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Abstract

An inverse statistics analysis of one minute stock quotes from 492 large Eu-
ropean companies has revealed the existence of a gain-loss asymmetry in the
following index. The gain-loss asymmetry differs from that observed for daily
closure prices of the Dow Jones Industrial Average [38], as the probability of
the optimal investment horizon for a gain is higher than that of a loss. For
individual stocks, the gain-loss asymmetry was observed to only appear for
significantly larger return-levels. To the best of our knowledge, this is the
first time such an analysis has been performed on high-frequency data.

A principal component analysis was done by performing an eigenvalue de-
composition of the correlation matrix from a sliding time-window. The first
principal component was observed to describe the market excellently. Its cor-
responding eigenvalue was observed to be significantly larger than theoretical
predictions from random matrix theory, implying that the eigenvalue carries
information common to all stocks. Using this eigenvalue as an index mea-
suring the collectivity in the market has revealed the existence of collective
trends that appear to be stronger during falling than rising markets. This
has been observed for two different datasets, the above described one minute
stock quotes and daily closure prices from 29 stocks composing the DJIA late
February 2008. The observation is in accordance with results of Balogh et
al. [40], and provides further support to the speculation of Johansen et al.
[37] that a difference in collective trends is the reason behind the gain-loss
asymmetry observed in indexes and not for individual stocks for the same
return-level.

The key idea behind the fear factor model of Donangelo et al. [42] has been
strongly supported by the observation that collective trends appear to be
stronger during sharp index drops. As the collectivity increment has been
observed to be dependent on the size of the index drop, it is suggested that
the model should incorporate also individual fear factors for economic sectors,
in addition to the global fear factor governing the market as a whole. Periods
exhibiting a rising index positively correlated to the strength of collectivity
has indicated the presence of an optimism factor that also should be incor-
porated in the fear factor model [42], forcing stocks to rise synchronously.
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Preface

This thesis is the final work of my Master’s Degree in Applied Physics at
the Norwegian University of Science and Technology (NTNU). The reason
why I started at NTNU in the first place was my interest for physics and
mathematics, as well as the fact that NTNU is a good scientific university
in Norway with possibilities of taking parts of the education abroad. After
studying for some years, finance attracted a lot of my interest, and espe-
cially the modeling of stocks and financial markets in general. The autumn
of 2008, stock exchanges exhibited synchronized falls all over the world, and
what we today know as the financial crisis had started. The index represent-
ing companies noted at the Oslo stock exchange fell from a value above 500
in September 2008 to a value of less than 200 March 2009, where the worst
intraday return was 8.30%! According to the primitive model often used in
finance to model stock fluctuations, such an event is impossible. This is also
why such events have got the name black swans. To model stocks as well
as trying to understand and maybe predict the behavior of individual stocks
and more complex markets is therefore very interesting, especially from a
physicist’s point of view.

Working on my specialization project last term as a member of the soft and
complex matter group at NTNU gave me a deep insight into self-assembling
nanoparticles made up of clay platelets. However, after working with this for
a while, I was ready to do something new. Even if the analysis of financial
data is not very different from that of turbulence, I did not know that there
were people working with this also at the Department of Physics at NTNU.
Two doors down the corridor from where I mostly worked on my project, my
former professor in Electromagnetic Theory had his office. The last month
before Christmas, he introduced me to the field of econophysics, as he was
a member of a group working on what is known as inverse statistics among
other things. They observed, based on empirical data from the Dow Jones
Industrial Average [38], that the expected time to achieve a gain on your
investment is longer than that of a loss, an effect speculated to arise from a
collective trend in the financial markets. In May 2011, one of their models
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[42] to understand this behavior led to an article in the Danish version of
Financial Times. I guess my former professor must have understood that I
found this very interesting, as he agreed to be my supervisor when I asked
after having handed in my project.

While working on my master’s thesis, I realized that I had to learn a lot
of finance to get a deeper understanding of the models used today. I have
only had one course connected to finance, but thanks to several mathematics
courses at NTNU this was not as hard as expected. In addition, I had to do
a lot of programming, and chose to use Python for this purpose. Python is
very intuitive to use (especially after having had C++ a few years ago), and
is in addition free, compared to e.g. MatLAB that is extremely expensive
when used outside universities. It follows that my learning curve has been
very steep, but both my educational and personal outcome have been great.

It is no surprise that I want to thank my supervisor Ingve Simonsen for
providing me with the possibility of writing this thesis, as well as helping
me whenever I had questions. Even though Simonsen is one of the busiest
professors at NTNU, he always has time and always makes sure that you
understand. In addition, I would not been able to write this thesis if not
his earlier student, Peter Ahlgren, had provided me with the necessary data.
Finally, I must thank my fellow students Beate Cappelen and Hege Knut-
sen for providing a positive learning environment with yatzi breaks whenever
needed.

Trondheim, 27.06.2011 Christoffer Berge Hansen
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Chapter 1

Introduction

Financial markets allow people and institutions to buy or sell financial se-
curities such as stocks and bonds, but also commodities and other fungible
items. Such markets are very important, as they allow buyers and sellers
to find each other. An idea needs capital, and someone with an idea may
find the needed capital in the financial markets. Countries, companies and
individuals invest money in the financial markets which are believed to have
a close to exponential drift, resulting in a larger gain as compared to placing
money in the close to risk free bank. It is a question of risk versus return.
The drifts of two well known indexes are presented in figure 1.1, where the
historic daily closure prices of the Oslo Stock Exchange Benchmark Index
and the Dow Jones Industrial Average are shown with a fit to an exponential
function.

Financial time series are interesting as they have been recorded and stud-
ied for many decades. The appearance of computers caused an acceleration
of this development, and today large amounts of high frequency data are
recorded daily. In 1900, Bachelier [13] suggested that drift-corrected stock
fluctuations behave as a Brownian motion. Einstein published his first and
famous article on Brownian motion [10], independently of Bachelier, 5 years
later. The fact that both movements of Brownian particles and movements
of stocks were (and still are) modeled this way1 proves that the fields of
finance and physics are deeply connected. Financial data have a relatively
high frequency of events termed black swans2, or in other words surprising
events with major impact such as the financial crisis starting the autumn of
2008. Such events are not predicted by any random walk processes and have

1Note that the common model now for stocks is not standard Brownian motion, but
rather the model known as geometric Brownian motion.

2More about black swans can be read in The Black Swan [3], a New York Times
bestseller.
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(a) (b)

Figure 1.1: (a) Blue line: Historic daily closure prices of the Oslo Stock
Exchange Benchmark Index (OSEBX) over the period January 3rd, 1983 to
March 29th, 2011. (b) Blue line: Historic daily closure prices of the Dow
Jones Industrial Average (DJIA) over the period May 26th, 1896 to June
5th, 2001. The green lines are fits of an exponential function of the form
f(x) = a + b exp(cx) to the empirical data, and just an illustration of the
drift in stock markets. The OSEBX data and the DJIA data are obtained
from [2] and [21] respectively, and the resulting fit parameters can be found
in appendix B.1, table B.2.

caused stock dynamics to be compared with turbulence, exhibiting similar
behavior with unpredictable spikes [5]. In 1973, the economist Scholes and
the physicist Black together published their famous formula for pricing of
options and derivatives [19]. In 1997, they were awarded the Nobel Prize in
Economics3 [1] for this formula, as it still is indispensable. A correct pricing
of derivatives is important, and this is still done using the Black and Scholes
formula or other physics-related models, even though it is clear that many
of the assumptions they are based on are incorrect. The conclusion is that
banks do not only need economists, but also physicists and mathematicians
— which are nicknamed quants by many economists. One of the aspects of
financial markets to be investigated in this thesis is whether there is a sig-
nificant difference in the collective trends of share prices during stock index
rising and falling periods. This has been indicated by findings of Balogh et

3Even though Black himself died 2 years earlier.
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al. [40], but will be approached differently in this thesis. An understanding
of such trends is important for portfolio management, as the difference in
collective trends implies that risks are not symmetric measures for positive
and negative returns.

The management of risks is an important aspect of finance. The optimal
portfolio maximizes the return for a given level of risk. This is also a field
where so-called quants are important, modeling future developments of inter-
est rates or prices of stocks and commodities. Even currency developments
are modeled, as these play a significant role for exporters, importers and
individual investors. By use of empirical data, models trying to predict the
future can be constructed. Even though no such models can predict future
prices with certainty, they can be used to minimize the risk of losses. Physi-
cists and mathematicians are well trained on doing research, and this is a
field where their analytical skills are needed.

One of the techniques used in this thesis is called random matrix theory,
and was actually developed by Wigner [47] in 1955 to describe the energy
levels of atomic nuclei and their fluctuations. The theory is important as it
is can be used for cleaning random correlations from empirical correlation
matrices [25], which are among the corner stones of todays risk management.
This enables the possibility of extracting true correlations between financial
assets (and not the purely random correlations arising between stocks from
time to time), which again can be used when building the optimal portfolio
[24]. Due to the great importance of such models, the field of financial math-
ematics is an important one, growing at a high rate and employing many
physicists.

3
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Chapter 2

Background

Mathematical finance is often said to start with the publication of Louis
Bachelier’s doctoral thesis Thèorie de la Spèculation in 1900 [13]. Bachelier
formulates several important hypothesis about the market, where especially
one is of great importance: ”At a given instant, the market believes neither
in a rise nor in a fall of the true price”. Equivalently, ”the expectation of the
speculator is zero”, and thus Bachelier implicitly assumes that the market
evaluates assets using a martingale measure (a zero drift stochastic process).
Bachelier tried to model the drift-corrected asset prices in a mathematical
fashion, and through three different approaches he concluded that the price
changes of assets are Gaussian distributed and that the price follows a Brow-
nian motion. As this in principle opens for a non-zero possibility of negative
prices, the model has later been replaced with what is now known as the
geometric Brownian motion model.

Geometric Brownian motion is a process where the logarithm of the ran-
domly varying quantity follows a Brownian motion. In this case, it is the
asset price that is randomly varying, leading the logarithmic return1 to fol-
low a Brownian motion. It follows that the problem of a non-zero probability
for negative asset prices vanishes. The model was used by Black and Scholes
when deriving their famous formula for option pricing [19], and is still the
standard assumption in finance. However, due to its underestimation of large
fluctuations causing so-called fat tails in empirical financial data [9], it is an
open question of which probability distribution that describe the empirical
data best.

1The relative price increment, or the arithmetic return ηk is defined ηk = ∆Sk/Sk =
(Sk+1−Sk)/Sk, where Sk is the stock price at time tk. Mostly in this work, the considered
return is the so-called logarithmic return. The logarithmic return rk is defined rk =
ln(Sk+1/Sk) = ln(ηk + 1), and rk ≈ ηk for ηk << 1.
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Figure 2.1: Inverse statistics distributions for the Dow Jones Industrial Av-
erage index for a return-level |ρ| = 0.05, based on empirical daily closure
prices from 1896 to 2006. Red open squares correspond to negative returns
and blue open circles to positive returns. Both distributions are normalized.
The inset shows the gain and loss distributions obtained from averaging over
the inverse statistics distributions of each of the constituent stocks of the in-
dex. It is observed a clear asymmetry in the index but not in the individual
stocks. Figure adapted from [42].

In finance, the classical approach when studying time series has been what
was denoted by Ahlgren et al. [34] as forward statistics. In this approach, a
typical time-scale is chosen, and the typical return over the chosen time-scale
is calculated based on historical data. What is now known as inverse statis-
tics was introduced in 2002, when Simonsen et al. [36] asked the ”inverse”
question: ”What is the typical time span needed to generate a fluctuation
or movement (in the price) of a given size?”. The result was the observa-
tion of a gain-loss asymmetry in stock indexes, and that this asymmetry
was small or not present in the individual stocks indexes are composed of
[37, 38]. However, later research has concluded that also individual stocks
exhibit a small gain-loss asymmetry, but that this only appears for a sig-
nificantly larger return-levels [50]. An example of the gain-loss asymmetry
is seen in figure 2.1, where the inverse statistics distributions calculated by

6
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Donangelo et al. [42] are presented. The peaks of the distributions were
coined optimal investment horizons by Simonsen et al. [36], and for mature
and liquid western markets it has been observed that the optimal investment
horizon always occur earlier for negative returns. This is also observed in
figure 2.1. Another interesting observation from figure 2.1 is that there is a
higher probability to find short investment horizons for negative return-levels
compared to positive return-levels [37].

Johansen et al. [37] speculated that the origin of the gain-loss asymmetry
was some kind of collective movement of the stocks of the index. This was the
key idea behind the fear factor model by Donangelo et al. [42], constructed
to explain the origin of the asymmetry. The model features short periods
of synchronized dropping prices induced by a fear factor, and was found to
reproduce the asymmetry in the index except from some minor differences
especially for short waiting times. By construction, the model produced no
asymmetry for the individual stocks, and the results are further discussed
in section 3.8.2. However, the model caused the authors to speculate in the
existence of an optimism factor, introducing synchronized upturns similar to
the downturns introduced by the fear factor. After the introduction of the
fear factor model, Balogh et al. [40] found empirical evidence indicating that
collective trends during falling markets are stronger than during rising mar-
kets, supporting the fear factor hypothesis. It has also been speculated that
the negative correlation between past returns and future volatility, known as
the leverage effect, could be of the same origin as the gain-loss asymmetry
[50, 51].

The strength of collective trends in the market is investigated in this thesis,
using principal component analysis and random matrix theory. As the theory
of random matrices gives a prediction for the eigenvalue spectrum of a very
large random matrix, random and uncorrelated fluctuations between stocks
this way can be excluded. This again leads to the possibility of extracting
real information from financial correlation matrices.

7
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Chapter 3

Theory

3.1 Econophysics

The term Econophysics was coined by the physicist Stanley at the second
Statphys - Kolkata conference in Calcutta, India, in 1995 [4, pp. 225]. Man-
tegna and Stanley later defined the field of econophysics as ”a neologism that
denotes the activities of physicists who are working on economic problems to
test a variety of new conceptual approaches deriving from the physical sci-
ences” [5, pp. viii]. This definition is sociological, as it is not based on the
type of problem or methods and theories for solving them, but rather who is
doing the work.

The mathematician Bachelier [13] tried in the early 1900’s to explain the
fluctuations of commodity prices over time, using statistical physics. His
explanation led to an introduction of the theory of random walks, a the-
ory which was later developed independently by Einstein in his article titled
”On the Movement of Small Particles Suspended in a Stationary Liquid De-
manded by the Molecular-Kinetic Theory of Heat” published in 1905 [10].
Bachelier originally proposed that price changes were Gaussian distributed,
which became the standard way of modeling asset prices for several decades.
This suggestion was later replaced by the geometric Brownian motion model,
where it is logarithmic price changes that are Gaussian distributed. This is
the model Black and Scholes used for asset prices when deriving their fa-
mous formula for the pricing of options and derivatives [19]. Discrepancies
between empirical data and the Black and Scholes formula due to its under-
lying assumptions have been observed, and it is known that the geometric
Brownian motion model for stock prices is not correct [17, pp. 104 - 105].
A main point is the assumption of log-normal distributed returns, causing
an underestimation of the actual probability of rare events as compared to
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empirical data [15]. However, both the geometric Brownian motion model
and the Black and Scholes formula are still widely used. This follows, as they
are easy to work with and in general give useful approximations.

A clear contrast between the approach of econophysicists and economists
lies in the description of many empirically observed financial distributions.
Physicists have found that many phenomena can be more accurately de-
scribed using scaling laws1. Scaling laws describe the empirically observed
distributions exhibiting skewness and leptokurtosis, something the Gaussian
distributions suggested by Bachelier in 1900 do not [4, pp. 227]. The con-
trasting approach using scaling laws was first performed by Pareto in 1897
[14, pp. 119], where it was used to study income distributions. Mandelbrot
[9] applied a similar approach to study the fluctuations of cotton prices in
1963, and observed more and larger fluctuations than expected from a Gaus-
sian process.

Other problems studied by econophysicists are the distributions of income
and wealth, inverse statistics including gain-loss asymmetry (which will be
discussed in section 3.8.2) and modeling of highly volatile and seasonal mar-
kets such as the electricity markets, economic shocks and growth rate vari-
ations, company sizes and growth rates, scientific discoveries, etc [7]. Much
of this work has been published in several journals from the physical ones
such as the Journal of Modern Physics C, Physica A, Physical Review E and
European Physical Journal B to more general scientific journals as Nature
and multidisciplinary journals such as the Quantitative Finance. Some work
is also published jointly with economists in economic journals [7].

3.2 Thèorie de la Spèculation

Louis Bachelier defended his doctoral thesis ”Thèorie de la Spèculation” 2

in 1900. The thesis was also published in Annuales Scientifiques de l’Ecole
Normale Supèrieure, and was a pioneering analysis on the dynamics of the
stock and option markets [13, 18]. The aim of the thesis was to derive an ex-
pression for the probability of a price fluctuation of a commodity or a market
some time in the future, given the current price [13]. As briefly mentioned
in section 3.1, Bachelier made the first formulation of a theory of a random
walk process, five years before Einstein independently developed the theory
of Brownian motion when studying the physics of Brownian particles [10].

1Law that states that two quantities are proportional and known to be valid at certain
orders of magnitude.

2Or in english, ”Theory of Speculation”.

10
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After considering several financial instruments including futures, options and
combinations of these, Bachelier formulated a series of assumptions. Of sig-
nificant importance is the postulate: ”at a given instant, the market believes
neither in a rise nor in a fall of the true price” [13]. This is equivalent to
stating that at any given time, the market is neither ”bullish” nor ”bearish”
even though individual traders on the other hand may have their opinion on
the direction of the market movement. The important hypothesis stated by
Bachelier are [16, pp. 29]:

• The successive price movements are statistically independent.

• All information available from the past to the present time is completely
accounted for by the present price in a perfect market.

• The same hypothesis is made in an efficient market, but small irreg-
ularities are allowed as long as they are smaller than the transaction
costs, thus leaving no arbitrage3 possibilities.

• In a complete market there are both buyers and sellers at any quoted
price, having opposite opinions about future price movements. Thus
on average, the market does not believe in a net movement.

What is remarkable, is that these assumptions are still among the standard
assumptions in modern theory of financial markets.

3.2.1 Government bonds with contangoes and their fu-

tures

Bachelier basic ideas are formulated on a future-like instrument based on a
French government bond with nominal value S(0) = Fr 100 and a 3% interest
rate4. Every three months, a coupon of Z = Fr 0.75 is detached from the
bond, representing the interest on the money invested if the bond is bought.
The expiry date of the future is the last trading date in the month, but it
can be extended beyond its maturity by paying a contango5. The coupon
of Fr 0.75 per quarter equals Fr 0.25 monthly, and the contango is normally
less than this value. The difference favors the buyer, suggesting the idea of
buying futures to carry them forward indefinitely [13].

3By arbitrage, one means the possibility of making riskless profit [6]
4Fr is shorthand for Franc, the currency in France at the time of Bachelier.
5To conserve the position until the next maturity, the buyer of the future can pay the

seller an indemnity denoted as a contango [13].
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Characteristics of the future instrument are:

• The instrument does not include the obligation of delivering the bond
at maturity, unlike modern bond futures. Instead, the price difference
of the underlying bond is settled in cash.

• The expiration date is set on the last trading day of the month.

• The instrument can be extended beyond its maturity to the end of the
following month by paying a contango K.

• The long position (the buyer of the future) receives the coupons from
the instrument.

To consider the regular part of the price of Bachelier’s futures, it is assumed
that the the market is free of fluctuations. This causes the price of the future
F (t) to be completely governed by the price movements of the underlying
security S(t). With a 3% interest and nominal value Fr100, the price of
the bond will increase linearly in time due to the accumulation of interest
until its maturity every three months. At maturity, the price of the bond
decreases instantaneously by the amount Z before it starts to grow linearly
as the interest again is accumulated.

The price of the future will have more dramatic price changes. It is of zero
value immediately after each maturity, but during the three months between
the maturities the value increases by an amount Z due to the accumulation
of interest. The slope of the future-price is determined by the size of the
contango. In the special case where the contango is Z/3, the slope is zero
and the price increases with an amount equal to the contango every month.
The deterministic price of the future, assuming no fluctuations, is illustrated
in figure 3.1 for three different contangoes.

Let ti − ti−1 = 3 months, where i is an integer. As the coupon is detached
from the bond at times ti, the price of the future F (t) and its underlying
bond S(t) (assuming K = 0) is described by [16, pp. 30]

S(t) = S(ti) + Z
t− ti
ti+1 − ti

, F (t) = S(t)− S(ti) = Z
t− ti
ti+1 − ti

, (3.1)

12
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Figure 3.1: Deterministic price of the future, F (t), based on the French
governmental bond. This is shown for three different contangoes: K = 0
(solid line), K = Z/3 (dotted line) and 0 < K < Z/3 (dashed line). Figure
adapted from [16, pp. 31].

assuming no maturities during t. As the price movements of the future de-
crease when the contango increase, the drift is removed in the special case of
a contango equal to K = Z/3. This is also the case examined by Bachelier
[13]. With no drift, the gap between the contango and the monthly coupon
favoring the buyer is zero. An important observation stated by Bachelier is
that all prices on the different lines of figure 3.1 are equivalent, as the return
an investor gets from buying the future at any given time is equivalent. This
follows, as the slope is independent of time in the case of a deterministic
price evolution. Taking fluctuations into account causes the gap between the
future and the bond price to not behave deterministic, and the lines of figure
3.1 are not necessarily straight anymore. It follows that in reality, the return
from investing in a future or bond is not the same at all times due to the
unpredictable price fluctuations [13].

With a contango K < Z/3, the drift of the price of the future between
two maturity dates is given by [16, pp. 31]
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dF (t)
dt

=
dS(t)
dt
− 3K
ti+1 − ti

. (3.2)

As there are no maturities during t, the true price of the futures a period
t+ T from now is described by [16, pp. 31]

F̃ (t+ T ) = F (t) +
dF (t)
dt
T. (3.3)

Allowing fluctuations changes the price slightly, and it follows that there
is no guarantee that the quoted price at time t + T will correspond to the
predicted price F̃ (t+ T ).

3.2.2 Probabilities in transactions in the stock market

In his work, Bachelier distinguishes between two kinds of probabilities [13]:

• A mathematical probability that can be determined a priori, corre-
sponding to the probability studied in games of chance.

• A speculative probability depending on future events (perhaps more
appropriately termed as an expectation), and as a consequence is im-
possible to predict mathematically.

The second probability is what the speculator6 wants to predict. As the mar-
ket neither should believe in a rise nor in a fall of the true price, the set of
speculators must not believe that the price will drift upwards or downwards.
It follows that there must be an equal number of buyers and sellers, and that
this probability is a subjective opinion as the speculators counterpart must
have the opposite opinion to ensure a complete market. However, drifts have
been observed in most markets, and generate net positive expectations for
future movements (see figure 1.1). It follows that Bachelier’s basic hypothe-
sis that the market is neither bullish nor bearish at any given time must be
slightly modified. The modified statement has been formulated ”up to the
drift, the market does not expect a net change of the true, or fundamental,
prices” [16, pp. 32].

