemented
as UDFs.

5. The Optique platform for Siemens

The OPTIQUE platform [47] is an end-to-end OBDA
solution, i.e., it supports the whole OBDA cycle from
deployment to query-answering visualisation. OPTIQUE
platform integrates a number of existing systems and pro-
vides several new components. It was tested with various
use cases, including Norwegian Petroleum Directorate Fact
Pages [48], Statoil [49] and demonstrated in [50—53]ﬂ We

Shttps://www.sqlite.org
7OPTIQUE demo video: www.youtube.com/user/optiqueproject/
playlists

12

tecture and the individual components of the platform can
be found in [7, B3] and by following the references given
below. OPTIQUE is a commercial platfornﬂ while some of
its components are available under open-source licenses.

5.1. OPTIQUE Platform

The OPTIQUE platform allows to: create and edit map-
pings; create, edit, and import ontologies [54H59]; integrate
several relational databases and data streams; formulate
and visualise one time and continuous queries; efficiently
process both static and streaming information; and browse
query results. Thus, the OPTIQUE platform satisfies all
the Siemens system Requirements R1-R5. Note that the
current version of OPTIQUE provides full support of dis-
tributed query processing on streaming and static informa-
tion, in contrast to the OPTIQUE system described in [9].

The query formulation, transformation, execution, and
answer visualisation procedures are performed in a se-
quence of stages presented in Fig. [6}

(i) Query Formulation: After the system is deployed,
the underlying data sources can be queried via
our query formulation tool OPTIQUEVQS. OpP-
TIQUEVQS allows to compose queries by navigat-
ing over the system’s ontology and constructing sim-
ple graphs corresponding to queries for standard
ontologies or their streaming/geospatial extensions.
Graphs are internally translated by OPTIQUEVQS
to STARQL expressions, i.e. queries designed to re-
trieve information from streaming ontologies.

Query Transformation: The aforementioned expres-
sions are sent to the corresponding query transforma-
tion engine for processing. The processing includes
rewriting against the ontology and further unfolding
into relational queries based on the corresponding
mappings [60]. STARQL expressions (i) on histor-
ical data are rewritten and unfolded to pure SQL
queries; (i) on streaming data are rewritten and
unfolded to SQL® queries by the STARQL2SQL®
query transformation engine [35]. SQL® is an ex-
tension of standard SQL with operators for stream
handling.
(i) Query Ezecution: In the query execution phase:
(i) SQL historical queries are executed by the

(i)

8https://www.fluidops.com/en/company/research/optique

www.youtube.com/user/optiqueproject/playlists
www.youtube.com/user/optiqueproject/playlists
https://www.fluidops.com/en/company/research/optique

Bo

End-user
= Ontology
Fluidops vas
Platform
isation & Juery
alysis % ulation
' g
3
= o
12} .
® Mappings
2 STARQL2SQL
2 Translator
L
uery
®
a3
S
Exareme
Query Planning
& Execution
201001 901001
oridiAl oraBIGAL
siotl siasialy
TSR T RO) s ¢ i B ¢
001.2°(% 003 0135 100121 IR0 g 001 013G 10010 1 1 Moryg001®
01101 101 N ol \. ol oy ol 0. ol
010019/ 010010 (0101 11);“\ it nl:ﬁ,, tgydlon 11);“\ 0101 11):0,
200775/ 20011, lagy o1¢ 1001 010 logy 010 1903 010
streaming data temporal data static data

Figure 6: System Architecture

database management system that stores the histor-
ical information; (i) SQL® streaming queries are
executed by EXASTREAM, a system for large scale
elastic stream processing on the cloud that uses par-
allelism to cope with the huge data sets provided by
Siemens.

(iv) Visualisation & Analysis: Resulting query answers
are visualised using templates and widgets such as
tables, timelines, maps, charts, etc., depending on
the data modalities. In order to support analytical
tasks required by turbine diagnostics, we developed a
native integration of Optique with KNIMEEHE data
analytics system to streamline query answers into an-
alytics, and a configurable plug-in for R analyticsﬂ

The OPTIQUE platform implementation is based on the
Information Workbench (IWB) [61], a generic and exten-
sible platform for semantic data management which pro-
vides a rich infrastructure for our platform. We now focus
on parts of the OPTIQUE platform that are tailored to-
wards Siemens: OPTIQUEV QS and diagnostic dashboards.

5.2. Visual query formulation with OPTIQUEV QS
The Optique platform allows domain experts to formu-

late and pose queries via a visual query formulation sys-
tem, called OPTIQUEVQS [62H67]. Queries, formulated

9KNIME, the Konstanz Information Miner, is an open source
data analytics, reporting and integration platform. KNIME inte-
grates various components for machine learning and data mining
through its modular data pipelining concept. A graphical user inter-
face allows assembly of nodes for data preprocessing (ETL: Extrac-
tion, Transformation, Loading), for modeling and data analysis and
visualization.

Ohttps://www.knime.org/

Uhttps://www.r-project.org/

13

via OPTIQUEVQS, are automatically translated to the un-
derlying query language (i.e., SPARQL or STARQL) and
sent to the query transformation module. In the context
of the Siemens use case, OPTIQUEV QS has been extended
to support STARQL to allow formulation of streaming
queries [67H69]. OPTIQUEVQS is composed of a front-
end (i.e., interface) and backend component feeding the
interface with ontology fragments.

Interface. OPTIQUEV QS is a widget-based user-interface
mashup (UI mashup) [64, [70], that is, individual commu-
nicating widgets are the building blocks of OPTIQUEVQS.
This approach offers flexibility, modularity, and adapt-
ability and enables us to combine multiple representation
paradigms, such as forms, diagrams and icons [71], and
interaction paradigms, such as schema navigation, range
selection, and matching [71].

In the Siemens use case, a user interacts with Op-
TIQUEVQS with five widgets:

(i) The first widget (W1), see the bottom left hand side
of Fig.[7} is a menu-based widget and allows the user
to navigate through concepts of an ontology by se-
lecting relationships between them.

The second widget (W2), see the top side of Fig. (7] is
a diagram-based widget and presents typed variables
as nodes and object properties as arcs. It gives an
overview of the query formulated so far.

The third widget (W3), see the bottom right hand
side of Fig.[7] is a form-based widget and presents the
attributes of a selected concept for selection and pro-
jection operations. Dynamic attributes (that is at-
tributes that change over time) are coloured in blue.
The fourth widget (W4) is a form-based widget [68],
see Fig. [§ and it lets the user configure parame-
ters for temporal queries. W4 is available from a
“Stream” button (see Fig. [7]) as soon as the query
involves dynamic attributes.

The fifth widget (W5) is a tabular widget, see Fig. [9]
that allows to select a template for the temporal
query, and to register the user query for execution.
In the case of SPARQL, this widget is used to present
example results and provide functionality for sorting
and aggregation operations, such as sum, max, min,
and average.

A typical query formulation process begins with select-
ing a starting concept (called kernel) from W1. Each se-
lected concept appears in W2 as a variable node and the
attributes of the selected concept appear in W3. The con-
cept chosen last automatically becomes the active node
(called pivot) and the user can change it either by adding
a new node through W1 or by clicking on an already ex-
isting node in W2. Once there is an active node in W2,
W1 does not present a pure list of concepts any more, but
it lists object property and range concept pairs pertaining
to the active node. The user can add as many branches as
he/she wishes by using W1 and W2, and add constraints
and select attributes for output using the form elements

(ii)

(iii)

(iv)

(v)

https://www.knime.org/
https://www.r-project.org/

w2

Untitled query Turbine Compressor sect... Bearing house 1 Journal bearing
‘has namefo)
Please provide a

description here... Wmag| with compre... ';H with bearin... @ with journa... @

€3 Delete Node) Undo (3 Redo &) New Query () Save Query () Stored Queries) aconfig € STARQL Query) Result Overview

Temperature sensor Temperature sensor

Search. Search..

Journal bearing Q has value
monitors.

@ has tag

Thrust bearing

monitors

Burner tip

monitors

@ has value [°C]
Blow-off valve

i _

|I|||§]l Power turbine

Figure 7: OPTIQUEVQS interface — dynamic properties are coloured in blue.

Slide parameter:

1

m Minutes Hours Days Months Years
Window width: w 4

10

Minutes Hours Days Months Years

Start time:

dd/mm/yyyy, --:--

End time:

dd/mm/yyyy, --i--

Figure 8: OPTIQUEVQS interface — parameter selection.

