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Preface
 
 The clay based systems studied here belong to the field of science called 
complex matter physics. One can define a complex system as consisting of many 
independent entities (“particles” in a broad sense) coupled via various interactive 
connections. Descriptions of such complex systems are in general simplified by 
focusing on the “right level of description”*, thus reducing the unnecessary factors 
(e.g. studying only the mechanisms of aggregation of clay particles). This may lead 
to    extraction of the essential descriptive elements of interest from such a complex 
system (e.g. dipole-dipole particle interactions in the present case).  

    During one of my conference travels I 
visited the “Espaço Lúcio Costa” museum 
and took pictures of the famous pilot plan 
for Brasilia drawn by Lucio Costa. These 
pictures may serve here as a good example 
of how things can be taken apart to find an 
essence of the design. It is not possible to 
guess the shape of the city by looking at 
the top most image. A vast number of 
details may hide the essential pattern. 
Once the redundant features are removed, 
the contours start appearing. After further 
reduction the major curves are revealed, 
and finally two simple crossing segments 
are obtained. Now depending on the level 
of description of interest, different levels 
of hierarchical complexity leading towards 
the final essential simplistic description at 
the bottom panel, may be found in all of 
these stages.  
    This way of reducing complexity can in 
general be utilized to understand general 
physical processes and phenomena in 
materials science, for example for the clay 
based systems we study here.  
In my general view, and for my own work 
in particular, it is important to include 
such a philosophical base into the research 
in any field of science†. 

 

Figure 1. The famous pilot plan for Brasilia drawn by Lucio Costa. The sketch shows how one can 
extract the essence from a complex matter system (as in this example the real city of Brasilia), and 
focus on the right level of description reducing the unnecessary factors for the description. The top 
most image is reprinted from Google Maps.  
                                                      
*  N. Goldefeld and L. Kadanoff, Science vol. 284, p. 87 (1999) 
† These philosophical reflections are based on the discussions by E. G. Flekkøy and J. O. Fossum on   
   Complexity - Systems and Interplays in Nature, in the book „Naturens kode”, E. Newt and  
   G. Einevoll, eds., Gyldendal 2005.  For an english translation see: http://www.complexphysics.org 
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1. Introduction
 
 The research presented here has been performed at the Department of Physics, 
in the Laboratory for Soft and Complex Matter Studies. The scientific work 
included primarily experimental studies of nano-structured soft and complex 
materials, in particular clay minerals. The title of the project is: Experimental 
Studies of Self-organization from Electrically Polarized Clay Particles, and the 
assignment involved studies of general physical processes and phenomena in such 
systems by means of experimental methods such as x-ray scattering 
(SAXS/WAXS), atomic force microscopy (AFM), scanning and transition electron 
microscopy (SEM/TEM), rheometry, zeta potential measurements, energy 
dispersive analysis (EDS), optical microscopy observations, electric current and 
dielectric properties measurements, and other methods. In addition to working with 
these techniques at laboratories at NTNU, experiments were performed at X-ray 
synchrotron sources, and in collaboration with researchers at those laboratories 
(ESRF in France and MAX-lab in Sweden).  
 In the present studies, the final structure is self-organized from/by particles. It 
should not be confused with the term self-assembly of particles, which refers to 
more general meaning of building a nanoscale structure molecule by molecule 
 The project was initially planned as a continuation of the research started by 
previous PhD candidate K.P.S. Parmar, in which guided self-organization from 
non-modified clay particles was studied by means of some of the experimental 
techniques mentioned above [1]. However, many new ideas blossomed a few 
months after the startup of my PhD employment and led to: studies of modified 
laponite and fluorohectorite assemblies in oil suspensions; investigation of 
clay/paraffin composites; observation of structural changes in clay/polymer melted 
composites; and finally rheological properties and E-field induced structuring of 
kaolinite and halloysite clays.  
 To provide a background for the scientific papers, the introductory part of the 
thesis has the following layout: firstly, detailed information about different non-
modified clay particles used during the studies, namely fluorohectorite, laponite, 
montmorillonite, kaolinite and halloysite, is provided in section 1.1; their modified 
counterparts are presented in section 1.2 together with short explanations on the 
modification routines; the clay particle behaviour in E-fields is explained in 1.3, 
and descriptions of the experimental techniques used within the whole research 
project are given in section 1.4. The summary of the main results and the thesis 
development are presented in section 2, while section 3 covers the last comments 
and future outlook. The main research results of this thesis start in section 4, and 
that includes published scientific articles and manuscripts either submitted or in 
preparation. In the appendix one can find other experiments, conducted during the 
PhD study period, that are related to the subject of particle alignment, but should 
not be considered as the part of the thesis.    
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1.1. Clay and clay minerals 
 An often used definition of nomenclature for clay and clay minerals, given by 
the joint nomenclature committees (JNCs) of the Association Internationale pour 
l’Etude des Argiles (AIPEA) and Clay Minerals Society (CMS), describes clay as: 
“a naturally occurring material composed primarily of fine-grained minerals, which 
is generally plastic at appropriate water contents and will harden when dried or 
fired”. Likewise, the term clay mineral is difficult to describe. The definition 
proposed by the JNCs is: “… phyllosilicate minerals and minerals which impart 
plasticity to clay and which harden upon drying and firing” [2,3].  
 According to the author, the definitions above do not provide explicit and 
sufficient information and are included rather as a matter of a form. Instead, the 
characteristic properties of clay and clay minerals presented in Table 1 are believed 
to deliver a more intuitive understanding. 
 

Table 1. Characteristic properties of clay minerals  

Property Explanation  

Layered structure 
 
 
 

Swelling 
 

 
Particle size 
 

 
Specific surface area 
 

 
 
Charge  
 
 
 
 

 

Intercalation 
 

 
Modification 
 

 
 
Plasticity 
 

 
 
Hardening  
 

Particle consists of thin (0.65-1 nm) crystalline sheets that usually 
stack up one another forming a “deck of card” like structure‡. 
 

An increase in particle thickness due to water§ intercalation 
between the crystalline sheets (platelets). 
 

Thickness/radius in nanometres range, width/length < few μm  
(aggregates can take sizes up to mm). 
 

The total surface area per unit of mass – can be as high as 
hundreds of m2/g. Important in case of adsorption, gas 
permeability and other reactions on surfaces. 
 

The net layer charge (e-) arises when tetrahedral and octahedral 
sheets are joined to form a single crystalline layer.  
For 1:1 phyllosilicates: � ~ 0  (e.g. kaolinite, halloysite) 
For 2:1 phyllosilicates: � ~ 0.2 to 1.2  (e.g. hectorite, laponite) 
 

Ability to host extraneous substances such as surfactant 
molecules, polymeric chains and other macromolecules.   
 

The ease with which both an external and an internal surface can 
be modified. For example, adding surfactant molecules onto the 
clay particle external surface changes its hydrophilic properties. 
 

Defined as the ability of a clay material to be moulded into a 
certain shape without rupturing when stress is applied, and for 
this shape to be retained after the stress is removed. 
 

When fired or dried becomes firm and permanent physical and 
chemical changes may occur.  

 

                                                      
‡  Applies to a disc/flake-like particle. In case of e.g. halloysite, formed by rolling up a platy structure,   
   the layer repetitions can be found across the two dimensional spiral. 
§  Intercalation of other spieces may also change the characteristic distance along stacking direction.   
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Figure 2. Diagram showing a classification of clay minerals used in the thesis. Asterisk (*) denotes 
synthetic materials.   

 

 There is a distinction between the terms clay and clay mineral. The two major 
differences are the material’s origin and its size. Clay mineral can be natural or 
synthetic with no size criterion, whereas clay is defined as a natural, fine-grained 
(<2 μm or 4 μm) phyllosilicates. Since the expression clay mineral encompasses 
both natural and also synthetic clays, it will be used throughout this thesis wherever 
mentioned clay, clay particle or clay mineral**.   

 There are many ways of classifying clay minerals based on different criterions. 
Firstly, they are divided into two groups called one-to-one (1:1) and two-to-one 
clays (2:1), which refers to their crystalline sheet structure. Clays are 
fundamentally built of tetrahedral (T) and octahedral (O) sheets. Thus 1:1 clay 
particle (TO) consists of the repetition of one tetrahedral and one octahedral sheets, 
while the 2:1 notation (TOT) signifies that the host layers contains one octahedral 
sheet sandwiched between two tetrahedral sheets. The schematic examples of these 
two configurations are shown in Figure 3. Clay minerals are arranged in groups as 
shown in Figure 2, where clay minerals used in this research are highlighted. 
   

 
 

Figure 3. Typical 1:1 structure of kaolinite (left) [4] and a 2:1 layered silicate clay (right) [5]. The 
basal spacing d001 is the smallest c-axis repeat distance. Note: there is no gallery cation for 1:1 clay.

                                                      
** Many researchers do not (consciously or not) differentiate between those two terms and simply use 
clay when writing about clay minerals.   

1:1�LAYER

Kaolinite�����
group

Kaolinite�����
Halloysite�����������������

...

Other����������
groups

not�studied

2:1�LAYER

Smectite�����
group

Fluorohectorite*��
Laponite*�����

Montmorillonite�����������������
...

Other����������
groups

not�studied
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1.1.1. Kaolinite and halloysite 

 Both kaolinite and halloysite belong to the kaolin group of minerals  having 
essentially similar chemical composition with the nominal chemical formula  
Al4Si4O10(OH)8 per unit cell, but each have important structural and stacking 
differences. It is a 1:1 layer silicate mineral, with one tetrahedral sheet linked 
through oxygen atoms to one octahedral sheet of alumina octahedral [6]. Kaolinite 
has been described as a non-expandable clay. However, when treated with aqueous 
solutions containing molecules such as urea, or potassium acetate, kaolinite 
undergoes expansion through the insertion of the molecules between the kaolinite 
layers [7-11].  
 Halloysite has a single layer of water molecules in each interlayer space which 
increases d001 from characteristic 7.2 Å of kaolinite to about 10 Å. Dehydrated 
halloysite had d001 ~ 7 Å. There is a marked tendency for layers of halloysite to roll 
up into cylinders or scrolls or to adopt spheroidal shapes. This, and layer disorder, 
leads to broad and asymmetric rather than sharp X-ray reflections. There are, 
however, examples of platy halloysites [6].      
 
Kaolinite characteristic features:  

- Interlayer space d001 ~ 7.2 Å,  
- Net charge � ~ 0, 
- Disc-shaped, form “a deck of card” structure (see Figure 4 left), 
- No swelling with water, but can swell with a few organic compounds. 

  
Halloysite characteristic features:  

- Interlayer space d001 ~ 10 Å or  
- Interlayer space d001 ~ 7.2 Å, when heated ~ 200 ºC, 
- Net charge � ~ 0, 
- Tend to roll up into cylinders, spheroidal shapes, etc. (see Figure 4 right). 

 
 Common applications: paper coating and filling, used in the manufacturing of 
bricks and ceramics, paint, plastics, textiles, gaskets, adhesives, sealants, caulks, 
fertilizers, rubber, ink, fiberglass, cracking catalysts and many other uses [12].   
 

       

Figure 4. SEM image of kaolinite (left) and halloysite (right) clay particles. 
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1.1.2. Fluorohectorite (Fh), laponite (Lp) and Montmorillonite (Mmt) 

 Fluorohectorite, laponite and montmorillonite clay minerals belong to the 
smectite group. Smectites are 2:1 phyllosilicates that possess a net negative charge. 
Counter ions are located between clay lamellar sheets to balance for that charge. 
The exchangeable cations such as sodium, calcium, lithium, iron or magnesium are 
common. In this thesis, two samples with different cations were used, i.e. Na-Fh 
and Li-Fh.  
 All of smectites take up water which results in expendability. The interlayer 
hydration complexes of these clays arise from intercalation of a discrete†† number 
of water layers (WL), that is: 0WL, 1WL, 1.5WL‡‡ and 2WL.  The swelling of 
layered smectite clay particles consists of a change in the interlayer repetition 
distance (d-spacing) as a function of temperature and humidity [13]. Apart from 
intercalated water, organic molecules may be present when exchanged with 
inorganic cations. The surface of smectites particles is hydrophilic, i.e. it has a 
tendency for binding water. This property can be altered by chemical modification 
(see section 1.2). Thus when the non-modified clay minerals are suspended in polar 
medium (such as water) they disperse very well, whereas in a non-polar medium 
(such as silicone oil) they form agglomerates and tend to sediment out.  
 Fluorohectorite has the following chemical formula: Mx(Mg6-xLix)F4Si8O20, 
where M denotes either Li or some other monovalent cation. It is a silicate where a 
fraction of Mg2+ ions is substituted by Li+ in trioctahedral sites resulting in a 
structural negative charge of 1.2 e- per unit cell [14]. The surface charge density of 
fluorohectorite is very high when compared to that of laponite (0.4-0.7 e- per unit 
cell). Fluorohectorite has been reported from x-ray data to retain a stacked structure 
of lamellar particles composed of between 20 and 100 unit layers when dispersed 
in water, whereas laponite is known to exfoliate into single unit layers in aqueous 
suspensions [15].  
 The chemical composition of montmorillonite is Mx(Al4-xMgx)Si8-yAlyO20(OH)4. 
The structure of montmorillonite exhibits a substitution for Si4+ by Al3+ in the 
tetrahedral layer and for Al3+ by Mg2+ in dioctahedral sites that gives rise to the net 
negative charge of 0.8 e- per unit cell [16]. 
 Laponite is a synthetic clay mineral having the smallest dimensions of all 
species mentioned above. In a dilute aqueous suspension, the individual laponite 
clay particle resembles a disc of thickness 1 nm and of average diameter ~25 nm.  
Laponite clay is a particularly interesting model system due to both the small size 
and monodispersity of the colloidal platelets, in contrast to natural and other 
synthetic clays which in general are polydisperse and micrometer sized [17].  
When dissolved in water, H2O molecules enter the interlayer space to hydrate the 
sodium ions. This breaks the particle-stacks apart (formed when laponite in a form 
of powder), resulting in separated Laponite discs, or separated groups of discs. 

                                                      
†† It was recently reported by Hemmen at el. [13] that the sudden transition step from a monohydrated 
state (1 WL) to a dehydrated state (0 WL) as well as between the monohydrated and dihydrated        
(2 WL) state, is preceded by a continuous change in the interlayer space. 
‡‡ The existence of an intermediate regime (1.5 WL) was found recently by Tenorio et al. for Li-Fh 
clay mineral kept at RH~60 % [18]. Also the molecular simulation of Tambach et al. [19] in Li-
montmorillonite hydrates shows existence of a basal spacing 13.5 Å.  



6 
 

Because laponite discs have a negatively charged faces and positively charged 
edges, the individual particles interact, forming three-dimensional networks [20]. 
This property of forming a clear gel is utilized in various applications. Laponite’s 
empirical chemical formula is Na0.7+[Si8Mg5.5Li0.3O20(OH)4]0.7-, where Na is an 
interlayer exchangeable cation. Laponite is a synthetic trioctahedral hectorite clay 
composed of two tetrahedral silica sheets and a central octahedral magnesia sheet. 
The negative surface of the laponite particle contains positively charged sodium 
ions. These can be shared by several laponite sheets forming aggregates [21].  
 In Figure 5 the scanning/transmission electron microscopy (SEM/TEM) images 
of sodium fluorohectorite (left) and laponite (right) particles are shown. Note that 
the micrographs were taken with different magnifications. One can see that 
fluorohectorite particles can be more than 100 times larger than those of laponite. 
Fh particles resemble more hexagonal platy structures, whereas laponite particles 
display more rounded shapes.   
 

Smectite clay minerals characteristic features:  
- Interlayer space d001 ~10, ~12.5, ~15.5 Å, for 0WL, 1WL and 2WL 
- Exchangeable cations (e.g. Na+, Li+, Fe2+) balance the negative charge, 
- Swelling occurs in a stepwise fashion, 
- Net charge  ~ 1.2 for Fh,  ~ 0.8 for Mmt and  ~ 0.4 for Lp, 
- Mmt is a natural clay mineral, whereas Fh and Lp are synthetic,  
- Can sorb cationic species from solution, high cation exchange capacity. 

 
 Common applications of clay from the smectite group: can be also used in the 
manufacturing of bricks and ceramics, drilling muds, paper, rubber, paints and 
many other applications. Since various organic molecules can be accommodated in 
interlayer spaces, the smectite clays are extensively used as decolorizing agents, for 
purifying fats and oils, and also in the refinement of petroleum. Their ion exchange 
properties lead to possible use in treating radioactive waste [6]. In addition, 
laponite can be used in conventional toothpastes and mouthwash liquids [22].   
 

       

Figure 5. SEM image of Fh (left) and TEM image of Lp (right) particles. Note different scale bars.  
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1.2. Modification of clay particles 
 
 Clays, in their natural forms, are hydrophilic, or depending on the discussed 
context one could say organophobic. When suspended in a non-polar medium, such 
as silicone oil, they tend to form large agglomerations and sediment. In order to 
make use of clay particles for example as a basis for an ER fluid one needs to avoid 
the tendency for particles in suspension to sediment. The general methods to 
counteract the sedimentation include controlling both size and shape of particles, 
preparing hollow or porous particles, and matching of densities between particles 
and solution [23,24]. Addition of surfactants is commonly used to prevent the 
particle agglomeration, which then slows down particle sedimentation, or if the 
particles are small enough (i.e. magnetic particles in ferrofluids), ensures that they 
are held in suspension by Brownian motions [25].  By exchanging the original 
interlayer cations for organocations (typically quaternary alkylammonium ions) an 
organophilic surface is generated, consisting of covalently linked organic moieties. 
 Another reason for modifying clays is the ease of uniform dispersion in an 
apolar polymer matrix.  Since the aspect ratio of the clay layers and the interfacial 
contact area between the clay and matrix are high, the incorporation of small 
amounts of such inorganic filler into a polymer medium can significantly improve 
the properties of the resulted polymer/clay nanocomposites [26,27]. However, the 
chemical affinity between the inorganic filler and apolar polymers is quite reduced. 
To promote compatibility, it is necessary to chemically modify the inorganic filler 
with intercalation of organophilic character cations, which expand the interlamellar 
space of the clay, decreasing the interaction among the silicate sheets, and 
facilitating the diffusion and accommodation of the polymeric matrix [28]. 
 The layered silicate polymer nanocomposites can also attained a great degree of 
stiffness and strength. Furthermore, the presence of the dispersed phase results in 
additional properties, such as flame retardancy, enhanced barrier properties, 
increased degradability of biodegradable polymers, as well as ablation resistance, 
compared to either component [29,30,31]. All these improvements depend heavily 
on the structure and properties of the organoclays. Hence, understanding the 
microstructure of the organoclays themselves is essential for many industrial 
applications. 
   
 Three types of clay minerals belonging to the smectite group have been 
organically modified. The obtained organoclays’ new physical and chemical 
properties, and also behaviour in presence of an external electric field were 
investigated and compared to that of their non-modified counterparts. In particular, 
changes in the electrorheological properties of organically modified clays, the 
surfactant intercalation type and its adsorption, particle wettability, nature of 
aggregation, and also an E-field induced structuring were studied.      
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1.2.1. Modified fluorohectorite and laponite   

 The synthetic laponite clay was purchased from Laponite Inc. as a fine 
white powder, and the synthetic fluorohectorite clay was delivered by Corning Inc. 
with lithium being an exchangeable cation. Both clay types were modified using a 
surfactant called cetyltrimethylammonium bromide (CTAB, which has the 
chemical formula [CH3(CH2)15]NBr(CH3)3. Most of surfactants consist of a 
hydrophobic tail and a hydrophilic head. Depending on the composition of their 
head, they are classified as: non-ionic, anionic, cationic and amphoteric. The 
CTAB is a cationic surfactant with a positively charged head group. Therefore the 
head of the molecule tend to adsorb onto the clay particle face carrying a negative 
net charge. Depending on the concentration of the CTAB used during the 
modification, the cation exchange and intercalation occur – the cations (e.g. Li+ or 
Na+) are replaced by the surfactant molecules. This can also increase the 
characteristic interlamellar distance between clay crystalline sheets as it is shown 
in Figure 6.  

The surfactant molecules can adopt monolayer, 
bilayer, pseudotrimolecular, paraffin-type or other 
arrangements. It may require long time of 
exchanging process to obtain a fully developed 
structure. For sake of example the results published 
by He et al. [32] are provided. They showed that 
arrangements of the surfactant in the smectite clay 
interlayer were fairly distinctive and varied from 
lateral-bilayer (0.7CEC, 1.48 nm), then to paraffin-
type monolayer (1.5CEC, 2.45 nm) and finally to 
paraffin-type bilayer (5CEC, 4.03 nm). For more 
detailed studies and examples of the development 
of the lamellar structure due to increase of the 
surfactant concentration, the following references 
are recommended [32-35]. 
 

Figure 6. Potential conformations of interlayer cations: (from top to bottom) monolayer, bilayers, 
pseudo-trimolecular layer, and paraffin complex. Reprinted from [33] 

 Both types of organoclays can be made according to a procedure that can be 
simplified as follows. The appropriate amount of cationic surfactant is mixed with 
DI water. In another beaker the clay powder is stirred in DI water in a similar way. 
After some time both solutions are mixed together and stirred for a long time 
(hours-days) at around 80 ºC. Rinsing is needed to remove any free surfactant from 
the solution. The filtered clay can be then (i) dried at 110 ºC and dispersed in a 
non-polar liquid or (ii) transferred directly to such medium using the liquid-liquid 
phase transfer method. The obtained cationic surfactant exchanged modified 
laponite/fluorohectorite clays can be labelled according to the CTAB concentration 
used, e.g. 0.5CEC-clay, 1CEC-clay or 4CEC-clay (xCEC means x times the cation 
exchange capacity). 
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1.2.2. Modified montmorillonite 

 Modified montmorillonite was purchased from Southern Clay Products, Inc. It 
has a brand name Cloisite® 20A. It is a natural montmorillonite purified and 
modified with a quaternary ammonium salt ion-exchanging sodium cations. 
Cloisite® 20A is commercially used as an additive for plastics and rubber to 
improve various physical properties, such as reinforcement, coefficient of linear 
thermal expansion, synergistic flame retardant and barrier. Its characteristic 
interlamellar distance d001 is around 2.42 nm [36]. This distance can change when 
particles suspended in polymeric matrix [37].  
 
 To summarize, organically modified clay particles can be used when a non-
polar environment is used as the hosting medium. The figures below show two 
important examples of sample improvement with regards to particle anti-
sedimentation properties and dispersion. There is currently a great deal of interest 
in the development of new techniques of particle dispersion in, for example, 
PP/clay nanocomposites this includes particle alignment and also delamination, 
where the silicate layers are fully separated and dispersed homogeneously 
throughout the polymer matrix [38].  
 

     

Figure 7. Microscope images of non-modified Na-Fh (left) and organically modified Fh (right) clay 
particles suspended in silicone oil. The length of the bar corresponds to 200 μm. 

 

Figure 8. All non-modified clay particles (top row) sedimented just after 1 day, whereas for 
organoclay particles (bottom row) it took around 2 weeks.   
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1.3. Clay particles in E-fields 
 
 Since a substantial part of the present research includes the electric-field 
induced structuring from clay particles, it is necessary to explain physical aspects 
behind this behaviour.  
 
 Application of an electric field induces polarization of the suspended dielectric 
particles. They consequently orient in the field and aggregate, which results in the 
formation of a columnar structure parallel to the electric field direction [39]. The 
final§§ particle organization is shown in Figure 9a, where the electric field is 
applied horizontally to the clay/silicone oil suspension. Figure 9b presents a sketch 
of an X-ray experiment in which the particle orientation distribution is inferred 
from the two dimensional diffraction patterns.  
 

 
Figure 9. a) Optical microscope image of ER chain formation under an E-field applied in the 

horizontal direction. b) Sketch of the reported X-ray scattering experiments. Reprinted from [39].

The formation of a column-like structure consists of four stages and these need to 
be considered separately in order to describe different physical processes that lead 
to the final particle assembly.   
 
(i) Clay particles polarization 

Application of an external electric field induces particle polarization. The clay 
particles polarise along their silica sheets, i.e. their stacking direction in 
normal to the polarisation direction. Fossum et al. [40] suggest that the 
intercalated ions and water, which are movable, could play a central role in 
particle electrical polarisation. The resulting induced dipole is attached 
structurally to the clay particle, and this causes clay particles to reorient and 
interact. However, a detailed description was not provided in ref. [40] and the 
mechanisms of the polarization in clays are still under discussion. It is not a 
trivial task to perform an experiment*** which could confirm or disprove some 
of the hypotheses. Normally clay particles contain water molecules that can 

                                                      
§§ Within a given time scope, in this case an optical microscopty image was taken few minutes after 
the application of an E-field.  
*** There is actually an ongoing experiment which may help to shine light on the subject of clay 
polarization. Differently prepared clay particles suspended in silicone oil are submitted to an E-field. 
Their rotation (very diluted system to avoid particle-particle interactions) is recorded and then the 
rotation time is estimated. It is believed that this approach could be utilized to define the polarization 
mechanism and quantify the particle charge. 
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occur in four modes: intercalated water either associated with intercalated 
cations, internal surfaces in the clay stacks, adsorbed on the external surfaces 
of the stacks, or free water molecules that are trapped in micropores between 
stacks by capillary forces. This increases the system complexity. In addition 
the role of exchangeable ions and clay surface ions has to be taken into 
account. 
The rheological data provide an approximate time scale �1 for polarisation, 
which is in a range of 10-5 to 10-7 seconds. This is a rapid process and the 
application of an AC fields in low and middle range frequencies has no 
influence on the particle rotation. However, the usage of the AC fields can be 
advantageous since the effect of electrophoresis†††, which is often observed in 
a clay/oil suspension, can be avoided.   

 
(ii) Particle rotation / alignment  

When polarized, a clay particle starts to rotate and orient along the E-field 
direction. The rotation time is proportional to the carrier fluid viscosity and 
inversely proportional to: firstly the difference in the dielectric constants 
between particle and medium; and secondly the electric field squared. The 
time scale �2 for particle rotation is in a range of 10-3 to 101 seconds, for E-
field strengths between 50 and 2000 V/mm and viscosity of silicone oil 
between 100 and 500 mPa.s. This allows for optical microscopy observation 
when a high-speed camera is used or when E-field strength is low and 
viscosity high‡‡‡.   

 
(iii) Chain formation 

If particle concentration is high enough and a minimum critical E-field is 
applied§§§ a chain formation occurs via a particle dipole-dipole interaction.  
The potential energy can be expressed as [41]: 
 

���� � �
��	
 �

�� � �� � ���� � ������ � ������ � ���� ����������� 
 
 

 
 
 
 
 
 
 

                                                      
††† Electrophoresis may also be a desired effect, for example the electrophoretic mobility can be 
measured to study the role of exchangable cations.  
‡‡‡ Numbers taken from a recent ongoing experiments, not published yet. 
§§§ Critical field and critical particle concentration are coupled one to another.  
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where:  p is the electric dipole moment and p1=p2=p for the same particles, r is 
the distance between particles, �� is the unit vector, and � is the angle between 
the vector connecting the two particles and the electric field direction. 

 �� � �� � ��� 
 ��� � �� � � � ��� �,   �� � �� � � � ��� � ��� !" 
 

���� � ��
��	
 �

� � � ��� � � ��� �
�� ��������#� 

 
Assuming finite values for p and r, ���� reaches zero when 

 � � � ���� � � $��% &' �(&)*"��+,-
 . /�012 
 

If the position of two particles is that the angle 
�>54.7º they will repel each other, whereas 
when the angle �<54.7º the attractive 
interaction will occur. That is the reason why 
particles form single chains. The time scale for 
particle bridging �3�E-2 is between 10-1-101 s 
(for parameters as in (ii)). When time passes the 
structure may coarsen into thicker column-like 
assemblies (see further discussions).  

 
Figure 10. The sketch of the dipole-dipole particle interaction. If two particles located within 
the theta angle of 54.7º, the attractive interaction will cause aggregation, otherwise they will 
repel one another. Reprinted from [42].  

If the simple dipole moment is express as: � � 3���45 where � is an effective 
polarizability of the particle, �� is its radius, and 45 is the electric field, the 
Eq.2 describing the interaction energy between two polarizable particles is 
given by: 

������6 �� 7 3���84�
�� �� � � ���� ������������ 

 

The force between these particles, which can be obtained by differentiating 
Eq.3, has three important features: it is a long-range interaction, decaying as a 
power law���9; and it is strongly anisotropic; and is proportional to E2.  
 
In real electrorheological fluids the situation may be more complex and some 
modifications should be taken into consideration. There exists no solvent 
being a perfect insulator, thus it will move charges to the particle surfaces in 
an attempt to screen the induced charge [43,44]. In addition, higher order 
multipolar interactions might play an important role. Thus, one needs to be 
careful when trying to describe the system in quantitative terms.  
 



13 

(iv) Chain coarsening into column-like structures  
In the last step, which is characterized by a time scale �4>>�3 the chain-like 
structures slowly drift together and coarsen. After an arbitrary long time, all of 
the chains (and thus all of the particles) in the fluid would be seen as a large 
aggregated mass. The force that drives the coarsening cannot solely originate 
from the electric field, since this interaction is weak (arises from the periodic 
dipole moment along each chain) and has a short-range nature. For perfectly 
aligned chains this interaction dies off exponentially with distance and is very 
weak when chains are separated by a distance greater than the size of their 
constituents.
However, the chains will never be perfectly ordered and will fluctuate 
thermally. When they do so, they develop local concentrations of dipole 
moments. The result is that the root mean square electric field dies off as 
power 2 of distance x from a chain (in direction normal to the chain axis) and 
is proportional to radius of dipolar particle.  

4�:� 7 ;<= >
:� �����������

This leads to a power-law induced force between two chains, arising from the 
coupling between these dipole fluctuations in different chains. The effective 
free energy of interaction between such chains (of length L) separated by a 
distance l is 

?�@� 7 �#;<A B>
9

@C ��������/�
Interestingly this field does not depend on the strength of the induced dipole 
moment itself (provided that the external electric field is strong enough to 
form chain-like structures). This is due to the fact that stiffness of a chain 
increases with dipole moment reducing proportionally the strength of the 
fluctuations.
There is the third force contributing to the chain coarsening, namely Keesom 
interaction, which arises from the coupling between thermal fluctuations in 
the dipole moment of the individual particles. The interaction energy between 
lines is actually similar to that of the fluctuation coupling (eq.5) 

DE�F�@� 7 �GB>9@C ��������H�
where A is the Hamaker constant. For electrorheological fluids, A varies over 
about (0.2-2.5)�;<A, so that this coupling is in the same order of magnitude 
but normally smaller than the fluctuation coupling described before. For more 
detailed discussion the reader is referred to the following literature [45-47].  