Including fluctuations and drifts leads to deviations from the determinis-
tic price. If deviations of amplitude y(t) occur with probability p(y), the
expected profit from the investment is given by [16, pp. 32]

E(y) =
∫ ∞

−∞
y p(y)dy. (3.4)

6Speculator is just a synonym for the buyer or investor.
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This quantity is non-zero and positive if the following conditions are fulfilled:

• The drift is non-zero: dS
dt
, dF
dt
> 0

• The contango is set to K < Z
3

In that case, the investment is not a fair game. This follows, as the expecta-
tion value of the profit is larger than zero, while a fair game of chance fulfills
the condition

E(y) = 0. (3.5)

Bachelier examines the special case with a contango set to the specific value
Z/3, as discussed in section 3.2.1. This eliminates the drift, such that the
expectations of the buyer and seller are zero [13]. In this case, the investment
indeed is a fair game of chance. If the contango is not set to this particular
value, the underlying drift must be accounted for. This can be done by
rewriting the price of the future and its underlying bond by subtracting the
drift,

x(t) = y(t)− dS
dt
t, x(t) = y(t)− dF

dt
t. (3.6)

Here x(t) corresponds to the drift corrected price of the instrument, y(t) is
the price with no drift correction and the last term corresponds to the drift.
This transformation leads to zero expectation value of the profit, and the
investment fulfills the condition of a fair game of chance. In other words, the
excess profit for the speculator vanishes. As the price x(t) describes a drift
free time series, it is denoted as a martingale stochastic process. In discrete
time, this corresponds to

E(xt+1 − xt|xt, xt−1, ..., x0) = 0, (3.7)

or in other words that the expectation value formed with the conditional
probability conditioned on the earlier observations equals zero.

3.2.3 The probability law

Bachelier used three different techniques to determine the distribution of
probabilities of price changes, and all three techniques led him to the same
distribution. He assumed that the price itself followed a martingale process,
or in other words that drifts were accounted for. In this case, the probability
distribution of price changes must be symmetric with respect to x = 0. It
must also decrease sufficiently fast to zero to avoid negative prices of the
assets and to make the distribution normalizable. This is a weakness of his
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model, in principle allowing negative prices, and one of the reasons for the
introduction of the geometric Brownian motion model.

The first method used to derive the probability distribution led Bachelier
to the Chapman-Kolmogorov-Smoluchowski equation. Bachelier solved the
equation, but never recognized that his solution was not unique. The second
method led him to the first formulation of a theory of random walk, five years
prior to Einstein. The last method led Bachelier to the diffusion equation,
again giving the same result when using specific boundary conditions. The
three following derivations of the probability distribution of price changes
are based on his doctoral thesis [13].

The Chapman-Kolmogorov-Smoluchowski equation

Assume that drifts are accounted for in the price of an asset S(t). Denote by
p(x1, t1)dx1 the probability of a price change x1 ≤ x ≤ x1+dx1 at time t1 and
p(x2−x1, t2)dx2 as the probability of a price change x2−x1 ≤ x ≤ x2−x1+dx2

at time t1 + t2.

The joint probability of having a price change to x1 at t1 and to x2 at t1 + t2
is then p(x1, t1)p(x2 − x1, t2)dx1dx2. The probability of having a change to
x2 at time t1 + t2, independent on the intermediate value x1, is given by

p(x2, t1 + t2)dx2 =
[∫ ∞

−∞
p(x1, t1)p(x2 − x1, t2)dx1

]

dx2. (3.8)

During the derivation of this equation, it is implicitly assumed that the price
process is memoryless. This follows, as price changes over the interval (t1, t2)
are independent of price changes during the interval (0, t1). Several decades
after Bacelier, the equation now known in physics and mathematics as the
Chapman-Kolmogorov-Smoluchowski (CKS) equation was rederived as a con-
volution equation for Markov processes7 [16]. When solving the CKS equa-
tion, Bachelier ignored the issue of uniqueness of solutions. The equation has
several solutions, a fact not recognized by Bachelier at that time, approaching
the problem using a Gaussian distribution,

p(x, t) = p0(t)e−πp
2
0(t)x2

, (3.9)

where p0(t) is the probability of the currently quoted price. Inserting equation
(3.9) into equation (3.8) yields a relationship fulfilled by p0(t1 + t2),

p20(t1 + t2) =
p20(t1)p20(t2)
p20(t1) + p20(t2)

. (3.10)

7Statistically independent random processes.
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From this relationship, it is easy to show that the time evolution of p0(t) is
given by

p0(t) =
C√
t
, (3.11)

where C is a constant. Performing the substitution σ2(t) = t/(2πC2) leads
to

p(x, t) =
1

√

2πσ2(t)
e
− x2

2σ2(t) . (3.12)

This is a Gaussian distribution of mean µ equal to zero and a time dependent
standard deviation σ(t), as presented in figure 3.2.

Figure 3.2: The Gaussian distribution for four different standard deviations
σ, and mean µ = 0. As σ(t) ∝

√
t, this corresponds to four different times.

The distribution at t = 0 and thus σ = 0 corresponds to a delta function in
∆x = 0, as the price of the asset is known at t = 0. This is not shown.

Note that the martingale property of the process is reflected in the fact that
the mean of the distribution does not move with time. It is also observed
that the standard deviation scales as σ(t) ∝

√
t, leading the distribution to

broaden slowly. It follows that large price movements are extremely rare.
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Random walk

The same probability law as stated in equation 3.12 can be obtained also
by considering a discrete model of asset price changes. Consider that there
are only two possible events, U and D, occurring with probabilities p and
q = 1− p respectively. If these events are considered as price changes by an
amount ±∆x in one time step, the probability of observing α realizations of
U and m−α events of D in a total of m events will be given by the binomial
distribution,

pU,D(α,m− α) =
m!

α!(m− α)!p
α(1− p)m−α. (3.13)

This is maximized for α = mp and m−α = mq, and corresponds to the most
probable price change in a string of m events. For a fair game, p = q = 1/2,
hence p − q is zero. If p 6= q, the market has a drift. Bachelier considers
the positive mathematical expectation of the spread h. The probability of a
spread h is the term in the expansion of (p+ q)m where the exponent of p is
mp+ h and the exponent of q is mq − h,

pU,D(mp+ h,mq − h) =
m!

(mp+ h)!(mq − h)!p
mp+h(1− p)mq−h. (3.14)

The spread h can only take integer values. To obtain its mathematical ex-
pectation value, it is useful to rewrite h as

h = q(mp+ h)− p(mq − h). (3.15)

The expectation value of h is given by equation (3.4), where the integral must
be transformed into a sum in the discrete case. The operation of multiplying
the probability p ∝ qµpν by h = νq − µp = pq (ν/p − µ/q) is done using
the Leibniz rule, and is equivalent to taking the derivative with respect to p,
subtract the derivative with respect to q and finally multiply the result by
pq. The positive mathematical expectation of h is then obtained by taking
the terms in the binomial expansion of (p+ q)m where h is positive,

pm +mpm−1q +
m(m− 1)

1 · 2 pm−2q2 + ...+
m!
mp!mq!

pmpqmq, (3.16)

and multiply them by h. After performing the operations as described above,
an interesting observation is made. The derivative of the second term with
respect to q is equal to the derivative of the first term with respect to p. This
also holds for the other terms, cancelling one another two by two. The only
term left is the derivative of the last term with respect to p, such that the
positive expectation of h is given by
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m!
mp! mq!

pmpqmqmpq. (3.17)

For large m, the expression can be simplified further using the asymptotic
formula of Sterling,

n! = e−nnn
√

2πn, (3.18)

resulting in the following equation for the positive mathematical expectation
of h,

√
mpq√
2π
. (3.19)

This leads to the distribution function of price changes,

p(h) =
1√

2πmpq
e−

h2

2mpq , (3.20)

in the limit where m → ∞, α → ∞ and h = α −mp finite. Bachelier now
assumes that p = q = 1/2, h → x and t = m∆t, where the time is divided
into small time intervals ∆t where the price only varies a little. Notice that
Bachelier no longer restricts the spread h to be an integer anymore. The
result is again the same Gaussian distribution as found in section 3.2.3,

p(x, t) =
1

√

πσ(t)
e
− x2

σ2(t) , (3.21)

where the substitution ∆t = t/(2σ2) has been used. When published in 1900,
this was the first description of a Gaussian random walk process.

The diffusion law

Bachelier also derived the probability distribution via the diffusion equation.
Assume that prices are discrete, Sn, and that they are realized at times t in
the future with probabilities pn. Also assume that the prices in the small
time interval ∆t can only change by a fixed amount ±∆S. The probability
of obtaining the price Sn after one step, p∗, will in this case be given by
p∗ = pn+1/2 + pn−1/2, as it can only be reached either via an upward move
from the price Sn−1 or by a downward move from the price Sn+1. The change
of probability during the a step ∆t is therefore given by

∆pn = p∗n − pn =
pn+1 + pn−1 − 2pn

2
. (3.22)
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In the limit of continuous prices and time, this converges to8

∆pn →
1
2
∂2p(S, t)
∂S2

(∆S)2. (3.23)

In the same limit of continuous prices and time, the change of probability
can also be written

∆pn →
∂p(S, t)
∂t

∆t. (3.24)

The result is the diffusion equation,

D
∂2p(S, t)
∂S2

− ∂p(S, t)
∂t

= 0. (3.25)

The diffusion equation can also be derived from Fourier’s Law. Fourier’s Law
states that the heat flow is proportional to the gradient of the temperature,
and similarly, Bachelier shows that the probability flow is proportional to the
gradient of the probability. Using as initial condition that the price at time
t = 0 is known, the result is again the Gaussian distribution [13].

3.3 Einstein’s theory of Brownian motion

Five years after Bachelier defended his doctoral thesis, Einstein published his
first and famous article on Brownian motions [10]. As starting point, Ein-
stein used z gram of molecules of a non-electrolyte dissolved in a volume V ∗.
This volume V ∗ formed a small part of a quantity of liquid of total volume
V . When the volume V ∗ is separated from the pure solvent by a partition
permeable to the solvent but impermeable for the solute, an osmotic pressure
p is exerted on the partition. If the dissolved substance is replaced by small
particles also unable to pass through the partition permeable to the solvent,
the classical theory of thermodynamics and the molecular-kinetic theory of
heat do not agree in the question whether there should be an osmotic pres-
sure. The classical theory of thermodynamics suggests that there will be no
force and thus no osmotic pressure acting on the partition9. The molecular-
kinetic theory of heat on the other side suggests the opposite, according to
this theory the dissolved molecule is differentiated from a suspended body
solely by its dimensions. As Einstein himself states it, ”it is not apparent
why a number of suspended particles should not produce the same osmotic
pressure as the same number of molecules” [10].

8∆pn = p∗n−pn = 1

2
(pn+1+pn−1−2pn) = 1

2
((pn+1 − pn)− (pn − pn−1)) = 1

2
(p′n+1∆S−

p′n∆S) = 1

2
(p′′n)(∆S)2

9Einstein here neglects the forces of gravity.
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Einstein draws the assumption that the suspended particles must perform an
irregular movement in the liquid on account of the molecular movement of
the liquid, and this way exert a pressure on the partition. Following, Einstein
makes a series of assumptions of the properties of the irregular movements,
and many are similar to those of Bachelier discussed in section 3.2:

• The movements of single particles are independent of one another to a
sufficient degree of approximation.

• The movements of same particle after different intervals of time must
be considered as mutually independent processes, as long as the time
intervals are small.

• The movements executed by a particle in two consecutive intervals of
time ∆t can be considered as mutually independent phenomena.

• Within the time interval ∆t, a particle moves from xi → xi+∆x, where
∆x is random, fulfilling the condition p(∆x) = p(−∆x).

Based on these assumptions, Einstein derives the diffusion equation (equa-
tion 3.25), which is solved using the same boundary-condition as Bachelier:
The position at time t = 0 is known, f(x, t = 0) = δ(x). The result is the
Gaussian distribution [10],

f(x, t) =
n√

4πDt
e−

x2

4Dt , (3.26)

where n = cN is the number of suspended particles and D the diffusion
constant.

3.4 Probability theory

As the price process of stocks is approximated by stochastic processes, a
short introduction to probability theory follows in this section. A probability
distribution describes the probability for a continuous random variable of
falling within a particular interval, or the probability for a discrete variable
to obtain a particular value [23, pp. 298]. In this thesis, the most relevant
distributions are considered, but information about other distributions can
be found in textbooks such as [17] or [22].
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3.4.1 Probability distributions

The probability distribution of a continuous variable X cannot be stated in
tabular form. It is rather represented as a function P (x), which is a func-
tion of the value of the continuous variable X, giving the probability that
X lies in the small interval dx around X = x. This function is denoted as
the probability density function10 and represents the probability density for
a variable x of appearing as the argument of the function [22].

The probability of obtaining x between a and b is given by

P(a ≤ x ≤ b) =
∫ b

a
P (x)dx. (3.27)

A probability density function is always non-negative, and it is normalized
such that an integral over the range of X is equal to 1,

∫ xmax

xmin
P (x)dx ≡ 1. (3.28)

The limits xmin and xmax are the lower and upper bounds for where P (x) is
defined.

Mean-value, variance and standard deviations

The expected value of X, the mean value µ, is defined

µ = 〈x〉 =
∫ xmax

xmin
x P (x)dx. (3.29)

The variance σ2 is the squared deviation from the mean, and given by

σ2 = 〈(x− 〈x〉)2〉 =
∫ xmax

xmin
(x− 〈x〉)2P (x)dx. (3.30)

The positive square root of the variance is called the standard deviation σ of
X, and is a measure for the variation from the mean value of X. In general,
higher order moments of the distribution P (x) are defined as

mn = 〈(x− 〈x〉)n〉 =
∫ xmax

xmin
(x− 〈x〉)nP (x)dx. (3.31)

For these moments to exist, the probability density function must decay
faster than 1/xn+1 for |x| → ∞ [17, pp. 7]. If not, the integral diverges and
the moments are infinite. For some extreme cases, the variance and standard
deviation do not exist. In the most extreme cases, even the mean diverges.
This is the case for some Lèvy distributions that will be discussed later.

10Or in shorthand just PDF.
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Skewness and kurtosis

The third and fourth moments are denoted as the skewness ζ and as the
kurtosis κ respectively [17, pp. 7],

ζ =
〈(x− µ)3〉
σ3

, κ =
〈(x− µ)4〉
σ4

(3.32)

The kurtosis describes the degree of peakedness of the distribution, and as a
reference the Gaussian distribution has zero kurtosis. The skewness is a mea-
sure of asymmetry. An example is when one of the tails is more pronounced
than the other, where a distribution having a most pronounced left tail will
have a negative skewness. The Gaussian distribution has zero skewness.

3.4.2 Gaussian distribution

The most important continuous probability distribution is probably the Gaus-
sian distribution, which is also denoted as the normal distribution. The dis-
tribution is bell-shaped, and presented in figure 3.2 for four different standard
deviations. An important property of Gaussian random variables is that their
sum is also a Gaussian random variable. Hence, the Gaussian is a stable dis-
tribution under addition. The shape of the distribution is preserved, up to a
scale- and shift-term.

The distribution is ubiquitous, and phenomena from the number of heads
in a sequence of coin tosses to the height of a randomly selected person
are described approximately by this distribution [17, pp. 7]. According to
the Central Limit Theorem, phenomena resulting from a large number of
independent events where the distribution is not necessarily described by
a Gaussian converges into a Gaussian when the number of events is large
enough [22]. It is also the distribution Bachelier assumed controlled the fluc-
tuations of assets [13].

Its general shape is given by [17, pp. 8]

PG(x;µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 , (3.33)

where µ is the mean and σ the standard deviation of the distribution.

3.4.3 Log-normal distribution

The log-normal distribution also has a wide range of applications. It is im-
portant in finance, as it according to the geometric Brownian motion model
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for stock-prices is assumed that it is the logarithmic returns that are inde-
pendent random variables. Hence it is the logarithm of X that is normally
distributed, causing the shape of the distribution to be given by [17]

PLN (x;µ, σ) =
1

x
√

2πσ2
e
− 1

2σ2 (ln( x
x0

)−µ)2

, (3.34)

where µ is the mean and σ the standard deviation of the distribution. The
distribution is illustrated in figure 3.3 for different combinations of σ and µ.

Figure 3.3: Plot of the log-normal distribution for different combinations of
µ and σ.

3.4.4 Lèvy distribution

Lèvy distributions are similar to the Gaussian distributions stable under
addition, but have fatter tails [17, pp. 10]. Due to the fat tails, there is an
increased probability of events including large price changes. This was the
reason for why Mandelbrot introduced such distributions to describe personal
income and price changes of some financial assets such as e.g. cotton [9]. The
important property of these distributions is their power-law behavior for large
arguments, also known as the characteristic Pareto tail [17, pp. 10],

Lµ(x) =
µAµ±
|x|1+µ

, x→ ±∞. (3.35)

Note that µ is a certain exponent and Aµ± constants known as tail amplitudes
(or scale parameters), giving the order of magnitude of the large fluctuations
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of x. The parameter µ is limited to the range 0 < µ ≤ 2 for Lèvy distribu-
tions, as µ > 2 does not represent a stable probability function. In the case
of µ = 2, the Lèvy distribution reduces to the Gaussian distribution. A con-
sequence of equation (3.35) with µ < 2 is that the standard deviation of the
distribution diverges to infinity [17, pp. 11]. This follows, as the probability
density does not decay fast enough for the variance integral to converge, as
discussed in the beginning of section 3.4.1. For µ < 1 also the mean diverges.

Lèvy distributions are characterized by an asymmetry parameter that mea-
sures the relative weight of the positive and negative tail, β = (Aµ+ −
Aµ−)/(Aµ+ + Aµ−). In the symmetric case where β = 0, the characteristic
function11 of a symmetric Lèvy distribution is given by [17, pp. 11]

L̃µ(x) = e−aµ|x|
µ

, (3.36)

where aµ is a constant proportional to the tail parameter Aµ±. The distribu-
tion is presented in figure 3.4. Notice that for decreasing µ, the distribution
becomes more and more peaked around the origin and exhibits fatter tails.

Figure 3.4: The symmetric Lèvy distribution with exponent µ = 0.8, 1.2, 1.6
and 2.0. The case of µ = 2.0 corresponds to a Gaussian. It can be observed
that as µ decreases, the distribution gets more peaked with fatter tails. The
inset emphasizes that tails are fatter for decreasing µ.

11The characteristic function of a random variable X is the Fourier transform of its
probability density, and oppositely the probability density is the inverse Fourier transform
of the characteristic function.
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3.4.5 Student’s t-distribution

The distribution is often just denoted as the Student distribution, and given
by [17, pp. 14]

P (x; a, µ) =
1√
π

Γ((1 + µ)/2)
Γ(µ/2)

aµ

(a2 + x2)(1+µ)/2
, (3.37)

where the parameter µ describes the degrees of freedom of the distribution,
tending towards a Gaussian distribution for µ→∞ (provided that a2 scales
as µ). Like Lèvy distributions, also Student distributions have power-tails.
The Student distribution for different µ is presented in figure 3.5.

Figure 3.5: The Student’s t-distribution for µ = 5, 10, 20 and 60, and
a =

√
µ. From the inset, it is observed that the distribution falls off faster

with increasing µ. This is expected, as for µ→∞, the Student distribution
converges towards a Gaussian distribution.

3.5 Stock price processes

The idea of Gaussian distributed price changes developed by Bachelier [13]
was later modified. This follows, as the model with stock-price changes
controlled by a Gaussian distribution fails to capture a key aspect of stock-
prices: The expected percentage return required by investors from a stock
is independent from the price of the stock. As Bachelier’s model includes
a constant drift, it must be modified such that it is the expected return12

12Or equivalently the expected drift divided by the price of the stock.
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that is constant. In addition, Bachelier’s model led to a non-zero probability
for negative prices. The solution to these problems was to model stock-
price processes as a geometric Brownian motion [20, pp. 266], which still
is the classical assumption made in theoretical finance [38]. After a short
introduction to the general properties of a random walk process, this section
will consider geometric Brownian motion and its implications when modeling
stock-prices.

3.5.1 Markov processes

A Markov process is a stochastic process13 where only the present value of a
variable is relevant for predicting the future. The past history of the variable
and the way the present has emerged from the past is not relevant for what
will happen in the future. Therefore, the process is said to be memoryless.
Stock-prices are assumed to follow a Markov process, as predictions for the
future of the price should be unaffected by earlier prices.

3.5.2 Wiener processes

Wiener processes are continuous-time stochastic processes, and are often de-
noted as Brownian motion. Consider a variable following a Markov process,
such that the only relevant information is the current value of the variable.
If the variable z fulfills the two following properties, it is said to be a Wiener
process [20, pp. 261]:

• The change ∆z during a small period of time ∆t is ∆z = ε
√

∆t, where
ε is standard Gaussian distributed with σ2 = 1 and µ = 0.

• The values of ∆z for two different short intervals of time, ∆t, are
independent.

The normal distribution is stable under addition. The change in z during a
time interval T is given by

∆z(T ) = z(T )− z(0) =
N
∑

i=1

εi
√

∆t, (3.38)

and as the εi’s are normally distributed and independent of each other, also
the variable ∆z(T ) must be normally distributed with mean µ∆z(T ) = 0 and
standard deviation σ∆z(T ) =

√
N∆t =

√
T . In the limit of continuous time,

the time interval ∆t→ dt and thus the basic Wiener process ∆z → dz. The

13When the changes of a variable over time occur in an uncertain way, the variable is
said to follow a stochastic process.
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mean change per unit time for a stochastic process is known as the drift rate,
and it follows that the basic Wiener process has no drift rate. As its variance
equals 1 · T , the process has a variance rate of 1. It is useful to define a
generalized Wiener process, including both a drift rate and a variance rate
[20, pp. 263],

dx = adt+ bdz. (3.39)

It is observed that the first term corresponds to an expected drift of a per
unit time, while the second term represents the strength of the fluctuations
or noise around this expected drift. It follows that the constants a and
b correspond to the drift and the variance rate respectively. As the basic
Wiener process itself has unit variance rate, the constant b represents the
variance of the fluctuations of the process. It follows that the change ∆x in
the value of the variable x during the time interval ∆t is given by

∆x = a∆t+ bε
√

∆t, (3.40)

with mean µ∆x = a∆t and standard deviation σ∆x = b
√

∆t. This model
corresponds to the model of Bachelier’s, where ∆x is the price change of a
stock during the time interval ∆t, and is by many considered as the origin
of mathematical finance [13]. Note that Bachelier considered a case with no
drift, such that a = 0.

3.5.3 Geometric Brownian motion of stock prices

To ensure a constant expected return of a stock of price S(t), the drift rate
must be proportional to the stock price S(t) up to some constant parameter
µ corresponding to the expected rate of return of the stock. During the small
time interval ∆t, the expected increase in price is Sµ∆t. In the case of zero
fluctuations, the price increment in a small interval ∆t is given by [20, pp.
266]

∆S = µS∆t. (3.41)

In the limit of continuous time and price, ∆t→ 0, this is equal to

dS = µSdt. (3.42)

An integration from 0 to T results in an expression for the stock-price at
times T ,

ST = S0e
µT , (3.43)
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where S0 and ST are the stock price at times 0 and T . Hence, in the spe-
cial case with no fluctuations, the stock-price is deterministic and grows at
a continuously compounded rate of µ per unit of time. This also justifies
the allegation in the introduction, that stocks are assumed to have a close to
exponential drift. The case of zero fluctuations obviously is an artificial one.
In real financial markets, stocks do have a non-zero volatility. However, it is
fair to assume that an investor is just as uncertain of the percentage return,
independently of the stock-price at the specific time. In other words, it is
reasonable to assume that the variability of percentage returns is constant
during a small time interval ∆t, independently of the stock-price. It fol-
lows that the standard deviation of price fluctuations during the small time
interval should be proportional to the stock-price [20, pp. 266],

dS = µSdt + σSdz . (3.44)

The two terms correspond to the drift and the random part of the price
changes respectively. The equation can easily be rewritten by dividing both
sides by S, resulting in

dS

S
= µdt + σdz . (3.45)

This is known as geometric Brownian motion, and it seen that the left side
(which is equal to the return) is normally distributed with standard deviation
σ and an expected rate of return µ. In theoretical finance, one of the classical
assumptions for asset prices is that they follow such a geometric Brownian
motion [38]. Today, it is known that the model is not correct due to its
underestimation of large fluctuations, but it is heavily used as it is easy to
work with and gives good approximations when used. Figure 3.6 presents
a model-stock based on geometric Brownian motion (GBM) along with the
Oslo stock exchange listed company Statoil (STL)14, during the period March
2009 to March 2011. Notice how similar the two cruves are.