14

| | PREFIX nsl: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
| PREFIX ns2: <http://www.siemens.com/ontology/gasturbine/>
CREATE PULSE pulseA WITH FREQUENCY = "PT1s"*“xsd:duration

CREATE STREAM S_out AS

SELECT { ?_val0 ?Turbine_cl ?hasName_al 2CompressorSection_c2 ?BearingHousel_c3 2JournalBearing_cd ?TemperatureSensor_c5 }

|
|
|
|
| | FRoM sTREAN nw_measurement [NOW - "PT10s""“xsd:duration, NOW]->"PTls"~"xsd:duration
| | vsve PuLsE pulsea
| | whERE {
| ?Turbine_cl nsl:type ns2:Turbine.
| 2CompressorSection_c2 nslitype ns2:CompressorSection.
| ?BearingHousel_c3 nslitype ns2:BearingHousel.
?JournalBearing_c4 nsl:type ns2:JournalBearing.
| ?TemperatureSensor_c5 nsl:type ns2:TemperatureSensor.
} ?Turbine_c1 ns2:hasC Section ion_c2.
| ?CompressorSection_c2 ns2:hasBearingHousel ?BearingHousel_c3.
| ?BearingHousel_c3 ns2:hasJournalBearing zJournalBearing_cd.
| ?2JournalBearing_c4 ns2:isMonitoredBy ?Temper es.

?Turbine_cl ns2:hasName ?hasName_al.

}
} SEQUENCE BY StdSeq AS seq

| | BAVING ExISTS i IN seq (((

| GRAPH i { ?TemperatureSensor_c5 ns2:hasValue ?_val0 }
| AND ?_val0 < 100) AND ?_vall > 0))

€ DeleteNode) Undo (3 Redo

Register query

Turbine_c1 > al C _c2 BearingHouse1_c3

W5

€ New Query () Save Query (£) Stored Queries

JournalBearing_c4

() a-Config

STARQLQuery > ResultOverview

Template selection

Columns to display...

TemperatureSensor_c5 RANGE hasValue_a2 o

Update

Figure 9: OPTIQUEVQS interface — template selection and the generated STARQL query.

presented in W3.

If a dynamic attribute is involved in the query, Op-
TIQUEVQS switches to STARQL mode and a button
named “Stream” appears to activate the parameter con-
figuration widget. Omnce the user clicks on the “Result
Overview” button, the template selection widget appears.
The user can also save/load and modify queries through
W2. Hence, OptiqueVQS splits the formulation of stream-
ing queries into two steps where the user has to specify
which data streams are of interest, corresponding to the
static part in the WHERE clause, and what is to be done
to the specified streams. The interface for the latter al-
lows users to pick from a list of options that include range
checks, gradient checks, and spikes, and cover a large part
of the query tasks needed day to day. Adding more op-
tions, or changing the queries produced for each, are simple
programming tasks.

OPTIQUEVQS is free from any technical jargon, for ex-
ample related to OWL and STARQL. It employs a simpli-
fied tree-shaped query representation and distributes func-
tionality to different widgets with respect to the accord
between the functionality, interaction, and representation
paradigms (i.e., tabular widget for template selection, and
menu-based widget for navigation). OPTIQUEVQS sup-
ports tree-shaped conjunctive queries and a fragment of
STARQL. Currently, STARQL queries correlating differ-
ent dynamic attributes and queries involving cycles, nega-

15

tion, and disjunction are not supported.

Backend. The front-end communicates with the backend
via a REST API that returns a JSON object according to
the performed request. It is mainly responsible for access-
ing and serving ontology fragments to the interface, as a
user interacts with the system, and for dealing with the
query log and data to improve user experience.

The main component of OPTIQUEVQS’s backend is a
graph projector [65] [66], which feeds OPTIQUEVQS’s wid-
gets in order to enable a graph-based navigation over
an ontology during query formulation. Graphs are effec-
tive mechanisms to navigate, construct, and communicate
complex topological structures for end users. It is also
well-known that the majority of end-user queries are con-
junctive, and thus, in the semantic web setting, they could
naturally be seen as graphs since we are dealing with unary
and binary predicates only. However, note that OWL 2
axioms do not have a natural correspondence to a graph.
Even when a set of range/domain axioms naturally suggest
a graph, to the best of our knowledge there is no standard
means to translate it to a graph. Therefore, we need a
technique to extract a suitable graph-like structure from a
set of OWL 2 axioms. For this purpose, we have adapted a
technique called navigation graph [72H79]. OPTIQUEVQS
uses the OWL 2 reasoner HermiT [80] to build the navi-
gation graph (e.g., extraction of classification) in order to
consider both explicit and implicit knowledge defined in

.

6ptique
Task:
Inspect turbine T between 15t and 2t Dec. 2015

Analytics for:

] .

T = Timespan
catalog ||| F
- 4

Query: return all sensor values
in a specific time interval.

o swe s e = Turbine Data Ratio and Timeframe Selection

Timeframe Selection

...... [T ———

E Error/Warning/Ok Ratio

SELECT ?ts 2value WHERE {
Pmeasurement a siemens:Measurement;

siemens:measuredBy ?sensor;
siemens:measurementHasTs ?ts;
siemens:hasvalue ?value.
FILTER(?ts > ?start && ?ts < ?end)
}
ORDER BY ?ts

' Query: return all events
within a specific time interval.

Task:

Inspect sensor S of turbine T
between 1st and 2" Dec. 2015

STARQL
streaming
Query: return current live query

sensor values.

CREATE PULSE AS START = @ s, FREQUENCE = 60

CREATE STREAM S_out AS

SELECT { :TC255 :hasVal ?z)< NOW>

FRON _1 0 seconds <-[NOW - 3 seconds, NOW]-> 1 seconds
VHERE { :1C255 :hasval 22}

SEQUENCE BY Stdseq AS SEQL

R-plugin: highlight outliers i

== i1 the relevant time interval — .
4o

> Query: return all sensor values > p

in a specific time interval. -

Figure 10: Diagnostic Dashboards

an ontology.

The backend also provides for a data sampler compo-
nent allowing us to enrich an ontology with additional ax-
ioms to capture values that are frequently used and rarely
changed. This includes the list of values and numerical
ranges in an OWL data property range. Such an approach
allows presenting attributes in different types, such as slid-
ers, multi-select boxes, date pickers etc, with respect to the
underlying data. Moreover, the backend maintains a query
log for ranking and suggesting query extensions as a user
formulates a query, that is, the W1 and W3 list concepts
and properties adaptively with respect to a partial query
given at any time [81].

16

5.8. Diagnostic Dashboards and Integration with Siemens
Analytics

In order to address diverse needs of end users we de-
veloped a flexible wiki-based Diagnostic Dashboard that
can be easily customised by end users themselves. Result
visualisation widgets allow the user to visualise query an-
swers, inspect query results, do incremental query refine-
ment, and export the relevant result fragments to external
diagnostic tools. Moreover, the widgets support monitor-
ing of incoming data streams and query answers for con-
tinuous queries over these streams. In Fig. [I0] we present
three examples of our visualisation widgets.

The D1 part of Fig. [10]shows the sensor data inspection
screen for one specific turbine. Here, the user has chosen

—
KNIME

ML . L. WA

Node Help

g~ me v & j=LH00P0BFE=BABuxp@0 BE

A KNME Eplorer 23| =q
BEE|&E

@ Welcome toKNIME | /& 3: SPDiagnosticAdviceOBDA-BumerTipTemperatures

b DATA LAYER
5 EXAMPLES (guest@publicserverkn
A LOCAL (Local Workspace) SP Diagnostic

Database Connector

=

Turbine Raw Data

KEY PERFORMANCE
INDICATORS

‘ m)

s Favorite Nodes 13 =00
=l AR
¥ Personal favorite nodes
7 Most frequentty used nodes

0
() Last used nodes Jou

A Node Repository a]

10
€ Database
& Data Manipulation
, Data Views
I Statistics
@ Mining
& Misc
& Workflow Control
] Time Seres
* Reporting
e SP Diagnostic Advice OBDA Form
e SP Diagnostic Advice OBDA SPARQL

BEARING
DIAGNOSTICS

BURNER TIP
FAILURE ANALYSIS

A5 0: SPDiagnosticAdviceOBDA-Workflows &3 | A 0: KNIME_KPL_project

SEMANTIC LAYER

Advice OBDA SPARQL

Turbine Semantics. -

SP Diagnostic
Advice OBDA Form

9
JoumalBearing in Compressor - NADO2101-01

SP Diagnastic
Advice 0BDA Form

™

Bumer Tip Temperatures- NADOL401-01

Model-based access
as KNIME building block

] Report: KNIME_KP1_project

ANALYTICS LAYER

Data Formating

of)L, KeyPerformance

Indicator Data to Report

WatchCAT
KPlReport

Calculations

P Diagnostic
Advice OBDA Form

Comparefpumal bearings of two turbines

BumnerTip Analysis

Generic KNIME
analytics workflows

Figure 11: Optique integration with KNIME

a turbine of interest and reviews data of the previous 24
hours. The main chart in the centre contains thermocou-
ple data, i.e., mostly temperature readings along the gas
path of the turbine, starting from the air inlet through the
burner stage to the exhaust. Without going into detail the
chart suggests that the turbine of interest has been shut
down and re-started numerous times in the first quarter of
the day. After that it appears that the day has continued
uneventful, at least in terms of the temperature profile.