The time scale during which columns will collide with one another under the 
influence of the fluctuating forces �4�E-4/5 is longer compared to �3�E-2. The
development of thick aggregated assemblies is shown in Figure 11. Initially 
clay particles are distributed randomly in silicone oil (left). When electric field 
is applied many single chain-like bridges are formed (middle), followed by 
larger structure formation.      
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Figure 12. The development of thick columnar structures from Na-Fh clay particles suspended 
in silicone oil. Electric field is applied in a horizontal direction between electrodes spanned by 1 
mm. 

While investigating the whole process of the structuring or each phase separately, 
one should decide on type of electric fields used, since the behaviour of particles 
under a DC field may differ from that found in presence of an AC field. The 
electrophoretic particle motion is an important effect, dominating in a low 
frequency range between 0 and 30 Hz. This electrokinetic phenomenon was 
actually first time observed in 1807 using clay particles dispersed in water [48]. 
The dispersed clay particles have an electric surface charge that is screened by a 
diffuse layer of ions with the same absolute magnitude of charge but opposite sign. 
An external electric field exerts the electrostatic Coulomb forces (of different 
directions) on both the clay surface charge and the ions.  In addition the particle 
experiences the friction force due to motion in a liquid. The total resulting force is 
then 
 ?I
I � ?,J K ?L K ?-,I � $    (6) 
 

where ?,J is the electrostatic force, ?L is the friction force, and ?-,I is the 
retardation force originating from the viscous stress caused by ions located at some 
distance from the particle surface. If the diffuse layer is small compared with the 
radius of the particle the viscous stress is 
 

?-,I � ��>�M N)���N� � 6 OP!�N>�Q�'P�N&�&P�R�) � ),����1� 
 

where � is the dynamic viscosity of the dispersion medium, a is the particle radius, 
and r is the distance from the particle surface. Now, the electrical force is the 
charge multiplied by the field strength, and the total charge on the particle is the 
charge density at the shear plane multiplied by the area of the particle: 

?,J � �4 S ��>�T NU���N� � 6 OP!�N>�Q�'P�N&�&P�"R�� � $�>�N�U��� � V�����W� 
 

where 	 is the relative permittivity of the dispersion medium, X,�is the 
electrophoretic mobility, and �  is the zeta potential. When friction force is small ?I
I � �?,J, which gives [49] 
 

4	V � M),�����$��>�N�), � X, � 4��������6 � !"�X, � 	Y
M ����#� 

          t=0 s                           t=5 s                         t=20 s 

      

     No E-field                E=500 V/mm            E=500 V/mm 
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The above is valid for low Reynolds numbers and moderate electric field strengths, 
under the condition that the diffuse layer is small compared with the radius of the 
particle. Note that there is no size term in equations 10 and 12 as the surface area 
terms cancelled out. For detailed discussions on the particle mobility in the electric 
field (Smoluchowski vs. Huckel model, correction terms, etc.) the reader is referred 
to the literature [50,51].   
If a colloidal particle has a charged surface, a layer of counter-ions will be formed 
close to its surface (assuming presence of such ions in a solution). The population 
of this monolayer is a function of the electrostatic potential and the ionic content of 
the solution phase (plus specific chemical interactions).  It is assumed that the 
surface of a particle has a uniform charge distribution and the layer of counter-ions 
is adjacent to this surface. At the outer edge (viewed from the interface) of the 
counter-ions plane, the adsorbed ions change charge and sign of the potential � 
relative to ground (i.e. infinite distance from the particle surface). This quantity is 
difficult to measure on a routine basis, since ions in this layer do not move when a 
particle is forced to move, e.g. by electric field. But one can relatively easily 
estimate a zeta-potential from electrokinetic measurements (theory discussed 
above) where the motion between the fluid and the interface is detectable. The 
zeta-potential is a characteristic potential found at some distance from the particle 
surface ions, where ions start to displace when the particle is in a motion. This 
plane is called the slipping plane or shear plane, its position is not well-defined, 
and the value of � can be a little be uncertain. A sketch of a model of the so-called 
the double layer is shown in Figure 13. 
 

 
 
Figure 13. Illustration of a simple model for electrical double layer at the surface of a clay particle. 
Reprinted from [51]  

The above phenomenon can be utilized to define the surface of clay particles by 
measuring the zeta-potential (e.g. changes in zeta-potential sign and magnitude are 
expected for organoclays when compare that of their non-modified counterparts). 
The particle motion, on the other hand, is unfavourable when one tries to study the 
clay particle alignment (second phase) using an optical microscope. The 
application of AC fields is more beneficial. However, one should take into 
consideration the appropriate frequency range, since the dielectric properties of 
such dielectric particles change as frequency changes. The example is shown in 
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Figure 14, where oxidized polyacrylonitrile/silicone oil ER fluid was investigated 
under an AC field with frequencies up to 10 kHz [52]. Further increase of the 
frequency values may lead to complete disappearance of the ER effect when 
approaching the time scale of particle polarisation.    
 

 
 

Figure 14. The shear stress obtained at 300 V/mm and dielectric constant predicted using Wagner 
model (solid line) are showed again electric field frequency. Reprinted from [52]

Considering the ER effect itself, three common and in most cases valid theories 
should be presented here, namely polarization, conduction and dielectric loss 
models.  
 

� Polarization model 
The objective of the polarization models is to relate the material parameters, 
such as the dielectric properties of solid particles and a liquid medium, the 
particle volume fraction, the electric field strength, etc., to the rheological 
properties of the whole suspension. Using an idealized physical model ER 
system — a uniform, hard dielectric sphere (real dielectric constant �p, diameter 
2r) dispersed in a Newtonian continuous medium (real dielectric constant �m), 
the derived electrostatic force is found to be dependent on the dielectric 
constant mismatch between the particle and continuous medium [53-56].          
A universal form can be written as: 
 

? 7 	Z�#��� [	\]	Z � �
	\]	Z K #^

�
4���������� 

 

where F is the electrostatic force, r is the particle radius, and 	\ and 	Z are the 
dielectric constants of particle and medium, respectively. The shear modulus 
increases linearly with the dielectric constant ratio�	\]	Z, indicating that a high 
particle dielectric constant gives a strong ER effect. There are, however, 
examples of particles possessing very large dielectric constants (e.g. BaTiO3, 	\ 
~ 2000), but showing weak ER effects [57]. The polarization model fails to 
describe other important ER experimental observations, such as the rheological 
property dependence on the electric field frequency and the particle 
conductivity [56]. 
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� Conduction model 
 
The conduction model can successfully explain ER phenomena that are 
unexplainable by using the polarization model. It can predict the current 
density, the yield stress and the temperature dependence of the ER suspension. 
However, the conduction model can only be used for the situation where the 
suspension microstructure has been fully formed. The conduction model only 
considers the particle interaction, regardless of the microstructure change after 
an electric field is applied. It therefore cannot give an explanation of the 
dynamic phenomena, such as the response time of ER fluid. The conductivity 
mismatch between particle and liquid medium, rather than the dielectric 
constant mismatch, is thought to be a dominant factor for DC and low 
frequency AC excitation [58,59]. 
 

� Dielectric loss model 
 
Two dynamic processes are emphasized in this model. The first step is the 
particle polarization process, in which the particle dielectric constant is 
dominant. The second step is particle rotation determined by the particle 
dielectric loss. The second step is the most important one, which distinguishes 
the ER particle from non-ER particle. In other words, both the ER particle and 
non-ER particle can be polarized under the influence of an electric field, 
however, only the ER particle can re-orientate along the electric field direction, 
building the fibrillated bridges between two electrodes. The non-ER particle 
does not have such ability. The possible reason is that the ER particle has a 
comparatively high dielectric loss tangent, which can generate a large amount 
of bounded surface charge. The particle turns even under a weak electric field. 
The non-ER particle cannot gain enough surface charge due to its low dielectric 
loss. Although they are still able to be polarized, the total inter-particle force 
would be cancelled out owing to the diversity of particle dipole vectors. 
Derivation of the general equation for this model is rather long and 
troublesome, thus the reader is referred to [56] for more detailed explanations.  
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1.4. Experimental techniques 
 
 A considerable part of the research was dedicated to investigating particle 
alignment in presence of electric fields, the ER response, thermal properties, etc. In 
order to understand physics behind these phenomena it was also very important to 
characterize the samples themselves by, for example, collecting information about 
particle shape and size, morphology, or surface and bulk properties. Therefore 
many different experimental techniques had to be employed, and these are briefly 
explained below. The focus is put more on the information (parameters) that can be 
obtained (measured) from each method and the justification for their use, rather 
than a description of technical details.         
  

AFM / SEM / TEM / Optical microscopy 
 All of these microscopy techniques were used to characterize clay minerals. 
Atomic force microscopy (AFM) is very practical when high magnification images 
are needed and it has a few advantages over other high magnification methods. 
Unlike the electron microscope which provides a 2-D projection, the AFM 
provides a 3-D surface profile. Additionally, samples viewed by AFM do not 
require any special treatments (such as metal/carbon coatings) that would 
irreversibly change or damage the sample. The AFM method can be used to 
monitor the clay mineral surface, its roughness and thickness. Due to its very high 
vertical resolution it is possible to see even a single crystalline layer of a clay 
particle.  
 Scanning electron microscope (SEM) is more convenient than AFM when more 
general overview on average size, distribution and shape of both a single particle 
and an aggregated structure are needed. The magnification and the imaged area can 
be freely controlled ranging from hundreds of mm2 to few μm2, whereas the 
standard AFM probe can only image a maximum area of about 150×150 μm. This 
technique was very beneficial for studying aggregates, particle shapes and 
arrangement in the agglomerations (see Figure 4). Normally the EDS detectors are 
coupled to the SEM instrument allowing for elemental analysis.  
 Transmission electron microscope (TEM) is designed for a very high 
magnifications. It is capable of imaging at even higher resolutions than SEM. 
However, the sample preparation can be a complex and time-consuming procedure. 
It can be used for studying the smallest clay minerals, such as laponite particles 
having only several nm sizes.   
 Optical microscopy can be employed for observations of structuring from 
aggregated clay particles. Together with cameras capable for fast imaging, the 
particle rotation, chaining and also column formation can be readily investigated.     

EDS 
 Energy dispersive X-ray spectrometry (EDS) is an analytical technique used for 
the elemental analysis or chemical characterization of a sample. It can be very 
useful when clay minerals are chemically modified. One can easily check whether 
certain exchangeable cations were fully replaced by other species, e.g. other 
cations, surfactant molecules, etc. In addition, it can be used as a cross-check 
method providing information on sample purity. 
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�- potential 
 The zeta potential was measured using Malvern Zetasizer Nano-ZS (Malvern 
Instruments, UK) with a folded capillary 86 cell. Measurements can be performed on 
non-modified and modified clay minerals to check whether the modification is 
successful or not (sign of ��). For example, Na-Fh clay particles carry a net 
negative charge due to the negative charges on their surfaces dominating over the 
positive charges at the edges. The zeta potential of non-modified Na-Fh is expected 
to have negative values. With the addition of CTAB molecules (positively charged 
head group) the zeta potential becomes positive. In addition, the absolute 
magnitude of zeta-potential gives an indication on the stability of colloidal 
suspension being measured. For the absolute values of the zeta-potential in range 
between 0 and 30, colloidal solutions are considered to be unstable, since the 
repulsive forces between particles are weak and they tend to aggregate, which leads 
to fast sedimentation. For the absolute values of the zeta-potential in range between 
30 and 60, colloidal solutions are considered to be moderately stable. This is the 
case for system studied in this research. Particle sedimentation time is in range of 
hours, days. Finally, for ����>60 the solution is very stable.  
 
Electric current and dielectric properties measurements 
 The electric current and dielectric properties measurements are complementary, 
in particular to rheological measurements.  The obtained information can shine the 
light on the mechanisms of the electrorheological responses. In addition, one can 
also monitor water content in clay particles.  
 Because of the difficulty of directly measuring the dielectric properties of the 
particles, clay/silicone oil suspensions can be used to carry out dielectric 
investigations. The dielectric constant can be estimated indirectly via 
measurements of the capacitance in a configuration of a parallel-plate capacitor.  
  
TGA/DTG
 Thermal gravimetric analysis (TGA) is used to determine sample thermal 
properties such as degradation and decomposition points, and also to investigate 
adsorbed moisture content or inorganic/organic components in materials. Sample 
weight is measured with a very high precision (~μg) against temperature as shown 
in the example below. Figure 15 shows TGA curves of Na-Fh and dehydrated 

kaolinite samples. This type of analysis 
can be used to determine water content. It 
can be seen that there is a significant loss 
of mass for Na-Fh sample at temperature 
range between 50 and 200 ºC, whereas no 
such behaviour is found for kaolinite 
sample. The TGA curves, however, 
require transformation to see more detailed 
features and this is done by taking the 1st 
derivative resulting in DTG curves.  
 

Figure 15. TGA and DTG analysis (25-800 ºC) of Na-Fh and Kaolinite clay samples.  

 

�

� �
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Rheology
 The electric field induced liquid-to-solid transition in ER fluids (due to a chain 
formation) is manifested by changes in the ER properties, such as viscosity, yield 
stress, elastic (storage) and viscous (loss) moduli, etc. All these properties can be 
measured by rheometeters, being very advanced and sensitive tools. There are 
different rheological cells and geometries that allow measuring a broad range of 
samples from ER fluid, through MR fluids, Newtonian and non-Newtonian fluids, 
gels, very viscous and low viscosity solutions. Two types of tests can be performed 
in order to measure different parameters, and these include rotational tests 
(viscosity � or static yield stress �y can be obtained) and oscillatory tests (loss G’ 
and storage G’’ moduli can be obtained). All the parameters measured are directly 
or indirectly related to the following factors: temperature, water content, E-field 
strength and frequency, particle dielectric properties, liquid medium, concentration, 
shape, size or surface, etc.; and the influence of these factors can be determined by 
means of rheometry. In particular, the difference in ER response between non-
modified and organically modified particles was of high importance. Even though 
the present studies have a basic-research oriented nature, the proximity of studied 
samples to potential applications should be also taken into consideration. Thus, 
measurements of the increased ER properties observed for modified clay particles 
were of high importance.     

WAXS/SAXS 
 Finally, both wide- and small-angle X-ray scattering (WAXS and SAXS) 
techniques are essential when studying clay minerals. The Bragg diffraction pattern 
allows to determine the chemical composition or phase composition of the sample. 
When studying clay minerals, the measurements of the characteristic interlamellar 
distance between clay crystalline sheets may be of importance (changes when 
water or organic species intercalates) and this featured can be monitored by means 
of the X-ray technique. In powdered samples (of for example synthetic 
fluorohectorite) several aspects of the structure and dynamics of intercalated water 
molecules can be studied e.g. water diffusion as a function of relative ambient 
humidity or temperature. Examples of studies utilizing scattering methods can be 
found in the following articles [60,61,62] (X-ray scattering) and [63,64] (neutron 
scattering). In addition, the alignment of crystallites (or particle orientational 
distribution in the case of clay particles suspended in solution) can be found and 
quantify using a 2-D detector. When the studied system is anisotropic, i.e. clay 
particles have their preferential orientation (see Figure 16b) due to: presence of an 
external electric field, magnetic field, gravity, etc.; the 2-D Bragg patterns (rings) 
become anisotropic in their intensity distribution along the azimuthal angle � (see 
Figure 16c). These patterns (rings) can be represented as 1-D plots (scattering 
intensity versus azimuthal angle) and then fitted to the desired function. In the 
present study, the classical Maier–Saupe functional form (see Figure 16d) was 
used. Although in the clay system studied here, the interaction energy is different 
from that used by Maier and Saupe in their mean field model for liquid crystalline 
order, the latter functional form was found to be well suited to the raw data, as 
discussed in [65, 66]. The angular 'width' of the function f(�) is a quantification of 
the orientational order of the particles in the suspension. This is contained in the m 



21 
 

parameter, and is conveniently expressed using the global nematic order parameter 
S2. In short, the fitting parameter m is related to the full width at half maxima i.e. 
the smaller its value the higher the degree of anisotropy. The nematic order 
parameter S2 ranges from -1/2 to 1. The nematic state is expected for S2>0, anti-
nematic when S2<0, whereas S2 = 0 denotes no orientational order. 
 
(a)        (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d)  (c)            
   
   
 
 
 
 
 
 
 
 

 

 

Figure 16. Sketch showing the Na-Fh clay particles (a) aligned between electrodes and X-rayed using 
WAXD with 2-D detector (b). The obtained 2-D patterns are azimuthally integrated (c) and fitted to 
the Maier-Saupe model in order to describe the degree of anisotropy in the system (d).   

 
  The system geometry is described within this thesis as antinematic. That is the 
particle's stacking direction is, on average, in a plane normal to the reference 
direction which is chosen to be along the electric field, since this is the only unique 
axis in the problem (see Figure 17b - blue disc indicates the plane normal to the 
reference direction represented by large black arrow). Figure 17 shows the normal 
nematic (a) and antinematic (b) configurations. The first impression one may have 
is that the particles in the nematic geometry are nearer to the perfect nematic 
arrangement than those in the antinematic geometry are to the perfect anti-nematic 
arrangement. In fact, S2=-1/2 for particles shown on the right panel of the figure, 

        0 V/mm                     500 V/mm 
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since the plane normal direction of each particle is perpendicular to the reference 
direction no; and therefore the perfect antinematic state is achieved. 

   
Figure 17. Nematic (a) and antinematic (b) configurations. 

 Some confusion may arise when searching literature for the definition of the 
nematic order parameter and names for the set-up geometry that is called 
antinematic in this study. To give few examples: 
 

Hemmen et al [67] use the classical nematic order parameter (S2) ranging from 
-1/2 to 1, where -1/2 denotes perfectly oriented particles in the antinematic 
configuration, 0 refers to complete lack of any orientational order, whereas 1 
denotes perfectly oriented particles in the nematic geometry. The antinematic 
term is used when clay platelets, on average, are oriented with their normals 
perpendicular to the director of order, which is parallel to the symmetry axis of 
the cylindrical tube.  
(they use S2 in range between (0 and -1/2) when describing antinematic systems)   

  
Meheust et al. [65], use the same naming as Hemmen et al. but re-define the 
range of S2 values (from -1/2–0 � 0–1) simply by multiplying it by -2. 
(they use San in range between (0 and 1) when describing antinematic systems)   

 
It might be even more confusing when introduced to work of Dozov et al. [68] 
They suggest different name to what is called here as the antinematic state, the 
para-antinematic. They distinguish between the situations where particles, on 
average, align with their stacking direction normal to the reference direction 
without any preferred azimuthal direction (i) and with a preferred azimuthal 
direction, i.e. particles parallel to each other (ii). They propose to name the 
latter antinematic.  

 (they use S2 in range between (0 and -1/2) for para-antinematic systems)   

Initially, I followed the description given by Meheust et al. (Paper 1, Paper 2, and 
Paper 3). However, in order to be consistent with commonly acceptable definition 
of the antinematic configuration (e.g. used by Hemmen et al.) I decided to use the 
nematic order parameter S2 which lies in range between 0 and -1/2 (other 
manuscripts).  



23 
 

2. Thesis development – introduction to the Articles 
 
 As mentioned in the introduction, this thesis work represents a continuation of 
previous research focused mainly on guided self-assembly from non-modified clay 
particles. My first efforts were put into understanding various features related to 
this subject such as particle alignment. That is their orientational distribution as a 
function of time and electric field strength; electric current development during the 
chain/column formation, and complementarily the rheological properties were 
measured. The main results on these topics are presented in Paper 1 and Paper 2, 
and they are:  
(i) many of thin chains are formed initially (~1-20�m) and they attract one 

another resulting in creation of thicker (~50-200�m) columns within the given 
limited evolution time of ~ 6 min; 

(ii) the particles mean orientational distribution does not seem to change as the E-
field strength increases from 350 to 750 V/mm;  

(iii) the value of current density increases and saturates at a different characteristic 
time, both being E-field strength dependent;  

(iv) there is a qualitative indication that chain formation and coarsening can be 
distinguished by comparison of electrical current and the dynamical 
development of WAXS diffractograms (though additional measurements are 
needed to be more conclusive on that point); leak current density J is related to 
particle concentration � and E-field strength as: J��0.74E2.12; 

(v) dependence of the yield stress on the E and � is shown to scale as: 
�y��0.87E1.66;  

(vi) the dielectric constant is E-field or particle orientation dependent (though 
additional measurements are needed to be more conclusive on that point). 

 

 The PhD work, branched out into related directions with a somewhat differing 
motivation in each case. It was decided to organically modify two types of 
synthetic clay minerals, namely laponite and fluorohectorite, in order to find their 
new and improved properties, and to avoid formation of agglomerates, improving 
anti-sedimentation properties that made previous measurements difficult to 
conduct. The results of the chemical treatment of laponite particles are described in 
Paper 3, whereas the comparison between non-modified and organically modified 
fluorohectorite clays is presented in Paper 4. The main results are:  
(i) the resulting materials show different structures and surface properties – 

particles became lipophilic and formed smaller aggregates when suspended in 
non-polar medium;  

(ii) not only surfactant adsorption but also intercalation occur – exchangeable 
cations are replaced by CTAB molecules;  

(iii) the modified laponite ER fluids exhibit improved sedimentation properties;  
(iv) rheological properties are improved, possibly due to change of both the 

dielectric constant and the dielectric loss tangent;  
(v) the organic modification results in a better overall alignment of the clay 

particles in presence of E-field;  
(vi) zeta-potential measurements confirm the successful modification.  
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 Paper 5 and Paper 6 can be considered as a third group, since both of them 
include studies of the clay-based polymer composites, although the motivations for 
launching these two projects were somewhat different. In the Paper 5, the 
structural changes in modified MMT/polymer composites were investigated and 
confronted with two recently published articles by Park et al. [37] and Kim et al., 
[69]. They observed a very interesting phenomenon of clay delamination 
(exfoliation) due to application of AC electric fields. This could potentially open 
up a new chapter in the field of clay based nanocomposites, since such material in 
principle should possess superior mechanical properties when compared to 
conventional filler-based composites. These interesting phenomena were the main 
motivation for conducting similar experiments, understand the mechanisms behind 
the electric field induced exfoliation better, and contribute to this fascinating field 
of polymer/clay science. The main collaborating partners are: Suedina M L Silva 
(Fed. University Campina Grande, CG-Brazil) responsible for sample preparation; 
and Tomas S Plivelic (Max-Lab, Lund University, Lund, Sweden) a synchrotron 
X-ray and polymer science expert. Our group has provided expertise in clay 
alignment and was responsible for the experimental part and data analysis. The 
samples, provided from the collaborator (Campina Grande, Brazil) in the form of 
solid blocks, were investigated in melted state (T between 25-195 ºC). The main 
results are:  
(i) DC electric fields are found to have noticeable but little effect on the clay 

particle structure and the basal spacing has increased by around 5 %, whereas 
the application of AC electric fields resulted in the alignment of clay particles 
only;  

(ii) despite many efforts, no clay particle exfoliation is observed (seems to be 
more challenging than described by other authors);  

(iii) the polymer crystallization prevents better particle orientation; 
(iv) the degree of anisotropy decreases during crystallization; 
(v) application of either DC or AC electric fields resulted in very similar particle 

alignment and none of them should be considered as privileged. 
  
 The research carried out in the Paper 6 was focused more on time and E-field 
strength dependent development of the anisotropy from fluorohectorite clay 
particles suspended in paraffin-wax matrix. The main results are:  
(i) the nematic order S2 depends on the E-field strength;  
(ii) thermal effects oppose the electrical forces and prevent from perfect particle 

alignment, stronger electric fields are required to achieve higher degree of 
anisotropy; 

(iii) on average, the final clay particle orientation (i.e. after heating, aligning in the 
E-field for long time, and solidifying) is not of the highest order, and it is 
believed that particles lose their most optimal arrangement due to chaining; 

(iv) the dehydration of clay particles takes nearly 10 h for clay particles in melted 
paraffin, re-hydration process in crystalized paraffin is very slow due to very 
low water penetration through the oligomer matrix, and the pure 1 WL state is 
not achieved even after 6 months of exposure to 55 % relative humidity and 
room temperature. 
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 Towards the end of my PhD work period, I met M. Janek (Slovak Academy of 
Science, Bratislava) and was asked to measure halloysite samples. The rheological 
measurement appeared to be interesting and further investigations were performed. 
Those led to origin of the manuscript presented here as Paper 7, which consists of 
comparison of ER responses between kaolinite and halloysite clay/silicone oil 
suspensions; and differences in the E-field induced structuring from both types of 
clays. The main results are:  
(i) since kaolinite and halloysite are natural clays, it is important to verify if the 

purification is successful, which can be confirmed by means of XRD and 
FTIR techniques 

(ii) SEM/TEM images confirms that the kaolinite sample is a well-crystallized 
mineral with platy particles of hexagonal symmetry, whereas the morphology 
of halloysite particles is very different consisting of irregularly shaped 
particles including flakes and tubular particles 

(iii) the overall alignment of the kaolinite particles is significantly better compared 
to that of halloysite particles, this is mainly a result of the different form of 
aggregates, which in both cases in the presence of an external E-field are 
columnar structures; 

(iv) the disc-like kaolinite particles stack up on each other and align along the 
electric field direction, i.e. the stacking direction perpendicular to the electric 
field direction, whereas the halloysite samples is found to give no rise to 
anisotropy on the 2-D WAXS diffraction patterns, indicating no basal plane 
preferential orientation for this system;  

(v) the electrorheological response is considerably stronger for kaolinite 
suspensions compared to those of the halloysites, this cannot be explained by 
a simple polarization model, since the dielectric constants are similar for both 
samples, thus it is suggested that the way particles aggregate is the dominant 
factor;  

(vi) electric currents are measured and they scale as: IK�E4.1 and IH�E2.0 for 
kaolinite and halloysite, respectively;  

(vii) electrochemical behaviour of the suspensions and consumption of 
electrochemical species (water molecules) mediating the current flow is 
different for kaolinite and halloysite, and this was confirmed by TGA analysis; 
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3. Final comments of this work and future outlook 
 
 In this section, the possible directions for future studies are given. These have 
arisen together with the thesis development, i.e. during the literature review, and as 
a result of the experimental measurements.  
 At the beginning of the PhD study period, I found it surprising (and interesting) 
that in the field of clay science, studied intensively for nearly 80 years, there were 
still so many unanswered fundamental questions. Later on, I realized that some of 
the experimental tasks were non-trivial and challenging. To give a few examples I 
will start with the problem related to the polarization phenomena.   
 

 There are potentially many effects contributing to the clay particle induced 
polarization, which leads to its re-orientation in presence of an electric field.  Since 
the clay particle is anisotropic in its shape, the electronic polarization (on the 
atomic scale) existing in each material may contribute to particle rotation. In 
addition, the polarization of intercalated water, surface water and water stored in 
material micropores can play an important role. Also the role of displacements of 
cations must also be considered. Possibly one of these mechanisms is dominant. 
There is an on-going project within our group which may “shine light” on the 
subject of clay polarization. Differently prepared clay particles suspended in 
silicone oil are exposed to an E-field. Their rotation is recorded and then the 
rotation time is estimated. It is believed that this approach could be utilized to 
understand the polarization mechanism and quantify the particle dipole moment 
and thus the magnitude of the displaced charge. 
  

 Another question is related to the charge transport mechanism in synthetic 
clays. The complete understanding of that phenomenon is essential and may 
potentially lead towards new application-oriented studies. There are two major 
proposed mechanisms describing the charge transport in clays: (i) proton exchange 
mechanism [70-73] and (ii) the influence of intercalated cations predominantly 
being responsible for the electrical conduction [74,75]. The latter mechanism was 
investigated by Kaviratna et al. [76], whereas the former one was addressed by 
Tenorio et al. [77]. However, the subject remains open for further discussion and 
revisions. 
 

 Another problem is related to the measurements of electrical currents of clay 
particles during the structuring. It was observed that for some types of clays the 
current increases, while for others it decreases in time. In principal, there are two 
effects that can be explained qualitatively, but the quantitative analysis seems to be 
troublesome. The electrical current grows when the number of conducting bridges 
increases. On the other hand, it was reported that if a constant current is injected 
though a water containing clay minerals, the voltage measured between two 
electrodes decays over time. This is due to the storage of electrical charges that 
accompany the electromigration of charge carriers (electrons and ions) in porous 
materials and electrochemical activity at interfaces between various phases [78]. 
These two effects may have different characteristic time decays and may also vary 
with clay type, water content, E-field applied and its frequency, etc. 
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Abstract. The dynamic chain and column formation of 5wt.% clay particles suspended in 
silicone oil has been studied using synchrotron Wide Angle X-Ray Scattering (WAXS) 
technique and rheometry. The anisotropic arrangement of particles described by the global 
order parameter S has been investigated. The WAXS data have also allowed distinguishing 
between the chain and column formation processes by comparison of the change of WAXS 
angular plots maxima with the current density growth in function of time. The saturation time ts
(after which there was no change in the system observed) was estimated. In addition, the 
rheological properties of the ERF have been measured including the static yield stress.   

