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Abstract

This report will test how well the empirical mode decomposition (EMD)
algorithm performs on a field-programmable gate array (FPGA), using
solely fixed point arithmetic. The implementation is designed to receive a
data set of N 16 bits data points, and return the different intrinsic mode
function (IMF) components and the residue. The implementation is based
on the naive EMD, using cubic spline interpolation to generate the en-
velopes when finding the different IMF components. With fixed point
precision, there will be a certain error when storing a decimal number. By
applying precision bits, effectively multiplying the number by a factor of 2
for every bit applied, this error decreases. The implementation is designed
to be able to specify the amount of precision bits wanted for the cubic
spline calculations, with a maximum amount of 22. The implementation
is simulated and tested for different amount of bits, and the resulting IMF
components are compared to software implementation results using float-
ing point precision. For a data set containing 2048 samples of uniform
distributed noise, the number of precision bits would need to be greater
than 13. Fewer precision bits did not produce any meaningful result due
to the error for the later IMF component being too large. The error is
defined as the difference between the floating point, and the fixed point
precision results. This error is compared to the floating point precision
to gain a signal to noise ratio (SNR). For every new IMF extracted, the
SNR decreases. The main reason for this, is because the cubic splines are
made out of third order polynomials, which also applies to the error. This
means that the error would escalate quickly when the distance between
the extrema becomes large. This results in more precision bits needed for
later IMF components, in order to keep the SNR constant. For real-time
purposes, the input signal sampling frequency for this design can not be
higher than 159 kHz for N = 2048. This sampling frequency becomes less
for bigger window size, N , which was expected due to the complexity of
the EMD algorithm.



Sammendrag

Denne raporten tester hvor godt empirical mode decomposition (EMD)
fungerer på en field-programmable gate array (FPGA) ved kun å bruke
fastkomma aritmetikk. Implementasjonen er designet for å ta i mot et
datasett bestående av N 16 bits datapunkter, og returnere intrinsic mode
function (IMF) komponentene pluss resten. Implementasjonen er basert
på den naive EMD algoritmen, som bruker kubisk spline interpolering til
å generere omslagene som blir brukt til å finne IMF komponentene. Med
fastkomma presisjon, vil det kunne forekomme en avrundingsfeil når man
skal representere desimaltall. Ved å legge til presisjons bits, vil verdien
øke med en faktor på 2 for hvert ekstra bit. Dette vil føre til en mindre
avrundingsfeil, som igjen fører til bedre presisjon. Antall presisjons bits
for implementasjonen kan spesifiseres, maksimalt lik 22. Implementasjo-
nen er simulert og testet for forskjellig antall presisjonsbits, og de resulte-
rende IMF komponentene er sammenlignet med programvare implemen-
tering som bruker flyttalls presisjon. For et datasett med 2048 punkter
med uniformt fordelt støy, må man ha mer enn 13 presisjonsbits for å
få meningsfulle resultat for de siste IMF komponentene. Feilen på IMF
komponentene er definert som forskjellen mellom fastkomma og flyttalls
resultater. Denne feilen sammenlignes så med flyttalls resultatene for å
finne et signal-til-støy-forhold (SNR). Hver IMF kompnent vil ha en la-
vere SNR enn den forrige. Hovedgrunnen til dette er at kubisk spline er
bygget opp av tredje ordens polynomer, noe som også gjelder for feilen.
Denne feilen vil eskalere raskt når avstanden mellom punktene blir stor.
Dette betyr at flere presisjonsbits må legges til for å holde en konstant
SNR, ettersom flere og flere IMF komponenter er funnet. For sanntid, må
punktprøvingsfrekvensen for inngangssignalet være mindre enn 159 kHz
ved en vindusstørrelse på 2048 punkter. Denne grensen blir mindre når
antall punkter i inngangssignalet øker, noe som er forventet grunnet kom-
pleksiteten til EMD algoritmen.



1. Introduction

This report presents a hardware implementation of the EMD [5] for a
FPGA. It’s an experimental approach to test how well the EMD performs
relying solely on fixed point precision arithmetic in terms of precision,
speed and area usage. EMD is a powerful tool for extracting IMF com-
ponents from any arbitrary waveform. The algorithm is effectively a dy-
namic filter, and if performed on white noise, the IMF components be-
come normally distributed, and their respective Fourier spectra becomes
identical [12]. The EMD was introduced by Nordon E. Huang and his
group at NASA in 1998 [5]. It was developed to extract information from
non-linear and non-stationary data sets. EMD has been used in different
fields, such as physics [3], image analysis [14], biomedicine [4, 7, 6, 8],
mechanical health diagnosis [15] and others. The motivation behind im-
plementing the algorithm in hardware, is to reduce the time consumption
when performing EMD. Because fixed point operations perform much bet-
ter in terms of speed compared to floating point operations, it will be used
throughout the whole design. The downside of this, is that fixed point
representation requires external bits in order to get a certain precision.
The implementation will be tested using different amount of precision
bits. The results will be compared to fixed point precision results as an
SNR. Testing, synthesizing and simulations will be done in Quartus, and
ModelSim respectively. The whole hardware implementation is written in
Verilog, and tested in ModelSim using a custom made test bench. The
hardware implementation will be using the integer arithmetic intellectual
property (IP) core [2] multiplication, division, and addition/subtraction
when synthesizing the design. Resource usage will be measured in num-
ber of Adaptive Logic Modules (ALM), registers, memory bits and digital
signal processing (DSP) blocks used and a speed test will be performed for
different window size, N . First off, the theory behind the EMD algorithm
and the cubic spline interpolation will be presented. This will be the foun-
dation of the whole implementation throughout the report. Following in
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Chapter 3, presenting the approach on how to implement the algorithm
in terms of arithmetic operations needed, how the data flows through the
system, and how the numbers are represented in terms of bits. Lastly in
Chapter 5, the implementation will be tested and the results compared to
a software implementation with floating point precision.
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2. EMD background and theory

