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Abstract

This paper examines empirically how economic factors, government policy, and strategic interactions affect manager’s decisions
to switch between operating and stand-by states for peaking electric power generators. We model the switching decisions using a
structural model of a dynamic optimal decision game. We focus on the power markets in the Northeastern United States, where
annual observations of such decisions are available. The results indicate that regulatory uncertainty significantly increases firms’
perception of switching costs, and that large power producers are noticeably more influenced by their economic environment during
their decision-making than small firms.
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1. Introduction

Reliability adequacy in the power grid is fundamental for
most economic activity. Energy-only markets suffer from an
inherent market failure because (i) electricity cannot be stored
and must thus be produced at the same time as it is consumed,
and (ii) demand-response mechanisms are not yet sufficiently
in place so that consumers can act on, or even see, real prices
(cf. Cramton and Stoft [7]). The result is that power systems
can only ensure reliability adequacy by having more capacity
available at any given time than what is reasonable to expect
that the market will demand. This makes the existence of flex-
ible peak generators with the ability to quickly ramp up and
down production, such as gas-fired combustion turbine-based
generators, vital for power markets.

Despite their importance, peak generators have traditionally
received little or no compensation for staying in an operation-
ready state, and only received revenues by competing in the
spot market, cf. Joskow [18], Bowring [3]. As peak generators
have the highest marginal costs among electricity generating
sources (cf. Energy Information Administration [13]), they only
produce during times of shortage when prices are high. And
even in such instances, consumers are protected by price caps.
This has led to the so-called missing money problem, where
market participants have been unable to earn sufficient surplus
to justify keeping generators in a continuous operating-ready
state or building new capacity.

This has resulted in many Independent System Operators
(ISOs), particularly in the United States, establishing separate
capacity markets alongside the traditional spot and reserve mar-
kets. Examples include the Reliability Pricing Model (RPM)
by Pennsylvania-New Jersey-Maryland (PJM) in 2007 and the
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Forward Capacity Market (FCM) by the New England Indepen-
dent System Operator (ISO-NE) in 2010. The intent of these
markets is to ensure that peak generators are motivated to stay
ready to generate electricity when needed, despite only actually
producing a few hours a year.

Nevertheless, the recent advent of renewable energy sources
(RES) such as solar photovoltaics and wind turbines are threat-
ening to outcompete fossil fuel generation as they have a near-
zero marginal cost. Particularly in Europe, many gas-fired com-
bustion based power plants have either seen their values drop
significantly or been abandoned altogether, cf. Caldecott and
McDaniels [5]. Yet, the increased amounts of renewable en-
ergy causes additional fluctuations in the power grid due to the
intermittent nature of weather conditions (Duic and Carvalho
[11], Lund [23]), which increases the existing need for flexi-
ble units. Regulators thus face a significant challenge: as ther-
mal peak generators are increasingly motivated to enter states
of temporary or permanent shut-down, the regulators’ need for
them to remain operational increases.

This paper aims to gain further insight into this problem by
investigating the operational decisions made by thermal peak
generators to transition between being operational-ready or shut
down, either temporarily or permanently. Using the terminol-
ogy of the U.S. Energy Information Administration (EIA), we
consider that a peak generator is always in one of three distinct
operating states, defined below.

Operating state (OP): The generator has the ability to initiate
production on short notice, but is not required to actu-
ally produce electricity. It holds the option of entering
the stand-by state for an irreversible one-time investment
cost.

Stand-by state (SB): This state is also known as mothballing
or temporary shut-down state. The generator saves on
maintenance costs but forgoes revenues as it cannot initi-
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ate production. It holds the options of entering the oper-
ating or retirement state for irreversible, one-time invest-
ment costs.

Retired state (RE): The generator is abandoned and cannot
become operational again.

The operational decisions under consideration are to remain
in the actual state (OP, SB or RE), or the specific action of shut-
ting down (OP→SB), starting up (SB→OP) and abandoning
(SB→RE) individual generators. These are known collectively
as switching decisions.

It is assumed that these acts of switching come with real ir-
reversible costs.1 As such, switching decisions are investment
decisions where the intent is to maximize prospective profits
given one’s belief of the future. The decision-making there-
fore requires the consideration of strategic and forward-looking
economic factors.

This paper empirically analyses the effects such factors have
on the switching decisions for peak generators in the North-
eastern United States in the period 2001–2011. The analysis
is made possible by Form 860, which is collected annually by
the EIA and includes observed operating states. The decision-
making process is constructed as discrete-time and discrete-
space dynamic decision game, where these economic factors
are included as explanatory variables. Economic primitives such
as maintenance and switching costs are retrieved using struc-
tural estimation.

The theoretical principles of dynamic decision models date
back to Bellman [1] and the concepts of dynamic programming
and optimal control policies. Such models characterize the op-
timal decision of the problem mathematically through a set of
Bellman equations, conditional on an exogenous state process.
The papers Brennan and Schwartz [4] and Dixit [9] extended
this framework by assuming that the exogenous state process
behaves stochastically, founding what is today known as real
option theory.

The technique of structural estimation originates from Rust
[26], who studies the problem in which bus companies must de-
cide whether to replace or repair the bus engines in their fleet
vehicles. In this case the external analyst is faced with incom-
plete information as he can observe the decisions made by the
bus companies, but not the underlying primitives of the Bell-
man equations, which explain how the decision-making process
is governed.

In this paper we develop a structural model based on these
principles, upon which we use the observed switching decisions
of the peak generators to estimate the economic primitives de-
scribing how firms make such decisions. We employ elements
of the non-parametric structural estimation approach developed
in Fleten et al. [15], because it is ideally suited for complex
dynamic decision problems as it allows for the simultaneous
comparison of an arbitrary number of options. An important

1Examples of real costs of switching could be the process of hiring/letting
go of/reassigning workers and re-negotiations of contracts with suppliers.

departure from their approach, however, is the treatment of the
stochastic expectation of the exogenous state process, where we
employ clustering analysis in an effort to address the challenge
of dimensionality. The results demonstrate that this is a useful
technique in a high-dimensional state space.

This paper adds to the empirical analysis utilizing high-
resolution data on the behavior of individual industrial agents.
The papers by Frayer and Uludere [16] and Caldecott and Mc-
Daniels [5] provide estimates of the value of owning thermal
peak generators, both in light of its inherent option value due to
its production flexibility and the challenges related to the advent
of renewables in the market. Others, e.g., Hiebert [17], Knittel
[21] and Craig and Savage [6] explore how market restructuring
motivates firms to improve the thermal efficiency of their gen-
erators. Lin and Thome [22] investigate the dynamic entry/ exit
game of ethanol plants using a structural model partly based
on a semi-parametric estimation technique developed by Pakes
et al. [25]. Their game-theoretical aspect serves as a basis for
the construction of a competition variable in this paper, which
takes into account how the competitors of an individual genera-
tor choose to switch between operating states. Fleten et al. [14]
specifically addresses switching decisions of peak generators,
and evaluates the empirical effect of a number of economic fac-
tors on these decisions using a reduced-form regression model.

