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Abstract

The least squares method has been applied to estimate parameters in
an aerodynamic model of a simulated aircraft, using data that can be
expected to available from sensors on an Unmanned Aerial Vehicle. A
combination of two non-linear state observers have been implemented to
estimate wind data such as angle of attack, sideslip and dynamic pressure.
Simulations have confirmed that the observers are able to estimete the
wind data using noisy sensor measurements. Parameter estimation have
been demonstrated with both measured and estimated wind data.

Sammendrag

Miste kvadraters metode har blitt brukt til å estimere parametere i en
aerodynamisk model til et simulert fly, ved bruk av sensordata som kan
forventes å finnes p̊a et ubemannet fly. En kombinasjon av to ulinære ob-
servere har blitt implementert for å estimere vinddata som angrepsvinkel,
sideslipp og dynamisk trykk. Simuleringer har bekreftet at estimering
av vinddata kan gjøres ved bruk av støyette sensorm̊alinger. Parame-
terestimering har blitt demonstrert ved bruk av b̊ade målte og estimerte
vinddata.
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1. Introduction

System identification is the process of determining a mathematical de-
scription of a system based on emperical data from experiments. This
includes input signals and measured system behaviour. In some cases it
can be enough to build representations to mimic the output behaviour
of the system in question, excluding the physical description of the un-
derlying system. These methods are called non-parametric methods of
system identification, and many such approaches are found in literature
[6]. However, if more insight into the physics and details of the process
is required, the identification problem is to identify parameters in a pos-
tulated model, linking the applied input to the observed output. Several
methods exist [8] and in the context of aircraft system identification par-
ticularly the book Aircraft System Identification: Theory and Practice[9]
gives a great introduction to the theory, with examples of application of
different methods using real aircraft data.

Historically the least squares (LS) method has been applied to many
technical problems [19] and is the method chosen to be demonstrated in
this thesis. It may not be the best choice for identification of aircraft
systems if highly accurate unbiased results are required, but the method
is a good start for obtaining initial estimates [9]. Different extentions and
modifications to the LS method have been developed over the years such as
the weighted least squares (WLS) and instrumental variables method[19],
but only ordinary least squares will be looked into.

One of the challenges of system identification is to obtain accurate mea-
surements of the variables required for identifying the model in question.
Ordinary equipment for data collection in commercial and millitary air-
crafts is most probable expensive state of the art proprietary sensor sys-
tems, not available to be used in small unmanned airial vehicles (UAVs)
for student projects. However, recent development of microelectrome-
chanical (MEMS) based inertial sensors [2] and non-linear observers for
system state estimation[11][12] looks promising for obtaining reliable data
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1. Introduction

for light weight airbourne vehicles at a lower cost. This approach will be
investigated in this thesis.

As a part of an Unmanned Airial Vehicle project, which involves several
students, PhDs, Post Docs. and Professors at NTNU, this thesis will give
a demonstration of system identification applied small UAVs with limited
sensor systems. Using system identifiction provides a good alternative for
developing mathematical descriptions of airborne systems without using
expensive equipment such as wind tunnels and computational fluid dy-
namics (CFD). A good mathematical description is helpful for developing
flight control systems and for tuning regulators. Such models can poten-
tially reduce the need for experimental flying. Less flying leads to reduced
risk, faster and more cost effective development. Being able to use a real-
istically simulated aircraft also allows the developers to experiment with
ideas that might not be approved for testing using real aircrafts.

This thesis should be considered as an introduction to the field of aircraft
system identification for small aircrafts using inexpensive instruments typ-
ically found in UAV flight control systems. The following list gives an
overview of the chapters in this thesis:

• Chapter 2: The theory required for a rigid body simulation of an
aircraft is introduced. Modelling of typical aircraft sensors with
descriptions of their strenghts and weeknesses. A combination of
two unlinear observers is proposed as an alternative to some of the
complex sensors important for system identification. The LS method
is explained.

• Chapter 3: An implementation of a rigid-body aircraft simulator
using SIMULINK for experimenting with system identification of a
known system. Implementation of unlinear filters for state estima-
tion.

• Chapter 4: Simulation results demonstrating the use of LS for sys-
tem identification and a verification of the possibility of using non-
linear observers for replacing air relative physical sensors.

• Chapter 5: Discussion of key results and some important observa-
tions.

• Chapter 6: Conclusion and suggestions for future topics.

2



• Appendix A: Derivations

• Appendix B: Matlab figures of the simulator implementation.

• Appendix C: Code implementations.

• Appendix D: Digital Attachment.
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2. Theory

2.1. Mathematical preliminaries

Skew symetric
A matrix S is said to be skew-symmetric if it has the property [1]

S = −ST . (2.1)

For any skew-symmetric matrix S given as

S(Ω) =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 , (2.2)

the inverse operation is denoted vex(·) and is defined to be

vex (S (Ω)) := Ω =

Ω1

Ω2

Ω3

 . (2.3)

Linearly independent
Nonzero vectors x and y are linearly independent if and only if it does
not exist any constant a so that ax = y. If such a constant exists, x and
y are said to be linarly dependent [16].
Uncorrelated

Vectors x and y are said to be uncorrelated if the inner product (x −
x̄1)T (y − ȳ1) is equal to zero, where 1 is a vector with ones, and x̄ and
ȳ are the means of elements in x and y respectively. Uncorrelated vectors
are a special case of linarly independent vectors [16].
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2. Theory

Orthogonal
Vectors x and y are orthogonal if and only if their inner product xTy is
equal to zero. Orthogonal vectors are a special case of linearly independent
vectors. Vectors can be both uncorrelated and orhtogonal [16].

Persistent excitation
A signal u is considered to have the propery of persisten excitation (PE)
if there exists positive constants ᾱ0 and T0 so that the following condition
is satisfied [7]:

∫ t+T0

t

u2(t)dt ≥ ᾱ0T0 (2.4)

ᾱ0 is called the level of excitation.

2.2. Coordinate Systems

Four coordinate systems are convenient to introduce with respect to air-
craft physics: body, stability, wind and an inertial reference coordinate
system that is usually fixed to earth for local navigation [1]. Table 2.1 de-
fines some notations for coordinate systems used in this thesis and Figure
2.1 gives a graphical representation of the axes and aircraft configuration.

Table 2.1.: Notation and brief description of common aircraft coordinate
systems.

Coordinate system Axes Description
Inertial XI , YI , ZI Inertial non-accelerating coordinate system.
Body Xb, Yb, Zb Aircraft-fixed coordinate system.

Stability Xs, Ys, Zs Body system rotated around Yb by the angle
of attack to make Zs perpendicular to the
incoming wind.

Wind Xw, Yw, Zw Stability system rotated around Zb by the
side-slip angle making Xw to point into the
incoming wind.
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2.2. Coordinate Systems

Y

Z

X
b/s

Zw/s

b

b

b/s

b

b

Xs

α

α

Xs

Z

Fuselage/body

Control surface

Inward pointing

Outward pointing

Top view

Side view

1 2

3

4

23

4

2

3

4

Left aileron

Right aileron

Elevator

Rudder

1

X

Y

Xw

β

b - body axes
s - stability axes
w - wind axes

β - side-slip angle
α - angle of attack

Figure 2.1.: Aircraft coordinate systems and configuration.

2.2.1. Rotation Matrices

Rotation matrices can be used to transform vectors from one reference
frame to another. This is accomplished by the matrix-vector product [1]:

vb = Rb
nv

n. (2.5)

The notation is such that the subscript denotes the source coordinate
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2. Theory

system, while the superscript symbolizes the target coordinate system.
Equation 2.5 is read: “vb is equal to vn converted from n coordinates and
into coordinates of b”.

Rotation matrices are orthogonal and the inverse can be obtained by
the transpose operation [1]:(

Rb
n

)−1
=
(
Rb
n

)T
= Rn

b . (2.6)

Inverse transformations using the relation from equation (2.6) can the
be written as:

vn = Rn
bv

b. (2.7)

2.2.2. Quaternions

Quaternions can be used as an alternative representation of one coordinate
system’s orientation with respect to another. Unlike the euler representa-
tion, quaternions do not have any singularities for particular orientations.
A unit quaternion can be represented as a scalar and a three dimensional
vector:

q = η + ε1î+ ε2ĵ + ε3k̂, (2.8)

with the constraint

η2 + ε21 + ε22 + ε23 = 1. (2.9)

Given an angular velocity ω of the coordinate system with orientation
represented by the unit quaternion q, the rate of change of q is given by
the transformation

q̇ =
1

2
T q(q)ω, (2.10)

where T q(q) is the transformation matrix [1]
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2.2. Coordinate Systems

T q(q) =


−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η

 . (2.11)

The rotation matrix can be found from the unit quaternion q: [1]

Rb
n(q) =

η2 + ε21 − ε22 − ε23 2 (ε1ε2 + ηε3) 2 (ε1ε3 − ηε2)
2 (ε1ε2 − ηε3) η2 − ε21 + ε22 − ε23 2 (ε2ε3 + ηε1)
2 (ε1ε3 + ηε2) 2 (ε2ε3 − ηε1) η2 − ε21 − ε22 + ε23

 ,
(2.12)

This is the transformation matrix that transforms vectors from the earth
fixed coordinate system NED to vectors in the body coordinate system
that is oriented according to NED with the unit quaternion q.

2.2.3. Inertial and body axes

Body axes are aligned with the aircraft’s principle axes. Origo is placed
in the center of mass (CM) to eliminate any torque due to gravity, since
gravity is assumed to be acting at CM. Xb is pointing towards the nose
of the aircraft, Yb along the right wing and Zb is pointing straight down.
This is illustrated in Figure 2.1.

