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Abstract: Utilizing flow rate and pressure data in and out of the mud circulation loop provides
a driller with real-time trends for the early detection of well-control problems that impact the
drilling efficiency. This paper presents state estimation for infinite-dimensional systems used
in the process monitoring of oil well drilling. The objective is to monitor the key process
variables associated with process safety by designing a model-based nonlinear observer that
directly utilizes the available information coming from the continuous-time online process output
measurements at the topside of the well. The observer consists of a copy of the plant plus output
injection terms where the gain is computed analytically in terms of the Bessel function of the
first kind. The design is tested using data from a real-field drilling commissioning test in the
North Sea by Statoil Oil Company. The results show that the design estimates the flow and
pressure accurately.
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1. INTRODUCTION

Advanced process monitoring and control in oil well
drilling require information on the entire state variable.
Unfortunately, the information of the state variables is
limited by the number of sensors and the time delay in
processing and measurements. In many cases, the mea-
surements are available only at the topside and the down-
hole of the well. The state estimation problem is, given
this limited number of measurement, to compute the best
estimate of the flow and pressure at the current time.

During oil well drilling, a carefully designed drilling fluid
is pumped into the drill string, through the drill bit, and
up the annulus between the drill string and the sidewall
of the well. The objectives are to ascertain the downhole
pressure environment limits, to accordingly maintain a
certain hydraulic pressure gradient along the length of
the well profile, and to clean the well from the cuttings.
Based on the pressure balance between the well section and
the reservoir, drilling techniques can be divided into two
types: First, over-balanced drilling (OBD), if the pressure
at the well is intentionally set up higher than the reservoir
pore pressure. Thus, the circulation fluid flows into the
reservoir formation, and second, under-balanced drilling
(UBD), if the pressure at the well is intentionally set up
lower than the reservoir pore pressure. Thus, the reservoir
fluid flows into the well annulus and up to the surface.
OBD is considered to be simpler and cheaper than its
UBD counterpart because it requires smaller crews and
less equipment to handle the reservoir fluids. Due to the
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Fig. 1. Schematic of an automated MPD system (Kaasa
et al., 2012).

prospect of drilling increasing in complexity, a precise pres-
sure control technology in OBD, called managed pressure
drilling (MPD), is introduced.

1.1 Managed Pressure Drilling

The MPD control system usually consists of two main
components (see Fig. 1):

• the hydraulics well model that estimates the down-
hole pressure, and,

• a feedback control algorithm that automates the
choke manifold to maintain the desired choke pres-
sure.



One of the main challenges in MPD is that the number of
measurements is very limited. Measurements are usually
taken at two locations during drilling; a downhole pres-
sure measurement (also known as pressure while drilling
or PWD) and topside pressure and flow measurements.
Although the downhole pressure measurement is very im-
portant to know, it is unreliable due to slow sampling,
transmission delays, and loss of communication. The only
reliable measurement is the one that located at the topside
of the well. Therefore, there is an incentive to utilize the
flow rate and pressure data of the drilling fluid circulation
at the topside of the well, as a process monitoring tool,
which can be used to provide a driller with real-time trends
for the early detection of well-control problems that impact
the drilling efficiency. Furthermore, the real-time process
monitoring system can also be used to mitigate safety
risks, minimize the formation damage, and help to achieve
the drilling target faster.

In MPD, the process monitoring system is done via the
hydraulic well models. In many cases, this hydraulic model
is the limiting factor to achieve accuracy of the system.
Therefore, many researches have been put into develop-
ing advanced hydraulics well models. An important point
when developing a hydraulic well model is that the model
should be able to capture the annular dynamic of the well-
bore, because in general, the interest is not only to monitor
the annular downhole pressure. For well-control purposes,
the pressure limits should be respected in all parts of the
wellbore; thus, it is preferable to use distributed models
instead of lumped models.

1.2 Previous Works

Many studies have been conducted to develop advanced
hydraulic well models in order to capture many aspect
of the drilling hydraulics, e.g., Kaasa et al. (2012); Pe-
tersen et al. (2001); Bjorkevoll et al. (2000); Lage et al.
(1999); Rommetveit and Vefring (1991). For many simula-
tion models, unfortunately, the overall accuracy is reduced
by the least accurate term. The uncertainty may come
from the unmeasured reservoir outflux and the friction
coefficients along the well. Therefore, calibrations are vital
components of any real-time hydraulics model in order to
predict the downhole pressure with high accuracy. Model-
based monitoring systems for drilling are also received
many attentions, e.g., Hauge et al. (2012, 2009, 2013);
Landet et al. (2013); Hasan (2015). However, most of them
used lumped models which only estimate the downhole
pressure, whilst the interest is to know the annular pres-
sure along the wellbore.