The contributions of this paper include uncovering primi-
tives linking the economic factors under consideration directly
to the costs of switching, as opposed to estimating their effects
on the probability of switching as previously done in the lit-
erature. Additionally, this paper investigates whether or not
generators take into account the switching actions of their com-
petitors when making their own decision, a strategic element
not properly addressed in the literature. Finally, we evaluate
whether or not payments from the young capacity markets af-
fect the generators’ susceptibility to these economic factors us-
ing temporal sample splits. Portfolio effects are similarly ad-
dressed.

Outline of the paper. Section 2 presents the theoretical model
for the switching problem. Section 3 presents the case data and
definitions of the state variables. Section 4 outlines the struc-
tural model while Section 5 provides the results and a discus-
sion. We conclude in Section 6.

2. The Theoretical Switching Problem

This section formulates a mathematical model for peak gen-
erator switching under the assumption that the decision makers
act rationally and aim at maximizing individual profits.

Assume that a generator-owner is allowed a decision at ev-
ery discrete stage t to switch from operating state s in period t
to the operating state u in the following period t+1. The switch-
ing decision is based on the economic and technical information
available to the owner at that time.

The time-varying vector Xt represents the state process hold-
ing all publicly known exogenous factors describing the eco-
nomic environment in which the generator and its competitors
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are operating. Such factors include relevant political regula-
tions and measures for the uncertainty of the profitability of
the generator with respect to competitiveness and prices. We
assume that these variables evolve according to a controlled
Markov chain.

Unobserved heterogeneity refers to how individual agents
act differently when presented the same information. We in-
volve unobserved heterogeneity by including an i.i.d. stochastic
state process εt, that represents the private information available
to each decision-maker, but inherently unobservable to an ex-
ternal analyst. Examples could include technical conditions of
the generator, the particular cost structure of the firm, and the
decision maker’s willingness to take risks.

The profit for a generator is clearly dependent on its current
operating state s and state process Xt, but also on the choice u
regarding the operating state next period, as this decides poten-
tial profits for the coming year. Further, various maintenance
and switching costs are important. The annual net profit can
thus be formulated as

g(xt, st, ut, εt) = g(xt, st, ut) + εt, (1)

where the private information εt acts as a profit shock. The par-
ticular decomposition (1) is according Rust [26] and known as
additive separability. Here εt is assumed to be conditionally in-
dependent from Xt. The value of owning a generator can thus
be represented as the expectation of the sum of all discounted
future net profits, provided that the owner makes the optimal
decision u each period. This is given by

V(x, s, ε) = max
u∈S

[
E
( ∞∑

t=0

βtg(Xt, st, ut, εt)
∣∣∣∣ X0 = x

)]
, (2)

where the dynamically optimal decision policy is given by which-
ever action u that maximizes (2). This expression can be refor-
mulated to

V(x, s, ε) = max
u∈S

[
g(x, s, u, ε)+βE

( ∫
V(X1, u, ε1)E(dε1)

∣∣∣∣X0 = x
)]
,

(3)
as demonstrated in Fleten et al. [15]. Eq. (3) represents the
familiar Bellman equation and acts as a necessary condition for
optimality in a dynamic programming problem. By defining the
expected value function as

v(x, s) = E
( ∫

V(X1, s, ε1)E(dε1)|X0 = x
)
, (4)

Eq. (3) becomes

V(x, s, ε) = max
u∈S

[
g(x, s, u, ε) + β v(x, u)

]
, (5)

and by taking the expectation of (5) we obtain an alternative
expression for (4), i.e.,

v(x, s) = E
[ ∫

max
u∈S

[
g(X1, ε1, s, u) + βv(X1, u)

]
E(dε1)

∣∣∣∣∣X0 = x
]
,

(6)
which is a fixed point equation for the function v.

The integrand in (6) is a maximum of random variables.
Recall that a maximum of random variables is an extreme value
distribution which must be a Gumbel distribution in our case, as
ε has positive and negative tails (the Fisher–Tippett–Gnedenko
theorem2). A closed form expression for the Gumbel distribu-
tion under maximization is given by∫

max
u∈S

(εu + cu)E(dεu) = b · log
(∑

u∈S

exp
(cu

b

))
, (7)

(cf. Appendix B or Fleten et al. [15, Proposition 8] for further
details), where b is the scale parameter of the limiting Gumbel
variable. By specifying cu := g(X1, s, u) + β v(X1, u), Eq. (6)
reduces to

v(x, s) =

E
[
b·log

[∑
u∈S

exp
(g(X1, s, u)+βv(X1, u)

b

)]∣∣∣∣∣∣X0 = x
]
. (8)

For notational convenience we introduce the operator

tg(v)(x, s) :=

E
[
b·log

[∑
u∈S

exp
(g(X1, s, u)+βv(X1, u)

b

)]∣∣∣∣∣∣X0 = x
]
, (9)

which allows expressing the Bellman equation abstractly as a
fixed point equation as

v = tg(v). (10)

Eq. (10) represent a constraint in the structural model in Sec-
tion 4 below.

3. Data and State Variable Definitions

The primary data source used is Form 860, which is annu-
ally collected by the EIA and which contains generator-level
specific information about existing and planned generators in
the United States, including recorded operating states. Sup-
ply and demand of electricity is collected from the Electric-
ity Supply and Demand (ES&D) database, which is annually
published by the North American Electricity Reliability Corpo-
ration (NERC). Commodity prices are collected from the New
York Mercantile Exchange (NYMEX) and the wholesale elec-
tricity market system operators’ websites.

The following subsection outlines the temporal and geo-
graphical focus addressed in this paper. The efficiency of a
unit, i.e. heat rate plays a dominant role in describing the per-
formance of thermal generators (Section 3.2), it is part of the
state variable Xt detailed in Section 3.3 below.

2The three extreme value distributions are the Gumbel (Type I), the Fréchet
(Type II) and the Weibull (Type III) distributions.
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3.1. Time Frame and Focus Region

This paper focuses on peak generators on the Northeast-
ern United States over the period 2001 to 2011. Specifically,
we include data from three major wholesale electricity mar-
kets, the Pennsylvania-New Jersey-Maryland (PJM), the New
England Independent System Operator (ISO-NE), and the New
York Independent System Operator (NYISO), displayed in Fig-
ure A.3 in the Appendix. This includes generators in the follow-
ing states: Connecticut, Delaware, Illinois, Indiana, Kentucky,
Massachusetts, Maryland, Maine, Michigan, North Carolina,
New Hampshire, New Jersey, New York, Ohio, Pennsylvania,
Rhode Island, Tennessee, Virginia, Vermont and West Virginia.
Additionally, the District of Columbia is included.