The body reference frame is related to the inertial frame using the rota-
tion matrix Rb

n. Using euler angles this rotation matrix can be expressed
as [1]:

Rb
n(φ, θ, ψ) =

 cψcθ sψcθ −sθ
−sψcφ+ cψsθsφ cψcφ+ sφsθsψ cθsφ
sψsφ+ cψcφsθ −cψsφ+ sθsψcφ cθcφ

 , (2.13)

where φ (roll), θ (pitch) and ψ (yaw) are the euler angles relating the
body coordinate system to NED (North East Down). c is representing
cos(·) while s represents sin(·).
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2. Theory

The inertial frame should be a non-accelerated and non-rotating coor-
dinate system, but for the purpose of this thesis a local earth surface ref-
erence system is used with its axes pointing north, east and down (NED).
This is a good approximation of an inertial system for vehicles traveling
at low velocities [1]. The NED reference system is denoted by using the
letter n.

2.2.4. Stability and wind axes

The stability reference frame is obtained by rotating the body frame by
the angle of attack α around the body y-axis Yb [18]:

Rs
b(α) = Ry(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 . (2.14)

The stability x-axis Xs is aligned with the relative wind vector so that
the z-axis Zs is perpendicular to the relative wind.

To obtain the wind reference frame the stability frame is rotated around
Zs by the side slip angle β [18]:

Rw
s (β) = Rz(β) =

 cos β sin β 0
− sin β cos β 0

0 0 1

 . (2.15)

Now the wind x-axis Xw is parallell and opposite to the incoming wind
vector. Then there is no component of the wind vector along Yw and Zw,
such that the velocity expressed in wind coordinates becomes:

vw =

VT0
0

 (2.16)

If the airmass is not moving relative to the earth, VT will be equal to
the body velocity ‖vb‖.

The combined rotation from body-axis to wind-axis can be expressed
as the matrix product of Rs

b and Rw
s :

10



2.3. Rigid body equations of motions

Rw
b (α, β) = Rw

s (β)Rs
b(α) =

 cosα cos β sin β sinα cos β
− cosα sin β cos β − sinα sin β
− sinα 0 cosα

 . (2.17)

Assuming no earth relative wind, the following three wind axis angles

can be found using body velocity components vb =
[
u v w

]T
[18][9]:

Angle of attack:

α = tan−1
(w
u

)
. (2.18)

Sideslip angle:

β = sin−1

(
v

VT

)
. (2.19)

Flank angle:

βf = tan−1
(v
u

)
. (2.20)

The sideslip angle is related to the flank angle by the relation [9]

β = tan−1(tan βf cosα) (2.21)

that is obtained by inserting expressions for v and u using VT , α and β,
and then solving for β.

2.3. Rigid body equations of motions

The equations of motions are derived from Newton’s second law for trans-
lation and rotation [9].

f b =
d

d t

(
mvb

)
(2.22)

τ b =
d

d t
(Iω) (2.23)

f b =
[
fx fy fz

]T
and τ b =

[
τx τy τz

]T
are the sum of all forces and

torques acting on the rigid body respectively, expressed in body coordi-
nates. vb is the body velocity and ω is the angular velocity of the body,
both expessed in body coordinates. I is given as:
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2. Theory

I =

 Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 , (2.24)

where the inertia matrix elements are given by the volume integral [9]:

Iij =

∫
V

ijdm. (2.25)

Note that Iij = Iji, and for a rigid body that is symetric with respect
to the XZ-plane, like an aircraft, the cross terms Ixy and Iyz will be zero:

I =

 Ixx 0 −Ixz
0 Iyy 0
−Ixz 0 Izz

 . (2.26)

Assuming that the mass and inertia properties are constant, the trans-
lational and rotational equations of motion for the rigid body (2.27) and
(2.28), can be found by differentiating the right hand side of equation
(2.22) and (2.23) with respect to the body reference frame.

f b = mv̇b + ω ×mvb (2.27)

τ b = Iω̇ + ω × Iω (2.28)

The velocity of the body relative to the inertial frame is given by the
rotated body velocity:

ṗ = vn = Rn
bv

b (2.29)

Combining equations (2.27), (2.28), (2.29) and the kinematics of quater-
nions (2.11) give the necessary differential equations for time-domain sim-
ulation:
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2.4. Aircraft configuration

ṗ = Rn
bv

b (2.30)

v̇b =
1

m

(
f b − ω ×mvb

)
(2.31)

q̇ = T (q)ω (2.32)

ω̇ = I−1
(
τ b − ω × Iω

)
(2.33)

Expanding equation (2.31) and (2.33) gives:

u̇ =
fx
m
− qw + vr (2.34)

v̇ =
fy
m
− rv + wp (2.35)

ẇ =
fz
m
− pv + uq, (2.36)

and

Ixxṗ− Ixz ṙ = τx + rq (Izz − Iyy)− Ixzpq (2.37)

Iyy q̇ = τy + pr (Ixx − Izz) + Ixz
(
p2 − r2

)
(2.38)

Izz ṙ − Ixzṗ = τz + pq (Iyy − Ixx) + Ixzrq (2.39)

.

2.4. Aircraft configuration

2.4.1. Physical properties

Physical properties used to describe the aerodynamical forces and mo-
ments are listed in Table 2.2 [18].
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2. Theory

Table 2.2.: Some physical properties of an aircraft

Property Symbol Description
Wing span b Length of main wing, from

wing tip to wing tip.
Wing surface
area

S Area of the main wing.

Mean aerody-
namic chord
(MAC)

c̄ The chord line is the
straight line between the
leading edge and trailing
edge of the wing. MAC is
the mean length of this line
along the wing span.

Mass m The total mass of the air-
craft.

Inertia Ixx, Iyy, Izz, Ixz Moments of inertia and
product of inertia.

2.4.2. Inertia

Mass and inertia are two of the physical properties of the aircraft that
need to be determined in order to find an aerodynamical description of
the vehicle based on in-flight data recordings. The principle of a phys-
ical pendulum and the parallel axis theorem can be used to set up an
experiment for determination of inertia properties. A physical pendelum
assuming small angles of deflection has an oscillatory period approximated
to be:

T ≈ 2π

√
I

m̂gR
, (2.40)

where R is the length between the pivoting point and the center of mass,
and m̂ is the total pendulum mass, including the rig mass. A derivation
of the above formula is found in A.1. This will hold for angles where
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2.5. Aircraft aerodynamics

θ ≈ sin θ. The moment of inertia around the pivoting point can then be
found by solving Equation (2.40) for the moment of inertia:

Ipivot = m̂gR

(
T

2π

)2

− Irig. (2.41)

Here the moment of inertia due to the suspension rig Irig is subtracted.
Using the theorem (IR = Icm + mR2)[4], the moment of interia around
the center of mass is expressed as:

Icm = m̂R

(
gT 2

4π2
−R

)
− Irig. (2.42)

Using the above equation requires measuring R and Irig and a good
experimental setup to obtain the period T . This can then be done for each
of the axes to find all the inertia properties of the rigid body. In order
to find the cross inertia term Ixz the above method is used to determine
the moment of inertia of an intermediate axis in the XZ-plane (Iξ), at an
angle ξ to the x-axis. The following formula can then be used to find the
product of inertia Ixz [9]:

Ixz =
Iξ − Ixx cos2 ξ − Izz sin2 ξ

sin 2ξ
(2.43)

2.5. Aircraft aerodynamics

Aerodynamic forces f bA and moments τ bA for a rigid body aircraft can be
expressed using nondimensional coefficients [18]:

fnA = q̄S

CXCY
CZ

 = q̄SRb
w

CDCC
CL

 (2.44)

τ bA = q̄S

 bClc̄Cm
bCn

 (2.45)
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2. Theory

Where q̄ is the dynamic pressure given by the air pressure ρ and free
airstream velocity VT :

q̄ =
1

2
ρV 2

T (2.46)

Aerodynamical coefficients (CD, CC , CL, Cl, Cm and Cn) can be a func-
tion of several variables such as the control input, wind angles, angular
velocity, dynamic pressure, Reynolds number, wing flexing, altitude, tem-
perature and the time histories of all of them [18].

Assumptions are made to the aerodynamical model used in this thesis.
Some of the assumptions are related to the purpose of using the model
for system identification of small UAV’s, while others are introduced to
limit the complexity of going beyond what is needed for demonstration
purposes in this thesis. The forces are given in the wind reference frame

It is assumed that

• . . . the coefficients depend only on the instant value of the depending
variables and not their time histories. This is the same as assuming
steady flow [9].

• . . . the aircraft simulated is considered to be a rigid body, neglecting
effects from any flexing structures.

• . . . variables such as dynamic pressure, Reynolds number, altitude
and temperature are relatively constant during data collection and
are therefore ommited from the model.

• . . . the remaining variables are assumed to have a linear dependence
on the coefficients. Polynomials of the depending varables can be
used to model non-linear effects, but is not considered in this thesis.

The purpose of simulations is not to mimic exact aircraft dynamics, but
to explore different methods for identification of aircraft-like models based
on measurements most likely to be available in a real identification appli-
cation. The following aerodynamical parameters is used unless otherwise
specified in this thesis:
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2.5. Aircraft aerodynamics

Table 2.4.: Description of parameters included in the aerodynamical
model used in simulations.

Parameter Description
CD0 Drag at zero angle of attack and sideslip.
CDα Drag due to angle of attack. Angle of attack will increase

the area facing into the wind and therefore increase the
drag.

CDβ Drag due to sideslip. Sideslip will increase the aero fac-
ing into the wind and therefore increase the drag.

CCβ Cross-wind force due to sideslip. Sideslip will expose
one side of the fuselage to the wind causing a net force
in the Yw direction.