14Data collected from Yahoo! Finance [21].
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Figure 3.6: Blue line: Stock-price for the company Statoil during the period
March 2nd, 2009, to March 1th, 2011. Green line: A model stock-price
process, following a geometric Brownian motion (GBM) with drift coefficient
µ = 0.067% and σ = 1.75% per trading day (similar to that of STL). This
equals the values of STL.

3.6 General matrix theory

In this section, a short introduction to matrices, covariance and correlation
matrices, eigenvalues and eigenvectors is presented. This background is nec-
essary for the understanding of the theory of random matrices introduced in
the following section.

3.6.1 Eigenvalues and eigenvectors

An eigenvalue λ and an eigenvector v of a matrix A fulfill the condition [30]

Av = λv, (3.46)

where A is an N × N square matrix. The eigenvector must be nonzero,
as the case of an eigenvector equal to the null-vector causes all eigenvalues
to be valid. It is common to specify that the eigenvector v is associated
with the eigenvalue λ, and eigenvalues are also denoted as proper values
or characteristic values [30]. The characteristic equation for calculating the
eigenvalues for a square matrix can be derived from equation (3.46), leading
to

30



Chapter 3. Theory

(A− λI)v = 0. (3.47)

This system has a nontrivial solution v 6= 0 if and only if the determinant of
its coefficient matrix is zero [30],

det(A− λI) = 0. (3.48)

This equation is denoted as the characteristic equation, and is an Nth degree
polynomial for an N ×N square matrix. Such an equation has N solutions,
where some of them may be complex. The solutions are not necessarily
distinct, and eigenvalues from multiple roots are denoted as degenerate.

3.6.2 Eigenvalues and eigenvectors of covariance ma-

trices

As an important aspect of risk management in finance is to estimate cor-
relations between price movements of different assets, it is useful to define
the covariance matrix15. Let the two series {Xi} and {Yi} be of length T
and contain identically and independently distributed (iid) random variables.
The covariance of the two series is given by

σXY =
1
T

T
∑

i=1

(xi − µx)(yi − µy), (3.49)

where µx and µy are the mean values of the two series. This quantity is
a measure of how much the two series change together, and in the special
case where the series are identical, the covariance equals the variance. If
the variables are standardized into having zero mean and unit variance, the
covariance is given by the simplified expression

σXY =
1
T

T
∑

i=1

xiyi. (3.50)

In this case, the covariance is also known as the correlation, as σXY ∈ [−1, 1]
for standardized variables. In finance, series of returns ηi from each stock
in a portfolio over a certain period τ are analyzed and used as a measure of
risk. The returns ηi are defined as

ηi =
δxi
xi

=
xi+1 − xi
xi

, (3.51)

15Covariance matrices are among the cornerstones in Markowitz’s theory of optimal
portfolios.
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where xi is the price of stock x at time ti. As discussed in chapter 2, the
logarithmic return ri is approximately the same as this. Assume having a
portfolio consisting of N stocks and their returns ηi over the last T trading
days. With one stock per row, this forms an N×T matrix M. The covariance
matrix has elements Ci,j that correspond to the covariance between series i
and series j, given by equation (3.49). To avoid confusion, the equation is
rewritten using returns,

Cij =
1
T

T
∑

k=1

(ηik − µi)(ηjk − µj) = 〈ηiηj〉 − µiµj , (3.52)

where ηik corresponds to the return from stock i at time tk. In the case of
standardized variables, the matrix elements are given by

Cij =
1
T

T
∑

k=1

ηikη
j
k = 〈ηiηj〉. (3.53)

In this case, the covariance matrix equals the correlation matrix. The covari-
ance matrix C of the matrix M containing N series of length T can also be
written symbolically as

C =
1
T

MMT . (3.54)

The superscript T denotes transposition, and M is the matrix containing the
relevant time series. From standard matrix multiplication rules, it follows
that the correlation matrix must be a square matrix. It is also symmet-
ric, as the covariance between element i and j is the same as that between
element j and i. The symmetric correlation matrices have only real eigen-
values. In fact, correlation matrices must fulfill this property. This follows,
as the presence of negative eigenvalues would make it possible to create a
portfolio with negative variance. Determining empirical correlation matrices
is complicated, and needs a lot of calculations. In fact, N(N − 1) entries
must be determined from the N time-series of length T . If the number of
observations T is not very large compared to the number of stocks N , the
correlation matrix will be more or less dominated by noise. In other words,
large parts of the covariance matrix is random [24]. Even though large parts
of the matrix consist of noise, it can contain relevant information that must
be carefully considered. This is discussed in section 3.7.

The analysis of eigenvalues and eigenvectors from correlation matrices based
on financial data such as stock returns is interesting. As all correlation matri-
ces are symmetric, it follows that they can be diagonalized with their eigen-
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values on the diagonal16. Each eigenvector can be interpreted to describe a
portfolio with return completely uncorrelated with the portfolios described
by the other eigenvectors. This will be discussed in the following part of this
section.

Assume that the eigenvector va corresponds to the eigenvalue λa, where
the integer a ∈ [1,N]. An eigenvector is a linear combination of the different
assets i, fulfilling Cva = λava. Hence eigenvector va is a list of weights va,i
of stocks. The variance of the return of a portfolio having a fraction va,i of
stock i is [17, pp. 146]

σ2
a =

〈(

N
∑

i=1

va,i
xi
δxi

)2〉

=
N
∑

i,j=1

va,iva,jCij = va ·Cva = λa, (3.55)

where it is assumed that the returns ηi = δxi
xi

are standardized. The eigen-
value λa corresponds to the variance of the portfolio constructed from the
weights va,i. As eigenvectors always are orthogonal17 [30], it is observed that
the correlation of the return of two portfolios constructed from two different
eigenvectors is zero [17],

〈(

N
∑

i=1

va,i
xi
δxi

)





N
∑

j=1

vb,j
xj
δxj





〉

=
N
∑

i,j=1

va,ivb,jCij = vb ·Cva = δa,bλa, (3.56)

where δa,b is the Kronecker delta. The result is a set of uncorrelated random
returns ea, corresponding to returns from portfolios constructed from the
weights va,i. Using the notation where ηi is the return from stock i, the
resulting return from the portfolio described by va is given by [17, pp. 146]

ea =
N
∑

i=1

va,iηi, 〈eaeb〉 = λaδa,b. (3.57)

This can also be considered the opposite direction. The initial returns ηik can
also be considered as linear combinations of the uncorrelated factors,

ηi =
δxi
xi

=
N
∑

a=1

va,iea. (3.58)

16Assume forming matrix P with rows corresponding to the eigenvectors of the covari-
ance matrix C. In that case, the matrix P−1CP will (due to the orthogonality of the
eigenvectors) be a diagonal matrix with entries corresponding to the eigenvalues of C.

17The orthogonality of eigenvectors is easy to show, starting from equation (3.46): I:
Ax = gx II: ATy = py. First, equation I is multiplied by yT from the left. Equation
II is transposed and multiplied by x from the right. Following, equation I is subtracted
from equation II, leaving (p − g)yT · x = 0. As the eigenvalues p and g are distinct, the
eigenvectors y and x must be orthogonal.
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This holds, as the transformation matrix va,i from the initial vectors to the
eigenvectors is orthogonal. As the correlated fluctuations of a set of random
variables is decomposed in terms of the fluctuations of underlying uncorre-
lated factors, the decomposition is called a principal component analysis [17,
pp. 146]. Principal components based on financial returns often have an eco-
nomic interpretation in terms of sectors of activity, such as e.g. aviation or
energy.

3.7 Random matrix theory

Random matrix theory (RMT) predicts the distribution of eigenvalues of
matrices with entries that are identically and independently distributed (iid)
random variables drawn from a probability distribution. The start of RMT
has been traced back to the work of Wishart in 1928 [46], but the real start
of the field is attributed to Wigner in 1955 [47]. Wigner was motivated by
its applications in nuclear physics, and his idea was to describe energy lev-
els of atomic nuclei and their fluctuations in position in terms of statistical
properties of very large symmetric matrices with iid entries. Today, RMT
is applied in many different fields from mathematical finance and statistics,
nuclear physics and communication to biology [17, 24, 46, 48, 49].

This section provides a short introduction to RMT, where the density of
eigenvalues is presented at the end of this section. As will be seen, the the-
ory is developed on the assumption of infinitely large matrices. No real-world
matrices are infinitely large, and hence a small numerical experiment is pre-
sented where it is shown that RMT also describes the density of eigenvalues
for smaller matrices very well.

3.7.1 The density of eigenvalues

Let H be a square matrix of size N × N , filled with iid random variables.
As the correlation matrices considered in this thesis are symmetric, it is also
assumed that H is symmetric, having elements Hij = Hji. In the limit of
very large matrices where N → ∞, the distribution of eigenvalues is to a
large extent independent of the elements of the matrix [17, pp. 161]. The
following derivation is based on the introduction in [17, pp. 161 - 163].

Let the density of eigenvalues be given by

ρ(λ) =
1
N

N
∑

a=1

δ(λ− λa), (3.59)
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where δ is the Dirac delta-function. Let the resolvent18 G(λ) of the matrix
H be defined as

Gij(λ) =
( 1
λI −H

)

ij
, (3.60)

where I is the identity matrix. The trace of G(λ) expressed using eigenvalues
of H is

TrG(λ) =
N
∑

a=1

( 1
λ− λa

)

. (3.61)

To calculate ρ(λ) for large N , it is useful to represent the Dirac delta-function
by the identity

1
x− iε = PP

1

x
+ iπδ(x) ε→ 0 , (3.62)

where PP means the principal part. By replacing the delta-function in equa-
tion (3.59), knowing that the eigenvalues of a symmetric matrix always is
real, the density of eigenvalues can be written

ρ(λ) =
1
Nπ
= (TrG(λ− iε)) . (3.63)

It follows that an expression for the resolvent must be found. This can be
done by establishing a recursion relation, allowing to compute G(λ) for a
matrix H with one extra row and one extra column. The resolvent element
GN+1

00 (λ) is calculated using the standard formula for matrix inversion,

GN+1
00 (λ) =

minor(λI−H)00

det(λI−H)
, (3.64)

where the superscript stands for the size of the matrix H and the subscript
implies that row and column 0 are excluded from the matrix (λI −H) ap-
pearing in the minor. The determinant appearing in the denominator can be
expanded along its first row, using the relation [31],

det(A) =
N
∑

j=1

(−1)i+j aĳ detAi,j , (3.65)

18The resolvent is introduced as a tool for finding the density of eigenvalues. To un-
derstand why this is helpful, it is best to consider an example: Consider the problem
(A − λI)u = b. That is, given A, b and λ, find u. This can be done by solving the
alternate problem (A − λI)G(λ) = I, where Gλ = (A − λI)−1. G(λ) is a matrix known
as the resolvent of the matrix A. After solving for G(λ), the vector u is found by solving
u = G(λ)b = (A− λI)−1b.
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where aij is element (i, j) of matrix A, and the determinant is expanded along
the ith row. After expanding along the first row of the matrix X = (λI−H),
the denominator of equation (3.64) (in shorthand D) equals

D =
N
∑

j=0

(−1)j x0j detX0j . (3.66)

The term for which j = 0 can be placed outside the sum, as the matrix
X00 has neither row or column 0. Following, the determinant detX0j can be
expanded similarly to what was done along the first row, only now about the
first column. The result is

D = x00 detX00 +
N
∑

j=1

(−1)j x0j

N
∑

i=1

(−1)i+1 xi0 detXĳ , (3.67)

where the extra sign enters as the columns now are numbered from 1 to N ,
not from 0 to N . The final result for the denominator is

D = x00 detX00 −
N
∑

j=1,i=1

(−1)i+j x0j xi0 detXĳ . (3.68)

Inserting this into the inverted equation (3.64) results in an expression for
the resolvent GN+1

00 (λ),

1

GN+1
00 (λ)

= λ− h00 −
N
∑

j,i=1

h0j hi0 G
N
ij (λ), (3.69)

where hij is element (i, j) of the matrix H. Note that the sign-term (−1)i+j

is drawn into GNij (λ). By assuming that hij are iid random variables of zero
mean and a variance19 〈h2

ij〉 = σ2/N , it can be shown that Gij ∝ 1/
√
N for

i 6= j, while Gij remains finite in the case i = j [17, pp. 162]. Hence, terms
with i 6= j can be discarded. The term h00 ∝ 1/

√
N is small compared to λ,

and can be neglected. This leaves a simplified recursion relation only valid
when N →∞,

1

GN+1
00 (λ)

≈ λ−
N
∑

i=1

h2
0i G

N
ii (λ), (3.70)

19The variance is assumed to be equal to 〈hij〉 = σ2/N , as this ensures the finiteness of
the vector resulting from the matrix H acting on another vector. Each component of the
vector will in this case be a sum of N variables, and for N → ∞ the only way to ensure
finiteness is by letting the variance scale as 〈h2

ij〉 = σ2/N .
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According to the Central Limit Theorem discussed in section 3.4.2, this sum
converges towards σ2/N

∑N
i=1G

N
ii (λ) for N →∞. Hence GN+1

00 (λ) converges
into a well defined limit for large N ,

1
G∞(λ)

= λ− σ2G∞(λ). (3.71)

Such a second order equation is easily solved, giving

G∞(λ) =
1

2σ2
(λ−
√
λ2 − 4σ2). (3.72)

For this equation to have a non-zero imaginary part when adding a small
term iε to λ, the square root itself must be imaginary. Hence, according to
equation (3.63), the final result for the density of eigenvalues of the symmetric
square matrix is H is

ρ(λ) =
1

2πσ2

√
4σ2 − λ2, |λ| ≤ 2σ. (3.73)

This equation is known as Wigner’s semi-circle law for the density of states.
According to equation (3.54), the correlation matrix can be written as C =
H HT , up to some constant. The matrix H is not restricted to be a square
matrix, and can in fact be any rectangular matrix. In financial data, rows
often correspond to different stocks while columns correspond to the obser-
vations. Hence, the number of columns is often far lager than that of the
rows. In the specific case where H is a square matrix, the eigenvalues of the
resulting correlation matrix C can be obtained by squaring the eigenvalues
of matrix H. This is easily seen by manipulating equations (3.46) and (3.54),
knowing that the eigenvalues of a square matrix and its transpose are equal20

[17, pp. 163],

λC = λ2
H . (3.74)

20det(A − λI) = det(A − λI)T = det(AT − λI).
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Assuming that all elements of H are iid random variables, the density of
eigenvalues of the correlation matrix C can therefore be obtained using the
following relation,

ρ(λC)dλC = 2ρ(λH )dλH , λH > 0. (3.75)

The factor of two arises from the two solutions λH = ±
√
λC . When H is a

square matrix, inserting equation (3.73) into equation (3.75) results in the
following distribution of eigenvalues for the correlation matrix,

ρC(λ) =
1

2πσ2

√

4σ2 − λC
λC

, 0 ≤ λC ≤ 4σ2, (3.76)

where σ2/N is the variance of the elements in H and σ2 in other words is
the average eigenvalue of C. A similar formula exists for rectangular H.
Assuming that N, T → ∞ and that their ratio Q = T/N ≥ 1 is fixed, the
density of eigenvalues of the correlation matrix C is given by [17, pp. 163]

ρ(λC) =
Q

2πσ2

√

(λmax − λC)(λC − λmin)
λC

, λmin ≤ λC ≤ λmax. (3.77)

The constants λmax and λmin are given by

λmaxmin = σ2

(

1 +
1
Q
± 2

√

1
Q

)

. (3.78)

Curves resulting from equation (3.77) are presented in figure 3.7 for different
standard deviations σ and ratios Q. An inspection of the figure reveals that
except for the particular case where H is a square matrix and Q = 1, the
lower bound of eigenvalues of C is positive. Hence, there are no eigenvalues
between 0 and λmin. Near this edge, the density exhibits a sharp maximum
and then decays until the upper edge given by λmax is reached. Again there
are no eigenvalues between λmax and∞. For the particular case where H is a
square matrix, there is no lower edge. The density diverges as ∝ 1/

√
λ before

reaching λmax where it dies off. It is also noted that a decreasing standard
deviation σ causes the density to be more peaked [17, pp. 163].
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(a) (b)

Figure 3.7: Density of eigenvalues for random matrices as predicted from
equation (3.77). (a) Illustrated for three different ratios Q. (b) Illustrated
for three different standard deviations σ.

As no real world matrices are infinitely large, noise will always be present in
empirical correlation matrices. This is always the case for financial data. It
follows that a large part of the empirical correlation matrix is random and
must be considered carefully when information is extracted from it. As the
smallest eigenvalues and their corresponding eigenvectors determine the least
risky portfolio21, it is extremely important being able to distinguish true in-
formation from random noise. This is where the theory of random matrices
is useful. A null hypothesis matrix22 is compared to the empirical correla-
tion matrix, and deviations from the random matrix case can possibly reflect
true information. Lalox et al. [24] compared the empirical distribution of
eigenvalues from a correlation matrix based on N = 406 stocks, each with
T = 1309 observations, to the distributions of eigenvalues of a completely
random matrix as given by equation (3.77). An excellent fit to theory was
obtained, with the exception of several eigenvalues observed above the theo-
retical upper limit λmax. Their result is presented in figure 3.8. The highest
eigenvalue was observed to be 25 times as large as λmax, and its associated
eigenvector is believed to correspond to the market itself, as it has roughly

21Small eigenvalues corresponds to eigenvectors with most entries zero, in other words
to single assets or smaller groups of assets. Thus the noise hides information about the
correlations between single assets or small groups of assets.

22A purely random matrix obtained from finite time series of independent assets.
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equal components of all stocks. Also other eigenvalues were found to be sig-
nificantly larger than λmax. These eigenvalues are believed to correspond to
different sectors of the economy, as briefly mentioned in section 3.6.2.

Figure 3.8: Smoothed density of the eigenvalues of C, based on historical
data from 406 stocks of the S&P500 during the years 1991 - 1996. The solid
and dotted lines are fits using equation (3.77). The solid line corresponds to
σ2 = 0.85, the theoretical value obtained after subtracting the variance corre-
sponding to its highest eigenvalue. The dotted line corresponds to σ2 = 0.74,
where also the smaller (but larger than predicted) eigenvalues corresponding
variances have been subtracted. The inset presents the same plot, but also
the largest eigenvalue is included. This is observed to be nearly 25 times as
large as the predicted upper limit. Figure adapted from [24].
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3.7.2 A numerical experiment on finite sized matrices

Random matrix theory (RMT) is based on the assumption of infinitely large
matrices. All real-world matrices are finite. Hence it is important to check
whether RMT can be used approximately for finite matrices. The numerical
experiment is done by modeling N stocks over a period of T observations,
based on the model of geometric Brownian motion discussed in section 3.5.3.
The density of eigenvalues is calculated from the resulting correlation ma-
trix, and compared to the theoretical prediction of a purely random matrix
as stated in equation (3.77).

In general, an excellent agreement is found between model-data and the-
oretical predictions from the theory of random matrices. The agreement is
excellent for large matrices having about 1500 rows and more, but for smaller
matrices it is somewhat noisy and must be averaged over. This averaging
can be done by doing an ensemble average or by averaging over nearby data-
points. The averaging procedure causes also the density of smaller matrices
to fit very well to the theoretical prediction. The experiment is divided into
two parts, first relatively large matrices with more than 1500 rows. Follow-
ing, matrices with only 500 rows are considered and averaged over using both
methods as described above.

Large matrices

Matrices of N = 1500 rows up to N = 8000 rows are considered. In princi-
ple it is interesting to consider as large matrices as possible, but the time it
takes to calculate the correlation matrix as well as the eigenvalues (and the
corresponding eigenvectors) scales approximately as the third power of the
correlation matrix size N [53]. Hence, the size will be limited to N = 8000 in
this experiment. As will be seen, the density of eigenvalues from the matrix
containing 8000 model-stocks indeed fits the theory from the random matri-
ces excellently such that there is no need to consider larger matrices.

The matrices considered are of the following sizes (N × T ):

• A 8000 × 8000 matrix.

• A 6000 × 6000 matrix.

• A 4000 × 12000 matrix.

• A 1500 × 4500 matrix.
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The number of columns is varied, but it is the number of rows that is the
important factor. This follows, as it is from the correlation matrix the density
of eigenvalues is calculated. More columns would only improve the statistics
for the correlations between the series, while the number of stocks determines
the dimensions of the correlation matrix. Figure 3.9 shows the density of
eigenvalues along with the theoretically predicted density from the theory of
random matrices. Notice that no averaging is done in any of these cases. It
is observed that the model-data fits the predicted density of eigenvalues very
well, but that more noise is introduced for the smallest N .

Smaller matrices

In this thesis, the matrices concerned will be rather small with about 500
rows and 1500 columns. Therefore, it is also of interest to consider smaller
matrices. The matrices considered are the following:

• A 500 × 1500 matrix.

• An ensemble average of 10 matrices of size 500× 1500 matrices.

• An ensemble average of 100 matrices of size 500× 1500 matrices.

• A 500 × 1500 averaged over the two nearest data-points.

The resulting plots of theoretical densities of eigenvalues, as well as the den-
sity based on the model-stocks, are shown in figure 3.10. It is seen that the
500 × 1500 matrix itself leads to a noisy density of eigenvalues, but an en-
semble average or an average over nearby data-points leads to a smoothened
density that fits the predicted density very well. The conclusion is that ma-
trices with only 500 rows fit very well to theory when averaged correctly. As
only eigenvalues deviating considerably from the predications will be consid-
ered in this thesis, better fits are not needed.

The procedure followed to smoothen the empirical eigenvalue densities that
are calculated in this work is an average over the nearest data-point. This
smoothens the densities but does not affect the result. This follows, as it is
the largest eigenvalue itself that is considered and not the density.
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(a) Q = 1, N = 8000 and T = 8000. (b) Q = 1, N = 6000 and T = 6000.

(c) Q = 3, N = 4000 and T = 12000. (d) Q = 3, N = 1500 and T = 4500.