We focus on the time period starting in 2001 because this
represents the majority of the available data on switching deci-
sions after significant changes were made to Form 860 in 2001,
making previous data unsuitable for comparison in this analy-
sis.

With 21 U.S. states and 11 years of observations, there is a
total of 13 078 generator-year observations of performed switch-
ing decisions.3 This corresponds to 1 388 unique generators
owned and managed by 332 companies.

3.2. Heat Rate

During times of peak demand, electricity is close to be-
ing a homogeneous product. As a result, the profit of a peak
generator is heavily dependent on its marginal cost of produc-
tion, which in turn is largely determined by its efficiency. Even
in markets with no retail competition, where producers tradi-
tionally are able to offset high marginal costs by charging con-
sumers more through regulated prices, efficiency is becoming
increasingly important, as several U.S. states have introduced
incentive regulation where utilities are rewarded for high effi-
ciency.4

The industry measure of efficiency for thermal generators is
the heat rate, which measures how much fuel in MMBtu (mil-
lions of British Thermal Units) is needed to produce one MWh
of electricity. A high heat rate thus corresponds to a low effi-
ciency. As there is 3.41275 MMBtu in one MWh, the relation-
ship between efficiency (E) and heat rate (H) is given by

H =
3.41275

E
100 %.

Instead of using nameplate efficiency, this paper relies on
heat rates calculated from actual data on consumed fuel input
and electricity output. This is advantageous when modeling a
strategic investment game, as the heat rates can change over

3In the sample there were recorded 77 transitions directly from OP to RE.
This behaviour is inconsistent with normal economic incentives for the peak
generators, and the observations are likely caused by reasons other than eco-
nomics, e.g., catastrophic failures or environmental concerns. Hence, they have
been removed from the sample.

4For example, regulated prices have been set conditional on firm-level av-
erage efficiency, providing efficient utilities with a higher price-cost margin, cf.
Craig and Savage [6], Knittel [21].

time due to (i) deterioration due to attrition and age and (ii) im-
provements from technological upgrades.5 The heat rates based
on actual data capture the sum of these two effects. The liter-
ature indicates that thermal efficiency has increased by 2 %–
50 %-points from the early 1980s to the late 1990s due to reg-
ulated heat programs and introduction of retail competition (cf.
Hiebert [17], Knittel [21]). This is comparable to our own data,
where a generator’s maximum recorded heat rate is on average
25 % higher than its minimum.

3.3. State Variable Definition

The cash flow of a peak generator is determined by its spark
spread, the difference between the price of the electricity sold
and the cost of the fuel consumed to produce it. The spark
spread Yn,d,r (in $/ MWh) for generator n, located in wholesale
market r, for a particular day d, is

Yn,d,r = pe
d,r − Hn · p

f
d,r − υn,d,

where pe
d,r and p f

d,r are the electricity price ($/ MWh) and fuel
price ($/ MMBtu) for day d in region r, and υn,d is the variable
non-fuel generation cost.

The first state variable under consideration is profitability
per unit of capacity ($/ kW). It is given by

Pn,t,r =

T∑
d=1

max(Yn,d,r, 0) ·
( 16
1000 kW/MW

)
, (11)

where T is the number of days in year t and 16 is the number
of peak hours in a day.6 Note that the max operation in (11)
indicates that for days when the spark spread is negative, the
plant chooses not operate and the profit is zero. This means that
owning a peak generator is comparable to holding a collection
of daily European call options on the spark spread, cf. Deng
et al. [8].

The second state variable under consideration is related to
the uncertainty of the spark spread. Real option theory states
that investors are likely to hold potential investment decisions
during times of uncertainty given the option to make the deci-
sion later (Dixit and Pindyck [10]). Hence, the spark spread
standard deviation is likely to affect switching decisions as they
involve irreversible investment costs. Using the definition of
the spark spread given above, its standard deviation is7

S n,t,r = std(Yn,d,r), d = 1, . . . ,T. (12)

5An example is how refined components can lead to more accurate damper
control of boiler temperature, which in turn helps optimize the combustion and
hence the generator’s heat rate [6].

6As the focus is on peaking generators, the electricity prices are taken from
the peak hours of the day, i.e., 06:00–22:00 (HE7-HE22 in industry parlance).
Daily peak prices are calculated as the simple average of the hourly spot prices
during the peak period.

7It would be advantageous to rather use forward-looking data for estimat-
ing this variable, e.g. using implied numbers based on market-observed prices
of spark spread options. Such an approach was used successfully by Kellogg
[19] for oil volatility. However, as such options failed to attract volume on the
exchanges, the available data is insufficient.
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As switching decisions are in part bets on the future, firms
are likely to consider forward-looking measures of expected
profit. A suitable proxy for future profits is a measure of future
demand for capacity. The capacity buffer required by system
operators is formally known as reserve margin. If the reserve
margin for the following period is projected to be low, the de-
mand for the peak generators’ capacity that period should be
high, and consequently generators should be motivated to re-
main in, or switch to the operating state. The reserve margin
is known by several definitions in the literature, though the one
consistent with the peak generator literature (cf. Fleten et al.
[14]) is

Rt,r ≡
(ct,r − dt,r)

dt,r
, (13)

where ct,r represents the planned capacity and dt,r the projected
peak demand for electricity in region r in year t.8

A power producer participating in the spot market is com-
peting against other producers. As such, the profit for a single
generator is dependent on whether its competitors are also par-
ticipating in the same market (i.e., are in the operating state) at
the same time, and how efficient the generator is compared to
these active competitors. If a firm owns a generator that holds
a competitive advantage over other power producers, the firm
is likely to sell electricity even during times of low demand
because it can underbid the competition. This is likely to af-
fect switching decisions. For this reason, we involve a dynamic
variable that measures the relative efficiency of a single gener-
ator compared to competing generators in the same U.S. state
for a particular year. That is, the measure of inverse competitive

8Since the annual U.S demand peaks during the summer, peak hour summer
demand is used to calculate the reserve margin.

advantage for generator n in year t is given by

Ct,n =

Ht,n

HA
if n(A) > 0,

0 if n(A) = 0,
(14)

where A is the set of all generators located in the same U.S. state
as generator n that are in the operating state in year t, HA is the
average heat rate of all elements in A and n(A) is the number of
elements in A. Ct,n is a dynamic variable describing the strate-
gic game between the generators. It captures (i) the internal
dynamics of generator n through the temporal changes in Ht,n

and (ii) the switching decisions of the neighboring generators
as the set A only includes generators that are in the operating
state in year t. When Ct,n < 1, generator n has a lower heat rate
than its average competition and thus holds an advantage equiv-
alent to a higher price-cost margin. When Ct,n > 1, the opposite
holds true. As Ct,n is a continuous variable, relative positions
within these two cases are captured as well. The special case of
n(A) = 0 occurs only one time in the data.9 Setting the variable
to zero in this case implies that competitive concerns do not in-
fluence switching decisions, which makes sense seeing as there
were no competitors present at that time.