CL0 Lift at zero angle of attack. This will be non-zero for
asymmetric airfoils [18].

CLα Lift due to increased angle of attack. The airfoil will
generate greater lift as the angle of attack increases until
the wing stalls [18].

Clβ Restoring roll moment due to sideslip. Mainly caused by
the dihedral angle of the wing and the vertical stabilizer
[18].

Clp Damping from angular velocity. Mainly caused by the
main wing when rolling.

Clδa Roll moment due to aileron control suface deflection.
Cmα Restoring pitch moment due to angle of attack. The tail

horizontal surface will be the main contributor to this
moment as it will hit the wind with an angle and thus
generate the restoring moment.

Cmq Damping from angular velocity. Mainly caused by the
horizontal stabilizer when pitching.

Cmδe Pitch moment due to elevator surface deflection.
Cnβ Restoring yaw moment due to side slip. Vertical stabi-

lizer at the tail will generate an restoring moment be-
cause of the exposed area while side slipping.

Cnr Damping from angular velocity. Mainly caused by the
vertical stabilizer when yawing.

Cnδr Yaw moment due to rudder surface deflection.
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2. Theory

Note that it is common to keep these coefficients non-dimensional for
comparison between different aircrafts and between wind tunnel testing
and parametric system identificaton. The scaling/non-dimensionalization
is not explicitly shown here, but can be assumed to be included in the
parameters themselves, since no such comparison will be given in this
report. Equations (2.47)-(2.52) specify the aerodynamical coefficients used
in simulations and for parameter estimation.

CD = CD0 + CDα|α|+ CDβ |β| (2.47)

CC = CCββ (2.48)

CL = CL0 + CLαα (2.49)

Cl = Cl0 + Clββ + Clδaδa + Clpp (2.50)

Cm = Cm0 + Cmαα + Cmδeδe + Cmqq (2.51)

Cn = Cn0 + Cnββ + Cnδr δr + Cnrr (2.52)

Where α and β are the wind relative angles. δa, δe and δr are the
control surface deflection expressed in radians of ailerons, elevator and
rudder respectively. Control surfaces are shown in Figure 2.1. p, q and r
are the angular velocities of the body with respect to the inertal frame of
reference expressed in body coordinates. Cl0 , Cm0 and Cn0 are considered
to be zero, assuming the aircraft is trimmed so that all moments are zero
when controls are in the center position with α, β and angular velocities
are zero.

2.6. Aircraft sensors

2.6.1. Global Navigation Satellite Systems

Global Navigation Satellite Systems (GNSS) [1] can be used to measure
position and velocity in an earth fixed coordinate system. Several such
systems exist today, although GPS (Global Positioning System) is the
most used and established system [1]. In this thesis velocity measurements
vnE will be modelled as bias free and with added white noise νv:

vnE = ṗn + νv (2.53)
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2.6. Aircraft sensors

2.6.2. Rate gyro

A rate gyro measures angular velocities of the body coordinate system
relative to the inertial frame. Rate gyros are affected by environmental
parameters such as temperature and input voltage [17]. Consequently it
can not be assumed that the gyro measurements are bias free, and the
bias can change with time, caused by a change in the environment. The
measured angular velocity using a rate gyro can be expressed as [11]:

ωE = ω + bω + νω, (2.54)

where ωE and ω are the actual measured and true angular velocities
respectively, bω is the time varying sensor bias, and νω represents the
measurement noise.

2.6.3. Accelerometer

Accelerometers give the immediate acceleration of the body reference sys-
tem minus the gravitational component [18].

ab =
1

m

(
f b − f bg

)
(2.55)

Assuming that the total forces acting on the aircraft f b is the aerody-

namical forces f bA from equation (2.44) and propulsion f bT =
[
T 0 0

]T
,

the accelerometer output can be expressed as follows [9]:

ab =

abxaby
abz

 =
1

m

q̄SCX + T
q̄SCY
q̄SCZ

 (2.56)

The measured acceleration obtained by using an on-board accelerometer
can be modelled by a time-varing bias ba and measurement noise νa [1]:

aE = ab + ba + νa (2.57)
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2.6.4. Magnetometer

A magnetometer measures the magnetic field vector relative to the sensor
orientation. Since the earth has its own magnetic field, the measurement
can be used as vector measurement to relate the body coordinate system
to an earth fixed coordinate system [11]. Let mn be the magnetic field
vector given in the NED frame of reference, then an expression for the
measured magnetic field given in body coordinates can be expressed as
[11]:

mE = Rb
nm

n +Bm + νm. (2.58)

where Bm represents the static magnetic deviation due to body fixed
magnetic objects. νm is the measurement noise. During local navigation
it can be assumed that mn does not depend on the position pn. Just as
with accelerometer vectors, magnetometer measurements do not provide
any information about the rotation around the axis mn. Without an
additional vector measurement, that is not parallel with mn, the total
attitude will not be observable.

2.6.5. Pitot-static tube

A pitot-static tube measures the dynamic pressure caused by the relative
wind. At the tip of the pitot tube the pressure will be the sum of the
static and the dynamic pressure q. Subtracting the static pressure gives
the dynamic pressure that can be calculated using Bernoulli’s equation
assuming the air is an incompressible fluid [13]:

q̄ =
1

2
ρV 2

T (2.59)

(2.60)

Here ρ is the air density and is a function of altitude and tempera-
ture. Since the dynamic pressure is responsible for the magnitude of all of
the aerodynamical forces and moments it is important to have good mea-
surements of it for doing system identification. The measured dynamic
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pressure is assumed to be bias-free and with added band limited white
measurement noise:

q̄E = q̄ + νq̄ (2.61)

Great care should be taken when placing the pitot-static tube of the
aircraft. It should be placed so that it will measure the undisturbed
stream of air, unaffected by the fuselage and wing [13].

2.6.6. Wind vanes

Wind vanes can be used to measure the angle of attack α and flank angle βf
[9]. Since they cannot be placed at the center of gravity, the relative wind
at the sensor location will be a function of both α, β, the angular rates p, q,
r, and the sensor positions rα =

[
xα yα zα

]
and rβ =

[
xβyβzβ

]
. rα and

rβ define the vectors from center of gravity to the location of the alpha and
beta vanes respectively. Other errors due to local air disturbances should
be avoided by correct placement of the vanes and wind tunnel calibration.

Given an arbitrary body position r =
[
x y z

]
, relative to the center

of gravity, the additional wind velocity due to rotation is provided by the
cross product:

vr =

urvr
wr

 =

uv
w

+ ω × r =

u+ qz − yr
v + rx− zp
w + py − xq

 (2.62)

Where vr is the total wind velocity at position r. This is because the
wind will be perpendicular to both the rotation axis and the displacement
r. Measured values obtained by the vane sensors can then be expressed
using equations (2.18) and (2.19):

tanαE =
w + pyα − xαq
u+ qzα − yαr

(2.63)

sin βfE =
v + rxβ − zβp
u+ qzβ − yβr

(2.64)

Simplifications can be made by noting that uR ' u, as the rotation
contribution can be assumed to be small compared to the value of u:
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tanαE '
w + pyα − xαq

u
(2.65)

sin βfE '
v + rxβ − zβp

u
(2.66)

Further assumptions of small wind angles and rotation velocities give a
formula for correcting the measured angles to obtain values for angle of
attack and sideslip [9]:

αC = αE +
qxα
VT
− pyα
VT

(2.67)

βC = βfE −
rxβ
VT

+
pzβ
VT

(2.68)

2.7. Obtaining aerodynamical forces and
moments

Since there is no sensor that can directly measure the aerodynamical forces
and moments they need to be calculated from available sensor data. Start-
ing with the equations (2.37)-(2.39) describing the rigid body rotational
kinetics and inserting the aerodynamical moments from equation (2.45),
solving for Cl, Cm and Cn gives:

Cl =
1

q̄Sb
[Ixxṗ− Ixz (pq + ṙ) + (Izz − Iyy) qr] (2.69)

Cm =
1

q̄Sc̄

[
Iyy q̇ + (Ixx − Izz) pr + Ixz

(
p2 − r2

)]
(2.70)

Cn =
1

q̄Sb
[Izz ṙ − Ixz (ṗ− qr) + (Iyy − Ixx) pq] (2.71)

The same procedure can be done with the accelerometer output equa-
tion (2.55), which together with the aerodynamical forces in equation
(2.44) gives a fairly direct measure of CX , CY and CZ :
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CX =
1

q̄S

(
mabx − T

)
(2.72)

CY =
1

q̄S

(
maby

)
(2.73)

CZ =
1

q̄S

(
mabz

)
(2.74)

To obtain the same aerodynamical forces relative to the wind coordinate
system a rotation shown in equation (2.44) is applied:

CDCC
CL

 = Rw
b

CXCY
CZ

 (2.75)

2.8. Vehicle state estimation

To be able to estimate the necessary variables two observers [11][12] are
put together. There will be given no proofs for stability by joining these
two filters, apart from simulation results that show the performance under
the specified conditions. Figure 2.2 gives an overview of their workings
and how they are related. The three section that follow gives a more
detailed description of the filtering process and how the estimates can be
used.
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ECF

Hua

IMU

GPS

Estimates

Extension

Figure 2.2.: Overview of vehicle state estimation.