A possible method for calibrations of distributed pa-
rameter systems using only boundary measurements is
the backstepping method (Krstic and Smyshlyaev, 2008).
Originally developed for parabolic PDEs, the backstepping
method has been used as control and observer designs for
some exotic PDEs such as the Ginzburg-Landau equation
(Aamo et al., 2005) and the Schrodinger equation (Krstic
et al., 2011). The idea is to use a Volterra integral trans-
formation to transform the original system into a target
system. The stability of the target system is usually known
beforehand, or at least is easier to prove. For some cases,
the gain for both the controller and the observer, can

be computed analytically in terms of the Bessel function
(Smyshlyaev and Krstic, 2005) or the Marcum Q-function
(Vazquez and Krstic, 2013). It should be mentioned that in
oil and gas control problems, the backstepping method has
been used for the gas conning problem (Hasan et al., 2010,
2012, 2013), slugging control (di Meglio, 2011), and drilling
automation (Hasan, 2014; Hasan and Imsland, 2014).

1.3 Organization and Contributions of this Paper

In this paper, we present an infinite-dimensional observer
for process monitoring in oil well drilling. We start with
presenting a nonlinear hydraulic model based on mass and
momentum conservation in section 2. Section 3 contains
the main contribution of this paper, where we design an
infinite-dimensional observer relying only on one boundary
measurement. This problem, where the reliable measure-
ment is the one that taken at the top of the well, is a
typical problem in oil well drilling. The design uses a
Volterra integral transformation to transform the original
error system into a target system that is stable in the
sense of Lyapunov. The transformation is invertible so that
the stability of the target system can be translated into
the stability of the original error system. Therefore, the
estimates are guaranteed to converge to the actual values.
Furthermore, the observer gain can be computed ana-
lytically by solving a Goursat-type first-order hyperbolic
system, where the solution is written in terms of the Bessel
function of the first kind. The design is tested against
commissioning test data taken from a real-field in the
North Sea by Statoil Oil Company. The test descriptions
and the results are presented in section 4. Finally, section
5 contains conclusions and recommendations.

2. THE MUD FLOW MODEL

The mud flow model is used to estimate the annular
pressure and to provide the choke pressure set point for
the MPD feedback control system. In general, the model
should be able to capture many aspects of the drilling
mud hydraulics, but, it should not be so complex that
it requires expert knowledge to set up and calibrate.
Simplifications can be made to the model, for instance,
by removing unnecessary dynamics, such that the model
includes only the dominant dynamics of the system or
by lumping together parameters that are not possible to
calibrate from existing measurements.

2.1 Basic Assumptions

The main assumption for the mud flow model is to consider
the drilling mud fluid as a viscous fluid, so that the flow
obeys fundamental relations such as the equation of state,
the mass and the momentum conservation, and the energy
conservation equation. The following are assumed in our
mud flow model:

• the flow can be treated as a one-dimensional flow
along the flow path,

• the flow is radially homogeneous,
• the flow is incompressible,
• the mud density is constant, and
• the dependence on temperature is negligible.



The incompressible flow assumption means that only the
spatial density transients in the flow are neglected. Fur-
thermore, because the thermal liquid expansion coefficient
is usually small, the density changes due to temperature
changes are negligible.

2.2 Model Derivation

The derivation of the simplified mud flow model is based
on White (2007) and is outlined as follows. For a single-
phase and a one-dimensional flow in the annulus, the mass
conservation is given by:

ρt(z, t) = − 1

A
wz(z, t), (1)

where ρ denotes the mud density, A is the cross-sectional
area of the annulus, and w is the mass flow rate. Further-
more, t is the instantaneous time, and z ∈ [0, l] is the
spatial coordinate along the flow path beginning from the
downhole z = 0 to the topside z = l. The subscripts t
and z denote the partial derivatives with respect to t and
z, respectively. Using the definition of the bulk modulus
β = ρpρ, gives:

pt(z, t) = − β
A
qz(z, t), (2)

where q is the volumetric flow rate. The bulk modulus
describes the stiffness of the mud and is the reciprocal of
the mud compressibility, i.e., c = 1/β.

