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ABSTRACT
An improved version of the resonance-tuned point

absorber!—?

of ocean wave power is discussed. This
absorber utilises a machine to control its movement in

an optimum way relative to the time evolvement of the
incident wave. As a result, the absorber becomes
theoretically as efficient in non-harmonic waves as in
harmonic waves. An expression for the maximum obtainable
absorbed energy is derived both for small waves and for
large waves. 1In the latter case the physical limitations
of the absorber make restraints on the movement. The
general relationship between the incident wave and the
power absorbed by the system is studied. With small
harmonic waves it is derived that the optimum absorbed
power equals the power transmitted in a wave crest of
width A/2m, where A is the wavelength. Further, on the
basis of wave data’ from the North Atlantic (59ON, lQOW)
numerical values are obtained for the optimum energy
absorbed in an average year by systems of various physical
dimensions. As an example, a heaving, cylindrical tank

of diameter 16 m and maximum oscillation amplitude 3 m
absorbs 8 GWh/year. Finally, a discussion is given of the
problem of controlling the vertical movement of the tank in

the optimum way.
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1. INTRODUCTION

In previous papers' ° we have pointed to the possibility
of converting wave power into useful form by means of resonant
absorbers. Resonant absorbers work most efficiently in
harmonic or nearly harmonic waves. If the power in the wave
is shared between several frequencies, the absorber efficiency
is reduced, particularly so if the frequency spectrum of the
wave is wide. The reason being, that the resonator can only

be tuned to one frequency at a time.

The ideal absorber is one which, so to speak, is tuned
to all frequencies simultaneously. Such a system can in
fact be achieved as has been pointed out in a previous report?.
The present paper is a theoretical analysis of this type of

absorber.

The general idea can be explained as follows: Consider
a wave power converter as illustrated in Fig. 1. The system
consists of a partly submerged tank that can be forced to
make arbitrary heaving motions in the sea. The movement of
the tank, of course, produces an outgoing, ring-shaped wave
which is superimposed on the incoming wind-generated wave.
Obviously, if the ring-shaped wave interferes destructively
with the incoming wave, power is removed from the sea. This
power is then absorbed by the system. Hence, the point is to
force the system to generate a wave of such an amplitude and
phase relative to the incoming wave that an optimum destructive

interference results.

It is quite obvious that the generated wave must have
roughly the same time variation but of opposite phase as the
incoming wave. A linear, resonant absorber can never
generate a wave which has the same time variation as the
wave which excites its motion, except in one case, namely
when the incoming wave is harmonic. This is the reason for
the shortcoming of a resonant absorber. On the other hand,
the system shown in Fig. 1 can be given an arbitrary motion
and can, therefore, generate an arbitrary wave. Consequently

it is more efficient than the tuned resonator.




In paragraph 2 a general expression for the power
absorbed by a body with arbitrary heaving motions in an
arbitrary sea is derived. Analytical expressions for the
optimum power and the corresponding ovtimum motion of the
body are presented for small and large waves. By "small"
we infer that the finite height of the absorber does not
introduce any restraints. Some numerical results are

also given.

In paragraph 3, the means by which the optimum motion

can be established, are discussed.

2. OPTIMUM POWER ABSORPTION BY CONTROLLED MOVEMEMT OF A
HEAVING TANK.

The tank shown in Fig.2 is moving under the influence of
the force Fw(t) due to the surface elevation around the
tank and the restoring force Fs(t) due to the movement
of the tank. In addition, it is presumed that the tank is
subject to a force F(t) which can give the tank an arbitrary
vertical movement. 1In Fig.l the force F(t) 1is established
by the combined hydraulic pump and motor. The value of F(t)
is positive when it is pointing upwards and negative when it
is pointing downwards. The force F(t) may feed energy

into the system or may extract energy from the system.

The equation of motion for the tank, when friction forces

are neglected, 1is

Here m 1is the mass of the tank and 1z (t) is the displace-

ment of the tank. The restoring force is

F (t) = A goz(t) (2)




where A is the cross sectional area of the tank at the
water line, p 1is the density of the water and g is the

acceleration of gravity.

The time average value of the power absorbed by means

of the hydraulic machine is

Here the averaging time 1 must be much larger than the
characteristic period of the wave, which is typically

5 to 15 seconds.