This chapter will give an introduction to the theory behind the EMD al-
gorithm [5]. Given an input signal x[n] = x(nTs), Ts being the sampling
period, x ∈ R, n ∈ Z and n = [0 : N − 1], EMD decomposes a signal x[n]
into K IMF components, Ck[n], k = [1 : K]. The signal can be described
by the sum of its IMF components and the leftovers referred to as the
residue, rK+1,0[n]. Equation 2.1 shows the result when EMD is applied to
a signal x[n]

x[n] =
K∑
k=1

Ck[n] + rK+1,0[n]. (2.1)

For any given signal with N (also referred to as the window size) num-
ber of samples, the number of IMF components contained in the signal
will be[13],

K ≤ log2(N) (2.2)

An IMF is an oscillating function that can have a time varying frequency
and amplitude. It is defined by the following conditions as stated in [5,
ch. 4]

• 1: in the whole data set, the number of extremum and the number
of zero crossings must either equal or differ at most by one

• 2: at any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

The residue, can never be an IMF, and will either equal zero or be a
monotonically increasing or decreasing function. EMD uses a process
called sifting to identify the different IMF components. The process in-
volves finding a curve that best describes the center of the signal x[n] at
any point. This is done by calculating an upper and a lower envelope, u[n]
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and l[n], that encapsulates the signal, and then calculating the mean, µ[n],
of the two envelopes.

µ[n] =
u[n]− l[n]

2
(2.3)

Figure 2.1 illustrates a signal x[n] and its respective upper and lower en-
velopes and the mean, µ[n].
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Figure 2.1.: Upper, lower and mean envelopes, u[n], l[n] and µ[n], of a
signal x[n].

µ[n] gives a good approximation of the middle of the signal x[n]. The
envelopes are calculated by first identifying all the extrema in x[n], and
then interpolate between all the maxima to gain the upper envelope, and
all the minima to gain the lower envelope. The goal of the interpolation,
is to get a curve that represents the outer boundaries of the signal as
accurate as possible. This report will be using cubic spline interpolation
for this purpose. After the mean envelope is computed, it’s subtracted
from x[n] to produce a signal r1,1[n] more symmetric with respect to zero,

r1,1[n] = r1,0[n]− µ1,0[n] (2.4)

r1,1[n] is the result after one iteration of the sifting process, for finding the
first IMF component, shown in Figure 2.2.
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Figure 2.2.: The result after performing one iteration of the sifting process
on x[n], r1,1[n].

Clearly r1,1[n] has become more symmetric, and is one step closer to
become an IMF. A flowchart of the EMD algorithm can be found in Figure
2.3. There are two iteration parameters, k and m. k indicates that the k’th
IMF is being extracted from x[n], and m is a parameter indicating how
many sifting iterations performed. As the input signal, x[n], enters the
algorithm, it is assigned to r1,0[n], meaning the signal that the first IMF
component is to be identified, and zero sifting iterations has been per-
formed. r1,0[n] is then checked if it is monotonic or zero. If no, this means
it contains at least one IMF, and the sifting process begins. The maxima
and minima are identified, and the upper and the lower envelopes, u1,0[n]
and l1,0[n] are calculated with cubic spline interpolation.
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Figure 2.3.: Flowchart of the EMD algorithm.
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The mean envelope µ1,0[n] is calculated and then subtract from r1,0[n]
to produce r1,1[n] as shown in Equation 2.4. m is incremented, and the
first sifting iteration is finished. An IMF check is performed on r1,1[n], and
if it does not satisfy the conditions, the second sifting iteration begins.
After M1 iterations the conditions are satisfied, and the sifting process is
done. The obtained IMF components is then saved as C1[n]. Now r2,0[n]
is produced by subtracting C1[n] from r1,0[n] as shown in Equation 2.5.

r2,0[n] = r1,0 − C1[n] (2.5)

The whole process is then repeated on r2,0[n] to find the next IMF com-
ponent. After all the K IMF components has been identified, the left-
overs rK+1,0[n] has either become a monotonic signal or zero, which is
the residue.
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2.1. Cubic Spline Interpolation

Interpolation is used to generate the envelopes in the sifting process. This
section will present the theory behind Cubic spline interpolation as de-
rived in[1]. A cubic spline is a curve designed to best fit a set of points
with arbitrary spacing. It is constructed peacewise of I third-order poly-
nomial curves, connecting a set of I+ 1 specified data points, zi = (xi, yi),
i = [0 : I]. The characteristics of the cubic spline are[1]:

1. The spline passes through all specified data points.

2. First derivative continuity at interior point.

3. Second derivative continuity at interior point.

4. Boundary conditions specified at the free ends.

Figure 2.4 shows an example of 5 points and the splines connecting
them all together. Here I = 4.
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Figure 2.4.: Cubic spline connecting 5 data points, z0 to z4.