2.8.1. Attitude estimation

The Explicit Complementary Filter (ECF) can be expressed as [11]

ωmes = −vex

{
1

2

n∑
i=1

ki

(
viv̂

T
i − v̂iv

T
i

)}
(2.76)

˙̂q = T q(q̂)
(
ωE − b̂ω + kPωmes

)
(2.77)

˙̂
bω = −kIωmes, (2.78)

where ωE is the angular velocity measured with respect to the body
reference frame and Tq is the transformation matrix from Equation (2.11).
Measurements of the angular velocity will typically be done using a rate
gyro and b̂ω is the estimated gyro measurement bias. kP and kI are tuning
parameters that are chosen to set a desirable convergence rate. ki is a
weighting factor for each of the n vector measurements. vi and v̂i are the
measured and predicted vectors respectively. These vectors are arbitrary
and any vectors that can be measured in NED and in the body reference
frame can be used. Vectors available from an inertial measurement unit
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are typically acceleration and magnetic field vectors. Equation (2.76),
using only accelerometer (aE) and magnetometer (mE) vectors, can then
be written:

ωmes = −1

2

[
ka

(
aE
‖aE‖

×Rb
n(q̂)ân

)
+ km

(
mE

‖mE‖
×Rb

n(q̂)m̂n

)]
,

(2.79)

where ka and km are the filter tuning parameters, weighting the im-
pact of the measurements respectively. These parameters can be used to
dampen the effects of bad measurements if they are subject to high noise
levels or are considered unreliable. See A.2 for the proof for how ωmes
can be written using the cross product. Vector ân is an estimate of the
current acceleration expressed in NED. mn is the local magnetic field vec-
tor expressed in NED obtained by measurements at site or using a lookup
table. Note that all vectors are normalized to make the weighting parame-
ters dimensionless and thus comparable. q̂ is the current attitude estimate
expressed in quaternions. How to obtain the acceleration reference vector
expressed in NED coordinates (ân) is considered in the next section. If
the sensor platform is suspended with no forces acting besides the normal

force the reference vector will be reduced to ân =
[
0 0 −g

]T
.

2.8.2. Velocity estimation

The following observer [12] is considered for estimation of the linear ac-
celerations in NED coordinates. It requires measurements of ω, ab and
NED velocity vn typically obtained by using a GPS receiver.

˙̂vn = k1 (vnE − v̂
n) + gn +QaE (2.80)

Q̇ = QS
(
ωE − b̂ω

)
+ kv (vnE − v̂

n) (aE)T (2.81)

k1 and kv are positive constant gains, which can be considered to be
diagonal matrices if individual gains for the three axes is desirable. Q is a
3× 3 rotation-like matrix. Bias estimate b̂ω obtained by ECF observer, is
used to improve gyro measurements. vnE is the actual measured velocity
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from for example a GPS receiver. The Frobenius norm ‖ · ‖F is used to
ensure the boundeness of Q as suggested in [12].

Q =
Q

‖Q‖F

√
3 (2.82)

An estimation of the acceleration in NED to be used as the reference
vector (ân) in Equation (2.79) is given by [12]:

ân = ˙̂v − gn. (2.83)

With perfect measurements and under the conditions that ω, v̇n and v̈n

are bounded signals, v̂n and Qab will converge to vn and an respectively
[12]. If the system is under a constant non-zero acceleration the observer
will be globally exponentially stable [12].

2.8.3. Dynamic pressure, alpha and beta estimates

The estimated body velocities

v̂b =

 ûv̂
ŵ

 = Rb
n(q̂)v̂n (2.84)

obtained by this observer can now be used to construct estimates for
dynamic pressure q̄, angle of attack α and side-slip angle β using equations
(2.59), (2.18) and (2.19):

ˆ̄q =
1

2
ρ
(
û2 + v̂2 + ŵ2

)
(2.85)

Note that the air density ρ is a function of altitude.
Estimate of angle of attack:

α̂ = tan−1

(
ŵ

û

)
. (2.86)

Estimate of side-slip angle:

β̂ = sin−1

(
v̂√

û2 + v̂2 + ŵ2

)
. (2.87)
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It is important to note that these estimates assume that the local air-
mass is not moving during the experiment. This means only very calm
days should be considered for flying when using this method of estimating
wind data.

2.9. System identification

2.9.1. Least squares estimator

The following derivation of the least squares estimator is from [10].

Given a parametric model on the form

y(t) = θ∗Tφ(t) + v(t) (2.88)

where y(t) is the measured system output, φ(t) is a collection of known
signals and θ∗ is a vector of model constants. v represents the measure-
ment error.

An estimate of the model parameters θ̂ can be used to calculate an
estimation error at any given time by subtracting the estimated output
from the actual output:

e(t|θ̂) = y(t)− θ̂Tφ(t) (2.89)

Given a set of N measurements of the output y(t) and regressors φ(t)

the least squares estimate is the vector of model parameters θ̂
LS

N that
minimized the sum of the squared estimation errors given in the equation
above.

θ̂
LS

N = min
θ

{
1

N

N∑
t=1

[e(t|θ)]2
}

= min
θ

{
1

N

N∑
t=1

[
y(t)− θTφ(t)

]2}
(2.90)

Since the cost function is convex downward with respect to θ the min-
imization problem can be solved by setting the derivative equal to zero:
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d

dθ

1

N

N∑
t=1

[
y(t)− θTφ(t)

]2
= 0 (2.91)

1

N

N∑
t=1

φ(t)y(t) =
1

N

N∑
t=1

φ(t)φT (t)θ̂
LS

N (2.92)

The least squares estimate can then be solved analytically:

θ̂
LS

N =

[
N∑
t=0

φ(t)φT (t)

]−1 N∑
t=1

φ(t)y(t). (2.93)

Using equation 2.93 in a reqursive manner can be useful to be able to
observe the convergence of parameters as more data is gradually included
in the calculation.
Matrix notation

Using matrix notation with φ as an n times N matrix where n is the
number of regressors and N is the number of data points the least squares
estimate can be written:

θ̂
LS

N =
(
φTφ

)−1
yφ (2.94)

where y is vector of length N containing the model outputs.
Properties

Parameter error due to the measurement error v can be found by inserting
y(t) and then subtracting the true parameter vector θ∗ [10]:

θ̃N = θ̂
LS

N − θ∗

=

[
1

N

N∑
t=0

φ(t)φT (t)

]−1 [
1

N

N∑
t=0

φ(t)φT (t)θ∗ +
1

N

N∑
t=0

φ(t)v(t)

]
− θ∗

=

[
1

N

N∑
t=0

φ(t)φT (t)

]−1 [
1

N

N∑
t=0

φ(t)v(t)

]
= (RN)−1 · fN (2.95)
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If φ is considered as a collection of deterministic signals and the mea-
surement noise v(t) have a zero mean, the expectancy of the parameter
error stated by the equation above can be shown to be zero [10]. How-
ever, as the regressors in φ are often measured system outputs, and thus
stochastic variables, this is a bad assumption. Allowing stochastic quasi-
stationary signals in φ, convergence of θLS to the correct value θ∗ will
happen as N approaches infinity if [10]:

• v(t) is quasi-stationary and with zero mean.

• limN→∞R
N is non-singular.

• Measurement error v(t) is white or independent of any regressor in
φ

Assuring that R do not become singular is a problem related to the
persistent exitation propery of the regressors [18].

2.9.2. Coefficient of Determination

As a measure of how well the model is able to describe the measured data
the coefficient of determination can be used. It is defined as the ratio of
the regression sum of squares SSR and the total sum of squares SST and
can then be expressed as [9]:

R2 =
SSR
SST

=

∑N
t=1 (ŷ(t)− ȳ)2∑N
t=1 (y(t)− ȳ)2

(2.96)

where ȳ is the mean value of y(t) defined as:

ȳ =
1

N

N∑
t=1

y(t) (2.97)

29



2. Theory

2.9.3. Experiment design

From any estimator point of view it is clear that it would be difficult to
identify correct parameters if the regressors are correlated. For example
if two regressors are lineary dependent there would be no information in
the sample data to distinguish between their dependency on the observed
output. Because of this it would be optimal if the system inputs are de-
signed so that the regressors will be uncorrelated to each other. Even
better would be to ensure that the regressors are orthogonal, decoupling
the mimimalization problem in the least squares method [9]. System in-
puts appearing as regressors, that are subject to design, can be made
orthogonal by selectection. That is if there are no restrictions of the input
signals that conflict with them beeing orthogonal. Such restrictions could
for example be a desire to maintain stable flight during the experiment. To
design an optimal input to make regressors linary independent a system
description would be needed beforehand and thus eliminating the need for
conducting a system identification in the first place. Despite this any a
priory information about the system could be used to help maximizing
the orthogonality between model regressors. This will not be investigated
any further in this thesis.

2.10. Moving Polynomial Filter

Differentiation can be preformed by fitting a polynomial of degree k to
a window of points and then evaluating the derivative of the polynomial
[15]. The size of the window is defined by the number of points to the left
and right of the center point. By moving the window over the entire data
set it is then possible to find an approximation of the functions derivative.
Interpolation can also be performed by evaluating the polynomial at an
arbitrary distance from the center point. If the filter is applied to a series
of equally spaced data values it is possible to express such a filter as a finite
impulse response filter, using the least squares method [15]. To specify the
parameters used the notation mpoly(k,nL, nR) will be used, where k is
the polynomial degree, while nL and nR are the number of points to the
left and right of the center point. An implementation of the filter can be
found in the digital attachment of this thesis.
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3. Implementation

3.1. Simulator

Simulink was used to implement a rigid body aircraft simulator based on
equations (2.31) and (2.28). It consists of four main components; input
design, aircraft system, sensor emulation and logging, as shown in Figure
3.1.

Input design Aircraft system Sensor 
emulation

Logging

Figure 3.1.: Simulator structure overview.