Combining Egs. (1), (2) and (3) we obtain

P = - M Z(t)-L(t) = Apg c(t)-L(t) + F_(t)-T(t) (4)

Here, the first two right-hand terms represent average
rate of change of kinetic energy and potential energy,
respectively. Both of these terms vanish, as is shown

in the following:

The expression is approximately zero because T can be
made arbitrarily large whereas ¢ (t) 1s an oscillating

function of limited amplitude. Similarly, we find
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c(£) -2 (t) [c(£))12]" ~ 0 (6)

The net power absorbed by the tank can thus be expressed by

the simple equation

The force Fw(t) due to the total wave at the location

of the tank can be separated into two terms

F(t) = F(t)+ F_(t) (8)

The term Fe(t) is the exitation force established by the
incident wave ni(t). The second term Fr(t) is the
reaction force on the tank due to the wave nr(t) generated

by its own movement. Consequently, Eg. (7) may be written

P =F_(t)ei(t) + F_(t)-L(t) (9)
The vhysical interpretation of the two terms is as follows:
P, = F_(£)-L(t) (10)

e

is the total absorbed power from the incident wave, whereas




is the power radiated back to sea by the outgoing, ring-

shaped wave generated by the movement of the tank.

It should be noted that Pe may equally well be

written:

P, = - F_(t)z(t) (12)

This is easily shown by partial integration.

When the radius and the depth of the tank are much
smaller than the wavelength of the incident wave, an

approximate expression for the exitation force is
F (t) = Apg n; (t) (13)

This formula was used in previous works!~®. 1In the
general case of an arbitrary wave working on an arbitrary
body, the heaving excitation force Fe(t) can be found
as follows: The function Fe(t) is decomposed into

harmonic components

Fe(t)= F (t) =3I Fn sin(wnt + an)

)X
en
n n

where oy is a phase angle. The amplitudes of the harmonic

components can, within the limit of linear theory, be written®

36,

Fo = | wo [fdS (¢ 557 = ¢, 5—=/u)] (15)

n i on

Here ¢, and ¢r are frequency dependent, complex amplitudes
l .
of the velocity potential of the incident and the radiated
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wave, respectively, and u is the complex amplitude of the
velocity of the heaving body. The integral (15) is taken over

any closed surface which encloses the body, but only that part
of the surface which is in the water. The outwards pointing,

normal component of the gradient is denoted by 9/3n in
Egq. (15)., Notice that Eg. (15) includes the effect of
diffraction of the incident wave on the body, although the

diffracted wave is not explicitly expressed in the equation.

For mathematical convenience we shall assume that the
angular fregquencies W of the spectrum of the wind-generated
wave are multiples of some fundamental frequency. This
corresponds to the assumption that the wave reproduces itself
after a certain time, for instance, 20 minutes. Then, the

elevation due to the incoming wave can be written as

Ny sin(wnt +~¢n)» N (16)

at the location of the oscillating body. By means of
Eg. (15) it can then be shown (see Appendix A) that

wS

n

y o 3 5 ,
F_ = {209 R(ﬁﬂl} o (17)

Here R(w) is the radiation resistance of the bodyf The
displacement function ¢(t) of the oscillating body may,

of course, be chosen quite independently of the incident

wave ni(t). However, any reasonable choice of z(t)
has obviously the same period as ni(t). Hence, we can
write

r(t) = i cn(t) =1 Sy 51n(wnt + Bn) (18)

* An expression for R(w) will be given later.



The reaction force Fr(t) is related to the movement
of the body through the relation

Fo(t) == ZIR(w )L (£) + m (o)L (£)] (19)
n

Here mr(w) is the so-called added mass.

Introducing Egs. (14), (18) and (19) into Eq. (9) gives

P = E[Fen(t)'én(t) - Rw )¢ *(t)] (20)

Notice that the last term in Eqg. (19) does not contribute
to P Dbecause of Eq.(5)

The present problem is to find that particular displace-
ment function ¢ (t) which makes the absorbed power P, as

given by Eg.(20) a maximum.