The different splines si(x) are constructed by the third order polynomial
equation in Equation 2.6.

si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di ; x ∈ [ 0, hi ) (2.6)
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where xi is the x coordinate of point zi, and ai, bi, ci and di are the
spline coefficients unique to each of the splines. Each spline connects
two neighbour points, and the coefficients can be determined by the y
coordinate of the two points, the spacing between them at the x-axis,
hi = xi+1 − xi, and the second derivative at each point, y′′i and y′′i+1 as
shown in Equation 2.7 - 2.10.

ai =
(y′′i+1 − y′′i )

6hi
(2.7)

bi =
y′′i
2

(2.8)

ci =
(yi+1 − yi)

hi
−
y′′i+1hi

6
−
y′′i hi

3
(2.9)

di = yi (2.10)

The second derivatives can be found by solving the governing equation
for cubic splines [1], shown in Equation 2.11.

hi−1y
′′
i−1 + 2(hi−1 + hi)y

′′
i + hiy

′′
i+1 = 6[

yi+1 − yi
hi

− yi − yi−1
hi−1

] (2.11)

To simplify the notation, Ai, Bi, Ci and Di are substituted into the
equation as shown in Equation 2.12,

Aiy
′′
i−1 +Biy

′′
i + Ciy

′′
i+1 = Di (2.12)

Where

Ai = hi−1 (2.13)

Bi = 2(hi−1 + hi) (2.14)

Ci = hi (2.15)

Di = 6

[
yi+1 − yi

hi
− yi − yi−1

hi−1

]
(2.16)

This equation can be extended to a tridiagonal matrix, as shown in Equa-
tion 2.17, containing the information to calculate the second derivatives
in every point zi.
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

B0 C0

A1 B1 C1

A2 B2 C2
. . .

. . .
. . . CI−2
AI−1 BI−1 CI−1

AI BI





y′′0
y′′1
...
...
...

y′′I−1
y′′I


=



D0

D1
...
...
...

DI−1
DI


(2.17)

Here B0, C0, AI and BI are initial conditions, and needs to be chosen.
For this report, natural boundary conditions is used. The natural boundary
conditions implies that y′′0 = y′′I = 0, resulting in B0 = BI = 1, C0 = AI =
0, and D0 = DI = 0[1]. To solve this system, the Thomas algorithm
[10] (also referred to as the tridiagonal matrix algorithm) is used1. The
Thomas algorithm solves any tridiagonal matrix in O(I) operations. This
algorithm consists of two steps. The first step involves a forward sweep,
calculating two new variables, Ĉi and D̂i, referred to as primes, where

Ĉi =


Ci

Bi
; i = 0

Ci

Bi −AiĈi−1
; i = 1, 2, ..., I − 1

(2.18)

and

D̂i =


Di

Bi
; i = 0

Di −AiD̂i−1

Bi −AiĈi−1
; i = 1, 2, ..., I

(2.19)

The second step is a backwards substitution to calculate the second deriva-
tives as shown in Equation 2.20.

y′′i =

{
D̂i ; i = I

D̂i − Ĉiy′′i+1 ; i = I − 1, I − 2, ..., 0
(2.20)

1A brief summary of the Thomas algorithm can be found at https://en.wikipedia.

org/wiki/Tridiagonal_matrix_algorithm
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The spline coefficients can now easily be found by inserting the second
derivative in Eq. 2.7, 2.8, 2.9 and 2.10, and the cibic spline can be calcu-
lated.
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3. EMD implementation approach

The idea behind the implementation is shown in Figure 3.1. It consists
of a sifting module which performs the sifting process, and a controller
with access to block RAM. The implementation receives a data set x[n],
consisting of N 16-bits samples, N being a power of 2, and returns the
IMF components and the residue at the output.

Figure 3.1.: Block diagram of the EMD implementation.

The sifting module performs the different steps within the sifting box
illustrated by the flowchart in Figure 2.3, Chapter 2, except the last step
involving subtracting the mean envelope. This effectively means that for
an input signal rk,m[n], the module calculates the mean envelope, µk,m[n].
The controller subtracts the mean envelope, and then checks if the new
data set has become an IMF. If not, the controller sends it back to the sift-
ing module to perform another sift iteration. As mentioned, the controller
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has access to block RAM which is used to temporarily store the different
rk,m[n] generated after each sift iteration. Each of the rk,0[n] is also stored,
and accessed when rk,m[n] has become an IMF component. The memory
is then updated by subtracting the newly discovered IMF from rk,0[n]. Be-
fore the sifting process begins, the controller checks whether rk,0[n] is a
monotonic component or zero. If so, this is the residue, which no more
IMF component can be extracted. Whenever an IMF, Ck[n], it is located,
it’s automatically sent to the output of the module. The implementation
finishes when the residue is identified.

The sifting module is implemented as illustrated by Figure 3.2. First the
extrema from the input data set rk,m[n], are identified. Then the maxima
and minima are separated, and directed to their own cubic spline mod-
ule to generate the upper and the lower envelopes, uk,m[n] and lk,m[n]
respectively.

Figure 3.2.: Block diagram of the sift implementation.

ϕk,m[p] contains the maxima of rk,m[n], and ξk,m[q] contains the minima.
To ensure that the splines generated are of length N , the first and the last
sample of rk,m[n] are marked as both a maxima and a minima. p and q are
variables ranging from 0 to Pm,k − 1, and 0 to Qm,k − 1 where Pm,k and
Qm,k are the number of maxima and minima of rk,m[n]. The cubic spline
module consists of 5 steps as discussed in Section 2.1. Figure 3.3 shows
the block diagram of the cubic spline implementation.
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Figure 3.3.: Block diagram of the cubic spline implementation.

First the matrix coefficients needed for the matrix in Equation 2.17 are
calculated. Then the tridiagonal matrix algorithm is performed by first
calculating the primes in Equation 2.18 and 2.19, and the calculate the
second derivatives as in Equation 2.20. Then the spline coefficients are
calculated as in Equation 2.7 - 2.10, and used in the last step to calculate
each of the splines as in Equation 2.6. Interpolation is costly in terms of
speed, propagation delay and area usage, and will be the main optimiza-
tion area. A more detailed implementation of the Cubic spline interpola-
tion will be presented in the next section.