Figure 3.9: The density of eigenvalues as predicted from the random matrix
theory (equation (3.77)) and the empirical densities from model-stocks fol-
lowing geometric Brownian motion for different combinations of Q, N and
T . Observe that the model-data fits very well to the theory for the largest
matrices, but that more noise is introduced for the smallest values of N .
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(a) (b)

(c) (d)

Figure 3.10: The density of eigenvalues for (a) a 500× 1500 matrix. Figures
(b) and (c) are ensemble averages over 10 and 100 matrices of size 500×1500.
Figure (d) is the density from one matrix of size 500 × 1500, but where an
average over the two nearest points has been performed to smoothen the
distribution. The figures also contain a plot of the density of eigenvalues
as predicted from RMT (equation (3.77)). Observe that most of the noise
vanish doing either an ensemble average or an averaging over nearby points.
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3.8 Inverse statistics

Time-series analysis is a central topic in many disciplines within physics,
economy and finance. An example where time-series analysis is important
in physics is turbulence, where water molecules move in what seems to be
a random fashion with violent changes of direction [5, p. 88]. In finance,
enormous amounts of financial data are available. Stock indexes and indi-
vidual stock quotes from most major stock exchanges have been recorded
and stored the last century, in addition to interest rates and exchange rates.
The classical analysis of a financial time-series has been to choose a typical
timescale, and to find the typical return over this period based on historical
data. Such distributions of returns are often used as proxies for the perfor-
mance of stocks and markets over a certain period [40]. Ahlgren et al. [34]
denoted this type of analysis as forward statistics, as the properties of the
probability distribution of returns are calculated from historic data over a
fixed time window.

In the inverse statistics approach, one ”inverts” the question and asks ”What
is the typical time span needed to generate a fluctuation or a movement (in the
price) of a given size” [36]? Thus the distribution of waiting times needed
to reach a fixed level of return for the first time is studied in the inverse
statistics approach.

3.8.1 The inverse statistics distribution

To calculate the inverse statistics, it is useful to introduce the logarithmic
return r∆t(t) at a fixed time t calculated over a time window ∆t [36],

r∆t(t) = s(t+ ∆t)− s(t). (3.79)

The quantity S(t) is the asset price and s(t) = lnS(t) and is simply the
logarithm of the price. In other words, the log-return is simply the log-price
change of the asset. For small changes in price, this is approximately equal
to the normal return ηi = δSi/Si, as discussed in chapter 2. In the inverse
statistics approach, the distribution of waiting times needed to reach a fixed
level of return is studied. If the investment is made at time t, the investment
horizon is defined as the time τρ(t) = ∆t it takes to satisfy either r∆t(t) ≥ |ρ|
(gain) or r∆t(t) ≤ −|ρ| (loss) for the first time. In particular, one searches
for the shortest waiting time τ±|ρ|(t) one must wait before reaching the fixed
return level ±|ρ| for the first time [36].
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As discussed in section 3.5.3, a classical assumption in finance is that the
stock-price follows a geometric Brownian motion. Hence, the log-return fol-
lows an ordinary Brownian motion. Under this assumption, inverse statistics
correspond to the first passage probability of a random walker [36], and is
known analytically [35, pp. 363]. The distribution of waiting times for a
random walker to cross a barrier for the first time at a distance ρ from its
starting point is given by [35, pp. 363]

f(τρ) =
ρ

√

4πDτ 3
ρ

e
− ρ2

4Dτρ , (3.80)

where the diffusion constant of the random walker is D = σ2

2∆t
and σ is the

variance of the random walker’s step size distribution. The discrete time-
interval ∆t between two consecutive steps is set to 1 for simplicity. This
distribution of waiting times is referred to as the first passage probability
density and is a member of the inverse Gamma and inverse Gaussian dis-
tribution families [34]. As the empirical stock-price process is known not to
follow a geometric Brownian motion, Simonsen et al. [36] suggested to use
the generalized Gamma distribution as basis to fit the empirical investment
horizon distributions,

p(t) =
ν

Γ(α
ν
)
β2α

(t+ t0)α+1
exp

(

−
(

β2

t+ t0

)ν)

. (3.81)

This distribution was observed to parametrize the data excellently, as will
be further discussed in the following section. Notice that the distribution
reduces to the first passage probability in the limit of α = 1/2, β =

√

ρ2/4D,
ν = 1 and t0 = 0.

For long waiting times, equation (3.80) decays as a pure power-law decay
p(τρ) ∝ τ−3/2 for all ρ. The special case with ρ = 0 leads to a pure power-
law decay, and the case of ρ 6= 0 leads to a maximum before asymptotically
reaching the power-law regime with the same exponent. It is easy to show
from equation (3.80) that the maximum is located at

τ ∗ρ =
ρ2

6D
=

∆t
3
ρ2

σ2
. (3.82)

This implies that the maximum of inverse statistics distributions scales with
the return-level ρ, following the power-law τ ∗ρ ∝ ργ with γ = 2. The first
study of inverse statistics within finance was conducted by Simonsen et al.
[36], using daily closure data from Dow Jones Industrial Average (DJIA) from
1896 to 2001. The maximum of the inverse statistics distribution was coined
the optimal investment horizon [36], and found to deviate from theoretical
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predictions based on the geometric Brownian motion of stock-prices. This
will be discussed in the following section. Note that it is not the return-level
alone, but rather the return-level scaled by the standard deviation of the
log-returns, ρ/σ, that enters expressions (3.80) and (3.82). As the quantity
appears squared, the position of the maximum is independent of the sign
of the fixed return-level. Hence for a random walker, the maximum is the-
oretically predicted to be invariant under change of sign of the return-level
ρ. For financial data, this is not observed. Empirical results based on data
from the DJIA showed that the loss inverse statistics curve is shifted towards
shorter waiting times relative to the gain curve, now known as the gain-loss
asymmetry [38].

3.8.2 The gain-loss asymmetry in financial markets

Based on a pure geometric Brownian motion model for stock-prices, the in-
verse statistics distributions should be invariant under the change of sign of
return-level ρ. However, there is an apparent asymmetry between the em-
pirical investment horizons for positive and negative return-levels ρ. This
is observed from figure 3.11, presenting the resulting inverse statistics dis-
tributions calculated by Jensen et al. [38] based on detrended DJIA daily
closure prices. It is also revealed that the empirical data fit the general-
ized Gamma distribution (3.81) excellently for both positive and negative
return-levels. As was pointed out in [38], in addition to the asymmetry in
the positions of the two peaks, there also is a higher probability of finding
short investment horizons for negative return-levels compared to for positive
return-levels. This supports the phrase often heard in financial contexts,
”Draw-downs are faster than draw-ups” or ”It takes time driving up prices,
compared to driving them down” [38]. It is also observed that the optimal
investment horizon23 is consistently found to occur first for negative returns
in liquid and mature western markets, while the opposite has been been re-
ported in some cases for emerging markets [34].

According to equation (3.82), the investment horizon τρ is proportional to the
return-level ρ to the power of an exponent γ, fulfilling τ ∗ρ ∝ ργ. As discussed
in section 3.8.1, this exponent is theoretically predicted to be γ = 2 for stock
prices assumed to follow a geometric Brownian motion. The results of Jensen
et al. [38] are presented in figure 3.12, and it is clear that their observation
is not what one would expect from theory. For the lowest return-levels, the
dependence seems to be unknown. For larger return-levels, however, the
unknown dependence is observed to be less pronounced. In particular, the

23The peaks of the inverse statistics distributions were coined optimal investment hori-

zons by Simonsen et al. [36].
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Figure 3.11: Inverse statistics distributions for the fixed return-level ρ =
±0.05 for the DJIA. Open symbols correspond to the empirical distribution
and solid lines are fits to the generalized Gamma distribution (equation 3.81).
Figure adapted from [38].

asymmetry starts to emerge at roughly |ρ| ∼ 10−2, and to saturate with a
magnitude of about 200 days as compared to a few days for smaller returns.
Correspondingly, the exponent γ was observed to increase from nearly zero
to about 1.8, where it seemed to saturate [38]. This implies that if a scaling
regime does exist, data seems to favor γ < 2. Zhou et al. [39] reported that
the exponent γ seemed to depend on the specific market examined. They
found that γ obtained smaller values in emerging markets as compared to the
more mature and liquid western markets, and speculated that the exponent
is a measure for the maturity of the market in some sense.

Another interesting aspect of the gain-loss asymmetry is that it has been
observed in several major stock indexes such as the DJIA and S&P 500, but
not in the individual stocks the indexes are composed of [37]. However, later
research has indicated that a weak asymmetry appears also for individual
stocks, but only for sufficiently large return-levels [40, 50].
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Figure 3.12: The optimal investment horizon τ ∗ρ for positive (open circles) and
negative (open squares) return-levels ±ρ, based on detrended historical data
from the DJIA. The data has been detrended using wavelets. It is observed
that the exponent γ increases with increasing |ρ| and that the asymmetry
saturates at significantly large return-levels. The upper dashed line is the
empirical found γ ' 1.8 for large returns, and the lower dashed line is the
theoretically predicted γ = 2. Figure adapted from [38].

Reasons for this asymmetry have been speculated by several authors, but
is still debated in literature [34, 38, 40, 41, 42, 44]. In the first publica-
tions reporting the gain-loss asymmetry, it was speculated that the reason
of the phenomena was market dynamics such as collective effects between
the individual stocks [37, 38]. In particular, it was speculated that negative
signals could synchronize the price drops of individual stocks, causing the
index to exhibit more dramatic drops. The financial crisis starting late 2008
is an example of such a collective effect. Nearly all stocks dropped simul-
taneously. The fear factor model was developed to investigate the gain-loss
asymmetry [42], based on the key idea of enhanced stock-stock correlations
during periods of falling markets. This model was constructed to explain
the paradox of indexes showing gain-loss asymmetry and individual stocks
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showing no well pronounced asymmetry. Shortly explained, the model intro-
duced a collective fear factor, able to initiate the stocks of the model to all
move downward while they at other times could move independently of each
other. The model introduced the synchronization via simultaneous down-
movements of all stocks at some time-steps, with a frequency given by the
fear factor parameter p. Hence, at all time-steps there is a probability p that
all stocks move down synchronously. Similarly, with a probability 1 − p all
stocks move independently, making random adjustments to their logarithmic
price. To ensure that the individual stocks follow a geometric Brownian mo-
tion with no drift, the probability for a stock to move upwards, q, is slightly
larger than the probability 1 − q for the stock to move downwards. This
causes the abrupt down-movements to be compensated by an upward drift
in the calmer periods between each of the synchronized draw-downs. Hence
every day there are no synchronized movements of the stocks, the probabil-
ity q of an individual stock-price moving upward is slightly larger than the
probability 1−q for it to move downward. Such a model will by construction
not introduce any asymmetry into the individual stocks [42]. The model was
also generalized by Siven et al. [43] to allow the market to remain in the
distressed mode where the moves of the stocks are highly correlated for a
longer period.

The results of the fear factor model are presented in figure 3.13. It is ob-
served a gain-loss asymmetry similar to that observed for the DJIA, except
from minor differences for small waiting times and the height of the opti-
mal investment horizons. It was speculated that this was due to the lack
of an optimism factor, decreasing the height of the maximum, widening the
distribution towards smaller waiting times. However, Donangelo et al. [42]
concluded that the gain-loss asymmetry indeed could be introduced by sin-
gle stock synchronization. It has also been questioned if the leverage24 effect
could be of same origin as the gain-loss asymmetry. To answer this, Ahlgren
et al. [44] introduced the frustration governed market model. The model was
found to reproduce the empirical found gain-loss asymmetry excellently, but
there were special cases where the model produced leverage but no gain-loss
asymmetry. Their conclusion was that the two phenomena not necessarily
were of same origin. Siven et al. [50] on the other hand concluded that
there was a temporal dependence structure present in stocks, closely related
to that giving rise to the leverage effect. This was based on a modification
of the retarded model of Bouchaud et al. [51], where the absolute amplitude
of the price changes does not follow the price level instantaneously (as is as-
sumed with geometric Brownian motion) but rather was concluded to follow

24The correlation between future volatility and past return, with time lag τ [44, 51].
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a moving average of the price over the past few months. However, further
research has supported the fear factor model, as empirical studies indicated
that the correlations between stocks are stronger during market drops than
during market rises [40]. The strength of correlations between stocks during
falling and rising markets is to be further studied in this thesis, making use
of random matrix theory as explained in section 3.7 to extract the significant
correlations between stocks during different modes of the market.

Figure 3.13: Results for the inverse statistics obtained from the fear factor
model for a return-level |ρ| = 0.05. Comparing to figure 2.1, it is observed
that the result is similar except from lower probabilities for short waiting
times and the height of the peaks. The inset shows the gain and loss distri-
butions for the individual stocks in the model. Figure adapted from [42].
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Chapter 4

Dataset

This chapter contains information about the high-frequency dataset that is
analyzed in this work, along with an introduction to stock indexes and their
construction. A gain-loss asymmetry as discussed in section 3.8.2 is observed
in the index, and presented for several return-levels. The gain-loss asymmetry
is also investigated for individual stocks.

4.1 The dataset

The data have been obtained from Nykredit Bank in Denmark, but were
originally recorded by Bloomberg. The data consist of individual stock quotes
from 492 of the largest companies in Europe, starting December 1th 2010
lasting until 19th of April 2011. The stock quotes are updated every minute,
which is why the dataset is called a high-frequency dataset. The ticker of the
companies as well as the country they are based and their GICS1 sector name
are presented in appendix A.1, table A.1. Raw-data obtained from Nykredit
Bank only contained values for minutes where there had been trading activity.
Hence, price-series of liquid stocks were longer than those of the illiquid ones.
Therefore, the data was modified into series of equal length, where the stock
price was set to equal the last traded price for minutes without any trading
activity. The resulting set contains 50568 price quotes for each stock.

4.2 Indexes

A stock index measures the performance of a specific section of a market.
There exist several different indexes measuring the performance of a given
category of stocks, typically defined in terms of geography (country, con-

1GICS is shorthand for Global Industry Classification Standard [56].
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tinent, world), market capitalization (small cap, mid cap and large cap) or
economic sector (e.g. technology, transportation, banking). Indexes are com-
puted and published either by stock exchanges such as NYSE or Euronext,
by publishing companies such as Dow Jones, McGraw Hill (S&P) or Finan-
cial Times, or by investment banks such as Morgan Stanley [17, pp. 72].
As the indexes measure the performance of specific sectors, they are used as
benchmarks for the performance of individual stocks or portfolios.

Examples of indexes are the global Dow Jones Global Indexes, national
indexes such as the Dow Jones U.S Indexes, and more sector specific in-
dexes such as Dow Jones Sector Indexes including the Dow Jones U.S. Select
Aerospace & Defense Index and the Dow Jones U.S. Select Regional Banks
Index [54].

An index consists of several companies selected from the markets and sectors
taken into consideration, weighted in a specific way. There are two main ways
of weighting an index: (i) price weighting and (ii) capitalization weighting.
In a price-weighted index, the price of each stock is the only factor determin-
ing the index value. This way of weighting an index completely ignores the
market cap of the component companies, causing large fluctuations in small
companies to heavily influence the index value. A capitalization-weighted
index takes into account the market cap of its component companies, hence
smaller companies are weighted less and do not influence the index value
as much. Capitalization-weighting of indexes is most common, but some
well-known indexes such as the Dow Jones Industrial Average (DJIA) are
price-weighted2.

In this work, a price-weighted index is constructed based on the Bloomberg
data. The fact that the 492 companies belong to different countries in Europe
and hence are listed in different currencies must be taken into consideration.
Most of the companies are listed in euros, but some are listed in pounds
sterling or even different Nordic currencies. This may lead to bias in the in-
dex, as the exchange rates between the currencies fluctuate and therefore can
cause increased stock-price fluctuations and correlations3. It is reasonable to

2The reason why the DJIA is price weighted is purely historical. When the index
was created, computations were done manually. Summing the price of its constituent
stocks was the easiest way of calculating the index value, which is why it was made as a
price-weighted index [17, pp. 73].

3Assume two companies listed in different currencies are strongly anti-correlated. If the
respective currencies also anti-correlate and this is not taken into consideration, it might
actually cause the companies to appear as correlated depending on the strength of the
original anti-correlations.
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assume that e.g. a weakening of the pound with respect to other curren-
cies can lead to an increase in the stock-price of companies listed in pounds.
The mechanisms behind this are complex, but one of the mechanisms is that
many companies have earnings in other currencies than the currency they
are listed in.

An additional feature that must be considered when constructing an index
is that stock-prices listed in euros or pounds normally are of lower absolute
value compared to stocks listed in Nordic currencies. This is reasonable, as
the rate between a Norwegian krone and the euro (pound) is approximately 8
(9) to 1. This imbalance causes stocks of higher absolute value to influence an
index more than stocks of lower absolute value. It follows that stocks listed
in ”weak”4 currencies will be weighted heavier than they should. This prob-
lem would vanish if high-frequency currency exchange rates were available,
such that all stock-price series could be converted into the same currency.
As this kind of currency exchange data could not be obtained for the work
in this thesis, all 492 stock-price series were instead divided by their median5

value, causing the stock-price series to start from a more similar starting
point. This is believed to be a good approximation, as it is reasonable that
currency fluctuations are not very large within the less than 6 month window
covered by the high-frequency data used in the current work.

A price-weighted index is constructed according to [17, pp. 73],

I(t) =
1
d(t)

N
∑

i=1

S̃i(t), (4.1)

where d(t) denotes the divisor6 of the index at time t and S̃(t) is the stock-
price divided by its median. In price-weighted indexes such as the DJIA,
this divisor is updated periodically to offset the effect of any changes in the
component stocks such as splits, dividend payouts and other factors such as
bonus issues etc. This is done to ensure that the value of the index with new
(or modified) constituents equals that of the index before the modification.
If this is not done, the index value is not kept constant and it is not a proper
measure of performance. As the dataset used in this work covers a period
of about 6 months, it is reasonable to fix this value to a constant, C . This
follows, as it can be assumed not to be too much changes in the component

4Weak is here not describing the properties of the currency itself, but the currency
conversion rate into other currencies.

5The median is not as affected by potential errors or spikes in the data.
6This divisor is chosen such that the index equals a certain reference value at a certain

date. In this work, it has been set such that the constructed index starts at 100 when the
stock exchange opens at 9AM the 1st of December, 2010.
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stocks. Hence, the divisor is equal to this constant for all times, d(t) = C .
The constant C is chosen such that the index starts at a value of 100. Figure
4.1 presents the resulting index.

Figure 4.1: Price-weighted index based on the high-frequency data, con-
structed following equation 4.1. The index is normalized into starting from
100. One trading day is between 09:00 and 17:35, lasting 515 minutes.

Real markets have imperfections that are reflected in the index. The most
pronounced of these effects is the overnight effect, arising from the fact that
stock exchanges are only open a limited period of the day. News released
when the market is closed cannot affect the market price immediately, but
are rather accumulated and lead to a gap between the previous closing price
of the exchange compared to todays opening price. This effect has been
reported to be significant in terms of volatility, as the overnight contribution
to the volatility has been found to equal nearly a quarter of the total daily
volatility [17, p. 85]. In the case of high-frequency data, it is observed that
the effect is strong, as price changes from minute to minute naturally are
much less than intraday changes. There are also other imperfections such as
variable trading activity, depending on the time of the day with a minimum
around lunchtime and peaks around opening and closing time, leading the
volatility to follow a U -shaped daily pattern [57, pp. 245].
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4.3 Gain-loss asymmetry

Earlier work on inverse statistics and the gain-loss asymmetry have consid-
ered daily closure prices from different indexes [34, pp. 253]. However, an
analysis of high-frequency data with observations every minute is to the best
of our knowledge never performed before. Therefore, the inverse statistics
distributions for both the index itself, as well as some of its constituent stocks
are presented and discussed in this section.

4.3.1 Gain-loss asymmetry in the index

As stock markets have a drift due to the overall growth in the world econ-
omy, the index should be detrended before calculating any inverse statistics
distributions. If this is not done, the presence of drifts can lead to shifts in
the positions of the optimal investment horizons. A positive drift will cause
the optimal investment horizon for positive returns to shift towards shorter
waiting times, as there in this case will be an increased frequency of positive
returns. Oppositely, the optimal investment horizon for negative returns is
shifted towards longer waiting times [40]. Earlier analysis of inverse statis-
tics distributions have used long time-series of daily closure prices, as this is
easily (and freely) available online. One example is the DJIA data used by
Jensen al. [38], covering 11 decades from 1897 to 2001. To remove the trend,
they used a technique known as wavelet filtering. This technique is useful,
having the advantages of being non-parametric and not dependent on any
economic assumptions.

The index used in this work consists of 1 minute data over a period of less
than 6 months, and it is reasonable to assume that drift is not an impor-
tant component as compared to its importance in the daily data. Therefore,
no detrending is done on the data in this work. Based on the index, in-
verse statistics distributions are calculated for both positive and negative
return-levels |ρ|, where the return-level is expressed in terms of the minutely
standard deviation σ of the index log-returns. Expressing the return-level
this way is more correct, as standard deviations typically are higher for log-
returns of individual stocks than for indexes. This will become more clear in
section 4.3.2.
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(a) (b)

(c) (d)

Figure 4.2: Inverse statistics distributions for the constructed index (red and
blue dots). The return-levels are (a) |ρ| = 5σ, (b) |ρ| = 7σ, (c) |ρ| = 9σ and
(d) |ρ| = 11σ, where σ ≈ 0.027% is the minutely standard deviation of the
index log-returns. Solid lines represent the least squares fit of equation (3.81)
to the empirical data, with τ ∗±|ρ| and parameters ν, α, β and t0 presented in
appendix B.1, table B.1. All distributions are normalized.
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The resulting inverse statistics distributions are fit to the generalized Gamma
distribution, which is found to parameterize the data very well. Results for
four different return-levels are presented in figure 4.2. As observed in other
indexes, all distributions of figure 4.2 show a rather well defined and pro-
nounced maximum, followed by fat tails for long waiting times. Fat tails in-
dicate a nonzero probability of large waiting times, and are believed to reflect
periods where the market is either relatively calm or going slowly downwards
(upwards) before rising (dropping) again. The short waiting times around
the maximum reflect more volatile periods with stronger fluctuations. Due to
the higher probability of these events, such modes with an increased volatil-
ity seem to be more common [36]. None of the distributions are invariant
under change of sign of the return-level |ρ|, and hence a gain-loss asymmetry
is present for all four return-levels. Note that the tail exponent α + 1 (dis-
cussed in section 3.8.1) is found to be indistinguishable from the ”random
walk” value 3/2 for all considered return-levels.

Figure 4.2 suggests that the optimal investment horizon for a gain is longer
than the optimal investment horizon for a loss. In other words, it is faster
to loose money than to earn money. The asymmetry is not significant for
the smallest return-level |ρ| = 5σ, where it is observed to equal 1 minute.
However, it increases with the return-level and is observed to equal roughly 6
minutes for the return-level |ρ| = 11σ. For the largest return-level considered
in this work, |ρ| = 16σ, the asymmetry was found to be approximately 15
minutes. Larger return-levels than this are not considered, as the statistics
in this case becomes too poor. The fact that the asymmetry is not significant
for the smallest return-levels, and that it increases with the return-level, is
in accordance with earlier observations by Jensen et al. [38] based on DJIA
daily closure prices. In this section, the inverse statistics distributions are
only presented for four distinct return-levels. However, they were calculated
for |ρ|/σ ∈ [1, 16]. For each return-level, the positions of the optimal invest-
ment horizons τ ∗±|ρ| were recorded. These are presented in figure 4.3 as a
function of |ρ|/σ; the return-level scaled by the minutely standard deviation
of the index log-returns. As also observed by Jensen et al. [38] and discussed
in section 3.8.1, small or no asymmetry is apparent for the smallest return-
levels. For larger levels of return, the asymmetry emerges. The specific
dependence between the asymmetry and the return-level is unknown, but for
larger return-levels it seems to saturate, following the power law τ ∗±|ρ| ∝ |ρ|γ
with γ ≈ 1.65 for levels of return larger than about |ρ| = 6σ. However, the
statistics is too poor to draw any conclusion on a power-law behavior, but
it is noted that also Jensen et al. [38] observed γ < 2, based on DJIA daily
closing prices.
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Figure 4.3: The dependence of the optimal investment horizons τ ∗±|ρ| on the
return-level |ρ|, where the return-level is scaled by the minutely standard de-
viation of the index log-returns. Blue line with circles (red line with crosses)
corresponds to positive (negative) levels of return. If a pure geometric Brow-
nian price process is assumed, τ ∗±|ρ| ∝ |ρ|γ with γ = 2.0 for all values of ρ.
Empirically, it is found that the scaling behavior is not γ = 2.0, but γ ≈ 1.65,
and only for large levels of return. This scaling behavior is indicated by the
black dotted line.