2.1. Small Incident Waves

®

Since the functions Fen(t) and gn(t) in Eg. (20)
are independent it is easily seen that maximum power is

absorbed when

Fen (t)

Cn(t) = 'Q*—R‘“m;—)' (21)




Consequently the optimum velocity is

: Fen(t)

c (t) =¥ s57— (22)
a 2R(wn)

and the optimum absorbed power is found to be

Fén(t)‘
Py =1 IR (0 (23)
n n

According to Egs. (14), (16) and (17) we then obtain

2 ()

— l 3 l . s
P, =35 Pg 2 53— * nj(t (24)
n n
If the incident wave is harmonic, i.e.
ni(t) = n, sin wt (25)

Eg. (24) reads

3 2
pg™n
Psz___._.._g.__
43

It is noticed that this can be written

_ A : ,
P, = 35—+ K (27)




where A = 21 g/w? is the wavelength and

is the power per unit crest length of the incident wave.
Eg. (27) then shows that the tank absorbs an amount of
power equal to that passing a crest length of X/2w. This
quantity can be defined as the absorption length da

of the tankf

g

- .S _ A
da T K 27 (29)

It is a remarkable fact that the absorption length is
a function of XA only. In fact, this result is wvalid for
any circularly symmetric optimized heaving body on deep
water. The explanation is that da has a purely geo-
metrical origin and gives the optimum limit to which
extent a circularly symmetric outgoing wave may interfere

destructively with a plane incident wave.

Looking at Eg. (24) it is realized from the discussion
above, that the controlled system absorbs every single
component of the incident wave optimally. This is in contrast
to the resonance-tuned system which only absorbs optimally the
frequency to which it is tuned. The more the frequency deviates
from the resonance frequency, the less efficient is the absorp-
tion. If the frequency spectrum of the incident wave is wide,
the difference in power absorption, by the two systems, may be

substantial.

We shall now extend the analysis to the general case
when the incident wave ni(t) is non-periodic. We define

the power spectrum E(w) of the incident wave by the relation




10.

Here the sum includes all the terms nfn(t) within the
frequency interval between w and w + Aw. Transforming
the series (24) into an integral yields for the optimum

power

We now define an average angular frequency w by the

s
equation
o0 E o
poE) dw 1 iy (32)
0 w? W o
s
Observing from Eqg. (30) that
[ B dw = nZ(t) (33)
o)
we then finally obtain
093 T
P = *Ni(t) (34)

This is the same amount of power that would be absorbed in

a harmonic wave with angular frequency Wy and variance
ni(t) .

A condition for the above results - Egs. (21) to (34)
- to be wvalid,is that the displacement gs(t) of the tank
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does not exceed * 2 , where £ 1is the depth of the tank
(see Fig.2). The displacement function gs(t) derived
from Egq. (22) 1is, of course, irregular since all the

Fen(t) are directly related to the incident wave ni(t).

If ni(t) is of such small amplitude that the mean

square displacement

2
‘ ny (t)
cZ(t) =% gty AD (35)
s 2 n wfeR(w )
n n
oxY
0 w R (w)

is substantially less than %%?, the equations above are
essentially correct. In the next paragraph we shall discuss

the case when this criterium cannot be fulfilled.

It is seen from Eg. (24) or (34) that Ps is independent
of the dimensions of the tank. However, this does not mean
that the shape and size of the tank is unimportant. The
radiation resistance R(w) 1is a function that increases
with the radius a of the tank (when a is small Reca').
If a 1is reduced, Eq. (35) or (36) then shows that the
average displacement of the tank is increased. This means
that the height of the tank must be increased in order to
absorb the same amount of power. The conclusion is that for
a given incident wave, the volume of the tank must be above

a certain limit in order to absorb the optimum power PS.

We can define the angular frequency wy, by the equation

}" E(w) +dw _ 1 } E(w) dw
0 w® R(w) w2 R(w o
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or, taking into account Egs.(32) and (33)

E(w) dw _ 1 P (38)

: 5 2,,.3
0 w>R(w) W, wSR(w

L)

We can then write

The condition for Eq. (34) to be an essentially correct

expression for the optimum absorbed power is that

2 ; 1 .
gs(t) <5 ) (40)

or, expressed in terms of the incident wave

CR(w ) wl w82
n;(t)<< L L s (41)
g’
Notice that for harmonic incident waves Eq. (34) gives
exactly the optimum power as long as
(8) < 2 g (42)

In the case of irregular incident waves the true optimum
absorbed power will deviate from PS when ZZT€3 approaches
X092, The reason is that gs(t) at times will overshoot %@,
whereas the true optimum displacement function Copt(t) is

bound by the restriction
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| Topt, (£) [ 2 (43)

However, as long as Eg. (42) is fulfilled the deviation
between Q@%t) and cs(t) is so modest that Eq.(34) for
the optimum power may be used with fair accuracy for the

whole range.