The introduction of retail competition in many U.S. power
markets was one of the most significant regulatory changes in
the 1990s and 2000s, with significant impact on individual util-
ities and generators. Retail competition means that consumers
can choose the cheapest supplier of electricity available. This
is beneficial for efficient generators as they are likely to expe-
rience increased demand, whereas less efficient generators are
going to face the opposite effect. Hence, this regulatory change

9The 16 generators located in the District of Columbia in 2001 were all in
the SB state.

Table 1: Summary statistics of state variables observed

Transition Owner Num. of Pi[$/kW] Ui Ri S i Ci

type type observ. µ σ µ σ µ σ µ σ µ σ

All 10798 5.148 (5.544) 0.026 (0.151) 0.181 (0.056) 0.030 (0.016) 0.998 (0.299)
OP→ OP Small 4796 5.670 (5.834) 0.023 (0.150) 0.185 (0.047) 0.028 (0.014) 0.970 (0.234)

Large 6002 4.731 (5.487) 0.028 (0.165) 0.178 (0.067) 0.031 (0.018) 1.021 (0.340)
All 97 2.740 (4.157) 0 (0) 0.175 (0.048) 0.023 (0.009) 1.031 (0.319)

OP→ SB Small 61 3.586 (4.841) 0 (0) 0.175 (0.053) 0.023 (0.010) 0.992 (0.384)
Large 36 1.305 (1.964) 0 (0) 0.174 (0.039) 0.024 (0.007) 1.099 (0.137)
All 234 7.131 (7.267) 0.004 (0.065) 0.177 (0.047) 0.037 (0.026) 1.001 (0.476)

SB→ OP Small 167 8.118 (7.698) 0 (0) 0.180 (0.041) 0.039 (0.029) 0.923 (0.389)
Large 67 4.669 (5.363) 0.015 (0.122) 0.169 (0.059) 0.031 (0.013) 1.196 (0.603)
All 1868 4.033 (4.980) 0.026 (0.158) 0.176 (0.048) 0.030 (0.019) 1.132 (0.470)

SB→ SB Small 1340 3.925 (4.983) 0.028 (0.166) 0.176 (0.045) 0.030 (0.019) 1.075 (0.456)
Large 528 4.309 (4.967) 0.019 (0.136) 0.178 (0.056) 0.031 (0.021) 1.274 (0.476)
All 81 1.268 (3.016) 0 (0) 0.174 (0.030) 0.021 (0.010) 1.240 (0.157)

SB→ RE Small 18 5.417 (4.380) 0 (0) 0.145 (0.054) 0.033 (0.013) 1.074 (0.162)
Large 63 0.082 (0.221) 0 (0) 0.182 (0.008) 0.018 (0.006) 1.287 (0.119)

Notes: µ is the mean and σ is the standard deviation. OP is the operating state, SB the stand-by state and RE the retired state. State
variables: Pi is the profitability measure, Ui the regulatory uncertainty dummy, Ri the reserve margin, S i the spark spread standard
deviation and Ci the inverse measure of competitive advantage. Results are shown for (i) the entire sample, as well as the sub-samples
of observations where the generator is managed by (ii) a small firm and (iii) a large firm. A firm’s size is measured by the accumulated
summer peak capacity of all its generators. Section 5.2 outlines details of this sample split.
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has the potential to immensely alter the competitive situation
among power producers. Retail competition is a policy at the
U.S. state level. Fleten et al. [14] employ a binary variable in
their regression analysis of the switching problem which de-
scribes if there is uncertainty in the market about whether or
not this regulatory change will take effect in a particular state.
This indicator is based on a retail competition index developed
by Billingsley and Ullrich [2], which translates qualitative data
published by the EIA about state-level deregulation into dis-
cretized levels describing how far this political process has pro-
ceeded in a given state for a particular year. Levels correspond-
ing to there being an political investigation or recommendation
for deregulation active in the state Senate, prior to any actual
decisions having been made, indicate that power producers will
be uncertain with regards to their regulatory environment.

We employ this same variable in our structural model. As
an uncertainty measure it is expected to carry real option effects.
Thus, the final state variable is

Ut,s ∈ {0, 1}, (15)

a binary variable equal to 1 if there is regulatory uncertainty
present in U.S. state s in year t, and zero otherwise.

The subscript i is used to denote a generator-year observa-
tion. As this captures all temporal, geographical and generator-
specific characteristics, we use this subscript to simplify the no-
tation of the state variables.

The complete state process is finally

Xi =
(
Pi, S i,Ri,Ci,Ui

)
, (16)

defined by (11)–(15). Table 1 presents summary statistics of
these variables.

4. Structural Model

4.1. Choice of Model

Structural estimation aims at estimating parameters which
are hidden inside a dynamic decision model. Such parameters
represent the fundamental economic primitives which we are
interested in.

Our model relates the three switching decisions directly to
economic elements:

i) the payoff the generator will receive for being in the oper-
ating state,

ii) maintenance costs for being in either the operating state
(MOP) or stand-by state (MS B), and

iii) switching costs associated with either shut-down (KOP→S B),
start-up (KS B→OP) or abandonment (KS B→RE) decisions.

Understanding the costs of switching is the key to under-
standing the observed behaviour in the data.

Figure 2 displays the switching decisions of plant managers
in our database. Only 3.3% of the observed decisions are swit-
ches between different operating states, indicating the presence
of significant barriers for such actions. A central principle is
that even though there are monetary costs to switching, the
power producers’ perception of these costs is likely to be af-
fected by the economic environment. That is, the switching
costs can be interpreted as a combination of monetary cost and
risk. Imagine that a plant manager finds it likely that profits will
increase next year. This will lower the manager’s perception of
the risk associated with switching to the operating state, thus
reducing his perception of the costs of making such an action.
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Figure 1: Projected reserve margin (R) and the spark spread standard deviation (S ) for the two largest power markets in the sample.
Note: The spark spread is calculated using average values for the heat rate.
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Conversely, knowing that his generator is very inefficient com-
pared to the other active generators in the area might increase
his impression of this cost.