As already discussed, Jensen et al. [38] considered daily closure prices of the
DJIA, and found that the time it took to achieve a loss was shorter than the
time it took to achieve a gain of the same magnitude. The result from the
high-frequency data is the same, the expected time for a gain is longer than
that of a loss. However, Jensen et al. [38] found the probability of a loss to
be higher than that of a gain. The high-frequency data, however, seem to
suggest the opposite, as the probability of a gain is higher than the probability
of a loss for all four cases presented in figure 4.2. The same is also observed
for the other return-levels considered. Intuitively, one could speculate that
the observed higher probability of the gain optimal investment horizon arises
from the normalization procedure. The fits are performed on normalized
empirical distributions, and it is therefore important to be sure that these
contain all relevant information. Now, assume that the gain distribution
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has a fatter tail7 than the loss distribution. If parts of the tails are ignored
when calculating the empirical distributions, the normalization in this case
will increase the ratio between the gain and the loss optimal investment
horizons. This can lead to poor statistics when performing the fits. Whether
the empirical tails actually are significantly different can be calculated by
solving the following integral,

∫ τmax

104

[

pempirical
loss (τ )− pempirical

gain (τ )
]

dτ, (4.2)

where the lower limit is set to 104 for simplicity. The upper limit τmax equals
the maximal length of waiting times, and is limited only by the length of the
time-series used. The result is that the difference in probability accounted
for by the two tails is less than 0.05% for the four cases in figure 4.2, not
nearly enough to cause any significant bias when normalizing the empirical
distributions. However, to ensure the empirical distributions to contain all
information, they are calculated for all possible waiting times τ ∈ [1, τmax]
in this work. Note that in figure 4.2, the distributions are only presented for
τ ∈ [1, 104], as it is the first part of the distributions that is most interesting.
The conclusion is that the normalization procedure cannot be the origin of
the observed higher gain probability. It can be discussed whether trends in
the index can be a factor causing the observed higher probability for the gain
optimal investment horizon. However, the time covered by the data used in
this work is less than 6 months, such that it is hard to determine whether
there are any clear trends present at all. Hence, neither potential trends can
be the cause of the observed higher probability of gains. This leads to the
conclusion that the observed higher probability for gains must be a property
of the high-frequency nature of the data.

4.3.2 Gain-loss asymmetry for individual stocks

As discussed in section 3.8.2, the gain-loss asymmetry has been difficult to
observe for individual stocks. One of the first publications on the gain-loss
asymmetry actually reported it to be present in indexes, but not in individual
stocks [37]. However, this was found not to be true, as Siven et al. [50]
observed the asymmetry also in individual stocks. The reason why Johansen
et al. [37] did not observe any asymmetry in individual stocks was that they
expressed the return-level as a percentage, instead of expressing it in terms
of the standard deviation of stock log-returns. As standard deviations of log-
returns typically are larger for individual stocks than for indexes, it follows
that expressing the return-level as a fixed percentage leads to a discrepancy

7Note that both tails fall as a power-low with τ−3/2. However, the tails also have an
amplitude determined by three other parameters (ν , β and t0) that can affect them.
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between indexes and individual stocks when calculating the inverse statistics
distributions for the same return-level. To reproduce the results of Johansen
et al. [37], the inverse statistics distributions for two companies in the index
have been calculated. Note that the return-level used is the same return-level
as was used to produce the distributions of figure 4.2b. In other words, the
return-level of the stocks is set to |ρ| = 7σI , where σI is the minutely standard
deviation of the index log-returns. The companies are XTA (Xstrata PLC)
and ABBN (ABB Ltd), and the results are presented in figure 4.4.

(a) (b)

Figure 4.4: Inverse statistics distributions (red and blue dots) for the in-
dividual stocks (a) XTA and (b) ABBN. The return-level is the same for
both stocks, |ρ| = 7σI , where σI ≈ 0.027% is the standard deviation of
the minutely index log-returns. Solid lines represent the least squares fit of
equation (3.81) to the empirical data, with τ ∗±|ρ| and parameters ν, α, β and
t0 presented in appendix B.1, table B.3. All distributions are normalized.

It is clear that the stocks show no or small asymmetry, in accordance with ob-
servations of Johansen et al. [37] for daily closure prices. Figure 4.5 presents
the inverse statistics distributions for the same companies with same return-
level as in figure 4.2b, only that the level is expressed in terms of the stan-
dard deviation of the log-returns of the stocks themselves instead of the
index. This is also how Siven et al. [50] observed the asymmetry in indi-
vidual stocks. It is clear that both stocks in figure 4.5 now exhibit a weak
gain-loss asymmetry. This is exactly what one would expect, as individ-
ual stocks normally fluctuate more than the index. The asymmetry is also
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found to increase when the return-level is further increased. The conclusion
is that in accordance with earlier observations [50], the gain-loss asymmetry
is apparent also in individual stocks.

(a) (b)

Figure 4.5: Inverse statistics distributions (red and blue dots) for the in-
dividual stocks (a) XTA and (b) ABBN. The return-level for both stocks
is |ρ| = 7σ, where σ is the minutely standard deviation of the log-returns
of the respective stocks: σABBN ≈ 0.067% and σXTA ≈ 0.11%. Solid lines
represent the least squares fit of equation (3.81) to the empirical data, with
τ ∗±|ρ| and parameters ν, α, β and t0 presented in appendix B.1, table B.3. All
distributions are normalized.

However, the asymmetry is harder to observe in individual stocks than in
indexes. It follows that the asymmetry in the index cannot be caused by
the asymmetry observed in individual stocks, as this is so much weaker for
individual stocks. As discussed in section 3.8.2, the gain-loss asymmetry in
the index is believed to arise from a collective effect where the stock-prices
are changing in a much more correlated manner when the index is falling
[37, 38]. This is also what was indicated by Balogh et al. [40], conducting
a set of statistical tests on the DJIA index and its constituent stocks. This
will be investigated further in this work, using principal component analysis
and random matrix theory to monitor the strength of collective trends in the
market.
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Chapter 5

Method

This chapter contains a description of the procedure followed when analyzing
the high-frequency data introduced in section 4.1. In short, an eigenvalue
decomposition of a set of correlation matrices is performed to obtain a set
of uncorrelated basis vectors. As will be discussed in chapter 6, one of these
eigenvectors is found to describe the market excellently. This is the eigenvec-
tor corresponding to the largest eigenvalue, also known as the first principal
component. In chapter 6, it is observed that the largest eigenvalue can be
used as an index describing the strength of correlations in the market, and
it is therefore considered in detail in chapter 7.

5.1 Calculating the density of eigenvalues

The density of eigenvalues ρ(λC) of the correlation matrix is computed based
on time-windows containing 1548 observations from each of the 492 stocks.
The number 1548 is chosen to correspond roughly to that of Laloux et al.
[24], using 406 stocks and 1306 observations, and corresponds to exactly
3 trading days. The data are originally prices of 492 stocks updated every
minute. In order to analyze the fluctuations of the stocks, their log-returns
rk are calculated according to equation (3.79), which is rewritten here for
simplicity,

ri(tk) = si(tk)− si(tk−1), (5.1)

where si(tk) = lnSi(tk), and Si(tk) is the price of stock i at time tk. Following,
every log-return is standardized according to

r̃i(tk) =
ri(tk)− r̄i
σi

, (5.2)
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where ri(tk) is the log-return of stock i at time tk, r̄i is the average log-return
for stock i and σi is the standard deviation of the log-returns of stock i (i.e.
the volatility). This procedure leads to N = 492 time-series of standardized
log-returns having zero mean and unit variance. The procedure for analyzing
the data is as follows:

• From the data, a set of time-windows of length 1548 minutes is created.
This is done by first creating a time-window containing the first 1548
minutes. This is slid through the data, using discrete stepsX. It follows
that the first time-window consists of the first 1548 minutes, the second
of the minutes in the interval [X,X + 1548], etc. For reference, let the
time-window be denoted as Mk, where the index k denotes how many
steps that has been taken, starting from 0.

• Correlation matrices C are calculated from each of the time-windows
Mk. These are correlation matrices, not covariance matrices, as the
standardization procedure described in equation (5.2) causes their el-
ements to all lie in the interval Cij ∈ [−1, 1]. A value Cij = 1 corre-
sponds to a perfect correlation, while the value Cij = −1 corresponds
to perfect anti-correlation.

• Eigenvalues and eigenvectors of the correlation matrices C are calcu-
lated and sorted after size, and the densities of eigenvalues ρ(λC) are
calculated.

This procedure of a sliding time-window is graphically illustrated in fig-
ure 5.1 for two different step-sizes X. Figure 5.1a illustrates the step-size
X = 1548 minutes, while figure 5.1b illustrates a smaller step-size. In this
work, the largest eigenvalue has been calculated using values X ∈ [10, 1548].
For each of the computed correlation matrices, the density of eigenvalues is
calculated according to [24]

ρ(λC ) =
1
N

dn(λC )
dλC

, (5.3)

where n(λC) is the number of eigenvalues of C less than λC . An analytical
derivation of the density of eigenvalues on the other hand can be found in
section 3.7.1. The resulting figures presented in chapter 7 consist of this
empirical density of eigenvalues, as well as the theoretical predicted density
for a suitable value for the volatility of the random part, σ2. As will be dis-
cussed in chapter 7.1, this volatility can actually be treated as an adjustable
parameter. This follows, as the trace of the correlation matrix must be kept
constant.
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(a) (b)

Figure 5.1: (a) Illustration of how the data is divided into time-windows.
Red dots correspond to observations of λ1 (the largest eigenvalue of the
correlation matrix) from each time-window. (b) Illustration of how the time-
windows are slid through the data, leading to a higher frequency of the
observations of λ1. Dots of various colors origin from the observations of
λ1 from overlapping time-windows drawn in same color. The orange line in
both figures is an interpolation between the observations of λ1 based on the
different time-windows. The illustration of time-windows and observations
of λ1 is superimposed onto the index, as the eigenvalues are calculated based
on the stocks in the index.

After the set of eigenvalue densities is calculated, the densities are compared
to theoretical densities based on a null hypothesis purely random matrix.
As discussed in section 3.7.1, the eigenvector corresponding to the largest
eigenvalue has been observed to describe the market excellently. This will
be investigated in chapter 6 for the current dataset, but the conclusion is
that it does describe the market excellently. It is also observed that the
largest eigenvalue can be used as an index, monitoring the strength of col-
lective trends in the market. It follows that the if the largest eigenvalue is
significantly larger than the predictions from random matrix theory, it im-
plies the existence of true correlations between stocks in the market. This
is indeed what is observed. Therefore, by comparing the largest eigenvalue
to the index, it is possible to reveal if there are any connections between the
two quantities and thus between the strength of collectivity and the index.
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5.2 Analyzing the composition of the eigen-

vector corresponding to the largest eigen-

value

By performing an eigenvalue decomposition of the correlation matrix, a new
and uncorrelated basis is calculated. This basis consists of the principal com-
ponents, corresponding to the eigenvectors of the correlation matrix. The first
principal component is the eigenvector corresponding to the largest eigen-
value.

Each eigenvector is a recipe of a specific portfolio, where element i of the
eigenvector corresponds to the weight of stock i needed to construct the
specific portfolio. A correlation matrix based on 492 stocks leads to 492
orthogonal eigenvectors and thus 492 uncorrelated portfolios. As the first
principal component is assumed to correspond to the market, this is investi-
gated in chapter 6. If the first principal component describes the market, it
should not contain any negative elements. This follows, as the market cannot
contain short-positions1 , such that all elements should be strictly positive. It
should also have sectors weighted equally to those of the market, which can
be investigated by sorting the weights after GICS sectors.

It is also discussed how the size of the eigenvalues are connected to the
amount of information they carry. This is important, as the largest eigen-
value will be used as an index describing the strength of correlations in the
market in this work.

1A short-position is taken when an investor borrows stocks and sells them. Before the
stocks are returned to their owner, the stock-price may increase or decrease. The investor
earns money if the stock-price falls such that the stocks can be bought back at a lower
price before the are delivered back to the owner.
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Eigenvalues of the correlation

matrix

Eigenvalues of correlation matrices are the corner-stones of the discussion in
chapter 7. Hence, it is important to understand their relation to the market
and how their size is connected to the strength of collective phenomena. This
is investigated and discussed in the current chapter.

6.1 Eigenvalues and eigenvectors of a corre-

lation matrix

The change of basis from a possibly correlated basis into a new and uncor-
related basis is called a principal component analysis, and is exactly what is
done in this work. The original and possibly correlated basis is changed into
a new and uncorrelated basis, where the new basis is the orthogonal eigenvec-
tors of the correlation matrix. These are also known as principal components
and, as discussed in section 3.6.1, describe uncorrelated portfolios based on
possibly correlated stocks.

It was also discussed that eigenvectors corresponding to the largest eigen-
values are associated with the most correlating stocks in empirical data.
Such clusters of correlated stocks form economic sectors, as stocks within a
single economic sector intuitively exhibit significant correlations compared
to stocks from different sectors. As some factors also influence all stocks, the
market is represented by one of the eigenvectors. This has been observed to
be that corresponding to the largest eigenvalue [24], or in other words the
first principal component.
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As a start, it is interesting to discuss how a correlation matrix behaves for the
two extreme cases of N perfectly correlated and N completely uncorrelated
time-series [58]:

• For N perfectly correlated time-series: An N × N matrix of ones (a
matrix where all elements are equal to one).

• For N perfectly uncorrelated time-series: An N × N identity matrix
(having elements along the diagonal equal to one and all other elements
equal to zero).

Notice that this requires that the two series are infinitely long, such that the
noise vanishes. Solving the characteristic equation, equation (3.48), yields
the eigenvalues of the two correlation matrices:

• The N ×N matrix of ones: Only one non-zero eigenvalue equal to the
dimension of the matrix, λ = N .

• The N ×N identity matrix: N degenerate eigenvalues, λn = 1.

The correlation matrix based on N completely uncorrelated and infinitely
long time-series would indeed be the identity matrix. However, as no real
time-series are infinitely long, noise will be present in the matrix. Such ran-
dom correlations are caused by random stocks correlating at random times,
similar to what is observed in financial markets. Noise will also be reflected
in the eigenvalues of the correlation matrix, causing them to be distributed
around 1 rather than being a degenerate set of identical eigenvalues all equal
to 1. This is probably close to what would be observed if examining stock-
price series from stocks belonging to different economic sectors.

Many of the stocks considered in this work belong to the same sector. Hence,
correlations between stocks within the same sector, as well as other correla-
tions randomly arising form time to time are present. However, it is always
true that a correlation matrix has all diagonal elements equal to 1, as all
series are perfectly correlated with themselves. As the trace of such a matrix
is invariant1, the sum of eigenvalues must always be equal to the dimension
N of the matrix, causing what we know as eigenvalue repulsion. Correlations
within the time-series cause some eigenvalues to be larger than others [58],
and the only way to keep the sum of eigenvalues constant is if other eigenval-
ues decrease. This leads to a significantly increased distance between large

1The trace is given by Tr(C) =
∑N

i=1
λi, and is invariant when the basis of the cor-

relation matrix is changed. As the sum of the diagonal elements of a correlation matrix
always equals N, the trace is equal to N.
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eigenvalues and the bulk distribution of smaller eigenvalues. Müller et al. [58]
investigated effects of correlations within a subset of time-series, and observed
an interesting effect. The introduction of correlations to a subset K of a total
of M time-series caused the largest eigenvalue to increase while the K − 1
lowest eigenvalues decreased. In other words, K eigenvalues react to the
correlations between the K time-series. Another observation was that the
strength of the induced correlations as well as the dimensions of the corre-
lated subsystem were the factors determining the amount by which the lower
and upper eigenvalues would change.

It follows that eigenvalue sizes are strongly connected to correlations be-
tween a system’s components, here the 492 stocks. Collective phenomena
can be understood as the correlated behavior of a system’s components, and
these phenomena are believed to be the origin of the gain-loss asymmetry
many indexes exhibit [34, 38]. It is therefore interesting to examine this
further, approaching the problem somewhat differently than what was done
by Balogh et al. [40]. In section 6.2, it is concluded that the eigenvector
corresponding to the largest eigenvalue describes the market excellently. It
follows that the largest eigenvalue is strongly connected to the strength of
collectivity in the market. Therefore, the problem whether collective trends
are stronger during falling than rising markets is approached using the largest
eigenvalue as an index describing the strength of collectivity.

6.2 Composition of the largest eigenvectors

This section presents a discussion of the eigenvector corresponding to the
largest eigenvalue, and how it is related to the market. Figure 6.1 presents
the distribution of components of the eigenvectors corresponding to the three
largest eigenvalues, λ1, λ2 and λ3. Notice that all eigenvalues and eigenvec-
tors considered in this section are those obtained from the first time-window,
consisting of the first 1548 minutes of the data. In the following discussion,
an eigenvector arising from eigenvalue λi (where i = 1 corresponds to the
largest eigenvalue) is denoted as vi.
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Figure 6.1: The histograms of non-normalized eigenvector components corre-
sponding to the three largest eigenvectors of the correlation matrix calculated
from the first time-window.

An inspection of figure 6.1 leads to the observation that components from v1

are differently distributed than components of v2 and v3. Figure 6.2 presents
the same histograms in individual plots to underline this difference.

(a) (b) (c)

Figure 6.2: Individual histograms of components of the eigenvectors corre-
sponding to the three largest eigenvalues.
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It is clear that components of v1 are distributed with a positive mean, while
components of v2 and v3 have approximately zero mean. This is consistent
with the assumption that v1 describes the market, as a portfolio reproducing
the market cannot hold any short positions. Figure 6.3 presents the portfolio
described by the eigenvector v1, where weights (elements of the eigenvector)
are sorted after GICS sector. Notice that the portfolio is normalized, having
total value of 1 euro, as each weight is multiplied by the market capitaliza-
tion (in euros) of its corresponding company before the whole portfolio is
normalized.

Figure 6.3: Illustration of the portfolio described by the largest (and nor-
malized) eigenvector v1, where the market capitalization of the companies
has been taken into account. Each column corresponds to the value of an
individual stock in the portfolio, and the portfolio is of total value 1 euro.
The portfolio is divided into sectors, as it is not possible to mark each of the
492 columns with its corresponding ticker.

As clearly observed from figure 6.3, the values of the components in the port-
folio (the components of v1) are strictly positive, except from about 2% that
are slightly negative. This is believed to arise due to currency fluctuations
that are not taken into account when calculating the correlation matrices.
As these negative components of the portfolio are very small compared to
the other components, it seems reasonable that v1 represents the market.
Also note that the elements of the largest eigenvector, before they are multi-
plied by the market capitalization of their corresponding stocks, are roughly
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of same size. The final test is to check whether the different sectors are
weighted similarly to their weighting in the market. This has been calcu-
lated, and is illustrated in figure 6.4. An inspection reveals that sectors in
the portfolio described by v1 are weighted almost identically to how they are
weighted in the market itself. Another observation is that some sectors are
weighted more than others. As an example, the financial sector is weighted
almost 10 times as much as the health care sector. This follows naturally
from the fact that there are more financial companies in the current dataset,
and that they often are of relatively high market capitalization. The conclu-
sion is that the portfolio described by eigenvector v1, corresponding to the
largest eigenvalue λ1, indeed can be considered as the market itself. This has
also been concluded also by other authors [24, 26, 27, 28]. It follows that λ1

is strongly connected to the strength of collective trends in the market.

(a) Weighting of sectors in the portfolio rep-
resented by v1.

(b) Weighting of sectors in the market.

Figure 6.4: Figures (a) and (b) illustrates the weighting of the 10 GICS
sectors in the portfolio described by the eigenvector v1 and the market, re-
spectively.
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Results and discussion

This chapter is aimed at quantifying the strength of collective trends in the
market, as this is believed to be the origin of the gain-loss asymmetry [37].
Balogh et al. [40] have found evidence for the existence of stronger collective
trends during falling than rising markets, but their work contained several
averaging procedures that in principle can affect their results. The approach
in this chapter does not contain any averaging, and can therefore provide
support to their results. The fact that a gain-loss asymmetry is observed
also for an index consisting of high-frequency data is itself remarkable (see
section 4.3.1), as one intuitively would believe that this effect would take
some time to fully set in. This suggests that the market reacts fast to news
and other updates, and that the time it takes for collective effects to set in
is on the scale of minutes. It has been speculated that programmed trad-
ing based on relatively simple algorithms could be the reason behind the
observed asymmetry, as this reacts almost instantaneously to stock-price
changes. However, Balogh et al. [40] conclude that this produces symmetric
correlations and therefore cannot be the origin of the asymmetry.

The chapter presents several empirical eigenvalue densities, calculated from
periods where the market is either calm or exhibiting sudden drops or rises.
These densities are discussed and compared, and it is observed several eigen-
values that deviate from the noise band1 described by RMT. The largest of
these is, as discussed in chapter 6, considered to describe the strength of col-
lective trends in the market, and denoted as λ1 in the following discussion.
As the magnitude of λ1 reflects the strength of collective trends in the mar-
ket, its temporal dependence is compared to that of the index to see whether
the two quantities are connected in some way.

1The bulk distribution of the eigenvalues arises from the random part of the correlation
matrix, and can therefore be considered as noise.
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7.1 The empirical density of eigenvalues

Eigenvalue densities are calculated according to the procedure described in
section 5.1: A time-window of length T = 1548 minutes (3 trading days)
is slid through the data, using discrete steps of X minutes. The density of
eigenvalues is calculated from each time-window2, and compared to theoret-
ical predictions from RMT. As will be seen, the result is an excellent fit to
theory, except from some eigenvalues significantly larger than the theoretical
predictions. As all densities seem to exhibit the same features, it is not nec-
essary (nor possible, as several hundred densities are calculated) to present
all of them here. However, eight plots representing different modes of the
market are presented and discussed in this section.

Figure 7.1: Blue line: The index. Black boxes: Time-windows where the
index exhibits calm periods of low volatility, having fluctuations of varying
sign. Empirical densities of eigenvalues based on these time-windows are
presented in figure 7.3. The indices above the time-windows are included as
a reference, and correspond to subfigure indices of figure 7.3.

2Note that the empirical eigenvalue densities are smoothened according to the proce-
dure described in section 3.7.2. This does not affect the results, as it is the eigenvalues
themselves that are considered when discussing the strength of collective trends in the
market.
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Consider the index constructed in section 4.2 and presented in figure 4.1.
This is clearly observed to exhibit several periods where the index is rather
calm, exhibiting a low volatility at least on short time-scales of a few trading
days. Four such calm periods are marked in figure 7.1. Their corresponding
eigenvalue densities are presented in figure 7.3, with subfigures indexed ac-
cording to the indices in figure 7.1.