The “Input design” component outputs the selected control input for
the maneuver to be simulated. “Aircraft system” handles the rigid body
simulation and calculates forces and moments based on the provided input
and current aircraft state. The aircraft state is passed to “Sensor emula-
tion” to be sampled as different on-board sensors would be able to, adding
noise and biases to the true values. Sensor data is then given to the “Log-
ging” component to be saved for post processing and system identification.
Figure B.1 shows the implementation of the overall system in SIMULINK.
Figure B.2 shows the content of the “Aircraft system” block that connects
the aerodynamical forces (2.44)-(2.45) to the rigid body equations (2.34)-
(2.39). The “6DOF Rigid body” block implements equations (2.30)-(2.32)
and can be seen in Figure B.3.
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3. Implementation

3.2. Non-linear state observers

The implementation of ECF and Hua’s observer are divided into two and
three MATLAB functions respectively. Filter state variables are kept in a
structure and initialized with the function denoted with a init ending.
These functions set up the necessary initial filter states before the filtering
process begins. The explaination of the function arguments are provided
in the code listings found in C.2 and C.3. This implementation allows
several instances of the filters to be used simultaneously.

ECF has only one function for updating the filter state. This function
is called ecf update and updates the filter according to equations (2.79),
(2.77) and (2.78). This is convenient for using internal measurement units
(IMU’s) that includes rate gyros, accelerometers and magnetometers in
one package and providing the samples of these sensors at the same rate.
Functions e2q and q2rot are converting euler angles to quaternions and
quaternions to rotations matricies respectively. Both are provided in the
digital attachment found in Appendix D. q2rot is an implementation
of Equation (2.12), while function Tq is an implementation of Equation
(2.11).

Hua’s filter is implemented with two functions to seperate between up-
dates of new IMU and GPS data, since they are not assumed to be sam-
pled at the same rate. hua update uses new GPS velocity measurements
to correct v̂n and Q estimates according to equations (2.80) and (2.81),

but ommiting QS
(
ωE − b̂ω

)
and gn +QaE. The most recent measured

acceleration is used as aE in this function.
For every sample of the IMU hua predict is called to predict the filter

states by using equations (2.80) and (2.81). Contributions involving vnE
are ommited from the equations as these are handled by the hua update

function as described above.
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4. Results

4.1. Aircraft configuration

4.1.1. Inertia properties

The method for determining inertia properties in section 2.4.2 was applied
to a model aircraft with physical properties listed in Table 4.1.

Table 4.1.: Aircraft and rig measured parameters.

Description Symbol Value
Aircraft mass m 2.657 kg
Wing span b 1.58 m
Mean chord c̄ 0.22 m
: Wing area S 0.348 m2

Fuselage length l 1 m
Suspension rig mass mrig 0.164 kg

Suspension rig moment of inertia Irig 0.000005 kgm2

Total pendelum mass m̂ = m+mrig 2.821 kg

A total of 20 periods were measured for each of the three axes for
determination of the pendulum oscillatory period. The results are listed
in Table 4.2.
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Table 4.2.: Measured pendulum oscillation periods.

Experiment Tx Ty Tz
(#) ( s) ( s) ( s)
1 1.455 1.425 1.675
2 1.455 1.420 1.690
3 1.460 1.420 1.690
4 1.460 1.425 1.675

Mean 1.458 1.423 1.683

Table 4.3.: Measured distances from center of gravity to the axis of rota-
tion.

Ryz Rxz Ryz

( m) ( m) ( m)
0.1456 0.1672 0.1898

Together with the lengths between center of gravity and the axis of ro-
tation listed in Table 4.3 moments of inertia were found by using equation
(2.42). The results are listed in Table 4.4.

Table 4.4.: Calculated moments of inertia.

Ix Iy Iz
( kg · m2) ( kg · m2) ( kg · m2)

0.157 0.158 0.275

These aircraft properties are used during simulations in this thesis.

4.2. Simulation results

Using the developed simulator different case studies have been performed
to learn more about the validity and accuracy of parameter estimation
using least squares. Table 4.5 show the situations that have been consid-
ered.
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4.2. Simulation results

Table 4.5.: Case studies using simulated aircraft dynamics.

Case # Description
1 Least squares method using perfect time series of aerodynamic co-

efficients. During simulation the coefficients are stored at every
time step. This is the most perfect data time series that can be
obtained.

2 Least squares method using perfect aircraft instrumentation data.
Now the measurements are constrained to the instrumentation typ-
ically available for system identification of aircraft systems. Mea-
surements are still perfect in the sense that no measurement noise
or systematic errors are added.

3 Least squares method using noisy aircraft instrumentation data.
This case is the same as Case 2 with measurement noise added to
emulate a real aircraft sensory system.

4 Using non-linear observers to estimate q̄, α, β, linear acceleration
and gyro bias b, fixing gyro bias and eliminating the need for extra
sensors.

4.2.1. Case 1 - LS with perfect data

The method is applied directly to the perfect data obtained from simu-
lation. Time series of the aerodynamic coefficients in equations (2.47) to
(2.52) are used directly together with the true values of the model regres-
sors (α, β, δa, δe, δr, p, q and r). As expected this results in parameters
that are identical to the ones that generated the data during simulation.
Figure 4.1 shows the time series of both estimated and true aerodynamic
forces and moments during simulation. Figure 4.2 shows input and output
regressors.
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Figure 4.1.: Estimated aerodynamic forces (a) and moments (b) during
simulation in Case 1.

This case is not very realistic and is provided only for demonstration of
using the least squares method with aircraft data. In real world applica-
tions of paramatric estimation of aircraft aerodynamics the challenge will
be to obtain good measurements of the aerodynamical forces and having
a good paremetric model of the system. Some of the problems will be
illustrated in the following cases.
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Figure 4.2.: Input sequences are shown in (a). Wind angles α, β and
rotation rates p, q and r are plotted in (b).

4.2.2. Case 2 - LS with perfect instrumentation

In this case study the actual time series of the aerodynamic coefficients are
not directly obtained from the simulator, but calculated based on typical
aircraft instrumentation. The instruments are in this case assumed to
provide noise and bias free perfect measurements. This does not mean
that systematic errors are not included and simulations will demonstrate
how the corrections affect the results. Table 4.6 shows aircraft sensors
used.
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Table 4.6.: Sensors used in Case 2.

Sensor Measured value Description
Accelerometer ab Acceleration in body coor-

dinates.
Rate gyro ω Angular velocity in body co-

ordinates.
Alpha vane α Angle of attack sensor.
Beta vane βf Measures the flank angle.

Pitot-static tube q̄ Measures dynamic pressure.
Aileron sensor δa Aileron deflection angle.
Elevator sensor δe Elevator deflection angle.
Rudder sensor δr Rudder deflection angle.

The accelerometer and pitot-static tube are used to calculate the aero-
dynamic forces CX , CY and CZ according to equations (2.72)-(2.74). An
estimate of the thrust during the maneuver is also needed and in this case
it was assumed to be constant and known. Wind angles α and β are cal-
culated by using wind vanes. Corrections are applied to remove the errors
due to angular velocities as described in 2.6.6. The alpha vane is placed
two chord lengths outside the left wing tip, while the beta vane is placed
two chord lengths in front of the leading edge of the left wing. Figure 4.4
show the results for α and β corrections during simulation, and it is clear
that the corrections have improved the measurements.

There is no noise or bias introduced in any of the signals involved in
the caluculations. Thus it is expected that the caluculated curves should
be very close to the true ones when systematic errors are removed. Figure
4.5 shows the calculated and true aerodynamic forces, which overlap as
expected, together with the identified model prediction.

Calculation of moments using sensor data is not as trivial since no sen-
sors to measure the angular accelerations are provided. Angular acceler-
ations are needed in equations (2.69)-(2.71) to be able to calculate the
aerodynamic moment coefficients. This data can be obtained by differen-
tiating the angular velocity measured by the rate gyros. This was done
using the moving polynomial described in section 2.10, with mpoly(1,1,1)
for p and r, and mpoly(1,5,5) for q. The results from this differentiation
are given in Figure 4.3.
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4.2. Simulation results

Table 4.7 gives the coefficients of determination (Eq. 2.96) describing
how well the model is able to account for the variations in the data. It
indicates a close fit of the model. However, by looking at Table 4.8 it is
clear from the parameters identified that some errors were introduced by
the necessary corrections.

Table 4.7.: Coefficients of determination of identified model in Case 2.

CD CC CD Cl Cm Cn
100.00% 100.00% 99.95% 92.63% 98.46% 95.35%

Data in this experiment comes from the same maneuver as in Case 1
and input regressors shown in Figure 4.2 therefore applies to this case
as well. Figure 4.5 shows the true aerodynamic forces together with the
results from calculation and predictions using the identified model.
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4. Results

Table 4.8.: Estimated aerodynamic parameters in Case 2 using perfect
measurements.

Parameter True value Estimated value Error (%)
CD0 -0.150 -0.150 0.0%
CDα -0.300 -0.301 -0.2%
CDβ -0.400 -0.400 -0.1%
CC0 0.000 0.000 0.0%
CCβ 0.100 0.100 -0.0%
CL0 -0.200 -0.200 -0.0%
CLα -0.900 -0.903 -0.3%
Cl0 0.000 0.000 0.0%
Clβ -0.050 -0.045 11.0%
Clp -0.020 -0.017 16.4%
Clδa -0.250 -0.213 14.7%
Cm0 0.000 0.000 0.0%
Cmα -0.200 -0.198 1.1%
Cmq -0.010 -0.009 12.7%
Cmδe -0.150 -0.144 4.3%
Cn0 0.000 -0.000 0.0%
Cnβ 0.120 0.109 9.4%
Cnr -0.020 -0.017 13.6%
Cnδr -0.210 -0.184 12.2%
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Figure 4.3.: Angular accelerations obtained by numerical differentiation in
Case 2.
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Figure 4.4.: Measured and corrected wind angles in Case 2.
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Figure 4.5.: Figure shows fitted, calulated and true aerodynamic forces
in Case 2. Fitted curve was obtained using LSE with the
calculated data as input.
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Figure 4.6.: Figure shows fitted, calulated and true aerodynamic moments
in Case 2. Fitted curve was obtained using LSE with the
calculated data as input.