2.2, Large Incident Waves

Firstly, harmonic incident waves will be considered.
In this case the true displacement function %m&t) is

>

significantly different from Ks(t) when

(£) >1g2 (44)

z =

0~

In order to analyse this case we have to go back to the

general expression (20). According to Egs. (14) and (18)
Fe(t) = Fel(t) = F; sin(wt+a) . (45)
and
r(t) = ni;lsnsin(nwt+8n) (46)

It is readily found that the maximum absorbed power is
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It is observed that only the first harmonic component

Ql(t)= —slcos(wt + o) (48)

in ¢¢(t) contributes to the first term in P. If we
choose r(t)= Cl(t), then according to Eq. (43) the largest
value s; can have is 2. On the other hand, S; may.

be larger than & if higher harmonics are included in c(t).
This is illustrated in Fig.3. Consequently, the first
term (Pe) in Eq. (47) can be raised by appropriately
adding higher harmonics to ¢(t). However, the radiated
power Pr(the sum in Eqg.(47) ) is also raised. As a result,
the amplitudes (Sn) of the higher harmonics at optimum
power absorption are generally small. Thus, by introducing
higher harmonics in the displacement function ¢ (t), the

additional absorbed power is small.

In the extreme case, when the incident wave is so
large (Fl very large) that Pe>>Pr even if higher harmonics

are included in P, we may, according to Eq.(1l2) write

P =~ Pe= - Fe(t) 7 (t) (49)

Taking into account Eqg. (43) the maximum of this expression
is evidently obtained when ¢ (t) is a square-wave function
with z(t) = - 2 when ?e(t) is positive and ¢ (t) = £ when

F(t) is negative. The maximum absorbed power is

P, % = F.wl (50)
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On the other hand, taking ¢ (t) to be a sinusoidal function

the maximum power is
1

The ratio is

*U!*U
=

= 1.27 (52)

]
BE=R =N

Hence, by adding higher harmonics to the displacement
function ¢ (t) the absorbed power is increased by an amount

which is certainly less than 27 per cent.

The square wave function leading to Eg. (50) is, of
course, unrealistic since it implies an extremely large
(infinite) velocity and acceleration of the oscillating
body. Looking at Fig.l it is seen that the flow of oil
through the combined hydraulic motor and pump is proportional
to the velocity of the tank. A large velocity, therefore,
requires a hydraulic machine with large capacity. The high
cost of such a machine would, however, not be justifiable

due to the small power increase.

From these considerations it is evident that with
large incident sinusoidal waves, the optimum displacement

function ¢ is given approximately by

opt

gopt o~ ;L(t) = - § cos (wt+a) (53)

Accordingly we find from Eqg.(47) for the optimum absorbed

power

wl - R(w) w?2?) (54)
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It is seen from Egs. (53) and (22) that

and where Cq is the optimum displacement function in the
case no maximum limitation is set on the displacement,
velocity and acceleration of the oscillator. It follows

that the displacement function we have chosen is

C
L
proportional to Lo but with reduced amplitude such as to

fulfil the inequality (43).

Now, turning to the case of large irregular incident
waves, we argue that Egs. (55) and (56) may be generalised.
We know that the true optimum displacement function Eopt
is more square shaped than CL(t) (see Fig.3) and the
more so the larger the waves. Moreover, unlike ¢

(notice that

L
does not overshoot 4.

ot (e) = 5% ¢

opt
However, following the line of reasoning as above
and at the end of § 2.1. it is evident that Copt deviates

only modestly from (t). Hence, by means of Egs. (55),

z
L
(22) and (20), the optimum absorbed power is found to be

P ~P. = (2C - C?%) Py (57)
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where P is given by Eq. (24) and

in

nZ _(t) -3
} (58)

5
1 wnR(wn)

When the wave spectrum is continuous P_ 1is given by Eqg. (34)

and
o L5 R(w ) wiyk
0 W R(w) pg’ns (t)
It may be convenient to express PL in an alternative
manner:
.= 1 (Fu - R(w)w2l? ) (60)
L 2 LL L°L
where
F. = {4pg® R(w,) n?(t) /w3'% (61)
L 9 L i s

Eg. (60) has the same form as Eqg. (54) and applies when

C <1l. It is seen that FL increases linearly with the
root mean squared value of the surface elevation. In
comparison, for small waves, the optimum power is proportional

to n’(t), as is evident from Eq. (34).