If a specific sensor in the overview exhibits missing val-
ues, unusual trends, or an inadmissible number of out-
liers then the service engineer can inspect that sensor on
a higher level of detail in the single-sensor view depicted
on the top-right of Fig. and annotated with D2. The
dashboard shows three views: the live data stream from
the sensor in question, historic data as chosen by the user,
and a configurable plug-in for R analytics. The compari-
son between historic and live data can be used for ruling
out any persistent or recurring abnormalities in the sen-
sor readings. Conversely, all in-depth statistical analysis
of sensor data can be performed and inspected in the R

17

view. Here the underlying statistics can be configured from
a library of common analytics solutions.

The lower part of Fig. [[0 annotated D3, contains other
turbine monitoring dashboards with various kinds of ag-
gregated data. Note that just like the raw data views
above, these aggregated views are configured by choos-
ing an appropriate query from the query catalog —with
the query again formulated against the turbine knowledge
model rather than the actual data sources. Depending on
the type of data (e.g., time series data, appliance struc-
ture), a suitable visualisation paradigm has to be selected
(e.g., pivot table, trend diagram, histogram). The diagnos-
tic dashboard can also choose the representation paradigm
for query answers automatically by analysing the corre-
sponding SPARQL query.

Since a wide range of Siemens diagnostics tasks are re-
alised using KNIME, we have also developed a KNIME
extension that gives access to OPTIQUE from KNIME an-
alytical workflows and streamline answers computed by
OPTIQUE directly into KNIME. In Fig. we present a
screenshot of a diagnostic task implemented in KNIME

SEMANTIC LAYER

SP Diagnostic
Advice OBDA SPARQL

-

Turbine Semantics

OBDA Data

Dialog - 0:33 - SP Diagnostic Advice OBDA SPARQL ['I'Ibine Semantics)
File

Options | Flow Variables | Memory Policy

Server: |http:/flocalhost: 10214/sparal
Query:]
PREFIX po: <http://www.ontologydesignpatterns.org/cp/owl/partof.owl# *
PREFIX ssnsi: <http://www.siemens.com/ontology/ssn-si#>

PREFIX dul: <http://www.loa-cnr.it/ontologies/DUL.owl$>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX ssn: <http://purl.oclc.org/NET/ssnx/ssn#>

PREFIX watchcat: <http://www.siemens.com/ontology/watchcat-merge/>
Select DISTINCT 2turbine

?sensor ?2observationDate ?value ?sensorTag

WHERE {

ANALYTICS LAYER

Data Formating

Key Performance

Indicator Data to Report

WatchCAT
KPIReport

Calculations

2?sensor a ssn:SensingDevice;

ssn:observes 2measurable;

ssn:onPlatform 2turbine ;
ssnsi:sensorLocation ?sensorlLod

?turbine watchcat:hasDriver 2dvalusq

2turbine watchcat:hasDrivenUnit 2dy

2turbine watchcat:hasServiceRegion

?turbine watchcat:hasCustomer 2cval]

2turbine waccheat:nassice 2sicevard OtNEIWiS€ Qutage

2turbine watchcat:hasSiteCountry ?

* Service = SpeedSensor > RangeMaxValue

&& (MainFlameSensor >= RangeMaxValue if Type = GasTurbine)
&& PowerSensor > RangeMaxValue

(PressureSensor > RangeMaxValue if Type = TurboCompressor)

2foi ssn:hasProperty 2measurable.
?observation ssn:observationResult ?2result;
ssn:observedProperty ?measurable;
ssn:featureOfInterest 2foi;
ssnsi:hasObservationDate ?observationDate.
2result a ssn:SensorOutput; o
« " »

ok [y J[cone (@]

Figure 12: Optique integration with KNIME

and in Fig.[12]is the zoom of Fig.[11]in a fragment relevant
for analytics. In Fig. one can see that the data layer
is disconnected from the analytics layer by the OPTIQUE
semantic layer and shown only for orientation, that is, the
data from the DBs go first through the OBDA platform
and only then analytics are applied on it. One can add a
new semantic OBDA data source to the system using ei-
ther a SPARQL or STARQL query against the OPTIQUE
platform.

In Fig. [12] there is an example SPARQL query over the
OBDA platform. The data produced by this query are
then used to compute key performance indicators (KPI)
and to check for outage in the turbines. Observe that the
node of the work-flow diagram that corresponds to KPI
computation is defined using KNIME rules that rely on
the standard KNIME syntax while they are formulated
against the ontological concepts. These rules say that a
turbine is deemed to be in service at any time if either it
is a gas turbine or a turbo compressor that satisfies extra
conditions. In the former case these conditions say that the
sensor signal of the rotor speed sensor should have readings
above its characteristic operational speed value, the main
flame sensor reading should show that the flame is on,
and the turbine should generate power, i.e., Power Sensor
should be above the value characteristic for that turbine

18

while generating power. In the latter case the conditions
are that the generated pressure should be at or above the
nominal pressure specified for the machine.

Observe that due to ontologies each occurrence of
“RangeMaxValue” in the KNIME rules is a different type
of value read from the static configuration data of the ma-
chine and this can be encoded using property hierarchy.
Indeed, for the latter case one can achieve it by stat-
ing that “RunningSpeedConfigValue” is a sub-property
or “RangeMaxValue” and in the latter case that “Main-
FlameOnSignal” is a sub-property of “RangeMaxValue”.
Moreover, an advantage of such OBDA-backed KNIME
diagrams is that one can talk about specific values in tur-
bines and even compressors of different types at an ab-
stract level, without giving details of such appliances. Fi-
nally, observe that KNIME has a sophisticated reporting
functionality which we exploit in our system: the last node
in the work-flow diagram, called Data to Report, sum-
marises the KPI for all turbines across a specific fleet and
builds a ready-to-use report for them.

6. Evaluation of Optique at Siemens

In order to demonstrate the potential of OBDA in en-
hancing data access in Siemens we did a preliminary de-

ployment of the Optique OBDA platform over Siemens
data and conducted a preliminary user study. We now
give details of our experience.

6.1. Siemens Ontology

We start with the ontology that we developed for
Siemens; it is a critical component of our deployment
which we used in both our evaluations. Development of an
industrial ontology is a non-trivial task [82] [83]. Although
there are ontologies describing machinery with sensors,
e.g., the Semantic Sensor Network (SSN) ontology [84], we
could not use them: for our use case, they are too generic
and overloaded with irrelevant terms, moreover, they miss
required terms. Therefore, we constructed our ontologies
being guided by the best practices of the SSN ontology.
Our ontologies characterize Siemens database schemata of
sensor and event data and abstract away from representa-
tions varying across data sources. Moreover, our ontolo-
gies are manually enriched with the domain information
encoded in multiple semiformal and informal models avail-
able at Siemens. We developed three ontologies: (i) the
turbine, (i) sensor, and (iii) diagnostic ontology.

The turbine ontology describes the internal structure of
a turbine, i.e., it lists all its parts, functional units, and
their hierarchy. For example, it models that every Turbine
must have a ControlSystem and a Generator, and that
LiquidFuelPump is a part of a LubOilSystem. The on-
tology contains 60 classes and 15 object and datatype
properties. There are three central classes in this ontol-
ogy: (i) Turbine class for modeling product families
of appliances, () Component for modeling a hierarchy of
subclasses defining the types of components that turbines
are constructed of, using relations such as hasPart and
hasDirectPart, (%ii) FunctionalUnit for defining func-
tional interrelation of components, i.e., important blocks
of an appliance, such as GasPath, FuelSystem and others,
as well as components belonging to these functional units.

The sensor ontology lists and categorizes types of sen-
sors and measuring devices mounted in a turbine as well
as their deployment, measurement properties, such as ac-
curacy and precision, and other related information. For
example, it models that each sensor is mounted at some
turbine’s component or functional unit, or that a sensor of
a specific type does only produce observations of a given
type. The ontology contains 40 classes and 20 proper-
ties. The main class Sensor covers all types of measur-
ing devices, e.g., GasDetector, TemperatureSensor. Fur-
ther branching on classes gives more detailed characteris-
tics information on them, e.g., temperature sensors could
measure: BurnerTipTemperature, InletTemperature,
CompressorExitTemperature, etc.

The diagnostics ontology formalizes relationships be-
tween measurements and events generated by turbine’s
sensors and control units, as well as typical symptoms of
faults in turbines. For example, it models that each di-
agnosis has to be assigned to a turbine or its component,
and must be supported by some symptoms. The ontology

19

contains 30 classes and 10 properties. The core classes are
Observation and Diagnosis connected with a relation
indicatesAt for listing symptoms for each diagnosis.
Each of the three ontologies can be used independently
and we have also developed an ontology that integrates the
three. The turbine and sensor ontologies are expressed in
OWL 2 QL, a tractable profile of the OWL 2 ontology
language and therefore can be used straightforwardly in
our OBDA setting. The diagnostics ontology must be rep-
resented in a richer ontology language: OWL 2 DL. An
example of a diagnostic axiom that cannot be expressed
in OWL 2 QL is: “If Turbine has Failure F1, then there
must be a Symptom S1 in Turbine Component C1”. To
support answering diagnostic queries using OBDA, we pro-
vided an approximation of the ontology into OWL 2 QL.

