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Abstract

It is of interest to construct windows that can spread the transmitted light in a specified
manner. The Kirchhoff approximation in the geometrical optical limit in combination
with a chosen general form of the window surfaces yields the profile for the window
surfaces, letting us specify how the light should be spread.

The probability distribution function for the slopes of a window surface consisting
of joined line segments was implemented in the simulation software Maxwell1D. Sim-
ulations show the feasibility of such windows. However they do not respond well when
subject to light incident with another angle of incidence than the angle in mind.

By using Snell’s law to compensate for using a simpler system, the time needed for
the simulations can be greatly reduced while simultaneously obtaining a higher accuracy
in the results.
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CHAPTER 1

Introduction

1.1 Overview
The reflection of light is a topic introduced early in science classes. At an introductory
level a perfectly flat surface is assumed. Upon making this assumption one will find that
the angle the incident light makes with the surface must equal the angle of the reflected
light. Furthermore, the angle of transmitted light can be calculated by Snell’s law [2].
Figure 1.1 shows this common assumption. In reality this is not so simple.

When you shine your flashlight on an object you expect it to appear illuminated.
This is the case for most objects in real life. If the surface of the object were perfectly
flat, however, you would only see that illumination by looking directly into the reflected
light. By looking at it from any other angle you wouldn’t see the illumination. In fact,
a large amount of the light does come back towards you which makes the object appear

Figure 1.1: Reflection from a flat surface. The incoming wave fronts on
the upper left are propagating in the direction of the arrow. As indicated,
the angles relative to the surface normal of the incident ant reflected light
are equal. The angle of the transmitted light may be different.
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1 Introduction

(a) (b)

(c) (d)

Figure 1.2: When the surface is perfectly flat, shown in (a), we have the
same situation as in Fig. 1.1. When the surface is rough the light is no
longer reflected in one direction but is spread in many directions with
varying intensity. As the roughness increases (from (b) to (d)) the light
becomes less and less directed. The plumes shown here exemplifies the
reflection from a small area on the surface.

brighter. This is because the surface of the object is rough.
In reality all surfaces are rough at some scale. For example, by touch it is simple

to assert that the surface of sandpaper is rough, in contrast to regular printing paper.
By looking at the printing paper under a microscope, however, one will notice that the
surface of the paper is indeed rough. When the surface of an object is rough the light
reflected by the object is sent in all possible directions with varying intensity. Figure 1.2
qualitatively shows the effect roughness will have on the reflection of light from a surface.
The rougher the surface is, the more spread out the reflected light becomes. The light
that is transmitted through a transparent object is also affected similarly.

Optical elements that manipulate light has many uses. A common example is the
lenses found in any camera or projector. Such lenses can be used to make corrections
for e.g. chromatic aberrations. The practical focus in this thesis will be windows that
can redirect light.

It is well known that ambient lighting can affect the human body in several ways. For
example, our metabolism is affected if we are exposed to high amounts of electric lighting.
This can lead to accelerated weight gain, because our cardiac rhythm is disturbed [3].
Research also shows that we prefer to work in lighting that follows the daylight cycle
instead of a constant level of light [4, 5].

Seasonal Affective Disorder is a mood disorder that affects otherwise mentally
healthy people. They can experience depressive symptoms if they are exposed to too
little or too much sunlight. Usually this happens during summers or winters but it can
also happen when one’s workplace is poorly lit [4, 5]. A high level of luminance is often
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1.1 Overview

Figure 1.3: A regular window. The light is incident on the glass and slightly
changes direction upon transmission into the glass. On exiting the glass
the same happens but in the opposite direction and the light continuous
on in the same direction as before being transmitted through the glass.

desirable, which is something normal daylight can easily provide.
Humans’ tolerance to light also differs depending on the type of light. We tolerate

a higher level of luminance if the light is natural. We also tolerate a lower level of
luminance given that the light is natural [4, 5].

From the above it is clear that there are both the possibility of and good reason to
investigate the concept of designing surfaces and windows in order to redirect incoming
light in a favourable manner. By design one can for instance make the surface of a
window so that part of the daylight from the outside is directed towards the ceiling of
the room inside. This may reduce the need for artificial lighting indoors, improving
indoor lighting conditions and possibly also saving energy.

In this thesis investigate the concept of windows whose behaviour we can control is
investigated. By choosing how the light should be transmitted, it is possible to calculate
how the surface should be constructed. Figure 1.3 illustrates a typical window. For all
practical purposes the light passes straight through it.

Consider the window in Fig. 1.4. The light transmitted through it is redirected to
the ceiling. This will distribute the ambient light in a favourable manner compared to
regular windows. In addition, the ceiling inside could be painted with a special paint
that aids in distributing the light further.

In my project thesis [6] I investigated the effect of roughness on the reflected light,
similarly to what is depicted in Fig. 1.1. In this thesis I will focus instead on the light
that is transmitted through an object with a rough surface. Instead of a system with two
media, as in Fig. 1.1, the system considered here consists of three media. Furthermore,
in this thesis the problem is investigated from “the other side.” Instead of focusing on
how the light is affected by changing the surface, we rather decide how the light should
be affected, and work backwards to construct the surface.

Studies investigating engineered surfaces have been performed before to some extent.
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1 Introduction

Figure 1.4: By designing the window we can make it reflect the light onto
e.g. the ceiling instead of passing straight through like in Fig. 1.3. This
will distribute ambient lighting efficiently in the room. Here the light is
redirected upward and spread unevenly.

Leskova et al. [7] considers a surface of consecutive grooves designed to uniformly reflect
normally incident light within a range of the angle of reflection. Maradudin et al. [1]
continued by looking at the transmission of light through a similar surface. Their results
will be compared with the results achieved here later.

The practical problem of windows in buildings has also received attention. One
advanced study was done by Lim and Kim [8] who did a thorough computer simulation
on the use of shading devices on an apartment building in an attempt to improve the
indoor lighting conditions. This is a very complicated solution. A simpler solution would
be to make windows redirect the light. A pursuit of such a design for windows was made
in this thesis in the form of numerical simulations solving the equations governing the
physical phenomena involved. The next section provides a overview of the parts of the
electromagnetic theory needed.

The numerical simulations will rely on generation of randomly rough surfaces. These
surfaces will play the role of the window surfaces. Chapter 2 provides a review of such
randomly rough surfaces and the method of generating a random surface is discussed.

The numerical simulations and the results thereof are discussed in Chapter 3. A
summary and a short discussion on future work is found in Chapter 4.

1.2 Theory
1.2.1 Maxwell’s equations
The topic of this project falls entirely under the scope of classical electromagnetism.
The fundamental equations in this field are Maxwell’s equations. They only hold in
vacuum and for a collection of point charges. In matter there can typically be many
charges which complicate the solutions. By introducing quantities representing the point
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1.2 Theory

charges collective behaviour, Maxwell’s equations can be written as [2]:

∇ ·D = ρ, (1.1a)
∇ ·B = 0, (1.1b)

∇× E = −∂B
∂t
, (1.1c)

∇×H = J + ∂D
∂t

. (1.1d)

The vector fields E and H are called the electric field and the magnetic field respectively,
and these are the fields that combined give the electromagnetic field. The vector fields
D and B are called the electric displacement and the magnetic induction respectively.
The fields D and H are the fields introduced to represent the collective behaviour of the
point charges. The quantities ρ and J are the free charge density and the free charge
current density respectively.

1.2.2 Constitutive relations
Since the fields D and H were introduced to deal with the collective behaviour of many
point charges there are relationships between D and E, and between H and B. These
are the constitutive relations [2]:

D = εE = εrε0E (1.2a)
B = µH = µrµ0H (1.2b)

Here ε0 and µ0 are called the vacuum permittivity and vacuum permeability respectively.
The quantity ε0 is found experimentally while µ0 is defined. They are

ε0 ≈ 8.854× 10−12 F m−1

and
µ0 ≡ 4π × 10−7 H m−1.

The factors εr and µr are dimensionless quantities which are the ratios between the
permittivities and permeabilities in the current medium and in vacuum. In the most
general case, these are tensors which can depend on any number of physical attributes.
In this thesis, however, they are scalars and may depend on the frequency of the incoming
light.

1.2.3 The wave equation
All waves obey what is called the wave equation. It can be written

∂2A

∂t2
= v2∂

2A

∂x
,
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1 Introduction

in the one-dimensional case. The quantity A is the amplitude of the wave. What this
represents physically depends on the type of wave. For e.g. sound waves it is the
difference in air pressure from the ambient pressure. For electromagnetic waves it is the
strength of the electric or magnetic field. The quantity v is the propagation speed of the
wave. For sound waves this is typically 343 m s−1 while for electromagnetic waves it is
the speed of light. A similar equation for the electromagnetic field can be derived with
the help of Eq. (1.1).

In media where there are no free charges and no free current, Eq. (1.1a) reduces
to ∇ ·D = 0. This also means that we can simply substitute D with E/ε and H with
µB. This gives ∇ · E = 0 and Eq. (1.1d) becomes ∇ × B = µε∂E

∂t
. From Eq. (1.1a)

we know that applying the vector identity in Eq. (A.1) on the electric field will yield
∇×∇× E = ∇2E. Further, by Eq. (1.1c):

∇×∇× E = ∇×
(
−∂B
∂t

)
= −∇×B

= −εµ∂
2E
∂t2

By then combining the results we arrive at

∇2E = εµ
∂2E
∂t2

(1.3)

which is the wave equation for the electric field. This shows that the electric field can
propagate as a wave. Its speed is 1/√εµ or c/√εrµr where c is the speed of light in
vacuum. The equivalent equation for the magnetic induction can be found by applying
the same vector identity used above to Eq. (1.1d).