4.2.3. Case 3 - LSE using noisy measurements

More realistic measurements of the aircraft sensors are used to see their
impact on the identified parameters. The simulation setup is the same as
in Case 2 , but with added noise shown in Table 4.9. All sensors in Table
4.9 are sampled at 100Hz in simulations.
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4.2. Simulation results

Sensor Measured value Noise density

Accelerometer ab + νa 3 · 0.00981 ms−1 Hz−
1
2

Rate gyro ω + νω 3 · 0.5 · π
180

rad
s

Hz−
1
2

Alpha vane α + να 0.05 · π
180

rad
s

Hz−
1
2

Beta vane βf + νβ 0.05 · π
180

rad
s

Hz−
1
2

Pitot-static tube q̄ + νq̄ 2.0 Pa Hz−
1
2

Aileron sensor δa 0.0
Elevator sensor δe 0.0
Rudder sensor δr 0.0

Table 4.9.: Instrumentation used in Case 3.

Accelerometer and rate gyro noise densities are set to 3 times the den-
sities given in the datasheet for Analog Devices ADIS16405 [5], which is
a low cost internal measurement unit. Alpha and beta noise densities are
set to roughly 20 times of the uncertainties given for a general avaition
airplane in [9].

The estimated aerodynamic parameters from this simulation can be
found in Table 4.11. It shows that estimates for linear force parameters
are quite accurate, and that moment parameters have greater relative
errors. Coefficients of determination calculated for the identified model
can be seen in Table 4.10.

Table 4.10.: Coefficients of determination of identified model in Case 3.

CD CC CD Cl Cm Cn
49.22% 52.79% 47.85% 85.07% 74.13% 55.24%
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Table 4.11.: Estimated aerodynamic parameters in Case 3 using noisy
measurements.

Parameter True value Estimated value Error
CD0 -0.150 -0.149 0.9%
CDα -0.300 -0.279 7.1%
CDβ -0.400 -0.411 -2.7%
CC0 0.000 0.000 0.0%
CCβ 0.100 0.102 -2.4%
CL0 -0.200 -0.201 -0.5%
CLα -0.900 -0.712 20.9%
Cl0 0.000 -0.000 0.0%
Clβ -0.050 -0.044 12.9%
Clp -0.020 -0.017 14.3%
Clδa -0.250 -0.219 12.6%
Cm0 0.000 0.000 0.0%
Cmα -0.200 -0.164 18.1%
Cmq -0.010 -0.008 23.2%
Cmδe -0.150 -0.138 7.8%
Cn0 0.000 -0.000 0.0%
Cnβ 0.120 0.100 16.8%
Cnr -0.020 -0.016 19.7%
Cnδr -0.210 -0.171 18.4%
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Figure 4.7.: Measured and true wind angles during simulation in Case 3.
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Figure 4.8.: Measured and true angular velocities during simulation in
Case 3.
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Figure 4.9.: Model prediction and calulated aerodynamic forces in Case 3.
Fitted curve was obtained using LSE with the calculated data
as input.
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Figure 4.10.: Model prediction and calulated aerodynamic moments in
Case 3. Fittet curve was obtained using LSE with the cal-
culated data as input.

4.2.4. Case 4 - Non-linear observers

Applying the Explicit Complementary Filter expressed in equations (2.76)-
(2.78) together with the observer from (Hua 2010) in equations (2.80) and
(2.81) estimates of several important quantities can be found. Figure 2.2
gives an overview of the input/output variables and shows the intercon-
nection between the two observers. This allows estimation of relative wind
velocity and angles at the cost of adding a GNSS such as a GPS receiver.
Local airmass has to be assumed to not be move during the experiment,
requring calm weather for data collection. GPS receivers are often already
present in flight control equipment, and thus removing the vane sensors
and the pitot-static tube could make the instrumental setup less complex
and cheaper for doing system identification.

Table 4.13 shows the new setup used in Case 4. Vanes and the pitot-
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4.2. Simulation results

static tube are removed and GPS velocity measurements are added. No
other changes are made to the sensors from Case 3. Figure 4.11 shows the
estimated euler angles using the proposed observer system. It also com-
pares the results with attitude estimates using only ECF without adopting
the specific force estimates from Hua’s filter. A significant improvement
is achieved with specific force corrections both to attitude and bias esti-
mation, as seen in Figure 4.11 and 4.12. Note that the gyro biases are
assumed to be constant during data collection and the bias observer is
initially set to the correct value, simulating that bias estimates have con-
verged prior to the start of the maneuver. Observer parameters used for
generating the results presented in this section are given in Table 4.12.

Table 4.12.: Observer parameters used for filtering data in Case 4.

ka km kp ki k1 kv
10.0 5.0 1.9 0.05 0.5 0.001

Velocity estimates obtained by using Hua’s observer can be seen in
Figure 4.14. The corresponding BODY velocity estimates are displayed in
Figure 4.15 and are calculated by using the estimated attitude found by
the filtering process. Estimated body velocities are then used to produce
estimates for aircraft alignment to the relative wind given in Figure 4.16.
Dynamic pressure calculated by the estimated total air relative speed can
be seen in Figure 4.17.
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Table 4.13.: Instrumentation used in Case 4.

Sensor Measured value Noise density
Accelerometer x-axis ax + νa 5 · 0.00981
Accelerometer y-axis ay + νa 5 · 0.00981
Accelerometer z-axis az + νa 5 · 0.00981

Gyro x-axis p+ νω 0.5 · π
180

Gyro y-axis q + νω 0.5 · π
180

Gyro z-axis r + νω 0.5 · π
180

Aileron sensor δa 0.0
Elevator sensor δe 0.0
Rudder sensor δr 0.0
GPS velocity vn + νgpsv 0.1
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Figure 4.11.: Estimated roll, pitch and yaw obtained by filtering sensor
data compared to the true values.
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Figure 4.15.: Estimated velocity using proposed observers expressed in
body coordinates.
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Figure 4.16.: Estimated wind angles calculated from estimated body ve-
locities in Case 4
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Figure 4.17.: Estimated dynamic pressure ˆ̄q calculated from estimated ve-
locity in Case 4.

Least squares estimates using the estimated α, β and q̄ instead of the
measured ones as in Case 3 yields the results shown in Table 4.14 and 4.15.
Model predictions for forces and moments can be seen in Figure 4.18 and
figure 4.19 respectively.
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Table 4.14.: Estimated aerodynamic parameters in Case 4 using noisy
measurements and estimated α, β and q̄.

Parameter True value Estimated value Error
CD0 -0.150 -0.148 1.7%
CDα -0.300 -0.289 3.7%
CDβ -0.400 -0.381 4.9%
CC0 0.000 -0.000 0.0%
CCβ 0.100 0.096 4.0%
CL0 -0.200 -0.211 -5.4%
CLα -0.900 -0.825 8.4%
Cl0 0.000 -0.000 0.0%
Clβ -0.050 -0.044 12.1%
Clp -0.020 -0.017 17.2%
Clδa -0.250 -0.213 15.0%
Cm0 0.000 -0.002 0.0%
Cmα -0.200 -0.191 4.5%
Cmq -0.010 -0.006 35.7%
Cmδe -0.150 -0.143 4.9%
Cn0 0.000 0.000 0.0%
Cnβ 0.120 0.108 10.1%
Cnr -0.020 -0.016 22.0%
Cnδr -0.210 -0.177 15.5%

Table 4.15.: Coefficients of determination of identified model in Case 4.

CD CC CD Cl Cm Cn
86.09% 47.43% 90.04% 88.06% 22.15% 71.15%
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4. Results
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Figure 4.18.: Estimated aerodynamic force coefficients in Case 4, using
estimated α, β, and q̄ from filtering results.
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4.2. Simulation results
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Figure 4.19.: Estimated aerodynamic moment coefficients in Case 4, using
estimated α, β, and q̄ from filtering results.
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5. Discussion

5.1. Parameter estimation using least squares

Case 1 demonstrates how the LS estimator is able to identify all the co-
efficients when the measurement error will be zero. From equation (2.95)
it is clear that with v = 0 the parameter error is zero, given that RN is
invertible. RN will be invertible as long as there is enough information
in the gathered data to be able to distinguish between the dependency of
the different parameters in the model. As described in 2.9 this means that
non of the regressors can be linearly dependent, since it would result in a
singular RN . The intuitive explanation of this would be that if two regres-
sors have the exact same variation it would be impossible to determine
which of them are causing the variation in the measured data. This is
therefore a problem that must be avoided when applying any method for
system identification and not just in the case of the LS method. Having
as accurate data as used in Case 1 is of course not very realistic based on
the instrumentation considered in this thesis.

Using available sensors for the calculation of the aerodynamic coeffi-
cients is considered in Case 2. Even when perfect measurements of these
sensors are assumed, some issues due to systematic errors occur. Angular
accelerations are not measured directly and need to be calculated using
numerical differentiation. As proposed in [9] a moving polynomial fitting
filter is applied to estimate the first derivative of the angular velocities.
Wind vanes also have systematic errors that are discussed in 5.2. The
results from Case 2 look promising as reflected in the coefficients of deter-
mination in Table 4.7. Force coefficient parameters are estimated to very
high precision, only limited by the errors in the wind angles due to the
corrections applied to remove the systematic errors in the measurements.
Moment parameters have larger errors caused by their dependency on the
estimated angular acceleration, as seen in equations (2.69)-(2.71), caus-
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5. Discussion

ing measurement errors and thus biases in parameter estimates as seen in
Equation (2.95).