The second relation can be obtained from the momentum
balance equation as follows:

wt(z, t) =−Apz(z, t)−A
∂

∂z

∫
ρv2 dA− Fc(z, t)

−Ag sin τ(z). (3)

The friction force acting on the volume, Fc, is an important
component of the mud flow model in addition to the
hydrostatic force. The frictional pressure drop depends on
the geometry of the annulus, the frictional coefficient, the
mud velocity, and the viscosity of the mud. The frictional
pressure drop in the drill string is typically nonlinear with
respect to the flow, while in the annulus it is typically
linear, see e.g., Landet et al. (2013). In this paper, we use
an empiric model for the frictional force as follows:

Fc(z, t) = f1q(z, t) + f2q(z, t)
2, (4)

where f1 and f2 denote the frictional coefficients. The
frictional coefficients are the uncertain parameters of the
system. Therefore, there is an incentive to calibrate the
mud flow model with respect to these parameters. A
simple recursive least-squares algorithm based on the
topside measurement can be implemented to obtain the
value of these parameters. Assuming the integral term is
sufficiently small, and the density is constant such that
wt = ρqt, the flow rate equation is given by:

qt(z, t) =−A
ρ
pz(z, t)−

f1
ρ
q(z, t)− f2

ρ
q(z, t)2

−Ag sin τ(z). (5)

The boundary conditions are given by:

q(0, t) = qd(t),

p(l, t) = pc(t),
(6)

where qd denotes the mud rate at the downhole of the well,
while pc denotes pressure at the topside (choke) of the well.
It should be mentioned that in this paper, all well and fluid
parameters are assumed to be known. An online estimation
algorithm for estimating the drilling parameters such as
density and bulk modulus can be found in Kaasa et al.
(2012).

2.3 Coupled Hyperbolic Systems

For the ease of the observer design, the mud flow model
(2) and (5), together with the boundary conditions (6) can
be simplified into a 2×2 quasi-linear hyperbolic system.
The hydrostatic head can be removed from the momentum
equation by defining:

p̄(z, t) = p(z, t)− ρg
(
l −
∫ z

0

sin τ(s) ds

)
. (7)

The resulting system can be diagonalized using the follow-
ing Riemann’s coordinate transformation:

w̄1(z, t) =
1

2

(
q(z, t) +

A√
βρ
p̄(z, t)

)
,

w̄2(z, t) =
1

2

(
q(z, t)− A√

βρ
p̄(z, t)

)
.

(8)

Finally, defining w1(x, t) = w̄1(xl, t) and w2(x, t) =
w̄2(xl, t), (2) and (5) can be written as

w1t(x, t) = −1

l

√
β

ρ
w1x(x, t)− f1

2ρ
(w1(x, t) + w2(x, t))

− f2
2ρ

(w1(x, t) + w2(x, t))
2
,

w2t(x, t) =
1

l

√
β

ρ
w2x(x, t)− f1

2ρ
(w1(x, t) + w2(x, t))

− f2
2ρ

(w1(x, t) + w2(x, t))
2
.

(9)

Defining w = [w1 w2]ᵀ, the above system together with the
boundary conditions, can be written in a more compact
form as follow:

wt(x, t) = Σwx(x, t) + Cw(x, t) + f(w, x),

w1(0, t) = −w2(0, t) + qd(t),

w2(1, t) = U(t),

(10)

where

Σ = diag[−ε1 ε2]ᵀ = diag

[
−1

l

√
β

ρ

1

l

√
β

ρ

]ᵀ
,

C =

(
0 c1
c2 0

)
=

(
0 −f1/2ρ

−f1/2ρ 0

)
,

f(w, x) =

−
f1
2ρ
w1(x, t)− f2

2ρ
(w1(x, t) + w2(x, t))

2

− f1
2ρ
w2(x, t)− f2

2ρ
(w1(x, t) + w2(x, t))

2

 .

(11)



In this hyperbolic form, the flow and pressure are linear
combinations of the new states w1 and w2. Therefore,
estimating w1 and w2 are equal to estimating p and q.
Furthermore, in the new system (10), the spatial coordi-
nate is x ∈ [0, 1]. Thus, the downhole is located at x = 0,
while the topside is located at x = 1.