Incorporating this principle into the structural model ne-
cessitates distinguishing between two sub-groups in Xi, as the
state variables hold different economic interpretations. The first
group consists of the profitability measure Pi. As a calculated
value it has an inherent economic meaning and can therefore
be placed explicitly in the structural model as the payoff a gen-
erator receives for being in the operating state.10 The second
group consists of the remaining four variables, which we refer
to collectively as the set X′i , i.e.,

Xi =
(
Pi, S i,Ri,Ci,Ui︸         ︷︷         ︸

X′i

)
(17)

(cf. (17)). The state variables X′i are not calculated and can
only be incorporated into the model empirically. These can be
perceived as the economic environment of the generator, and
thereby also to describe the risks associated with switching de-
cisions.

OP SB RE

10 798 1 868
97

234

81

Figure 2: State Diagram for Peak Generator Switching. In-
cluded is the number of observations of each switching decision
in the full sample.

A plant manager’s perception of the switching costs can
thus be represented by expressing them as linear empirical func-
tions of the state variables. That is,

KOP→SB(X′) = γ0 + γ>X′,

KSB→OP(X′) = λ0 + λ>X′,

KSB→RE(X′) = η0 + η>X′,

where the constants γ0, λ0 and η0 are the monetary cost of
switching, whereas γ, λ and η are four-dimensional vectors of
coefficients of the strategic considerations.

Note that when a firm abandons a generator, needed space
might be freed and the generator could be sold on the second-
hand market. Therefore, the decision of abandoning the gener-
ator is likely to cause a cash inflow rather than a cash outflow;

10It would be advantageous to include additional sources of revenue to this
payoff, such as capacity payments. Accurate data on capacity payments is,
however, challenging to obtain. The RPM and FCM markets are built as in-
cremental annual auctions up to three years into the future. Although clearing
prices are available in certain markets, there is currently no way of knowing
which generator bid in each auction, or how much. The effects of capacity pay-
ments are therefore addressed alternatively through sample splits as outlined in
Section 5.2.

that is, KSB→RE < 0. Parts of the abandonment cost can hence
be interpreted as a salvage value.

The annual profit function g (cf. (1), or (2)) thus is

gθ(X|s, u)=



P−MOP if s=OP, u=OP,
P
2 −KOP→SB(X′)− (MOP+MSB)

2 if s=OP, u=SB,
P
2 −KSB→OP(X′)− (MOP+MSB)

2 if s=SB, u=OP,

−MSB if s=SB, u=SB,

−KSB→RE(X′)− MSB
2 if s=SB, u=RE,

(18)
where the decision s→u decides the combination of profit, main-
tenance and switching costs applicable to the generator that
year.11

The EIA only records operating states on an annual fre-
quency. Since we cannot know at which time during the year
switches are made, we assume that they take place half-way
through the year. The profits and maintenance costs are dis-
tributed accordingly in (18).

The structural parameters to be estimated are held in θ, i.e.,

θ := (MOP,MSB, γ0, λ0, η0, γ, λ, η).

4.2. Optimization Problem

Retrieving the parameter θ can be done by solving a con-
strained non-linear optimization problem of the maximum like-
lihood of the observed data, cf. Su and Judd [27]. Since the
parameters are only present in gθ(X|s, u), the maximum likeli-
hood is centered on this function. That is, the structural estima-
tion procedure becomes solving the problem

maximize L(g, vg, (Xi, si, ui)N
i=1),

subject to vg = tg(vg),
g ∈ G,

(19)

whereL is the likelihood function of the observed data (Xi, si, ui)N
i=1

given a particular profit function gθ, N is the number of generator-
year observations i, and the set of profit functions G is given
in (18). The constraint vg = tg(vg) is the Bellman fixed-point
equation (10).

The structural formulation (19) requires a maximum likeli-
hood estimator for the objective function, as well as a treatment
of the conditional expectation in the Bellman constraint. The
Gumbel variable for the process ε allows an explicit expression
for the likelihood estimator. The explicit probability of choice
of the Gumbel variable is

Pv(u|x, s) =
exp

(
g(x,s;u)+β v(x,u)

b

)
∑

u′∈S
exp

(
g(x,s;u′)+β v(x,u′)

b

)
11Attempts were made at formulating all candidate functions in (18) as pure

empirical linear functions of the state variables. This resulted in insignifi-
cant parameters indicating parameter overload. The use of empirically-based
switching costs saves parameters while allowing for the comparison of all de-
cisions in a complicated multi-optional problem.
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(cf. (7)–(9)) as detailed, e.g., in Fleten et al. [15, Proposition 9].
It follows that the corresponding likelihood function is

L
(
g, vg, (Xi, si, ui)N

i=1

)
=

N∏
i=1

Pv(ui|Xi, si). (20)

As evident from Figure 2, some actions occur more fre-
quently in the data than others. Left unchecked, this imbalance
causes biases in the optimization as (20) treats every observa-
tion equally. For this reason, and consistent with the literature
(cf. King and Zeng [20]), the likelihood function is augmented
such that each observation is weighted appropriately so that the
importance of each type of decision is equated in the estima-
tion. Thus, the augmented and final (log-)likelihood function
is

logL(g, vg, (Xi, si, ui)N
i=1) =

N∑
i=1

1
Ni

log
(
Pv(ui|Xi, si)

)
,

where
Ni ∈ {10 798; 97; 234; 1 868; 81},

are the weights attributed to observation i according to which
sub-set in Figure 2 the observation belongs to.

4.3. Clustering Analysis
It is common in the literature to discretize the individual

state variables and construct a state space as the combinations
of these. This approach poses challenges for a high number of
state variables, as the size space tends to become larger than the
data can accommodate to obtain statistically meaningful esti-
mates of the transition probabilities. This is known as the curse
of dimensionality.

We address this problem by discretizing the data into clus-
ters using k-means clustering analysis. This technique groups
the observations (Xi) into k clusters by minimizing the squared
Euclidean distance between the observations and the cluster
centroids x̄c, where the centroids also serve as reference points
for all observations in the cluster. All state variables are prop-
erly scaled such that their dimensions are comparable. This
avoids unintended favoritism of a particular state variable in the
clustering process.

The conditional expectation in (8) is treated by estimating
the transition probability of each pair of subsequent observa-
tions of a given generator,

(Xi, Xi+1) for i = 1, 2,...N−1.

The state process is assumed to behave according to a Markov
chain. The transitional probabilities of the discretized state
space are estimated empirically. That is, the probability that
a state process Xi that is currently in cluster c will pass over to
cluster j is given by

Mc j = Pr(Xi+1 ∈ j| Xi ∈ c),

which constitute the entries in a Markov transition matrix. This
formulation implicitly captures any dependency between the in-
dividual state variables.