Case 3 considers sensor setup as in Case 2, but with added measurement
noise. COD values listed in Table 4.10 seem not to be a good indication
of how well the identified model reflects the measured data in this case,
explained in more detail in 5.3. The increase in noise levels have increased
the estimation error of the parameters.

In Case 4, estimates using ECF and Hua’s non-linear filters are replacing
measurements of α, β and q̄. This eliminates the need for complicated
instruments such as wind vanes and pitot-tube, subject to position errors if
not calibrated correctly [13]. The instrumental setup is therefore becoming
simpler, more compact and possible cheaper since the GPS receiver, which
is needed to accomplish the estimation, is probably already present in
the instrumental setup of the aircraft. Figure 4.11 shows how good the
attitude estimation is, despite the noisy sensor readings and accelerated
aircraft body. The figure also shows the plots estimating the attitude
without the acceleration corrections when assuming the specefic force is
equal to−g, which corresponds to a suspended aircraft only affected by the
normal force. The estimated accelerations can be seen in Figure 4.13 and
significantly improve estimated attitude during high accelerations. Gyro
bias estimates are close to the correct value of zero during the experiment,
as seen in Figure 4.12. It is clear that the acceleration estimates provided
by Hua improves the estimation of the bias. Velocity estimates given in
NED (Figure 4.14) are rotated by using the estimated attitude into BODY
coordinates that can be viewed in Figure 4.15. It shows some errors in
the z-component (w) and this is transferred into errors in the estimated
dynamics pressure, angle of attack and sideslip angle seen in Figures 4.17
and 4.16. The errors might be the result of bad tuning, since correct tuning
of these filters has not been looked into. Parameters used for the observers
are listed in Table 4.12 and are found by trial and error until the results
were reasonably good for demonstrating correct filter behaviour. Figures
4.18 and 4.19 show the model predictions identified using the estimated
values obtained from filtering. Table 4.14 lists the estimated parameters
and the coefficients of determination can be seen in Table 4.15.
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5.2. Wind vanes

5.2. Wind vanes

In Case 2 wind vane sensors were introduced to measure the aircraft align-
ment to the relative wind. While the alpha vane is able to directly measure
the angle of attack, the beta vane is actually measuring the flank angle.
This is in principle not a big issue since there exists an analytical relation-
ship between flank and beta angle expressed in Equation (2.21), given that
the angle of attack is known. However, since wind vanes cannot be posi-
tioned at the center of gravity additional relative velocities due to angular
velocities will corrupt the measurements. Assuming small angles of at-
tack, sideslip and angular velocities, corrections (Eq. (2.67) & (2.68)) for
these systematic errors were tested. Corrections are undoubtably effective
under the conditions simulated as seen in Figure 4.4.

5.3. Coefficient of determination

Noisy measurement seems to make the coefficient of determination give a
pessimistic measure of the fitted model when applied directly as seen in
tables 4.10 and 4.15. The values are of course correct in the sense that
they describe the proportion of the variation in the measured signal that is
predicted by the model, but some of the variation is due to signal noise and
not the deterministic variation that is the primary goal to predict. Despite
this, bad COD values due to measurement noise will be an indication of
low signal to noise ratio, and better instrumentation or bigger excitations
of the signals in question should be considered to improve the results. This
can be observed in Figure 4.9, 4.10, 4.18 and 4.19, which visually indicates,
for the linear forces, that low signal to noise ratio will give lower COD
values as seen in Table 4.10 and 4.15. Even when the fitting seems to be
reasonably accurate and the parameter error is low compeared to other
parameters producing better COD values (see Table 4.11). This means
that some care should be used when comparing COD values.

5.4. Note on air data estimation

Since the estimated velocity obtained by using the proposed observers
is relative to the earth, it will not give the correct air relative velocities
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5. Discussion

if the air is moving earth relative. Gust and wind affecting the aircraft
while flying will thus not be included in these estimations, but errors are
expected to be small when flying on calm days [9]. Despite this, using non-
linear observers for estimating wind data can be preferable since no extra
sensors need to be installed on the aircraft. Installing sensors like wind
vanes is not trivial since the flow of air around the aircraft is disturbed
by the aircraft itself, and this would lead to position errors in the sensors
readings. The best placement of such sensors is usually found by using
advanced CFD simulations, and wind tunnels are used for calibration [13].

5.5. Input design

There are several aspects concerning the correlation between measure-
ment error v and regressors φ. If v is white noise with zero mean it will
by definition be uncorrelated to φ and thus LS should give an unbiased
identification of θ∗ as N approaches infinity. While some of the regressors
in φ are based on system outputs, others are system inputs and can be
chosen. In system identification of aircrafts input regressors are typically
surface deflections. Then if a closed loop feedback controller is used during
data collection the inputs will be correlated with the system outputs, and
thus resulting in a biased estimate. Using open loop control of the aircraft
while collecting data is therefore preferable. This can either be done by
predefining some input sequence to be executed or by flying manually.
Correlation of ouput regressors with measurement noise is not as trivial
to correct for, since they come from the same sensors.

5.6. Inertia

Inertia properties of a model aircraft were found by using the principle of a
physical pendulum. Using low amplitude oscillations reduces the effects of
the unlinearity of the pendulum force, yielding consistent measurements
of the oscillation period. Another method for finding inertia properties
could be to record samples of pendelum angles during the experiment and
applying the method of least squares for identifying the system. Then
damping could be added as well, and greater amplitudes could be used.
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5.7. Aerodynamical model

5.7. Aerodynamical model

Several assumptions were introduced to the aerodynamical model used in
this thesis, and when identifying the parameters it was assumed that the
model was known excactly. This is an ideal situation that is not very
realistic. Much is known about the dynamics of aircrafts, but to have
an excact representation as in the simulated cases can not be assumed
when using real aircraft data. When applying system identification to
real aircraft data the choice of model will depend on the aircraft used and
the content of the measured data. If the rudder was not used during data
collection, the regression model used should not depend on this variable
either. If only small excitations of the angle of attack are included in the
data set, a linear term of angle of attack maybe enough to explain its
dependency, and it will be preferable to skip the heigher order terms.

Different methods for determining if a regressor should be included or
not could be used[14][3][9]. This is called stepwise regression. The idea is
to define a stopping rule or a test for significance of the proposed regressor,
to be able to decide if it should be included in the model or not. Stepwise
regression can in this way be used to determine the model structure by
testing several common aerodynamical dependencies found in litterature.
An automatic approach to this can then be implemented to both find the
best matching structure and identify the model parameters.
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6. Conclusion

In this thesis a rigid-body simulator capable of simulating aircraft be-
haviour has been developed and used to investigate the least squares
method of system identification. Simulations confirms several methods
for correcting sensor data for systematic errors. Wind vanes can be cor-
rected for local winds caused by angular velocity and non-linear filters
can estimate biases in gyro measurments under the conditions simulated.
Non-linear observers have also been proposed to replace wind vanes and
pitot-static tube, and simulations indicate that they might be useful for
estimating the angle of attack, sideslip angle and dynamic pressure, pro-
vided that there is no wind or gust during flying. This would simplify
the instrumental setup and provide a faster and cheaper way of gathering
data for system identification. UAV control systems mighh already have
the necessary hardware and logging capabilities to provide a useful data
set for model building. Ordinary least squares method for identification
of aircraft dynamics is not ideal since the solution is expected to be biased
due to unlinearities even when assuming white sensor noise. Despite this,
under the circumstances simulated biases are relative small and it can be
argued that the results are useful. At least for initial estimation. Coeffi-
cient of determination has been applied to explain how well the identified
model is able to account for the variations of the measured data. Some
issues concerning the validity of these coefficients when used on noisy data
have been discussed.

6.1. Future work

• Weighting of data measurement in LS algorithm based on confidence
in sensor data. The LS estimation can be done without assigning
equal weight to the data points. Data points known to be of less
quality can thus be weighted less, possibly improving estimation re-
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6. Conclusion

sults.

• Establish models for servo dynamics for surface deflection estima-
tion without having to explicitly measure the deflection angle. Wind
tunnel testing can be used to investigate the impact of aerodynamic
forces acting on the surface while flying.

• Investigate different models for propeller thrust and engine dynam-
ics. Develope good estimators for predicting thrust based on incom-
ing air velocity, RPM and commanded power. Testing and verifi-
cation of these models could be done using wind tunnels with the
thrust system mounted on the aircraft as the aircraft shape could
have an effect on the resulting thrust.

• Estimating aerodynamic forces without using any thrust during the
maneuvers. Then the engine model can be identified in maneuvers
with variable engine input.

• Identifying aerodynamics without using motor thrust. This removes
the problem with thrust estimation. After the drag model is identi-
fied manueuvers with excited engine power at different flying speeds
can be used to identify the propeller dynamics.

• Identifying both moments of inertia and angular damping by using
time series of angle during pendulum experiments, by applying LS
method for estimating parameters in the pendulum model.