6.2. Visual query formulation

Requirements. A set of site visits and user interviews have
been conducted to collect design requirements. The infor-
mation needs in the query catalogue were translated into
actual queries, resulting in 40 queries, which were then
analysed accordingly [66]. The following three main di-
mensions [71] have been taken into consideration for the
design and implementation of OPTIQUEVQS:

(i) User synopsis: The target group at Siemens are do-
main experts, who have extensive domain knowledge.
However a number of domain experts lack technical
skills and knowledge such as on databases, program-
ming, and query languages.

(i) Interaction synopsis: The demand for information
is frequent and information needs are varied. More-
over, domain experts often have unpredictable needs
in terms of the data they are interested in extracting.

(iii) Task synopsis: Domain experts’ information needs
are often structurally complex, requiring to join mul-
tiple relations.

We have conducted a literature survey [85] [86] to iden-
tify best practices and design patterns. The survey re-
vealed that a multi-paradigm design combining multiple
representation and interaction paradigms is key to address
a broad range of user groups having frequent, unpredicted
and sophisticated information needs [71},[87]. According to
a framework proposed by Catarci et al. [71], the following
requirement has been reached:

Design: Provide a multi-paradigm user-interface
having a diagram-based paradigm in the core
supported by form-based and iconic representa-
tion paradigms.

Regarding the target expressiveness level, our goal is
to address frequently needed query types that are com-
paratively less complex for end users. According to the
Siemens query catalogue, 70% of queries are tree-shaped
conjunctive queries. Therefore, we are led to the following
requirement:

Turbine
has name(o)

Untitled query Combustion cham...

Burner Burner tip Temperature sen...

Please provide a
description here...

with combus.. I

with burner

with burner... monitored b...

& 3

{(C

Figure 13: A linear conjunctive query formulated by domain experts in the Siemens experiment.

Turbine

with turbin... has name(c)

Untitled query Train

[
Please provide a
description here...

Generator

o}

Bearing house 3 Journal bearing Temperature sen...

has value(o)

with genera...

+

with bearin...

with journa... monitored b...

e ©

«

Figure 14: A tree-shaped conjunctive query formulated by domain experts in the Siemens experiment.

Expressiveness: Primarily support the formula-
tion of tree-shaped conjunctive queries.

Finally, data sources at Siemens have a temporal dimen-
sion, leading to the following requirement:

Support: Provide domain specific components to
address temporal-stream data sources.

OPTIQUEVQS meets all these requirements as it com-
bines multiple representation and interaction paradigms
through various widgets including two widgets for stream-
temporal querying. Currently, 65% of the queries in the
query catalogue are supported by OPTIQUEVQS, that
is, tree-shaped conjunctive queries (i.e., excluding queries
with negation).

Fvaluation. Two user experiments have been conducted
with domain experts at Siemens to measure the efficiency
and effectiveness of domain experts with OPTIQUEVQS
[65H68]. We provide an overview of the experiments and
results in the following.

The first experiment is based on non-temporal queries
and relies on the diagnostic ontology, while the second ex-
periment is based on temporal queries with the turbine
ontology. Four respectively three users took part in the
experiments. None of the participants had knowledge of
semantic web technologies. Participants completed the fol-
lowing tasks during the experiment, given at most three
attempts for each task, while being observed by an ob-
server. The first half of the tasks have been used in the
first experiment while the second half were used in the
second experiment. The last three tasks are temporal.

(i) Find all assemblies that exist in the system.

(i1) Show all messages that turbine “NA0101/01” gener-
ated from “01.12.2009” to “02.12.2009”.
(i4i) Show all turbines that sent a message containing the
text “Irip” between “01.12.2009” and “02.12.2009”.
(iv) Show all event categories known to the system.
(v) Show all turbines that sent a message category
“Shutdown” between “01.12.2009” and “02.12.2009”.

20

(vi) Display all trains that have a turbine and a genera-
tor.

(vii) Display all turbines together with the temperature
sensors in their burner tips. Be sure to include the
turbine name and the burner tags.

(viii) For the turbine named “Bearing Assembly”, query
for temperature readings of the journal bearing in the
compressor. Display the reading as a simple echo.

(iz) For a train with turbine named “Bearing Assembly”,
query for the journal bearing temperature reading in
the generator. Display readings as a simple echo.

(xz) For the turbine named “Burner Assembly”, query for

all burner tip temperatures. Display the readings if
they increase monotonically.

In the first experiment, a total of 18 tasks was com-
pleted by the participants. Correct completion rate was
88% and first attempt correct completion rate was 72%. In
average, a task took 1.5 attempts and 132 seconds to com-
plete. In the second experiment, a total of 15 tasks were
completed by the participants with 100% correct comple-
tion rate and 66% first-attempt correct completion rate.
In average, a task took 1.3 attempts and 103 seconds to
complete. Fig. and Fig. represent tasks (vii) and
(iz) respectively. The results suggest that domain experts
could translate their information needs into queries with
high effectiveness and efficiency by using OPTIQUEVQS.
One prominent wish from the domain experts is dynamic
filtering of attributes in W3 with respect to active con-
straints. This is analogous to faceted search where facets
and facet values are filtered and removed as constraints
added or relaxed. Such an approach requires a mecha-
nism for active interaction with the underlying data, which
could also be precomputed offline and stored in the ontol-
ogy as annotations.

6.3. Performance Demonstration

The aim of the performance demo was to showcase how
query distribution to multiple workers can accelerate the
overall execution time of different analytic queries that

5000000 x

4000000

3000000

2000000

1000000

Throughput (tuples/sec)

>

800 1000 1200

0=

0 200 400 600

Number of Concurrent Queries
Figure 15: Effect of parallelism on live-stream queries

involve live-stream and hybrid operations. Siemens en-
gineers were exhibited the system’s capabilities based on
two predefined test queries and by being able to adjust
several parameters related to the underlying queries and
resources.

Demonstration Setting. We deployed our system to the
MindSphere Siemens Cloud for Industrﬂ Infrastructure
and used up to 128 virtual machines (VMs) each having
a 2.100 GHz processor with two cores and 4 GB of main
memory. We used streaming and static data that contain
measurements produced by 100,000 thermocouple sensors
installed in 950 Siemens power generating turbines.

Test Queries. For the performance demonstration, the fol-
lowing two STARQL queries were adopted: Query I: This
query calculates the Pearson correlation between two live
streams. Query II: This query computes the Pearson cor-
relation of a live stream with a varying number of archived
streams.

We demonstrated performance related to different types
of parallelism:

Parallelism between live streams. This demo focused on
the effect of accelerating live-stream operations by dis-
tributing the load to multiple worker nodes via inter-query
parallelism. Query I could be executed (i) for a varying
number of 1 to 1024 of concurrent queries between differ-
ent pairs of live streams; (i) for a fixed window size of
60 tuples; (ii7) on non-overlapping windows; (iv) using 128
EXASTREAM worker nodes. The window throughput was
measured as the number of stream tuples that were pro-
cessed per sec. Recall that each node was equipped with
a two-core processor. Siemens engineers could see, as in

2http://www.industry.siemens.com/services/global/en/
portfolio/plant-data-services/cloud-for-industry/pages/
default.aspx

21

160

120
80
0 ; ; I ¥ : t
1 2 4 8

Worker Nodes

Time (sec)

16

Figure 16: Effect of parallelism on hybrid queries

Fig. that initially the overall throughput of the system
increased linearly with the number of queries. This was
because EXASTREAM utilised the available workers and
distributed the load evenly among them. When the num-
ber of queries reached the number of cores available (256)
the maximum throughput of 4,250, 226 turles/sec could be
observed. From that point onward, the additional queries
injected in EXAREME resulted in multiple queries sharing
the same core and, as a result, the cumulative throughput
decreased.

Parallelism between live € archived streams. For com-
plex analytics such as the Pearson correlation, the
EXASTREAM backend permits to accelerate queries by
distributing the load among multiple worker nodes. In the
second demo, Siemens engineers executed test Query II:
(i) on a varying, from 1 to 16, number of available VM-
worker; (i) for a fixed live-stream velocity of 1 tuple/min;
(#i) for a fixed window size of 1hour which corresponds
to 60 tuples of measurements per window; (iv) and
the current live stream window was measured against
100,000 archived ones. As in Fig. Siemens engineers
could observe a significant decrease in the overall window
processing time as the number of VM-workers increased.
EXASTREAM distributed the archived relations between
different worker nodes. Each node computed the Pearson
coefficient between its subset of archived measurements
and the live stream. As the number of archived windows
was much greater than the number of available workers,
intra-query parallelism resulted in significant decrease of
the time required to perform the operation.