3.1. Cubic spline hardware implementation

This section will present a more detailed strategy on how the cubic spline
interpolation is implemented in terms of hardware. The implementation
is based on the theoretical presentation in Section 2.1. Every variable is
represented as an array, A[i], containing I coefficients, A[i] = {Ai}I−1i=0 .
Each of the splines si(x) from Equation 2.6, are represented by a discrete
variable wi, as shown in Equation 3.1,

si[wi] = si(wiTs)

= ai(wiTs)
3 + bi(wiTs)

2 + ci(wiTs) + di;

wi ∈ [0, 1, ..., hi − 1]

(3.1)

where Ts is the sampling period of the input signal x[n]. Here hi is the
number of samples between two neighbour points. For illustration, the
cubic spline module for calculating the upper envelope uk,m[n] in figure
3.2, is used as an example. The two cubic spline modules are an exact
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copy of each other, and thus only one of them is presented. To simplify
the notation, the iteration parameters k and m are not noted.

The hardware implementation of the cubic spline is divided into five cal-
culation steps, also referred to as modules. The different steps are shown
in Figure 3.4. Here, the input, ϕ[i], is an array containing I + 1 maxima,
which represents the y coordinate of the different data points {zi}Ii=0. h[i]
is an array containing the distance between each of the maxima in terms
of samples. The output u[n] is an array with I different splines concate-
nated, as shown in Equation 3.2.

u[n] = {s0[0], s0[1], ..., s0[h0 − 1], s1[0], s1[1], ...,

s1[h1 − 1], ..., sI−1[0], sI−1[1], ..., sI−1[hI−1]}
(3.2)

Figure 3.4.: Cubic spline hardware implementation overview.

The five calculation steps are:

1. Calculating A[i], B[i], C[i], and D[i] containing all the matrix coeffi-
cients (Equation 2.13 - 2.16).

2. Calculating the primes Ĉ[i] and D̂[i] from the tridiagonal matrix al-
gorithm (Equation 2.18, 2.19).

3. Backward substitution to find the second derivatives y′′[i] (Equation
2.20).

4. Calculate the spline coefficients a[i], b[i], c[i] and d[i] (Equation 2.7
- 2.10).
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5. Calculating the I splines from Equation 3.1, and concatenate them
as in Equation 3.2 to receive the upper envelope, u[n].

Each of these five calculation steps will be presented in terms of arith-
metical operations needed to perform the calculations. Figure 3.5, 3.6,
3.7, 3.8 and 3.9 illustrates this respectively. The local critical path, mean-
ing the longest path delay through each of the modules will be highlighted
in red.

1) Calculating the matrix coefficients

Figure 3.5 shows the the different arithmetic operations needed to calcu-
late the different matrix coefficients. The << represents bit shift to the
left, effectively meaning multiplying by a factor of 2. The critical path
within this module consists of 2 subtractions, 1 division and 1 multiplica-
tion.

Figure 3.5.: Signal propagation for finding the matrix coefficients (Equa-
tion 2.13 - 2.16).

Division is a very costly operation in terms of hardware. It requires
the most resources of all the arithmetic operations in this design, and has
the most impact on the critical path. It turns out that for calculating the

22



spline coefficient, no division is needed at all. By multiplying by hi−1 and
hi to each side of the governing equation in Equation 2.11, the division
disappears completely, resulting in new matrix coefficients, Ãi, B̃i, C̃i, D̃i.

Ãi = hih
2
i−1 (3.3)

B̃i = 2(hih
2
i−1 + h2ihi−1) (3.4)

C̃i = h2ihi−1 (3.5)

D̃i = 6 [(ϕi+1 − ϕi)hi−1 − (ϕi − ϕi−1)hi] (3.6)

where ϕ represents y. Thus no division is required for calculating these
new matrix coefficients, the design was still implemented as shown in
Figure 3.5. This decision was made because the new matrix coefficients
required too many bits to be represented. The amount of bits needed to
represent a number will be discussed in Chapter 4. Also, there are two
main reasons to try to avoid division in hardware. One is to reduce the
total resource usage, and the other is to reduce the critical path of the
whole system. This path is not found in this module, but in the mod-
ule calculating the primes. If the new coefficients where to be used, the
change would only results in an increase in bits needed to represent the
coefficients. Overall this will result in an increased resource usage which
would outweigh the resources saved from not doing the division.

2) Calculating the primes

The prime calculation is the bottleneck of this EMD implementation. The
signal propagation path is shown in figure 3.6. The critical path of this
module consists of 2 subtractions, one division and 2 multiplications, and
is the longest path in the whole system.
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Figure 3.6.: Signal propagation for finding the primes (Equation 2.18,
2.19).

In this design an intellectual property (IP) named LPM DIVIDE [2, pp.
29 - 34] is used for division. This divider can perform division in one clock
cycle, for inputs up to 64 bits. Because of this input bit limit, it is preferred
to keep the number of bits needed by the input, low. This makes room for
more precision bits resulting in an increased precision when performing
the division. Because of this, the setup in Figure 3.6 does not directly
follow Equation 2.19 when calculating D̂i. Instead, the representation is
split up into two divisions as shown in Equation 3.7

D̂i =
Di

Bi −AiĈi−1
−

D̂i−1

Bi −AiĈi−1
×Ai (3.7)

The precision bits are necessary to maintain a certain precision when
doing fixed point arithmetic, and will be discussed in Chapter 4. By split-
ting the equation into two divisions, An can be multiplied after the divi-
sion is finished.
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3) Calculating the second derivatives

For calculating the second derivatives, only one multiplication and one
subtraction is needed.

Figure 3.7.: Signal propagation for finding the second derivative (Equa-
tion 2.20).