It is noted that (2C-C?) has its maximum value for C=1
in which case Eq.(57) is identical to Eq.(34). If we,
therefore, define a gquantity Yy by

1 .. when C >1,
(2c-C*) when C<<l} (62)

< =
oo
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where C is given by Eq. (59) we may write the expression

for the absorbed power in the form

R
S T (63

w
S

This equation is quite general and applies to large and

small, sinusoidal as well as irregqular incident waves.

Formula (63) gives the exact expression for the
optimum power for small waves. For large waves the formula
(63) slightly underestimates the optimally obtainable

power.

2.3. Numerical Results

Presented below are the numerical results pertaining to
the power absorbed by a semi-submerged cylindrical tank,

with hemispherical bottom, placed in irregular waves.

For the power spectrum of the incident waves, the so-
%
called JONSWAP spectrum has been used’’ ) This may be

written in the form:

E () =E (0, %) =K*x" exp[-2 x™"1.\5 (64)

where

v = peakedness parameter

S = expl[-(x-1)?/2¢7%]
X = w/wm
W= peak angular frequency

0.07 for x < 1
{0.09 for x > 1

* TFor general review of wave spectra see ref. 6.
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The constant K

is defined by the condition

[E(w) *dw = =

n?(t)

I—‘a juss
oNEn N

(65)
where HS is the significant wave height. H
frequently presented in wave data.

g is a guantity

Another characteristic wave parameter is the so-called
zero-upcrossing period TZ

The angular frequency mz=2w/TZ
is related to w_ by the formula’

w2+ fE(w)*dw = [0w?E(w)dw (66)
0 0
or
w, = 9w, (67)
where
g=1{/

E(x)-dx/fsz(x)dx}%
0 0

(68)
The factor g

can be found from Eg.(64) when v is specified.
The quantity Ps in Eg.(31) can be expressed in terms of H
and w, as follows

S

1
= = pg?’ H%/(wqm )3
w? 32 2

(69)
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where
o Xo l/ 3
w = {f B(x)+dx/ [ Ei§l~§§} (70)
0 0 X

The limit of integration w, Or X, will be commented on

below. Notice that w qrw, = Wy (see Eg. (32) ).

The radiation resistance R(w) of the tank is ®’73,
_ 2
R(w) ~ 27 pa? wee 220°/9 (71)
3

Here a 1is the radius of the tank (and of the hemisphere).
Further € 1is a dimensionless function of ka=aw?/g as
shown in Fig. 4. Knowing R(w) and E(w), the constant C

entering Eg. (63) can be calculated as follows

w

o . L 2 (qw,)”’
C = jz// { pq3I M} = ge ._._..a___.__z_._.__. (72)
0 w R(w) HS
where
1 co “o :
s = 4(pg%) % [ E(x)edx ; [ E{x)-dx (73)
o o XSR(xqwz)

The limit of integration Xq in Egs. (70) and (73) is
chosen so that the absorbed vower (Eg. (63) ) is a

maximum. The reason that s and therefore, also P becomes
small when X is very large is because R(w) decreases
rapidly with ww due to the exponential factor exp(-2fw?/q)
in Egq. (71). Physically this means that the tank must
oscillate heavily in order to generate a high frequency

wave, i.e. to absorb the power from the high frequency

components of the incident wave. Due to the
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limited oscillation amplitude % of the tank, the
absorption of wave power at the most energetic part

(peak region) of the wave spectrum then becomes
correspondingly small. The obvious remedy is to allow

the displacement function to contain only the most energetic
frequency components of the incident wave ni(t), say the
interval from w =0 to w = Zwm or x =0 to x = X, = 2,
Since the absorbed power P 1is a slowly varying function

of X5 the value of X is not very critical. Of course,
there may also be technical reasons for avoiding rapid

movements of the tank.

On the basis of the above formulae the power absorbed
by an optimally moved tank in irregular waves is calculated.
Input data are radius a and depth ¢ of the tank and the wave
parameters v‘,Tz and HS. Knowing the distribution of TZ
and HS throughout the year, the average energy absorption
per vear by the tank can be calculated. Results with wave
datagfrom the weather ship station India (59ON, 19°W) are
shown in Fig. 5 for two different values of the spectral
peakedness parameter v. It is noticed that results are

not very sensitive to the shape of the wave spectrum.