The index is also observed to exhibit several periods of high volatility, where
the consecutive changes are more or less of same sign. This leads to larger
drops or rises of the index. Figure 7.2 presents four such periods, with cor-
responding empirical eigenvalue densities presented in figure 7.4. Similarly
to figure 7.3, subfigures of figure 7.4 are indexed according to the indices in
figure 7.2.

Figure 7.2: Blue line: The index. Black boxes: Time-windows where the
index exhibits periods of high volatility, where fluctuations are more or less
of the same sign. Empirical densities of eigenvalues based on these time-
windows are presented in figure 7.4. The indices above the time-windows are
included as a reference, and correspond to subfigure indices of figure 7.4.
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(a) σ2 = 0.72 (b) σ2 = 0.72

(c) σ2 = 0.69 (d) σ2 = 0.64

Figure 7.3: Blue line: Smoothed density of eigenvalues of the correlation
matrix C, extracted from N = 492 of the largest European assets for time-
windows of length T = 1548 minutes. Time-windows the specific densities
correspond to are illustrated in figure 7.1. Green line: Theoretically predicted
density of eigenvalues, based on a purely random matrix of same size with
σ2 as seen below the subplots. Inset: Same plot, but the largest eigenvalue
is also included.
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(a) σ2 = 0.61 (b) σ2 = 0.52

(c) σ2 = 0.58 (d) σ2 = 0.45

Figure 7.4: Blue line: Smoothed density of eigenvalues of the correlation
matrix C, extracted from N = 492 of the largest European assets for time-
windows of length T = 1548 minutes. Time-windows the specific densities
correspond to are illustrated in figure 7.2. Green line: Theoretically predicted
density of eigenvalues, based on a purely random matrix of same size with
σ2 as seen below the plots. Inset: Same plot, but the largest eigenvalue is
also included. Note that figures (a) and (b) correspond to sharp upturns in
the index, while (c) and (d) correspond to sharp index drops.
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An inspection of figures 7.3 and 7.4 reveals that all eight eigenvalue den-
sities have a bulk density of small eigenvalues distributed approximately
around 1. In addition, all densities show several large eigenvalues exceed-
ing the upper limit predicted from RMT. This is similar to the observations
of Lalox et al. [24] based on daily closure prices of the DJIA, and implies that
parts of the correlation matrices contain true information. This follows, as
the large eigenvalues of a correlation matrix reflect the presence of true corre-
lations. Following, theoretical densities fit the empirical densities excellently.
The only difference between the two is an apparent lowering of the empirical
bulk distribution, in addition to the presence of large eigenvalues. However,
the lowering of the bulk distribution is caused by the fact that densities are
normalized. Hence, bulk distributions of empirical densities must be lower
than those of the theoretical densities to account for the presence of large
eigenvalues outside the interval predicted by RMT.

The goal of this analysis is to compare empirical eigenvalue densities to
theoretical densities, based on the null hypothesis that correlation matrices
are completely random. However, the fact that the largest eigenvalues are
significantly larger than the predicted upper limit of the eigenvalue densities
contradicts this assumption. As discussed in chapter 6, the largest eigenvalue
corresponds to the eigenvector that describes the market. Eigenvectors of the
other large eigenvalues describe economic sectors. It is fair to assume that
eigenvectors orthogonal to eigenvectors corresponding to the largest eigen-
values can be considered as random noise [24], and hence the random part
of the correlation matrix does only account for a part of the system’s total
volatility. It follows that the volatility accounted for by the random part
of the correlation matrix can be considered as an adjustable parameter. As
discussed in section 3.6.2, the magnitude of the eigenvalue corresponds to
the volatility accounted for by its corresponding eigenvector. It follows that
the volatility3 of the random part can be described as

σ2 = 1− σ2
λ, where σ2

λ =
M
∑

i=1

λi

N
. (7.1)

Note that M is the number of eigenvalues significantly larger than the upper
limit from RMT, and N the number of stocks used to calculate the correla-
tion matrix. It follows that the quantity σ2

λ is the part of the total volatility
accounted for by the M largest eigenvalues. If the correlation matrix is com-
pletely random, no eigenvalues will be observed outside the interval predicted
from RMT4. In that case, the random part will account for all the volatility

3Remember that the volatility of the log-returns is equal to 1 with the standardization
followed in this work.

4Note that there will always be some discrepancies, as all real time-series are of finite
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of the system, and σ2 should be set to one. As discussed in section 6.1,
introducing correlations will lead to the presence of larger eigenvalues car-
rying information about the correlations causing them. Their corresponding
eigenvectors will account for (large) parts of the system’s total volatility. It
follows that the part of the volatility accounted for by the random part of
the correlation matrix in this case must decrease, leading to σ2 < 1. This
explains why σ2 was observed to be less than one in figures 7.3 and 7.4.

The first periods considered are those of figure 7.1. These are calm peri-
ods characterized by low volatility and fluctuations of varying sign, leading
the index to remain nearly unchanged. The corresponding eigenvalue den-
sities are presented in figure 7.3. It is observed that σ2 ∈ [0.69, 0.72] for
time-windows 7.1a-c, while σ2 = 0.64 for time-window 7.1d. This implies
that the fraction of total volatility accounted for by the largest eigenvalues is
approximately the same for the three first time-windows, but slightly larger
for the last time-window. This is also confirmed by considering the largest
eigenvalue, observed to equal λ1 ≈ 40 for time-windows 7.3a-c and λ1 ≈ 65
for time-window 7.1d. This means that the volatility accounted for by the
market has increased from roughly 8% for the three first time-windows, to
13% for the last time-window. It follows that stronger collective trends must
be present during period 7.1d. To point on any specific event that would
cause a stronger collectivity during this period is not straightforward, as the
period appears to be similar to the other three periods. However, it is noticed
that time-window 7.3d is placed at the end of a long period with a rising in-
dex. This leads to the speculation that the transition from a period with a
rising index to a calm period where the index remains nearly unchanged can
cause increased collectivity in the market. This is inspired by the fact that
collective trends get stronger when the index drops, as will be discussed in
the following part of this section. In other words, the end of a rising period
results in an uncertain market5. Uncertainty is often followed by dropping
prices or prices that remain nearly unchanged during longer periods, as many
investors relocate their money to reduce their risk exposure.

Eigenvalue densities from the four periods of figure 7.2 are presented in fig-
ure 7.4. These periods are characterized by high volatility and fluctuations
of more or less same sign, leading the index to either rise or drop. The first
observation is that the densities seem to be narrower and more peaked than

length. However, this will only cause blurred edges with small deviations, not significant
deviations such as those observed in figures 7.3 and 7.4.

5This is a ’chicken and egg’ problem, as it can just as well be the increased uncertainty
in the market that caused the rising period to end.
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those originating from calm periods6. As discussed in section 3.7.1, this im-
plies that the volatility accounted for by the random part of the correlation
matrix has decreased. The same is concluded by considering the parameter
σ2, taking values σ2 ∈ [0.45, 0.61] which are all less than those used for the
calm periods.

Time-windows 7.2c-d are periods where the index exhibits a sharp drop.
Their corresponding largest eigenvalue is observed to equal roughly λ1 ≈ 70
and λ1 ≈ 150 respectively, implying that the market accounts for roughly
14% and 30% of the total volatility. Hence, as monitored by λ1, the collec-
tive trends are stronger during index drops than during calm periods. The
fact that the collective trends are stronger during the period with the largest
drop (time-window 7.2d) indicates that the size of the index drop is impor-
tant for the strength of the correlations. It follows that it would be favorable
to introduce individual fear factors with the ability to synchronize parts of
the market such as selected economic sectors to the fear factor model [42],
as also was suggested by Simonsen et al. [41]. The next periods to be con-
sidered are those where the index exhibits sharp rises, time-window 7.2a-b.
Their corresponding largest eigenvalue is observed to equal roughly λ1 ≈ 80
and λ1 ≈ 50 respectively, and it follows that the market accounts for about
16% and 10% of the total volatility. The first case seems to correspond to
significantly stronger correlations than during the recently discussed calm
periods. However, the investigation of an index similar to that constructed
in this work reveals that a drop of roughly 4% ended a day prior to the
start of the dataset7. As was observed from time-windows 7.2c-d, periods
where the index drops strongly are characterized by strong collective trends.
This leads to the speculation that the increased collectivity observed in time-
window 7.2a is a remain from the preceding drop in the index. The latter
case corresponds to collective trends just slightly stronger than those of the
calm periods 7.1a-c, and also this period takes place after a roughly 2% drop.
Again, it is speculated that the slightly increased collectivity is a remain from
the preceding drop. If this is the case, it seems as if periods where the index
rises not necessarily are connected to stronger correlations between stocks.

The fact that λ1 is significantly larger than the upper bound from RMT
for all the above presented densities indicates that a certain minimum of
collectivity is present in the market at all times. It is interesting to discuss
where such correlations originate from, as one would not expect any correla-
tions between stocks to be present in ideal markets where stock-price changes

6Note that the eye can be slightly misled, as the y-axis covers a narrower interval in
figure 7.3 than what it does in figure 7.4.

7This can be seen by considering the S&P Europe 350 [55].
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are completely independent. Real markets, however, are composed of sectors
consisting of related companies. Therefore, the continuous flow of news into
the market causes stock-stock correlations to appear from time to time, es-
pecially between companies belonging to same sector. News can also affect
the market as a whole and cause correlations to appear between most stocks,
an effect often amplified by human psychology. These latter correlations are
implicitly accounted for by the fear factor model of Donangelo et al. [42]. In
principle, the model introduces collective trends only during periods where
the fear factor causes a synchronized index drop. However, as the chance of
a stock moving up is slightly larger than the chance of moving down during
periods without synchronized movements, this causes a weak collective trend
to be present at all times.

So far, it is observed that a certain minimum level of collective trends is
present at all times where the index not exhibits any sharp rises or drops.
If the index does exhibit a sharp drop, this causes the strength of collective
trends in the market to increase by an amount that seems to be connected
to the size of the drop. Sudden rises of the index on the other hand are
speculated to not be connected to an increased collectivity. However, it is
not possible to draw any firm conclusion based on only eight empirical den-
sities of eigenvalues. As the interesting quantity is λ1, it is therefore more
useful to consider its temporal dependence. A comparison of λ1 to the index
can reveal any potential connections between the two, and is performed in
section 7.2.

As a last point, it is discussed why the values of σ2 used in the fits of the above
empirical densities are found to be smaller than observations from other au-
thors. The parameter was found to lie in the interval σ2 ∈ [0.45, 0.72] for
all eight densities presented in this chapter, while Lalox et al. [24] observed
that σ2 = 0.74 gave the best fit to their results8. However, their results
were based on daily closure prices of the S&P500, covering the period 1991
to 1996. The data used in this work are of higher frequency, and therefore
show different features than daily closure prices do. It follows that the dif-
ference must arise from the nature of the dataset. This is reasonable, as the
autocorrelation function of log-returns is fast decaying and characterized by
a correlation time much shorter than a trading day. It follows that (posi-
tive) correlations lasting only several minutes exist, but are not reflected in
daily closure prices. Based on 1 minute data from the S&P500, the length
of these short-range correlations was found to be about 20 minutes [5, p.
55]. It follows that these short-range correlations decrease the randomness of

8The results of Lalox et al. [24] are presented in figure 3.8.
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correlation matrices based on high-frequency data compared to daily closure
prices, explaining why σ2 was observed to be smaller than the observations
of Lalox et al. [24].

It is also interesting to speculate why λ1 suddenly increases during large
drops in the index. The index will always fluctuate, and in general follow
a trend that has been observed to be close to exponential (see figure 1.1).
When the index drops, several events can cause the drop to be amplified.
One of these originates from the stop-loss9 limit followed by many investors:
When a stock falls enough to reach the stop-loss limit, investors sell and
cause further draw-downs of stock-prices. Such draw-downs can lead to fear
among other investors, resulting in a cascade and a synchronized fall also for
stocks not necessarily correlated with the stock where the original fall first
started. This would cause gain-loss asymmetry to be observed in the index,
but also in individual stocks of the index. As the asymmetry is hard to ob-
serve in individual stocks [50], this suggests that stop-loss limits are not the
origin of the observed asymmetry. There is also an opposite event termed
short-squeezes10. A short-squeeze is induced when investors buy assets due
to a strong rise in the stock price. As borrowed stocks must be delivered
back to their owner, investors fear for further increases of the stock-price and
hence buy stocks on increasing prices. Other investors can follow the trend
and buy the same or other stocks, hoping that prices will continue to rise.
The result is again a cascade, leading to a synchronized rise of the index.
This will cause the opposite asymmetry, as the sudden rise of the index will
decrease (increase) the investment horizons for positive (negative) levels of
return. This follows, as the short-squeeze works as an attractor decreasing
the probability of long waiting times for positive returns. This will also cause
a gain-loss asymmetry in the index (of opposite sign, i.e. with optimal in-
vestment horizon shorter for gains than losses), but also in individual stocks.
It follows that neither short-squeezes are the origin of the asymmetry. In
addition, if the two effects are of same size, they will cancel each other and
not cause any asymmetry.

9A limit many investors often set as a lower limit, where investors sell their assets if
this limit is reached to minimize their loss.

10An investor that borrows stocks and sells them has a short-position in the stock.
Shorting is a bet on falling stock-prices, but also when prices increase the stocks must be
bought back at a time agreed when the stocks were first borrowed. If many investors have
shorted stocks in a company that has increased in value, the buy-back of stocks that are
to be delivered back to their owner can cause the stock-price to increase rapidly.
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7.2 The largest eigenvalue λ1 and the index

Far more than the eight empirical eigenvalue densities presented in the last
section have been calculated, and no firm conclusion could be drawn from
only eight empirical densities. As the interesting quantity from each time-
window is the largest eigenvalue λ1, it is therefore useful to consider λ1 itself
as a function of time. This follows, as λ1 is used to monitor the strength
of collective trends. Comparing this to the index can reveal any possible
connections between the two. Figure 7.5 presents the movements of λ1 based
on a step-size X = 300 minutes for the sliding time-window. However, note
that a plot of higher resolution will be presented and discussed at the end of
this section. The reason why the curve describing λ1 starts after the index
curve is that only one set of eigenvalues is calculated from each time-window.
In this work, it has been chosen to place λ1 at the end of the time-window
to ensure that it is entirely determined from earlier observations. In other
words, λ1(tk) is based on time-window Mk of length T = 1548 minutes
(3 trading days), covering a period t ∈ [tk−T, tk], where tk = T +nkX. Note
that tk ≤ tmax, where tmax is the length of the stock-price series and nk an
integer starting from zero.

Figure 7.5: Blue line: The index. Green line: The largest eigenvalue λ1. The
step-size between each time-window of length T = 1548 minutes is set to
X = 300 minutes.
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An inspection of figure 7.5 reveals that λ1 always is significantly larger than
the predictions from RMT, confirming that collective trends of a certain size
are present at all times. A closer look at the two curves reveals an apparent
anti-correlation. This observation is further supported by the correlation co-
efficient ρI,λ1 = −0.61, based on the total length of the series. The increasing
strength of collective trends during index drops is speculated to arise from
the psychology of investors that, ignited by some internal or external event,
causes investors to sell synchronized. This is exactly the key idea behind the
fear factor model of Donangelo et al. [42], where the fear factor triggers all
stocks to move downward at the same time. However, whether the decreasing
collectivity is due to the rising index, or just due to the fact that the drop
has ended, is not possible to determine with certainty. This follows, as the
current dataset not contains any periods with a sharply rising index that not
follow a recent drop. However, no periods with a sharply rising index are
related to an increasing collectivity. This leads to the preliminary conclusion
that periods where the index sharply rises not are related to an increasing
collectivity. Note that this does not exclude the possibility of periods where
a rising index is positively correlated to the collectivity as monitored by λ1,
only that these periods are not observed when the index sharply rises in the
vicinity of sharp drops. However, such periods are difficult to observe from
figure 7.5. The running correlation between λ1 and the index gives relevant
information on correlations between the index and λ1 on a chosen scale, and
thus makes it easier to observe such periods. The reason for why such peri-
ods are interesting, is that they indicate the presence of a potential optimism
factor, forcing stocks to rise synchronously. The running correlation also
provides further information on the connection between the index and the
collective trends in general.

The running correlation ρI,λ1(τk) is calculated from time-windows of length
T = 2500 minutes (roughly one trading week), where ρI,λ1(τk) is based on
a time-window covering the period τ ∈ [τk − T/2, τk + T/2]. Note that
tk = T/2 + nkX where tk ≤ tmax, tmax is the length of the series contain-
ing λ1 and nk an integer starting from zero. To calculate λ1, a step-size of
X = 10 minutes was used. The result is presented in figure 7.6
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Figure 7.6: Blue line: The index. Black line: The running correlation be-
tween the largest eigenvalue λ1 and the index, based on a time-window of
length T = 2500 minutes. The area below the curve is shaded red (blue) for
negative (positive) correlations to guide the eye. The step-size between each
time-window used for the calculation of λ1 is X = 10 minutes.

Figure 7.6 reveals that the sign of the correlation between the index and λ1

is not constant, but changing several times during the nearly 6 month period
covered by the data. However, the general trend seems to be that periods
with sharp drops or rises of the index are anti-correlated to λ1. This indicates
that strong index drops are connected to a strongly increasing collectivity in
the market, as monitored by λ1. As recently discussed and pointed out in
section 7.1, it is not possible to determine whether periods where the index
sharply rises are connected to decreasing collective trends or not. Determin-
ing this would require a dataset containing periods where the index sharply
rises, but not in the vicinity of a preceding drop. However, figure 7.6 reveals
that periods where the index rises sharply are anti-correlated to λ1. Based on
this, it is concluded that the periods where the index rises sharply in general
are not related to an increasing collectivity.

During periods where the index changes are less dramatic, it is observed both
positive and negative correlations between the index and λ1. This makes it
possible to observe periods where the index rises and is positively correlated
to λ1, indicating the existence of the optimism factor that forces stocks to
rise synchronously. Figure 7.6 reveals that the most pronounced such period
is that lasting roughly from day 12 to day 22. During this period, the in-
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dex first rises and then enters an uncertain and volatile period with no clear
trend. It is observed that the strength of the correlation is strong during the
rising part of the period, but that it decreases towards insignificant levels for
the latter volatile part. The fact that the rising index is positively correlated
to λ1 indicates that the collectivity, as monitored by λ1, increases parallely
with the index. This suggests the existence of the optimism factor. There are
also shorter periods showing the same features, such as the periods lasting
roughly from day 37 to 43 and day 81 to 83. The periods where the index is
positively correlated to λ1 also contain corrections, where the falling index
is related to a decreasing collectivity. This is speculated to be caused by
investors considering the corrections as opportunities to buy ’cheap’ stocks,
therefore leaving already existing trends.

The results so far are that periods where the index exhibits a sharp drop
and then rises coincide with an anti-correlation between the index and the
strength of collective trends in the market. It follows that collective trends
get stronger during sharp index drops, and that their strength decreases dur-
ing the following period where the index rises. It can therefore be concluded
that the drop relates to an increasing collectivity. Whether the decreasing
collectivity is caused by the following period where the index rises, or that it
also would happen if the drop was followed by a calm period, is not possible
to determine. This follows, as no periods with a significantly rising index
occurring out of the vicinity of a preceding drop are present in the current
dataset. However, what can be concluded is that periods where the index
rises strongly in general not cause the collectivity in the market to increase.
As periods with a falling and rising index in general not necessarily only oc-
cur after each other, but also can be separated by calm periods allowing the
market to stabilize, it is strongly suggested that collective trends are stronger
during falling than rising markets. This observation provides support to the
results of Balogh et al. [40]. However, Balogh et al. [40] used daily closure
prices from DJIA, which by nature are very different from the high-frequency
data used in this work. To provide further support to their results, it will
be useful to consider similar data. Therefore, an identical analysis to that
performed on the high-frequency dataset is presented in chapter 8, using
the same dataset as that used by Balogh et al. [40]. Among the results is
also the observation of periods where the index is positively correlated to
the strength of collective trends as monitored by λ1. These periods seem
to occur when the index does not change as dramatically, and are in addi-
tion relatively rare, which is why they did not affect the conclusion that the
collective trends appear to be stronger during falling than rising markets.
However, the observation of such periods where the index is rising suggests
the existence of the optimism factor that forces stocks to rise synchronously.
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Some of these periods also contain smaller drops or corrections, speculated to
reflect investors buying what they believe are ’cheap stocks’ during smaller
corrections of the index, thus deviating from existing trends to pick the best
stocks. In other words, the small drops do not ignite enough fear to cause a
sharp index drop, leaving the period characterized by optimism. The analysis
has also indicated that there are aspects of the fear factor model of Donan-
gelo et al. [42] (recently modified by Siven et al. [43] to account for longer
periods of synchronization) that with an advantage can be introduced. First
of all, the optimism factor introducing an index draw-up characterized by
highly correlated stocks should be added to the model. It is also suggested
that the model should have individual fear factors for each economic sector
in addition to the global fear factor affecting all stocks, as also has been
suggested by Simonsen et al. [41].

The last part of this section is an analysis of the movements of λ1 with
a higher resolution, as discussed in the start of the section. This is done
using a smaller step-size for the sliding time-window, and reveals some inter-
esting aspects of λ1. Figure 7.7 presents the movements of λ1 compared to
those of the index, using a step-size X = 10 minutes.

Figure 7.7: Blue line: The index. Green line: The largest eigenvalue λ1.
The step-size between each time-window of length T = 1548 minutes is set
to X = 10 minutes. Notice that the curve describing λ1 exhibits periodical
jumps of what appear to be a random sign.
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(a) (b)

Figure 7.8: Black line: The largest eigenvalue λ1 as a function of time.
Vertical lines: Blue dotted lines separate each trading week, green dotted
lines separate each trading day.

The first observation from figure 7.7 is that λ1 seems to exhibit strong jumps
of varying sign. Figure 7.8 presents two zooms into figure 7.7, with vertical
lines separating each trading day (and week) added to guide the eye. As
revealed when zooming in on the curve describing the temporal dependence
of λ1, the jumps clearly reflect the overnight effect.

Intuitively, one would assume that the largest jumps should occur after a
weekend. This follows, as the time between two trading days is longer during
a weekend than during a night. However, it is clear that this is not the case,
as the size of the jumps seems to be rather random. This suggests that the
overnight effect is of similar strength also over weekends. In principle, this
is reasonable. Even though a weekend lasts longer than a night, it is fair to
assume that the rate of news released during a weekend is lower than the rate
of news released during a single night. This follows, as most companies do
not release news such as financial reports etc. during weekends. However, it
is very common to release such news outside the opening hours of the stock
exchange during weekdays.
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A random matrix approach to

collective trends of the DJIA

In their first paper reporting a gain-loss asymmetry, Jensen et al. [38] con-
sidered daily closure prices from the Dow Jones Industrial Average (DJIA).
Later authors trying to explain the origin of the asymmetry have therefore
used similar data. As the asymmetry was speculated to originate from col-
lective trends in the market [37, 38], Balogh et al. [40] used daily closure
prices from the DJIA to investigate whether the strength of collective trends
of share prices is different during stock index rising and falling periods. Af-
ter performing several averaging procedures that in principle can affect the
results, they observed a clear trend: Falling markets do indeed show stronger
collective trends. However, there is a well known phrase: ”You can’t com-
pare apples with pears”. In other words, the results from the high-frequency
data should not be directly compared to results based on daily closure prices.
This follows, as the two types of data are very different by nature and catches
different aspects of the market.