One possible solution to Eq. (1.3) is

E = E0 exp(ik · r− iωt),

which is a plane wave with wave vector k and angular frequency ω. The wave vector
gives the direction the wave is propagating in as well as its wavelength λ = |k| /2π. If
and only if

|k|2 = εµ
ω2

c2 (1.4)

is fulfilled, is the solution proposed above a proper solution. This is called the dispersion
relation for a wave in a homogeneous medium. Since ∇ ·E = 0 it is a requirement that
r×E0. This means that the electromagnetic wave is a transverse wave. Furthermore it
can be shown that

B0 = k

ω
(r× E0)

which shows that E and B are perpendicular to each other and that they must be in
phase. When considering scattering from a surface it is convenient to express k as a sum
of two vectors where one is perpendicular to the surface and the other is parallel to it,

k = k⊥ + k‖.
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They are therefore also perpendicular to each other. By aligning the chosen coordinate
system to these vectors we write k2 = k2

⊥+k2
‖. Inserting this into the dispersion relation

yields
k2
⊥ + k2

‖ = εµ
ω2

c2 .

It is possible for either of the two components to grow larger than |k| itself. In that case
the other component will be imaginary resulting in an evanescent wave in that direction,
meaning that the wave will decrease in amplitude exponentially as it propagates through
the medium. Here, k⊥ may become imaginary whereas k‖ stays real.

1.2.4 Boundary conditions
When an electromagnetic wave arrives at a boundary between two media it is subject to
boundary conditions. From Maxwell’s equations certain relations can be derived which
impose requirements on the electromagnetic field at the boundary. For this purpose the
integral form of Maxwell’s equations is useful [2] and they read:∮

S
E · dA = Q, (1.5a)∮
S

B · dA = 0, (1.5b)∮
∂S

E · dl = − d
dt

∫
S

B · dA, (1.5c)∮
∂S

H · dl = I + d
dt

∫
S

D · dA. (1.5d)

In the first two equations S is any closed surface and Q is the charge enclosed by it. In
the last two equations S is any surface (not necessarily closed) with circumference ∂S
and I is the free current passing through ∂S. Griffiths [2] shows that

D⊥1 −D⊥2 = σf (1.6a)
B⊥1 −B⊥2 = 0 (1.6b)
E‖1 − E‖2 = 0 (1.6c)

H‖1 −H‖2 = Jf × n̂ (1.6d)

where σf is the charge density, Jf is the current density and n̂ is a unit vector pointing
from medium 2 to medium 1. We see in Eqs. (1.6b) and (1.6c) that E‖ and B⊥1 are
continuous at the boundary, while H‖1 and D⊥1 are discontinuous as shown in Eqs. (1.6a)
and (1.6d).

1.2.5 Polarization and the Fresnel equations
Polarization refers to the orientation of the electric and magnetic fields relative to the
plane of incidence, which is the plane spanned of the normal vector of the interface and
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the wave vector of the incident light. In all the figures shown in the previous section the
plane of incidence is therefore the plane of the paper.

The polarization of light can take several forms. In this thesis we will concern
ourselves with two. One is when electric field is parallel to the plane of incidence and
the magnetic field is normal on the plane of incidence. This is called p-polarization. The
other polarization is when the electric field is normal on the plane of incidence and the
magnetic field is parallel to the plane of incidence. The light is then s-polarized.

Throughout the symbol ν will indicate the polarization of the light discussed at
that point. We write either ν = p or ν = s. When ν itself appears as a subscript it
indicates that it holds for both forms of polarization.

The index of refraction for a medium is defined as

n = √εr µr.

When light is incident on an interface between two media with different indices of refrac-
tion, the reflection and transmission coefficients give the ratios between the intensities
of the reflected and transmitted light, and the intensity if the incident light. They are
usually denoted by R and T respectively, and can be calculated by the Fresnel equations
[2]. If the incoming light is p-polarized the reflection coefficient is given by

Rp =
(
n1 cos θt − n2 cos θ0

n1 cos θt + n2 cos θ0

)2

(1.7a)

and if the light is s-polarized it is given by

Rs =
(
n1 cos θ0 − n2 cos θt

n1 cos θ0 + n2 cos θt

)2

. (1.7b)

In both cases the transmission coefficient T is simply calculated by

Tν = 1−Rν . (1.7c)

In the equations above n1 and n2 are the refractive indices for media 1 and 2.

8



CHAPTER 2

Randomly rough surfaces

2.1 Overview of the system
The type of system we are working with in this project is presented in Fig. 2.1. There are
three media in this system, each with its own relative permittivity which are labeled εr,1,
εr,2 and εr,3. The interface between media 1 and 2 is a flat surface, parallel to the x1-axis
while the interface between media 2 and 3 is rough. The latter interface is described by
the function ζ(x1) so that the height of a point on the interface is given by x3 = ζ(x1).
This function is called the surface profile function. Section 2.3 goes into more detail.

The upper interface is illuminated by a plane wave with the x1x3-plane being its
plane of incidence. Its wave vector is k. The transmitted light has the wave vector q.
The x1-component of the wave vectors k and q are in the following referred to as k and
q and they are

k = ω

c

√
ε1 sin θ0, (2.1)

q = ω

c

√
ε3 sin θt. (2.2)

For the most part the system in Fig. 2.1 will approximate a window. Medium 1 will
represented the outside of the windows since this is where the light source is located.
This means that the inside of the window is rough and the outside is smooth.

Most windows are vertically oriented, meaning that Fig. 2.1 shows a rotated view.
Note then, that a negative angle of incidence θ0 corresponds to incident light from above,
e.g. from the sun. Most of the simulations presented here will feature a negative angle
of incidence.

We approximate air and glass by choosing εr,1 = εr,3 = 1.01 and εr,3 = 2.31.
Furthermore we assume that all three media are completely non-magnetic, i.e. that
µr,1 = µr,2 = µr,3 = 1.
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2 Randomly rough surfaces

Medium 1

Medium 2

Medium 3 x3 = ζ(x1)

k
k⊥x̂3

k‖x̂3 θ0

q
θt

x3

x1

εr,1

εr,2

εr,2

Figure 2.1: An overview of the system considered in this thesis. The
incident plane is the x1x3-plane. A flat surface is parallel to the x1-axis,
forming the interface between media 1 and 2. Below it, a rough surface
described by x3 = ζ(x1) forms the interface between media 2 and 3. The
incoming wave vector is k with components k⊥ and k‖ as indicated. The
wave vector of the reflected light is q and is decomposed similarly. The
x1-component are commonly called k and q. The angle of transmission is
measured relative to the x1-axis.

In the notation used above the relative permittivities have carried the “r” subscript
for consistency with the notation used in Section 1.2. Going forward, the relative permit-
tivities will appear often. For convenience they will from now on be referenced without
the additional subscript, so that εi is the relative permittivity of medium i.

2.2 Mean Differential Transmission Coefficient
The goal is to design windows that will improve indoor lighting conditions. This means
that the window must be able to transmit light unlike normal windows. Controlling
how light is transmitted through an object essentially means controlling its transmission
coefficient.

The Mean Differential Reflection and Transmission Coefficients (MDRC andMDTC)
give the average intensity of the reflected and transmitted light, respectively, as a func-
tion of the angle of incidence and the angle of reflection/transmission. The averaging
is done over an ensemble of statistically identical systems. These are the properties we
want to control. The MDTC, is defined as [9]:〈

∂Tν
∂θt

〉
(q|k) = 1

L1

ε3√
ε1

κν
µν

ω

2πc
cos2 θt

cos θ0

〈
|Tν(q|k)|2

〉
. (2.3)
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2.2 Mean Differential Transmission Coefficient

The parameters κν and µν depend on the polarization, as indicated by their subscripts.
Later on a third factor, λν , will also be present. For p-polarized light, ν = p, we
have kp = ε1, λp = ε2 and µp = ε3. When the incident light is s-polarised we have
ks = λs = µs = 1.

The length of the system in the x1-direction appears as L1 and Tν(q|k) is the trans-
mission coefficient of light whose wave vector’s x1-component is k and transmitted light
where the x1-component is q. The angle brackets 〈·〉 denote averaging over an ensemble
of surfaces.

By specifying the shape of the mean differential transmission coefficient we are in
effect specifying the properties of the light that is transmitted. We can e.g. decide
that the direction of the light should be shifted 10◦ upon passing through the system
or that all the transmitted light should be normal to the window no matter the angle
of incidence. This is specified by providing a function of the angle of transmission
describing the desired shape of the MDTC.

If the system being investigated does not absorb energy, i.e., Im ε = 0, then all
the incident light is either reflected or transmitted. If this is the case then the relative
reflection and the transmission energies should sum up to 1:∫ π/2

−π/2

〈
∂Rν

∂θs

〉
dθs +

∫ π/2

−π/2

〈
∂Tν
∂θt

〉
dθt = 1,

where θs is the angle of reflection and θt is the angle of transmission. This is used to
check the validity of the simulations. The value obtained by evaluating the left-hand
side will be referred to as the unitarity of the simulation. A value closer to 1 suggests
more accurate results.

As can be seen in Fig. 2.1, θ0 is the angle of incidence and θt is the angle the
transmitted light forms with the normal of the surface. The surfaces discussed are
constructed with a specific angle of incidence in mind which will be referred to as the
incident angle of design and denoted θ0,d. That is, the surfaces are supposed to yield the
wanted MDTC if θ0 = θ0,d. The last angle is the transmission angle of design, θt,d. This
is a parameter to the MDTCs. The interpretation of this angle depends on the specific
MDTC.