1.  Introduction 
Electrorheological fluids (ERFs) are liquids that solidify, or become very viscous, under an electric 
field. The transition from liquid into a solid-like state indicates that there is an inner ordering of the 
ER-constituents, which leads to a change in the rheological properties. Application of an electric field 
induces polarization of the suspended dielectric particles and a chain-like structure can be formed 
along the electric field direction [1-3]. Recently, the Giant Electrorheological (GER) fluid was 
discovered and it differs from the conventional ER fluids by exceeding the theoretical upper bound 
[4,5] of the yield stress, reaching 250 kPa at 5 kV/mm [6,7]. That discovery opens new horizons in the 
field of ER systems and inspires rheologists for working on further developments of such systems. In 
order to predict the response and behavior of ERFs under an applied electric field, it is important to 
gain an understandable knowledge of the physical mechanism of the chain and column formation and 
its dynamics. In the present study, synthetic clay particles Na-fluorohectorite (Na-FLHC) suspended in 
insulating, non-polar silicone oil form with time chain-like structures when subjected to an external 
electric field. The time needed to create columns of aggregated particles varies as the electric field 
(0.35, 0.5 and 0.75 kV/mm) increases. Wide Angle X-Ray Scattering (WAXS) diffraction patterns 
reveal changes of the direction of the dipolar moment induced in clay particles when the electric field 
is applied. The anisotropic arrangement of particles forming the chain can be described by the global 
order parameter S. The detail description of the system geometry, fitting procedure and calculations of 
S parameter can be found in the report of Meheust Y, et al. [8]. In-depth analysis of the system 
measured can be obtained using rheometry. The shear stress τ as a function of a shear rate γ�  can 
reveal the type of ER fluid and in case of samples of this study the shear stress is represented by the 
Bingham plastic rheological model [9,10]  

2.  Sample preparation and characterization methods  
The synthetic Na-FLHC clay was purchased from Corning Inc. (New York) in a form of powder. 
According to supplier, its chemical formula is given as Na0.6(Mg2.4Li0.6)Si4O10F2 per unit cell, where 
Na is an interlayer exchangeable cation. A silicone oil Dow Corning 200/100 Fluid (dielectric constant 
of 2.5, viscosity of 100 mPa·s and specific density of 0.973 g/cm3 at 25°C) was used as a suspending 
liquid as a relatively non-polar and non-conductive medium, with a DC conductivity of the order of 
magnitude of 10-12 S/m. The preparation of the ER fluid was undertaken by the following procedure. 
Clay powder was crushed with a pestle and mortar, and then dried in vacuum oven for 12h at 90°C. At 
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the same time the silicone oil was heated at 110°C for 12h. After that, the clay powder and silicone oil 
were mixed in glass tubes and vigorously hand-shaken for ~2min, then placed in an ultrasonic bath for 
1h and again vigorously shaken for 1h in an orbital shaker. The clay concentration was assumed to be 
~5 wt.% and it sedimented rather slow, however for rheological data collection the sample needed to 
be pre-shaken each time before measurement.  

The wide angle x-ray scattering experiment (WAXS) was carried out at the European Synchrotron 
Radiation Facility (ESRF) in Grenoble, France. The X-ray beam with wavelength of 0.72Å and 
0.3x0.3mm2 beam size at sample was used. On the beamline BM01A a two-dimensional MAR 345 
image plate detector with diameter of 345mm and a read-out time of around 40s was installed.         
The WAXS experiment was performed 
at RT for sample at rest (no liquid flow 
through a custom-made scattering cell). 
Electric fields from 0.35 to 0.75kV/mm 
have been chosen as a result of the 
following observations: for the electric 
filed above 0.75kV/mm the chain and 
column formations are too fast to be 
distinguished; electric fields below 
0.35kV/mm however are too week for 
particles to form any chains.  

The rheological properties of the 
clay suspensions were measured at RT, 
under DC electric fields using a 
Physica MCR300 rheometer. 

3.  Results and discussion 
Normally, the Na-FLHC particles are randomly dispersed into the silicone oil (fig.1a). Microscopy 
images of the sample experiencing an electric field for different time are shown in fig.1b, 1c. The 
formation of column-like structures aligning parallel to the field is clearly observed. Many of thin 
chains are formed first (~1-20�m) and they attract each other resulting in creation of thicker (~50-
200�m) columns. After the time ts (which will be called here the saturation time) no major changes in 
the system are noticeable. Figure 1d is obtained prior to the application of an electric field and 
isotropic pattern can be observed, since particles are distributed randomly with not specified 
orientation. The two-dimensional WAXS patterns in figures 1e and 1f are becoming gradually more 
intensive in time, and the dependence of intensity for azimuthal angle φ is pronounced. This change of 
the 1st Bragg peak intensity in time is plotted as function of the azimuthal angle φ and presented in 
figures 2a and 2b for different electric (DC) fields.   

(a) (b)

Figure 1. Optical microscope (a,b,c) and WAXS data (d,e,f) 

Figure 2. Angular plots of the 1st Bragg peak changing with time under an electric field  
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There are three possible events which can influence these WAXS pattern changes while time passes 
by: either clay platelets are being more orientated along the electric field or/and clay particles are 
forming chains or/and chains are coarsening into column-like structures in a range of the X-ray beam. 
These three situations can occur in different time range or they may overlap in time. By looking at 
figures 2 and also taking into account the calculations of S parameter (tab.1) one can conclude that the 
intensity does not changes due to particle orientation and it is rather dependent on the dynamic chain 
or/and column formation. The mean orientation distribution hardly changes and S oscillates around 
0.63, 0.65 and 0.60 under applied fields of 0.35 kV/mm, 0.50  kV/mm and 0.75 kV/mm, respectively.    

Time 15s 1min 1min45s 2min30s 3min15s 6min Avr. 
0.35 kV/mm S 0.63 0.61 0.62 0.62 0.67 0.65 0.63 
0.50 kV/mm S 0.62 0.62 0.64 0.64 0.68 0.67 0.65 
0.75 kV/mm S 0.53 0.64 0.65 0.58 0.60 0.59 0.60 

Table 1. Calculated order parameters for Na-FLHC clay suspension under an electric fields of 0.35, 
0.50 and 0.75 kV/mm.

The current density increases when chains are being formed. However, it does not change while chains 
coarsen into the column. Therefore by comparison between the current density growth and the change 
of WAXS angular plots maxima versus time (fig.3), both chain and column formation processes can 
be distinguished. This information might be of importance when one needs a self-assembly from 
particles to lead into the single chain formation rather than aggregated column creation.                
For 0.75 kV/mm and 0.50 kV/mm electric fields the current density curves overlap with WAXS data 
indicating the chain formation is followed by rapid column aggregation. However, for the lowest 
electric field current density increases faster than the WAXS records for the same field pointing out 
that the column formation occurs slower comparing to higher electric fields. That follows the thermal 
theory of coarsening [11,12], which describe the collision time of two chains as follows: 

12123~ −− ⋅⋅ ETkt Bc ρ , where ρ is a distance between two chains. Thus, when the electric field E 
increases (more rapid chain formation entails both the decrease of distances between chains and the 
increase of current resulting in the temperature T rise) the coarsening occurs more rapidly. For the 
different field strength, the intensity for azimuthal angle and integrated q values becomes saturated at 
the different time ts which was estimated as: ~195s, ~150s and ~60s for electric fields of 0.35kV, 
0.50kV and 0.75kV, respectively. One can see that the data and its fitted curves in fig. 2b are left- or 
right-shifted. This is due to the movement of a columnar structure that can be tilted in respect to the 

reference orientation while being formed. 
Fig.4 shows the yield stress τy of different 
clay particle concentration Θ as a function 
of electric field E. The power law with 
exponent α of 1.57, 1.77, 1.67 and 1.64 
was used to fit the results for the samples 
with 5, 10, 20 and 40 wt.% of clay 
particles, respectively. The exponent α is 
commonly found in the range between 1 
and 2 [13]. The yield stress for the sample 
with 5wt.% of clay particle was estimated 
as 16 Pa at 1kV/mm. whereas the yield 
stress of 102 Pa was measured for the 
sample with 40wt.% of clay particles. As 
one can see the yield stress τy and what 
follows the apparent viscosity η of the ER 
suspension is largely dependent on the 
particle concentration Θ and the 

Figure 3. Leaking current density and maxima of 
angular plots versus time. 
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relationship is nearly linear. Similar results have been found by many researchers [9] and the 
fibrillation model was used to derive that dependence. However simple and very limited, the 
fibrillation model can be also suggested here as the mechanism of the ER effect. In this model 
particles can be polarized and aligned as a dipole along the direction of the electric field. The 
interaction between the polarized particulates would be increased, resulting in the obvious ER effect. 
The particle could bear some net charge, arising from the non-uniform polarization or ionic 
adsorption, thus electrophoresis could contribute to the particle motion. This particle migration was 
observed using optical microscope and also confirmed by the experiment described below. Steady 
shear stress for a DC electric field was compared with a low-frequency (50Hz) periodic AC field of 
the same RMS voltage values. The results are shown in the inset of figure 4. The shear stress is higher 
when the AC power supply is used. This is due to the fact that electrically induced particle migration 
is minimized.   

4.  Conclusion 
The dynamic chain and column formation 
of 5wt.% clay ER suspension has been 
studied by means of WAXS technique 
and rheometry. It was shown that the 
mean orientation distribution hardly 
changes in time (15sec – 6min) and the 
order parameter oscillates around 0.63, 
0.65 and 0.60 under applied fields of 0.35 
kV/mm, 0.50 kV/mm and 0.75 kV/mm, 
respectively. The WAXS experiments 
have also allowed distinguishing between 
the chain and column formation processes 
by comparison of the change of WAXS 
angular plots maxima with the current 
density growth versus time. For the 
lowest electric field (0.35 kV/mm) there 
was clear evidence that coarsening of 
chains into the thicker columns occurs 
much slower comparing to the samples at 
higher fields, where column formation 
takes place immediately after chains are 
being formed. The saturation time ts (after which there was no change in the system observed) was 
estimated as: ~195s, ~150s and ~60s for electric fields of 0.35kV, 0.50kV and 0.75kV, respectively. 
The formation of chains and columns is more rapid when an applied voltage is higher. Steady shear 
stress for a DC electric field was compared with a low-frequency periodic field and a slight increase in 
the shear stress was observed due to the minimization of particle migration. In addition, the most 
important electrorheological properties have been measured which included both the electric field and 
also particle concentration dependent yield stress tests.  
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Figure 4. Log-log plot of the static stress for different 
clay concentrations as a function of E. Inset shows that 
the shear stress is higher when AC field is used due to 

minimizing of particle migration. 
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Abstract
The electric field induced structuring in clay–oil suspensions has been studied by means of wide
angle x-ray scattering (WAXS), rheometry, scanning electron microscopy (SEM), as well as
leak current density and dielectric constant measurements. The clay particles’ orientation
distribution was inferred from the azimuthal changes of the clay diffraction peak intensity. The
angular width of that distribution was quantified through an orientational order parameter.
Chain and column formation processes were distinguished by comparison of the time evolution
of the diffraction peak amplitude with that of the current density. Leak current density was
measured for different electric field strengths E and clay particle concentrations �. The
following scaling relation was found: J ∝ �0.74 E2.12. In addition, the dependence of the yield
stress on the electric field and on the particle concentration was measured and shown to scale
as: τy ∝ �0.87 E1.66.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The fast rheological response to an applied electric field,
which is the characteristic behavior of electrorheological
fluids (ERFs), has attracted attention from both engineers
and scientists since Winslow discovered this phenomenon in
1947 [1]. ERFs are complex fluids that solidify, or become
very viscous, when submitted to an applied electric field. The
transition from a liquid to a solid-like state indicates that an
internal ordering of the electrorheological (ER) constituents
has appeared, leading to dramatic changes in the rheological
properties. Application of an electric field induces polarization
of the suspended dielectric particles. They consequently orient
in the field and aggregate, which results in the formation of a
chain-like structure parallel to the electric field direction [2–4].
The most common ERFs are suspensions of 1- to 100 μm
polarizable particles at volume fractions of 0.05–0.50 dispersed

in an inert insulating liquid. For an electric field E in the range
50–5000 V mm−1 the particles form chains that span the gap
between the electrodes [5].

Recently, the giant electrorheological (GER) effect was
discovered: an ERF was made that differs from the
conventional ERFs in that it exceeds the theoretical upper
bound [6, 7] of the yield stress, reaching 250 kPa at
5 kV mm−1 [8, 9]. That discovery opens new horizons in the
field of ER systems and inspires scientists working on further
developments of such systems. With such large yield stresses
within reach, ERFs provide the possibility of rapid-response
(of the order of milliseconds) coupling between mechanical
devices and electronic control systems. Fast liquid–solid
transition and high yield stress make ERFs attractive for many
future technologies.

In order to predict the response and behavior of
ERFs under an applied electric field, it is important to
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Table 1. Expressions of the order parameter as defined for a nematic and anti-nematic geometry.

Nematic Anti-nematic

Sn = 1
2 〈3 cos2 α − 1〉 f i.e.,

Sn = π
∫ π/2

0 (3 cos2 α − 1) f (α) sin α dα

San = 〈3 cos2( π

2 − α) − 2〉 f = 〈3 sin2 α − 2〉 f i.e.,

San = 2π
∫ π/2

0 (3 sin2 α − 2) f (α) sin α dα

gain an understanding of the physical mechanism of the
chain and column formation and its dynamics. The
present study is focused on these points rather than on the
rheological properties of the systems themselves. Synthetic
Na fluorohectorite (Na-Fh) clay particles suspended in
insulating, non-polar silicone oil form chain-like structures
when subjected to an external electric field. The time needed
to create columns of aggregated particles decreases as the
electric field increases. WAXS diffraction patterns can reveal
changes (if any) in the orientation of the clay particles when
the electric field is applied. WAXS therefore allows us to
monitor the orientational order in the suspensions during ER
chain and column formation. The method is briefly explained
in section 2, while the results are presented in section 4. The
chain formation is associated with an increase in the leak
currents through the fluid; we monitor these currents and
observe that they allow us to discriminate between chain and
column formation (section 4.3). The evolution of the effective
dielectric properties of the material is presented in section 4.4.
Rheometry measurements provide the corresponding changes
in the mechanical properties of the suspensions (section 4.5).

2. Theoretical background of the study

2.1. What symmetry does the orientational order have in our
system?

As a coarse approximation, the Na-Fh clay platelets forming
the chain can be represented as disk-shaped aggregates, whose
orientation is completely defined by a unit normal vector (n)
(the director). Thus, the anisotropic arrangement of these
particles can be described by an orientation distribution f
that is a function of the platelet director (n)s orientation.
Given that the chain/column is parallel on average to the
direction, denoted by unit vector (no) (which we shall
denote ‘reference director’), of the applied electric field,
the orientation distribution function f only depends on one
characteristic angle α: the angle between the director (n) of
a given platelet and the reference director (no) [10]. Moreover,
WAXS measurements reveal that the particles have their
directors lying on average in a plane perpendicular to (no) (see
figure 1).

Following many other authors [10, 11], we denote this
orientational configuration as an anti-nematic configuration.
It relates to the better known uniaxial nematic geometry, for
which the orientation distribution function also depends on the
angle between a platelet’s director and a reference director, but
with all directors on average parallel to each other. In other
words, in the uniaxial nematic configuration, the reference
director is also the mean director, and f (α) is peaked around
α = 0, while in the present anti-nematic configuration, f (α)

is peaked around α = π/2.

Figure 1. Experimental geometry for the WAXS measurements.
Particles are forming chains along the E-field.

We use the classical Maier–Saupe functional form,
f (α) ∝ exp(m cos2 α) for the orientation distribution. Al-
though in our system the interaction energy is different from
that used by Maier and Saupe in their mean field model for
liquid crystalline order, the latter functional form was found to
be well suited to our data, as discussed previously by Méheust,
et al [10].

2.2. Determination of the orientational distribution from
two-dimensional WAXS images

In the Maier–Saupe functional form for f , m is the
only adjustment parameter; since the orientation distribution
probability (ODP) function is normalized to 1, its peak
amplitude is related to its peak width, so that the value of
m completely defines f . This value is obtained from one-
dimensional plots of the peak amplitude of a given clay
diffraction peak as a function of the azimuthal angle φ. We
fit to these azimuthal profiles the following formula:

I = Io + C exp{m[sin θ sin �o + cos θ cos �o cos(ϕ − �o)]2}
(1)

for which the five fitting parameters are m, the base line Io, the
amplitude C , and the two angles �o and �o that define (no)
with respect to the laboratory frame. Details of the method can
be found in [10].

2.3. Order parameter

The angular dispersion of the function f is a quantification of
the orientational order of the suspension. It is contained in
the m parameter as defined above, but is more conveniently
measured using a global order parameter S. The order
parameter was first defined for uniaxial nematics so as to
possess values between 0 and 1, to vanish for an isotropic
phase (S = 0), and to reach the maximum value of S =
1 [12] for a fully anisotropic state, where particles/crystallites
are perfectly aligned with each other. The corresponding
expression for S is given in the left column of table 1 as Sn .
In different physical systems, depending on the orientational
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geometry, an adequate choice of the method for calculating
the order parameter is required. For example, the nematic
order parameter Sn computed from an anti-nematic geometry
has values between −0.5 and 0. Changing the mathematical
formulation of the order parameter to the anti-nematic order
parameter San (see right column of table 1) in effect simply
amounts to multiplying the nematic order parameter Sn by a
factor of −2. All calculations are made accordingly, which
is why the San order parameter values reported in the present
work are positive and lie within the numerical range 0–1 in
magnitude, while the corresponding Sn lie in the range 0.5–0.

2.4. Model for the rheology of the suspensions

Rheometry has been used to measure the shear stress τ as
a function of a shear rate γ̇ . For samples in this study,
and under application of an electric field, this dependence is
well described by the Herschel–Bulkley rheological model:
τ = τy + bγ p, where τy, b, p are constants named
the yield stress, consistency index, and power-law index,
respectively. The effective viscosity of Herschel–Bulkley
fluids upon deformation is not constant but follows a power-
law type behavior in contrast to the constant viscosity found
in Bingham fluids [13, 14]. The yield stress typically scales
as Eα�β , where E is the applied electric field and � is
the particle fraction, with 1 < α < 2 and β ≈ 1 when
derived on the basis of the so-called fibrillation model, where
chains are formed in the ER suspension. In this model
particles become polarized and aligned as a dipole along the
direction of the electric field. Consequently, the interaction
between the polarized particles increases, resulting in the ER
effect. The particle could bear some net charge, arising for
example through the ionic adsorption, thus electrophoresis
could contribute to the particle motion (that is observed in the
case of this study) for particle re-arrangement [15–17].

3. Experimental methods

3.1. Sample preparation

Synthetic fluorohectorite clay was purchased from Corning
Inc. (New York) in the form of powder, and cation exchanged
into sodium fluorohectorite (Na-Fh) in our laboratory. Its final
chemical formula is given as Na0.6(Mg2.4Li0.6)Si4O10F2 per
half unit cell, where Na is an interlayer exchangeable cation.

A silicone oil Dow Corning 200/100 fluid (dielectric
constant of 2.5, viscosity of 100 mPa s, and specific
density of 0.973 g cm−3 at 25 ◦C) was used as a suspending
liquid, providing a relatively non-polar and non-conductive
medium, with a DC conductivity of the order of magnitude of
10−12 S m−1.

The preparation of the ERF was undertaken by the
following procedure: clay powder was crushed with a pestle
and mortar, and then dried in a vacuum oven for 12 h at 90 ◦C.
At the same time the silicone oil was heated at 110 ◦C for 12 h.
Subsequently, the clay powder and the silicone oil were mixed
in glass tubes and vigorously hand-shaken for ∼2 min, then
placed in an ultrasonic bath for 1 h and again vigorously shaken
for 1 h in an orbital shaker. The sample was centrifuged for

1 min at 500 rpm to filter out large aggregates of clay particles
>50 μm. The final clay concentrations were approximately 1,
5, 10, 20, and 40 wt%, respectively.

3.2. Clay particle characterization

SEM was employed in order to characterize both the general
clay aggregate sizes/shapes and the size/shape of individual
particles formed from multi-layer stacking of silica sheets held
together by cations and water molecules. A field emission
scanning electron microscope (model S-4300SE from Hitachi)
was used in these studies. The samples were gold coated and
attached to an SEM stub using double-sided conductive carbon
tape.

3.3. Diffraction experiments

The WAXS experiment was carried out at the European
Synchrotron Radiation Facility (ESRF) in Grenoble, France.
An x-ray beam with a wavelength of 0.72 Å and a 0.3 ×
0.3 mm2 beam size at the sample was used. The beamline
BM01A is equipped with a two-dimensional MAR345 image
plate detector with a diameter of 345 mm and a read-out time
of about 40 s. The sample to detector distance was set to
350 mm and calibrated using a standard LaB6 sample, resulting
in a maximum diffraction angle 2θ of about 26◦ that enabled
detection of scattering in a q-range of approximately 0.2–
2 Å

−1
.

The experimental geometry is shown in figure 1. The
custom-made sample cell consisted of an electrically insulating
acrylic glass in the form of a cubic cuvette, where the top
part can be opened for inserting two identical 1 mm ×
1 mm × 50 mm thick copper electrodes separated by a gap of
1 mm. Two openings were made on the sides of the cuvette
and these were sealed by thin transparent Scotch tape that
gave very little attenuation of the x-ray beam. The sample
(<0.5 ml) was placed between the electrodes from above.
The WAXS experiment was performed at ambient temperature
for samples at rest (no liquid flow through the scattering
cell). Electric fields from 0.35 to 0.75 kV mm−1 were chosen
as a result of the following observations: for electric fields
above 0.75 kV mm−1 the chain and column formations are too
fast to be followed experimentally, and electric fields below
0.35 kV mm−1 are too weak for particles to form any chains.

3.4. Rheometry

The rheological properties of the clay suspensions were
measured under DC electric fields using a Physica MCR300
Rotational Rheometer. All the rheological measurements
were performed at a constant temperature of 25 ◦C. These
included controlled shear rate tests for measuring shear
stress as a function of shear rate (flow curves), static yield
stress determination by means of the controlled shear stress
measurements, and leak current of the ERF versus time.
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Figure 2. SEM images of Na-Fh clay particles with magnifications of 1000 (left) and 5000 (right), respectively.

3.5. Leak density current and dielectric constant
measurements

One of the many serious concerns in ER applications is to
minimize the power consumption and, thus, to determine
the unwanted current called the leak current. For clay-
based ER fluids an electric current can appear via the water
containing clay particles. A conductivity cell was designed to
study the current leakage through ERFs at different electric
field strengths and particle volume fractions. A pair of
parallel electrodes made out of copper sheets of surface
area 100 cm2 was sealed on two sides using an insulating
1.2 mm thick spacer. The bottom of the cell was sealed
with a non-conductive rubber that could be removed after the
measurement was finished in order to enable a proper cleaning
of the cell. The sample (12 ml) was applied from the top of
the cell. The DC leak current was measured using a standard
ammeter. The dielectric constant was estimated indirectly via
the measurement of a capacitance using an Agilent LCR meter
4263B and the same conductivity cell.

The dielectric constant was measured as follows: an
electric field was applied for 5 min just after an ERF had
been introduced into the conductivity cell. Next, the electric
field was switched off and the LCR meter started measuring
the capacitance at four different frequencies. Shortly after,
the decay of the dielectric constant was measured for 10 min.
Each measurement was repeated three times and the results are
shown as a mean value.

4. Results

4.1. SEM imaging

Figure 2 shows two SEM images of the Na-Fh clay
powder with magnifications of 1000 (left) and 5000 (right),
respectively. One can see that clay particles form aggregates
of different sizes varying from a fraction of a micrometer up to
tens of micrometers in both length and width. The aggregates
differ also in shapes; hence the polydispersity is high in terms
of both size and shape. In figure 2 (right) an individual particle
can be seen; it consists of a multi-layer stacking of silicate
sheets held together by cations and water molecules. The

individual idealized Na-Fh clay particle is typically considered
to be a disk-like structure consisting of tens/hundreds of silica
sheets (thus having thickness of tens/hundreds of nm) with a
μm-sized diameter [18, 19]. The fact that the clay particles
form rather large aggregates cannot be disregarded when one
tries to understand the value of the order parameter, which
is described in section 4.2. One should not expect the order
parameter to be as high as, for example, reported by Hemmen
et al [18], where the clay particles were generally separated
from each other and in some cases the individual clay particles
were exfoliated into platelets. However, one should be able to
observe changes in order parameter values between randomly
dispersed and E-field polarized clay aggregates.

4.2. Orientational order from WAXS measurements

Prior to the application of the electric field, the Na-Fh particles
are randomly dispersed into the silicone oil. The formation
of chain-like structures aligning parallel to the E-field is
observed after its application. Many thin chains are formed first
(with thickness in the range 1–50 μm) and they subsequently
attract each other, resulting in thicker (in the range 50–
200 μm) columns. After a time ts (the saturation time),
no major changes in the system are noticeable by optical
microscopy [20].

The E-field-induced self-assembly of the clay aggregates
can be further investigated by x-ray scattering methods.
Dynamic changes in the clay orientational order can be
observed from two-dimensional WAXS patterns, as explained
in section 2.2. Figure 3 shows WAXS patterns from a
suspension, without (a) and with (b) an E-field of 750 V mm−1

applied. The inner diffraction ring lies at 0.51 Å
−1

and
is attributed to the (001) Bragg diffraction from the layered
silicate sheets within clay particles. Typically, the distance
d001 is close to 12 Å when one layer of water is intercalated
between silicate sheets [10]. The outer peak at 0.83 Å

−1
is due

to the silicone oil, i.e. the maximum in its radial distribution
function. It is a broad and relatively strong peak that shields
the second order (001) Bragg peak from the clay particles. The
first Bragg peak intensity changes in time after the electric field
has been applied. This change can be better appreciated when
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Figure 3. WAXS patterns of clay particles without (a) and with (b)
E-field applied. The 001 clay diffraction peak and the oil diffuse
scattering peak are present in both images.

Table 2. Calculated values of the anti-nematic order parameters San

under different E-field strengths. The corresponding nematic order
parameter is San = −2Sn .

E-field (V mm−1) San (average)

350 0.63 ± 0.01
500 0.64 ± 0.02
750 0.60 ± 0.05

the intensity of the (001) Bragg diffraction peak is plotted as
a function of the azimuthal angle ϕ, as shown in figure 4.
There are three possible events that can provoke changes in
these WAXS patterns with increasing time: (i) clay particles
become polarized and orient individually in the external field;
(ii) the polarized particles attract each other and form chains;
(iii) the chains coarsen into column-like structures. These
three processes can occur in different time ranges or they may
overlap in time.

Table 2 shows values of the order parameter calculated
for different E-fields (according to [10]). Since it was found
that the order parameter did not change in time (15 s–6 min),
the averaged value of S is only presented with its estimated
error. The mean orientation distribution is also observed not
to display any significant differences, within estimated error,
for the different applied fields of 350, 500, and 750 V mm−1,
respectively.

Hence, there seems to be no evidence of E-field
dependence, nor time dependence on the order parameter S,
for the E-field range (350–750 V mm−1) and timescale (15 s–
6 min) addressed in this study. One can conclude that the
clay aggregates rotate and align along the E-field much faster
(probably in ms timescale) than chains (seconds) and columns
(seconds/minutes) are formed.

The amplitude of the WAXS azimuthal profiles is a
measure of the average particle orientation in the scattering
volume, but it also scales with the number of particles
existing within this volume. Since we find that the order
parameter is nearly constant with time, the amplitude change
seen in figure 4 is a demonstration of how the number of
particles contributing to the scattering increases in time. This
observation is a sign of the progressing chain and bundle
formation inside the scattering volume, where (1) already
formed chains are attracted to each other and/or (2) particles
being still in motion (electrophoresis) finally attach to an
existing chain. Both effects can increase the lateral dimensions
of chains. The two processes, namely particle orientation and
chain formation, may affect each other to some extent, but the

Figure 4. Azimuthal plots of the changes with time of the first Bragg
peak amplitude under an E-field of 350 V mm−1. The corresponding
azimuthal plots from the model are shown as continuous lines.

particle orientation is the initial step and is largely finished
when the chain formation takes over, as illustrated by the order
parameter values along with the data in figure 4.

4.3. Chain formation versus column formation from leak
current measurements

The leak current density increases when chain bridges
spanning two electrodes are being formed. However, it is
not expected to change when chains coarsen into columns
as described at the end of section 4.2. In this case, the
total cross sectional area of all chain bridges, thus the total
number of particles that contribute to the leak current, remains
unchanged (the leak current can increase with the moisture
content increment in the system, but it is not relevant here,
since this process is relatively slow). In other words, the
leak current measurement can provide information about
the chain formation only. In contrast, as discussed in
section 4.2, the increase of the scattering intensity is associated
with the progressing chain and bundle formation due to an
increased average particle density within the scattering volume.
Therefore, by comparing rates of the normalized current
density growth in time with the normalized time-dependent
change in the WAXS azimuthal plot maxima (figure 6),
chain and column formation processes can be qualitatively
distinguished from each other. This information may be of
importance when one needs a self-assembly from particles to
lead to single chain rather than aggregated column formation.

Figure 6 shows both types of data plotted in logarithmic
scale as a function of time. Note that the WAXS data at a given
time are obtained as the normalized maximum value for the
azimuthal variations of the first Bragg peak intensity, for three
different E-fields: 350, 500, and 750 V mm−1. In particular,
the corresponding azimuthal plots are shown in figure 5 at
t = 15 s. A characteristic time τ was estimated by fitting
straight lines to the data in figure 6. For electric fields of 750
and 500 V mm−1, the current density curves nearly coincide
with the WAXS data (τ750WAXS = 9.26 versus τ750CURRENT =
9.9 and τ500WAXS ≈ τ500CURRENT = 22.7), indicating that
the chain formation is followed by rapid column formation.
However, for the lowest electric field, current density (which
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Figure 5. Azimuthal plots of the first Bragg peak amplitude at fixed
time t = 15 s for different E-fields. The corresponding azimuthal
plots from the model are shown as continuous lines.

Figure 6. Leak current density and maxima of azimuthal plots versus
time.

witnesses the single chain formation) increases faster than
the WAXS azimuthal plot maximum (which changes not only
when chains but also when the thicker columnar structures are
being formed) for the same field (τ350WAXS = 43.5 versus
τ350CURRENT = 28.6). This indicates that single chains are
formed first followed by the columnar growth. Under the
low electric field these processes occur slower than for higher
electric fields and it can be concluded that the chain formation
and the chain aggregation into columns are two phenomena
that occur on significantly different timescales. This was also
observed under the optical microscope.

The leak current density of ERF was found to rise with
increasing strength of the applied electric field, and observed
to nearly follow a second-order power law (figure 7) of E , thus
a clay-based ERF does not obey Ohm’s law, V = I R. Other
power laws were found by different researchers and the power-
law relationship can be represented in a more general way as
J ∝ En , where the exponent n has been found to vary between
1 and 5 [21]. The mechanism for the effect of electrical field
strength on the current leaking through ER fluids is still poorly
understood. However, it is expected that intercalated water
plays an important role in activating the current leakage [22].
The clay concentration dependence on the current density was
measured and found to follow a power law with an exponent
0.74 on average for four different clay particle concentrations.
Figure 7 shows the current density data normalized by �/�0.74

R

Figure 7. Log–log plot of the current density, normalized by �/�0.74
R

(�R = 20 wt% is an arbitrarily chosen reference value), versus the
applied electric field for different clay particle concentrations. The
power law fitted to the whole data, in the form E 2.12, is also plotted.

Figure 8. Relative static permittivity and capacitance versus E-field
strength, for various frequencies.

(where �R = 20 is an arbitrarily chosen reference value) as a
function of the applied electric field. The overall data (that
collapsed onto each other after normalization) were fitted with
a power law with an exponent 2.12. Therefore, the current
density scales with the particle fraction and electric field as
J ∝ �0.74 E2.12.