3. OPTIMUM OPERATION OF THE TANK

In the previous paragraph it was stated that the

optimum velocity function of the tank is

° Fen(t)
(t) = ¢ _(t) =2 (74)
S n 2R(w)

%pt
in small waves and that

Cops (E) ™ Ty (8) = Cr_ () (75)
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in large waves, where C 1is a proper constant. If the

power spectrum of the incident wave is sufficiently

narrow, we may put R(w) =~ R(wm) = R. Then Eg. (74) shows
that
. 1
Cs(t) N Fe(t) ' (76)
2R

i.e. the function is(t) is approximately proportional to
the excitation force Fe(t) due to the incident wave. This
is a reasonable result, as can be seen from the general

expression (9) for the absorbed power

) er [ ™ 7 (£)
P=P_(£)-L(t) + F_(£)+i(t)

which reduces to

P F (t)eo(t) - R L°(8), (77)

when R =~ constant. It is noticed that the first, dominating
term is always positive when T(t) « Fe(t), i.e. the waves
are always feeding power into the system. Hence, it is very
important that £(t) has the same sign as Fe(t). Combining
Egs. (75) and (76) we state that

£ (E) ~ i (t) = Db F_(t) (78)

where b 1s a constant to be optimised with regard to the

useful power output in every particular state of the sea.
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The constant b 1is slowly changing as the state of the sea
changes, say from one hour to the other. 1In large waves
;L(t) may exceed the maximum displacement +% of the tank.
Thenz%mét) must be modified with respect to ;t(t) as

indicated in Fig. 6.

The constant b is equal to C/2R according to the
equations above. It should certainly never exceed 1/2R
However, in large waves where C 1is substantially less
than 1, it is probable that optimisation with regard to
power output gives b>C/2R. The reason is, as pointed
out in §§ 2.1. and 2.2, that the true displacement function
QL(t) function. It
should be mentioned, however, that the efficiency of the

is somewhat more sguare-like than the

hydraulic and electric machinery may influence the optimum
value of b significantly. This is particularly so if the
efficiency of the machinery is low. The reason is that the
machinery will have a larger average load than the average
useful power delivered by the system. The ratio between
power load and useful power is a function of the ratio
between the amplitude of the tank and the amplitude of the
wave. Of course, if the machinery has a low efficiency,
then optimum power output requires that this ratio is

relatively small, i.e. b is small.

In order to establish the displacement function.%'ﬁty
HpT
it is, according to Eqg.(78), necessary to know the éexcitation

force Fe(t), due to the incident wave. According to Eq. (8)

Fe(t) = Fw(t) - Fr(t), (79)

where Fw(t) is the heaving force due to the total wave and
Fr(t) is the reaction force due to the generated wave. The
force Fw(t) can be measured and Fr(t) can be computed

when R(w) and mr(w) are known.
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We shall first discuss how Fw(t) can be measured.
If a pressure transducer is placed in a fixed position

directly under the tank (for instance on the wire) then

F(t) = p(t) (80)

where p(t) 1is the measured pressure. The elevation of
the surface of the water is not evenly distributed around
the circumference of the tank except when the radius of
the tank is very small in comparison to the wavelength.
However, a pressure transducer placed on the axis of the
tank will be roughly proportional to the average pressure
on the bottom of the tank and is, therefore, approximately
proportional to the total wave force on the system. It is
important that the transducer is placed as close to the
bottom of the tank as possible, i.e. at a depth slightly
larger than 22+a. The reason is the exponential decay of
pressure with depth. However, this effect will influence
only the high frequency (and less important) part of the

frequency spectrum of Fe(t).

Another possibility for measuring Fw(t) is to place
pressure transducers in the bottom of the tank. The pressure
on these transducers is also influenced by the position of
the tank. Therefore Fw must be calculated according to

the formula

F,(t) = A p(t) + Apg 7 (t) (81)

Here the instantaneous position ¢z (t) of the tank must be

measured together with the average pressure p(t).

The force Fr(t) may be found as follows: From Egs.
(18) and (19) it is observed that
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Fr(t) ~ —ReZ(t) - mr-'r;(t) - (82)

when R and m,. can be considered constants. Hence,
knowing the constants R and m. and measuring the
displacement ¢ (t), Fr(t) can be determined. The constant
R ~ R(wm) where R(w) is given by Eqg. (71). The added mass
of the tank is given by

m_(w) = — pa’ u (83)

where 1u 1is a dimensionless function of ® shown in
Fig. 4. The constant m. in Eq. (82) is approximately
m. o~ mr(wm) = mr(qwz).