By redefining the Bellman equation in (8) on the discretized
state space given by the cluster centroids x̄c, a proper estimator
for the constraint is given by the weighted probability of transi-
tioning from cluster c to any other cluster j, i.e.,

t̂g(v)(x̄c, s) =

k∑
j=1

Mc j · b · log
[∑

u∈S

exp
(g(X̄ j, s, u) + β v(X̄ j, u)

b

)]
, (21)

where X̄ j are the centroid values at which the profit function
and discounted expected value functions are evaluated, before
being properly weighted by the probabilities in Mc j.

Note that the clustering automatically serves as an interpo-
lation of the observations. This has crucial computational ad-
vantages, as this limits the number of variables in the optimiza-
tion problem.

This estimator can be further improved by evaluating the
constraint not for the centroid values X̄ j but rather as the av-
erage of the actually observed state variables for observations
transitioning to cluster j, originating from cluster c. The aver-
age is achieved by replacing the outermost sum in (21) with a
sum over every observation originating in cluster c, including
the weights wc, j which denotes the number of observed transi-
tions from c to j. Thus, the final estimator becomes

ˆ̂tg(v)(x̄c, s) =∑
i∈Z

Mc, j(i+1)

wc, j(i+1)
·b· log

[∑
u∈S

exp
(g(Xi+1, s, u)+βv(Xi+1, u)

b

)]
, (22)

where Z is the set of observations located in cluster c, and j(i+1)
denotes the cluster of i’s subsequent observation.

The conditional expectation operator ˆ̂t in (22) completes
the mathematical description of the structural estimation prob-
lem (19).

4.4. Uncertainty Estimates
The uncertainty of the parameters in θ is found by non-

parametric bootstrapping. Observations are randomly drawn
with replacement to generate 21 independent data panels. The
structural estimation is applied on each panel, and the standard
deviation of each parameter is taken across the results from the
random samples. Significance is determined by the two-sided
student’s t-test.

4.5. Identification
Separate identification of the parameters in θ requires that

the state variables exhibit independent variation. For the prob-
lem under consideration, this is ensured by (i) great cross-sec-
tional variation in the individual state processes as they are de-
fined at either regional (i.e., for each ISO), U.S. state or gen-
erator level and (ii) little inter-dependency between the state
processes.

The variables most likely to violate this assumption are the
projected reserve margin and the spark spread standard devia-
tion. To see the intuition behind this, remember that the spark
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spread is dependent on the wholesale electricity price. This in
turn points to the equilibrium between capacity and demand for
electricity, which are the two elements constituting the reserve
margin. That is, the spark spread standard deviation is poten-
tially highly correlated with the present reserve margin, which
could be considered antecedent to the projected reserve mar-
gin (R). As the reserve margin is a mean-reverting process and
can be considered auto-regressive, one would expect the spark
spread to be negatively correlated with the projected reserve
margin.

A quick glance at Figure 1 shows that there are signs of a
negative correlation between these variables. However, a closer
inspection reveals that the magnitude of the correlation is small,
ranging from −0.27 to −0.54 between the three power markets
in the sample, and in only one of the markets is the correlation
significant at the 10 %-level. The low correlation can be ex-
plained by the influence of the fuel prices (natural gas or crude
oil, depending on the generator) included in the spark spread.
Also, the projected demands for electricity used in estimating
the projected reserve margin rely on standardized temperature
values, whereas the present reserve margin uses the actual tem-
perature and weather conditions. This leads to a greater source
of variation. Also, the statistics above are calculated assuming
average values for the heat rate, which means that the actual
data exhibit even more variation than indicated by Figure 1, as
the spark spread is generator-specific.

5. Results

In what follows we set the discount factor β set to 0.91,
which corresponds to an interest rate of 10%. Further, in con-
sistency with the literature (cf. Rust [26] and Su and Judd [27])
we normalize the scale parameter in the Gumbel distribution by
b = 1.

5.1. Model Formulations

We address a variant of the model outlined in Section 4 first:
the base model is used to get an estimate of maintenance and
switching costs, and only the profitability measure P is con-
sidered in this formulation. More specifically, the base model
addresses the available observations with X = (P, −, . . . ,−)
in (17). Due to the lower number of parameters it is possible
to capture additional unobserved heterogeneity by treating the
most important of these, the maintenance cost in the operating
state MOP and the start-up cost KSB→OP, as random parameters
with a given distribution (cf. Train [28]).12

In this way we obtain monetary estimates for the mainte-
nance and switching costs for two sub-samples sorted by the
size of the firm managing the generator. MOP and KSB→OP (in
[$/ kW]) are treated as normal random variables, whose mean
and standard deviation are displayed in Table 2.

12The distribution used is discretized and thus managed using representative
points (quantizers) with optimal weights such that the distance to the genuine
distribution is minimized (cf. Pagès [24]).

The estimated parameter values θ are the monetary values
of maintenance and switching costs with units in [$/ kW]. Such
estimates are surprisingly difficult to obtain in the industry due
to a wide variety of maintenance policies and managerial pri-
orities across plants, cf. Fleten et al. [15]. Therefore, these
estimates hold great value for, e.g., regulators wishing to find
suitable levels for capacity payments or other compensations
for keeping peak generators in the operating state.

The base model is validated using Monte Carlo simulations.13

Table 2 shows the result for the base model.

The augmented model includes all additional state variables
in X. The parameters from this formulation explain how the
plant managers’ perception of the switching costs is affected by
their economic environment. Results of the estimation for the
augmented model are given in Table 3.

5.2. Sample Splits

We perform two types of sample splits in order to answer
the following questions:

i) Does the firm’s size (i.e., portfolio) influence the plant man-
ager’s reaction to the economic environment?

ii) Has the recent introduction of capacity payments in the
U.S. power markets altered this behaviour?

We capture the portfolio effects by distinguishing the gen-
erators by the size of the firms managing them. As a measure
of size we use the accumulated peak capacity of all the gen-
erators belonging to the firm. The observations are split into
two groups; one with 7 398 observations belonging to the 56
largest firms and another with the remaining 7 081 observations
of generators belonging to the 276 significantly smaller firms in
the total sample.14 When compared in terms of market shares,
these groups hold 56 % (44 %, resp.) of the total peak capacity
in the sample.

The effect of the capacity payments is inferred by a tempo-
ral sample split. We compare the full sample over the period
2001–2011 with the sub-sample from 2001–2008, which ex-
cludes the data after the capacity markets in the PJM and ISO-
NE became active.15 Ensuring identification of this effect is
difficult as the results could be influenced by other unknown
temporal events. Though, as capacity markets have been con-
sidered economic lifelines to peak generators it constitutes a
reasonable approximation.

13Simulated data panels are created using fictional values for the structural
parameters in θ. The structural estimation procedure retrieves back the initial
parameter values.