Even though the results from the analysis of high-frequency data cannot
be directly compared to the results of Balogh et al. [40], the work was found
to support their observations. This chapter presents an analysis of a similar
dataset to that used by Balogh et al. [40]. Results can therefore be directly
compared to their results. In addition, any potential differences between
high-frequency data and daily closure prices are interesting to study. The
analysis is performed following the same procedure as for the high-frequency
data. Therefore, the procedure is only shortly brushed up as this is explained
in detail in section 5.1 for the high-frequency dataset. Small differences aris-
ing from the size of the set of daily closure prices, however, are discussed in
section 8.2.



Chapter 8. A random matrix approach to collective trends of the DJIA

8.1 The DJIA dataset

The dataset used in this chapter is similar to that used by Balogh et al. [40],
and was obtained from Yahoo! Finance [21]. It consists of the adjusted1 daily
closure prices from 29 of the 30 companies that were members of the DJIA
late February 20082. The set covers the 18 year period May 15th 1991 to
September 1th 2008, and contains 4160 daily closure prices. Company names,
ticker codes and corresponding GICS-sectors of the 29 stocks are presented
in appendix A.2, table A.2.

Figure 8.1: Blue line: The DJ index (the direct average of 29 of the stocks
constituting the DJIA index late February 2008, according to equation (4.1)).
Green line: The DJIA index. The period covered by the indexes is 15th May,
1991, to 1th September, 2008.

As the index must reflect only the 29 stocks in the dataset, one cannot use
the original DJIA. Following, as the composition of the DJIA not is constant,
some of the 29 stocks have not been included in the index during all 18 years
covered by the dataset. An example is The Home Depot Inc., not entering
the DJIA before 1999. These problems have been avoided by the construction
of a new index similar to the DJIA. The index is price-weighted as discussed
in section 4.2, and calculated according to equation 4.1. For simplicity, the
divisor is set equal to the number of stocks for all times, d(t) = 29. The result

1The price-series are adjusted for dividends and splits.
2Balogh et al. [40] used all 30 components, but as GM (General Motors Co.) went

through a controlled bankruptcy in 2009, its historical prices has been removed.
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is a new index, denoted as the DJ index in the following discussion. Figure
8.1 presents the DJ index and the DJIA index. Note that their correlation
coefficient is ρDJIA,DJ = 0.97, indicating that the two indexes behave more or
less identically, which is also revealed by inspecting the figure.

To confirm that the index exhibits a gain-loss asymmetry, inverse statis-
tics distributions were calculated for the DJ index for a return-level |ρ| = 5σ,
where σ ≈ 1.23% corresponds to the daily standard deviation of the DJ
log-returns. Expressed in percents, this equals a return-level of roughly 6%.
Note that the main point is to underline the presence of an asymmetry in the
index. The specific magnitude of such an asymmetry is not of importance.
It follows that it is not necessary to detrend the index, as this only increases
the gain-loss asymmetry. This follows, as the detrending shifts the optimal
investment horizon for gains towards longer waiting times and oppositely the
optimal investment horizon for losses towards shorter waiting times [40]. In
other words, when the asymmetry is present for the not detrended index, it
is surely present also for the detrended index.

Figure 8.2: Inverse statistics distributions for the DJ index (red and blue
dots). The return-level used is |ρ| = 5σ, where σ ≈ 1.23% is the daily
standard deviation of the DJ log-returns. Solid lines represent the least
squares fit of equation (3.81) to the empirical data, with τ ∗±|ρ| and parameters
ν, α, β as presented in appendix B.1, table B.4. As for the high-frequency
data, the tail exponent α + 1 is not distinguishable from the ”random walk
value” 3/2.
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The resulting inverse statistics distributions are presented in figure 8.2. An
inspection leads to the conclusion that the DJ index exhibits a clear gain-
loss asymmetry of magnitude about 6 days when |ρ| = 5σ. An analysis of
selected individual stocks using the exact same return-level was found to
show weak or no pronounced asymmetry, in accordance with the results of
Balogh et al. [40]. As the analysis of individual stocks is presented in [40], it
is not necessary to present the specific results here.

8.2 Method

The daily closure prices of the 29 stocks from the DJIA are analyzed more
or less exactly as the high-frequency prices. The procedure is described in
detail in section 5.1 for the high-frequency data, and consists in general of
a time-window that is slid through the time-series. Each time-window leads
to a correlation matrix and a corresponding density of eigenvalues.

The difference is that the DJIA dataset is much smaller than the high-
frequency dataset, consisting of 4160 observations from each of the 29 stocks.
To account for this, the length of the time-window has been decreased to
T = 290 days. This gives a ratio Q = 3 between the number of observations
T and the number of stocks N , and was chosen to be consistent with the
value Q = 3.22 used by Lalox et al. [24].

The result is a set of eigenvalue densities that is compared to theoretical
densities based on a null hypothesis purely random matrix. An analysis of
eigenvectors from the current dataset revealed that also for this dataset, the
eigenvector corresponding to the largest eigenvalue seems to describe the
market. This follows, as it has only positive components of roughly the same
size. If the largest eigenvalue deviates from the theoretical density of eigen-
values, it indicates that it carry information about true correlations in the
market. It follows that the largest eigenvalue can be used as an index de-
scribing the strength of collectivity in the market, similar to what was done
for the high-frequency data.
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8.3 Results and discussion

Similar to what was done for the high-frequency data in section 7.1, some
selected empirical eigenvalue densities are presented and discussed in this
section. As it is the largest eigenvalue that is of importance, not the densities
themselves, only two densities are considered in detail. The particular time-
windows these densities are based on are illustrated in figure 8.3.

Figure 8.3: Blue line: The DJ index. Black boxes: Time-windows used to
calculate the empirical densities of eigenvalues from the DJ index. Indices
above the time-windows correspond to subfigure indices of figure 8.4.

The empirical densities of eigenvalues are presented in figure 8.4. Remember
that the size of the correlation matrices the densities are based on is reduced
from a 492 × 492 matrix for the high-frequency dataset to 29 × 29 for this
dataset. This will obviously lead to larger discrepancies between theory and
empirical data, as random matrix theory (RMT) in principle is based on
infinitely large matrices (discussed in section 3.7.1).
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(a) σ2 = 0.62 (b) σ2 = 0.35

Figure 8.4: Empirical densities of eigenvalues based on the DJ index, where
(a) and (b) correspond to time-windows as illustrated in figure 8.3. Blue
lines: Empirical densities of eigenvalues. Green lines: Theoretically predicted
density of eigenvalues, based on a purely random matrix of same size with
σ2 as seen below the subplots. Inset: Same plot, but the largest eigenvalue
is also included.

The first observation from figure 8.4 is that both densities fit reasonably
well to the predictions from RMT. This is impressive, as they are based on
a dataset containing only 29 stocks. It is also interesting to note that the
densities show exact the same features as those of the high-frequency data.
These features are a bulk distribution of eigenvalues somewhat lowered com-
pared to the theoretical densities, and several eigenvalues significantly larger
than the upper limit predicted from RMT. As discussed in section 7.1, the
lowering of the bulk is caused by the presence of large eigenvalues outside
the theoretical upper limit. These are not accounted for by the theoretical
densities, and it follows that empirical densities must be somewhat lowered
to ensure their normalization. Note that empirical densities from all time-
windows are found to exhibit similar features, having their largest eigenvalue
in the interval λ1 ∈ [4, 17].

The density presented in figure 8.4a arises from a time-window placed in
a calm period of the market, as the index remains nearly unchanged during
the period of 290 days covered by the time-window. A good fit to theory was
obtained using σ2 = 0.62 for the volatility accounted for by the random part
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of the correlation matrix. The largest eigenvalue is observed to be λ1 ≈ 5,
indicating that the market accounts for roughly 17% of the total volatility.
Time-window 8.3b is placed in a volatile period where consecutive fluctua-
tions are more or less negative. As the fluctuations also are larger during
volatile periods, this causes the index to exhibit a sharp drop. The empirical
density of eigenvalues fits well to theory, using σ2 = 0.35 for the volatility
of the random part. This is significantly less than the value used for period
8.3a, indicating that the largest eigenvalues account for more of the total
volatility. This is also confirmed by the largest eigenvalue λ1 ≈ 14, almost
triple that of the calm period. The largest eigenvalue is so large that its
corresponding eigenvector (the market) accounts for roughly half of the total
volatility during the period. The fact that the largest eigenvalue dominates
the density suggests the presence of stronger collective trends in the market
during the drop than during the calm period.

It was observed that values for σ2 obtained from the high-frequency dataset
were significantly smaller than values observed by other authors for daily clo-
sure prices. The reason for the observed discrepancy was concluded to arise
from the different nature of daily closure prices and high-frequency prices.
However, it is also observed that values for σ2 based on the current dataset
seem to be significantly smaller than the results of Lalox et al. [24], observing
that σ2 = 0.74 provided the best fit to their results. As Lalox et al. [24]
based their work on the daily closure prices for the 500 stocks composing the
S&P500 index, it is believed that the discrepancy arises from the very low
number of stocks the current dataset is composed of. Note that even though
individual sectors probably not are very well represented by the dataset, it
is believed the market itself is represented more than good enough for the
purpose of this work.

As λ1 clearly deviates from the theoretical distribution from RMT, it is clear
that it reflects information about true correlations in the market. It is there-
fore interesting to consider its temporal dependence, as also was done for
the high-frequency data in section 7.2. Comparing this to the index can
reveal whether there are any connections between the two quantities. This
is presented in figure 8.5, where λ1 has been calculated using the step-size
X = 1 day to ensure a good resolution of λ1’s movements. Note that λ1(tk)
is based on time-window Mk of length T = 290 days, covering a period
t ∈ [tk − T, tk], where tk = T + nkX. Note that tk ≤ tmax, where tmax is the
length of the stock-price series and nk an integer starting from zero.
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Figure 8.5: Blue line: The DJ index. Green line: The largest eigenvalue λ1.
The step-size between each time-window is set to X = 1 day, and the length
of the time-window used to calculate λ1 is T = 290 days.

Figure 8.5 reveals that the jumps observed for the high-frequency data (see
figure 7.7) are not present in the daily data. If weekends causes a stronger
overnight effect, one should observe periodical jumps every fifth day. How-
ever, this is not the case, supporting the speculation in section 7.2 that the
effect seems to be approximately similar for weekends and single nights. It
is also observed that λ1 is significantly larger than the upper limit predicted
from RMT at all times, indicating that a certain minimum of collective trends
is present at all times. It is also revealed that λ1 follows a rising trend with
ascending bottoms. This indicates that the volatility and the strength of col-
lectivity in the market, as monitored by λ1, has increased during the nearly
two decades covered by the dataset. However, it must be emphasized that it
is possible that the poor statistics of the dataset only containing 29 stocks
can lead to bias when analyzing the data.

A closer inspection of figure 8.5 suggests that the DJ index in general is
anti-correlated to λ1. However, also periods where the index is positively
correlated to λ1 are observed. To obtain a better overview over these cor-
relations, it is useful to consider the running correlation between the index
and λ1. The running correlation is calculated from a time-window of length
T = 200 days, such that ρI,λ1(tk) is based on time-window Mk covering the
period t ∈ [tk − T/2, tk + T/2]. Note that tk = T/2 + nkX where tk ≤ tmax,
nk is an integer starting from zero and tmax equals the length of the series
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describing λ1. Using the smallest obtainable step-size X = 1 day leads to
the result presented in figure 8.6.

Figure 8.6: Blue line: The DJ index. Black line: The running correlation
between the DJ index and the largest eigenvalue λ1. Notice that the area
below the curve is shaded red (blue) for negative (positive) correlations to
guide the eye. The step-size used to calculate the movements of λ1 was set to
X = 1 day, and the length of the time-window used to calculate the running
correlation is T = 200 days.

An inspection of figure 8.6 reveals that the leading trend is an anti-correlation
between the index and λ1, with the exception of a longer period lasting from
roughly mid 1996 to mid 1998. During this period, the correlation between
the index and λ1 is strictly positive. The index rises during the period, in-
dicating an increasing collectivity in the market. As discussed for the high-
frequency dataset, this is very interesting and suggests the existence of the
optimism factor, causing stocks to rise synchronously.

In general, the index and λ1 are anti-correlated in the period after 1998, but
short periods of positive correlations are observed from time to time. These
positive correlations seem to arise during ’transition periods’ near peaks and
bottoms of the index, where the index stops following the trend that has gov-
erned the market so far. The presence of positive correlations during these
periods is speculated to reflect that the market believes that the rise or drop
now has come to an end. In other words, investors are ready to ’jump on the
train’ if the index rises, or to make use of corrections to buy ’cheap’ stocks.
However, the general trend is indeed an anti-correlation between the index
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and λ1. This causes the strength of collectivity in the market to increase
when the market drops, and oppositely to decrease when the market rises.
For the high-frequency data, one could not conclude whether the decreas-
ing strength of collective trends was caused by the rebound that followed
the drop, or that the collectivity would decrease also if the drop was fol-
lowed by a calm period. The determination of this would require a dataset
containing periods where the index rises sharply, but not in the vicinity of
a preceding drop. Therefore, the only conclusion that could be drawn for
the high-frequency data was that a sharply rising index in general was not
connected to an increasing collectivity in the market. However, the current
dataset reveals that periods with a sharply rising index in general are related
to a decreasing collectivity. This follows, as periods where the index drops
and rises, both characterized by an anti-correlation to λ1, are separated by
the short ’transition’ periods characterized by positive correlations between
the index and λ1. As recently discussed, also optimistic periods where the
index rises and is positively correlated to λ1 are present, but these periods
are rare. Large drops on the other hand seem to always correspond to a
strongly increasing collectivity. These observations strongly suggests that
the collective trends are stronger during falling than rising markets.

To summarize, it is observed that the index in general is anti-correlated to
λ1. As λ1 monitors the degree of collectivity in the market, this implies that
the strength of collective trends increases during periods where the index
drops and oppositely decreases when the index rises. It also seems to exist a
mode where the index is positively correlated to λ1. This mode is speculated
to reflect the presence of increased optimism in the market. During a ris-
ing market, the mode is believed to reflect investors ’jumping on the train’.
Similarly, when the index exhibits corrections, the mode is believed to reflect
investors using the correction to buy ’cheap’ stocks and hence decrease the
collectivity by deviating from existing trends. However, the general trend is
an increasing collectivity during falling markets, and oppositely a decreasing
collectivity during rising markets. This suggests that collective trends are
stronger during periods with falling than rising markets, providing further
support to the findings of Balogh et al. [40].
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Conclusion

Johansen et al. [37] speculated that the origin behind the gain-loss asymme-
try was some collective motion of stocks of the index. The fear-factor model
of Donangelo et al. [42] provided qualitative support for this, reproducing
an asymmetry in the index but not in individual stocks. Balogh et al. [40]
performed several statistical tests on daily closure prices from the Dow Jones
Industrial Average (DJIA), and found that collective trends indeed were
stronger during falling than rising markets. The work in this thesis has
been performed in order to provide further support to their conclusion, and
the current chapter will attempt to sum up the results.

The first dataset under consideration was of high-frequency, consisting of
one minute stock quotes from 492 large European companies over a period of
roughly 6 months. A price-weighted index based on these stocks was found
to exhibit a significant gain-loss asymmetry, which has also been observed
for daily closure prices of the DJIA [38]. What is interesting is that, opposite
to earlier observations, the probability of the optimal investment horizon is
highest for the gain distribution. Individual stocks were found to only ex-
hibit gain-loss asymmetry for significantly increased return-levels. These ob-
servations are believed to reflect inherent properties of high-frequency stock
quotes, and to the best of our knowledge this is the first inverse statistics
analysis of high-frequency stock quotes.

The second dataset consisted of daily closure prices from 29 of the 30 stocks
composing the DJIA late February 2008. The price-weighted index based
on these stocks was observed to exhibit a clear gain-loss asymmetry, while
individual stocks exhibited no or weak asymmetry for the same return-level.
This is in accordance with earlier observations by Balogh et al. [40], based
on a nearly identical dataset.



Chapter 9. Conclusion

As both datasets demonstrated a clear gain-loss asymmetry, it was investi-
gated whether there were any difference in strength of the collective trends
during falling and rising markets. The high-frequency data revealed that
collective trends got stronger during sharp index drops. It was also observed
that the strength of collectivity decreased during periods where the index
rises sharply. As periods where the index rises sharply only occurred after a
sharp drop in the current dataset, it was not possible to conclude that the
rise caused the collectivity to decrease. However, it could be concluded that
the strongly rising index in general was not related to an increasing collec-
tivity. These observations suggest that collective trends are stronger during
falling than rising markets for the high-frequency stock quotes. An identical
analysis on daily closure prices from the DJIA provided the same result for
sharp index drops, but also this dataset only contained periods where the
index rises sharply in the close vicinity of a drop. However, between the
two regimes it was observed to be a ’transition’ period. This period was
characterized by an index that was positively correlated with the strength of
collectivity, and separated the drop from the following rise. It could there-
fore be concluded that the rise caused the strength of collective trends to
decrease. It follows that also this dataset suggests that the collective trends
are stronger during falling than rising markets. It is believed that the reason
behind both datasets showing the same features is that market factors in-
corporated in stocks are independent on the nature of the dataset. As both
datasets indeed suggest that stronger collective trends are present during
falling than rising markets, it is concluded that this work provides support
to the results of Balogh et al. [40].

The rapidly increasing collectivity during sharp index drops supports the fear
factor model of Donangelo et al. [42], where the key idea is that fear trig-
gers stocks to fall synchronously causing a sharp index drop. Both datasets
also contained periods where a rising index was positively correlated to the
strength of collectivity in the market. However, such periods were less com-
mon and did not affect the conclusion that the collectivity appear to be
stronger during falling than rising markets. What is interesting is that these
periods imply that the collectivity in the market increases while the index
rises, suggesting the existence of an optimism factor causing stocks to rise
synchronously. It was also indicated that the size of the drop is connected
to the amount the collectivity increases. This clearly suggests that the fear
factor model [42] should incorporate not only a global fear factor affecting all
stocks in the market, but also individual fear factors for each of the economic
sectors, in addition to an optimism factor.
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Appendix A

Companies in the datasets

A.1 The high-frequency dataset

Table A.1 contains (sorted alphabetically after ticker code) information about
the 492 companies considered in this thesis. It contains the ticker code of
the companies on the various stock exchanges as well as their nationality
and Global Industry Classification Standard (GICS) sector. The data have
been recorded by Bloomberg, and the information about the GICS sector
and country has been provided from them.

Table A.1: Information about the companies in the high-frequency dataset
used in the thesis.

Ticker Country GICS Sector-name

A2A IM Equity Italy Utilities
AAL LN Equity Britain Materials
ABBN VX Equity Switzerland Industrials
ABE SM Equity Spain Industrials
ABF LN Equity Britain Consumer Staples
ABG LN Equity Britain Materials
ABG SM Equity Spain Industrials
ABI BB Equity Belgium Consumer Staples
AC FP Equity France Consumer Discretionary
ACA FP Equity France Financials
ACE IM Equity Italy Utilities
ACS SM Equity Spain Industrials
ACX SM Equity Spain Materials
ADEN VX Equity Switzerland Industrials

Continued on next page
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Table A.1 Continued from previous page

Ticker Country GICS Sector-name

ADM LN Equity Britain Financials
ADN LN Equity Britain Financials
ADP FP Equity France Industrials
ADS GR Equity Germany Consumer Discretionary
AF FP Equity France Industrials
AGK LN Equity Britain Industrials
AGL IM Equity Italy Consumer Discretionary
AGN NA Equity Netherlands Financials
AGS BB Equity Belgium Financials
AH NA Equity Netherlands Consumer Staples
AI FP Equity France Materials
AIXA GR Equity Germany Information Technology
AKE FP Equity France Materials
AKSO NO Equity Norway Energy
AKZA NA Equity Netherlands Materials
ALFA SS Equity Sweden Industrials
ALO FP Equity France Industrials
ALPHA GA Equity Greece Financials
ALU FP Equity France Information Technology
ALV GR Equity Germany Financials
AMEC LN Equity Britain Energy
AML LN Equity Britain Financials
ANA SM Equity Spain Utilities
ANDR AV Equity Austria Industrials
ANTO LN Equity Britain Materials
ARM LN Equity Britain Information Technology
ARYN SW Equity Switzerland Consumer Staples
ASHM LN Equity Britain Financials
ASML NA Equity Netherlands Information Technology
ASSAB SS Equity Sweden Industrials
ATCOA SS Equity Sweden Industrials
ATL IM Equity Italy Industrials
ATLN VX Equity Switzerland Health Care
ATO FP Equity France Information Technology
AU/ LN Equity Britain Information Technology
AV LN Equity Britain Financials
AZN LN Equity Britain Health Care
BA LN Equity Britain Industrials
BAB LN Equity Britain Industrials

Continued on next page
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Table A.1 Continued from previous page

Ticker Country GICS Sector-name

BAER VX Equity Switzerland Financials
BALN VX Equity Switzerland Financials
BARC LN Equity Britain Financials
BAS GR Equity Germany Materials
BATS LN Equity Britain Consumer Staples
BAYN GR Equity Germany Health Care
BBVA SM Equity Spain Financials
BBY LN Equity Britain Industrials
BCP PL Equity Portugal Financials
BEI GR Equity Germany Consumer Staples
BELG BB Equity Belgium Telecommunication Services
BES PL Equity Portugal Financials
BG LN Equity Britain Energy
BKIR ID Equity Ireland Financials
BKT SM Equity Spain Financials
BLND LN Equity Britain Financials
BLT LN Equity Britain Materials
BMPS IM Equity Italy Financials
BMW GR Equity Germany Consumer Discretionary
BN FP Equity France Consumer Staples
BNP FP Equity France Financials
BNZL LN Equity Britain Industrials
BOKA NA Equity Netherlands Industrials
BOL SS Equity Sweden Materials
BP IM Equity Italy Financials
BP LN Equity Britain Energy
BPE IM Equity Italy Financials
BPSO IM Equity Italy Financials
BRBY LN Equity Britain Consumer Discretionary
BRI PL Equity Portugal Industrials
BSY LN Equity Britain Consumer Discretionary
BTA LN Equity Britain Telecommunication Services
BTO SM Equity Spain Financials
BUL IM Equity Italy Consumer Discretionary
BVA SM Equity Spain Financials
BVI FP Equity France Industrials
CA FP Equity France Consumer Staples
CAP FP Equity France Information Technology
CARLB DC Equity Denmark Consumer Staples

Continued on next page
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Table A.1 Continued from previous page