7. Lessons Learned, Conclusion, and Future Work

Lessons Leaned. We organised a series of workshops with
service engineers in Siemens (each was attended by up to
ten people) to present our Optique OBSSDI system and to
evaluate the potential of using Optique in Siemens business

http://www.industry.siemens.com/services/global/en/portfolio/plant-data-services/cloud-for-industry/pages/default.aspx
http://www.industry.siemens.com/services/global/en/portfolio/plant-data-services/cloud-for-industry/pages/default.aspx
http://www.industry.siemens.com/services/global/en/portfolio/plant-data-services/cloud-for-industry/pages/default.aspx

units. The workshops were held in two locations: at the
Siemens service centre in Lincoln, UK, and Siemens AG in
Munich, Germany. During the workshops we got impor-
tant feedback from engineers that reinforced and guided
our further development of the platform. In particular,
the end users were asked to assess the system with respect
to the requirements of Section [2] We now summarise the
feedback.

The users gave a positive feedback on how the proposed
solution addressed Requirement R1 on the integrated data
access: information from different sources is integrated
and can be accessed through one ontology and visualised
in the diagnostics dashboard. The users provided also a
very positive feedback about the query formulation com-
ponents of Requirement R2 and highlighted that these fa-
cilities may greatly simplify and accelerate the process of
query construction. In particular, by using the VQS inter-
face the users were able to specify even complex queries
from the query catalogue in a very intuitive way, which
currently requires extensive SQL know-how as well as in-
depth knowledge about the database schemata. Addition-
ally, component suggestions on refinements and/or gener-
alisations of the terms used in the query, additional terms
and constraints, helped the users in understanding the
querying capabilities of the platform and in constructing
queries—which was highly valued by the users. Likewise,
we received good comments on the possibility to derive
implicit information using the logical reasoning—thereby
satisfying Requirement R3. The hybrid stream-static data
support defined in Requirement R4 which is addressed by
introducing STARQL query framework was highly wel-
comed as an important feature for realising predictive
maintenance in future. Finally, though not visible to end-
users, requirement R5 that demands for a DSMS backend
providing low latency answers to queries on high-velocity
live streams and high-volume static data sources is crucial
for the functionality of the OPTIQUE platform.

Conclusion. In this paper we presented OBSSDI, a
promising paradigm that extends classical OBDA for a
direct and highly efficient end-user access to streaming,
historic, and static data. We have also shown how OB-
SSDI could enhance such access in Siemens in the context
of turbine diagnostics. We derived five requirements that
an OBSSDI solution should fulfil in order to be deployed
in Siemens and showed that, while the previous research
and system development established the theoretical basis
and demonstrated viability of OBDA, a number of limi-
tations have to be solved before industrial deployment of
such systems. Our OBSSDI solution developed within the
Optique project satisfies the five Siemens requirements.
Our novel techniques behind the Optique OBSSDI sys-
tem are generic and can be applied in any scenario that
requires integrated and eflicient semantic access to time-
stamped and static data. We see this work as an important
step towards ontology based data access systems of a new
generation. Moreover, we believe that our Siemens experi-

22

ence should be valuable for both theoretical and practical
Semantic Web researchers since it opens a number of av-
enues for future theoretical research and shows important
practical limitations of existing systems.

Future Work. We have observed that OWL 2 QL, the pro-
file of OWL 2 that is specifically tailored towards OBDA,
is not sufficient to capture important industrial domain
knowledge. For example, OWL 2 QL allows for axioms
with existential quantification on the right hand side, while
it is often the case that for Siemens such axioms are not
natural and universal quantification is required. An im-
portant future work would be to understand how ODBA
can be based on ontologies that are not OWL 2 QL and
to develop practical approximation algorithms for query
answering in this context. Another important observation
was that diagnostic tasks required by Siemens often re-
quire computation of aggregate values, such as, averages
of temperature values reported by sensors. Such computa-
tion requires to extract from databases and transfer a lot
of sensor data which is then used only for aggregation, e.g.,
one often has to transfer thousands of temperature values
just to compute one average value. We believe that it is
important to enhance OBDA with a capability to push
such aggregate computations down to data sources and
avoid expensive data transfer. This can already be done
by encoding aggregation in mappings, but we do not find
it satisfactory since this makes OBDA systems query de-
pendent. We expect a better way to enhance OBDA with
aggregation capabilities.

Regarding the query language, to reach 100% coverage
of the Siemens query catalogue we plan to further extend
STARQL functionality in order to support a wider range
of aggregate and analytic functions. These functions will
be implemented as UDFs in the EXAREME backend and
will be incorporated to the STARQL query language se-
mantics. Furthermore, additional sequencing strategies
based on machine learning techniques are planned to be
implemented. These will enable the use of STARQL for
predictive diagnostics. In regard to back end optimisa-
tions, an initial line of work has been presented in the lit-
erature [II]. A central objective in cloud computing is to
maintain the utilisation of the cloud high, using only the
resources that are really needed for the described work-
load. Thus, our future work involves the adaptive adjust-
ment of EXASTREAM’s topology to meet the requirements
of a varying workload. We further intend to extend our op-
timiser, so that it supports join reordering on the fly, when-
ever the rate of input streams changes. This involves con-
stantly monitoring the incoming streams and making the
appropriate changes on join orders and the related index
structures whenever beneficial. Regarding the integration
with the Siemens infrastructure, an important practical
next step for us is to improve the diagnostics dashboards
by allowing for automatic report generation, that incor-
porates marketing or business intelligence queries, e.g.,
“Return all gas turbine of a particular product line sold

after 2006”. We also plan to improve Optique’s integra-
tion with KNIME by organising STARQL and SPARQL
queries defining OBDA data sources in a tool-box of KN-
IME connectors in a spirit of a query catalog. Regarding
OPTIQUEVQS, our future work is provenance computa-
tion for query answers and computation of suggestions for
query repairs, e.g., if a query returns an empty answer set,
then the users would like to know why it is the case and
how the query can be reformulated to obtain answers. We
also plan to increase the expressiveness of OPTIQUEVQS
gradually without compromising from the usability. This
includes simpler forms of negation, disjunction, and cycles
as well as ability to correlate multiple temporal-stream
properties.

Acknowledgements. This work was partially funded by the
EU project Optique (FP7-ICT-318338), and the EPSRC
projects MaSI3, DBOnto, ED3.

References

[1] A. Doan, A. Y. Halevy, Z. G. Ives, Principles of Data Integra-
tion, Morgan Kaufmann, 2012.
[2] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenz-
erini, R. Rosati, Linking Data to Ontologies, J. Data Semantics
10 (2008) 133-173.
I. Horrocks, What are ontologies good for?, in: Evolution of
Semantic Systems, Springer, 2013, pp. 175-188.
B. Cuenca Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-
Schneider, U. Sattler, OWL 2: The next step for OWL, Journal
of Web Semantics 6 (4) (2008) 309-322.
M. Giese, D. Calvanese, I. Horrocks, Y. Ioannidis, H. Klappi,
M. Koubarakis, M. Lenzerini, R. Moller, O. Ozcep, M. Ro-
driguez Muro, R. Rosati, R. Schlatte, A. Soylu, A. Waaler,
Scalable end-user access to big data, in: Big Data Computing,
Chapman and Hall/CRC, 2013.
M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase,
E. Jimenez-Ruiz, D. Lanti, M. Rezk, G. Xiao, O. Ozcep,
R. Rosati, Optique — Zooming In on Big Data Access, IEEE
Computer 48 (3) (2015) 60-67.
E. Kharlamov, E. Jiménez-Ruiz, D. Zheleznyakov, D. Bilidas,
M. Giese, P. Haase, I. Horrocks, H. Kllapi, M. Koubarakis, O. L.
C)zgep, M. Rodriguez-Muro, R. Rosati, M. Schmidt, R. Schlatte,
A. Soylu, A. Waaler, Optique: Towards OBDA Systems for
Industry, in: ESWC (Satellite Events), 2013, pp. 125-140.
D. Calvanese, M. Giese, P. Haase, I. Horrocks, T. Hubauer,
Y. E. loannidis, E. Jiménez-Ruiz, E. Kharlamov, H. KI-
lapi, J. W. Kliiwer, M. Koubarakis, S. Lamparter, R. Moller,
C. Neuenstadt, T. Nordtveit, O. L. Ozgep, M. Rodriguez-Muro,
M. Roshchin, D. F. Savo, M. Schmidt, A. Soylu, A. Waaler,
D. Zheleznyakov, Optique: Obda solution for big data, in:
ESWC (Satellite Events), 2013.
E. Kharlamov, N. Solomakhina, O. L. Ozgep, D. Zheleznyakov,
T. Hubauer, S. Lamparter, M. Roshchin, A. Soylu, S. Watson,
How semantic technologies can enhance data access at siemens
energy, in: International Semantic Web Conference, Springer,
2014, pp. 601-619. i i
C. Neuenstadt, R. Moller, Ozgiir. L. Ozgep, OBDA for temporal
querying and streams with STARQL, in: D. Nicklas, C)zgiir. L.
Ozgep (Eds.), HiDeSt '15—Proceedings of the First Workshop
on High-Level Declarative Stream Processing (co-located with
KI 2015), Vol. 1447 of CEUR Workshop Proceedings, CEUR-
WS.org, 2015, pp. 70-75.
C. Svingos, T. Mailis, H. Kllapi, L. Stamatogiannakis, Y. Ko-
tidis, Y. Ioannidis, Real Time Processing of Streaming and
Static Information, in: 2016 IEEE International Conference on
Big Data, 2016.