• Stepwise regression for model building and determination of which
regressor should be included, based on the infomation content in
the sampled data. This could be automated by specifying a pool
of regressors from aerodynamic literature that the algorithm can
choose from.
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A. Derivations

A.1. Physical pendulum

Assume an object with mass m, moment of inertia Ip around the pivoting
axis that is a distance l from the center of mass. Gravity is acting on the
center of mass and thus the total torque can be found by the product of
the gravitational force and the moment arm:

τ = mg · l sin θ (A.1)

Using Newton’s second law for angular momentum:

Ipθ̈ +mgsl sin θ = 0 (A.2)

For small deflection angles sin(x) can be approximated with x. The
above equation then becomes an ordinary second order differential equa-
tion:

Ipθ̈ +mglθ = 0 (A.3)

with the known solution:

θ(t) = θ0 cosω2t (A.4)

where ω2 = mgl
Ip

. The pendulum period T can then be found:

T =
2π

ω
= 2π

√
Ip
mgl

(A.5)
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A. Derivations

A.2. Explicit Complementary Filter

By expanding the inner parentheses of equation (2.76),

viv̂
T
i − v̂ivTi =

vi,xvi,y
vi,z

 [v̂i,x v̂i,y v̂i,z
]
−

v̂i,xv̂i,y
v̂i,z

 [vi,x vi,y vi,z
]

=

vi,xv̂i,x vi,xv̂i,y vi,xv̂i,z
vi,yv̂i,x vi,yv̂i,y vi,yv̂i,z
vi,zv̂i,x vi,zv̂i,y vi,zv̂i,z

−
v̂i,xvi,x v̂i,xvi,y v̂i,xvi,z
v̂i,yvi,x v̂i,yvi,y v̂i,yvi,z
v̂i,zvi,x v̂i,zvi,y v̂i,zvi,z


(A.6)

=

 0 vi,xv̂i,y − v̂i,xvi,y vi,xv̂i,z − v̂i,xvi,z
vi,yv̂i,x − v̂i,yvi,x 0 vi,yv̂i,z − v̂i,yvi,z
vi,zv̂i,x − v̂i,zvi,x vi,zv̂i,y − v̂i,zvi,y 0

 ,
it is clear that this is the skew-symetric matrix S(vi × v̂i). This proves

that equation (2.76) can be written as

ωmes = −vex

(
1

2

n∑
i=1

kiS (vi × v̂i)

)
. (A.7)

Now by using the definition of the vex operator (2.3) ωmes can be ex-
pressed as:

ωmes = −1

2

n∑
i=1

kivex (S (vi × v̂i))

= −1

2

n∑
i=1

ki (vi × v̂i) . (A.8)

ωmes is then a weighted sum of n cross products of v and v̂. v is the
actual measured vector relative to the BODY frame, while v̂ is the known
NED vector rotated to BODY using the current estimate of the attitude.
The cross product will give an axis of rotation for correcting the error.
The rotation magnitude will be scaled by the length of the cross product
and the factor ki

2
.
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B. Matlab figures
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Figure B.1.: Overall simulator system.
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B. Matlab figures
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Figure B.2.: Aircraft dynamics implemented in SIMULINK.
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C. Code implementation

C.1. Least Squares

C.2. Explicit Complementary Filter

%==========================================================
% e c f i n i t .m − Setup i n i t i a l v a r i a b l e s in f i l t e r s t a t e
% s t r u c t u r e .
% k p − tuning parameter f o r v e c t o r mesurement f e e d b a c k .
% k i − tuning parameter f o r b i a s convergence .
% e u l e r − i n i t i a l e u l e r a n g l e s .
% g y r b i a s − i n i t i a l gyro b i a s e s t i m a t e .
%==========================================================
function [ x ] = e c f i n i t ( k p , k i , eu l e r , g y r b i a s )
x . k p = k p ;
x . k i = k i ;
x . q hat = e2q ( e u l e r ) ;
x . g y r b i a s h a t = g y r b i a s ;
x .R = q2rot ( x . q hat ) ;

%==========================================================
% e c f u p d a t e .m − Update f i l t e r e s t i m a t e wi th new IMU
% measurements .
%
% x − f i l t e r s t a t e s t r u c t u r e
% gyr − gyro angu lar v e l o c i t y measurement
% k acc − tuning parameter d e c i d i n g impact o f acce l e rometer
% measurement
% acc − acce l e rometer measurement in body c o o r d i n a t e s .
% a c c r e f − a c c e l e r a t i o n r e f e r e n c e v e c t o r in NED.
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C. Code implementation

% k mag − tuning parameter d e c i d i n g impact o f magnetometer
% measurement
% mag − magnetometer measurement in body c o o r d i n a t e s .
% mag ref − magnetic f i e l d r e f e r e n c e v e c t o r in NED.
% dt − t ime s i n c e l a s t update .
%==========================================================
function [ x ] = ec f update (x , gyr , k acc , acc , a c c r e f , . . .

k mag , mag , mag ref , dt )

%Rotate r e f e r e n c e v e c t o r s to body c o o r d i n a t e s us ing the
%curren t e s t i m a t e o f the a t t i t u d e :
a c c r e f = x .R∗ a c c r e f ’ ;
mag ref = x .R∗mag ref ’ ;

%Normalize v e c t o r s :
acc = acc / norm( acc ) ;
a c c r e f = a c c r e f / norm( a c c r e f ) ;
mag = mag / norm(mag ) ;
mag ref = mag ref / norm( mag ref ) ;

%Construct w mes :
w mes = 0 .5∗ ( k acc ∗cross ( acc , a c c r e f ) + . . .

k mag∗cross (mag , mag ref ) ) ;

%C a l c u l a t e d e r i v a t i v e s :
q hat dot = T q ( x . q hat )∗ ( gyr − x . g y r b i a s h a t + . . .

x . k p∗w mes ) ’ ;
g y r b i a s h a t d o t = −x . k i ∗w mes ;

%I n t e g r a t e s t a t e s us ing forward e u l e r :
x . q hat = x . q hat + dt∗ q hat dot ’ ;
x . g y r b i a s h a t = x . g y r b i a s h a t + dt∗ g y r b i a s h a t d o t ;

%Normalize quatern ion :
x . q hat = x . q hat / norm( x . q hat ) ;

%C a l c u l a t e r o t a t i o n matrix :
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C.3. Hua 2010

x .R = q2rot ( x . q hat ) ;

C.3. Hua 2010

%==========================================================
% h u a i n i t .m − I n i t i a l i z e a new s t r u c t u r e f o r h o l d i n g
% informat ion used in Hua ’ s f i l t e r .
% v e l − I n i t i a l v e l o c i t y
%==========================================================
function [ x ] = h u a i n i t ( v e l )
x . Q hat = eye ( 3 ) ;
x . v hat = ve l ;

%==========================================================
% hua update .m − Update f i l t e r s t a t e a f t e r a s p e c i f i e d
% time dtwhen a v e l o c i t y measurement from
% GPS i s a v a i l a b l e
% x − f i l t e r s t a t e s t r u c t u r e
% k 1 − f i l t e r parameter
% k v − f i l t e r parameter
% a − a c c e l r a t i o n from an acce l e rometer
% v e l − v e l o c i t y measurement from GPS.
% dt − t ime s t e p s i n c e l a s t update .
%==========================================================
function [ x ] = hua update (x , k 1 , k v , ve l , a , dt )
%Find error between current e s t i m a t e and measurement :
ver r = ve l − x . v hat ;

%Update v h a t :
x . v hat = x . v hat + dt ∗ k 1 ∗ ver r ;

%Update Q:
x . Q hat = x . Q hat + dt∗ k v ∗ ver r ∗ a ’ ;

%Normalize Q:
x . Q hat = x . Q hat / norm( x . Q hat , ’ f r o ’ ) ∗ sqrt ( 3 ) ;
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C. Code implementation

%==========================================================
% h u a p r e d i c t .m − P r e d i c t f i l t e r s t a t e a f t e r a s p e c i f i e d
% time dt us ing gyro and acce l e rometer
% measurements .
%
% x − f i l t e r s t a t e s t r u c t u r e
% w − b i a s c o r r e c t e d angu lar v e l o c i t y from gyro
% a − a c c e l r a t i o n from an acce l e rometer
% dt − t ime s t e p
%==========================================================
function [ x ] = hua pred i c t (x , w, a , dt )
x . v hat dot = [ 0 0 9 . 8 1 ] ’ + x . Q hat∗a ;
x . v hat = x . v hat + dt ∗ x . v hat dot ;
x . Q hat = x . Q hat + dt ∗ x . Q hat∗skew (w) ;
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D. Digital attachment

A digital attachment is provided, containing the files used to generate the
results in this thesis. The files are listed in Table D.2.

Table D.1.: Digital attachment.

Filename Size (bytes) MD5
appendix d.zip 41559 00c256ac6b578e16246a07536bd1dc5b

It can be downloaded from http://dl.dropbox.com/u/58476755/appendix d.zip.
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D. Digital attachment

Table D.2.: Files in digital attachment.

Filename Description
case2.m Script for generating data and displaying results

for Case 2
case4.m Script for generating data and displaying results

for Case 4 after filtering.
e2q.m Convert euler angles to quaternions.
ecf update.m Update ECF with new IMU data.
hua predict.m Predict filter states using IMU data.
lse conv.m Show convergence of least squares estimates.
mpoly.m Moving polynomial filter implementation.
rot2e.m Finds euler angles from a rotation matrix.
runsim.m Initialize simulation settings.
skew.m Calculates the skew-symetric matrix given a vec-

tor.
vex.m Inverse of skew.m.
case1.m Scrip for generating data and display results for

Case 1.
case3.m Scrip for generating data and display results for

Case 3.
cod.m Calulate the coefficient of determination.
ecf init.m Initialize ECF state structure prior to filtering.
filtering.m Uses ECF and Hua’s filter for estimation of state

variables using sensor data from simulation.
hua init.m Initialize state structure for Hua’s filter prior to

filtering.
hua update.m Update Hua’s filter with GNSS velocity measure-

ments.
lse.m Ordinary Least Squares method.
q2rot.m Create rotation matrix from quaternions.
rot bw.m Create rotation matrix from body to wind coordi-

nates given angle of attack and sideslip.
simulate.mdl SIMULINK simulation model.
T q.m Quaternion transformation matrix.
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