14The differences in sizes are significant. All of the ”small” firms are located
in the bottom 3.3% of the total range of accumulated capacity used to measure
the size of the firms.

15It would be advantageous to perform the estimation on only the sub-sample
2009–2011. However, the amount of data available is insufficient for significant
parameter estimation.
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5.3. Discussion of Results

The maintenance and switching costs are shown to differ
depending on the size of the firms, as seen in Table 2. The
maintenance cost in the operating state (E[MOP]) is 34% lower
for large firms, pointing to significant scale benefits. According
to the Norwegian system operator Statnett, two of their thermal
peak plants had an average maintenance cost in the operating
state of 13.4 $/kW.16 This is more than our estimate, an indi-
cator for lower operating costs in the U.S. Maintenance costs
in the stand-by state (MSB) are low and of comparable values
for small and large firms, demonstrating that when generators
are shut-down little resources are spent on their preservation.
The cost of abandonment (KSB→RE) is negative and similar in
both groups. This is likely because economies of scale have re-
duced effect on the second-hand market of used generators. The
costs of shutting down (KOP→SB) is noticeably lower than the
costs of starting-up (E[KSB→OP]), and extremely low for small
firms. The sizes of the error estimates (σ[MOP] andσ[KSB→OP])
points to considerable heterogeneity within the groups.

Moving attention to Table 3; the presence of regulatory un-
certainty (U) associated with the introduction of retail competi-
tion in the electricity market has a consistent and large positive
effect on shut-down and abandonment costs. The uncertainty
is thus acting as a barrier to switching. As these decisions in-
volve (dis-)investments, this also implies substantial real option
effects.

The reserve margin (R) is significant and holds a consistent
and negative effect on shut-down and abandonment costs for
large firms, prior to the advent of effective capacity markets, ef-
fectively lowering the plant manager’s perception of the switch-
ing costs when the prospect of future profits is reduced. Con-
versely, the reserve margin is almost always insignificant for the
same firms after the introduction of the capacity markets. This
could indicate that the presence of capacity payments overshad-
ows the companies’ attention to the reserve margin. The reserve
margin is similarly not significant for small firms in any of the
time periods considered, which suggests that small firms are
less receptive to such projections.

The reserve margin’s effect on start-up decisions is more
difficult to interpret. The variable is consistently significant in
the period 2001–2008, but has also here negative signs, mean-
ing that the projected reserve margin is lowering the cost of

16See http://e24.no/energi/kostet-en-milliard-ble-aldri-tatt-i-bruk/23437044.

starting up a generator. This is counter to intuition, as an expec-
tation of lower future profits (i.e., a high reserve margin) should
act as a deterrent against entering the operation-ready state and
represent a higher start-up cost. Furthermore, for large firms
evaluated over entire sample period the projected reserve mar-
gin is significant with a positive sign (i.e., low expected reserve
margin leads to higher start-up costs), though this disputes the
notion that capacity payments averts the firms’ attention from
the reserve margin as seen for the other switching decisions.
For this reason, the reserve margin’s effect on start-up decisions
remains ambiguous.

The spark spread standard deviation (S ) primarily has a sig-
nificant and positive effect on start-up and abandonment costs.
This uncertainty measure therefore acts as a barrier to switching
in a similar manner as the regulatory uncertainty, thus reinforc-
ing the notion that these firms make decisions in accordance
with real option theory. Interestingly, the monetary equivalent
of S ’s effect on the start-up cost (when using the respective
means of S ) is roughly half of its effect on the abandonment
decisions. In comparison, the regulatory uncertainty has a mon-
etary effect of 2–4 times that of the spark spread standard devi-
ation.

For the shut-down costs, the spark spread standard devia-
tion is extremely low and insignificant for large firms but sur-
prisingly negative and significant for small firms. Negative co-
efficients for S represent behavior which is inconsistent with
the real option interpretation of this variable, as it would im-
ply that irreversible investments were encouraged under uncer-
tainty. Since owning a generator is similar to owning call op-
tions on the spark spread, one could claim that the spark spread
standard deviation should increase the profit for the generator
as increased uncertainty inherently increases the value of hold-
ing such options.17 However, even with this interpretation one
would expect the spark spread standard deviation to increase
the perception of the shut-down cost, not to decrease it. It is
therefore more likely that the economic environment has an in-
herently low influence on small firms’ shut-down decisions as
their monetary costs of this action are very low (cf. Table 2).
This could invalidate the structural model for this sub-sample,
thus prompting unpredictable results.

The inverse measure of competitive advantage (C) is signif-

17Attempts were made to treat S as an empirical profit measure in conjunc-
tion with P. The results, however, gave negative coefficients for S which is
incompatible with both interpretations of the variable.

Table 2: Structural parameter estimates for the base model formulation.

MOP MSB KOP→SB KSB→OP KSB→RE

Parameter type (heterogeneous) (heterogeneous)
Sample type E[MOP] σ[MOP] E[KSB→OP] σ[KSB→OP]
Small firms 7.14 4.14 1.50 0.00 3.80 1.78 -8.00

(0.47) (0.27) (0.36) (1.52) (3.34) (1.77) (1.54)
Large firms 4.70 2.72 1.67 2.48 3.84 2.23 -8.42

(0.47) (0.27) (0.39) (1.75) (2.09) (1.21) (3.16)
Notes: Standard deviations from bootstrapping are in parentheses.
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Table 3: Structural parameter estimates for the augmented model formulation.

Firm type: Large Small Large Small
Period: 2001–2008 2001–2008 2001–2011 2001–2011

Part of
g(·)-function Coefficient or parameter values
MOP

constant 3.000*** 4.316*** 2.386*** 5.782**
(0.000) (0.432) (0.210) (1.314)

MSB

constant 2.088*** 0.123 0.000 0.859
(0.606) (0.566) (0.000) (2.260)

KSB→OP

constant 0.000 0.917 0.001 0.047
(0.000) (1.904) (0.007) (0.213)

Regulatory uncertainty (U) 4.150 14.519 6.414 15.966**
(6.747) (10.135) (6.444) (4.869)

Projected reserve margin (R) -6.480** -44.926** 23.210** -19.902
(3.010) (13.731) (5.642) (10.398) )

Spark spread standard deviation (S) 137.708*** 99.822*** 104.451** 114.710***
(25.910) (21.332) (32.254) (22.595)

Competitiveness measure (C) 0.600 2.530 -1.402 1.592
(0.859) (1.493) (1.158) (1.344)

KOP→SB

constant 0.000 0.205 0.001 0.176
(0.000) (0.326) (0.003) (0.725)

Regulatory uncertainty (U) 16.330*** 17.907** 15.784** 14.651
(1.585) (4.687) (4.799) (9.458)