One possible shape for the MDTC is〈
∂Tν
∂θt

〉
(q|k) = C cosn(θt − θt,d) (2.4)

where θt,d is a chosen value and n is a positive integer. The transmission angle of design
here specifies the angle of transmission at which the MDTC has a maximum. This
function in fact corresponds to the drop shape seen in Fig. 1.4 when n = 9 and θt = 30◦.
This specific MDTC is one possible choice. Which MDTC is used pertains little to the
overall objective of this thesis, but I will use this one with n = 9 in order to compare
my results to that of Winjum [10].

The MDTC above will ideally redirect all of the light toward the ceiling thus ren-
dering the window impossible to see through. An alternative is to diffuse a part of the
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2 Randomly rough surfaces

light while the rest passes through as if the window were perfectly normal:〈
∂Tν
∂θt

〉
(q|k) = C1 cosn(θt − θt,d) + C2δ(θt − θ0,d) (2.5)

The function δ(θ) is the Dirac delta function and contributes only when the angle of
incidence equals the angle of transmission, mimicking a normal window. When these
angles are equal the other term is very small. The factors C1 and C2 can be set to
adjust how the total intensity is spread, for example 40 % of the light can be redirected
and 60 % can pass straight through. This MDTC is not very interesting, however. It
is probably easier to let only part of the proposed window have redirection properties.
This also solves the issue of not being able to see through the window. This MDTC will
therefore not be discussed further, but mentioned to illustrate the possibility.

Another MDTC which will be considered is〈
∂Tν
∂θt

〉
(q|k) = C1u(|θd| − θt). (2.6)

where u(θ) is the Heaviside step function. This gives constant transmission from θt = −θt,d
to θt = θt,d and zero transmission outside this interval.

Figure 2.2 shows the MDTCs displayed in Eqs. (2.4) and (2.6) for θt,d = 40◦ and
θt,d = 7◦, respectively. The former MDTC looks very different in a plot like this compared
to Fig. 1.4 which gives a more intuitive picture of the same function.

We still need to tie our choice of MDTC to the description of the window. This
is done by the Kirchhoff approximation. Recall that Section 2.1 introduced the surface
profile function ζ(x1). Assuming that the rough surface of the window is described by
that function, then by the Kirchhoff Approximation and the method of stationary phase
[11]: 〈

|Tν(q|k)|2
〉

=
∣∣∣T (0)
ν (q|k)

∣∣∣2
×
∫ ∞
−∞

dx1

∫ ∞
−∞

dx′1e−i(q−k)(x1−x′
1)
〈
ei[α3(q)−α2(k)][ζ(x1)−ζ(x′

1)]
〉
.

so that the MDRC becomes〈
∂Tν
∂θt

〉
(q|k) = 1

L1

ε3√
ε1

κν
µν

ω

2πc
cos2 θt

cos θ0

∣∣∣T (0)
ν (q|k)

∣∣∣2
×
∫ ∞
−∞

dx1

∫ ∞
−∞

dx′1 e−i(q−k)(x1−x′
1)
〈
ei[α3(q)−α2(k)][ζ(x1)−ζ(x′

1)]
〉
.

(2.7)

The definition of the factor T (0)
ν (q|k) is found in Eq. (2.8.57) in Designer Surfaces

[11]. Recall that the x3-component of the wave vectors are not necessarily real. In the
equations above the quantities αi are defined by

αi(k) =
[
εi

(
ω

c

)2
− k‖

] 1
2

, Re ai(k) ≥ 0, Imαi(k) ≥ 0, (2.8)
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0

0.2

0.4

0.6

0.8

1

1.2

−20◦ 0◦ 20◦ 40◦ 60◦ 80◦ 100◦

〈 ∂T
ν

∂
θ t

〉

θt

Eq. (2.4)
Eq. (2.6)

Figure 2.2: Mean differential transmission coefficient as functions of θt.
The two MDTCs presented are 〈∂Tν/∂θt〉 = cos9(θt−40◦) and 〈∂Tν/∂θt〉 =
u(7◦−|θt|) corresponding to Eqs. (2.4) and (2.6) for θ0,d = 40◦ and θ0,d = 7◦
respectively.

and express the x3 components of the wave vector in medium number i. Equation (2.9)
is given as an integral over x1 which makes it impossible to invert. Let x′1 = x1 + u
so that x1 and x′1 are two points separated by the distance u. The difference in value
of the surface profile function can then be approximated by ζ(x1) − ζ(x′1) ≈ −uζ ′(x1).
Inserting this gives [10, 11]〈

∂Tν
∂θt

〉
(q|k) = 1

L1

ε3√
ε1

κν
µν

ω

2πc
cos2 θt

cos θ0

∣∣∣T (0)
ν (q|k)

∣∣∣2
×
∫ ∞
−∞

dx1

∫ ∞
−∞

du e−i(q−k)u
〈
e−i[α3(q)−α2(k)]uζ′(x1)

〉
.

(2.9)

We now have the MDTC as a function of (among other things) the surface profile
function.

2.3 The surfaces
There are many ways to construct randomly rough surfaces. One possible method is the
method used in my project thesis [6] where the height of any point above the mean height
is drawn from a Gaussian distribution and filtered through a desired power spectrum.
Another way is constructing the surface as a series of trapezoidal grooves. This was
done by Maradudin et al. [1] whose results will be compared with results achieved here.
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The surfaces we concern ourselves consists of several joined line segments connected
so that the surfaces become continuous. Figure 2.3 illustrates such a surface. A line
segment is called a facet whose length is d in the x1-direction. The length d will from
here on be called the facet size. The surface profile function can then be written as

ζ(x1) = anx1 + bn, dn < x1 < d(n+ 1). (2.10)

where an is the slope of line segment number n and bn is that line segment’s intercept
with the x3-axis. The slopes an will be drawn from a probability distribution and
the intercepts bn are chosen afterwards so that the surface becomes continuous at the
junctions between successive line segments. The probability function for the an is what
we want to find.

As we saw in Section 2.2 the MDTC is dependent on the function describing the
rough surfaces. For simplicity, let I be the product of the two integrals in Eq. (2.9).
Inserting Eq. (2.10) gives

I =
∫ ∞
−∞

dx1

∫ ∞
−∞

du e−i(q−k)u
〈
e−i[α3(q)−α2(k)]uζ′(x1)

〉
=
∫ ∞
−∞

du e−i(q−k)u
Ns−1∑
n=−Ns

∫ d(n+1)

dn
dx1

〈
e−i[α3(q)−α2(k)]uan

〉
.

where Ns is the number of facets the surface consists of. The slopes an are as mentioned
drawn from a distribution which, we will call f(γ). Replacing an with its distribution
gives

I =
∫ ∞
−∞

du e−i(q−k)u
Ns−1∑
n=−Ns

∫ d(n+1)

dn
dx1

∫ ∞
−∞

dγ f(γ)e−i[α3(q)−α2(k)]uγ. (2.11)

Integration over x1 is trivial and gives the length of the surface L1. Integration over
u gives a delta function since u only occurs in exponential function whose argument is
imaginary. We are then left with

I = 2Nsd
∫ ∞
−∞

dγ f(γ)2πδ(q − k − [α3(q)− α2(k)]γ)

= 4πL1

|α3(q)− α2(k)|f
(

q − k
α3(q)− α2(k)

)
.

(2.12)

x1

ζ(x3) = anx1 + bn

nd (n+ 1)d

Figure 2.3: Illustration showing how the surfaces are constructed. The
surfaces consist of a number of joined line segments, each of which has a
slope an drawn from a probability distribution function and an x3-intercept
bn. The line segments in the x1-direction are all equal and denoted d.
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Combining with result with Eq. (2.9) gives〈
∂Tν
∂θt

〉
(q|k) = ε3√

ε1

κν
µν

cos2 θt

cos θ0,d

∣∣∣T (0)
ν (q|k)

∣∣∣2∣∣∣√ε3 cos θt −
√
ε2 − ε1 sin2 θ0,d

∣∣∣
×f

 √
ε3 sin θt −

√
ε1 sin θ0,d

√
ε3 cos θt −

√
ε2 − ε1 sin2 θ0,d

 .
(2.13)

A long and complicated derivation, done by Winjum [10], gives after inverting:

f(γ) = (λν
√
ε1 cos θ0,d + κνr)2

λν
√
ε1 cos θ0,d

µν
κν

∣∣∣∣∣ 1
1 + γ2

[
γ(γr − s) +

√
(1 + γ2)ε3 − (γr − s)2

]
− r

∣∣∣∣∣
3

×

∣∣∣(ε2 − λν
µν

(λν
µν
− 1) 1

1+γ2

[
γ(γr − s) +

√
(1 + γ2)ε3 − (γr − s)2

]∣∣∣2∣∣∣{ 1
1+γ2

[
γ(γr − s) +

√
(1 + γ2)ε3 − (γr − s)2

]
− 1

2(ε2 + ε3)
}
− 1

4(ε2 − ε3)2
∣∣∣2

×
〈
∂Tν
∂θt

〉
(γ).

(2.14)

The variable γ is defined by

γ =
√
ε3 sin θt −

√
ε1 sin θ0,d

√
ε3 cos θt −

√
ε2 − ε1 sin2 θ0,d

.

In addition, r and s are defined by

r =
√
ε2 − ε1 sin2 θ0,d

and
s = √ε1 sin θ0,d.

In the end we have an expression for the probability distribution of the slopes, partly
defined by the MDTC. We can then “plug in” our desired MDTC to give the needed
probability density function, after writing the MDTC in terms of γ instead of θt. For
example, Eq. (2.4) becomes〈

∂Tν
∂θt

〉
(q|k) =C

(
cos θt,d√
ε1(1 + γ2)

[
γ(γr − s+

√
(1 + γ2)ε3 − (γr − s)2)

]

+ sin θt,d√
ε1(1 + γ2)

[
−(γr − s) + γ

√
(1 + γ2)ε3 − (γr − s)2

])9

,

since [10]

cos θt = 1
√
ε3(1 + γ2)

[
γ(γr − s) +

√
(1 + γ2)ε3 − (γr − s)2

]
,

sin θt = 1
√
ε3(1 + γ2)

[
−(γr − s) + γ

√
(1 + γ2)ε3 − (γr − s)2

]
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Figure 2.4: The probability distribution f(γ) shown in Equation (2.14)
plotted for the most studied system in this thesis characterized by ε1 =
ε3 = 1.01 and ε2 = 2.31. Furthermore the polarization was p, the angle of
design θt,d = 30◦ and θ0,d as indicated in the legend.