4) Calculating the spline coefficients

Calculating the spline coefficients requires the most resources out of the
five modules, shown in Figure 3.8. It consists of 4 subtractions, 4 divisions,
3 multiplications, and one bit shift right. The critical path of this module
consists of 2 subtractions, one division and one multiplication. The >>
represents a bit shift to the right. This effectively divides the represented
value by 2 for every right shift. The shifting operation is a so called free
operation in hardware in terms of speed. This is because it only involves
removing the least significant bit, and adding a new bit set to zero as the
most significant bit. If the number to be shifted is odd, the result will be
0.5 less than the results from a real division by 2. This difference can be
reduced by adding precision bits, which will be discussed in Chapter 4.
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Figure 3.8.: Signal propagation for finding the spline coefficients (Equa-
tion 2.7 - 2.10).

5) Calculating the splines

The last part of the cubic spline module is the spline calculation. Ev-
ery coefficient ai, bi, ci, and di is used together to produce one unique
spline s[wi], containing a total of hi samples, where hi is the number of
samples between two maxima, ϕi and ϕi+1. To calculate each of these
samples in s[wi], there has to be a counter counting through the interval
wi = [0, 1, ..., hi−1]. Figure 3.9 shows this counter which receives the spac-
ing hi, and outputs the array wi. Every array is represented as a bold line,
and all the multiplications performs element-wise multiplication. This
means that for any two input arrays Āi = [Ā0, Ā1, ..., Āhi−1] and B̄i =
[B̄0, B̄1, ..., B̄hi−1] the multiplication result will be C̄i = [Ā0B̄0, Ā1B̄1, ..., Āhi−1B̄hi−1].
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Figure 3.9.: Signal propagation for calculating the splines (Equation 2.6).

The critical path of this module consists of 3 multiplications and one
addition.

3.1.1. Arithmetic operation requirement summary

Table 3.1 summarizes the arithmetic operations required by each of the
modules, as well as the total requirement by the whole cubic spline mod-
ule. Each of the five steps are referred to with a shortened name. The
shortened name of step one to five follows respectively: CMC, CP, CSD,
CSC, CS.

Operation CMC CP CSD CSC CS Total
Addition/Subtraction 4 2 1 4 3 14
Multiplication 1 2 1 3 6 13
Division 2 3 0 4 0 9
Bit shift left/right 1 0 0 1 0 2

Table 3.1.: Amount of arithmetic operations required by each of the five
steps in the cubic spline calculation.
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3.2. Data flow

This section will present how the data flows through the sifting module
in figure 3.1. The data flow relies on registers, first in first out (FIFO)
and first in last out (FILO) queues. The examples will only follow the
upper envelope generation from Figure 3.2. For simplicity, the iteration
parameters k and m are not noted in the examples. Figure 3.10 shows the
three stages of computation within the sift module.

Figure 3.10.: Data flow through the sift module.

The implementation is pipelined, with each of the stages illustrated with
the dotted lines. A pipelined implementation is a technique that allows
multiple processes overlap in execution. More detailes about pipelining
can be found in [9, ch. 4.5]. Each of the stages has different execution
time. The blocks with the n indexation, represents a register containing
the respective n’th sample, in case of stage one, the n’th sample of the
input signal r[n]. The arrow pointing to i indicates an index change. The
first stage stores 3 samples rn+1, rn and rn−1 and marks rn as a maxima
if the two neighbour samples are smaller. Every clock, the registers values
are being shifted to the right, and a new sample enters. When a max-
ima, ϕi, is identified, it enters the cubic spline module in stage two. δcs
indicates the total execution time for the cubic spline module, which will
be presented later in this section. The implementation of the cubic spline
module is also pipelined, as shown in Figure 3.11. Each of the five steps
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presented in Section 3.1 are the different stages in the pipeline.

Figure 3.11.: Data flow through the cubic spline module.

Stage 1 uses a single clock cycle to produce the i’th matrix coefficients,
Ai, Bi, Ci, Di, after an initial delay of three cycles needed for the data to
clock through the three registers. Calculating the primes in stage 2, has
an initial delay of 1 clock cycle, before the primes, Ĉi and D̂i, enters the
next stage one by one each respective clock cycle. Stage 3, calculating the
second derivatives consists of 2 FILO queues. The first queue is needed to
gather all the data points, in order to perform the backwards substitution
in Equation 2.20. The FILOs reverse the order of the data points, thus a
second queue is needed to reverse the order once more. There will be a
hold of 2I clock cycles from the first primes, Ĉ0 and D̂0, enters, before y′′0
returns. The remaining second derivatives then follows one by one each
respective clock cycle. Stage 4, calculating the spline coefficients, has the
same behaviour as stage 1 and 2, with an initial delay of 2 clock cycles.
Stage 5 calculates a spline segment, si[wi] (Equation 3.1), for each of the
coefficients, ai, bi, ci and di. Each spline si[wi] consists of hi samples, and
uses one clock cycle to produce each respective sample, hi clocks in total.
Each of the spline segments are returned as a part of u[n], as shown in
Equation 3.2. The initial delay of stage 5 is one clock cycle, before pro-
ducing a sample of u[n] every clock cycle respectively. FIFO queues are
being used between stage 4 and 5 to temporarily store the spline coeffi-
cients when the different spline segments are being calculated. Because
the FIFOs are used only as temporary storage, they’re not considered a
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stage of the pipeline. The FIFOs introduces a delay of 2 clock cycles for
the first sample, and 1 clock cycle every time it outputs a sample.