(3]

(4]

(5]

(8]

[10]

[11]

23

[12]

[13]

[14]

22]

[23]

[24]

E. Kharlamov, S. Brandt, E. Jiménez-Ruiz, Y. Kotidis, S. Lam-
parter, T. Mailis, C. Neuenstadt, O. L. Ozcep, C. Pinkel,
C. Svingos, D. Zheleznyakov, 1. Horrocks, Y. E. Ioannidis,
R. Moller, Ontology-based integration of streaming and static
relational data with optique, in: F. Ozcan, G. Koutrika, S. Mad-
den (Eds.), Proceedings of the 2016 International Conference
on Management of Data, SIGMOD Conference 2016, San Fran-
cisco, CA, USA, June 26 - July 01, 2016, ACM, 2016, pp. 2109-
2112. doi:10.1145/2882903.2899385.

URL http://doi.acm.org/10.1145/2882903.2899385

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
R. Rosati, Tractable reasoning and efficient query answering
in Description Logics: The DL-Lite family, J. of Automated
Reasoning 39 (3) (2007) 385-429.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini,
A. Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, D. F. Savo,
The mastro system for ontology-based data access, Semantic
Web 2 (1) (2011) 43-53.

F. Priyatna, O. Corcho, J. Sequeda, Formalisation and Expe-
riences of R2RML-based SPARQL to SQL Query Translation
Using Morph, in: WWW, 2014.

M. Rodriguez-Muro, R. Kontchakov, M. Zakharyaschev, Obda
with ontop, in: ORE, 2013, pp. 101-106.

C. Bizer, A. Seaborne, D2RQ-Treating non-RDF Databases as
Virtual RDF Graphs, in: ISWC, 2004.

K. Munir, M. Odeh, R. McClatchey, Ontology-driven relational
query formulation using the semantic and assertional capabili-
ties of owl-dl, Knowl.-Based Syst. 35 (2012) 144-159.

J. F. Sequeda, D. P. Miranker, Ultrawrap: SPARQL execution
on relational data, J. of Web Sem. 22 (0). |doi:http://dx.doi.
org/10.1016/j .websem.2013.08.002.

J. Calbimonte, Enabling ontology-based access to streaming
data sources, in: ISWC, 2010.

L. Fischer, T. Scharrenbach, A. Bernstein, Scalable linked data
stream processing via network-aware workload scheduling, in:
Proceedings of the 9th International Workshop on Scalable Se-
mantic Web Knowledge Base Systems, Sydney, Australia, Oc-
tober 21, 2013, 2013, pp. 81-96.

A. Artale, R. Kontchakov, F. Wolter, M. Zakharyaschev, Tem-
poral description logic for ontology-based data access, in: 1J-
CAI, IJCAT'13, 2013, pp. 711-717.

S. Borgwardt, M. Lippmann, V. Thost, Temporal query an-
swering in the description logic dl-lite, in: FroCoS, 2013, pp.
165-180.

A. Bolles, M. Grawunder, J. Jacobi, Streaming sparql extending
spargl to process data streams, in: Proceedings of the 5" Eu-
ropean semantic web conference on The semantic web: research
and applications, Springer-Verlag, 2008, pp. 448-462.

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, M. Grossniklaus,
C-sparql: a continuous query language for rdf data streams, Int.
J. Semantic Computing 4 (1) (2010) 3-25.

J.-P. Calbimonte, O. Corcho, A. J. G. Gray, Enabling Ontology-
Based Access to Streaming Data Sources, in: ISWC, ISWC’10,
2010, pp. 96-111.

J.-P. Calbimonte, H. Jeung, O. Corcho, K. Aberer, Enabling
query technologies for the semantic sensor web, Int. J. Se-
mant. Web Inf. Syst. 8 (1) (2012) 43-63. |doi:10.4018/jswis.
2012010103l

D. L. Phuoc, M. Dao-Tran, J. X. Parreira, M. Hauswirth, A
native and adaptive approach for unified processing of linked
streams and linked data, in: ISWC, 2011, pp. 370-388.

D. Anicic, P. Fodor, S. Rudolph, N. Stojanovic, Ep-sparql: a
unified language for event processing and stream reasoning, in:
WWW, 2011, pp. 635-644. [doi:10.1145/1963405. 1963495,

D. Anicic, S. Rudolph, P. Fodor, N. Stojanovic, Stream reason-
ing and complex event processing in etalis, Semantic Web 3 (4)
(2012) 397-407.

J. Kietz, T. Scharrenbach, L. Fischer, A. Bernstein, K. Nguyen,
Tef-sparql: The ddis query-language for time annotated event
and fact triple-streams, Tech. rep., Technical report, University
of Zurich, Department of Informatics (2013).

http://doi.acm.org/10.1145/2882903.2899385
http://doi.acm.org/10.1145/2882903.2899385
http://dx.doi.org/10.1145/2882903.2899385
http://doi.acm.org/10.1145/2882903.2899385
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2013.08.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.websem.2013.08.002
http://dx.doi.org/10.4018/jswis.2012010103
http://dx.doi.org/10.4018/jswis.2012010103
http://dx.doi.org/10.1145/1963405.1963495

(32]

(35]

(36]

[44]

[45]

[46]

Y. Zhang, P. Minh Duc, O. Corcho, J. P. Calbimonte, Srbench:
A Streaming RDF/SPARQL Benchmark, in: Proceedings of
International Semantic Web Conference 2012, 2012.

URL http://oai.cwi.nl/oai/asset/20163/20163B.pdf

Ozgiir L.. Ozcep, R. Méller, C. Neuenstadt, D. Zheleznyakov,
E. Kharlamov, Deliverable D5.1 — a semantics for temporal and
stream-based query answering in an OBDA context, Deliverable
FP7-318338, EU (October 2013).

O. L.. Ozgep, R. Méller, Ontology based data access on tempo-
ral and streaming data, in: M. Koubarakis, G. Stamou, G. Stoi-
los, I. Horrocks, P. Kolaitis, G. Lausen, G. Weikum (Eds.), Rea-
soning Web. Reasoning and the Web in the Big Data Era, Vol.
8714. of Lecture Notes in Computer Science, 2014.

Ozgiir. L. Ozgep, R. Moller, C. Neuenstadt, A stream-temporal
query language for ontology based data access, in: KI 2014, Vol.
8736 of LNCS, Springer International Publishing Switzerland,
2014, pp. 183-194.

Ozgiir. L. Ozgep, R. Méller, C. Neuenstadt, Stream-query com-
pilation with ontologies, in: B. Pfahringer, J. Renz (Eds.),
Poceedings of the 28th Australasian Joint Conference on Ar-
tificial Intelligence 2015 (AI 2015), Vol. 9457 of LNAI, Springer
International Publishing, 2015.

A. Arasu, S. Babu, J. Widom, |The cql continuous query lan-
guage: semantic foundations and query execution, The VLDB
Journal 15 (2006) 121-142, 10.1007/s00778-004-0147-z.

URL http://dx.doi.org/10.1007/s00778-004-0147~-z

J.-P. Calbimonte, Ontology-based access to sensor data streams,
dissertation, Universidad Politecninca de Madrid (2013).

URL nttp://oa.upm.es/15320/1/JEAN_PAUL_CALBIMONTE.pdf
D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Gross-
niklaus, C-sparql: Sparql for continuous querying, in: Proceed-
ings of the 18" international conference on World wide web,
ACM, 2009, pp. 1061-1062.

D. F. Barbieri, D. Braga, S. Ceri, M. Grossniklaus, An execution
environment for c-sparql queries, in: Proceedings of the 13t
International Conference on Extending Database Technology,
ACM, 2010, pp. 441-452.

J.-P. Calbimonte, H. Jeung, O. Corcho, K. Aberer, Enabling
query technologies for the semantic sensor web, Int. J. Semant.
Web Inf. Syst. 8 (1) (2012) 43-63.