The constants in Eq. (2.4) and Eq. (2.6) have been arbitrarily chosen to be 1 throughout.
It is important to note that because of this the expression for f(γ) in Eq. (2.14) is
generally not normalized. Because the random numbers used are selected by the rejection
method (see Section 2.4) this does not matter. As long as the auxiliary function’s area
and domain is larger, the rejection method will work. In all the plots shown here, a
normalized f(γ) is displayed, i.e., what is plotted is actually f(γ)/A where A is the area
under f(γ).

How the probability distribution function f(γ) appears depends on which MDTC
is used. Figure 2.4 shows Eq. (2.14) for the system we will study the most in this thesis.
Media 1 and 3 are air, and medium 2 is glass, i.e. ε1 = ε3 = 1.01 and ε2 = 2.31. The
angle of incidence θ0,d is varied from 0◦ to 30◦. The MDTC used was Eq. (2.4) with the
parameter θt,d set to 0◦.

There is a very noticeable shift in f(γ) when θ0,d is changed. When θt,d is held
constant and θ0,d is changed, however, there are very minute differences. In Fig. 2.5
f(γ) is plotted for θt,d = 15◦ and θt,d = 30◦, along with the difference between them.

The difference itself appears to be very similar to f(γ) except of course for the region
where it is negative. It will be interesting to see if such a small difference can actually
affect the transmission properties of the surface to the degree f(γ) it is supposed to.

Figure 2.6 shows the same probability distribution function, but where Eq. (2.6)
is used as the MDTC. The relative permittivities are the same and θ0,d = 0◦. Un-
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Figure 2.5: The probability distribution f(γ) shown in Equation (2.14)
when θ0,d = 15◦ and θ0,d = 30◦. In addition the difference is plotted.
The two distributions are very similar, and the difference between them
resembles them as well.

surprisingly the probability density function (pdf) for the segment slopes is completely
symmetrical. This is reasonable since the actual MDTC the surface should produce is
symmetrical. Furthermore the pdf is centered on γ = 0. This is also understandable
since the desired MDTC is centered on the normal to the surface, i.e. it is centered on
θt = 0◦. The pdf also has the general shape of the desired MDTC itself, but with a
slight dip on the top.

Drawing random numbers from f(γ) yields the slopes of the line segments. If the
mean of the distribution is zero then we expect the constructed interface to be flat on
average. Figure 2.7 shows a system when the MDTC shown in Eq. (2.6) was used to draw
20 such numbers. The lower line in the figure is the interface produced by connecting
20 line segments (Eq. (2.10)) and has been shifted downwards by five micrometres. The
upper lines is the flat interface, as described in Section 2.1.

The probability distributions shown in Fig. 2.4 clearly have a mean value unequal to
zero. In this case the mean slope of the generated interface must also be unequal to zero.
Figure 2.8 is similar to Fig. 2.7 but where the MDTC has been specified to be Eq. (2.4)
with θt,d = 15◦. This gives a mean slope to the lower interface. The lower interface
has been offset by 20 µm downwards. Eq. (2.10) itself has no facilities for adjusting the
mean value of the surface profile function ζ(x1) directly. The surfaces are therefore offset
manually.
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Figure 2.6: The probability distribution f(γ) shown in Equation (2.14)
plotted with the following parameters: ε1 = ε3 = 1.01, ε2 = 2.31, ν =
p, θ0,d = 0◦ and θt,d as indicated. Note that all three distributions are
centered on γ = 0 and are symmetric.

-20

-15

-10

-5

0

5

-40 -30 -20 -10 0 10 20 30 40

x
3
/

µm

x1 / µm

Figure 2.7: This is one realization of a system generated by the simulation
software. The upper interface is completely flat. The lower interface is
randomly generated by the method outlined in Section 2.2, using Eqs. (2.6)
and (2.14). The lower surface has been offset downwards by 5 µm. It
consists of 20 facets, each 10 λ long, and is designed to transmit normally
incident light evenly between θt = −7◦ and θt = 7◦.
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Figure 2.8: Similar to Fig. 2.7 but where the MDTC shown in Eq. (2.4)
has been used. The angles used are θ0,d = 0◦ and θt,d = 15◦. The lower
surface has been offset downwards by 20 µm.

2.4 The rejection method
The rejection method is one of several algorithms used to draw random numbers that
follow from a specified probability distribution. This method is the one employed by
the simulation software used in this thesis. In the following p(x) denotes a probability
distribution so that p(x) dx is the probability of x being between x and x+ dx.

The advantage of the rejection method is that we do not need to know the cu-
mulative distribution function accurately, nor its inverse. This allows for sampling of
probability distribution functions that have very complicated shapes. To provide this ad-
vantage the rejection method uses an auxiliary function g(x) which is a simpler function
whose cumulative inverse we do know. The function g(x) should be defined and larger
than p(x) everywhere p(x) is defined. The ratio g(x)/p(x) is then necessarily always
larger than one. Let the ratio’s largest value be called c, that is, c = max(g(x)/p(x)).

The algorithm for drawing a random number from the probability density function
p(x) is as follows: Generate two random numbers. One number is from U(0, 1), which is
the uniform distribution between zero and one. Call that number u. The other number
is drawn from g(x) by any method and is called x′. If ucg(x′)

p(x′) ≤ 1 then accept x′ as a
random number drawn from p(x). If not, draw new numbers u and x′ and repeat the
above. The method is summarized in Algorithm 1.

An interpretation of the rejection method is that we randomly draw a point in the
area under g(x). If that point happens to be within the area of p(x) as well we accept
the x-coordinate as correctly drawn from p(x). If not, we draw a new number under
g(x).

It is easier to understand the interpretation above if we choose g(x) as a constant,
e.g. 1.1 × max(p(x)). Drawing a number from g(x) will be the same as drawing a
number from U(a, b) where a and b are the ends of g’s domain. The ratio between the
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Figure 2.9: An overview of the rejection method. The function p(x) is a
probability distribution whose integral is difficult to describe analytically.
The function g(x) is a simpler function whose domain is a superset of that
of p(x) and is larger than p(x) everywhere p(x) is defined. This means that
the area under g(x) is larger than that under p(x).

Algorithm 1: The rejection method
Input: None
Output: A random number x drawn from p(x)
repeat

u = U ∼ U(0, 1);
x′ = X ′ ∼ g(x);

until ucg(x
′)

p(x′) ≤ 1 ;
x← x′;

distributions’ maximum values c will be 1.1. The test ucg(x′)/p(x′) ≤ 1 becomes

uc
g

p(x′) ≤ 1,

uc ≤ p(x′)
g

.

Understandably, the efficiency of this method is highly dependent on the choice
of the auxiliary function g(x). The closer to p(x) the auxiliary function is, the fewer
numbers have to be rejected on average before successfully drawing a random number.

Interestingly, the area under the actual probability density function does not have
to be equal to 1, either. Whether a number is accepted or not depends on the ratio
between the probability distribution function and the auxiliary function, not on the
areas under them.
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Figure 2.10: Similar to Fig. 2.9 but here g(x) is constant and slightly larger
than the largest value of p(x).
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CHAPTER 3

Results

3.1 Preliminary work
In order to familiarize myself with the probability density function Eq. (2.14) and the
rejection method (Section 2.4) I wrote a small program in Python to plot this func-
tion and some MDRCs. This program also uses the rejection method to draw random
numbers. It is called rejection.py and is available in the accompanying zip archive.

Winjum [10] gives separate expressions for the general f(γ), i.e., Eq. (2.14) and
an equivalent distribution for the specific case where the angle of incidence θ0 is equal
to zero. The program rejection.py includes both these expressions and I have
confirmed that Eq. (2.14) overlaps with the special case when θ0 = 0◦.

The plot in Fig. 3.1 shows f(γ) for the angles θ0,d = −30◦ and θt,d = 30◦. The
auxiliary function used was g(γ) ≡ 1.1 max f(γ). This is a very inefficient choice for the
auxiliary function given the shape of f(γ). But drawing these 1 000 000 numbers took
approximately 30 s which is dwarfed by the time the actual simulations spend.

The tool Maxwell1D to perform the simulations. This is a piece of software written
in Fortran 90 by my supervisor Ingve Simonsen. It takes a text file as input consisting of
various parameters and generates a NetCDF data file containing the simulation results.

The distribution given by Eqs. (2.4) and (2.14) were not initially supported by
Maxwell1D. After receiving the source code from my supervisor I added the support
for this function and the wanted MDRCs to the source code and recompiled the program.
The Python program I wrote was of great help in checking that everything was working
correctly since it was much easier to handle and debug. After confirming that the Python
program produced the correct results, the mathematical portion of the code was easily
adjusted and incorporated into the Fortran 90 source code.