Ticker Country GICS Sector-name

CBK GR Equity Germany Financials
CCL LN Equity Britain Consumer Discretionary
CDI FP Equity France Consumer Discretionary
CFR VX Equity Switzerland Consumer Discretionary
CLN VX Equity Switzerland Materials
CLS1 GR Equity Germany Health Care
CNA LN Equity Britain Utilities
CNE LN Equity Britain Energy
CNP FP Equity France Financials
CO FP Equity France Consumer Staples
COB LN Equity Britain Industrials
CON GR Equity Germany Consumer Discretionary
CORA NA Equity Netherlands Financials
CPG LN Equity Britain Consumer Discretionary
CPI LN Equity Britain Industrials
CPR IM Equity Italy Consumer Staples
CPR PL Equity Portugal Materials
CRDA LN Equity Britain Materials
CRG IM Equity Italy Financials
CRH ID Equity Ireland Materials
CRI SM Equity Spain Financials
CS FP Equity France Financials
CSCG LN Equity Britain Financials
CSGN VX Equity Switzerland Financials
CSM NA Equity Netherlands Consumer Staples
CW LN Equity Britain Telecommunication Services
CWC LN Equity Britain Telecommunication Services
DAI GR Equity Germany Consumer Discretionary
DANSKE DC Equity Denmark Financials
DB1 GR Equity Germany Financials
DBK GR Equity Germany Financials
DCO DC Equity Denmark Consumer Staples
DEC FP Equity France Consumer Discretionary
DELB BB Equity Belgium Consumer Staples
DEXB BB Equity Belgium Financials
DG FP Equity France Industrials
DGE LN Equity Britain Consumer Staples
DIA IM Equity Italy Health Care
DL NA Equity Netherlands Financials

Continued on next page
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Table A.1 Continued from previous page

Ticker Country GICS Sector-name

DMGT LN Equity Britain Consumer Discretionary
DNBNOR NO Equity Norway Financials
DPB GR Equity Germany Financials
DPW GR Equity Germany Industrials
DRX LN Equity Britain Utilities
DSM NA Equity Netherlands Materials
DSV DC Equity Denmark Industrials
DSY FP Equity France Information Technology
DTE GR Equity Germany Telecommunication Services
EAD FP Equity Netherlands Industrials
EBRO SM Equity Spain Consumer Staples
EBS AV Equity Austria Financials
EDF FP Equity France Utilities
EDN IM Equity Italy Utilities
EDP PL Equity Portugal Utilities
EDPR PL Equity Spain Utilities
EEEK GA Equity Greece Consumer Staples
EI FP Equity France Health Care
EKTAB SS Equity Sweden Health Care
ELE SM Equity Spain Utilities
ELI1V FH Equity Finland Telecommunication Services
ELN ID Equity Ireland Health Care
ELPE GA Equity Greece Energy
ELUXB SS Equity Sweden Consumer Discretionary
EMG LN Equity Britain Financials
EN FP Equity France Industrials
ENEL IM Equity Italy Utilities
ENG SM Equity Spain Utilities
ENI IM Equity Italy Energy
ENRC LN Equity Britain Materials
EOAN GR Equity Germany Utilities
ERICB SS Equity Sweden Information Technology
ETE GA Equity Greece Financials
ETL FP Equity France Consumer Discretionary
EUROB GA Equity Greece Financials
EXO IM Equity Italy Financials
EXPN LN Equity Ireland Industrials
EZJ LN Equity Britain Industrials
F IM Equity Italy Consumer Discretionary

Continued on next page
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Table A.1 Continued from previous page

Ticker Country GICS Sector-name

FCC SM Equity Spain Industrials
FER SM Equity Spain Industrials
FGP LN Equity Britain Industrials
FGR FP Equity France Industrials
FLS DC Equity Denmark Industrials
FME GR Equity Germany Health Care
FNC IM Equity Italy Industrials
FP FP Equity France Energy
FR FP Equity France Consumer Discretionary
FRA GR Equity Germany Industrials
FTE FP Equity France Telecommunication Services
FUM1V FH Equity Finland Utilities
FXPO LN Equity Switzerland Materials
G IM Equity Italy Financials
G1A GR Equity Germany Industrials
GA FP Equity France Energy
GALP PL Equity Portugal Energy
GAM SM Equity Spain Industrials
GAM SW Equity Switzerland Financials
GAS SM Equity Spain Utilities
GBB FP Equity France Energy
GBF GR Equity Germany Industrials
GBLB BB Equity Belgium Financials
GET FP Equity France Industrials
GETIB SS Equity Sweden Health Care
GFS LN Equity Britain Industrials
GKN LN Equity Britain Consumer Discretionary
GLE FP Equity France Financials
GRF SM Equity Spain Health Care
GSK LN Equity Britain Health Care
GSZ FP Equity France Utilities
GTO FP Equity France Information Technology
HEI GR Equity Germany Materials
HEIA NA Equity Netherlands Consumer Staples
HEIO NA Equity Netherlands Consumer Staples
HEXAB SS Equity Sweden Industrials
HHFA GR Equity Germany Industrials
HL LN Equity Britain Financials
HMB SS Equity Sweden Consumer Discretionary

Continued on next page

114



Appendix A. Companies in the datasets

Table A.1 Continued from previous page

Ticker Country GICS Sector-name

HMSO LN Equity Britain Financials
HNR1 GR Equity Germany Financials
HO FP Equity France Industrials
HOLMB SS Equity Sweden Materials
HOLN VX Equity Switzerland Materials
HOME LN Equity Britain Consumer Discretionary
HOT GR Equity Germany Industrials
HSBA LN Equity Britain Financials
HSV LN Equity Britain Industrials
HTO GA Equity Greece Telecommunication Services
HUSQB SS Equity Sweden Consumer Discretionary
IAP LN Equity Britain Financials
IBE SM Equity Spain Utilities
IBR SM Equity Spain Utilities
IDR SM Equity Spain Information Technology
IFX GR Equity Germany Information Technology
IGG LN Equity Britain Financials
IHG LN Equity Britain Consumer Discretionary
IIA AV Equity Austria Financials
III LN Equity Britain Financials
ILD FP Equity France Telecommunication Services
IM NA Equity Netherlands Industrials
IMI LN Equity Britain Industrials
IMT LN Equity Britain Consumer Staples
INDUA SS Equity Sweden Financials
INF LN Equity Switzerland Consumer Discretionary
INVEB SS Equity Sweden Financials
INVP LN Equity Britain Financials
IPN FP Equity France Health Care
IPR LN Equity Britain Utilities
ISAT LN Equity Britain Telecommunication Services
ISP IM Equity Italy Financials
ISYS LN Equity Britain Industrials
ITRK LN Equity Britain Industrials
ITV LN Equity Britain Consumer Discretionary
ITX SM Equity Spain Consumer Discretionary
JMAT LN Equity Britain Materials
JMT PL Equity Portugal Consumer Staples
KAZ LN Equity Britain Materials

Continued on next page
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Table A.1 Continued from previous page

Ticker Country GICS Sector-name

KBC BB Equity Belgium Financials
KD8 GR Equity Germany Consumer Discretionary
KESBV FH Equity Finland Consumer Staples
KGF LN Equity Britain Consumer Discretionary
KINVB SS Equity Sweden Financials
KN FP Equity France Financials
KNEBV FH Equity Finland Industrials
KNIN VX Equity Switzerland Industrials
KPN NA Equity Netherlands Telecommunication Services
KYG ID Equity Ireland Consumer Staples
LAND LN Equity Britain Financials
LG FP Equity France Materials
LGEN LN Equity Britain Financials
LHA GR Equity Germany Industrials
LI FP Equity France Financials
LIN GR Equity Germany Materials
LLOY LN Equity Britain Financials
LMI LN Equity Britain Materials
LOG LN Equity Britain Information Technology
LOGN VX Equity Switzerland Information Technology
LONN VX Equity Switzerland Health Care
LR FP Equity France Industrials
LSE LN Equity Britain Financials
LTO IM Equity Italy Consumer Discretionary
LUN DC Equity Denmark Health Care
LUX IM Equity Italy Consumer Discretionary
LXS GR Equity Germany Materials
MAN GR Equity Germany Industrials
MAP SM Equity Spain Financials
MB IM Equity Italy Financials
MC FP Equity France Consumer Discretionary
MED IM Equity Italy Financials
MEDAA SS Equity Sweden Health Care
MEO GR Equity Germany Consumer Staples
MEO1V FH Equity Finland Industrials
MF FP Equity France Industrials
MGGT LN Equity Britain Industrials
MHG NO Equity Norway Consumer Staples
MKS LN Equity Britain Consumer Discretionary
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Ticker Country GICS Sector-name

ML FP Equity France Consumer Discretionary
MMB FP Equity France Consumer Discretionary
MMT FP Equity France Consumer Discretionary
MNDI LN Equity Britain Materials
MOBB BB Equity Belgium Telecommunication Services
MRK GR Equity Germany Health Care
MRW LN Equity Britain Consumer Staples
MS IM Equity Italy Consumer Discretionary
MT NA Equity Luxembourg Materials
MTGB SS Equity Sweden Consumer Discretionary
MTX GR Equity Germany Industrials
MUV2 GR Equity Germany Financials
NDA SS Equity Sweden Financials
NEO FP Equity France Information Technology
NES1V FH Equity Finland Energy
NESN VX Equity Switzerland Consumer Staples
NG LN Equity Britain Utilities
NHY NO Equity Norway Materials
NK FP Equity France Materials
NOBN VX Equity Switzerland Health Care
NOK1V FH Equity Finland Information Technology
NOVN VX Equity Switzerland Health Care
NOVOB DC Equity Denmark Health Care
NRE1V FH Equity Finland Consumer Discretionary
NWG LN Equity Britain Utilities
NWR LN Equity Netherlands Materials
NXT LN Equity Britain Consumer Discretionary
NZYMB DC Equity Denmark Materials
OHL SM Equity Spain Industrials
OML LN Equity Britain Financials
OMV AV Equity Austria Energy
OPAP GA Equity Greece Consumer Discretionary
OR FP Equity France Consumer Staples
ORK NO Equity Norway Industrials
ORNBV FH Equity Finland Health Care
OUT1V FH Equity Finland Materials
PAJ FP Equity France Consumer Discretionary
PC IM Equity Italy Consumer Discretionary
PFC LN Equity Britain Energy
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PHIA NA Equity Netherlands Industrials
PLT IM Equity Italy Consumer Staples
PMO LN Equity Britain Energy
PNN LN Equity Britain Utilities
POG LN Equity Britain Materials
POH1S FH Equity Finland Financials
POP SM Equity Spain Financials
PP FP Equity France Consumer Discretionary
PPC GA Equity Greece Utilities
PRU LN Equity Britain Financials
PRY IM Equity Italy Industrials
PSON LN Equity Britain Consumer Discretionary
PSPN SW Equity Switzerland Financials
PTC PL Equity Portugal Telecommunication Services
PUB FP Equity France Consumer Discretionary
PZC LN Equity Britain Consumer Staples
RAND NA Equity Netherlands Industrials
RATOB SS Equity Sweden Financials
RB LN Equity Britain Consumer Staples
RBS LN Equity Britain Financials
RDSA LN Equity Netherlands Energy
REC NO Equity Norway Energy
REE SM Equity Spain Utilities
REL LN Equity Britain Consumer Discretionary
REN NA Equity Netherlands Consumer Discretionary
REP SM Equity Spain Energy
REX LN Equity Britain Materials
RHK GR Equity Germany Health Care
RHM GR Equity Germany Industrials
RI FP Equity France Consumer Staples
RIO LN Equity Britain Materials
RNO FP Equity France Consumer Discretionary
ROG VX Equity Switzerland Health Care
RR LN Equity Britain Industrials
RRS LN Equity Jersey Materials
RSA LN Equity Britain Financials
RSL LN Equity Guernsey Financials
RTO LN Equity Britain Industrials
RTRKS FH Equity Finland Materials
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RUKN VX Equity Switzerland Financials
RWE GR Equity Germany Utilities
RXL FP Equity France Industrials
RYA ID Equity Ireland Industrials
SAA1V FH Equity Finland Consumer Discretionary
SAB LN Equity Britain Consumer Staples
SAB SM Equity Spain Financials
SAF FP Equity France Industrials
SAMAS FH Equity Finland Financials
SAN FP Equity France Health Care
SAN SM Equity Spain Financials
SAND SS Equity Sweden Industrials
SAP GR Equity Germany Information Technology
SBMO NA Equity Netherlands Energy
SBRY LN Equity Britain Consumer Staples
SCAB SS Equity Sweden Materials
SCH NO Equity Norway Consumer Discretionary
SCHP SW Equity Switzerland Industrials
SCMN VX Equity Switzerland Telecommunication Services
SCR FP Equity France Financials
SCVB SS Equity Sweden Industrials
SDF GR Equity Germany Materials
SDR LN Equity Britain Financials
SEBA SS Equity Sweden Financials
SECUB SS Equity Sweden Industrials
SEV FP Equity France Utilities
SGE LN Equity Britain Information Technology
SGO FP Equity France Industrials
SGRO LN Equity Britain Financials
SHBA SS Equity Sweden Financials
SHP LN Equity Ireland Health Care
SIE GR Equity Germany Industrials
SK FP Equity France Consumer Discretionary
SKAB SS Equity Sweden Industrials
SKFB SS Equity Sweden Industrials
SL LN Equity Britain Financials
SLHN VX Equity Switzerland Financials
SMIN LN Equity Britain Industrials
SN LN Equity Britain Health Care
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SOLB BB Equity Belgium Materials
SOON VX Equity Switzerland Health Care
SOW GR Equity Germany Information Technology
SPM IM Equity Italy Energy
SPSN SW Equity Switzerland Financials
SRG IM Equity Italy Utilities
SRP LN Equity Britain Industrials
SSABA SS Equity Sweden Materials
SSE LN Equity Britain Utilities
STAN LN Equity Britain Financials
STB NO Equity Norway Financials
STERV FH Equity Finland Materials
STL NO Equity Norway Energy
STM IM Equity Switzerland Information Technology
SU FP Equity France Industrials
SUN SW Equity Switzerland Industrials
SVT LN Equity Britain Utilities
SW FP Equity France Consumer Discretionary
SWEDA SS Equity Sweden Financials
SWMA SS Equity Sweden Consumer Staples
SY1 GR Equity Germany Materials
SYNN VX Equity Switzerland Materials
SZG GR Equity Germany Materials
SZU GR Equity Germany Consumer Staples
TATE LN Equity Britain Consumer Staples
TCG LN Equity Britain Consumer Discretionary
TEC FP Equity France Energy
TEF SM Equity Spain Telecommunication Services
TEL NO Equity Norway Telecommunication Services
TEL2B SS Equity Sweden Telecommunication Services
TEN IM Equity Luxembourg Energy
TFI FP Equity France Consumer Discretionary
TGM GR Equity Germany Industrials
TIT IM Equity Italy Telecommunication Services
TKA AV Equity Austria Telecommunication Services
TKA GR Equity Germany Materials
TL5 SM Equity Spain Consumer Discretionary
TLSN SS Equity Sweden Telecommunication Services
TLW LN Equity Britain Energy
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TNET BB Equity Belgium Telecommunication Services
TNT NA Equity Netherlands Industrials
TPK LN Equity Britain Industrials
TRE SM Equity Spain Energy
TRN IM Equity Italy Utilities
TRYG DC Equity Denmark Financials
TSCO LN Equity Britain Consumer Staples
TT LN Equity Britain Consumer Discretionary
TUI1 GR Equity Germany Consumer Discretionary
UBI IM Equity Italy Financials
UBSN VX Equity Switzerland Financials
UCB BB Equity Belgium Health Care
UCG IM Equity Italy Financials
UG FP Equity France Consumer Discretionary
UHR VX Equity Switzerland Consumer Discretionary
UL FP Equity France Financials
ULVR LN Equity Britain Consumer Staples
UMI BB Equity Belgium Materials
UNI IM Equity Italy Financials
UPM1V FH Equity Finland Materials
UTDI GR Equity Germany Information Technology
UU LN Equity Britain Utilities
VED LN Equity Britain Materials
VER AV Equity Austria Utilities
VIE FP Equity France Utilities
VIG AV Equity Austria Financials
VIV FP Equity France Consumer Discretionary
VK FP Equity France Industrials
VOD LN Equity Britain Telecommunication Services
VOE AV Equity Austria Materials
VOLVB SS Equity Sweden Industrials
VOW GR Equity Germany Consumer Discretionary
VPK NA Equity Netherlands Industrials
VWS DC Equity Denmark Industrials
WCH GR Equity Germany Materials
WDH DC Equity Denmark Health Care
WEIR LN Equity Britain Industrials
WG LN Equity Britain Energy
WKL NA Equity Netherlands Consumer Discretionary
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WOS LN Equity Britain Industrials
WPP LN Equity Ireland Consumer Discretionary
WRT1V FH Equity Finland Industrials
WTB LN Equity Britain Consumer Discretionary
XTA LN Equity Switzerland Materials
YAR NO Equity Norway Materials
YTY1V FH Equity Finland Industrials
ZC FP Equity France Industrials
ZOT SM Equity Spain Industrials
ZURN VX Equity Switzerland Financials
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A.2 The dataset of daily closure prices from

the DJIA

Table A.2: Information about the companies in the DJIA dataset used in
the thesis.

Company name Ticker GICS Sector-name

3M Company MMM Industrials
Coca-Cola Company CO Consumer Staples
J.P. Morgan Chase & Company JPM Financials
Alcoa Incorporated AA Materials
DuPont DD Materials
McDonaldŠs Corporation MCD Consumer Discretionary
American Express Company AXP Financials
Exxon Mobil Corporation XOM Energy
Merck & Company, Incorporated MRK Health Care
American International Group Inc. AIG Financials
General Electric Company GE Industrials
Microsoft Corporation MSFT Information Technology
AT&T Incorporated T Telecommunication Services
Pfizer Incorporated PFE Health Care
Bank of America Corporation BAC Financials
Hewlett-Packard Company HPQ Information Technology
Procter & Gamble Company PG Consumer Staples
Boeing Company BA Industrials
United Technologies Corporation UTX Industrials
Caterpillar Incorporated CAT Industrials
Intel Corporation INTC Information Technology
Verizon Communications Inc. VZ Telecommunication Services
Chevron Corporation CVX Energy
International Business Machines IBM Information Technology
Wal-Mart Stores Incorporated WMT Consumer Staples
Citigroup Incorporated C Financials
Johnson & Johnson JNJ Health Care
Walt Disney Company DIS Consumer Discretionary
Home Depot Incorporated HD Consumer Discretionary
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Appendix B

Fit parameters

B.1 Parameters from least squares fit to em-

pirical data

Table B.1 contains parameters obtained from least squares fits of empirical
inverse statistics distributions from the high-frequency index to the general-
ized Gamma distribution given by equation (3.81).

Table B.2 contains the parameters from the fit of an exponential function
of form f(x) = a+b exp(cx) to the daily closure prices of OSEBX and DJIA.

Table B.3 contains parameters obtained from least squares fits of empiri-
cal inverse statistics distributions from individual stocks to the generalized
Gamma distribution given by equation (3.81). Notice that σI corresponds to
the minutely standard deviation of the index log-returns, and that σ corre-
sponds to the minutely standard deviation of the stock log-returns.

Table B.4 contains parameters from a fit of the generalized Gamma dis-
tribution to the empirical inverse statistics distributions of the constructed
DJ index.

For the fits to the general Gamma distribution, τ ∗±|ρ| are the positions of
the optimal investment horizons of the fitted curves, measured in minutes
(days for the DJIA dataset). The difference, ∆τ = τ ∗+|ρ| − τ ∗−|ρ| corresponds
to the gain-loss asymmetry.
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Table B.1: Fitting parameters inverse statistics for the high-frequency
dataset

ρ ν t0 β α τ ∗−|ρ| [min] τ ∗+|ρ| [min]

+1σ 3.91287671 1.1602312 1.76805272 0.50 - 2.83
-1σ 1.15795608 -0.4876657 1.68162645 0.50 2.75 -
+2σ 1.00938287 -0.17392243 2.51518366 0.50 - 4.45
-2σ 0.84240729 -0.34626125 2.79803586 0.50 4.29 -
+3σ 0.81963987 -0.16849346 3.54990392 0.50 - 6.20
-3σ 0.71077369 -0.27986578 4.05346343 0.50 6.03 -
+4σ 0.76955469 0.14481775 4.51049712 0.50 - 8.40
-4σ 0.65307341 -0.08070183 5.32342437 0.50 8.01 -
+5σ 0.77196338 0.76709621 5.31216124 0.50 - 11.17
-5σ 0.61346181 -0.00986546 6.62411328 0.50 10.23 -
+6σ 0.83544607 2.10260194 5.83528002 0.50 - 14.80
-6σ 0.61506256 0.46787623 7.59714505 0.50 13.08 -
+7σ 0.88816518 3.77059072 6.42763744 0.50 - 19.13
-7σ 0.59527727 0.79661662 8.92143286 0.50 16.05 -
+8σ 0.91742943 5.68608258 7.07681041 0.50 - 23.62
-8σ 0.60055843 1.30733829 9.76013616 0.50 19.44 -
+9σ 0.95011941 7.80474714 7.64061073 0.50 - 28.30
-9σ 0.62708314 2.40676385 10.24977174 0.50 23.74 -

+10σ 0.98578777 9.96310677 8.14509521 0.50 - 33.37
-10σ 0.59726314 2.53420969 11.75602613 0.50 27.04 -
+11σ 0.95014032 11.18986862 8.89972947 0.50 - 37.79
-11σ 0.59987854 3.4450177 12.67294633 0.50 31.41 -
+12σ 1.11380744 17.39294364 9.04814431 0.50 - 45.28
-12σ 0.61684225 4.56464691 13.15664172 0.50 36.42 -
+13σ 1.05898085 18.55938313 9.7791211 0.50 - 50.28
-13σ 0.65563624 6.75104672 13.26575246 0.50 43.05 -
+14σ 1.38429849 30.53451917 9.81548633 0.50 - 60.38
-14σ 0.64676717 7.86571885 14.40977024 0.50 48.68 -
+15σ 1.25080367 29.40070989 10.50239402 0.50 - 65.99
-15σ 0.61384886 7.7609579 16.11135059 0.50 52.79 -
+16σ 1.53367501 42.12073971 10.77521352 0.50 - 75.68
-16σ 0.65890112 10.64251973 15.75207881 0.50 60.55 -
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Table B.2: Fitting parameters OSEBX and DJIA

Index a b c

OSEBX −4.292 · 101 6.493 · 101 2.81 · 10−4

DJIA 2.379 · 102 1.352 · 10−3 5.531 · 10−4

Table B.3: Fitting parameters inverse statistics for stocks XTA and ABBN
from the high-frequency dataset

Stock ρ ν t0 β α τ ∗−|ρ| [min] τ ∗+|ρ| [min]

XTA +7σI 0.87701573 -0.46290237 2.38462193 0.50 - 3.55
XTA -7σI 0.85519002 -0.47585297 2.41261135 0.50 3.49 -

ABBN +7σI 0.89782871 0.29642801 3.48929756 0.50 - 6.58
ABBN -7σI 0.83172851 0.168488 3.6744856 0.50 6.48 -
XTA +7σ 0.85150773 5.27118889 7.58201821 0.50 - 24.29
XTA -7σ 0.67273629 1.78747218 8.79444356 0.50 21.70 -

ABBN +7σ 1.36582636 13.32014348 6.85209091 0.50 - 30.52
ABBN -7σ 0.85774461 5.61562724 7.96266239 0.50 27.43 -

Table B.4: Fitting parameters inverse statistics for the DJIA dataset

ρ ν t0 β α τ ∗−|ρ| [days] τ ∗+|ρ| [days]

+5σ 2.03958571 7.53374162 4.35134857 0.50 - 14.48
-5σ 0.77866472 -0.51224438 4.2947799 0.50 8.46 -

127


	Title Page
	Master.DVI