4.4. Measurements of dielectric constant

The dielectric constant was derived from the measured
capacitance C according to the conventional relation ε =
Cd/(εo A), where εo is the dielectric constant of a vacuum,
d is the thickness of the gap between the electrodes, and
A is the contact area of the electrodes. The dielectric
properties, such as dielectric constant and leak current play
important roles in relation to the performance of ER materials.
As can be seen from figure 8, the larger the electric field
strength, the larger the dielectric constant of the ERF. As the
overall capacitance stems from the joined capacitances of all
individual dipoles within the ER chains/columns, this means
that each of these individual capacitances, resulting from clay
aggregate’s induced polarization, corresponds to a polarization
charge that increases non-linearly (and faster than linearly)
with the external electric field strength (but with a saturation
at very large E-field strengths).
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Figure 9. Relative static permittivity decays in time after switching
off an E-field (sample with 5 wt% clay concentration).

It is interesting to note that the dielectric constant goes
down rapidly after 350 V mm−1 is switched off (see figure 9).
That field strength is rather small (just above the critical field
needed for a chain formation), and chains/columns are not
coarsened tightly enough to not break apart. The time needed
to break them apart is short. On the other hand, for a high field
strength of 750 V mm−1, the dielectric constant falls down very
slow, and chains remain after the field has been switched off.
The data were fitted with an exponentially decaying function
that provided characteristic decay times of 11.5, 5.8, and 2.1 s
for electric field strengths of 350, 500, and 750 V mm−1,
respectively.

4.5. Rheological behavior

The yield stress point can be found using different methods
and these include: controlled shear rate (CSR) measurements
followed by adequate fitting procedures, controlled shear
stress (CSS) tests, the bifurcation method, oscillatory test,
etc. One may discuss which method is the most appropriate
to use, since the value of the yield stress can vary with
different methods. However, in the case of our study the
two methods used, namely CSR and CSS, give very similar
results as presented below. Figure 10 shows a log–log plot of
the flow curves fitted with the Herschel–Bulkley model (left)
and the yield stress determination via controlled shear stress
tests (right) for a suspension of 10 wt% of clay under different
applied electric field strengths. The yield stress values obtained

Figure 11. Log–log plot of the static yield stress, normalized by
(E/ER)1.66 (the arbitrarily chosen reference value is
ER = 1 kV mm−1), versus the volume fraction at different strengths
of the applied electric field. The power law fitted to the whole data
set, in the form �0.87, is also plotted.

from CSR tests by fitting with Herschel–Bulkley are 4.49, 7.37,
12.2, and 27.1 Pa for the electric field strengths of 350, 500,
750, and 1000 V mm−1, respectively. These values coincide
with the results acquired from the CSS method (see figure 10,
right). Since the power-law index p (see section 2.4) lies in the
range of 1.3–1.9 the usage of the Herschel–Bulkley model is
justified.

Figure 11 shows the dependence of the yield stress τy on
both the clay particle concentrations and the applied electric
field (based on values obtained from the CSS tests). A power
law of average exponent 1.66 was found, and this is in good
agreement with earlier results [23, 24]. The yield stress
shown here was normalized by E/E1.66

R (ER = 1 kV mm−1

is a reference value) and plotted as a function of the clay
concentration �. The collapsed data were fitted with a power
law with an exponent 0.87. Thus, the static yield stress scales
as τy ∝ �0.87 E1.66, in general agreement with the fibrillation
model described in section 2.4 that can be used here to explain
the mechanism of the ER effect.

5. Conclusion

The electric field induced structuring from clay particles
suspended in silicone oil has been studied by means of WAXS,

Figure 10. Log–log plot of the flow curves fitted with the Herschel–Bulkley model (left) and the yield stress determination via controlled
shear stress tests (right) for a suspension of 10 wt% of clay under different applied electric field strengths.
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rheometry, SEM, leak current density, and dielectric constant
measurements.

Firstly, SEM was employed in order to characterize both
the general clay aggregate sizes/shapes and the size/shape of
individual particles. It was observed that clay particles form
aggregates of different sizes varying from a fraction of a
micrometer up to tens of micrometers in both length and width.
The aggregates also differ in shapes; hence the polydispersity
is high in terms of both size and shape.

The 001 scattering peak intensities from two-dimensional
WAXS diffractograms were plotted as a function of the
azimuthal angle and then fitted according to the model
from [10] in order to obtain the particles’ orientational
distributions. In this way, an orientational order parameter S
could be calculated; the obtained values showed that S does
not change much with time (15 s–6 min) after a fast initial
buildup of the orientational order. The reference orientation of
the distribution was also observed not to display any significant
differences, within the estimated error, for the different applied
fields of 350, 500, and 750 V mm−1, respectively. One
concludes that the clay aggregates rotate and align along the
E-field much faster (probably on a ms timescale) than chains
(seconds) and columns (seconds/minutes) are formed.

Particle orientation distributions from WAXS data show
that particle orientation occurs very fast with respect to
chain formation and aggregation. In addition, a comparison
of the characteristic times for column formation by chain
aggregation (from the evolution of the amplitude of WAXS
azimuthal maxima) and for chain formation (from leak current
monitoring) shows that the two processes happen at the same
time and on a similar timescale for all applied electric fields,
except the lowest one, for which chain aggregation into
columns is a significantly slower process than their formation.
For the lowest electric field (0.35 kV mm−1) there was clear
evidence that coarsening of chains into the thicker columns
occurs much slower than at higher fields, where column
formation takes place immediately after chains are formed.

The leak current density of ERF was measured
for different electric field strengths and clay particle
concentrations. It was found that the leak current density
depends on electric field and clay concentration as follows:
J ∝ �0.74 E2.12. The dielectric constant was derived from the
measured capacitance.

In addition, the most important rheological properties
of our ER fluid have been measured, which includes the
dependence of the yield stress both on the electric field and
on the particle concentration. The following scaling behavior
was observed: τy ∝ �0.87 E1.66.

Future prospects for this work include (i) extending the
study of characteristic times for chain versus column formation
in order to see if such a behavior is a general feature of this type
of system, (ii) investigating fluctuations in the leak current,

and (iii) carrying out a more detailed study of the dielectric
properties of the system.
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Cetyltrimethylammonium bromide (CTAB) modified synthetic laponite is synthesized by an ion

exchange method and characterized by simultaneous small-angle X-ray scattering (SAXS) and wide

angle X-ray scattering (WAXS), field emission scanning electron microscopy (FESEM), transmission

electron microscopy (TEM), energy dispersive spectrometry (EDS), atomic force microscopy (AFM),

thermal analysis and rheometry. Through the formation of the organoclay, the properties of clay

change from hydrophilic to hydrophobic. Morphology results show that the hydrophilic particles are

aggregating easily, whereas the suitable CTAB modified laponite can get near monodispersed

nanoparticles due to its hydrophobic properties. It is proposed that CTAB is intercalated and adsorbed

onto the laponite partially depending on the substituted concentration of the surfactant cation

exchange capacity (CEC) (0.5CEC to 6CEC). The electrorheological (ER) effect is investigated for

suspensions of CTAB modified laponite dispersed in silicone oil. The two-dimensional SAXS images

from ER bundles of CTAB modified laponite exhibit markedly anisotropic SAXS patterns, giving

a measure for laponite particle alignment within the ER structure. An optimum electrorheological

effect can be attained at a particular CEC substituted concentration. On the basis of the structure

analysis and dielectric measurements, we attribute the enhancement of ER activity to the improvement

in the dielectric properties that showed an increase in the dielectric constant and the dielectric loss at

low frequency and their regular optimum change with CTAB modification.

1. Introduction

Smart structures and materials are a subset of functional struc-

tures and materials, with adaptability as their main characteris-

tics. They can be defined as materials with an ability to respond

in a pre-designed useful and efficient manner to changes in

environmental conditions, including any changes in their own

condition. Transducers that have piezoelectric, pyroelectric,

electrostrictive, magnetostrictive, piezoresistive, electroactive, or

other sensing and actuating properties are good examples of

smart materials.1,2 Electrorheological fluids (ERFs) are a kind of

smart material consisting of suspensions of dielectric particles

dispersed in a nonconducting liquid. ERFs exhibit drastic

changes in their rheological properties, including a large

enhancement in apparent viscosity and yield stress under an

applied electric field. Application of an electric field can induce

polarization of the suspended particles and a chainlike structure

can be formed along the electric field direction in a few milli-

seconds.3–9 The transition to a solid-like state is due to chain

formation and the liquid-to-solid transition indicates that there is

an inner ordering of the ER constituents which leads to a change

in the rheological properties. This phenomenon is reversible

when the external electric field is removed. Because of their

controllable viscosity and short response time, ER materials are

potential materials for use in active devices, brakes, clutches,

shock absorbers and actuators.10–18

The wettability of the particle with respect to silicone oil is very

important for enhancing the ER effect. Moreover, anti-electric

breakdown, stability and strong polarization are closely related to

the wettability of particles.19 Wen et al.20 demonstrated that the

particle wetting surface in a liquid could induce ER effects, and

they found that nanoparticles of barium titanyl oxalate coated

with urea suspended in hydrocarbon oil give no measurable ER

effect. Interestingly, by adding a small amount of oleic acid to the

hydrocarbon oil, Shen et al. achieved a high yield stress.20c The

addition of the surfactant changes the non-wetting particles into

wetting ones which induce the so-called giant electrorheological

(GER) effect. Fang et al.21 investigated theoretically the effects of

zero-field dispersity of colloidal particles, and particle wettability,

on the ER effect, and found that well dispersed particles resulting

from particle wettability have much stronger attraction than

those aggregated into different clusters. These authors found that

the surface tension between particles and oil can be greatly

reduced due to the mediating effect of the surfactant molecules,

thus allowing particles to disperse very well in zero field and then

form a better particle structure upon application of an electric

field. Bare laponite particles as described below are hydrophilic

and their wettability with silicone oil is poor. However, when

organic modified clay surfaces are formed, the wettability may be

transformed from non-wetting to wetting.

Clay minerals are layered silicates, whose primary particles are

platelet shaped. The ‘‘unit cell’’ structure of a single clay platelet

Department of Physics, Norwegian University of Science and Technology
(NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway. E-mail:
baoxiang.wang@ntnu.no; jon.fossum@ntnu.no

† Electronic supplementary information (ESI) available: DTG traces of
CTAB and 6CEC-Lp; 2D anisotropic scattering patterns; evidence for
the change of wettability. See DOI: 10.1039/b818502f

1816 | J. Mater. Chem., 2009, 19, 1816–1828 This journal is ª The Royal Society of Chemistry 2009

PAPER www.rsc.org/materials | Journal of Materials Chemistry



is made of tetrahedral sheets and octahedral sheets joined in

a face-to-face configuration in three dimensions.22–27 A 2:1 clay

mineral is classified as di-octahedral when two thirds of the

octahedral sites are occupied by cations in its unit cell. Laponite

is a synthetic nano-layered silicate and has the empirical chemical

formula Na0.7+[Si8Mg5.5Li0.3O20(OH)4]
0.7�, where Na is an

interlayer exchangeable cation. Laponite is a synthetic tri-

octahedral hectorite clay composed of two tetrahedral silica

sheets and a central octahedral magnesia sheet. The negative

surface of the laponite particle contains positively charged

sodium (Na+) ions. These can be shared by several laponite sheets

forming aggregates. Isomorphic substitutions of the divalent

magnesium atoms by monovalent lithium leads to the formation

of negative charges within the lattice, which is balanced by the

sodium ions located at the surface. Laponite is a synthetic

nanoclay, which consists of disc-like particles with a thickness of

1 nm and an average diameter of 30 nm. In contrast to pristine

mica-type silicates which contain alkali metal and alkali earth

charge-balancing cations, organically modified layered silicates

(OLS) contain alkylammonium or alkylphosphonium

cations.28,29 The presence of these organic modifiers in the

galleries renders the originally hydrophilic silicate surface orga-

nophilic. Depending on the functionality, packing density, and

length of the organic modifiers, the OLSs may be engineered to

optimize their compatibility with a given polymer.30–32 Depend-

ing on the packing density, temperature, and chain length, the

chains are thought to lie either parallel to the host layers forming

lateral mono- or bilayers or radiate away from the surface

forming extended (paraffin-type) mono- or bimolecular

arrangements.

In this study, we demonstrate the influence of intercalation and

adsorption on the wettability and electrorheological properties

of organic modified nanolayer laponite. Our CTAB-modified

laponite organoclays have been carefully characterized by atomic

force microscopy (AFM), field emission scanning electron

microscopy (FESEM), transmission electron microscopy (TEM),

energy dispersive spectrometry (EDS), simultaneous small-angle

X-ray scattering (SAXS) and wide angle X-ray scattering

(WAXS), and thermal gravimetric analysis (TGA). Experimental

results confirmed that CTAB can be intercalated and adsorbed

onto the laponite depending on the concentration of the

surfactant. Surface modified laponite clay is lipophilic and thus

disperses much easier in oil in comparison to unmodified

laponite. An optimum electrorheological effect could be attained

due to the good wettability of CTAB modified laponite.

2. Materials and characterization

2.1. Materials

The synthetic laponite clay was purchased from Laponite Inc. as

a fine white powder. Laponite is a trioctahedral clay with lithium

substituting for magnesium in the octahedral layers. Its cation

exchange capacity (CEC) is 47 mequiv/100 g. Its surface area

(BET) is 370 m2/g. The surface charge density of individual

discs is 0.4 e�/unit cell, and the specific particle density is 2.65

g/cm3. The surfactant (cetyltrimethylammonium bromide,

[CH3(CH2)15]NBr(CH3)3, CTAB) used was of analytical grade.

A silicone oil (a Newtonian liquid) Dow Corning 200/100 Fluid

(dielectric constant of 2.5, viscosity of 100 mPa$s and specific

density of 0.973 g/cm3 at 25 �C) was used as a suspending liquid

because it is relatively non-polar and non-conductive, with a DC

conductivity of the order of magnitude of 10�12 S/m.

2.2. Preparation of the organoclay and its ER suspension

The synthesis of organoclay nanohybrids was undertaken by the

following procedure. In the present work, the stoichiometric

amount (based on the CEC) of cationic surfactant was added to

a solution of powdered clay. To 400mL of distilled water, 8.0 g of

laponite was added, and this solution was stirred and heated to

80 �C. At the same time, a second solution of the stoichiometric

amount of CTAB and 100mL distilled water was prepared. Both

solutions were stirred for 10h. Finally, the surfactant solution

was added carefully to the hot clay solution forming flocs

immediately. Then the mixture was stirred at 80 �C for 24h. The

stirring solution was covered and cooled to room temperature

overnight. The flocs were filtered, redispersed in 250 mL of water

for 2 h, and filtered again. This process was repeated four times

to remove any free surfactant and checked by an AgNO3 solu-

tion. The filtered treated clay was dried at 100 �C in a vacuum

oven overnight, then crushed with a pestle and mortar, and

returned to the vacuum oven for 3 h at 100 �C and kept in

a sealed container until use. The obtained cationic surfactant-

exchanged laponites were labelled as 0.5CEC-Lp, 1CEC-Lp,

2CEC-Lp, 4CEC-Lp, and 6CEC-Lp. In this research, xCEC

means x times the cation exchange capacity and how many

surfactants are used for the ion exchange method.

The ER suspensions of organoclay in silicone oil were

prepared by the following steps. 10 wt% of CTAB modified

laponite powder and silicone oil suspension were prepared. The

silicone oil was heated at 110 �C for 24 h. The heated organoclay

powder and silicone oil were immediately mixed in glass tubes

which were then sealed and left to cool to room temperature. The

glass tubes were vigorously hand-shaken for �5 min and placed

in an ultrasonic bath for 1h and again vigorously shaken for 1h in

an orbital shaker before the rheology measurements.

2.3. Characterization

Thermal gravimetric analysis (TGA) was performed on a TGA/

SDTA851e TGA instrument (Mettler Toledo As.) under N2 flow

(100 mL/min) with a heating rate of 10 �C/min. Furnace

temperature and time were adjusted by using the software

STARe.

The X-ray scattering experiment was carried out at room

temperature using a sealed-tube CuKa source with a wavelength

of 1.5418Å utilizing NanoSTAR, a small-angle X-ray scattering

(SAXS) system, from Bruker AXS. It uses a two dimensional

detector and the size of collected beam is 0.4mm. The possibility

of different sample–detector distances make it possible to

perform both SAXS and WAXS experiments with the same

equipment. The sample-to-detector distance was calibrated using

a silver behenate standard, and the scattering data were averaged

over the whole detector. The SAXS experiments were performed

making the ER suspension in a custom-made scattering cell. The

scattering cell consists of an insulating plastic material, whose

top part was open, while both the (front and back) sides and the
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bottom part were closed by gluing a standard kapton film. Two

parallel and identical 1/2 mm thick copper electrodes separated

by a gap of 1 mm are inserted from the top of the sample cell. The

sample to be studied (<2 mL) is placed between the electrodes

from the top part. After application of an electric potential

difference (such as 2 kV) between the copper electrodes, the

organoclay particles are first observed to form chain-like struc-

tures parallel to the applied electric field. Small-angle scattering is

a useful tool to study disordered structures and porous media. In

a small angle X-ray scattering (SAXS) experiment, the depen-

dence of the scattered intensity on the scattering angle 2q is

controlled by the size of the colloidal particles, their tendency to

aggregate, the porosity of the disperse system, the magnitude of

the specific surface area, and more generally, by the inhomoge-

neities characterizing the structure of the disperse system. The

scattered intensity I(q), as a function of the momentum scattering

vector q

q ¼ 4psin(2q/2)/l

where l is the wavelength of the incident beam and 2q is the

scattering angle, is proportional to the Fourier transform of

the geometric correlation function of the electron density. The

scattering vector q has the dimension of inverse length (i.e. Å�1),

so that the length d in real space corresponding to a certain

q-value is given by:

d ¼ 2p/q

The AFM images were taken using a MultiMode� Atomic

Force Microscope from Veeco Instruments, operating in normal

room air. Small samples originating from different CTAB

modified laponite solutions were deposited onto cleanly cleaved

mica surfaces. To prepare a sample, a freshly cleaved piece of

mica was fastened on top of a 1cm radius metal disk. Using

a micropipette, a 10 mL drop of the solution was placed on the

mica surface. The drop was dispersed over the available area, and

was then left to air dry for at least an hour, leaving dehydrated

assembled rough films covering the mica surface. These surfaces

were imaged using a DI AFM Multimode TM SPM with

a Nanoscope V controller and a J scanner in contact mode. Our

AFM images consist of the standard 512 � 512 pixels. The

images were corrected for scanning curvature instrumental arti-

facts using the DI Nanoscope software flattening procedure.

Electron micrographs were acquired using a field emission

scanning electron microscope (Zeiss Ultra, 55 Limited Edition,

accelerated voltage 15kV) and a TEM (JEOL JEM 2010, oper-

ated at 200 kV). For the TEM samples, a suspension of a small

amount of sample in ethanol was given an ultrasonic treatment

for 5 min and then dropped onto a copper grid. The scanning

microscope was equipped with an energy dispersive X-ray spec-

troscopic detector. Energy dispersive spectrometry (EDS)

patterns were obtained by a Link ISIS (Oxford Co., England),

using a SiLi detector. It was used to do elemental analyses

(starting with boron, since for elements of lower atomic weight

large errors are incurred).

The rheology of our organoclay suspensions was measured

under DC electric fields using a Physica MCR 300 Rotational

Rheometer equipped with a coaxial cylindrical cell Physica

CC27/ERD, specially designed for ER measurements. The cell

has an outer cylinder diameter of 14.46 mm and an inner cylinder

diameter of 13.33 mm. The immersion length of the inner

cylinder is 40 mm, and the corresponding sample volume is 19.35

ml. Two grounding brushes connected to the internal cylinder’s

axis induce an artificial �1 Pa yield stress in all data, but this

value is negligible compared to all yield stress values addressed

here. All rheological measurements were carried out at constant

temperature (25 �C). Four types of rheology tests were per-

formed: controlled shear rate (CSR) tests for measuring shear

stress; two different methods for measuring the static yield stress

(controlled shear stress (CSS) and the so-called bifurcation

method); and finally oscillation tests were performed to deter-

mine the elastic properties.

� controlled shear rate (CSR): before reading the shear stress,

we initially applied the electric field to a suspension for 300s and

then sheared it from 0.01 to 1000s�1.

� controlled shear stress (CSS): to determine the static yield

stress a linearly increasing shear stress (in steps of 2 Pa) was

imposed on suspensions after they had been subjected to the

external electric field for 300 s.

� bifurcation tests: firstly, the ER suspension were pre-sheared

at a constant shear rate _g¼100 s�1 for 200 s, then the electric field

was applied and the suspension was sheared at a constant shear

stress for 300 s while observing the viscosity changes with time.

The sample was then poured back into its container and hand

shaken again before the test was repeated with a slightly higher

shear stress. This procedure was carried out until the yield point

was determined.

� oscillation experiments: a sinusoidal strain was applied to

the ER fluid by driving the cylindrical bob. The viscoelastic

parameter of the storage modulus was then measured at different

electric fields. Using the Physica universal measuring system and

US200 software, two different experiments were performed.

First, strain amplitude was swept from 0.001 to 100% at a fixed

driving frequency. Second, the driving frequency was swept from

0.001 to 100 Hz at a fixed strain 0.01.

Dielectric measurements. Because of the difficulty of directly

measuring the dielectric properties of the particles, we used

suspensions to carry out dielectric investigations. Having

considering the influence of the particles’ arrangement induced

by an external electric field on the dielectric properties, we kept

the ER suspensions in a random dispersal system whose structure

would not be disturbed by the bias field of 2 V/mm. The capa-

citance C and dielectric loss tangent (tand) of suspensions were

measured by an automatic Agilent 4263B LCR meter (Agilent

Technologies, Malaysia) with a 16089E test fixture at room

temperature and frequencies of 100Hz, 120Hz, 1kHz, 10kHz and

100kHz. The dielectric constant was derived from the measured

C according to the conventional relation 3¼ Cd/(30S), where 30 is

the dielectric constant of a vacuum, i.e., 8.85 � 10�12 F m�1, d is

the thickness of gap between electrodes, and S is the contact area

of the electrodes.

3. Results and discussion

3.1. Thermal properties

The thermal decomposition temperatures and stability of the

CTAB modified laponite can be obtained by TGA/DTG.
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Thermal gravimetrical analysis (TGA) indicates a mass loss of

below 4 wt% before 200 �C for unmodified laponite, and this is

attributed to the loss of water from the sample. The second loss

of about 5wt% in the case of dehydroxylation occurred between

650–800 �C (see Fig. 1 and 2). For CTAB, the complete

decomposition took place in the range of 200–400 �C and the

maximum peak is at 270 �C (see Fig.1 and Fig. S1†). For the

CTAB modified laponite, the weight loss at 800 �C is increased

with the enhancement of CEC-relative CTAB substitution,

which means that the organic content in the organoclay is also

increased simultaneously. From room temperature to 800 �C, the
complete weight losses for different CTAB modified laponites

0.5CEC-Lp, 1CEC-Lp, 2CEC-Lp, 4CEC-Lp, 6CEC-Lp are

17.2%, 22.9%, 32%, 45.1%, 57.1% respectively.

The differential thermogravimetric analysis (DTG) patterns of

laponite, CTAB and CTABmodified laponite are shown in Fig. 2

and Fig. S1.† The laponite shows two thermal decomposition

steps at 85 and 722 �C, corresponding to the loss of adsorbed

water and the dehydroxylation of the clay. For the 4CEC-Lp

sample, four DTG peaks are observed at about 80, 243, 416 and

780 �C, which are attributed to the loss of water, the combustion

and loss of the surfactant molecule adsorbed on the clay external

surface, the decomposition of the surfactant molecule

intercalated between the clay sheets and the dehydroxylation of

laponite respectively. DTG is particularly useful to judge the

state of intercalation or adsorption. For pure CTAB, complete

decomposition took place in the range of 200–400 �C and the

maximum peak is at 270 �C. For adsorption of CTAB on the

surface of laponite, the combustion and loss of the surfactant

molecule adsorbed on the clay external surface took place at

about 243 �C. For intercalation of CTAB into the interlayer of

laponite, the decomposition of the surfactant molecule interca-

lated between the clay sheets took place at about 416 �C. In the

intercalated condition, the CTAB molecules are bonded strongly

in the interlayer of the laponite and its decomposition tempera-

ture is higher than that of adsorbed CTAB. At low CEC

concentrations, such as 0.5 and 1CEC, only intercalated peaks

can be observed but not absorbed ones. The surfactant molecules

are not lost until 416 �C compared with the loss of the pure

surfactant at 270 �C which shows that the CTAB molecules are

bonded strongly in the interlayer of the laponite. With the

increase of CEC-relative CTAB substitution, the adsorbed peak

is apparent and its strength is also increased. Up to 6CEC, it is

much larger than the intercalated peak.

3.2. SAXS/WAXS

Fig. 3 shows different two-dimensional SAXS diffractograms of

4CEC-Lp particles dispersed into silicone oil. Fig. 3(a) is

obtained from a suspension of 4CEC-Lp particles prior to the

application of a DC electric field. The particles are randomly

oriented in the suspension without the electric field, so the image

is isotropic and the intensity is also low due the low organoclay

concentration in the scattering volume. If the electric field

exceeds a certain threshold, the 4CEC-Lp particles attract each

other and assemble into chains and columns that are aligned

along the field direction. The chain or column structures are

formed under the combined effects of applied field and inter-

particle repulsions. In the presence of an electric field (Fig. 3(b–

d)), the pattern become anisotropic due to particle orientation in

the field. Furthermore, with the increase of electric field, the

anisotropic pattern is clearer and stronger. The anisotropic

strength of 4CEC-Lp particles is more evident than that of

0.5CEC-Lp particles (shown in Fig. S2†), which means that the

ER effect of 4CEC-Lp particles is more pronounced. Fig. 4

shows how the intensity of circular scattering rings such as those

presented in Fig. 3 and Fig. S2† evolves as a function of the

azimuthal angle F, between 0 and 360�. For E¼ 0, the intensities

are independent of F and the two-dimensional scattering pattern

Fig. 1 TGA curves (25–800 �C) of laponite, CTAB and a series of CTAB

modified laponites.

Fig. 2 DTG traces (25–800 �C) of laponite and CTAB modified

laponites. The maxima are indicated.

Fig. 3 The two-dimensional anisotropic SAXS scattering pattern

obtained from chains of 4CEC-Lp particles initially dispersed in silicone

oil, in the presence of a DC external electric field of magnitude equal to

(a) 0 kV/mm, no chain, isotropic scattering pattern; (b) 1 kV/mm, (c) 2kV/

mm, (d) 3kV/mm, strong chain, strong anisotropic scattering pattern.

This journal is ª The Royal Society of Chemistry 2009 J. Mater. Chem., 2009, 19, 1816–1828 | 1819



is isotropic. For E ¼ 1, 2, 3 kV/mm, respectively, the azimuthal

positions of the maxima along the plots in Fig. 4 demonstrate

that the preferred orientation of the organic modified laponite

nanoparticles is with the lamellar stacking plane parallel to the

direction of the electric field. The anisotropic maxima intensities

are also increased with the enhancement of electric field.

Laponite is a synthetic trioctahedral 2:1 layered silicate. In

aqueous solutions, water molecules are intercalated into the

interlamellar space of laponite, leading to an expansion of the

mineral due to the hydration of the metal ions. The ions can be

thus replaced by other cations by simple ion exchange

reactions. The wide angle X-ray diffraction (WAXS) patterns of

Na-laponite and a series of CTAB-exchanged laponites are

plotted in Fig. 5. A broad peak attributable to a low degree of

ordering is observed for pure laponite (d001 ¼ 12.5 Å, d ¼ 2p/q).

The diffraction peak was shifted to a lower angle after ion

exchange, indicating an increase of the interlayer distance of the

clay sheets of 2 Å for the different CTAB concentrations. Similar

variations of the basal spacing for different organic loadings are

observed (d001 ¼ 14.5 Å). The swell interlayer was attributed to

the formation of single-layer complexes, with the alkyl chains

being oriented parallel to the clay sheets. In the low scattering

vector range, the intensity of the curve is moved towards the pure

CTAB curve with the enhancement of CTAB concentration

which means that more CTAB is adsorbed on the surface of

laponite. The slope of �2 is typical for scattering from

a randomly particles.

3.3. AFM, SEM, TEM study

The pure laponite particles, due to their hydrophilic properties,

easily aggregate and the aggregate size distribution is poly-

disperse, from hundreds of nanometers to near tens of microm-

eters (shown in Fig. 6a). At low concentrations of CTAB

substitution (0.5CEC or 1CEC), CTAB intercalates into the

laponite interlayer after the ion exchange reaction, which only

increases the hydrophobic properties of the laponite interlayer,

whereas the particle surface of laponite is still hydrophilic. This

can lead to the aggregation of 0.5CEC-Lp particles due to the

heat treatment during the synthesis, so the aggregate size distri-

bution of intercalated sample 0.5CEC-Lp is also polydisperse

and can not be decreased compared with that of pure laponite

(shown in Fig. 6b). However at higher concentrations of CTAB

substitution (4CEC or 6CEC), the CTAB surfactant is not only

intercalated into the interlayer of laponite, but also adsorbed on

the surface of laponite stacks. So both the interlayer surface and

the particle surface of laponite are modified from hydrophilic to

hydrophobic. The hydrophobic tails of CTAB molecules adsor-

bed onto the surface of laponite can prevent the aggregation of

particles during heat treatment procedures. Through organic

modification at very high concentrations of CTAB substitution,

smaller aggregate sizes and narrow size distribution can be

obtained for the sample of 4CEC-Lp (shown as Fig. 6c and d).

The aggregate size of 4CEC-Lp particles is around 200–400nm.

SEM images of pure laponite (a), 0.5CEC-Lp (b) and 4CEC-

Lp (c) particles are shown in Fig. 7. From these images, we can

see that for the samples of pure laponite and 0.5CEC-Lp, their

aggregate sizes are very large and the aggregate size distribution

is polydisperse, from hundreds of nanometers to a few tens of

micrometers due to their surface hydrophilic properties.

However through organic modification at high concentration of

CTAB, smaller aggregate sizes and narrow size distribution can

Fig. 4 Dependence of the intensity of circular scattering rings on the azimuthal angle F at the different electric field: (a) 4CEC-Lp; (b) 0.5CEC-Lp.