I wrote several small utility scripts in Bash and Python to aid in batch generation of
configuration files, running Maxwell1D in parallel and producing flat files for plotting
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Figure 3.1: The green curve is the probability distribution f(γ) given in
Eq. (2.14) with the MDTC given by Eq. (2.4) for the following parameters:
ε1 = ε3 = 1.01, ε2 = 2.31, ν = p, θ0,d = −30◦ and θ0,d = 30◦. The
histogram was generated from 1 000 000 randomly drawn numbers by the
rejection method and is shown in red.
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Figure 3.2: The Kirchhoff approximation shown in Eq. (A.2) plotted with
the following parameters: ε1 = ε3 = 1.01, ε2 = 2.31 and θ0,d = θt,d = 0◦.
The MDTC used was Eq. (2.4). Notice the cutoffs at each end of the
curves. The inset shows a close-up view of the MDTC dropping to zero on
the left. The cutoff on the right side is entirely equivalent to the one on
the left.

via Maxwell1D_Plot. These are also available in the accompanying zip archive.
The Kirchhoff approximation can give an expectation of the results of a simulation.

Its full expression is given in Eq. (A.2). Figure 3.2 shows the approximation for most
common system in this thesis, where ε1 = ε3 = 1.01 and ε2 = 2.31. The approximation
is the same for both polarizations.
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Figure 3.3: The Kirchhoff approximation plotted for the same parameters
as in Fig. 3.2 but for different angles of design θt,d. The cutoffs remain the
same for all angles. The angle of incidence θ0,d used here is −30◦. Note
also that the upper cutoff has shifted to the left compared to the upper
cutoff in Fig. 3.2. This is because the incident angle of design was reduced
to −30◦.

The cutoffs depend on the angle of incidence and is symmetrically placed around it.
For all angles of incidence the cutoffs are approximately θ0,d ± 48.34◦. Figure 3.3 shows
the Kirchhoff approximation for various θt,d. The cutoffs remain the same and for high
θt,d the resulting approximation becomes quite different from a cos9 θ function.

Since the Kirchhoff approximation is a rather crude approximation I don’t expect
to see such sharp cutoffs in practice.

3.2 Simulation overview
It is computationally easier to calculate the average scattering of many small surfaces
compared to fewer but larger surfaces. The number of surfaces used affects the results
greatly. In the following I have mostly used either 5000 or 10 000 surfaces, all of which
are statistically identical to each other within one simulation. Each surface was for the
most part 5 facets long. The facet size d mentioned in Section 2.3 has mostly been
chosen to be 10λ. Some simulations were run with d = 20λ.

The surfaces are discretized. It would be tempting to suggest just a few points per
facet since they are perfectly straight lines. But to capture the physics properly the
resolution of the surface discretization must be significantly less than one wavelength.
In most of the simulations performed the horizontal length between two adjacent dis-
cretization points was λ/5. Some simulations were run with a discretization of λ/10
but this significantly increased the time spent on one simulations while only yielding
negligible improvements in accuracy.

Some simulations were also run with an iterative solver (BCGStab [12].) For the
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simulations run in this thesis that method was very volatile as to whether it converged
or not. While it did vastly improve the average speed of the simulations, just a slight
shift in a parameter might hinder convergence. Based on how long most simulations
typically took the iterative solver remained mostly unused.

Finally, the number of simulations actually run is much higher than what will
be presented in the following sections. Many simulations were run with errors, or as
duplicates of other simulations with a different seed number to the random number
generator the program uses.

The results are presented as plots of 〈∂Tν/∂θt〉 as a function of θt. The values
of other parameters accompany each plot. Also indicated is the approximation in the
geometrical optical limit of the Kirchhoff approximation the design of each surface was
based on.

3.3 Results

3.3.1 Comparison with the results of Maradudin et al. [1]
In 2001 Maradudin et al. [1] published an article showing the results of a simulation
where surfaces were designed to transmit light uniformly within a certain range of the
angle of transmission. The MDTC used was Eq. (2.6) where θt,d = 7◦. In that article
the surfaces were generated by another method than the one described in Section 2.3.
Instead of a series of connected line segments the surfaces were a series of trapezoidal
grooves. The grooves were equal in height and characterized by the slope of their walls.
Consequently the expression for f(γ) is very different. The theory behind the derivation
of f(γ), however, remains the same.

Figure 3.4 shows results obtained by Maradudin et al. [1] for a system where the
lower interface (i.e. between media 2 and 3) was generated in the manner outlined above.
The system is different from what we have been discussing in other features, as well. The
upper medium was characterized by a relative permittivity of 2.25. The second medium
was a photoresist where ε2 = 2.69 while the last medium was vacuum, i.e. ε3 = 1. This
system was designed to transmit normally incident light uniformly between θt = −7◦
and θt = 7◦ and achieved this very well. The calculated MDTC closely follows the
approximation (labelled “Geo. Optics” in the figure.)

A simulation was run which was virtually identical to that shown in Fig. 3.4 except
the surfaces where generated by the method outlined in Section 2.3 with a facet size
of 10λ. The results are shown in Fig. 3.5 and are very similar. This is interesting
since, as mentioned, the surfaces in these two simulations are generated using different
methods. Since both methods use statistical representations that are derived from the
wanted MDTC, ideally the results should be exactly the same. That the results achieved
here agree to this extent with Maradudin et al. [1] suggests that the implementation of
Eqs. (2.6) and (2.14) into Maxwell1D works properly.

Recall that the unitarity can be used a measure of the accuracy of the numerical
simulations. The unitarity achieved in this simulation was 0.999, which is very good.
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Figure 2. (a) The mean differential transmission coefficient for s-polarized (plane wave) light of wavelength A =
612.7nm (in vacuum) incident normally on the structure depicted in Fig. 1. The dielectric constants of the layers
consituting this structure are e = 2.25, e2 = 2.69, (3 = 1, and the mean thickness of the film is H = 5gm. The
solid curve is the result of rigorous Monte Carlo simulations, while the dashed curve is the result given by Eqs.
(4.8) and (4.12). The length of the surface used in the simulations was L1 = 606pm = 98.9A, and the number of
surface realizations over which OT/O6 , was averaged was N = 2972. The number of sampling points used was
N = 1000 (x A/b). The random surface was characterized by the parameters in = 1, b = 55pm, h = 0.01, °m
70 . (b) The same as (a) , but now showing the rigorous Monte Carlo simulations for the mean differential reflection
coefficient. The vertical dashed lines are the predictions obtained from Eq. (5.1).

6. Conclusions
In this paper we have derived the reduced Rayleigh equation, Eq. (2.12), for the transmission amplitude T(qk) in
the case that the structure depicted in Fig. 1 is illuminated from the region x3 >H by s-polarized light whose plane
of incidence is normal to the generators of the random surface x3 = C(xi). The phase perturbation theory solution
of this equation, Eq. (2.22), has been obtained to the lowest nonzero order in the surface profile function C(xi). The
use of this solution in the expression (3.9) for the mean differential transmission coefficient enabled this coefficient
to be calculated in the geometrical optics limit of phase perturbation theory, Eq. (3. 14) . These three results by
themselves could be useful in future studies of the transmission of light through the multilayer structure presented
in Fig. 1.

The result for the mean differential transmission coefficient in the geometrical optics limit of phase perturbation
theory has then been used to design the random surface X3 = C(xi) in Fig. 1 in such a way that the resulting
structure acts as a band-limited uniform diffuser. That is, the angular dependence of the intensity of the transmitted
light is constant within a specified range of the angle of transmission, and vanishes outside that region. The results of
numerical simulations of the transmission of s-polarized light through the structure in Fig. 1 whose random surface
has been defined in this way show that it indeed acts as a band-limited diffuser. The transmitted intensity, although
reasonably uniform, is not quite as uniform as the input mean differential transmission coefficient given by Eq.
(4.8) . We believe that this feature of our result can be improved by using more realizations of the random surface
in our computer simulations, and by using a larger value of the length b, and hence of the length of the random
surface L1 , in these simulations. However, the computational time for obtaining (DT/093 ) when both of these steps
are implemented is increased very significantly over the length of what are already lengthy calculations. We have
therefore not implemented them. We have also shown that the very same structure and the very same random
surface, also acts as a band-limited uniform diffuser in reflection, when s-polarized light is incident normally on it.
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Figure 3.4: Results obtained by Maradudin et al. [1]. The plot shows
the measured MDTC as a function of θt. An ensemble of 2972 surfaces
were used. The incident light was s-polarized and its wavelength was λ =
612.7 nm. The system was characterized by ε1 = 2.25, ε2 = 2.69 and ε3 = 1.
The number of sampling points was N = 1000, (δx ≈ λ/10), The mean
thickness of the film was H = 5 µm. θt,d = 7◦. The length of each surfaces
was L = 60.6 µm = 98.9λ.

3.3.2 Non-normal incidence

The simulation above—and several other simulation presented here—use surfaces that
were designed for a specific angle of incidence and used light that was incident at that
specific angle. Out of curiosity a simulation was run to see what would happen if a
surface were designed as above, but that light incident on it from angles that deviate
from the incident angle of design θt,d. Figure 3.6 shows the results of a simulation where
light was incident on the surface at θ0 = ±10◦ while at the same time θ0,d = 0◦.

First of all, the symmetry in the deviance is not surprising. Since the surface was
created to symmetrically spread light around θ = 0◦ when θ0 = 0◦ the sign in the
deviance in the angle of incidence should not influence the result.

The unitarity achieved in these simulations were 0.976 and 0.979 for θ0 = −10◦ and
10◦ respectively. These are slightly lower than the unitarity achieved in the previous
simulation, but still more than acceptable.

As expected the surface does not transmit the incident light as well as it does
when the light was incident normal to the surface. The midpoints of the MDTCs are
moved slightly farther away from zero than the actual θ0. The MDTCs are however
still characterized by sharp edges on either side of their approximate axes of symmetry,
although not as sharp. Also, the widths of the MDTCs are approximately 20◦ which
they ideally should be.
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Figure 3.5: The results of a simulation of almost the exact same system
as used by Maradudin et al. [1] which is shown in Fig. 3.4. The relative
permittivities, mean thickness and sampling interval are all the same. The
length of the system was approximately the same; here it was 10 facets,
i.e. 100λ. In this simulation the surface was characterized by a facet size
of 10λ. The Kirchhoff approximation of the MDTC is shown alongside.