E. Kharlamov, Y. Kotidis, T. Mailis, C. Neuenstadt, C. Niko-
laou, O. L. C)Z(;ep, C. Svingos, D. Zheleznyakov, S. Brandt,
I. Horrocks, Y. E. Ioannidis, S. Lamparter, R. Moller, Towards
analytics aware ontology based access to static and streaming
data, in: P. T. Groth, E. Simperl, A. J. G. Gray, M. Sabou,
M. Krotzsch, F. Lécué, F. Flock, Y. Gil (Eds.), The Semantic
Web - ISWC 2016 - 15th International Semantic Web Confer-
ence, Kobe, Japan, October 17-21, 2016, Proceedings, Part II,
Vol. 9982 of Lecture Notes in Computer Science, 2016, pp. 344—
362. [doi:10.1007/978-3-319-46547-0_31.

URL http://dx.doi.org/10.1007/978-3-319-46547-0_31

E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, Y. Ko-
tidis, S. Lamparter, T. Mailis, C. Neuenstadt, O. L. Ozcep,
C. Pinkel, A. Soylu, C. Svingos, D. Zheleznyakov, 1. Horrocks,
Y. E. Ioannidis, R. Moller, A. Waaler, Enabling semantic access
to static and streaming distributed data with optique: demo)
in: A. Gal, M. Weidlich, V. Kalogeraki, N. Venkasubrama-
nian (Eds.), Proceedings of the 10th ACM International Con-
ference on Distributed and Event-based Systems, DEBS ’16,
Irvine, CA, USA, June 20 - 24, 2016, ACM, 2016, pp. 350-353.
doi:10.1145/2933267.2933290.

URL http://doi.acm.org/10.1145/2933267.2933290

M. M. Tsangaris, G. Kakaletris, H. Kllapi, G. Papanikos,
F. Pentaris, P. Polydoras, E. Sitaridi, V. Stoumpos, Y. E. Ioan-
nidis, Dataflow processing and optimization on grid and cloud
infrastructures., IEEE Data Eng. Bull. 32 (1) (2009) 67-74.

H. Kllapi, P. Sakkos, A. Delis, D. Gunopulos, Y. Ioannidis,
Elastic processing of analytical query workloads on iaas clouds,
arXiv preprint arXiv:1501.01070.

N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos,
Y. Theodoridis, In-network approximate computation of out-

24

[57]

[58]

liers with quality guarantees, Information Systems 38 (8) (2013)
1285-1308.

I. Horrocks, M. Giese, E. Kharlamov, A. Waaler, Using semantic
technology to tame the data variety challenge, IEEE Internet
Computing 20 (6) (2016) 62-66.

M. G. Skjeeveland, E. H. Lian, I. Horrocks, Publishing the
Norwegian Petroleum Directorate’s FactPages as Semantic Web
Data, in: ISWC, 2013, pp. 162-177.

E. Kharlamov, D. Hovland, E. Jiménez-Ruiz, D. Lanti, H. Lie,
C. Pinkel, M. Rezk, M. G. Skjeeveland, E. Thorstensen, G. Xiao,
D. Zheleznyakov, 1. Horrocks, Ontology based access to explo-
ration data at statoil, in: The Semantic Web - ISWC 2015 - 14th
International Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, 2015, Proceedings, Part II, 2015, pp. 93-112.
E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, Y. Ko-
tidis, S. Lamparter, T. Mailis, C. Neuenstadt, O. L. Ozgep,
C. Pinkel, A. Soylu, C. Svingos, D. Zheleznyakov, 1. Horrocks,
Y. E. Ioannidis, R. Moller, A. Waaler, Scalable semantic ac-
cess to siemens static and streaming distributed data, in: Pro-
ceedings of the ISWC 2016 Posters & Demonstrations Track
co-located with 15th International Semantic Web Conference
(ISWC 2016), Kobe, Japan, October 19, 2016., 2016.

E. Kharlamov, E. Jiménez-Ruiz, C. Pinkel, M. Rezk, M. G.
Skjeeveland, A. Soylu, G. Xiao, D. Zheleznyakov, M. Giese,
I. Horrocks, A. Waaler, Optique: Ontology-based data access
platform, in: Proceedings of the ISWC 2015 Posters & Demon-
strations Track co-located with the 14th International Semantic
Web Conference (ISWC-2015), Bethlehem, PA, USA, October
11, 2015., 2015.

E. Kharlamov, S. Brandt, M. Giese, E. Jiménez-Ruiz, S. Lam-
parter, C. Neuenstadt, O. L. ('jz(;ep7 C. Pinkel, A. Soylu,
D. Zheleznyakov, M. Roshchin, S. Watson, I. Horrocks, Seman-
tic access to siemens streaming data: the optique way, in: Pro-
ceedings of the ISWC 2015 Posters & Demonstrations Track
co-located with the 14th International Semantic Web Confer-
ence (ISWC-2015), Bethlehem, PA, USA, October 11, 2015.,
2015.

E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjaveland,
A. Soylu, D. Zheleznyakov, T. Bagosi, M. Console, P. Haase,
I. Horrocks, S. Marciuska, C. Pinkel, M. Rodriguez-Muro,
M. Ruzzi, V. Santarelli, D. F. Savo, K. Sengupta, M. Schmidt,
E. Thorstensen, J. Trame, A. Waaler, Optique 1.0: Semantic
Access to Big Data: The Case of Norwegian Petroleum Direc-
torate’s FactPages, in: ISWC (Posters & Demos), 2013.

P. Haase, 1. Horrocks, D. Hovland, T. Hubauer, E. Jiménez-
Ruiz, E. Kharlamov, J. W. Kliwer, C. Pinkel, R. Rosati,
V. Santarelli, A. Soylu, D. Zheleznyakov, Optique system: to-
wards ontology and mapping management in obda solutions, in:
WoDOOM, 2013, pp. 21-32.

E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks,
C. Pinkel, M. G. S. veland, E. Thorstensen, J. Mora, BootOX:
Practical Mapping of RDBs to OWL 2, in: ISWC, 2015.

E. Jiménez-Ruiz, E. Kharlamov, D. Zheleznyakov, I. Horrocks,
C. Pinkel, M. G. Skjaeveland, E. Thorstensen, J. Mora, Bootox:
Bootstrapping OWL 2 ontologies and R2RML mappings from
relational databases, in: Proceedings of the ISWC 2015 Posters
& Demonstrations Track co-located with the 14th International
Semantic Web Conference (ISWC-2015), Bethlehem, PA, USA,
October 11, 2015., 2015.

C. Pinkel, C. Binnig, E. Jiménez-Ruiz, W. May, D. Ritze, M. G.
Skjeeveland, A. Solimando, E. Kharlamov, RODI: A benchmark
for automatic mapping generation in relational-to-ontology data
integration, in: The Semantic Web. Latest Advances and New
Domains - 12th European Semantic Web Conference, ESWC
2015, Portoroz, Slovenia, May 31 - June 4, 2015. Proceedings,
2015, pp. 21-37.

C. Pinkel, C. Binnig, E. Jiménez-Ruiz, E. Kharlamov, W. May,
A. Nikolov, M. G. Skjaeveland, A. Solimando, M. Taheriyan,
C. Heupel, I. Horrocks, RODI: Benchmarking Relational-to-
Ontology Mapping Generation Quality, in: Semantic Web —
Interoperability, Usability, Applicability, 2017.

http://oai.cwi.nl/oai/asset/20163/20163B.pdf
http://oai.cwi.nl/oai/asset/20163/20163B.pdf
http://oai.cwi.nl/oai/asset/20163/20163B.pdf
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/s00778-004-0147-z
http://oa.upm.es/15320/1/JEAN_PAUL_CALBIMONTE.pdf
http://oa.upm.es/15320/1/JEAN_PAUL_CALBIMONTE.pdf
http://dx.doi.org/10.1007/978-3-319-46547-0_31
http://dx.doi.org/10.1007/978-3-319-46547-0_31
http://dx.doi.org/10.1007/978-3-319-46547-0_31
http://dx.doi.org/10.1007/978-3-319-46547-0_31
http://dx.doi.org/10.1007/978-3-319-46547-0_31
http://doi.acm.org/10.1145/2933267.2933290
http://doi.acm.org/10.1145/2933267.2933290
http://dx.doi.org/10.1145/2933267.2933290
http://doi.acm.org/10.1145/2933267.2933290

(59]

[60]

[61]

(62]

[66]

(69]

[70]

D. Zheleznyakov, E. Kharlamov, V. Klungre, M. G. Skjaeveland,
D. Hovland, M. Giese, I. Horrocks, A. Waaler, Keywdb: A sys-
tem for keyword-driven ontology-to-rdb mapping construction,
in: Proceedings of the ISWC 2016 Posters & Demonstrations
Track co-located with 15th International Semantic Web Confer-
ence (ISWC 2016), Kobe, Japan, October 19, 2016., 2016.

D. Calvanese, I. Horrocks, E. Jiménez-Ruiz, E. Kharlamov,
M. Meier, M. Rodriguez-Muro, D. Zheleznyakov, On rewriting,
answering queries in obda systems for big data, in: OWLED,
2013.

P. Haase, C. Hiitter, M. Schmidt, A. Schwarte, The Information
Workbench as a Self-Service Platform for Linked Data Applica-
tions, in: WWW, 2012.