Now how to find δcs, being the total execution time of the cubic spline
module. Lets consider the last maxima entering the module, ϕI . Defin-
ing δcs as the time it takes from this sample enters, to the last sample of
u[n], uN−1, leaves the module, it can be derived as followed. It will take
a maximum of 4 clock cycles before D̂I enters the first FILO in step 3.
Then another I cycles to calculate the second derivatives, and store them
in the second FILO. Lastly it will take 5 clock cycles before the first spline
coefficients, a0, b0, c0 and d0 are stored in the spline calculation module in
stage 5. The last sample of the upper envelope u[n], uN−1, will then leave
the module after N+I−1 clock cycles (because the FIFO is accessed I−1
times after a0, b0, c0 and d0). Summing all the delays results in a δcs as
shown in Equation 3.8

δcs = 8 + 2I +N (3.8)

This delay will occur for every cubic spline calculation. For this imple-
mentation, with N being a power of 2, and the first and last sample in the
data set being a maxima, the maximum number of maxima contained in
the data set Imax = N

2 + 1. By inserting Imax in Equation 3.8 gives us the
maximum delay for any data set δcs max = 2N + 10 clock cycles.
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4. Fixed point bit representation

When dealing with fixed point arithmetic, extra bits may be needed when
performing multiplication and addition/subtraction to prevent overflow.
Overflow happens when trying to represent a number with too few bits.
For instance, trying to represent 16 as unsigned, 5 bits are needed (100002),
but if there’s only 4 available, the fifth bit will be chopped off, leaving
behind the remaining 4, resulting in a value of 0 (00002). When two un-
signed numbers are multiplied together, each number being represented
with n and m bits respectively, the result would need n+m bits in order to
be able to represent all the possible results. When adding or subtracting,
the result would need n+ 1 bits if n > m or m+ 1 bits if n < m. The extra
bits added in the result, will be referred to as extension bits. Fixed point
numbers can only represent whole numbers, which can be a problem if
decimal precision is needed. A way to increase the precision is to mul-
tiplying the represented number by 2, by adding an extra bit as the least
significant bit (lsb), referred to as a precision bit. Figure 4.1 shows a 16 bit
unsigned sample, with L extension bits and M precision bits respectively.

Figure 4.1.: Fixed point bit representation structure.

For every decimal number, A, represented as fixed point, Afix, the pre-
cision will be within a certain range E, depending on the number of pre-
cision bits, M .
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Afix = A− E (4.1)

where the error, E, being within the range shown in Equation 4.2.

1

2M
≥ E ≥ 0 (4.2)

This error will impact the result when doing multiplication, addition/-
subtraction or division. More details about this can be found in Appendix
A. For this implementation, it means that more precision bits gives better
results, but at the cost of an increase in area usage. Table 4.1 gives an
overview on how many bits that are used for each of the outputs of the
different modules in Figure 3.4. The shortened version of the names used
in Table 3.1 are used to represent the different modules.

CMC Bits CSC Bits
A[i] log2(N) a[i] 16 + 2Mcs

B[i] log2(N) + 2 b[i] 16 + 2Mcs

C[i] log2(N) c[i] 16 +Mcs

D[i] 4 + 16 +Mm d[i] 16 +Mm

CSD Bits CP Bits

y′′[i] 16 +Mcs Ĉ[i] Mcs

D̂[i] 16 +Mcs

Table 4.1.: Number of bits used to represent each of the outputs of the
different modules in the cubic spline calculation.

This implementation assumes that x[n] consists of 16 bit samples. In
Figure 4.1, this means that the Data bits are 16 bits wide. In Table 4.1
this is listed as ′′ + 16′′ in the ”Bits” column. Every number before the
′′ + 16′′ is the extension bits, and the number after is the number of preci-
sion bits. There are two kinds of precision bits in Table 4.1, Mcs and Mm.
Mcs is the amount of precision bits specified in the test bench, used for the
cubic spline calculation. This means for every decimal number generated
inside the module, Mcs precision bits are being used. Mm is the amount of
precision bits used by the block ram in Figure 3.1. This ups the precision
of the temporary storing, and is needed because µk,m[n] contains decimal
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numbers. The only reason why Mm is specified, and not just set to equal
Mcs, is to reduce the total memory requirement. The temporary storing
does not need the same precision as needed when calculating the cubic
spline parameters.

Now, let’s go back to Section 3.1. Consider Equation 3.7 , and how it
differs from Equation 2.19. Of course these equations are the same, but
re-ordered in terms of operations. This re-ordering has an impact on the
number of bits required to perform the different operations. For instance
consider the numerator and the denominator in Equation 2.19 and call
them σ, and τ respectively. σ = Di − AiD̂i−1 and τ = Bi − AiĈi−1. In
terms of hardware, both σ and τ would be the input of a division circuit.
To represent σ, a total of 1+log2(N)+16+Mcs bits is needed for N ≥ 16.
τ would need log2(N) + 2 + Mcs bits. The precision of the result after a
fixed point division, Mresult, is determined by the difference in precision
bits of the numerator, Mσ and denominator, Mτ .

Mresult = Mσ −Mτ (4.3)

Because Mσ and Mτ both equals Mcs, the resulting precision bits would
equal 0. For Mresult to be equal Mcs, σ would need 1+log2(N)+16+2Mcs

bits. With the limitation on the LPM DIVIDE IP core divider, of a maximum
of 64 bits at the input, this will give a maximum of 18 bits with a window
size N = 2048, 64 = 1 + 11 + 16 + 2 · 18. This precision will of course
decrease with bigger N .

Now consider Equation 3.7. Here the denominator are the same as τ ,
but the numerators only requires 4 + 16 + Mm bits. To get Mcs precision
after the division, D[i] would need 4 + 16 + 2 ·Mcs bits. This means that
Mcs could be a maximum of 22 bits, independent of the window size N ,
64 = 4 + 16 + 2 · 22. The number of bits required for the denominator
still depends on N , but since N has to be huge in order to reach the limit,
log2(N) + 2 + 22 = 64, this is not of any concern.
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5. Testing and results

The testing is performed using Matlab to generate ideal EMD results with
floating point precision, Quartus Prime to analyse and synthesize the Ver-
ilog hardware description language (HDL) code, and ModelSim to run
a register transfer level (RTL) simulation with specified precision. The
whole testing environment and setup is shown in Figure 5.1

Figure 5.1.: Testing environment for receiving the floating point precision
IMF results, fixed point precision simulation results, and com-
paring them to each other.