Having determined Fw(t) and Fr(t) according to the
equations above, the excitation force Fe(t) may then be
calculated from Eg. (79). Eqg. (78) then gives the displace-
ment function CL(t). The actual displacement function
[0, (8) >,
in which case gopét)is smoothly levelled off to the values
+2 or -4. Cf. Fig. 6.

cappﬂis modified with regard to CL(t) only when
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APPENDIX A

Excitation force on heaving body due to waves

We assume that the partly submerged body has a vertical
axis of circular symmetry and that the heaving motion is the
only degree of freedom for the body. If the width of the
body is much smaller than one wavelength it is a good approxi-
mation to neglect the contribution from the diffracted wave
to the dynamic force which acts on the body. 1In order to
judge the validity of this approximation we shall now derive
an exact expression for the dynamic force. In this derivation
we shall assume that the waves and the oscillation are given
by sinusoidal functions of time, with an angular frequency w.
Then, it is convenient to represent the dynamic variables by
their complex amplitudes. The velocity potential of the
incoming plane wave, assumed to propogate in the the positive

x direction, is represented by

. = i %T n ekz e-lkx (A.1)

where N, is the complex amplitude of the surface elevation.
It is assumed that [nol is so small that non-linear terms
are negligible. The =z axis is vertical and collinear with
the symmetry axis of the heaving body. On deep water the
dispersion relationship is '

k = w?/g (A.2)
where g 1is the acceleration of gravity.

The heaving body generates an outgoing (radiated) wave
which contributes a reaction force with complex amplitude

F.=-2u-= *(R+iwmr)u (A.3)

on the body. Here u represents the velocity of the heaving
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body. Further, m. is the hydrodynamic added mass, R
is the radiation resistance and Zr is the radiation
impedance, which is a complex quantity depending on w and

on the shape and magnitude of the heaving body.

The total force acting on the body is

F=F +F_, (A.4)

F =F, +Fd (A.5)

Here Fi and Fd are contributions due to the incident

wave and the diffracted wave, respectively.

The "excitation force" is given by the formula

s Va D
Fo = iwp [f ds (¢; =2"- ¢ _ ==i/u (A.6)

which is due to Haskind.® Here ¢, represents the

velocity potential of the incident wave in accordance

with (A.1). Further, ¢, represents the velocity potential
of an outgoing wave which is generated by the heaving body

in otherwise calm water, when the velocity of the body is
given by U. The integral is taken over any closed surface
which encloses the body, but only that part of the surface
which is in the water, z < 0. The unit normal is pointing

outwards.

In this way it is possible to calculate Fe without

having explicit knowledge on the diffracted wave.

Firstly, we shall integrate over the surface of the
rotationally symmetric body, for which the radius at depth =z
is given by the function a(z). Using the plane wave

expression (A.l) for ¢i and the boundary condition that
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(a¢r/8n) = Un, where U = is the normal component of wu,
we find from (A.6)

(A.7)
0 27 k¢ .-
= - i da __r 142 s gt

F, = 1wp_é dz { dae T a(z){l 5 (l+ig> cos 6% ¢y
Here H is the height of the submerged part of the body.

Secondly, we take the integral in (A.6) over a
cylindrical surface, which is far outside the body and
which has an arbitrarily large radius r. Then we have

2m 0 3¢ 3¢
Fe = iwp ‘g de j dz (¢l~5~f—~ - (br *a“'f’") r/u (A.S)

—C0

Of course, Fe is independent of r. Since the integration
surface and the heaving body have a common axis of rotational

symmetry, we have

-1 -
¢r > ucCr 2ekze ikr as r = o (A.9)

where C 1is a complex parameter depending on ®w and on the
shape and magnitude of the heaving body. If r >>x = 2n/k,
the ring-shaped outgoing wave (A.9) is very similar to a plane
wave when considered within a spaceous region having a
dimension of a few wavelengths. ©Noting that x = r cos 6,
insertion of (A.1l) and (A.9) into (A.8) gives after

integrating over z,

Fe = lim %pgnd:rwe (L ~ cos @) e"lkr Cos 8 4o
o

2T
-ikr
J

(A.10)
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Using the identities

2m .
1 f elX cos 6
0

JO (X) = "2“%— de (A.ll)
and
| —-1i 2m ix cos 6 (A.12)
Jy (x) = = JJ(x) = 5= [ cos O e as :
0
we obtain
. . -ikr . 1
F_ = 1impgnClim e J (-kr)-id; (=kr) (A.13)
e O e 0 J

Noting that J, is an even function and J; an odd function
and using the asymptotic expansion for the Bessel functions,

we finally obtain
F = elﬂ/4 v 2m/k ngno (A.14)