Fig. 5 The WAXS data of laponite and CTAB-exchanged laponite

powders.
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be obtained for the sample of 4CEC-Lp. From Fig. 7(c), smaller

particles (from 200nm to 400nm) with a narrow size distribution

can be found. Furthermore, typical transmission electron

microscopy (TEM) measurement was employed to demonstrate

the nanostructure of 4CEC-Lp particles. At low magnification

(Fig. 8a), dark particles around few hundreds nanometer can be

found. At high magnification (Fig. 8b), smaller size particles

(about 30nm) can be seen. Laponite, as a synthetic clay, consists

of disc-like particles with a thickness of 1 nm and an average

diameter of 30 nm. So in this case, single crystals of laponite are

observed in the sample of 4CEC-Lp and these single crystals

aggregate together to form the particles. The ions play an

important role in the ER effect. Ions not only can increase the

conductivity, but also can enhance the polarization ability of

particles. All these can enhance the ER effect effectively. Energy

dispersive spectroscopy (EDS) was employed to determine the

elemental compositions of different samples and the results are

shown in Fig. 9. From Fig. 9, we can see that for pure laponite,

Na, Mg, Si etc. elements are observed from the EDS pattern.

However, for 1CEC-Lp and 4CEC-Lp, C, Mg, Si etc. elements

are observed and elemental Na is not observed for these modified

samples. So this may mean that Na+ which originally existed in

the interlayer of laponite can be fully exchanged in the modified

laponite, both for 4CEC-Lp and for 1CEC-Lp.

3.4. ER effect

Flow curves were measured using the CSR mode for CTAB

modified laponite ERFs under different electric field strengths, as

shown in Fig. 10. In the absence of an electric field, the ERF

behaves as a Newtonian fluid, whose shear stress increases line-

arly with shear rate. When a DC electric field is applied, as the

shear rate increases, the behaviour of shear stress only decreases

slightly even at very high shear rate and shows Bingham fluid

behaviour, which is the typical rheological characteristic of

ERFs.33–36 This behaviour is described by the Bingham fluid

model, (
s ¼ sy þ hg$ if s$ sy

g$ ¼ 0 if s\sy
(1)

Here, sy is the yield stress and is a function of an electric field

strength, s is the shear stress, _g is the shear rate, and h is the shear

viscosity. From Fig. 10, we can see that the 4CEC-Lp suspension

(Fig. 10a) shows more pronounced ER properties than 0.5CEC-

Lp (Fig. 10b) in the same range of shear rate. The ER efficiency

((sE � s0)/s0, where s0 is the shear stress without electric field and

sE is the shear stress with electric field) is close to 150 and 29

(3.5kV/mm) at a shear rate of 10s�1 for the 4CEC-Lp and

0.5CEC-Lp ER suspensions respectively. Under application of

a sufficiently large electric field, ER fluids show well-defined yield

stresses, beyond which they tend to be shear-thinning. At low

shear rate, the suspensions exhibit a dynamic yield stress that

increases with the electric field; the typical shear behaviour of an

ER fluid under these conditions is most often characterized as

a Bingham-like solid given by the expression (1). In Fig. 10d,

a simple Bingham model has been fitted to the data of 4CEC-Lp

ER fluid. The leaking current density for the 4CEC-Lp ER fluids

Fig. 6 AFMdeflection images for different samples: a) laponite; b) 0.5CEC-Lp; c) 4CEC-Lp. d) Section analysis of 4CEC-Lp particles: size distribution

200–400nm; scale 4 � 4 mm.
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was measured at different electric field strengths (see Table 1).

The leaking currents are useful to judge the potential applica-

tions of ER fluids. Smaller leaking currents mean smaller energy

consumption and more safety for the application. It is known

that the rheological behaviour of an ER suspension is the result

of a change of fibrous-like structures. This structure change is

mainly dominated by the electric-field induced electrostatic

interaction and the shear-field-induced hydrodynamic force.

Large polarizability and sufficient polarization response of ER

particles are important to produce stronger and faster electro-

static interactions that can maintain structures and rheological

properties stable under shear flow. As we increase the shear rate,

the fibrillar structure of particles aligned in the applied electric

field direction is distorted and destroyed. However, the shear

stress remains approximately constant (plateau region) as the

shear rate is increased, where the electrostatic force still domi-

nates to form the chain structure.37,38 The stable shear stress level

for the 4CEC-Lp organoclay ERF means that the electrostatic

interaction and the polarization response are still dominating

even if the shear rate is increased, and thus, particles make

fibrous structures fast enough to maintain the structure under

shear flow. In the present work, it can be seen that the ER effect

has a strong dependence on the CEC substitution, which is

associated closely with the state of intercalation and adsorption.

For the sample of 4CEC-Lp, CTAB surfactant is not only

intercalated into the interlayer of laponite, but also adsorbed on

the surface of laponite stacks. So both interlayer surface and

particle surface are modified. However for high CEC substitu-

tion, such as 5CEC-Lp and 6CEC-Lp, dissociative or separated

CTAB should appeared. So the ER effect of mixtures of laponite

and CTABwas investigated to reflect the influence of dissociative

or separated CTAB. Different mixtures of laponite and CTAB

(Weightlaponite:WeightCTAB adopted as 7:3, 8:2, 9:1) were

prepared and dispersed into silicone oil at a weight fraction of

10%. Fig.10 c shows the shear stress of mixtures of laponite and

CTAB (10wt% in silicone oil) ERF as a function of shear rate

under various electric fields. The ER efficiency (sE � s0)/s0 is

close to 50, 58, and 63 (3.5kV/mm) at a shear rate of 10s�1 for the

mixtures of laponite and CTAB (7:3, 8:2, 9:1, respectively) ERFs.

These values are lower compared with that (150) of 4CEC-Lp

ERF. This means that dissociative or separated CTAB are not

beneficial for the enhancement of ER effect. In our samples,

suitable adsorption of CTAB on laponite surface may cause

strong surface polarization, which may increase the ER activity.

This result of mixtures of laponite and CTAB can further explain

that the ER effect has a strong dependence on the CEC substi-

tution and why high CEC substitution (5CEC and 6CEC) can

decrease the ER effect. The Bingham fluid model has often been

used for the prediction of ER dynamic. The Bingham flow

exhibits a non-vanishing yield stress, which is defined as a stress

where the suspension behavior changes from solid-like to fluid-

like at a zero shear rate limit. While the Bingham model clearly

captures an essential element of the ER dynamic, it fails to

account for the often-observed shear-thinning behavior and

Fig. 7 SEM images of pure laponite (a), 0.5CEC-Lp (b) and 4CEC-Lp

(c) particles.

Fig. 8 TEM images of 4CEC-Lp particles.
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other behavior like the decrease of shear stress in the low shear

rate region.39,40 Recently, the Cho–Choi–Jhon model was

proposed for the ER fluids especially useful in the low shear

rate.40,41

s ¼ sy
1þ ðt2 _gÞa þ hNð1þ 1

ðt3 _gÞb
Þ _g (2)

Here, sy is the dynamic yield stress defined as the extrapolated

stress from low shear rate region, a is related to the decrease in

the stress, t2 and t3 are time constants, and hN is the viscosity at

a high shear rate and is interpreted as the viscosity in the absence

of an electric field. The exponent b has the range 0 < b < 1, since

ds/d _g $ 0. The flow curves of the 0.5 and 1.0kV/mm, shown in

Fig. 10(c), have been fitted with the Cho–Choi–Jhon model, see

Fig. 10(e). The results show that this model is useful especially for

the decrease of shear stress in the low shear rate region and fits

the flow curves more accurately than the Bingham model.

Fig.11 shows the yield stress of 4CEC-Lp ERFs as a function

of electric field strength using the CSS mode. One of the most

common ways of measuring the yield stress of ER fluids is to

apply an increasing shear stress to the sample initially at rest, and

observe at which stress the fluid starts to flow. The maximum

stress that makes ER fluid start to flow is named yield stress. The

yield stress of 4CEC-Lp measured by the CSS mode is 375Pa at E

¼ 3.5kV/mm (10wt%) and its evident yield point is shown by

arrows.

Theoretically the yield stress is defined to be the stress at which

the fluid starts/stops flowing, i.e. where the viscosity changes

between being finite and infinite. To determine the yield stress

experimentally has proven to be very difficult. Different values

for the yield stress have been obtained depending on which

geometry and experimental procedure used. As well as the CSS

mode, the yield stress of the 4CEC-Lp suspensions under appli-

cation of an electric field was also measured using the bifurcation

procedure described by Bonn et al., which may be considered as

a more precise method to determine the yield stress of ER

fluids.42–44 This method has given reproducible results for the

‘‘true’’ yield stress for different systems, e.g. gels and clay

suspensions. It also is a novel method for measuring yield stresses

of ER fluids. Each sample is first pre-sheared at a constant shear

rate _g ¼ 100 s�1 for 200 s, and this is done to makes sure that all

samples have the same initial condition (shear history). Then the

electric field was applied and the suspension was sheared at

a constant shear stress for 300 s while observing the viscosity

change with time. The viscosity of the sample either went directly

to high viscosity or toward a low constant viscosity, depending

on the magnitude of the applied shear stress. Since the electric

field was applied to the sample when it is sheared, chain- and

column-like particle structures are formed across the gap in the

cylinder. These structures have to be broken down in order for

the ER fluid to start flowing, so this procedure is somewhat

analogous to the static yield stress. For shear stresses smaller

than the yield point we can see a yield change in the viscosity over

time.

When we shear the sample at a constant low shear stress, the

viscosity immediately becomes high due to the formation of

column-like structures in the direction of the electric field. While

increasing the shear stress the gradual build-up in the viscosity to

high levels takes longer and longer. At a certain shear stress,

depending on the organoclay concentration in the sample and the

electric field strength, the viscosity does not increase during the

shearing. For shear stresses higher than the yield point we can see

a decrease in the viscosity over the time period. So a gradual

transition between the two states for stresses around a critical

shear stress is observed. Fig. 12 shows the viscosity as a function

of time for a 4CEC-Lp ER suspension of particle weight fraction

10% at E ¼ 1kV/mm sheared at different shear stresses. The

bifurcation in the rheological behaviour is evident. For shear

stresses slightly lower than the critical stress, the sample shows

a gradual build-up in the viscosity, suddenly going to high

viscosity. At applied shear stresses slightly above the critical

shear stress the viscosity is almost constant over the whole time

period. At an applied stress corresponding to 66Pa the viscosity

Fig. 9 EDS patterns of 4CEC-Lp (a), 1CEC-Lp (b) and pure laponite (c)

particles.
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does not diverge before about 150 seconds. At 67.5 Pa the

viscosity curve has completely changed its shape: instead of

increasing toward high viscosity it is almost constant or slightly

decreasing during the time of shearing. For this test, the critical

yield stress is precisely determined between 66 Pa and 67.5 Pa.

This bifurcation shear stress is taken to be the yield stress of the

Fig. 10 Shear stress of different CTABmodified laponite (10wt% in silicone oil) ERFs as a function of shear rate under various electric fields: a) 4CEC-

Lp, b) 0.5CEC-Lp. c) mixture of laponites and CTAB (Weightlaponite:WeightCTAB ¼ 7:3), d) Fitting of the data of Fig. 10(a) using the Bingham model

under different electric field strengths. The fully drawn line represents the fitting curves of the Bingham model. e) Fitting of the data of (c) using the

Bingham model (dashed line) and the Cho–Choi–Jhon model (solid line) under E ¼ 0.5 and 1.0kV/mm.

Table 1 The leaking currents of the 4CEC-Lp ER fluid under different
electric field strengths

Electric field strength (kV/mm) 0.5 1 2 3 3.5
Leaking current density (mA/cm2) 1 2 4 10 18
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sample and the value is also similar to that measured by the CSS

mode.

Fig.13 shows the yield stresses of different CTAB modified

laponite ERFs as a function of CEC value based on the CSS

mode. The inserts also indicate the schematic explanation for the

different intercalation and adsorption states of CTAB modified

laponites. It can be seen that the ER effect has a strong depen-

dence on the CEC, which is associated closely with the state of

intercalation and adsorption.With the decrease of aggregate size,

the ER effect is increased: Smaller size can induce better ER

effect. The effect of the organo-modification is to increase the

platelet–platelet separation, decrease the interlayer attraction

and make the clay more compatible with the organic host (such

as polymer). Intercalation can change the hydrophilic environ-

ment of the clay interlayer. Furthermore, the adsorption of

surfactant on the surface of the clay nanolayer may increase the

hydrophobicity. The hydrophobic tail of the surfactant on the

surface of the laponite nanoplatelet can enhance the wettability

towards silicone oil and achieve good oleophilicity. However

more adsorption of CTAB surfactant on the clay surface can also

decrease the ER effect, so suitable organo-modification should

be chosen. Here we provide new evidence for the change of

wettability. A liquid–liquid phase transfer can verify the change

of hydrophilicity of laponite to hydrophobicity of CTAB modi-

fied laponite (Fig. S3†). After phase transfer, a 4CEC-Lp orga-

noclay/silicone oil suspension can be obtained from the upper

phase by separating the two phases successfully. Meanwhile pure

laponite aqueous solution is also used for phase transfer, but no

laponite particles can be transferred into the silicone oil. From

pure laponite to CTAB modified laponite the wettability of the

clay is changed from hydrophilic to hydrophobic, and only

CTAB modified laponite can be successfully transferred from the

aqueous phase to the organic phase (silicone oil) due to

the change of wettability. Pure laponite could not transfer from

the aqueous phase to the organic phase due to its hydrophilicity.

This new evidence can verify the change of hydrophilicity to

hydrophobicity. In recent research, a new type of ER fluid with

the giant electrorheological (GER) effect was discovered. The

GER fluids consist of coated nanoparticles (BaTiO(C2O4)2 +

NH2CONH2) suspended in silicone oil. In the core/shell struc-

ture, the urea coating serves as an ER promoter. Although the

dielectric constant of bulk urea is relatively small (about 3.5),

urea in the form of thin coatings has a significantly larger

dielectric response due to the existence of interfaces that cause

saturation surface polarization, which are responsible for the

observed GER effect.4,45,46 In our samples, suitable adsorption of

CTAB on laponite surface may also cause strong surface polar-

ization, which may increase the ER activity, thus the effects of

enhanced yield stress that we observe (at 4CEC in Fig. 13) could

possibly be due to the same mechanism as is responsible for the

GER effect. The change of wettability reflects the surface prop-

erties of particles, the intrinsic reason for the enhancement of the

ER effect is associated with the dielectric properties.

Here, by investigating the dielectric properties of a series of

CTAB modified laponite ER suspensions, we find a significant

influence of CTAB modification on the dielectric properties of

laponite. These improvements in dielectric properties by modi-

fying the internal structure of laponite were responsible for the

improvement of the ER properties. The dielectric properties,

such as dielectric constant (3), conductivity (s) and dielectric loss

(tand), play an important role for high performance ER mate-

rials. The dielectric constant is connected to the polar strength,

Fig. 11 The yield stress of 4CEC-Lp ERFs as a function of the electric

field strength, the yield point is shown by arrows.

Fig. 12 Viscosity as a function of time for a 4CEC-Lp suspension of

particle weight fraction 10% under E ¼ 1 kV/mm.

Fig. 13 The yield stress of ERFs as a function of CEC value, the inserts

indicate the different intercalation and adsorption states of CTAB

modified laponites.
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but dielectric loss and conductivity are associated with stability

of polar response and steady ER effects between particles. Fig. 14

shows the typical measured dielectric constant and loss tangent

of CTAB modified laponite (10wt% in silicone oil) ERFs with

different CEC substitutions at five frequencies: 100, 120, 1k, 10k

and 100kHz. It is found that the CTAB modification not only

increases dielectric loss but also increases dielectric constant at

low frequency. Interestingly, there is also a regular change in

dielectric constant and loss tangent with the change of CTAB

substitution compared with the rheological properties. The

dielectric constant and loss tangent initially increase with CTAB

substitution but decline when the CEC substitution is beyond

4CEC, at which point dissociative CTAB separation may appear.

According to the dielectric mismatch theory, the static force

between particles is in direct proportion to the dielectric

mismatch coefficient b (eqn. (3)):

b ¼ (3p � 3f)/(3p + 23f) (3)

where 3P and 3f are the bulk dielectric constants of the particles

and oil respectively. Therefore, a large b value is required to

enhance the mechanical strength of the ER fluid. The larger the

b value of the particles, the better the ER effect. A large increase

of 3 as the frequency decreases (D3 ¼ 3100 � 3100k) and

enhancement of dielectric loss are observed, which reflects that

CTAB modification increases the proportion of slow polariza-

tion, especially the interfacial polarization. This is expected to

induce strong ER activity according to the present ER

mechanisms. According to the widely accepted studies, not only

large polarization ability relating to high dielectric constant but

also good polarization response and stability relating to suitable

loss factor or loss tangent (tand > 0.1 at 103 Hz) or conductivity

(10�7–10�8 S/m) mainly dominate the high ER effect. Comparing

the dielectric properties with the rheological properties, we can

consider that the improvement of dielectric properties due to

CTABmodification is responsible for the enhancement of the ER

activity of laponite. Furthermore, recent studies have shown that

smaller size and narrow size distribution can increase the ER

effect markedly.20,46 For example, a comparison of the measured

yield stress for two samples consisting of two different particle

sizes was made. One example is BaTiO(C2O4)2 nanoparticles

(particle size around 50nm) suspended in silicone oil. Another

one is Rb-doped BaTiO(C2O4)2 nanoparticles (particle size

around 20nm) suspended in silicone oil. It is observed that the

Rb-doped nanoparticle ER fluids exhibit very strong yield

stress—up to 250 kPa at 5 kV/mm compared with 120kPa at 5

kV/mm for pure BaTiO(C2O4)2 nanoparticle ERFs. Thus parti-

cles about 1/2 the size led to a doubling of the maximum

attainable yield stress.2,20,45 Similarly, for series modified tita-

nium oxide nanoparticles, it was also found that the smaller

particle size can lead to an improved wettability and higher ER

activity. However for both of these samples, the change of yield

stress can be attributed to the improvement in the dielectric

properties.47 In this study, the change of yield stress can be

attributed to the improvement in the dielectric properties that

showed an increase in the dielectric constant and the dielectric

loss at low frequency and their regular optimum change with

CTAB modification. Only when organic modification or the

change of the particle size distribution can enhance the dielectric

properties of particles, can the ER effect (include yield stress) be

increased. When organic modification or the change of the

particle size distribution decrease the dielectric properties of

particles, the ER effect (include yield stress) should be decreased.

For example, at high concentration of CTAB substitution (5CEC

or 6CEC), smaller aggregate sizes and narrow size distribution of

particles can also be obtained, however the yield stress is

decreased compared with that of 4CEC-Lp ER fluid. This is

caused by the decrease of dielectric properties of 6CEC-Lp ER

fluid compared with those of 4CEC-Lp ER fluid, so suitable

organo-modification should be chosen. The particle size distri-

bution effect on the variance of yield stress only happens when

the dielectric properties of particles can be varied by the change

of particle size distribution.

Dynamic oscillation tests were used to study the viscoelastic

properties of organic modified laponite based ER suspensions

under various electric fields. Fig. 15a shows a log-log plot of the

storage modulus G0 for the 4CEC-Lp particle based ER fluid as

a function of strain g at a fixed angular frequency u ¼ 10 rad/s

under various electric fields. It is seen that G0 increases with the

electric field and the linear viscoelastic region becomes wider

because the chain structure formed in the ER fluid becomes

stronger to sustain larger strains. As the strain is increased, the

deformation starts to break the chain and G0 decreases rapidly.
Fig. 15b shows a log-log plot of storage modulus G0 for the

4CEC-Lp particle based ER fluids as a function of frequency

with a fixed strain of 0.01 in the linear viscoelastic region. The

storage modulus was slightly increased as the frequency was

Fig. 14 Dielectric constant and loss tangent of CTAB modified laponite

(10wt% in silicone oil) ERFs with different CEC substitutions at five

frequencies: 100Hz, 120Hz, 1kHz, 10kHz and 100kHz.
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increased up to 100 Hz. The linear viscoelastic region shows

a wider region and higher G0 with induced high electric field

strength. This phenomenon was also observed in cross-linked

rubbers and other ER systems.37 The inter-particle interactions

due to polarization contribute to the enhancement of the

dynamic modulus and the steady shear viscosity to a great extent.

The polarization forces between the particles increase with

increasing electric field strength resulting from increasing particle

chain length and magnitude of G0.

3.5. The sedimentation properties of ER suspensions

One of the greatest challenges for applications of ER fluids is the

problem of particle sedimentation. The sedimentation properties

of ER materials are the main criterion used to evaluate whether

the materials can be commercialized or not, because the prop-

erties of ERF will weaken rapidly along with the sedimentation

of the particle phase. The general methods to enhance the anti-

sedimentation of ERFs include controlling the size of particles

(nanoparticles, nanorods, nanofibers, nanotubes etc.), preparing

hollow or porous particles, changing the match of density

between particles and oil, adding surfactant etc. Fig. 16 show ER

suspensions of 6CEC-Lp, 4CEC-Lp, 0.5CEC-Lp, and pure

laponite, which were deposited for a month. The results show

that the antisedimentation of 6CEC-Lp or 4CEC-Lp is better

than those of 0.5CEC-Lp or pure laponite. Furthermore, ER

suspensions of the former also easily adhered to the bottle wall

unlike the latter. Due to the change of wettability, surface

modified laponite clay is lipophilic and thus disperses much

easier in oil than pure laponite.

4. Conclusions

A seriaes of CTAB modified nanolayer laponite samples have

been synthesized by an ion exchange method. The resulting

materials show different structures and surface properties

compared to pure laponite. Through suitable organo-modifica-

tion, near monodisperse organic modified laponite can be made

and characterized viaAFM and SEMmeasurements. WAXS and

TGA results show that CTAB can be intercalated and adsorbed

onto the laponite interlayer or surface depending on the

concentration of the surfactant. Two-dimensional SAXS images

from bundles of 4CEC-Lp ER sample exhibit a clear anisotropy.

The modified laponite ER fluids exhibit improved sedimentation

properties. Furthermore, one application of such systems of

functionalized laponite particles could be in guided self-assembly

or orientation of nanoparticles in composite materials, especially

for hydrophobic polymer matrices.
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Abstract. The electric field induced alignment of organically modified fluorohectorite (Fh) clay particles

suspended in silicone oil was studied by means of synchrotron wide angle X-ray scattering (WAXS).

This report focuses on the comparison between the anisotropic arrangement of organically modified clay

particles and that of their previously studied non-modified counterparts. The degree of anisotropy was

quantified by fitting one-dimensional azimuthal WAXS plots to the Maier-Saupe model and the results

are expressed in terms of the anti-nematic order parameter San. It is shown that organic modification

results in a better overall alignment of the clay particles, with San ∼ 0.71, which is higher than for the

non-modified particles, San ∼ 0.62. This behaviour is mainly a result of the formation of smaller and more

uniform aggregates, in contrast to the large aggregate structures formed by non-modified clay particles.

Thermal decomposition temperatures of the surfactant molecules adsorbed on the clay surfaces and those

being intercalated between clay crystalline layers were measured by thermal gravimetric analysis (TGA).

Zeta potential measurements confirmed the successful modification of clay surfaces. Optical microscopy

observations showed that the sedimentation of modified particles was much slower compared to that of non-

modified samples. In addition, the electric field dependent yield stress was measured, revealing improvement

of the electro-rheological properties for modified clay particles.
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1 Introduction

If a clay particle is brought into an electric field it becomes polarized. The electric polarization will induce a moment

of force, which tends to orient the particles towards the field direction [1]. This alignment has been observed for many

different particles possessing an electric field induced dipole moment, including: carbon-based nanotubes [2] or fibers

[3]; non-spherical polystyrene latex particles [4]; doublet-shaped polymeric particles [5]; anisotropic titania particles

[6]; and also the clay family of particles such as laponite [7] and synthetic Na-Fh clays [8,9].

The alignment of particles in either solid or liquid matrices is of considerable importance from the point of view of ap-

plications. At present, polymers reinforced by nanoscale dispersed organically modified layered silicates are attracting

more and more attention because of the unprecedented suite of new and enhanced properties compared with conven-

tional fillers [10]. These layered silicate polymer nanocomposites can attain a great degree of stiffness and strength

with substantially less inorganic content than conventional glass- or mineral-reinforced polymers. Furthermore, the

presence of the dispersed phase results in additional properties, such as flame retardancy, enhanced barrier proper-

ties, increased degradability of biodegradable polymers, as well as ablation resistance, compared to either component

[11,12,13]. The use of organoclays as precursors to nanocomposite formation has been extended into various polymer

systems including epoxys, polyimides, polystyrene, nitrile rubber and polysiloxanes [14]. These improvements depend

heavily on the structure and properties of the organoclays. Hence, understanding the microstructure of the organoclays

themselves is essential for many industrial applications.

This report focuses on the comparison between the anisotropic arrangement of organically modified clay particles and

that of their non-modified counterparts studied previously [8], with particular attention towards the potential for use

of such modified particles in electro-rheological (ER) systems. The layout of the present work is as follows. Firstly,

the sample preparation is explained in section 2.1. The thermal decomposition analysis providing information about

surfactant adsorption and the nature of intercalation is presented in section 2.2. Zeta potential measurements sup-

porting the conclusions drawn from the TGA (regarding CTAB adsorption) are described in section 2.3. Descriptions

of both the WAXS experimental set-up and the anti-nematic geometry are followed by the WAXS investigation of the

E -field induced structuring from modified clay particles (section 3.1). Sedimentation tests and the optical microscopy

observations of clay particles suspended in both water and silicone oil are given in section 3.2. Finally, the E -field

dependent yield stress measured by controlled shear stress rheometry is presented in section 3.3. Conclusions are

presented at the end in section 4.
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2 Sample preparation and characterization

2.1 Samples

The purchased material for our experiments was synthetic Li-Fh (Corning Inc., New York) from which Na-Fh was

prepared according to the ionic exchange procedure for example described in [15]. Na-Fh is a synthetic 2:1 smectite

clay having the nominal chemical formula Na0.6(Mg2.4Li0.6)Si4O10F2 per half unit cell, where Na+ is an interlayer

exchangeable cation. Na-Fh has a surface charge of 1.2 e−/unit cell [16,17] and is a polydispersed clay with platelet

diameters ranging from a few hundred nm up to several μm.

The surfactant used (Cethyl Trimethyl Ammonium Bromide, [CH3(CH2)15]NBr(CH3)3, Sigma) was of analytical grade.

A silicone oil, Dow Corning 200/100 Fluid (dielectric constant of 2.5, viscosity of 100 mPa.s and specific density of

0.973 g/cm3 at 25 ◦C) was used as the suspending liquid. The oil is relatively non-polar and non-conductive, with a DC

conductivity of the order of 10−12 S/m. For the synthesis of the organoclay oil-based suspension, 100 mL of distilled

water and 2.5 g of Na-Fh were mixed, and the solution was stirred and heated to 80 ◦C. In parallel a second solution

with the stoichiometric amount of CTAB (0.43, 0.86, 1.72 g) and 25 mL distilled water was prepared. Both solutions

were stirred for 10 h. Finally, the surfactant solution was added carefully to the heated clay solution, resulting in an

immediate flocs formation. The mixture obtained was stirred at 80 ◦C for 24 h and then cooled to room temperature.

Subsequently, the liquid-liquid phase transfer method was used to obtain the organoclay/silicone solution, which was

prepared as follows: 50 mL of silicone oil was added to the aqueous solution and stirred for 48 h. The mixed solution

was then centrifuged 15 min at 4000 rpm to accelerate the phase separation. The organoclay/silicone oil suspension

was subsequently collected from the upper phase and heated at 110 ◦C for 24 h. Figure 1 gives an illustration of the

phase transfer from the aqueous phase to the organic phase.

Before the rheology measurements, the electro-rheological suspensions of organoclay in silicone oil was vigorously

hand-shaken for ∼1 min and placed in an ultrasonic bath for 3 h and again vigorously shaken for 1 h in an orbital

shaker. The obtained organoclay ER suspension were labelled as 1CEC-Fh, 2CEC-Fh, and 4CEC-Fh, where CEC

refers to the cation exchange capacity.

2.2 TGA/DTG

Thermal gravimetric analysis (TGA) was performed on a TGA/SDTA851e instrument (Mettler Toledo AS) under N2

flow (10 mL/min) with a heating rate of 10 ◦C/min.

TGA data indicated a mass loss of below 10 wt.% until 200 ◦C for non-modified Na-Fh (see Figure 2), and this was
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attributed to the loss of water from the sample. The dehydroxylation of Na-Fh occurs normally at temperatures higher

than 800 ◦C [18]. For pure CTAB, the complete decomposition took place in the range of 200-400 ◦C and the maximum

peak was at 270 ◦C (see supporting figure S1). From room temperature to 800 ◦C, the complete weight loss for different

CTAB modified Fh: 1CEC-Fh, 2CEC-Fh, and 4CEC-Fh were 21.2 %, 34.4 %, 51 %, respectively (Figure 2). The weight

loss at 800 ◦C increased with the amount of CTAB substitution, which confirms that the organic content in the clay

was effectively proportional to the degree of substitution.

The differential thermogravimetric analysis (DTG) patterns of non-modified and CTAB modified Fh are presented

in Figure 3. The Na-Fh showed one major thermal decomposition step at around 90 ◦C, corresponding to the loss

of water, as also shown in connection with Figure 2. For the CTAB modified Fh samples, three DTG steps were

observed at about 50-150, 200-300 and 350-450 ◦C. These are attributed to: the loss of water; the release and loss

of the CTAB surfactant molecule adsorbed on the clay external surface; and the decomposition of the surfactant

molecule intercalated between the clay sheets, respectively. More specifically, for the 1CEC-Fh, the first DTG peak is

observed at 83 ◦C attributed to the loss of adsorbed water. The next peak is found at 140 ◦C and is assigned to the

loss of bound water. The third peak, corresponding to the loss of the CTAB surfactant molecules adsorbed on the clay

external surface is observed at 270 ◦C. The last major peak, assigned to the decomposition of the surfactant molecule

intercalated between the clay sheets, is observed at 360 ◦C.

Analogously, for the 2CEC-Fh, a DTG peak attributed to the loss of water is observed at 80 ◦C. A second peak is

observed at 270 ◦C and is assigned to the loss of the CTAB surfactant molecule adsorbed on the clay external surface.

However, the peak related to the decomposition of the surfactant molecule intercalated between the clay sheets is

not observed until 430 ◦C, compared to 270 ◦C for the pure surfactant. This shows that the CTAB molecules are now

bonded strongly in the interlayer of the fluorohectorite.

With an increase of the surfactant substitution, the peak related to the CTAB molecules adsorbed on the clay surface

becomes more pronounced, and is the largest for the 4CEC-Fh (see arrow in Figure 3). This clearly indicates that

more surfactant molecules are adsorbed on the surface of fluorohectorite clay.