A. Soylu, M. Giese, E. Jimenez-Ruiz, E. Kharlamov,
D. Zheleznyakov, I. Horrocks, Why not simply Google?, in:
Proceedings of the 8th Nordic Conference on Human-Computer
Interaction: Fun, Fast, Foundational (NordiCHI 2014), ACM,
2014, pp. 1039-1042.

A. Soylu, M. Giese, E. Jimenez-Ruiz, E. Kharlamov,
D. Zheleznyakov, I. Horrocks, OptiqueVQS — Towards an
Ontology-Based Visual Query System for Big Data, in:
MEDES, 2013.

A. Soylu, M. Giese, E. Jimenez-Ruiz, G. Vega-Gorgojo, I. Hor-
rocks, Experiencing OptiqueVQS — a multi-paradigm and
ontology-based visual query system for end-users, Universal Ac-
cess in the Information Society 15 (1) (2016) 129-152.

A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez-Ruiz,
M. Giese, 1. Horrocks, Ontology-based Visual Query Formu-
lation: An Industry Experience, in: Proceedings of the 11th
International Symposium on Visual Computing (ISVC 2015),
Vol. 9474 of LNCS, Springer, 2015, pp. 842-854.

A. Soylu, E. Kharlamov, D. Zheleznyakov, E. Jimenez Ruiz,
M. Giese, M. G. Skjeeveland, D. Hovland, R. Schlatte,
S. Brandt, H. Lie, I. Horrocks, OptiqueVQS: a Visual
Query System over Ontologies for Industry, Semantic Web
(submitted), http://semantic-web-journal.net/content/
optiquevqgs-visual-query-system-over-ontologies-industry.
A. Soylu, M. Giese, R. Schlatte, E. Jimenez-Ruiz, E. Khar-
lamov, O. Ozcep, C. Neuenstadt, S. Brandt, Querying Industrial
Stream-Temporal Data: an Ontology-based Visual Approach,
Journal of Ambient Intelligence and Smart Environments 9 (1)
(2017) 77-95.

A. Soylu, M. Giese, R. Schlatte, E. Jimenez-Ruiz, O. Ozcep,
S. Brandt, Domain Experts Surfing on Stream Sensor Data over
Ontologies, in: Proceedings of the 1st International Workshop
on Semantic Web Technologies for Mobile and Pervasive Envi-
ronments (SEMPER 2016), Vol. 1588 of CEUR Workshop Pro-
ceedings, CEUR-WS.org, 2016.

A. Soylu, M. Giese, R. Schlatte, Ozgﬁr. C)dep, S. Brandt, A
Visual Query System for Stream Data Access over Ontologies,
in: Proceedings of the Satellite Events of the 13th European
Conference on the Semantic Web (ESWC 2016), Vol. 9989 of
LNCS, Springer, 2016.

A. Soylu, F. Moedritscher, F. Wild, P. De Causmaecker,
P. Desmet, Mashups by orchestration and widget-based per-
sonal environments: Key challenges, solution strategies, and an
application, Program: Electronic Library and Information Sys-
tems 46 (4) (2012) 383-428.

T. Catarci, M. F. Costabile, S. Levialdi, C. Batini, Visual query
systems for databases: A survey, J. of Visual Languages and
Computing 8 (2) (1997) 215-260. |doi:10.1006/jvlc.1997.
0037.

M. Arenas, B. Cuenca Grau, E. Kharlamov, S. Marciugka,
D. Zheleznyakov, Faceted search over RDF-based knowledge
graphs, Web Semantics: Science, Services and Agents on the
World Wide Web 37-38 (2016) 55-74.

B. C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov,
M. Arenas, Semfacet: Faceted search over ontology enhanced
knowledge graphs, in: Proceedings of the ISWC 2016 Posters
& Demonstrations Track co-located with 15th International Se-

25

[74]

[75]

[76]

[77]

78]

[83]

[84]

[85]

[86]

[87]

mantic Web Conference (ISWC 2016), Kobe, Japan, October
19, 2016., 2016.

B. C. Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov,
Y. Zhou, Querying life science ontologies with semfacet, in: Pro-
ceedings of the 7th International Workshop on Semantic Web
Applications and Tools for Life Sciences, Berlin, Germany, De-
cember 9-11, 2014., 2014.

M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, Faceted search over ontology-enhanced RDF
data, in: CIKM, 2014, pp. 939-948.

B. C. Grau, E. Kharlamov, D. Zheleznyakov, M. Arenas, S. Mar-
ciuska, On faceted search over knowledge bases, in: Informal
Proceedings of the 27th International Workshop on Description
Logics, Vienna, Austria, July 17-20, 2014., 2014, pp. 153—156.
M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, E. Jiménez-Ruiz, Semfacet: semantic faceted
search over yago, in: 23rd International World Wide Web Con-
ference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014,
Companion Volume, 2014, pp. 123-126.

M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, Towards semantic faceted search, in: 23rd
International World Wide Web Conference, WWW ’14, Seoul,
Republic of Korea, April 7-11, 2014, Companion Volume, 2014,
pp. 219-220.

M. Arenas, B. C. Grau, E. Kharlamov, S. Marciuska,
D. Zheleznyakov, Enabling faceted search over OWL 2 with sem-
facet, in: Proceedings of the 11th International Workshop on
OWL: Experiences and Directions (OWLED 2014) co-located
with 13th International Semantic Web Conference on (ISWC
2014), Riva del Garda, Italy, October 17-18, 2014., 2014, pp.
121-132.

B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, Hermit:
An OWL 2 reasoner, JAR 53 (3) (2014) 245-269.

A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov,
D. Zheleznyakov, I. Horrocks, Towards exploiting query his-
tory for adaptive ontology-based visual query formulation, in:
MTSR, 2014, pp. 107-119.

E. Kharlamov, B. C. Grau, E. Jiménez-Ruiz, S. Lamparter,
G. Mehdi, M. Ringsquandl, Y. Nenov, S. Grimm, M. Roshchin,
I. Horrocks, Capturing industrial information models with on-
tologies and constraints, in: The Semantic Web - ISWC 2016
- 15th International Semantic Web Conference, Kobe, Japan,
October 17-21, 2016, Proceedings, Part II, 2016, pp. 325-343.
E. Kharlamov, B. C. Grau, E. Jiménez-Ruiz, S. Lamparter,
G. Mehdi, M. Ringsquandl, Y. Nenov, S. Grimm, M. Roshchin,
I. Horrocks, SOMM: industry oriented ontology management
tool, in: Proceedings of the ISWC 2016 Posters & Demonstra-
tions Track co-located with 15th International Semantic Web
Conference (ISWC 2016), Kobe, Japan, October 19, 2016.,
2016.

M. Compton, P. M. Barnaghi, L. Bermudez, R. Garcia-Castro,
0. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. A. Henson,
A. Herzog, V. A. Huang, K. Janowicz, W. D. Kelsey, D. L.
Phuoc, L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. R.
Page, A. Passant, A. P. Sheth, K. Taylor, The SSN Ontology
of the W3C Semantic Sensor Network Incubator Group, J. Web
Sem. 17 (2012) 25-32.

A. Soylu, M. Giese, Qualifying Ontology-based Visual Query
Formulation, in: Proceedings of the 11th International Confer-
ence Flexible Query Answering Systems (FQAS 2015), Vol. 400
of Advances in Intelligent Systems and Computing, Springer,
2015, pp. 243-255.

A. Soylu, M. Giese, E. Kharlamov, E. Jimenez-Ruiz,
D. Zheleznyakov, I. Horrocks, Ontology-based End-user Visual
Query Formulation: Why, What, Who, How, and Which?, Uni-
versal Access in the Information Society (in press).

A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, E. Gi-
annopoulou, Ontology Visualization Methods - A Survey, ACM
Computing Surveys 39 (4) (2007) 10:1-10:43.

http://semantic-web-journal.net/content/optiquevqs-visual-query-system-over-ontologies-industry
http://semantic-web-journal.net/content/optiquevqs-visual-query-system-over-ontologies-industry
http://dx.doi.org/10.1006/jvlc.1997.0037
http://dx.doi.org/10.1006/jvlc.1997.0037
https://www.researchgate.net/publication/314681861

	Introduction
	Siemens Monitoring and Diagnostic Service
	Reactive and Preventive Diagnostics
	Predictive Analysis
	Siemens Requirements

	Ontology Based Data Access
	How OBDA Can Help in Improving Data Access in Siemens
	Existing OBDA Systems and Their Limitations

	Our OBSSDI Components
	STARQL Query Language
	Streaming and Static Relational Data Processing

	The Optique platform for Siemens
	Optique Platform
	Visual query formulation with OptiqueVQS
	Diagnostic Dashboards and Integration with Siemens Analytics

	Evaluation of Optique at Siemens
	Siemens Ontology
	Visual query formulation
	Performance Demonstration

	Lessons Learned, Conclusion, and Future Work