3.3.3 Results from initial window simulations.
The first simulations performed using Eq. (2.4) as the desired MDTC all finished without
errors but the results where very bad. Some of the unitarities achieved were as low as
0.15.

Normally, the simulation software can offset the surfaces by a specified amount. For
example, the surfaces used in Section 3.3.1 had a vertical offset of −5 µm to achieve the
mean thickness of the second medium in the system. The simulation software implements
this by adding the specified offset to each coordinate in the discretization of the surface
without checking if the two interfaces would cross each other, potentially creating an
unphysical system. The surfaces produced using Eq. (2.4) are very slanted and this lead
to the two interfaces crossing. After correcting this by specifying a much higher offset
the results quickly became much better.

Figure 3.7 shows the results obtained for 5000 surfaces each 10 facets long. The
facet size was 10λ and the MDTC used was Eq. (2.4). The sampling interval was λ/10.
In contrast to the simulations in Section 3.3.1 the system here consisted of glass with air
on both sides, meaning that ε1 = ε3 = 1.01 and ε2 = 2.31. Furthermore, all the angles
θ0 = θ0,d = θt,d = 0◦. The unitarity achieved here was 0.997 which is very good. The
shape of the MDTC very much resembles a cos9 θ function, although it appears more
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Figure 3.6: The results of two simulations almost identical to the simulation
shown in Fig. 3.5. The length of the system, the relative permittivities,
mean thickness and sampling interval are the same. In this simulation the
surface was characterized by a facet size of 10λ and the number of surfaces
used was 5000. The angles of incidence were not 0◦ but rather ±10◦ as
indicated in the legend.

jagged. Overall the result is very good.
The results where θt,d 6= 0◦ are unfortunately not as good. Figure 3.8 shows the

same situation as above but θt,d = 15◦ and θ0 varying between 0◦ and 30◦ as indicated in
the legend of the plot. The unitarities achieved here were 0.95 and 0.64 for θ0 = θ0,d = 0◦
and θ0 = θ0,d = −15◦, respectively. The former result is ample but when θ0 is reduced
the results worsen quickly.

3.3.4 Dependency on wavelength and polarization
The ultimate goal is to have a fully functional window that can direct sunlight. The
electromagnetic radiation the sun emits does not consist of light of only one wavelength.
It is rather a whole spectrum and receives contributions from all wavelengths that give
visible light. Furthermore the intensity of the visible light is not uniform.

The He-Ne laser is commonly used in experiments. This laser emits light with a
wavelength of 612.7 nm. In Section 3.3.1 the wavelength emitted by the light source in
the simulations is the same. By choosing the wavelength used in simulations to a value
that is readily realizable it becomes much easier to compare results between numerical
simulation and physical experiments. For simplicity I continued using this wavelength
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Figure 3.7: Results obtained for N = 5000 surfaces. Each surface was 10
facets long. The facet size was 10λ and the MDTC used was Eq. (2.4). The
sampling interval was λ/10. In contrast to the simulations in Section 3.3.1
the system here consisted of glass with air on both sides, meaning that
ε1 = ε3 = 1.01 and ε2 = 2.31. Furthermore, θ0 = θ0,d = θt,d = 0◦. The
unitarity was 0.997.

in further simulations. This is very important. If the window did react differently
depending on wavelength, the lighting indoors would be intrusive. Splitting the light in
a manner reminiscent of a prism be disruptive.

For a window with the properties pursued here to function as intended, the effect
of changing the wavelength should ideally be zero. A small effect, however, is of little
importance. Because the facet size is much larger than the wavelength (d � λ) we
expect changing the wavelength to have very little effect. This is because diffraction
would be negligible. To investigate this I ran simulations for various wavelengths evenly
sampled from the visible electromagnetic spectrum. Figure 3.10 shows the results from
a simulation with the modest angles θ0 = θ0,d = −15◦ and θt,d = 15◦. Although the
results were not very good in terms of unitarity, they are all very similar to each other,
suggesting that the window can perform as intended in all situations.

The polarization used should also have very little effect. Simulations were run her
the incident light was polarized differently than what was expected by the system. This
showed no significant difference compared with the other simulations.
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Figure 3.8: Results obtained for the same system as in Fig. 3.7 where
θt,d = 15◦ but for θ0 = θ0,d as indicated in the legend. When θ0 = θ0,d = 0◦
the results are respectable with a nice but jagged peak centered on θt = 15◦.
The unitarity achieved was 0.93. When θ0 is reduced to −15◦ the results are
worse and the unitarity reduces to 0.88. The last result where θ0 = −30◦
the unitarity drops to 0.67.

3.3.5 Taking a shortcut

Most of the simulations presented so far have yielded unitarities that are significantly
lower than one. This is not necessarily detrimental. One possible explanation for the
lower unitarities is that some of the light that is reflected by the second interface escapes
out through the sides of the simulated system, and is therefore not “counted”.

Consider for example Fig. 2.8 in the sense that the extent of the system in the
x3-direction is significant compared to the extent in the x1-direction. The system ends
up being very tall. Since the second interface is slanted, some of the light reflected by
that interface will reach one of the ends of the system before reaching the first interface.
That light will therefore not contribute in the calculation of the reflection coefficient.
This will reduce the unitarity.

The first interface of the system discussed is flat. Our shortcut will therefore be
simply to use Snell’s law to calculate the effective angle of incidence on the second
interfaces. In Fig. 3.11 the intermediate angles φ0 and φt are shown.

The angle φt is the angle of transmission produced by the flat interface and the angle
φ0 is the angle of incidence “observed” by the second interface. We see that φt = φ0
because they are alternate interior angles. The equivalent angle of incidence φ0 can then
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Figure 3.9: Results for a similar simulation to that in Fig. 3.7 but where
θ0 = θ0,d = −15◦. The unitarity was 0.865. As is evident from the plot
the result for this simulation is not as good. Around θt = 0◦ the actual
results closely follow the prediction of the Kirchhoff approximation, but
after reaching the peak at θt = 15◦ there are large discrepancies.

be calculated by Snell’s law:
n1 sin θ0 = n2 sinφt. (3.1)

By running simulations on the system shown in Fig. 3.12 we should be able to approxi-
mate the system in Fig. 2.1 while gaining better accuracy.

Some of the physical interaction will be completely ignored when simulating a sim-
plified system in the manner above. For example, some of the light will be reflected
off the first interface in the original system. In the simplified system this interface is
simply not there. Therefore a simulation run on the simplified system will not be able to
analyse this. This can be corrected for by multiplying the MDTC with the transmission
coefficient as given by the Fresnel equations from Section 1.2.5.

The second interface is of course present in the simplified system and reflection
caused by this surface should be correctly modelled. Some of the light that is reflected
from this interface will also be reflected the upper interface. This reflection cannot be
taken into account by the simplified system.

The results of a simulation equivalent to the simulation in the comparison in Sec-
tion 3.3.1 but using the simplified system are shown Fig. 3.13. Since θ0 = 0◦ then
φ0 = 0◦ as well. The second comparison presented here is between two otherwise identi-
cal simulations where θ0 = θ0,d = 0◦ and Eq. (2.4) was used. Again, since θ0 = 0◦ then
φ0 = 0◦. The results are shown in Fig. 3.14. The results are overall very similar. The
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Figure 3.10: Results for a simulation with θ0 = θ0,d = −15◦ and θt,d = 15◦.
The number of surfaces were 10 000 in all five simulations. The unitarities
were all approximately 0.86. As in Fig. 3.9 we see that for lower θt the
simulations perform admirably, but that they become inaccurate after the
peak. However, the results are almost identical for all wavelengths.

θ0

θt

φt

φ0

Figure 3.11: A simplified version of Fig. 2.1 with the intermediate angles
φ0 and φt indicated.

MDTC from the second simulation is visibly taller than the first. This is due to the
increased unitarity: 1.03417 compared to 0.996679. The unitarity in the first simulation
is therefore better in principle, since it is closer to one. A unitarity of 1.03 is nevertheless
very good and similar to most of the results I achieved in my thesis [6]. On the outer
regions of the MDTC, where it tapers off, the two results are almost identical while
simultaneously noticeably different from the approximation.

33



3 Results

Medium 2

Medium 3 x3 = ζ(x1)

k
k⊥x̂3

k‖x̂3 φ0

q
θt

x3

x1

εr,2

εr,3

Figure 3.12: The simplified system. Choosing the correct φ0 should make
this system approximate the original system.
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Figure 3.13: The results of a simulation similar to that in Section 3.3.1
which attempted to replicate the results achieved by Maradudin et al. [1].
Also shown is the Kirchhoff approximation. The results were very good
and the unitarity was 1.0003. The number of surfaces was 5000. De-
spite the very good unitarity the simulation for the simplified system took
only 30min to complete while the original simulation took approximately
4 hours.
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Figure 3.14: Comparison with the simulation first shown in Fig. 3.7 and
the equivalent using the simplified system. The unitarity of the former
was 0.996679. The latter simulation achieved a unitarity of 1.03417 which
explains why the corresponding curve is slightly taller.

θ0 φ0
0◦ 0◦
−10◦ −6.59◦
−15◦ −9.85◦
−20◦ −13.07◦
−30◦ −19.31◦

Table 3.1: Values for θ0 used in this project and the corresponding values
for φ0 as given by Eq. (3.1). The relative permittivities were ε1 = 1.01 and
ε2 = 2.31 which are the same as used previously.

For non-normal angles of incidence θ0 the equivalent angle of incidence φ0 is not
zero. Table 3.1 lists the corresponding values used here.