The results described above agrees well with the x-ray diffraction data presented later (section 3.1). The x-ray data

show the development of the clay lamellar structure due to increase of the surfactant concentration, which corroborates

the information from the TGA/DTG curves.
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2.3 Zeta potential measurements

The zeta potential was measured using Malvern Zetasizer Nano-ZS (Malvern Instruments, UK) with a folded capillary

cell. Measurements were performed on the non-modified clay suspension as well as one of the organoclay samples

(4CEC-Fh). The pH was equal to 9.6±0.3 for both 4CEC-Fh and Na-Fh deionized water solutions (0.1 wt.% clay).

The zeta potential value was the average of 2 parallel trials consisting of 4 measurements. Fluorohectorite clay particles

carry a net negative charge due to the negative charges on their surfaces dominating over the positive charges at the

edges. The zeta potential of non-modified Na-Fh particles is -79.0±1.5 mV, which makes them well dispersed and

moderately stable in aqueous medium. With the addition of CTAB (4CEC-Fh), the zeta potential becomes positive

+59.0±7.2 mV. This is an indication of the CTAB adsorption on the clay surface, thus the organoclay particles possess

a good stability behaviour and can be easily dispersed in silicone oil due to both the strong particle-particle repulsive

interactions and the lipophilic nature of the surfactant tail. The values of conductivity for both samples were measured

to be: 155±2 μS/cm and 382±6 μS/cm for Na-Fh and 4CEC-Fh, respectively.

3 Results

3.1 WAXS

The wide angle x-ray scattering experiment (WAXS) was carried out at the European Synchrotron Radiation Facility

(ESRF) in Grenoble, France. An x-ray beam with a wavelength of 0.72 Å and a 0.3x0.3 mm2 beam size at the sample

was used. The beamline BM01A is equipped with a two-dimensional MAR345 image plate detector with diameter of

345 mm. The experimental set-up is shown in Figure 4a. The custom-made sample cell consisted of an electrically

insulating acrylic glass in the form of a cuvette, where the top part is opened for inserting two identical 1 × 1 × 50

mm thick copper electrodes separated by a gap of 1 mm (see [8] for further details).

Prior to the application of the electric field, both non-modified and modified particles were randomly dispersed into

the silicone oil. The formation of chain-like structures aligning parallel to the E -field was observed shortly after its

application. The 2-D WAXS patterns in Figure 5 are from a suspension, without (left) and with (right) an E-field

of 500 V/mm applied, for non-modified (top) and organically modified clay particles (bottom), respectively. The 001

Bragg ring obtained from non-modified particles (here indicated by 001∗) lies at q=5.11 nm−1. The corresponding

distance d001∗=2π/q is close to 1.2 nm when one layer of water is intercalated between silicate sheets [8]. The outer

broad ring is located at q=8.3 nm−1, and is due to the silicone oil, i.e. the maximum in the radial distribution function

of this molecular liquid. The position of Bragg rings changes when surfactant is intercalated. They appear at lower
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q-range (smaller scattering angle) showing that the characteristic distance d001 between clay’s crystalline sheets has

increased.

Radially integrated 2-D WAXS patterns are shown in Figure 6, as I(q) plots. The left panel in Figure 6 shows

development of the clay lamellar structure due to increase of the surfactant concentration. He et al. [19] showed that

arrangements of the HDTMA surfactant in the montmorillonite clay interlayer were fairly distinctive and varied from

lateral-bilayer (0.7CEC), then to paraffin-type monolayer (1.5CEC) and finally to paraffin-type (5CEC). In the present

studies the two former transition phases are not seen. Instead, a mixture of different clay populations is observed for

sample 1CEC-Fh, and these include: (i) non-modified particles (peak at q=5.11 nm−1), (ii) a paraffin-type bilayer

(peak around q=1.57 nm−1), and very broad peak (with its maximum in the radial distribution function at ∼ 3 nm−1)

that may correspond to paraffin-type monolayer. Higher concentration of CTAB molecules is thus needed to modify

all clay particles. For the 2CEC-Fh and 4CEC-Fh samples, the peak at q=5.11 nm−1 vanishes and the peak that

corresponds to the formation of the paraffin-type bilayer structure becomes very sharp and intense for the sample with

the highest CTAB concentration used.

A comparison between 4CEC-Fh modified and non-modified clay particles is shown in Figure 6 (right). The 001 Bragg

peak for 4CEC-Fh modified clay is found at q=1.57 nm−1, which corresponds to the distance d001=3.99 nm in the

real space. A second and a third peak is found at q=3.15 nm−1 and q=4.73 nm−1 and occur at 2x and 3x the q-value

of the first peak, thus are identified as 002 and 003 Bragg reflections, respectively. The peaks have high intensities and

are relatively sharp indicating that the lamellae have attained a well-defined parallel arrangement.

The expected basal spacings for bilayer paraffin-type intercalation is given by the following approximate expression

[20]: dL=2×0.127nc×sinβ + 1.66 nm where nc denotes the number of C-C bonds. Here 1.66 nm is the sum of the size

of the terminal CH3 groups, the length of the polar head groups N(CH3)3 and the thickness of the clay crystalline

sheet of 0.656 nm [15]. For CTAB (nc=14) this gives dL=4.61 nm for the surfactant intercalating as a paraffin-type

bilayer (Figure 7) when the the maximum tilt angle β between the surfactant chains and the crystalline interlamellar

silicate sheet is 56 ◦. There is a mismatch between the calculated lamellar distance dL and experimentally found

distance d001. It is proposed here that CTAB arrangement is a paraffin-type bilayer with an angle of 41 ◦, which might

be due to incomplete ion exchange process even after 1 day of reaction time. This suggestion is supported by the

other researchers conclusions [19,20,21,22]. However, it is difficult to obtain detailed information on the conformation

of surfactant molecules in the interlayer of fluorohectorite from the x-ray results only, and other complementary

techniques (such as FTIR) are needed to make conclusions on this.

When the 2-D WAXS pattern (demonstrated in Figure 5) is integrated azimuthally, a so-called azimuthal plot is made
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(Figure 8). The latter may then be fitted by the classical Maier-Saupe function of a functional form f∼exp(mcos2α)

that can be used to calculate the order parameter [23].

The interaction energy in our system is different from that used by Maier and Saupe in their mean field model for

liquid crystalline order, but the functional form is found to be well suited to our data. The angular ’width’ of the

function f is a quantification of the orientational order of the particles in the suspension. This is contained in the m

parameter as defined above, but is more conveniently measured using a global order parameter S, see [24].

In the case of our system, the so called anti-nematic geometry has to be employed, since the particle stacking direction

is, on average, in a plane normal to the reference direction (see Figure 4b - blue disc indicates the plane normal to

the E -field direction represented by large black arrow). The order parameter values reported in the present work are

defined in a representation where they are positive and lie within the numerical range 0-1 in magnitude, where 1

denotes a perfectly aligned clay particles with their faces being parallel to the E -field direction.

As can be seen, the organically modified sample 4CEC-Fh shows very large anisotropic particle arrangement (San∼

0.72) upon application of an electric field. The anisotropy is insignificant without E-field (San∼ 0.04). Table 1 shows

the calculated time-average values of San (6 measurements) for both modified 4CEC-Fh and non-modified [8] clay

suspension at different E -field strengths. The San grows slightly with increasing E -field for organically modified

samples, whereas no such correlation was found for non-modified clay particles. It should be noted here that a relatively

narrow range of electric field strength was used during this experiment, thus one cannot make final conclusions about

the dependence of San on the E -field. However, there is a clear difference in magnitude of San. The degree of anisotropy

was higher for the system with organoclay particles (San∼ 0.71) than for non-modified clay particles (San∼ 0.62) as

described in [8]. This can be explained by the fact that the modified clay particles do not form large aggregates as

is the case with non-modified particles, leading to structures that are more easily and uniformly aligned along the

E -field. Optical microscopy images presented in the next section support for that conclusion.

Table 1. Calculated average values of San for both modified 4CEC-Fh and non-modified clay suspension at different

E -field strengths

E -field 4CEC-Fh Na-Fh[8]

San for 350 V/mm 0.70±0.01 0.63±0.01

San for 500 V/mm 0.71±0.01 0.64±0.02

San for 750 V/mm 0.72±0.01 0.60±0.05
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3.2 Optical observations

In order to make use of clay particles as a basis for an ER fluid one needs to challenge the tendency for particles in

suspension to sediment. The particle sedimentation properties are often the major criterion used to evaluate whether

the ER fluid can be commercialized or not. The general methods to counteract the sedimentation of ER fluids include

controlling both size and shape of particles, preparing hollow or porous particles, and matching of densities between

particles and solution [25,26]. Addition of surfactants is commonly used to prevent the particles from agglomeration,

which then slows down particle sedimentation, or if the particles are small enough (i.e. magnetic particles in ferrofluids),

ensures that they are held in suspension by Brownian motions [27]. Figure 9 shows ER suspensions of non-modified

Na-Fh (top) and 4CEC-Fh organically modified (bottom) clay particles suspended in silicone oil and deposited for 12

days. The results show that the sedimentation of 4CEC-Fh is much slower than the non-modified sample. It can be

seen that almost all non-modified clay particles sedimented after just 12 h, whereas only a small fraction of modified

clay particles settled out. The surface modified fluorohectorite clay is lipophilic and thus disperses much easier in oil

than its non-modified counterpart. Figure 10 shows that the CTAB modification prevented particles from forming

large aggregates when suspended in a non-polar liquid. The size of particle (aggregates) in silicone oil is in the range of

1-30 μm for this organoclay, whereas much larger aggregates are formed in the case of the non-modified clay particles,

reaching the size of 200 μm.

3.3 Rheology

The electric field induced yield stress of both the organically modified and the non-modified clay particles suspended

in silicone oil was measured using a Physica MCR 300 Rotational Rheometer equipped with a coaxial cylindrical cell

Physica C27/ERD. All rheological measurements were carried out at constant temperature of 25 ◦C and DC electric

field. The values of the static yield stress were obtained via the controlled shear stress (CSS) method, in which a

linearly increasing shear stress (in steps of 2 Pa) was imposed on suspensions subjected to the same electric field prior

(for 300 s) and during the measurement.

Figure 11 shows the yield stress of non-modified (left) and organically modified (right) 10 wt.% samples as a function

of electric field strength using the CSS mode. The yield stresses of modified (non-modified) samples are: 54 (13), 120

(62) and 145 (76) Pa for the E-field strengths of 1, 2 and 3 kV/mm, respectively. It can be seen that the yield stress

nearly doubled when clay particles are organically modified. The mechanism of the ER effect is not the focus of the
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present work and the authors do not intend to draw any firm conclusions. However, we suggest that the increase of

the yield stress values can be related to the increase of the particle dielectric loss (see [7,28]).

4 Conclusions

The primary objective of this research was to investigate the electric field induced alignment of organically modified

fluorohectorite clay-based ER fluids by means of x-ray studies. However, other methods, namely TGA/DTG, zeta po-

tential measurements and optical observations were employed to understand the differences in chemical and physical

properties of modified clay particles when compared to their previously studied non-modified counterparts [8].

A set of samples have been synthesized by an ion exchange method using different concentrations of CTAB. The

Na+ cations intercalated between the clay platelets were exchanged by the surfactant molecules, increasing the char-

acteristic lamellar distance d001 from 1.21 to 3.99 nm, which indicates that the intercalated CTAB chains formed a

paraffin-type bilayer with a tilt angle of 41 ◦. The surfactant molecules were also adsorped on the particles’ surfaces.

The resulting materials became lipophilic, and therefore disperses well in a non-polar liquid, such as a silicone oil.

The TGA/DTG measurements provided data supporting the successful modification of the clay particles. Charac-

teristics of water loss; the release and loss of the CTAB surfactant molecule adsorped on the clay external surface;

and the decomposition of the surfactant molecule intercalated between the clay sheets was found for all modified

samples in temperature ranges 50-150, 200-300 and 350-450 ◦C, respectively. The optical microscopy observations and

the sedimentation tests showed that the 4CEC-Fh sample dispersed well in oil. Modified clay particles formed much

smaller aggregates and sedimented significantly slower than non-modified ones.

The electric field induced alignment from organically modified clay was found to more well-defined. It was shown that

the anti-nematic parameters were San ∼ 0.71 and San ∼ 0.62 for modified and non-modified particles, respectively.

The conjecture is that the improved particle organization is due to both the particle-particle repulsive interactions

and surfactant adsorption on clay’s surface, leading to formation of smaller aggregates in contrast to large aggregated

structures formed by non-modified clay particles. The data clearly show that the yield stress increases as much as a

factor of 2 for modified clays compared to the unmodified counterpart. The dielectric loss model [28,29] is suggested

to explain the mechanism of this ER effect. It is also believed that the larger number of contact points created when

unmodified particles self-organize in chains (compared to the unmodified particle chains) can contribute to an en-

hancement of the effect. Thus both from the point of view of ER fluids with higher yield stress, and also from the

point of view of alignment of clay particles inside clay nano-composite materials [30], the modified particles are more
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promising in terms of applications. More work is needed and is under way in our group in order to be more conclusive

on these points.

The authors acknowledge assistance from D. Chernyshov while performing experiments at the Swiss-Norwegian Beam Lines at
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Fig. 1. Illustration of the phase transfer from the aqueous phase to the organic phase.

Fig. 2. TGA curves (25-800 ◦C) of Na-Fh, CTAB and series of CTAB modified Fh. xCEC means that x times the

stoichiometric amount of CTAB surfactant was used.

Fig. 3. DTG traces (25-800 ◦C) of non-modified and CTAB modified Fh.
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Fig. 4. Image of the sample cell (a) and anti-nematic configurations (b).

Fig. 5. WAXS patterns of Na-Fh (top) and 4CEC-Fh (bottom) clay particles without (left) and with (right) E -field

applied.



14 Z. Rozynek et al.: E-field Induced Alignment from Organoclays

Fig. 6. Integrated WAXS patterns illustrate the CTAB concentration dependent development of lamellar structure

(left). Comparison between 4CEC-Fh modified (solid line) and non-modified (dashed line) clay particles with silicone

oil peak subtracted (right).

Fig. 7. Orientation of CTAB molecules in paraffin-type bilayer structure. The maximum tilting angle is 56 ◦, and the

distance between clay crystalline layers is dmax=4.61 nm.

Fig. 8. Azimuthal plots of the first Bragg peak amplitude under an E -field of 350 V/mm (◦) and no E -field (�).
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Fig. 9. Sedimentation of non-modified Na-Fh (top) versus 4CEC-Fh (bottom) clay particles in silicone oil. From left,

pictures taken at time 10 min, 1-2-6-12 h and 1-2-6-12 days after the solution had been ultrasonicated and shaken.

Fig. 10. Microscope images of non-modified Na-Fh (left) and organically modified 4CEC-Fh (right) clay particles

suspended in water (top) and silicone oil (bottom). The length of the bar corresponds to 200 μm.
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Abstract 
In this work, polypropylene/organoclay  nanocomposites were prepared by melt intercalation 
in an extruder and studied by means of synchrotron X-ray scattering techniques, both at room 
temperature, and in the melted state (195 ºC) in an applied electric field (E). Structural 
changes and time evolution of the alignment of the layered silicates at different E-field 
strengths, as well as, the final degree of their orientation is discussed. Despite many efforts, 
structural changes of clay particles, such as clay particle exfoliation was not observed, 
indicating that this is more challenging to achieve than described by other authors previously.  
 

Keywords: Clay, alignment, polymer, composite, electric field, exfoliation 
 

 

1. Introduction 
 

 In this work we study clay particles added to polymer matrices. The increase in separation 

of the laminate structure of clay in part or whole, called intercalation and exfoliation 

respectively (see Figure 1), produces plates that possess a high specific surface area, which 

theoretically allows for efficient load transfer from the matrix. Dispersed plates also act as 

barriers to diffusion, inhibiting the flow of gases. Increases in stiffness, strength, and the 

tortuosity for entering gases have been reported for clay–polymer nanocomposites.1 Several 

chemical approaches and diverse polymeric matrices/silicates have been utilized to prepare 

polymer-clay nanocomposites (PCN), and these include: in-situ polymerization that requires 

the modification of catalysts as well as of the process itself 2; or direct melt intercalation, 

where PP is modified with maleic anhydride (MAPP) or hydroxyl groups (HOPP) to increase 

the compatibility between PP and the clay surface.3,4 Although the degree of exfoliation and 

the correlated physical properties from in-situ polymerization are slightly greater than that 

                                                           
1 J Wang, S J Severtson and A Stein, Adv. Mater.18,467 1585-1588 (2006) 
2 T Sun and J M Garces, Adv. Mater.14, 128 (2002) 
3 X Liu and Q Wu, Polymer42, 10013 (2001) 
4P H Nam, P Maiti, M Okamoto, T Kotaba, N Hasegawa and A Usuki, Polymer42, 9633 (2001) 
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from the melt intercalation process,5 the cost of composite production is still high and may 

prohibit commercial applications.  
 

 
Figure 1. No reaction between clay platelets and polymer chains (a), intercalation of polymer molecules into clay galleries 

changes their characteristic d-spacing (b), clay exfoliation (c).  

 Controlling the microstructure of polymer/clay materials and in particular the clay 

exfoliation and the platelets arrangement, i.e. positional and orientational alignment, is an 

additional issue.6The alignment can be achieved by for example biaxial or elongational 

flow,7,8 or application of an external electric field.9A novel idea was explored by Kim et al.10  

using the effect of an external electric field to assist the penetration the polymer chains into 

the silicate galleries that led to clay exfoliation. In ref. 10 an electric field is applied on 

PP/clay melts between the parallel plates of a rheometer resulting in the increase of the 

rheological properties and exfoliation. However, the explanation for this behaviour was not 

provided within this article.9 Further measurements performed by the same group led to the 

conclusion that the exfoliation process prevails in the AC field due to the imbalance between 

the van der Waals attraction and the electrostatic repulsion, originating from the dissociation 

of the bound ions from the clay surfaces.11,12In these two reports11,12 the PP/clay 

nanocomposites were investigated by means of X-ray scattering in presence of both DC and 

AC electric fields, without any shearing (sample sits between two electrodes). Thus the clay 

exfoliation was reported to be purely due to the electric effects, and it developed with time. 

The clay alignment was also studied by the same group, and they found a very strong DC 

electric field dependence on the clay alignment, while for the AC electric fields the particle 

alignment was considerably smaller and was decreasing with time, as exfoliation progresses.   

                                                           
5  D H Kim, J U Park, K S Cho, K H Ahn and S J Lee, Macromol.Mater.Eng.291, 1127–1135 (2006) 
6  J Collister, in "Polymer nanocomposites: synthesis, characterization, and modelling" by R A Vaia and R Krishnamoorti,  
 London: Oxford university press; Ch.2. (2002) 
7  M Okamoto, P H Nam, P Maiti, T Kotaka,T Nakayama, M Takada, M Ohshima, A Usuki, N Hasegawa and H Okamoto,  
 Nano Lett. 1, (2001) 
8  M Okamoto, P H Nam, P Maiti, T Kotaka, N Hasegawa and A Usuki, Nano Lett. 1, (2001) 
9  Z Rozynek, R Castberg, J O Fossum and A Mikkelsen, manuscript in preparation  
10   D H Kim, J U Park, K H Ahn and S J Lee, Macromol. Rapid24, 388 (2003) 
11  J U Park, Y S Choi, K S Cho, D H Kim, K H Ahn and S J Lee, Polymer47, 5145–5153 (2006) 
12  D H Kim, K S Cho, T Mitsumata, K H Ahn and S J Lee, Polymer47, 5938-5945 (2006) 
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 These interesting phenomena were the main motivation for conducting similar 

experiments, understand the mechanisms behind the electric field induced exfoliation better, 

and contribute to this fascinating field of polymer/clay science.  

This report focuses on the comparison between previously reported electrically activated 

PP/clay composites in respect to the E-field induced alignment of clay particles inside the 

polypropylene matrix, and also the structural changes in clay particles. The layout of this 

work is as follows. First, the sample preparation, characterization and the experimental set-

upare explained in section 2. Second, the small angle X-ray scattering results are presented 

in section 3 and these include: monitoring of structural changes (section 3.1), and time 

dependent development of the system anisotropy during melting and crystallization (section 

3.2). Conclusions are presented at the end in section 4.  
 

2. Sample preparation, characterization and experimental set-up 

2.1. Sample preparation 
 

A commercial grade of isotactic polypropylene PP H103 (Braskem, Brazil), with melt flow 

index 40 g/10 min at 230 °C/2.16 kg and density 0.905 g/cm3, was used as polymer matrix for 

nanocomposites preparation. This grade is appropriated for injection moulding of thin walls 

products and, according to the manufacturer, contains heat stabilizers to protect against 

thermal degradation during compounding and processing. The organoclay used in this study 

(Cloisite® 20A) is obtained from Southern Clay Products (Gonzales, TX). It is a Na+ -

montmorillonite, chemically modified with dimethyl dihydrogenated tallow quaternary 

ammonium chloride, where N+ denotes quaternary ammonium chloride and HT denotes 

hydrogenated tallow. PP/organoclay master batches were prepared in an intensive internal 

mixer (Haake Rheocord 90) at 50 rpm for 10 min after organoclay feeding at 210 ºC. Polymer 

and organoclay C20A were dried in a vacuum oven at 80 ºC for 24h before melt mixing. The 

masterbatches were pelletized and dried for 2h in the same conditions described above before 

being added to PP in order to obtain compounds with 5 wt.% organoclay. These compounds 

were extruded in a counter-rotating twin screw extruder accessory (TW 100) coupled to a 

Haake operating at 60 rpm and with a temperature profile in the 150-210 ºC range. After 

extrusion, the materials were air cooled, ground and then injection moulding. Samples were 

injection moulded in a Ray Ran machine at 210 °C, 100 Pa/cm2 of pressure for 5 seconds. 
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2.2. Sample characterization  
 
 As the control test the thermal gravimetric analysis (TGA) was performed first. The TG 

curves (Figure 2) show that the thermal stability of the nanocomposites is enhanced relative to 

that of virgin PP, and the typical the onset temperature of the degradation is about 50 ºC 

higher for the nanocomposites. Clay particles protected the polymer matrix with a noticeable 

increase in thermal stability. The final fraction of mass at 500 C was found to be around 1 % 

and 4 % for PP and PP/clay composite, respectively. From the TGA data one can conclude 

that the maximum temperature of the sample in the melted state should stay below 200 C. 

 
Figure 2. TG curves for PP (green triangle) and PP/C20A with 5 wt. % of the organoclay content (red dashed line). 

2.3. Experimental set-up 
 
 Initial synchrotron small-angle X-ray scattering (SAXS) experiments were performed at 

LNLS in Campinas Brazil. These initial experiments serve as a base for the SAXS results 

reported here, which all were performed at the I711 beamline at MAX-lab, Sweden. The 

beamline was equipped with a CCD detector with 165 mm active area. The SAXS patterns 

were recorded using a two-dimensional detector located ~67 cm from the sample. An X-ray 

beam with a wavelength of 1.1 Å was used, which enabled detection of scattering in a q-range 

(d-range) of approximately 0.02-0.6 Å-1 (1-30 nm). An AC electric field of 1 kV/mm and 

frequency of 100 Hz, and a DC electric field of 1 kV/mm were applied using a function 

generator (TG215 ThurlbyThandar Instruments) and a high voltage amplifier (AS-3B1 

Matsusada Precision Inc.). Two copper electrodes have a height of 7 mm and a width of 2 

mm, and they were separated by 2 mm gap. An electric field was applied horizontally, 

perpendicular to the direction of the X-ray beam. Figure 3 shows a schematic of the 

experimental set-up. A custom-made heating cell consisted of two-wall heating unit used to 

ensure the smallest temperature gradient between sample and environment. The sample 

chunks were placed in between copper electrodes and thin mica elements glued to the flat 

sides of the electrodes using high temperature resistant glue.  
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Figure 3. Experimental set-up for SAXS measurements. Sample is placed between two copper electrodes. Two heating units 
are used to ensure the smallest temperature gradient between sample and environment.  

3. Results 

3.1. SAXS – structural changes 
 

 The structural changes of two samples exposed to DC (Sample 1) and AC (Sample 2) 

electric fields were monitored during melting and crystallization. Samples were kept in the 

melted state for 145 min (Sample 1) and 66 min (Sample 2) at around 195 ºC before 

application of the E-fields. 
 

3.1.1.  SAXS patterns and the azimuthal integration 

 

Figure 4. 2-D SAXS images of PP/organoclay composite in melted state (around 195 C) under AC electric field of 1 kV/mm, 
100 Hz. Very strong anisotropy can be seen (right) after 5 min of E-field application. The direction of the AC E-field is 
horizontal.  

 The example of the 2-D SAXS patterns is shown in Figure 4. These were collected from 

PP/organoclay sample without (left) and with (right) an AC E-field of 1000 V/mm applied, 

respectively. Prior to the application of the electric field, the organoclay particles are 

randomly dispersed into the polymer matrix. The alignment of clay particles with their 

stacking direction being normal to the E-field direction (horizontal) is observed after its 

application. Both the scattering at small angles and diffraction rings (P1 and P2) become 

anisotropic, i.e. the lowest scattering intensity is found at φ ~ 0 º and 180 º, whereas it peaks at 

φ ~ 90 º and 270 º, which is indicated as the minor and the major axes, respectively.  
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 All the 2-D SAXS patters have been processed prior the integration, i.e. SAXS images of 

both the PP/organoclay sample inside the sample cell and the background image of the empty 

sample cell were divided by their transmissions followed by the background subtraction, and 

then the contributions from the beam stop and its holder were masked out.       

 The azimuthal integration was performed for φ  10 º of the major and the minor axes 

determined by the orientation of clay particles, i.e. the major axis is drawn along the particle 

stacking direction. For the example shown in Figure 4 (right) the boundary angles are +80º 

and +100º for the major axis; and -10º and +10º for the minor axis.   

 Figure 5 shows azimuthally integrated 2-D SAXS patterns of the PP/organoclay 

composites during melting (left panel) and exposure to the electric fields (right panel). The 

scattering intensities were plotted against the momentum transfer q=4πsin / , where 2  

denotes the scattering angle and  is the wavelength of the X-rays. The real space distance can 

be calculated as d=2π/q.  
  

 

 

Figure 5. Azimuthally integrated 2-D SAXS patterns of samples 1 (top) and 2 (bottom) during melting and temperature 
stabilizing (left) and E-field application (right). 
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3.1.2.  Samples at RT 

 Three broad peaks are observed with their centres located at around q1=0.16, q2=0.38, and 

q3=0.47 Å-1, for both samples in a solid form at RT~25ºC (the initial state: t=1 min), and these 

correspond to the real space distances around d1=4.03, d2=1.67, and d3=1.33 nm. The former 

peak (P1) is attributed to the polymer chains intercalation between the layers organoclay that 

increased the initial interlayer spacing d100=2.42 nm of pure Cloisite®20A organoclay13,14. 

The reduction of attractive forces between the clay layers due the chemical treatment of clay 

particles (surfactant intercalation) and the presence of polar functional groups (maleic 

anhydride) in PP enable the polymer chains to intercalate into the clay galleries and changed 

the basal spacing d100 from 2.42 to 4.03 nm The structures with some degree of disorder were 

obtained, but it is not possible the existence of structures exfoliated. It should be noted that 

the distribution of the d100 values is very broad. Two other peaks (P2 and P3) can be assigned 

to either the presence of a small amount of non-modified montmorillonite particles acting as 

an impurity in a commercial product15 or another (more likely) explanation could be that the 

initial Cloisite®20A structure collapsed to the bilayer and monolayer arrangement of the alkyl 

chains during melt processing (surfactant molecule intercalation). Similar observations were 

found by Yoon et al.16 Another hypothesis was suggested by Mandalia et al.17 and also Zhang 

et al.18. They observed the presence of three diffraction peaks in X-ray patterns of organoclay 

and nanocomposites of polyethylene and polypropylene and those were attributed to the 

(001), (002) and (003) basal reflections of one intercalation state, respectively. This 

suggestion is less probable in present case, since P1 and P2 shift different direction when E-

field is applied (see further discussion) and in addition P2 is much narrower when compared 

to P1. In order to be more conclusive at this point, one would need to employ other 

experimental techniques, namely FTIR and DSC. However, this is not the main subject of the 

current study.  
 
3.1.3. Melting of the samples 

 During the first phase (temperature rise and stabilization) positions of peaks P1 and P2 

clearly shift towards higher q-values indicating the decrease in basal spacing of two different 

populations of clay particles, namely organoclays with polymer (d1) and surfactant (d2) 

                                                           
13 Supplier web-page: http://www.scprod.com/product_bulletins/ [accessed: 14.06.2011], Southern Clay Products, Inc. 
14 B U Nam and Y Son, Polym. Bull.65, 837–847 (2010) 
15 A Riva, M Zanetti, M Braglia, G Camino and L Falqui, Polym. Degrad. Stab. 77, 299 (2002) 
16 J T Yoon, W H Jo, M S Lee and M B Ko, Polymer 42, 329-336 (2001) 
17 T Mandalia and F Bergaya,  J. Phys.Chem. Sol. 67, 836-845 (2006) 
18 J Zhang, D D Jiang and C A Wilkie, Thermochim. Acta 430, 107-113 (2005) 
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intercalated structures, respectively.  In case of Sample 1, these changes are d1 ~ 0.53 nm 

and d2 ~ 0.12 nm. Sample 2 was monitored for shorter time and therefore the changes are 

smaller d1 ~ 0.3 nm and d2 ~ 0.07 nm. Since the initial values (sample at RT) of basal 

spacings recover rapidly during cooling (see the discussion in section 3.1.5), it is believed that 

collapse comes from the exudation of the surfactant molecules and the polymer chains out 

from the gallery during heating.19 Priya et al.20 and Riva et al.15 have also stated that, 

thermodynamically, at high temperatures ( 180 C), when the entropy gain due to exudation 

is greater than the columbic interaction energy between modifier and silicate layer, organic 

modifiers can be exudated from the organosilicate interlayer. 
 

3.1.4. Samples exposed to E-fields (DC and AC) 

 During the second phase a DC E-field of 1 kV/mm was applied to Sample 1 for all the 

time, i.e. around 1h for sample at melted state and also during the cooling. Sample 2, 

however, was exposed to an AC (100 Hz) E-field of 1 kV/mm for 30 min and then the electric 

field strength was increased to 2 kV/mm for 10 min. The higher E-field was maintained 

during the cooling. 