In this expression for Fe, C is still an unspecified complex
constant. An expression for |C| is easily obtained as follows.
Consider the case when the heaving body generates waves on
otherwise calm water. The time-average power delivered by the

generator is

where (A.3) has been used. On the other hand, the radiated

power crossing the vertical cylinder of large radius is
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0 0

= 1 * - Siwod X
P = 2mr { 5 Re(pv _*)dz = mr [ Re( iwppgz— )dz (A.16)

- OO - OO

Inserting for ¢r from (A.9) and integrating over z,

we find

P = % wp |cul? (A.17)

Conservation of energy requires that Pr is independent of
r 1in the present model of an ideal fluid. Hence, from
(A.15)and (A.17)we get

1
lc| = {5——}2 (A.18)

Insertion into (A.l4)gives

2pR 1%
7ol = 4=} glno] (2.19)
kw

Here we have found the amplitude but not the phase of the

excitation force.

Both the amplitude and the phase can be found
when the radius of the heaving body is small in comparison
with the wavelength, max a({z) <<1/k. Then we can set
e %1 when inserting for ¢, from (A.1) into (A.7) .

This gives

0 ko

S da _ r kZd
F pgno_éZﬂa(Z) & (1 - —) e dz (A.20)

We note that the function ¢r and its derivative are

singular at r = 0. Therefore, when ka <<l , we have
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Fe ~ pgAeff N, (A.21)
where
_ 0 da kz _ g kz d 2
Aes _I{Izwa(z) I © dz-—_If{ ™" Fp(ra?) dz. (A.22)

The same result is obtained by integrating over all surface
elements the vertical component of the force due to the
hydrodynamic pressure of the incoming wave. Hence, the
diffraction has a negligible effect on the excitation

force Fe when the radius of the body is much smaller than

one wavelength.

Further, if the body is shallow, kH << 1, then

~ ‘ 2_ (A.23)
Ars T {a()lr‘=a

where A is the cross section of the body at the water

surface z = 0. In this case, the excitation force is

F_ =~ Pg Ano

e (A.24)

An identical result is obtained by simple buoyancy

considerations.
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Water line, lower position

i:\b -_] ; _Sea level

Water line,
upper position
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557753777)553C3333333323232222%22223338

Fig. 1. Example of an efficient wave power absorber. The essentially
weightless tank (1) is kept in a partly submerged position by
means of the pull in the wire (2) connected to the sea floor.

The pull in the wire is established by means of the hydraulic
piston (3). The equilibrium pressure on the piston is obtained

by means of the compressed gas in the tank (L4). In the conduit (6)
between the tank (4) and the cylinder (5), a combined hydraulic
pump and motor is placed, which can regulate the pressure in the
cylinder and henceforth control the vertical position of the tank.
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A tank performing heaving motions in the sea.

The undisturbed sea level is indicated by the dashed line,
7N 1s the surface elevation of the sea and C 1s the
displacement of the water line of the tank.

T ;:;1~--\
b= z SN (t)= £, (8) + ,t)
z,(t)
za(t)
¥ L4 ’ t
N Vg
~, rd
\-f/
Fig. 3. Increasing power absorption by introducing higher harmonics

in the displacement function ¢(t). With harmonic incident
wave, the fundamental component Cl(t) can be increased beyond
the maximum amplitude 2 by appropriately introducing the
third harmonic Cg{t)-
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The dimensionless functions ¢ and u (taken from Ref. 8) give
the radiation resistance R and the added mass m for a
cylindrical tank with hemispherical bottom in accordance

with Egs. (71) and (83) respectively.
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Fig. 5. Average annual absorption of energy by & cylindrical tank of

radius a and depth L (c¢f. Fig.2.) from North Atlantic waves,
based on observations of wave heights and wave periods at
station India(59oN,190W)e The absorbed energy is plotted
versus the cross sectional area A=ma? for different values of
the maximum oscillation amplitude 2. The peakedness parameter
of the power spectrum is v=3.3 (mean JONSWAP spectrum) for the
fully drawn curve and v=1.0(Pierson-Moskowitz-Kitaigorodskii
spectrum) for the dotted curve.
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Fig. 6. The fully drawn curve shows the approximate optimum
displacement function ¢ (t) for the tank in
irregular incident waves.

The dotted curve . (t) is obtained from the relation
CL(t) = b F.(t), whére F (t) 1is the excitation force
on the tank due to the incident wave and where b is

an optimised constant.
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