The whole simulation in ModelSim is defined by a test bench. The test
bench contains information about how many precision bits the module is
going to use, the input data for the module, and what results to store.
First off, the HDL code is analyzed and synthesized in Quartus. Then
the RTL simulation is called and executed in ModelSim. Meanwhile, a
random data set is generated in Matlab, and saved to a .dat file. This
file is accessed in the RTL simulation, and the resulting IMF components
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are written to another .dat file. The result file is then read in Matlab and
compared to the floating point precision IMF components.

5.1. IMF results

The data set xtest[n] was used for testing, and consists of 2048 samples of
uniform distributed noise, shown in Figure 5.2.
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Figure 5.2.: Test data, xtest[n], consisting of 2048 samples of uniformly
distributed noise.

The data has a maximum amplitude of 213 which is within the range
of a 16 bit signed representation ranging from 215 − 1 to −215. Each IMF
component received from the RTL simulation is noted as C̃k[n]. The float-
ing point precision results, fixed point precision results and the difference
between them are shown in Figure 5.3. The simulation was performed
using 22 precision bits, Mcs = 22, and 21 memory bits, Mm = 21 (will not
change for any test results throughout the rest of this report), which is the
maximum for this deign.
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Figure 5.3.: IMF components of xtest[n]. Floating point precision on the
left, fixed point precision in the middle, and the difference
between them on the right.

To measure how much the fixed point precision results, equals the float-
ing point results, SNRk, is calculated for each of the IMF components,
where

SNRk =

N∑
n=1

(Ck[n])2

N∑
n=1

(Ck[n]− C̃k[n])2

(5.1)
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Figure 5.4 shows the different SNR in decibel for every IMF component,
with different precision bits, Mcs ranging from 13 to 22.
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Figure 5.4.: SNR for all the IMF components, with precision bits, Mcs,
ranging from 13 to 22.

The 8’th IMF is not plotted because it turned out that no sifting was
performed to find it. With Mcs = 13, the energy of the error from the
7’th IMF, is almost as big as the IMF itself. With an error that big, this
means that the IMF does have any meaningful value. By increasing the
number of precision bits, the SNR increases by about 14 dB for every extra
precision bit. Mcs = 22 is the highest precision available in this design,
and has a SNR of about 175 dB for the 7’th IMF. An interesting observation
is that it’s not the amount of sifting performed on the signal that has the
most impact on the SNR, it’s all about the distance between the extrema
when performing sift. Figure 5.5 shows the average number of samples
between the maxima, havg[k] =

{
havg,k

}K
k=1

, and the total number of sift
iterations performed for every IMF component, m[k] = {mk}Kk=1, where

havg,k =

Ik−1∑
i=0

hi,k

Ik − 1
(5.2)

and Ik being the total number of maxima in each IMF component.
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Figure 5.5.: To the left, the average number of samples between the max-
ima for every IMF component, havg[k], and to the right, the
number of sift iterations performed to find them, m[k].

The reason why the distance is the leading factor for decreasing SNR,
has to do with the cubic splines. Since the splines are constructed as a
third order polynomial, the error will also be a third order polynomial.
This means that better precision is needed for the spline coefficients, ai,
bi, ci, and di, (Equation 2.7 - 2.10) in order to maintain the same SNR as
the distance between the extrema increases.

5.2. Area usage

The area usage is measured by number of adaptive logic modules (ALMs),
registers, memory bits and digital signal processing units (DSPs) used
when compiling the design in Quartus Prime. The usage will be presented
in terms of resources per sample, R′[N ],

R′[N ] = R[N ]/N (5.3)

where R[N ] is the total usage of resources for different window size N .
Figure 5.6 shows the resource usage per sample for ALMs, registers and
memory bits, R′ALM[N ], R′reg[N ] and R′mem[N ].
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Figure 5.6.: Resource usage per sample for different input window size,
N .

The resource usage per sample for the registers and the ALMs, R′reg
ans R′ALM, seems to be converging to a constant, ν, R′[N ] → ν when
N →∞. This property makes Equation 5.4, a good approximation for the
two curves.

R′[N ] =
Rinit

N
+ ν (5.4)

where Rinit is a constant resource requirement unaffected by N . By
experimenting in Matlab, it turns out that Equation 5.5 and 5.6 gives the
best fit to the curves respectively.

R′ALM[N ] ≈ 17250

N
+ 35 (5.5)

R′reg[N ] ≈ 3950

N
+ 38 (5.6)

The memory bits per sample, R′mem, is almost constant for different N .

R′mem[N ] = 540 + 2 · log2(N) (5.7)

The reason why it’s not fully constant, is because of the FIFO memory
for storing the cubic spline parameters. The parameters increases in num-
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ber of bits for bigger N , as shown in Table 4.1 in Chapter 4. The total DSP
requirement where constant for different N

RDSP = 52 (5.8)

5.3. Speed

All the speed testings is done by multiplying the total number of clocks
used by the implementation to finish, by the minimum clock frequency re-
ceived from TimeQuest analysis in Quartus1. The total amount of time
used by the implementation to finish for different input window size,
Tf [N ], is shown in Figure 5.7.
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Figure 5.7.: Execution time for different input window size, N .

Now lets look at the average time it takes per sample for the implemen-
tation to finish, T ′f [N ], shown in Figure 5.8.

T ′f [N ] =
Tf [N ]

N
(5.9)

1Reading Fmax in the Slow 900mV 100C Modle. This module assumes extreme condi-
tions, meaning a low input voltage of 900 mV at a temperature of 100 ◦C
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Figure 5.8.: Execution time per sample for different input window size,
N .