Figure 3.15 shows the results from a simulation done with the simplified system
where θ0 = θ0,d = −15◦. In the original simulation an unitarity of 0.89 was obtained
whereas the unitarity was 1.01 when the simplified system was used. Because of this
the measured MDTC for the simplified system is significantly higher than that of the
original system.

As mentioned earlier the reflection from the first interfaces in not taken into ac-
counted. This can be corrected for by calculating the transmission coefficients us-
ing Eqs. (1.7a) and (1.7c). The transmission coefficient for the system above where
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Figure 3.15: Comparison between results for the measured MDTC for the
original and the simplified system when θ0 = θ0,d = −15◦ and θt,d = 15◦.
The results for the original system are the same as those shown in Fig. 3.7.
The unitarities were 0.89 for the original system and 1.01 for the simplified
system. This explains why the results for the simplified system are much
higher. In addition the light that would otherwise be reflected upon hitting
the second medium is not taken into account by the simplified system.

θ0 = −15◦ and φt = −9.815◦ and the light is p-polarized is approximately 0.96. This
explains the discrepancy between the results somewhat but the calculated MDTC for
the simplified system is still significantly higher.

3.3.6 Non-ideal angles of incidence
In Section 3.3.4 we studied how the windows would handle light of different wavelengths
and polarizations. It is necessary that they handle this since the light emitted by the
sun is a spectrum containing all visible wavelengths. This is one example of non-ideal
conditions.

As the sun moves across the sky the angle the incident light makes with the win-
dow necessarily changes. The windows should therefore be able to accommodate light
incident on them when the angle of incidence θ0 is different incident angle of design θ0,d.
This was tested in Section 3.3.1 for the flat system used by [1]. There it was found
that the flat surface handled non-normal incidence relatively well, albeit displaced from
the expected angle of transmission. The overall shapes of the measured MDTCs were
roughly similar.

The results from similar experiments for the MDTC shown in Eq. (2.4) are not
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Figure 3.16: The measured MDTCs when θt,d = 15◦, θ0,d = −30◦ and
the actual angle of incidence θ0 as indicated in the legend. The unitarities
were 0.724957, 1.19627, and 1.30241 for angles of incidence −10◦, −20◦
and −30◦, respectively. Even in the case where θ0 = θ0,d the unitarity is
not good.

as good. Figure 3.16 shows the results for a simulation where θt,d is fixed at 15◦, the
surface is designed for an incident angle of design θ0,d of −30◦ and the actual angle
of incidence θ0 varies from 0◦ to 30◦ as indicated in the legend. The unitarity when
θ0 = −10◦ was 0.724957. When θ0 = −20◦ the unitarity was 1.19627 and finally when
the angle of incidence was −30◦ a unitarity of 1.30241 was recorded. The latter is notable
because is was actually the angle of incidence the surface was designed for. This type
of unexpectedly poor results are also presented results from other simulations as well.
When the angles involved become high enough the unitarity drifts away from 1 in both
directions.

The initial suspect was the simplified system. To investigate this similar simulations
to the ones presented above were run using the original system. In this case as well the
unitarities were not good either. As noted in Section 3.3.3 the unitarities were much
lower, probably caused by some of the light escaping out of the system and therefor
not “counted” However, despite the unitarities, the results between corresponding sim-
ulations for the original and simplified systems match very well. Figure 3.17 displays
results for both the original system and the simplified system. The unitarities for the
original system are consistently much lower than 1

That the results from the two different types of simulations show similar trends
despite the bad unitarities may suggest that the qualitative results of the simulations
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Figure 3.17: The plot shows the same results as in Fig. 3.16 compared with
the results of similar results where the original system was used. The effect
of the unitarities are spotted as the curves for the simplified system are in
all cases much larger than the equivalent curves for the original system.
Still, corresponding curves unmistakably possess the same characteristics,
such as overall shape and for which values of θt the MDTCs reach their
maxima. This may suggest that qualitatively the results can be trusted.

are correct. If that is the case then the surfaces do not handle non-ideal angles of
incidence very well, potentially making it impossible to use objects with these properties
as windows.
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CHAPTER 4

Conclusion

4.1 Summary
Windows can be constructed with the purpose of spreading the light transmitted through
the window in order to improve indoor lighting conditions and reduce the need for
artificial lighting. By using the Kirchhoff approximation in the geometrical optical limit
in combination with a chosen general form of the window surfaces a expression for the
statistical properties was found, given a desired profile for the transmitted light.

In this thesis the probability distribution function for the slopes of a window sur-
face consisting of joined line segments was implemented in the simulation software
Maxwell1D. Several simulations have been run exploring the feasibility of such win-
dows. It has been demonstrated that creating a window with a desired profile of the
transmitted light is possible. Such a window will perform very well for different wave-
lengths of the incident light and for varying polarization. For angles of incidence that
deviate from the expected angle of incidence, however, the windows are not able to
redirect the light in the manner specified beforehand.

By using Snell’s law to compensate for simplifying the original system under consid-
eration, the time needed for the simulations can be greatly reduced while simultaneously
obtaining a higher accuracy in the results. This is very useful since more time-consuming
simulations are needed to investigate this further.

4.2 Further work
In this thesis two profiles for the mean differential transmission coefficient have been con-
sidered. In practice, it may well be that other MDTC are better suited for the purposes
in mind. The Kirchhoff approximation does not assume anything in particular about
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4 Conclusion

the shape of the desired MDTC. Running simulations with other MDTCs is therefore
straightforward and the Fortran 90 source code is easily extendible.

When the rough surface of the window has a mean slope one runs in to aesthetic
problems. One may end up in a situation where the thickness of the window at the
bottom is for example 1 cm while at the top it is several tens of centimetres. A possible
solution to this problem is to let the window consist of several stripes with individual
slopes. Then the thickness is reset several times going from top to bottom. Another
way would be to let only the uppermost part of the window have the ability to redirect
the light. This would also solve the problem of not being able to see out the window.

The simulations performed in this thesis were strictly one-dimensional. In possible
real-life applications it may be interesting to redirect the light in two dimensions to
e.g. focus the drop shape seen in Fig. 1.4 towards the centre of the ceiling of an indoor
space. This may lead to unwanted effects as the sun moves across the sky and needs to
be studied. The surfaces must the be described by a function x3 = ζ(x1, x2) and the
expression for the mean differential transmission coefficient reworked.
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APPENDIX A

Mathematical relations and definitions

The following is the vector identity used in the derivation of the wave equations for the
electromagnetic field:

∇×∇×A = ∇(∇ ·A)−∇2A. (A.1)

The approximations used in the presentation of the results are calculated from the
following large expression [10]:

〈
∂Tν
∂θt

〉
(q|k) = 4 |Aν |2√

ε1 cos θ0,d

κν
µν

1∣∣∣√ε3 cos θt −
√
ε2 − ε1 sin2 θ0,d

∣∣∣3
×

∣∣∣[(P +Q)− 1
2(ε2 + ε3)]2 − 1

3(ε2 − ε3)2
∣∣∣2∣∣∣(ε2 − λν

µν
ε3
)

+
(
λν
µν
− 1

)
(P +Q)

∣∣∣2
× f

 √
ε3 sin θt −

√
ε1 sin θ0,d

√
ε3 cos θt −

√
ε2 − ε1 sin2 θ0,d

 .
(A.2)

In this expression two helper quantities P and Q appear. They are defined as

P =
√
ε3(ε2 − ε1 sin2 θ0,d) cos θt (A.3)

and
Q = √ε1ε3 sin θ0,d sin θt.

The quantity Aν is given by

Aν = 2λνα1(k)
λνα1(k) + κνα2(k) exp[iα2(k)d].
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A Mathematical relations and definitions

Furthermore, Eq. (A.2) is only non-zero if

sgn(√ε3 cos θt −
√
ε2 − ε1 sin2 θ0,d) = sgn(ε3 − P −Q).

See Winjum [10] for more details regarding this and the Kirchhoff approximation.

42



APPENDIX B

Source code excerpts

B.1 Excerpts from utility programs
The following Python program was used to run the simulations. It uses the modules
multiprocessing and subprocess from the Python standard library to run sev-
eral instances of Maxwell1D at once. The program takes a list of configuration files
for Maxwell1D as input and runs the simulation once for each of these. If many con-
figuration files are specified on the command line, the programs starts at most as many
simulation as half of the amount of CPU cores on the system. As soon as one simulation
is completed, another will start until there are no more configuration files in the queue.

In addition, the program writes a short log file. It logs the actual command that was
run, what date it was started and how long the simulation took, measured in wall-clock
time. The simulation software itself measures CPU time used.

Lastly, it sets the niceness of its own process to 19. This niceness is inherited by
all processes that is started by it, so all the simulations are run with a niceness of 19 as
well. The simulation will use as much CPU as possible, but only if there are no other
processes with a higher priority present. This means that two near identical simulations
run on separate computers or at different times can use very different amounts of time,
depending on the availability of the computer. In practice the computers were “free”
most of the time, and in any case the recording of wall-clock time was mostly for my
own benefit.

Listing B.1: “Wrapper” for Maxwell1D capable of starting and logging
several simulation instances simultaneously.