3. INFINITE-DIMENSIONAL OBSERVER DESIGN

As mentioned previously, the only reliable measurement is
the one that located at the topside of the well, in this case,
at x = 1 in the w coordinate. Thus, we assume w1(1, t) is
measured. In this section, we present an observer design
for the mud flow well model (10) with w1(1, t) as the only
measurement. The observer consists of a copy of the plant
plus output injection terms in the domain as follow:

ŵt = Σŵx + Cŵ + f(ŵ, x) + p(x)w̃1(1, t),

ŵ1(0, t) = −ŵ2(0, t) + qd(t),

ŵ2(1, t) = U(t),

(12)

where p(x) denotes the observer gain. In Vazquez et al.
(2011), if f = 0 (linear case), the observer gain p(x) is
given by:

p(x) =

(
−ε1Puu(x, 1)
−ε1P vu(x, 1)

)
. (13)

where the kernels Puu and P vu satisfy the following first-
order hyperbolic PDEs:

ε1P
uu
x (x, ξ) + ε1P

uu
ξ (x, ξ) = −c1P vu(x, ξ),

ε1P
uv
x (x, ξ)− ε2Puvξ (x, ξ) = −c1P vv(x, ξ),

ε2P
vu
x (x, ξ)− ε1P vuξ (x, ξ) = c2P

uu(x, ξ),

ε2P
vv
x (x, ξ) + ε2P

vv
ξ (x, ξ) = c2P

uv(x, ξ),

(14)

with boundary conditions:

Puu(0, ξ) = −P vu(0, ξ),

Puv(x, x) =
c1

ε1 + ε2
,

P vu(x, x) = − c2
ε1 + ε2

,

P vv(0, ξ) = −Puv(0, ξ).

(15)

We utilize the results in Vazquez et al. (2011) and Vazquez
et al. (2012), where the backstepping method was used
to design an observer for the 2×2 linear and quasi-linear
hyperbolic PDEs. To this end, let us define the error
function as w̃ = w− ŵ. Subtracting the plant system (10)
by the observer (12), the observer error system is given by:

w̃t = Σw̃x + Cw̃ + (f(w̃ + ŵ)− f(ŵ))

− p(x)w̃1(1, t),

w̃1(0, t) = −w̃2(0, t),

w̃2(1, t) = 0.

(16)

The task is to show the error system (16) converges to its
equilibrium. First, we use the following Volterra integral
transformations of the second kind:

w̃(x, t) = ψ̃(x, t)−
∫ 1

x

P(x, ξ)ψ̃(ξ, t) dξ,

ŵ(x, t) = ψ̂(x, t) +

∫ x

0

L(x, ξ)ψ̂(ξ, t) dξ,

(17)

where the transformation kernels are given by:

P(x, ξ) =

(
Puu(x, ξ) Puv(x, ξ)
P vu(x, ξ) P vv(x, ξ)

)
,

L(x, ξ) =

(
Luu(x, ξ) Luv(x, ξ)
Lvu(x, ξ) Lvv(x, ξ)

)
,

(18)

to transform (16) into the following system:

ψ̃t(x, t) = Σψ̃x(x, t) + F[ψ̃, ψ̂](x, t),

ψ̃1(0, t) = −ψ̃2(0, t),

ψ̃2(1, t) = 0.

(19)

It was shown using successive approximation method in
Vazquez et al. (2011) that such kernels (18) are exists.
Thus, the transformation is invertible, which means the
properties of the target system (19) can be translated into
the original system (16). The only problem is that, this

target system is depend on ψ̂. Therefore, we assume the
process is bounded, i.e., there exists M > 0, such that
ψ ≤M . Thus, the nonlinearity term F is depend only on
the error function ψ̃. Utilizing the results in Vazquez et al.
(2011), the system (19) is locally exponentially stable in
the H2-norm. Thus, the estimate ŵ converge to the actual
value.

Remark from (11), ε1 = ε2 and c1 = c2. Let us denote
these parameters as ε and c, respectively. The observer
gain (13) can be obtained by solving the following first-
order hyperbolic system:

εPuux (x, ξ) + εPuuξ (x, ξ) = −cP vu(x, ξ),

εP vux (x, ξ)− εP vuξ (x, ξ) = cPuu(x, ξ),
(20)

with boundary conditions

Puu(0, ξ) = −P vu(0, ξ),

P vu(x, x) = − c

2ε
.