The result shows that the the time per sample increases as N becomes
larger. This behaviour is expected because it is known from [11] that
the time complexity of the EMD algorithm is O(N logN). For real-time
performance, this means that the maximum sampling frequency for the
input signal, Fs, decreases when N increases. The maximum limit for the
sampling frequency,

Fs lim = T−1f (5.10)

is shown in Figure 5.9.
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Figure 5.9.: Maximum input sampling frequency for real-time perfor-
mance, Fs lim[N ], for different input window size, N .

Figure 5.10 shows how the maximum clock frequency fclock max changes
with increasing N .
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Figure 5.10.: Maximum clock frequency for the design, for different input
window size, N .

Every time the design is compiled in Quartus, the gate mapping is con-
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structed from scratch. This may lead to small variations on the critical
path, which then leads to small varyations in fclock max. Despite this, it
seems to be decreasing as N increases. From Section 3.1 it is known that
calculating the primes gives the longest critical path of the whole system.
Since the input for the prime calculation, A[i], B[i], C[i] and D[i] requires
more bits depending on the window size (shown in Table 4.1, Chapter
4), the critical path will become slightly longer due to how the arithmetic
operations are generated in terms of the number of bits at the input.
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6. Further improvements

This designed used an IP named LPM DIVIDE, because it only uses one
clock cycle to perform the division. Unfortunately it has a limit of 64
bits at the input. This sets the limit of 22 precision bits. In order to
increase limit, a smaller division circuit using more than one clock cycle
can be designed and used instead. This will increase the overall number of
clock cycles used for the calculation, but may also reduce the propagation
delay. This implementation did not consider the quality of the actual IMF
components, and there are several ways to improve this. The boundary
conditions has a lot of impact for biggerN . This hardware implementation
uses natural boundary conditions, and also sets the end points of the data
set to equal both a maximum and a minimum. This tend to make the cubic
spline swing at the start and the end of the IMF as can be seen in Figure
5.3 for IMF 5 to 8. One approach to reduce this behaviour, can be to use
linear interpolation a the end of the data set, and also not consider the
endpoints as maxima and minima for the cubic spline calculation. More
registers can be inserted to reduce the critical path of the system. By
inserting a register between each of the arithmetic operations in Figure
3.6 for calculating the primes, the critical path could be reduced to only
one division.
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7. Conclusion

This report has proven that the EMD can be implemented using only fixed
point precision. By applying external bits (referred to as precision bits)
to the samples, effectively multiplying the value by 2, the EMD where
able to produce better results closer to the floating point precision results.
The energy of the difference was compared to the floating point result
energy to get a SNR. By adding an extra precision bits, the SNR increased
by about 14dB. Using 2048 samples of uniformly distributed noise as a
testing data set, containing 8 IMF component, the SNR decreased for every
new IMF component identified. Because the cubic spline interpolation is
constructed by third order polynomials, the error will also behave as a
third order polynomial. Since the IMF components contains less and less
extrema for every IMF discovered, the average distance between them also
increases. This increase in distance will make the third order polynomial
error escalate which implies that an increasing number of precision bits
is needed in order to keep the same SNR for every IMF component. For
the uniformly distributed noise test data, 13 precision bits where not able
to produce the last two IMF components although the first IMF had an
SNR of about 200 dB. By increasing the amount of bits to 22, the first IMF
had a SNR of about 325 dB, and the last of about 175 dB. For real-time
purposes the maximum sampling frequency for the input signal tends to
decrease as the window size, N , becomes larger. With a window size of
2048, the maximum sampling frequency for real-time performance equals
about 159 kHz.
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A. Fixed point arithmetic error
propagation

When trying to represent a decimal number with a fixed point precision,
the value may be distorted by some error. For any decimal number A,
represented as a fixed point Afix,

Afix = A+ Ea (A.1)

where
1

2M
≥ Ea ≥ 0 (A.2)

and M being the amount of precision bits used. This error will have dif-
ferent behaviour when different arithmetic operations is performed. Table
A.1 gives an overview of how the fixed point representation error propa-
gates through different arithmetic operations.

Operation Equation Resulting error
Addition Afix +Bfix Ea + Eb
Subtraction Afix +Bfix Eb − Ea
Multiplication Afix ·Bfix AEb +BEa − EaEb

Division
Afix

Bfix

(
1+Ea

A

1+
Eb
B

− 1

)
A

B

Table A.1.: How fixed point representation error propagates through dif-
ferent arithmetic operations.
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A.1. Addition/subtraction error propagation

For any two numbers, A and B, the fixed sum Cfix = Afix + Bfix can be
rewritten as

C + Ec = (A+ Ea) + (B + Eb)

C + Ec = (A+B) + (Ea + Eb)
(A.3)

and the resulting error after the summation will be

Ec = Ea + Eb (A.4)

A.2. Multiplication error propagation

For any two numbers, A and B, the fixed multiplication Cfix = Afix ·Bfix
can be rewritten as

C + Ec = (A+ Ec)(B + Eb)

C + Ec = AB +AEb +BEa + EbEa
(A.5)

and the resulting error after the multiplication will be

Ec = AEb +BEa + EbEa (A.6)

A.3. Division error propagation

For any two numbers, A and B, the fixed division Cfix =
Afix

Bfix
can be

rewritten as

C + Ec =
A+ Ea
B + Eb

Ec =
A+ Ea
B + Eb

− A

B

(A.7)

and the resulting error after the division will be
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Ec =

(
1 + Ea

A

1 + Eb
B

− 1

)
A

B

Ec =

(
1 + Ea

A

1 + Eb
B

− 1

)
C

(A.8)

This means that the fixed representation will be the real result times some
division factor depending on how big the error in A and B is with respect
to itself.

Cfix = C

(
1 + Ea

A

1 + Eb
B

)
(A.9)
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