#!/usr/bin/python

from sys import argv as sifFiles
import time, os, datetime
import subprocess as subp
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B Source code excerpts

import multiprocessing as multip
from socket import gethostname

def maxwell_process(sifFile):
cmd = list(maxwell)
cmd[cmd.index("sifFile")] = sifFile
cmd[cmd.index("ncFile")] = sifFile.replace("sif", "nc")
logg = open(sifFile.replace("sif", "log"), "w")
logg.write("Kommando: " + " ".join(cmd) + "\n")
logg.write("Dato: " + time.strftime("%d/%m/%Y %X") + "\n")
print "Starter simulering for", sifFile, "paa", hostname
tid = time.time()
process = subp.Popen(cmd)
process.wait()
tid = time.time() - tid
logg.write("Ekte tid: " + str(datetime.timedelta(seconds=tid)))
logg.close()
print "Ferdig med", sifFile

sifFiles.pop(0) # Fjerner navnet paa programmet selv
os.nice(19)

#print sifFiles
for sifFile in sifFiles:

if not ".sif" in sifFile:
print "Attempted to start with a non-sif file!"
exit()

hostname = gethostname().split(".")[0].upper()
maxwell = [ "./Maxwell1D_x64", "-p", "sifFile", "-o", "ncFile" ]
cpu_count=multip.cpu_count()/2
pool = multip.Pool(processes=cpu_count)
print "Starting pool"
result = pool.map_async(maxwell_process, sifFiles)
print "Pool started"
pool.close()
pool.join()
print "Done"

The following Python program was used for batch generation of configuration files.
A template configuration file—itself not a valid configuration file—is read. Placeholder
text in that file is then replaced by the desired values and is written to a new file. The
desired values are specified in the code of the program itself. Since Python programs
do not have to be compiled before before running them, specifying values inside the
program is in principle just as easy as specifying them in an additional configuration
file.

All the desired values can be specified either as a single value or as a Python-type
list of values. In the latter case one configuration file is written for each of the values in
the list. If more than one such list is present among the desired values, one configuration
file is written for all possible combinations of the values in the lists.
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In all cases a separate random seed is provided for all the files.
All the configuration files are named according to the following scheme. A prefix

is given as an argument on the command line. If any of the desired values are given
as lists, the name and value is specified the name of the configuration file. Lastly, an
optional postfix is appended if present.

Listing B.2: Python script for batch generation of configuration files.
#!/usr/bin/env python
# coding=utf-8

from sys import argv
from random import randint
from types import ListType as List
from itertools import product

def filename(config, keylist):
filnavn = prefix
for key in keylist:

filnavn += "-" + key + "_" + str(config[key])
filnavn += postfix + ".sif"
return filnavn

def dictinlist(settings):
settingsList = []
keylist = []
for k, v in settings.iteritems():

if type(v) == List:
keylist.append(k)

args = [ settings[k] for k in keylist ]
prod = product(*args)
while True:

try:
tmp2 = prod.next()
tmp = dict(settings)
for i,j in enumerate(tmp2):

tmp[keylist[i]] = j
settingsList.append(tmp)

except StopIteration:
break

return (settingsList,keylist)

def makesif(configs):
keylist = configs[1]
configs = configs[0]
for config in configs:

sifstringre = sifstring
for k, v in config.iteritems():

sifstringre = sifstringre.replace(string+’seed’,
str(randint(0,1e10)))

sifstringre = sifstringre.replace(string+’S’,
str(config[’wavel’]/config[’S’]))

sifstringre = sifstringre.replace(string+’F’,
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str(config[’wavel’]*config[’F’]))
sifstringre = sifstringre.replace(string+’L’,

str(config[’wavel’]*config[’F’]*config[’L’]))
sifstringre = sifstringre.replace(string+k, str(v))

sifFile = filename(config,keylist)
print sifFile
sif = open(sifFile, "w")
sif.write(sifstringre)
sif.close()

string="placeholder"

prefix=""
postfix=""
if len(argv) == 1:

exit()
if len(argv) >= 2:

prefix = argv[1]
if len(argv) >=3:

postfix = argv[2]

wavelength = 0.6127
t00 = -40
config = {
’wavel’ : wavelength,
’yoff’ : 30.0,
’N’ : 10000,
’e1’ : 1.01,
’e2’ : 2.31,
’e3’ : 1.01,
’pol’ : ’p’,
’t0d’ : t00,
’ttd’ : -t00,
’dTdt’ : 1,
’seed’ : randint(0,1e10),
’solver’ : ’!’,
’S’ : 5,
’F’ : 10,
’L’ : 10,
’t0’ : t00
}

zif = open("ossem.zif", "r")
sifstring = zif.read()
configs = dictinlist(config)
print "Producing", len(configs[0]), "files..."
makesif(configs)
print "Done"

Maxwell1D itself is capable of accepting lists of parameters as input for some of
the parameters, such as the angle of incidence θ0 and the wavelength λ. The convenience
of this script, however, made it desirable to generate separate configuration files for each
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simulation. I then used another script to extract information about the parameters and
the results of the simulation and gathered it in a spreadsheet.

The rest of the additional programs used are available in the accompanying zip
archive.

B.2 Excerpts from Maxwell1D

The bulk of the code added to Maxwell1D by me resides in a file over 700 lines long.
Therefore, only some snippets of that file is shown here.

Listing B.3 shows the implementation of Eq. (2.14). Most of the input parameters
are stored in an object called LDP and are retrieved from there.

I noticed that in Eqs. (2.4), (2.6) and (2.14) there are many factors that are repeated,
such as γr− s and 1 + γ2. Therefore I centralized parts of the calculations by writing a
separate function calculating some of the common factors. In Listings B.3 to B.5 these
are retrieved by calling that function, which is called calc_common().

Listing B.3: Implementation of Eq. (2.14) in Maxwell1D.
Function Prob(g) result(res)

Implicit none
real(wp) :: g, res, t0, td, tt, eps(0:2)
real(wp) :: r, grms, rpgs, eng2, frac, sqrtSign
real(wp) :: prefactor, factor1, factor2over, factor2under, resdTdt
real(wp) :: k, l, u, storSak
character :: pol
t0 = LDP%theta0_design
eps = LDP%eps
pol = LDP%pol
r = LDP%r
call calc_common(g)
grms = LDP%grms
rpgs = LDP%rpgs
eng2 = LDP%eng2
frac = LDP%frac
sqrtSign = LDP%sqrtSign
if (sqrtSign < 0._wp) then

res = 0._wp
return

endif
sqrtSign=sqrt(sqrtSign)
storSak = grms**2+rpgs*sqrtSign

if (pol == ’p’) then
k = eps(0)
l = eps(1)
u = eps(2)

elseif (pol == ’s’) then
k = 1._wp
l = 1._wp
u = 1._wp
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endif

prefactor = (l*sqrt(eps(0))*cos(t0)+k*r)**2*u/(16._wp*l**2*sqrt(eps(0))*cos(t0)*k)
factor1 = abs(frac*(g*grms+sqrtSign)-r)**3
factor2over = ((eps(1)-l*eps(2)/u)+(l/u-1._wp)*frac*storSak)**2
factor2under = ((frac*storSak-0.5_wp*(eps(1)+eps(2)))**2-0.25_wp*(eps(1)-eps(2))**2)**2
if (LDP%dTdt == 1) then

resdTdt = cosinedTdt(g)
else

resdTdt = rectdTdt(g)
endif

res = prefactor*factor1*factor2over/factor2under*resdTdt
End Function Prob

Note that the function is told which MDTC to use by setting a separate variable.
This variable is set in the configuration file, which may in turn is set by the corresponding
value to the dictionary key dTdt in Listing B.2.

Listings B.4 and B.5 show the implementations of Eqs. (2.6) and (2.6).

Listing B.4: Implementation of Eq. (2.4) in Maxwell1D.
Function cosinedTdt(g) result(res)

Implicit none
integer :: n = 9
real(wp) :: C = 1._wp
real(wp) :: g, res, t0, td, tt, eps(0:2)
real(wp) :: grms, rpgs, eng2, frac, sqrtSign
td = LDP%thetad_design
t0 = LDP%theta0_design
eps = LDP%eps
call calc_common(g)
grms = LDP%grms
rpgs = LDP%rpgs
eng2 = LDP%eng2
frac = LDP%frac
sqrtSign = LDP%sqrtSign
sqrtSign = sqrt(sqrtSign)

res = C*(cos(td)/(sqrt(eps(2))*eng2)*(g*grms+sqrtSign)+
sin(td)/(sqrt(eps(2))*eng2)*(-grms+g*sqrtSign))**n

End Function cosinedTdt

Listing B.5: Implementation of Eq. (2.6) in Maxwell1D.
Function rectdTdt(g) result(res)

Implicit none
real(wp) :: g, res, t0, td, tt, eps(0:2)
real(wp) :: grms, rpgs, eng2, frac, sqrtSign
eps = LDP%eps
td = LDP%thetad_design
call calc_common(g)
grms = LDP%grms
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eng2 = LDP%eng2
sqrtSign = sqrt(LDP%sqrtSign)
tt = (-grms+g*sqrtSign)/(sqrt(eps(2))*eng2)
tt = abs(asin(tt))
if (tt < td) then

res = 1._wp
else

res = 0._wp
endif

End Function rectdTdt

There was a function in Maxwell1D initially that produced random numbers via
the rejection method. This was however tied heavily to the existing implementations of
the probability density function, so a replacement was written.

Listing B.6 displays my version the rejection method function. It does exactly what
is shown in Algorithm 1. It accepts one input parameter, which is an array it fills with
random numbers drawn with the rejection method. The auxiliary function g(x) is chosen
to be constant and equal to 1.1 times the maximum value of f(γ).

Listing B.6: Implementation of Algorithm 1 in Maxwell1D

Subroutine Random_deviate(RD)
implicit none
real(wp) :: RD(:)
real(wp) :: x(2), a, b, c, maximum
integer :: i,N
N = size(RD)
! Get random y values
a = -LDP%gamma_max
b = LDP%gamma_max
c = 1.1_wp
maximum = c*characteristics(0)
do i=1,N

!write (*,*) i
call random_number(x)
x(2) = a + (b-a)*x(2)
do while (x(1)*c > prob(x(2))/maximum)

call random_number(x)
x(2) = a + (b-a)*x(2)

enddo
RD(i) = x(2)

enddo
Return

End Subroutine Random_deviate
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