 For Sample 1 (DC) the P2 continue shifting the same direction and the value of the d2 

decreases by around 0.05 nm, whereas the shift of the P1 changes its direction and 

d1(146min)=3.5 → d1(210min)=3.7 nm. The distance between the clay crystalline sheets has 

increased by 0.2 nm in around 1 h. The change of the direction of the shift of P1 is evidently 

due to the electric field application and is time dependent. The difference of the value of d1 is, 

however, very small and cannot be identified as exfoliation. Different behaviours of peaks P1 

and P2 may indicate either the intercalation of different species into clay galleries (i.e. 

surfactant molecules behave differently than polymer chains in presence of electric fields) or 

the intercalated species are of the same kind but move around and reorient more freely for 

certain intercalation type. 

 For Sample 2 (AC) both peaks P1 and P2 continue shifting the same direction and the 

values of d1 and d2 decrease by around 0.1 nm and 0.05 nm, respectively.  There is no electric 

field influence on the basal spacings observed, and the process is rather time-dependent. The 

increase of the electric field strength (from 1 to 2 kV/mm) seems to have no effect on the d-

spacings either (blue dotted line in Figure 5).   
   
3.1.5. Cooling of the samples 
                                                           
19 S M L Silva, M A Lopez-Manchado and M Arroyo, J. Nanosci. Nanotechnol. 7, 4456 – 4464  (2007) 
20 L Priya and J P Jog, J. Polym. Sci. B 41, 31 (2003) 
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 In the last phase samples are cooled down while still exposed to E-fields. In case of 

Sample 1, the P2 recovers to the same initial position and d2(232min)=d2(1min)=1.67 nm, 

whereas d1(232min)=4.25 and is bigger than d1(1min)=4.03 by around 0.2 nm, which is 

similar to d1 produced by the application of the DC electric field.  
 
3.1.6. Summary 

 Figure 6 illustrates the results described above and it shows a development of the two basal 

spacings (d1 and d2), as a function of time, temperature and E-field. The dotted line shows 

temperature inside the heating cell (2 mm from the sample). Filled symbols represent changes 

in the values of the characteristic distances d1 and d2 for samples not exposed to E-field. The 

application of the electric fields (open symbols) effects d1 only when the DC electric field is 

applied, as already discussed. Half-filled symbols denote changes in the values of d1 and d2 

for samples being cooled down (and still exposed to E-fields). 

 
Figure 6.Development of basal spacings related to populations of clay particles with polymer (d1) and surfactant 
intercalated (d2) structures, respectively, as a function of time, temperature and E-field presence.   

 

 Unfortunately due to the synchrotron time restrictions it was not possible to measure a long 

time dependence on the change of d1. It would be also interesting to investigate this 

phenomenon during several heating and melting cycles.  

 The observations described above differ clearly from those presented by Kim and Park11,12. 

They showed that the exfoliation was due to electric field application and it was prevailed by 

AC electric field rather than DC fields. In our studies the exfoliation was not achieved and in 

addition a small increase of basal spacing was observed for sample exposed to the DC fields 

not AC fields.   Several other samples (results not shown here) of PP/Cloisite®C20A 

composites were studied at higher and lower temperatures, different frequencies and strengths 

of an AC electric fields and the results show also no exfoliation. Possibly the composite 
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preparation is very important and may explain the differences in clay behaviours measured by 

our group and these reported by Kim and Park11,12.  

3.2. SAXS – development of anisotropy  
  

Application of an external electric field makes clay particles polarized. If the resulting 

electric forces overcome thermal interactions particles rotate and align normal to the electric 

field lines in respect to their stacking direction. The alignment of particles can be monitored 

by means of electron or neutron diffraction.21,22In order to quantify the degree of anisotropy of 

the system, i.e. how well the clay platelets aligned, one needs to integrate radially over a 

narrow q-range of the 2-D SAXS patterns (see Figure 7) and fit the obtained 1-D azimuthal 

plot (see Figure 8) to a Maier-Saupe function(for details see 23,24,25,26). The fitting parameter is 

related to the full width at half maximum (smaller value means higher degree of anisotropy) 

and can be expressed using the standard nematic order parameter (S2). In short, the fitting 

parameter is related to the full width at half maxima and can be expressed as the nematic 

order parameter S2, ranging from -½ to 1, where 1 indicates perfectly oriented particles in the 

nematic configuration, 0 states no orientation, and finally –½ indicates perfectly oriented 

particles in the anti-nematic configuration. It is expected here that the nematic order 

parameter should be in range between 0 and -1/2, since the clay particles align in the anti-

nematic fashion, i.e. the direction of the clay stacks, are perpendicular to the field, without 

any preferred azimuthal direction.  

Figure 7 shows 2-D SAXS images of PP/organoclay composite in melted state (around 

195 C) under DC electric field of 1 kV/mm. The anisotropy starts to build up (left) in a 

direction perpendicular to the direction of the electric field lines. Very strong anisotropy can 

be seen (right) after 55 min of E-field application. The direction of the DC E-field is 

horizontal.  

                                                           
21Z Rozynek, K D Knudsen, J O Fossum, Y Meheust, B Wang and M Zhou, J. Phys.: Condens. Mat.22, 324104 (2010) 
22 K D Knudsen, J O Fossum, G Helgesen and M W Haakestad, Physica B: Condens. Mat.352, 247 (2004) 
23 I Dozov, E Paineau, P Davidson, K Antonova, C Baravian, I Bihannic and L J Michot, J. Phys. Chem. B 115, 7751–7765 (2011) 
24Y Méheust, K D Knudsen andJ O Fossum,J. Appl. Cryst. 39, 661 – 670(2006) 
25H Hemmen et al., Langmuir 25, 12507–12515 (2009) 
26M Engelsberg and E N de Azevedo, J. Phys. Chem. B112, 7045–7050(2008) 
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Figure 7.2-D SAXS images of PP/clay composite in melted state (around 195 C) under DC electric field of 1 kV/mm. Very 
strong anisotropy can be seen (right) after 55 min of E-field application. The direction of the DC E-field is horizontal.  

Azimuthal plots of the first Bragg peak amplitude (q1, polymer intercalation) are shown in 

Figure 8.The degree of anisotropy grows clearly, starting immediately after the application of 

the electric field.The first collected data was taken within the first minute (black circles) of 

the X-ray exposure. The value of the nematic order parameter was calculated to be around 

S2=-0.19. The next integrated image is plotted using orange diamonds, and it can be seen that 

the full width at half maximum becomes smaller when compared to that of the first integrated 

plot. This reflects in the increase of the nematic order parameter which is around S2=-0.28. 

The further development of the degree of anisotropy is no longer evident via direct 

observation of the azimuthal plots in Figure 8, in particular comparison of data plotted using 

blue stars and green crosses.  

 

Figure 8. Azimuthal plots of the first Bragg peak amplitude (q1, polymer intercalation) for PP/Clay sample under DC electric 
field of 1 kV/mm. The degree of anisotropy grows starting immediately after the application of the electric field. 

Similar azimuthal plots (Figure 8) were obtained for Sample 2 exposed to the AC electric 

fields. These are not included here, but the calculated results for the nematic order parameters 

are presented in Figure 9 together with those obtained for Sample 1 (DC).  
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The calculated values of the nematic order parameter are shown in Figure 9. The values of 

the S2 for the sample without the E-fields applied were ascribed as zero by default. It can be 

seen that (for both sample) the degree of anisotropy develops with time and in addition it 

depends on the temperature, and more precisely, the phase of the polymer matrix (melted vs. 

crystalized). The time for the rotation of clay particles in directly proportional to the viscosity 

of the hosting medium and depends on the electric field strength that scales as 1/E2
. 
27 

For Sample 1 (DC), the highest value of the S2 is around -0.31 and it was achieved 

approximately 15 min after the application of the DC E-field (1 kV/mm), whereas the S2 is 

around -0.3 calculated for the last data collected before cooling started. The polymer 

crystallization prevents better particle orientation, and the values of the nematic order 

parameter decreased. The final value of the S2 was found to be around -0.26, for the sample 

cooled down to about 70 ºC . 

 

 

Figure 9.Development of the degree of anisotropy as function of time and the phase of the polymer matrix (melted vs. 
crystalized). A DC electric field was applied to Sample 1 (top) and an AC electric field was applied to Sample 2 (bottom). 

For Sample 2 (AC), the highest value of the S2 is around -0.3 and it was achieved 

approximately 25 min after the application of the AC E-field (1 kV/mm). The degree of 

                                                           
27 R Castberg, Z Rozynek, J O Fossum, K J Måløy, E Flekkøy, “Rotation of Clay Particles in E-fields”, manuscript in preparation 
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anisotropy increases slightly ( S2~0.005) when the strength of the electric field is increased to 

2kV/mm (filled circles). The polymer crystallization prevents better particle orientation, and 

the values of the nematic order parameter decreases. The final value of the S2 was found to be 

around -0.285, for the sample cooled down to about 70 ºC.  

 

4. Conclusions 
 

The primary objective of this research was to investigate the structural changes and time 

evolution of the alignment of the layered silicates under different E-field strengths. 

Development of the basal spacing as a function of time, temperature and E-field presence was 

measured by means of small angle X-ray scattering. The electric field was found to have 

noticeable but little effect on the clay particle structure and the basal spacing has increased by 

around 5 %. However, despite many efforts, no clay particle exfoliation was observed, and it 

seems to be more challenging than described by other authors.  

While monitoring changes of the degree of anisotropy, it was found that the polymer 

crystallization prevented better particle orientation, and the values of the nematic order 

parameter decreased when comparing to those from the sample being at melted state. 

Application of either DC or AC electric fields resulted in very similar particle alignment and 

none of them should be considered as privileged.  
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Characterisation of Paraffin/Clay Nanocomposites   
Zbigniew Rozynek1, Rene Castberg2, Jon Otto Fossum1, Alexander Mikkelsen1 

1Department of Physics, NTNU, Trondheim, Norway                                                                              
2Department of Physics, UiO, Oslo, Norway 

Abstract 
This report is concerned with the behaviour of fluorohectorite synthetic clay particles 
dispersed in paraffin-wax. Firstly, information about pure paraffin-wax have been collected by 
means of rheometry (η vs. T), and microscopy observations. Secondly, the time evolution of 
the one-to-zero/zero-to-one water layer transition in fluorohectorite clay galleries was 
measured. The third part of the work using wide angle X-ray scattering (WAXS), is related to 
electric field (E) induced alignment from clay particles as a function of the E-field, and also to 
observations of system anisotropy during melting and crystallization of clay/paraffin 
nanocomposites.  
 
Keywords: Clay, alignment, electric field, paraffin, composite 
 
 

1. Introduction 
 
Clay particles are expected to change and often also to improve many physical properties, 

i.e. mechanical strength, thermal stability, conductivity, etc. of the medium they are 

suspended in.1,2,3 Some of these properties can be enhanced if the particles are deliberately 

orientationally aligned in the hosting medium. As an example, such particle organization can 

be utilized as a molecular barrier, i.e. permeability of gas molecule in polymer/clay composite 

is significantly reduced in direction normal to clay’s platelet surfaces, whereas no change is 

expected for molecules propagating along the clay surfaces. Yano et al.,4 showed that only 2 

wt.% addition of montmorillonite clay particles into polyimide brought gas permeability 

down to a value less than half of that of polyimide alone. This result was explained by an 

increase in the tortuosity factor, 5 i.e. longer path that the diffusing molecule must travel in the 

presence of filler, since it needs to go around clay particles.6 The alignment of the clay 

                                                            
1 H J Walls, M W Riley, R R Singhal, R J Spontak, P S Fedkiw and S A Khan, Adv. Funct. Mater. 13, 710-717 (2003) 
2 S H Kim, J Eun-Ju, Y Jung, M Han and S J Park, Colloid. Surface. 313, 216-219 (2008) 
3 D Ratna, S Divekar, A B Samui, B C Chakraborty and A K Banthia, Polymer 47, 4068-4074 (2006) 
4 K Yano, A Usuki, A Okada, T Kurauchi and O Kamigaito, J. Polym. Sci. A 31, 2493–2498 (1993) 
5 L Nielsen, J. Macromolecules Sci. Chem. A1, 929 (1967) 
6 R K Bharadwaj, Macromolecules 34, 1989–1992 (2001) 



2 
 

particles can be induced by planar shearing,7 extrusion,8 gravity,9 magnetic or electric fields.10 

An electric field is often used to produce anisotropic structures in order to obtain desirable 

physical properties. When coupled to the field or field gradient, either alternate-current (AC) 

or direct-current (DC), induced dipoles will result in a rotational or translation force on the 

particles in accord with the Clausius–Mossotti relation.11 The alignment of particles can be 

monitored by means of electron or neutron diffraction12,13, and the degree of anisotropy can be 

quantified and expressed in terms of a nematic order parameter (S2) (see Section 3.3).9,12 In 

previously studied clay/silicone oil suspensions, Rozynek et al.12 showed that the values of the 

nematic order parameter did not depend on the E-field strength (within measured range of E-

field strengths, namely 350-750 V/mm). Since the viscosity of the silicone was low (100 

mPa.s) and the electric field high, the clay alignment was very rapid and therefore its 

development was difficult to monitor.  

In the present work, the average clay orientational distribution is measured in a melted 

paraffin-wax. There are few major differences between these two types of system. The 

viscosity of paraffin-wax is significantly higher, their molecules are longer and the clay 

alignment is achieved at higher temperatures, i.e. between 65 and 100 ºC. The paraffin 

molecule thermal motions cannot be neglected here, and as it shown in this report, they are 

competing with electrical forces.   

The layout of the report is as follows. Firstly, the sample preparation is explained in 

section 2. The wide angle X-ray scattering results are presented in section 3 and these include: 

time dependent one-to-zero water layer transition (section 3.1); zero-to-one water layer 

transition (section 3.2); alignment of clay particles as a function of the E-field strength 

(section 3.3), and finally the development of the system anisotropy during melting and 

crystallization (section 3.4). Conclusions and suggestions for further work are presented at the 

end in section 4.  

                                                            
7 M Okamoto, P H Nam, P Maiti, T Kotaka,T Nakayama, M Takada, M Ohshima, A Usuki, N Hasegawa and H Okamoto,  
   Nano Lett. 1, (2001) 
8 X He, J Yang, L Zhu, B Wang, G Sun, P Lv, I Y Phang and T Liu, Appl. Polym. Sci. 102, 542–549 (2006) 
9 H Hemmen, N I Ringdal, E N De Azevedo, M Engelsberg, E L Hansen, Yves Meheust, J O Fossum and K D Knudsen,  
 Langmuir 25, 12507–12515 (2009) 
10 J O Fossum, Y Méheust, K P S Parmar, K D Knudsen, K J Måløy and D M Fonseca, Europhys. Lett. 74, 438-444 (2006) 
11 Y P Huang, M J Lee, M K Yang and C W Chen, Appl. Clay Sci. 49, 163-169 (2010) 
12 Z Rozynek, K D Knudsen, J O Fossum, Y Meheust, B Wang and M Zhou, J. Phys.: Condens. Mat. 22, 324104 (2010) 
13 K D Knudsen, J O Fossum, G Helgesen and M W Haakestad, Physica B: Condens. Mat. 352, 247 (2004) 
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2. Sample preparation and characterisation 
 

Lithium fluorohectorite (Li-Fh) was purchased from Corning Inc., New York in form of a 

white powder. Li-Fh is a synthetic 2:1 smectite clay having the nominal chemical formula 

Li0.6Mg2.4Li0.6S4O10F2 per half unit cell, where Li+ is an interlayer exchangeable cation. Li-Fh 

has a surface charge of 1.2 e-/unit cell and is a polydisperse clay with platelet diameters 

ranging from a few hundred nm up to several μm.14 A single particle consists of about 80–100 

platelets (crystalline sheets)15 that stack on top of one another forming a “deck of card” 

structure. Since the thickness of such a stack is approximately 0.1 m, the resulting particle has 

a diameter-to-height ratio close to 50:1 on average. However, the single particles tend to 

agglomerate when dispersed into a non-polar medium (e.g. oils, polymeric matrices), unless 

chemically treated.16 Both a shape and a size of aggregated structures may vary, and in 

general they depend on clay type and sample preparation.17,18 The Li-Fh clay takes up water 

which results in its expendability. The swelling of layered 2:1 smectite clay particles consists 

of a change in the interlayer repetition distance between crystalline sheets (d-spacing), which 

depends on temperature and humidity, and this behaviour can be monitored by means of X-

ray diffraction.19   

 The paraffin-wax normally refers to a mixture of n-alkanes (chemical formula CnH2n+2) 

with n in range between 20 and 40 determining molecules’ characteristic length and also the 

melting temperature of paraffin matrix. The material used for composite preparation was 

obtained from Sigma-Aldrich (ASTM D 127, batch: MKBC6750). This particular type of 

paraffin wax, with its melting point around 65 ºC, was chosen due to the following reasons: 

(i) the X-ray peak positions related to the characteristic molecule dimensions should not 

overlap with clay reflections related to the interlamellar distance, i.e. space between clay 

crystalline sheets; (ii) optimal melting and crystallization temperatures providing both the 

ease of composite preparation and appropriate stiffness of the composite when in solid form at 

room temperature; (iii) relatively non-polar and non-conductive material that can be used as 

an electrorheological suspension when in the melted state. 

                                                            
14 P D Kaviratna, T J Pinnavaia and P A Schroeder, J. Phys. Chem. Solids 57, 1897 (1996). 
15 H Hemmen, L R Alme, J O Fossum and Y Meheust, Phys.Rev. E 82, 036315 (2010) 
16 B Wang, M Zhou, Z Rozynek and J O Fossum, J. Mater. Chem. 19, 1816 (2009) 
17  Z Rozynek, T Zacher, M Janek, M Čaplovičová and J O Fossum, Electric Field Induced Structuring and Rheological  
  Properties of Kaolinite and Halloysite Clays,  to be submitted  
18  Z Rozynek, B Wang, J O Fossum and K D Knudsen, E-field Induced Alignment from Organically Modified Fluorohectorite  
  Clay Particles, submitted to Eur. Phys. J. E  
19 G J Silva, J O Fossum, E DiMasi and K J Måløy, Phys.Rev. B 67, 094114 (2003) 
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diffractograms have been collected during heating and cooling in order to investigate changes 

in the clay particle’s orientational distribution in an applied E-field (Set3-Dyn). 
  

 
 

Figure 3. Paraffin/clay composite with dimensions of 30 x 6.5 x 1.5 mm3. 

The dimensions of all composites are 30 x 6.5 x 1.5 mm3 and the example of a solid cast is 

shown in Figure 3. 

3. Results 
 
 Two sample sets (Set1-Temp and Set2) were measured at our home laboratory (NTNU, 

Norway) using a NanoSTAR from Bruker AXS, setup in a wide-angle X-ray scattering 

(WAXS) configuration during the present experiments. This instrument is equipped with a 

CuKα source emitting X-rays at wavelength of 1.5418 Å; and a 2-D detector, which collects 

Bragg diffraction rings that allow investigating the orientational distribution of the clay 

platelet stacks embedded in the paraffin-wax matrix. The beamsize at the sample is about 

0.4x0.4 mm2. The sample-to-detector distance was calibrated using a silver behenate standard. 

The available scattering q-range for the setup used here, was 0.08 – 1 Å-1.  

 Investigations of the dynamic alignment of clay particles (Set3-Dyn) were performed the 

European Synchrotron Radiation Facility (ESRF) in Grenoble, France. An X-ray beam with a 

wavelength of 0.9 Å and a 0.3x0.3 mm2 beam size at the sample was used. The beamline 

BM01A is equipped with a two-dimensional MAR345 image plate detector with diameter of 

345 mm. The available scattering q-range was 0.03 – 1.6 Å. The custom-made sample cell 

from NTNU (see supporting Figure S2) enabled precise heating and cooling in temperature 

range between 20 – 100 °C.  

3.1. One-to-zero water layer transition 
 

 Water can intercalate in between each platelet causing the clay to swell. For Li-Fh the 

intercalation process, which is temperature and relative humidity dependent6, yields four 
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stable hydration states. 25 The structures, referred to as having 0, 1, 1.5 or 2 intercalated water 

layers, are quite well ordered along the stacking direction. The unit cell along the stacking 

direction is given by the distance between the stacked platelets, and is around 1.0, 1.2, 1.38 

and 1.5 nm for the case of 0WL, 1WL, 1.5WL and 2WL, respectively. 

 The first set of samples was measured in order to investigate the time-dependent changes 

in water content intercalated between the clay’s crystalline sheets. The recorded X-ray data 

allowed monitoring the evolution of one-to-zero water layer transition.  

 Figure 4 shows radially integrated two-dimensional WAXS patterns from six samples 

prepared at different times, namely 0, 2, 3, 5, 7 and 10 h of stirring at elevated temperature 

around 120-130 °C. Initially, the clay particles (kept in room temperature and humidity, in 

form of powder) were in the pure 1WL hydration state (first measurement - blue dotted 

curve).  The corresponding 100 Bragg peak was located at 1.21 nm. After some time (2 h) the 

intensity of the peak related to 1WL state has decreased and the new broad and not yet clear 

peak appeared at distance close to corresponding 0WL hydration state. Those two peaks are 

asymmetric in respect to their intensities and widths, and both of them are shifted from their 

initial d100
1WL=1.21 nm and final d100

0WL =1.03 nm positions towards lower and higher values 

(d100
1WL =1.19 nm and d100

0WL =1.07 nm), respectively. As time passes, the intensity of the 

peak related to 0WL state increases and becomes sharper. After 5 h a large number of clay 

particles in the scattering volume contain a significantly higher proportion of 0WL spacings 

over those from 1WL. It took nearly 10 h for the clay particles to reach nearly pure 0WL 

hydration final state (red curve with triangles). A minor population of clay particles 

possessing the intercalated water still exists, but is hardly detectable by the instrument used. 
 

 
 

Figure 4. Time evolution of the 1-to-0 water layer transition (S1-Temp). 

                                                            
25  R P Tenorio, M Engelsberg, J O Fossum and G J da Silva, Langmuir 26, 9703 (2010) 
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 “Traditionally” the interlayer hydration complexes occurring in smectite clays are 

considered as pure water layers states, i.e.: 0WL, 1WL, (1.5WL) and 2WL for the case of 

fluorohectorite clays.26,27  The transitions between those states are “traditionally” considered 

to be rather sharp,28 unlike the present case. However, recently Hemmen et al.2 have 

thoroughly mapped systematic changes in the d-spacing values (before a discrete transition 

occurs) as a function of relative humidity (see reprinted Figure 5). Hemmen et.al.2 

investigated the 1-to-2 WL transition, whereas in the present case the 1-to-0 WL transition 

was monitored. The maximum values of the smooth changes in the d-spacing, respect to both 

the initial and the final state (1WL→0WL), are on the order of approximately 0.3 Å for 

deviation from 1WL and 0.5 Å for deviation from 0WL. These values are similar to what 

Hemmen et al. 2 reported.  

 
Figure 5. The d-spacing as a function or relative humidity (reprinted with permission from Hemmen et al. [2]). 

 

3.2. Zero-to-one water layer transition and paraffin intercalation 
 

 The same samples (kept in a solid form) were investigated 6 months later in order to 

monitor the water content. The time it takes for 2:1 clays to become hydrated depends on 

relative humidity, temperature and size and charge of the exchangeable cation in the interlayer 

space. For powder samples this time evolution is in order of magnitude of hours.29,30,31,32 

However, as it could be expected, the time needed for whole clay population (being kept 

inside the paraffin-wax) to absorb 1WL is considerably longer. The effective RH around 
                                                            
26  G J da Silva, J O Fossum, E DiMasi, K J Måløy and S B Lutnæs, Phys.Rev. E 66, 011303 (2002) 
27  E N de Azevedo, M Engelsberg, J O Fossum and R E de Souza, Langmuir 23, 5100 (2007) 
28  Y Meheust, B Sandnes, G Løvoll, K J Måløy, J O Fossum, G J da Silva, M S P Mundim, R Droppa and D M Fonseca, Clay  
 Science 12, 66 (2006) 
29 E DiMasi, J O Fossum and G J da Silva, Proceedings of the 12th International Clay Conference,  Argentina (2003) 
 “Synchrotron X-ray Study of Hydration Dynamics in the Synthetic Swelling Clay Na-Fluorohectorite” 
30 N Wada, D R Hines and S P Ahrenkiel, Phys. Rev. B 41, 12895 (1990) 
31 R W Mooney, A G Keenan and L A Wood, J. Am. Chem. Sot. 74, 1371 (1952) 
32  G Løvoll, B Sandnes, Y Méheust, K J Måløy, J O Fossum, G J da Silva, M S P Mundim, R Droppa Jr. and D M Fonseca 
 Physica B: Condensed Matter 370, 90 (2005) 
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4. Conclusions 
 

The primary objective of this research was to investigate the electric field induced 

alignment of fluorohectorite clay particles in oligomeric matrix. The degree of anisotropy 

dependence on the E-field strength was quantified and presented as the nematic order 

parameter S2. It is suggested that thermal fluctuations play important role, as the mechanism 

preventing good particle organisation . It was found that at low E-fields (below 75 V/mm) the 

clay alignment is less than half of its maximum possible value. Therefor strong electric fields 

are required to dominate the thermal effects and achieve a successful alignment.  

The development of the system anisotropy was observed during melting and crystallization 

of samples. Interestingly, it was found that, in average, the final clay particle orientation (i.e. 

after heating, aligning for long time in E-field, and solidifying) was not of the highest order. It 

is believed that particles lose their most optimal arrangement as a cost of chaining. 

In addition, the dehydration of clay particles as a function of time was studied. It took 

nearly 10 h for the clay particles to reach nearly pure 0WL hydration final state, when sample 

in melted state. However, the zero-to-one water layer transition for clay particles being 

embedded in crystalized paraffin was very slow. This is due to very low water penetration 

through the oligomer matrix, and even after 6 months of exposure to air with 55 % of RH 

there is a population of clay particles possessing no or very little intercalated water.  
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Abstract 
 
Electric-field (E) induced structuring from two types of clay particles belonging to the kaolin group of 
minerals, namely kaolinite and halloysite, were studied in relation to the electrorheological response of 
silicone oil and paraffin dispersions of both clays. Firstly, the structural and morphological properties 
of both types of clays were probed in detail by means of XRD and FTIR techniques. The second part 
of the work was related to the E-field induced structuring from both types of clay particles, and this 
was investigated by means of WAXS with a support of SEM, TEM and optical microscopy 
techniques. Finally, the electrorheological response of the samples was measured. Well-structured 
kaolinite particle dispersions were found to have an improved response relative to dispersions of the 
less-structured halloysite particles. Results of electrical current measurements indicated that the 
improved current response of halloysite vs. kaolinite arises from involvement of small amount of 
surface adsorbed water molecules as the applied potentials are far above the water oxidation/reduction 
electrode over-potentials.  
 
 
Keywords: kaolinite, halloysite, clay minerals, WAXS, XRD, FTIR, TEM, SEM, TGA, rheology, 

electrical current 
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1. Introduction 
 
 Kaolin is one of the most important industrial mineral ores in world markets used in paper 

coating and filling, ceramics, paint, plastics, textiles, gaskets, adhesives, sealants, caulks, 

fertilizers, rubber, ink, fiberglass, cracking catalysts and many other areas.1 Easily accessible 

clay ore has always played an important role in human life.2,3 Similarly, the traditional 

utilisation fields of halloysite include ceramic industry, cosmetics and catalysis. In addition, 

each of these minerals are used as an industrial filler.4,5 The specific surface area of halloysite 

particles is very high (typically between 50-80 m2/g)6,7 compared to that of kaolinite 

(typically between 3-7)8,9, which makes halloysite potentially suitable for the accommodation 

of a range of guests molecules for new applications, for example small pharmaceutical 

molecules, or for e.g. immobilization of large-sized enzymes such as serum albumin and 

conalbumin.  

 Halloysite nanotubes could also be combined with a polymer matrix to form low-density 

nanocomposites, replacing larger quantities of macro- or microcounterparts such as glass or 

carbon fibers. Halloysite tubes can also be used as nanoreactors to host reactants for 

biomimetic synthesis.10 The halloysite microtubules can act as a time-release capsule, 

dissolving over time, and can be filled with different functional additives such as 

pharmaceuticals, herbicides, pest repellents, or halloysite nanotubes can be coated with 

metallic and other substances to achieve a wide variety of electrical, chemical and physical 

properties, ideal for use in electronic fabrication and other high-tech ceramic composite 

applications.11 

 Both kaolinite and halloysite belong to the kaolinite group of minerals having essentially 

similar chemical composition with the nominal formula Al2Si2O5(OH)4 per half unit cell, but 

have important structural layer stacking differences. Kaolinite is a 1:1 naturally occurring clay 

                                                 
 
1  Murray H. H. (1991) Appl. Clay Sci., 5, 379-395. 
2   Konta J. (1995) Appl. Clay Sci., 10, 275-335. 
3   Beneke K. (1995) Zur Geschichte der Grenzflächenerscheinungen – mit ausgesuchten Beispielen – Beiträge zur  

Geschichte der Kolloidwissenschaften IV. Mitteilungen der Kolloid-Gesellschaft, Verlag Reinhard Knof, Kiel: p81 (in 
German). 

4  Jasmund K. and Lagaly G. (1993) Tonminerale und Tone. Struktur, Eigenschaften, Anwendung und Einsatz in Industrie  
 und Umwelt. Stenkopff, Darmstadt: 490p (in German). 
5  Harvey C.C. and Murray H.H. (1997) Appl. Clay Sci., 11, 285-310. 
6  Zheng-Hong H., Aiping W., Feiyu K. and Xiuyun C. (2010) Mater. Lett., 64 2444-2446 
7  Mellouk S., Belhakem A., Marouf-Khelifa K., Schott J. and Khelifa A. (2011) J. Colloid. Interf. Sci., 360 716-724 
8  Zhang X., Lin S., Chen Z., Megharaj M. and Naidu R., (2011) Water Res., 45 3481-3488 
9  Li W., Lu K. and Walz J. Y. .(2011) J. Am. Ceram. Soc., 94 1256-1264 
10  Yuan P., Southon P.D., Liu Z., Green M.E., Hook M.J., Antill S.J. and Kepert C.J. (2008) J. Phys. Chem., 112, 15742-51.  
11  Joussein E., Petit S., Churchman J., Theng B., Righi D. and Delvaux B. (2005) Clay Miner., 40, 383-426. 