Projected reserve margin (R) -10.221*** 20.981 -9.210 13.831
(2.297) (11.576) (5.665) (11.075)

Spark spread standard deviation (S) -5.839 -120.112*** -8.425 -139.506***
(22.537) (25.700) (22.179) (22.820)

Competitiveness measure (C) -1.480** 1.593 -2.896* -1.696
(0.662) (2.101) (1.325) (3.628)

KSB→RE

constant -10.732*** -19.221*** -30.235*** -21.648*
(1.037) (4.080) (2.118) (9.399)

Regulatory uncertainty (U) 14.758*** 18.966*** 18.487*** 18.413*
(1.622) (2.519) (3.284) (7.774)

Projected reserve margin (R) -12.447** 13.138 -7.093 13.003
(4.768) (13.746) (5.142) (10.262)

Spark spread standard deviation (S) 213.833*** -22.904 309.075*** -45.525*
(59.608) (11.349) (59.748) (17.863)

Competitiveness measure (C) -0.193 -0.102 -1.692 -0.810
(0.637) (0.887) (0.905) (1.118)

Notes: Standard deviations from bootstrapping are in parentheses.
Significance codes: *** p < 0.01, ** p < 0.05, * p < 0.1

icant only for the shut-down costs of large firms. With negative
coefficients, it shows that large firms are more likely to shut
down their generator if the current nearby competing genera-
tors are more efficient. This follows the a priori hypothesis.

The lack of its significance for abandonment-decisions could
be explained by the dual role this variable holds for such ac-
tions. When interpreting C as a measure the generator’s in-
verse competitive advantage in the market, the owner of an in-
efficient generator should be more likely to abandon it, i.e., it
should reduce the value of this switching cost. However, ineffi-
cient generators are also worth less on the second-hand market

and should thus represent a lower salvage value for the owner,
which is equivalent to a higher cost of abandonment. Its in-
significant parameter values suggest that these two opposing
effects are of comparable sizes.

The small firms are generally less influenced by the state
variables than larger firms. This is likely because portions of
this group have other priorities than profit maximization, which
is a key assumption in the decision-model presented in this pa-
per. Almost 16% of the agents in the sub-sample with small
firms are non-utilities such as hospitals and other industrial par-
ticipants that are not primarily engaging in the energy sector.
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Such firms employ the generators to ensure their own emer-
gency reliability in case of blackouts or to facilitate their own
in-house need of electricity. The decision-making behaviour
of these firms should thus be far more dependent on the indi-
vidual company itself rather than the larger marked trends (i.e.,
heterogeneity should be far greater in this group), and is likely
the cause of the lack of significant structural parameters for this
group.

6. Conclusion

Thermal peak generators play a vital role in maintaining
reliability adequacy in power systems. Their importance has
recently increased by the escalating proportions of renewable
electricity sources (RES) in the market. Yet, due to the low
marginal costs of the RES they are also being forced out com-
petitively, which prompts the generators to enter states of tem-
porary and permanently shutdown. This is highly undesired
by regulators.This paper examines empirically how economic
factors, government policy and strategic interactions affect ther-
mal peak generator’s decisions to switch between operating and
stand-by states. Specifically, it shows that the economic en-
vironment influence a plant manager’s perception of the costs
associated with such switching decisions.

The results show that the decision-making of power produc-
ers is greatly influenced by real option waiting effects. Particu-
larly, uncertainty related to whether or not a U.S. state will im-
plement retail competition in their electricity markets are shown
to dramatically increase the costs of switching between operat-
ing states. Uncertainty of the profits of the peak generator, the
spark spread standard deviation, is shown to have similar im-
pact. These results are particularly relevant for present-day Eu-
rope, where substantial investment projects are currently aimed
at increasing the transmission capacity between its many indi-
vidual electricity markets. In order for these markets to be-
come an efficient and coherent place for trading energy, sub-
stantial regulation reform will be required, and subsequently
uncertainty is likely to hit the markets.

Several capacity markets have been established in the North-
eastern United States post 2008. Their intent has been to mo-
tivate firms financially to keep their generators operational and
able to generate electricity on short notice if needed. Such ca-
pacity payments have been believed to significantly alter the
way firms respond to economic factors and strategic considera-
tions. We only find such effects for the projected reserve mar-
gin, which ceases to be a significant influence on the switching
costs after the capacity markets were introduced.

There are also evidence of strong portfolio effects, in which
a small group of large utilities are found to be far more respon-
sive to economic factors in their decision-making than smaller
firms. Large firms are shown to strategically consider the switch-
ing actions of nearby competitors when making their own in-
vestment decisions, particularly when considering shutdown de-
cisions. Similarly, the same utilities are found to be influenced
by projections of next year’s reserve margin when deciding to
shut-down or abandon its generators. None of these effects are
found for small firms. This implies that a significant portion of

the generating capacity in the market is controlled by firms that
might not necessarily produce electricity out of financial mo-
tivation. This is relevant information for regulators wishing to
create incentives for generators to stay operational.

Appendix A. Regions

Figure A.3: The three power markets under consideration. The
Pennsylvania-New Jersey-Maryland (PJM), the New England
Independent System Operator (ISO-NE), and the New York In-
dependent System Operator (NYISO)

Appendix B. The Gumbel variable

For the sake of completeness we state two major properties
of Gumbel variables, which are used in the text. A comprehen-
sive discussion of extreme value distributions can be found in
Embrechts et al. [12].

The cumulative distribution function (cdf) of a Gumbel dis-
tribution is F(z) = exp

(
−e−

z−µ
b −γ

)
, where γ = 0.57721566 . . . is

the Euler–Mascheroni constant. Its mean is µ, and the variance
is b2 π2

6 .

Proposition Appendix B.1 (The extreme value distribution is
closed under maximization). Let (εi)n

i=1 be independent Gumbel
variables with mean µi and common scale parameter b > 0.
Then the maximum ε := max {εi + ci : i = 1, . . . n} of the shifted
variables is again Gumbel distributed with mean

E (ε) = µ := b · log

 n∑
i=1

exp
(
µi + ci

b

)
and the same scale parameter b, where ci ∈ R are arbitrary
constants.

The following proposition addresses the probability of choice.
Again, an explicit formula is available for shifted Gumbel vari-
ables.

Proposition Appendix B.2 (Choice probabilities for shifted Gum-
bel variables). Let (εi)n

i=1 be independent Gumbel distributed
random variables with individual mean µi and common scale

12



parameter b > 0. Then the probability of choice for the vari-
ables shifted by ci has the explicit representation

P
(
ε1 + c1 = max

i∈{1,2,...n}
εi + ci

)
=

exp
(

c1+µ1
b

)
exp

(
c1+µ1

b

)
+ · · · + exp

(
cn+µn

b

) .
(B.1)
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