(21)

Utilizing the result in Vazquez and Krstic (2013), the
solutions for (20)-(21) are given by:

P vu(x, ξ) = − 1

2ε

{
cI0

[
|c|
ε

√
ξ2 − x2

]
−|c|

√
ξ − x
ξ + x

I1

[
|c|
ε

√
ξ2 − x2

]}
,

Puu(x, ξ) =
1

2ε

{
cI0

[
|c|
ε

√
ξ2 − x2

]
−|c|

√
ξ + x

ξ − x
I1

[
|c|
ε

√
ξ2 − x2

]}
,

(22)

where In denotes the Bessel function of the first kind.
Substituting these equation into (13), we obtain explicit
expressions for the observer gain p(x).



4. TESTING, RESULTS, AND DISCUSSIONS

The commissioning test was undertaken in the North Sea
by Statoil Oil Company. One of the objectives is to provide
data for the validation and development of the mud flow
well models. The simple schematics well setting for this
experiment is given in Fig. 2 below.

Fig. 2. A Simple schematic of oil well drilling system
(Courtesy of Statoil).

In this experiment, drilling mud is pumped down from
the mud pit through the drill string through the drill bit,
up the annulus, and back to the mud pit. At the top of
the well, a pressure sensor and a Coriolis flow meter are
installed to measure the topside pressure and mud flow,
respectively. These measurements are used in our observer
design algorithm. Remark that, from (7) and (8), we have:

w1(1, t) =
1

2

(
q(l, t) +

A√
βρ
p(l, t)

)
, (23)

where q(l, t) and p(l, t) denotes the topside flow and
pressure which are measured. The boundary measurement
w1(1, t) is plugged into the observer (12), where p(x) is
computed analytically using (22), to generate the estimate
of w(x, t). Once ŵ(x, t) is obtained, the flow and pressure
can be obtained using the following formulas:

q̂(z, t) = ŵ1

(z
l
, t
)

+ ŵ2

(z
l
, t
)
,

p̂(z, t) =

√
βρ

A

(
ŵ1

(z
l
, t
)
− ŵ2

(z
l
, t
))

+ ρg

(
l −
∫ z

0

sin τ(s) ds

)
.

(24)

Remark that the solution to our state estimation problem
is based on the mathematical mud flow model, which con-
sists of PDEs and boundary conditions. Thereby, model
parameters are assumed to be known. These parameters
are used not only in solving the PDEs, but also in com-
puting the gain p(x).

To solve the infinite-dimensional observer (12), first, using
finite difference, the system is changed into a set of
ODEs. In our implementation, this ODEs is solved using a
Runge-Kutta method with a variable time step for efficient
computation. The case considered here is the stepping of
the mud pump test.

The objective of this experiment is to show that the
observer is able to capture the dynamic of the system
accurately. This is done by stepping up and down the
flow rate of the mud pump. During this experiment, the
MPD choke and the backpressure pump are isolated, i.e.,
no control is applied. Here are the procedures:

• Establish circulation and set choke opening
· Ramp up the mud pump to 1 l/min

• Step down the mud pump in 0.05 l/min steps to full
stop
· Wait for a steady pressure after each step

• Start the mud pump at the minimum flow rate
possible
· Wait for a steady pressure after each step

• Step up the mud pump in 0.05 l/min steps to 1 l/min
· Wait for a steady pressure after each step
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Fig. 3. The normalized downhole pressure.
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Fig. 4. The normalized downhole flow rate.

To validate our test, a Coriolis flow meter and a pressure
sensor are also installed at the downhole of the well. Using
our observer design (12), where the gain is given by (13),
the downhole pressure estimation show in Fig. 3. It can
be observed that the observer accurately estimates the
actual value of the downhole pressure for both steady and
transient periods. The deviation between t = 600 s and
t = 700 s is due to our frictional model (4). Furthermore,



it can be observed from Fig. 4 that the topside flow
estimation matches with the topside flow measurement.

5. CONCLUSIONS AND RECOMMENDATIONS

We have presented infinite-dimensional observers for pro-
cess monitoring in managed pressure drilling. The design,
which is based on the backstepping method, relies only on
the available information that comes from continuous-time
online process output measurements at the top of the well.
One of the sticking features of the backstepping method
is that the observer gain can be computed analytically, in
this case, in terms of the Bessel function of the first kind.
The performance of the observer is satisfactory when it is
tested against real-field drilling data. In this experiment,
the flow of the drilling mud from the drill bit is assumed
to be equal to the drilling mud flow from the mud pump.
However, in reality, this quantity is unknown because some
of the drilling mud goes into the formation. Therefore,
future work should include this unknown parameter in
the calculations. The problem is becoming an adaptive
observer design problem.
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