 
 

3 

mineral with a layer structure consisting of siloxane and gibbsite-like sheets. The siloxane 

sheet is composed of SiO4 tetrahedra linked in a hexagonal array. The base of the tetrahedral 

sheet is approximately coplanar and the apical oxygens are linked to a second sheet 

containing the octahedra – the gibbsite type sheet – forming basic structural layers. The OH 

groups of the gibbsite sheet interact via hydrogen bonds to the siloxane surface of the 

neighbouring layer. Natural kaolinites have various degree of structural disorder or 

“crystallinity”, which is often related to the conditions of genesis of the particular 

mineral.12,13,14 Therefore, kaolinites are classified as either low defect or high defect kaolinites 

depending on their varying degrees of order in the crystal structure.15 The structural disorder 

or “crystallinity” of kaolinite was in the past proposed to be quantified by the empirical 

Hinckley index, useful for well-ordered kaolinites.16 Poorly ordered kaolinites were better 

characterized by the empirical crystallinity indices according to Hughes & Brown.17   

 Halloysite differs intrinsically from the kaolinite in its layer stacking sequence. It can 

intercalate a monolayer of water molecules between the aluminosilicate layers and therefore 

the existence of two different mineral species of halloysite have been reported, namely the 

anhydrous 7 Å form and its hydrated 10 Å form, marked also as halloysite (7Å) and halloysite 

(10Å), respectively. The stoichiometry of halloysite (10Å) follows approximately the formula 

Al2Si2O5(OH)4·2H2O per half unit cell. This hydrated form converts easily into the dehydrated 

form at atmospheric pressure, when dried at temperatures above 60 °C, or in vacuum at room 

temperature. The anhydrous form with a basal spacing near 7.2 Å is metastable, and can 

recover its interlayer water in a wet environment. Particles of halloysite consist of tubes, rolls 

and cylinders, as well as irregular or spheroidal particles. Halloysite presents a highly 

disordered structure, with random dislocations and shifts in both the a and b crystallographic 

directions.18 The reason for the curvature of the layers is usually attributed to the lateral misfit 

between the octahedral and tetrahedral sheets in the structure of halloysite.19 It was postulated 

that stacking disorder plays an important role for hydration of kaolinite and formation of 

halloysite.20,21 Because the 1:1 layers in hydrated halloysite are separated from each other by a 

                                                 
 
12  Brindley G. W., Kao C. C, Harrison J. L., Lipsicas M. and Raythatha R. (1986) Clay Clay Miner. 34, 239-249. 
13  Giese R. F. (1988) In: Bailey S.W. (Ed.) Rev. in Mineral., 19, Mineral. Soc. Amer., Washigton, D.C., 29-66. 
14  Madejová J., Kraus I., Tunega D. and Šamajová E. (1997) Geologica Carpathica- Series Clays, 6, 1, Bratislava, 3-10. 
15  Brindley G. W. and Robinson K. (1947) Brit. Ceram. Soc. Trans., 46, 49-62. 
16  Hinckley D. N. (1963) Clay Clay Miner., 11, 229-235. 
17  Hughes J. C. and Brown G. (1979) J. Soil Sci., 30, 557-563. 
18  Brindley, G. W. and Robinson, K. (1946) Trans. Faraday Soc., 42B, 198-205. 
19  Bates T., Hildebrand F. A. and Swineford A. (1950) Amer. Miner., 35, 463-484. 
20  Costanzo P. M., Giese R. F. and Clemency C. V. (1984) Clay Clay Miner., 32, 29-35.  
21  Costanzo P. M., Giese R. F. and Lipsicas M. (1984) Clay Clay Miner., 32, 419-428. 
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layer of water molecules, and due to higher structural disorder, halloysite have usually a 

larger cation exchange capacity and surface area than kaolinite.22,23,24,25 

 With respect to the chemical identity but differing morphology of kaolinite and halloysite 

particles, the effect of an electric field on electrorheological properties of silicone oil 

dispersions of both clays have been tested. Chassagne at al.26 presented an extended study of 

the electrophoretic mobility of kaolinite suspensions for different types of salt, various pH and 

ionic strengths. They presented a new analytical theory for electrophoresis, including extra 

conductance, hence indicating that the electrokinetic response of kaolinite cannot be fitted 

without the inclusion of a Stern layer conductance. Additionally, Rowlands and Wyndham27 

investigated the dynamic mobility and dielectric response of kaolinite particles. They 

concluded that information about the particle size, electrokinetic charge or zeta potential can 

be obtained from the dynamic mobility spectrum. However, to our knowledge, there are no 

data published yet for halloysite particles regarding electrokinetic response in non-polar 

media. Therefore, the aim of the present study was focused on the comparison of electro-

rheological response of natural kaolinite and halloysite particles having different morphology 

and particle size distributions, but almost identical chemical composition.  

 

2. Samples and experimental techniques 
 

2.1. Sample preparation  

 A German kaolin from a primary deposit in Bayern-Oberpfalz (referred as KBO) was used 

in this study. The purified sample received from Hirschau, Germany, was washed with 

distilled water (conductivity ~1.0 μS), dried at 65 °C, and crushed in an agate mortar before 

the characterization measurements. The halloysite sample was from a Slovak primary deposit 

located at Michalovce - Biela Hora (referred as HBH). Soluble phases of iron 

oxide/hydroxides were removed according to the procedure of Tributh and Lagaly.28,29 This 

procedure includes removal of carbonates, iron oxohydroxides, organic matter such as humic 

material and size fractionation. The fine fraction of halloysite particles was prepared by a 

sedimentation method using Stoke´s equation to calculate the time required to separate 

                                                 
 
22  Gardolinski J. E., Filho H.P.M. and Wypych F. (2003) Quim. Nova, 26, 25–30. 
23  Costanzo P. M. and Giese J. R. F. (1985), Clay Clay Miner., 33, 415–423. 
24  Cheng H., Frost R. L., Yang J., Liu Q. and He J. (2010) Thermochim Acta, 511, 124–128. 
25  Nicolini K.P., Fukamachi C.R.B., Wypych F., Mangrich A.S. (2009) J.Colloid Interf. Sci., 338, 474-479. 
26  Chassagne C., Mietta F. and Winterwerp J. C. (2009) J. Colloid Interf. Sci., 336, 352-359. 
27  Rowlands W. N. and Wyndham O´Brien R. (1995) J. Colloid Interf. Sci., 175, 190 – 200. 
28  Tributh H. and Lagaly G. (1986) GIT Fachz., Lab. 30, 524 (in German). 
29  Tributh H. and Lagaly G. (1986) GIT Fachz. Lab. 30, 771 (in German). 
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particles having <2μm equivalent diameter. Collected fine particles were centrifuged, washed 

with distilled water (conductivity ~1.0 μS), dried at 65 °C, and crushed in an agate mortar 

before performing the characterization measurements. 

 For rheological measurements dispersions of KBO and HBH in silicone oil (~5 wt.%) were 

prepared by mixing in an orbital shaker for minimum 12 h and applying 30 minutes of 

ultrasonication prior to each rheological and current measurement.  

 For wide-angle X-ray scattering (WAXS) experiments, it was decided to prepare KBO/ 

paraffin, and HBH/paraffin composites, since (from our previous observations) the position of 

a diffuse Bragg diffraction peak from silicone oil overlaps with the 001 Bragg reflection from 

both clays. The composites were prepared as following: 1.4 g of each clay powder was slowly 

added into 7g of already pre-melted paraffin-wax (120-130 °C). After vigorous stirring, the 

suspensions were left undisturbed for 5 minutes to let the largest particle aggregates sediment 

and then the top portion (80 %) was poured into a new 10 ml glass vial. The dispersions were 

kept at ~125 °C under stirring. After 2 h four samples were prepared and these included: 

KBO/paraffin and HBH/paraffin composites cast with and without E-field present. After the 

samples solidified, having a form of stripes (~15 x 6.5 x 1.5 mm), the WAXS measurements 

were performed.   

 Optical microscopy measurements were done using low concentration (below 0.5 wt.%) 

clay dispersions (for observation clarity). All high quality scanning electron microscopy 

(SEM) images were taken from carbon-coated clay particles. 
 

2.2. Experimental techniques 

2.2.1. XRD 

 X-ray diffraction patterns from kaolinite and halloysite powders were obtained using a 

Stoe Stadi-P transmission X-ray powder diffractometer equipped with a curved Ge(111) 

primary beam monochromator and Co radiation (CoKα1 λ=0.178896 nm). The patterns were 

scanned in the range of 3-60° in 2θ with a step size of 0.02° and a counting time of 1.5 s/step.  
 

2.2.2. FTIR 

 Infrared spectra of the KBO and HBH samples were obtained using a Nicolet Magna 750 

Fourier transform IR spectrometer, equipped with a KBr beam splitter, and a DTGS KBr 

detector for MIR measurements. The KBr pressed disc technique (0.2 mg of sample and 200 

mg of KBr) was used. The discs were heated in a furnace overnight at 130 °C to minimize the 

water adsorbed on KBr and the clay mineral sample. Spectra were recorded over the range 
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4000-400 cm-1, accumulating 128 spectral scans, with a resolution of 4 cm-1 in the absorbance 

mode.  
 

2.2.3. TEM/SEM 

 Transmission electron microscopy (TEM) images of KBO and HBH were recorded on a 

JEOL JEM-2000FX transmission electron microscope with an accelerating voltage of 160 kV. 

For this characterization the samples were prepared as follows: suspensions of samples KBO 

and HBH with ethanol was kept under ultrasound for 5 minutes. Then a drop of the sample 

was spilled on a copper reticle coated colloidal film with a layer of carbon and finally the 

sample was dried at room temperature.  

 Scanning electron micrographs were acquired using a field emission scanning electron 

microscope (Zeiss Ultra, 55 Limited Edition, accelerated voltage 10-15kV). For the SEM 

samples, a suspension of a small amount (<0.01 wt.%) of sample was dispersed in de-ionized 

water and ultrasonicated for 1 h, and then pipetted onto a SEM stub. Before images were 

collected, all samples were carbon-coated.  
 

2.2.4. WAXS 

 The WAXS experiment was carried out at the European Synchrotron Radiation Facility 

(ESRF) in Grenoble, France. An x-ray beam with a wavelength of 0.9 Å and a 0.5 × 0.5 mm2 

beam size at the sample was used. The Swiss-Norwegian beamline (SNBL) BM01A is 

equipped with a two-dimensional MAR345 image plate detector with a diameter of 345 mm. 

The sample to detector distance was set to 350 mm, enabling the detection of scattering in a q-

range of approximately 0.65 – 17 nm-1, which corresponds to the real space d-range of 0.37 – 

10 nm. 
 

2.2.5. Rheometry and current measurements 

 The rheological properties of the clay suspensions were measured under DC electric fields 

using a Physica MCR300 Rotational Rheometer equipped with a coaxial cylinder (Physica 

ERD CC/27). All the rheological measurements were performed at constant temperature of 

23°C. These included controlled shear rate tests for measuring shear stress as a function of 

shear rate and bifurcation measurements. In the former experiment the so-called flow curves 

were collected in the shear rate range between 0.1 and 1000 s-1 and fitted to Herschel–Bulkley 

model in order to obtain the static yield stresses for samples at different E-field strengths, 

namely 250, 500, 750, 1000, 1500 and 2000 V/mm, respectively.  The bifurcation tests were 

performed as a complementary method to verify the values of the yield stresses. In this 

method samples were forced to flow under a constant stress, and then let to evolve in the 
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presence of an E-field (see details in the Result section 3.6). In addition, current 

measurements were performed (in the same rheological cell) using an Agilent 34401A 

multimeter.    
 

2.2.6. TGA/DTG 

 Thermal gravimetric analysis (TGA) was performed on a TGA/SDTA851e instrument 

(Mettler Toledo As.) with a heating rate of 2 ºC/min up to 800°C under static air conditions. 

About 20 mg of sample was supplied to the Alumina crucible. 
 

3. Results and discussion 
 

 Since both types of clays are natural minerals, it is very important to begin the 

experimental part with sample characterizations considering structural and morphological 

properties, and perform cross-check measurements to verify the successful sample 

purification. Therefore the various complementary techniques described above were used: X-

ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), electron 

microscopy micrographs (TEM/SEM) and thermogravimetry (TGA/DTG).  After the initial 

characterization, the electric field induced structuring from clay particles was investigated by 

means of synchrotron X-ray scattering, followed by the measurements of electrorheological 

and electrical properties.  
 

3.1. XRD analysis 

 The structural and morphological properties of layered compounds such as kaolinite and 

halloysite clay minerals can be non-directly deduced from their diffraction patterns, because 

they reveal the variety of order-disorder structural effects. Measured X-ray powder diffraction 

patterns of both samples are shown in Figure 1, where the transition from the sharp diffraction 

peaks in KBO to the mainly diffuse and “tailed” reflections in the pattern of HBH are shown, 

indicating decreased layer stacking order of the HBH sample. The d-spacing of the first basal 

reflections of KBO is 0.71 nm and of HBH 0.74 nm, hence anhydrous forms of halloysite was 

practically used in the experiments (see TGA/DTG analysis in section 3.7). The group of 

reflections from (020) to (002) particularly reflects the change of crystallinity. In this region 

the clearly resolved doublet ( 111 ) and ( 111 ) of the KBO sample yields a single broadened 

reflection for the HBH sample. This represents evidence for the decrease in crystallinity.30 

                                                 
 
30 Grim R. E. (1968) Clay Mineralogy, 2nd Ed., McGraw-Hill Book Company, New York, USA. 
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Figure 1. The XRD patterns of KBO and HBH samples with indicated reflections. 

 

3.2. IR spectroscopy. 

 Infrared spectroscopy (FTIR) was used as a complementary method to X-ray diffraction to 

investigate possible mineral admixtures in the samples. IR spectra serve as a fingerprint 

pattern for mineral identification and gives unique information about the mineral structure. 

Well-ordered KBO samples revealed four clearly-resolved absorption bands in the OH 

stretching region 3693-3620 cm-1 (Figure 2). Inner hydroxyl groups, located in ditrigonal 

cavities of kaolinite, give the stretching absorption band at 3620 cm
-1

. The other OH groups 

located at the external surface of the octahedral sheets interact via weak hydrogen bonds with 

the basal oxygens of the tetrahedral sheet. A strong band at 3696 cm
-1

 is related to the in-

phase symmetric stretching vibration, two weak absorptions at 3668 and 3652 cm
-1

 are 

assigned to out-of-plane stretching vibrations.31,32 These four clearly resolved bands and the 

higher intensity of the band at 3652 cm-1 observed for KBO compared to HBH reflect also the 

higher structural order of the KBO sample. Thus, the KBO can be classified as well-ordered 

kaolinite. In contrary, the IR spectrum of HBH shows intensive absorption bands only at 3696 

and 3621 cm-1 in the OH stretching region (Figure 2). The very low intensity of OH stretching 

bands at 3671 and 3652 cm-1 reflect a poorly ordered structure typical for halloysite samples.4 

(Madejová et al., 1997). 

                                                 
 
31  Farmer V. C. (2000) Spectrochim. Acta A, 56 927. 
32  Madejová J. (2003) Vib. Spectrosc., 31, 1–10. 
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 The Si–O stretching and bending as well as OH bending absorption bands are in the region  

1300–400 cm
-1

 (Figure 2). Differences in layer stacking arrangement of the basic layers are 

reflected in the positions and shape of the bands. Clear differences between KBO and HBH 

can be seen in the 1300-400 cm-1 region. The Si–O stretching vibrations of KBO show well-

resolved bands at 1114, 1031 and 1007 cm
-1

. Broadened bands appear for Si-O stretching 

bands of HBH at 1101, 1034 and 1011 cm
-1

. The AlAlOH bending bands at 937 and 912 cm-1 

for KBO are detected as a shoulder near 939 cm-1  and as a distinct band at 913 cm-1 for HBH. 

The absorption bands corresponding to Si-O-Al and Si-O-Si deformation vibrations are 

present at about 538 and 469 cm-1, respectively. The band at 430 cm-1 was observed in both 

KBO and HBH spectra and belongs to Si-O deformation vibrations.33 The insert in Figure 2 

(region 3700-3600 cm-1) shows also stretching bands typical for kaolinite in the HBH sample 

at 3654 and 3649 cm-1, indicating that kaolinite-like particles are present in the halloysite. 

However, no other mineral admixtures or impurities were detected by the FTIR technique. 
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Figure 2. FTIR spectra of kaolinite (KBO) and halloysite (HBH) samples. 

 

                                                 
 
33  Madejová J., Keckes J., Pálková H. and Komadel P. (2002) Clay Miner., 37, 377–388. 
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3.3. TEM/SEM 

 The basic difficulty in classifying kaolinites and halloysites according to a scheme of 

progressive layer disordering is in the various kinds and degrees of disorder which can be 

present in the structure. Crystal size and shape are important variables because layers can be 

planar, curved, rolled, cylindrical or quasi-spherical.34 TEM images of the KBO sample 

(Figure 3) show the well-crystallized mineral with platy particles of hexagonal and/or 

pseudohexagonal symmetry and a lateral size ranging from 0.2 to 4.0 μm. The aspect ratio 

(lateral length/height) of the KBO particles was estimated to be about 5.35 TEM images of the 

HBH sample (Figure 4) show that the morphology of our halloysite particles is significantly 

different from that of our kaolinite samples. Halloysite show irregular particles with flake 

shape and a high portion of tubular particles. The outer diameters of rolled halloysite tubes are 

roughly in the range 0.05 - 0.10 μm.  

 For comparison, SEM images show the general morphology of aggregated particles (right 

panel of Figure 3 and Figure 4). The SEM image of KBO shows a typical aggregated 

structure made out of a few single particles with their edges pointing out of the image (other 

particles in the image lay flat on the SEM stub). The single particle is defined here as a “deck 

of cards” structure consisting of tens of crystalline basic layers stacked on top of one another. 

The HBH particles are much smaller than KBO and hence tend to form aggregates in a not 

clearly defined fashion. Most of the SEM micrographs of HBH showed randomly oriented 

aggregates formed from many particles of different shapes as demonstrated also on the TEM 

images.   

                                                 
 
34  Brindley G.W. (1980) Order-disorder in clay mineral structures: in Crystal Structures of Clay Minerals and their X-ray  
 Identification (G.W. Brindley and G. Brown, Ed.), 5, Mineralogical Soc., London 
35  Janek M, Emmerich K, Heissler S, Nüesch R (2007) Chem. Mater., 19, 684-693. 
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Figure 3. The KBO clay particles’ shape and size distribution can be determined from TEM (A,B) micrographs.                 
The SEM (C) image show the KBO typical aggregated structure made out of few single particles. 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4. The HBH clay particles’ shape and size distribution can be determined from TEM (A,B) micrographs.                   
The SEM (C) image show the HBH undefined aggregated structure made out many small tubular single particles. 
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3.4. WAXS 

 Paraffin-wax (hydrocarbons with a general chemical formula CnH2n+2) is an electrically 

non-conductive and non-polar material with a low dielectric constant. It is used here as an 

alternative material to silicone oil being used as a carrier for electrorheological (ER) 

suspensions (see Section 3.6). Since the position of the diffuse Bragg diffraction peak from 

the silicone oil overlaps with the 001 Bragg reflection from both clays, its use is limited. The 

melting temperatures of paraffin-waxes are relatively low, which make them easy to handle 

during the preparation of composites. In general, the solid-to-liquid transition temperature Ts-l 

depends on n, which also determines the characteristic length of the paraffin chain L when in 

crystalline form (see Figure 5A - the strong inner ring near to the beamstop). Hence, it is 

important to choose an appropriate paraffin type, because the characteristic Bragg peaks from 

clay can overlap with those from paraffin. 

                     
Figure 5. WAXS 2-D images. (A) pure paraffin-wax (B) HBH powder (C) KBO powder 

 

 Figure 5B and Figure 5C show 2-D WAXS diffractograms from HBH and KBO powders 

respectively. The distance qd /2��  between basic clay layers was found to be 0.734 nm and 

0.718 nm for HBH and KBO, respectively. These basal spacing are in very good agreement 

with those identified in the XRD experiment (see section 3.1). As expected, different 

behaviour was observed for the KBO and HBH paraffin-wax composites prepared under 

applied strong electric field equal to 500 V/mm. The isotropic Bragg 001 ring shown in 

Figure 6A, points to a random orientation of KBO particles distributed in the paraffin wax 

without E-field. However, a strong anisotropy was clearly seen in Figure 6B with the E-field 

applied during preparation of the samples. The electric field direction was horizontal and 

normal to the direction of the X-ray beam. This indicates that kaolinite particles were 

preferentially arranged with their basal planes being parallel to the electric field direction. The 

quantification of the degree of anisotropy is normally achieved by fitting the azimuthal plots 

(Figure 7) to a Maier-Saupe function. The fitting parameter is related to the full width at half 
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maximum (smaller value means higher degree of anisotropy) and can be expressed using the 

standard nematic order parameter.36,37,38,39 The initial KBO composite made without E-field 

present shows a slightly anisotropic arrangement (S2= -0.05). This might be caused by the 

sample preparation procedure, since particles can align to some extent while the solution was 

being poured into the mould / sample cell. However, the degree of anisotropy significantly 

increased (7 times) after the application of electric field (S2= -0.35).   

 
Figure 6. WAXS 2-D images of KBO/paraffin composite without (A) and with (B) E-field of ~ 500 V/mm. 

 

 
Figure 7. Azimuthal plots with order parameter (A) KBO/paraffin composite (B) KBO/paraffin composite in E-field of ~ 500 

V/mm 
 

 In contrary to the behaviour of kaolinite particles, the situation is very much different for 

HBH paraffin-wax composites. The WAXS results shown in Figure 8 indicate no particle 

alignment at all. Both the initial HBH composite and the E-field treated sample present an 

isotropic arrangement of clay particles and the fitted order parameter is the same for both 

samples (S2=-0.003, i.e. essentially zero). 

                                                 
 
36  Méheust Y., Knudsen K.D. and Fossum J.O. (2006) J. Appl. Cryst., 39, 661 – 670.  
37  Hemmen H, Ringdal N. I., de Azevedo E. N, Engelsberg M., Hansen E. L., Meheust Y., Fossum J. O. and Knudsen K. D. 
  (2009) Langmuir, 25, 12507–12515. 
38  Engelsberg M. and de Azevedo E. N.  (2008) J. Phys. Chem. B, 112, 7045–7050. 
39 Dozov I., Paineau E., Davidson P., Antonova K., Baravian C., Bihannic I. and Michot L. J. (2011) J. Phys. Chem. B, 115,  
 7751–7765. 
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Figure 8. WAXS 2-D images of HBH/paraffin composite without (A) and with (B) E-field of ~ 500 V/mm. 

 

 
Figure 9. Azimuthal plots with order parameter (A) HBH/paraffin composite (B) HBH/paraffin composite in E-field of ~ 500 

V/mm 
  

 There are three possible explanations for not observing any anisotropy from halloysite 

particles under the influence of E-field and these are: (i) particles are of different and irregular 

shapes, i.e. kinked tubes; (ii) large agglomerations are made from many particles having 

random orientations; and finally (iii) halloysite particles in their present form become non-ER 

species, i.e. they do not re-orient, even though they become polarized under an electric field 

(for introduction of the non-ER concept etc., see a review on ER suspensions by T. Hao40). 

The two former reasons are believed to apply here, and the justification is provided by 

electron microscopy images shown in Figure 3 and Figure 4. The particles may orient along 

the electric field direction, but due to their very irregular shapes, no basal plane parallel 

orientation (as in the case of kaolinite particles) can be achieved. Since it is not possible to 

observe structuring from halloysite particles being embedded into the paraffin-wax, optical 

observations of clay particles suspended in silicone oil were performed.  

 

                                                 
 
40  Hao T, (2002) Adv. Coll. Interf. Sci., 35, 1-35. 
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3.5. Optical microscopy observations 

 The optical microscopy observations aided to exclude the hypothesis that halloysite 

particles make a non-ER fluid. Figure 10 shows 2 images of both the KBO and the HBH 

particles suspended in silicone. Randomly dispersed particles can be seen on the left panel of 

Figure 10, whereas two images of the particles experiencing an E-field of 500 V/mm are 

presented on the right side. The formation of chain-like structures aligning parallel to the field 

is clearly observed. In the case of kaolinite ER suspension, many thin chains are visible (~10-

50 μm). The particles in the halloysite ER fluid retain larger agglomerates of particles 

reaching nearly 200 μm. The optical observations indicate that the electrorheological 

properties may differ for each clay suspension, and these are presented in the next section 

together with the electrical current measurements.   

   
 

Figure 10. Optical microscopy images of KBO/silicone oil (top) and HBH/silicone oil (bottom) without (left) and with        
E-field present (right). The gap between electrodes is 1 mm. 

 
3.6. Rheology and current response measurements 

The flow curves were measured using the controlled shear rate mode for both clay/silicone 

oil suspensions.  In the absence of an E-field, the ER fluids behave as a Newtonian fluid, i.e. 

their viscosities η stay constant independently of values of the shear rate γ  (note: two 

grounding brushes connected to the measuring bob induce an artificial yield stress τ of ~0.7 

Pa). When a DC electric field of strengths 250, 500, 750, 1000 and 2000 V/mm were applied, 

the behaviour of both ER fluids changed and resembled that of a Bingham fluid, i.e. a 

viscoelastic material that behaves as a rigid body at low stresses but flows as a viscous fluid at 

high stresses. This behaviour can be described by the Bingham fluid model or its expanded 

form (includes the power-law index) described by the Herschel-Bulkley rheological model: 

τ=τy+b  γ p, where τy, b, p are constants named the yield stress, the consistency index, and the 
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power-law index, respectively. The values of the static yield stress are presented in Table 1. It 

can be seen that the ER response from the KBO sample is significantly better and the yield 

stresses are nearly 3 times higher than those observed for the HBH sample.    

    
 

Figure 11. Log-log plot of the flow curves of KBO (left) and HBH (right) ER suspensions with particle concentration             
of Φ~5 wt.%. Experimental data are represented by symbols and the corresponding H-B fits are drawn using solid lines.  

(Measurements taken at 750 are not shown for sake of clarity, but the results are included in Table 1) 
 
So-called bifurcation tests41,42,43,44 were performed as a cross-check on the yield stresses 

determined from the controlled shear rate measurements. Two examples of such tests are 

shown in Figure 12. If a constant shear stress is applied to a sample, then a bifurcation in the 

flow curves may occur at the yield stress τy, indicating that microstructure re-build up is 

dominant if the applied stress τap<τy . At high values of the applied stress on the other hand, 

particle re-structuring fails, e.g. τap>3.35 and τap>0.8 Pa for KBO and HBH, respectively in 

the example below.  

        
Figure 12. Example of bifurcation in the rheology of KBO (left) and HBH (right) suspensions in presence of E-field strength 

of 500 V/mm. Here the yield stresses are 3.3�0.1 and 0.9�0.1 Pa for KBO and HBH, respectively.  
 

                                                 
 
41 Meheust Y., Parmar K., Schjelderupsen B. and Fossum J. O. (2011) J. Rheol. 55, 809. 
42  Khaldoun A, Moller P., Fall A., Wegdam G.,  de Leeuw B., Meheust Y, Fossum J. O. and Bonn D. (2009) Phys.Rev.Lett.,  
 103, 188301. 
43 Parmar K., Meheust Y., Schjelderupsen B. and Fossum J. O. (2008) Langmuir, 24, 1814.  
44 Bonn D., Tanase S., Abou B., Tanaka H. and Meunier J. (2002) Phys. Rev. Lett., 89, 015701. 
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 Table 1 compares the yield stresses for KBO and HBH samples measured at different 

electric field strengths using both mentioned methods. As can be seen, the values obtained 

from bifurcation tests coincide very well with those estimated from Herschel-Bulkley fits 

within the frame of experimental errors.  
 

 

E-field [V/mm] 
 

250 
 

500 
 

750 
 

1000 
 

2000 
 

 

��y  [Pa]      KBO (CSR) 
 

1.7 
 

3.6 
 

5.2  
 

10.2 
 

18.5 
��y  [Pa]      KBO (bif.) 1.5  3.3  5.5  9.5 16.5  
��y  [Pa]      HBH (CSR) 0.9  1.3  1.6  1.9  6.3 
��y  [Pa]      HBH (bif.) 0.6  0.9  1.5  1.5  7.5  

 

 

Table 1. Comparison of the yield stresses for KBO and HBH suspensions measured at different E-field strengths employing 
constant shear rate (CSR) and bifurcation (bif.) methods.     

 
 The values of the yield stress for the KBO are considerably higher than those for the HBH. 

This behaviour can be connected to either the differences in dielectric properties of the 

samples or dispersion conductivity. The dielectric constant of halloysite is supposed to be in 

general slightly higher than that of kaolinite45, however, our investigations on micaceous 

clays using THz-TDS showed that despite significant variation in chemical composition of 

selected micas, the dielectric  behaviour for this group of clay minerals is rather similar with 

the same magnitude of refractive and absorption indexes (e.g. at about 1 THz)46,47 Taking into 

consideration either the polarization model or the dielectric loss model (see ref. 37 for detailed 

description of those mechanisms) one would expect the ER response from the KBO sample to 

be similar or lower. However, this is clearly not the case here. The possible validity of the 

conduction model, in which the conductivity mismatch between particle and liquid medium 

(rather than the dielectric constant mismatch) is thought to be a dominant factor for DC and 

low frequency AC excitation37, was therefore tested.  

 Figure 13 shows the results of conductivity measurements where HBH showed higher 

conductivity than KBO with increasing voltage applied. The scaling factors observed are 

different, and these are: IH�E4.1 and IK�E2.0 for halloysite and kaolinite, respectively. Since 

the magnitude of the DC electric conductivity IH is significantly higher than IK, and the 

conductivity mismatch HBH/silicone oil is also higher than that of KBO/silicone oil, the 

conductivity model37 has no direct application here. Additionally, for each electric field 

strength two data points are plotted for each sample. These are the readings taken just after the 

application of the E-field, and 30 s later. The arrows on the plot indicate the direction of 

magnitude of the changes in the electrical currents; IK is seen to decrease between the initial 
                                                 
 
45  Churchman G. J. and Carr R. M. (1975) Clay Clay Miner., 23, 382-388. 
46 Janek M., Bugár I., Lorenc D., Szöcs V., Velič D. and Chorvát D. (2009) Clay Clay Miner., 57, 416-424. 
47 Janek M., Matejdes M., Szöcs V., Bugár I., Gaál A., Velič D. and Darmo J. (2010) Philos. Mag., 90, 2399–2413. 
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measurement and the measurements taken after 30 s, whereas IH increases (Figure 13). This 

behaviour is supposed to be connected with electrochemical behaviour of the suspensions and 

consumption of electrochemical species mediating the current flow in used non-polar 

medium. We suppose that the main conducting species in silicon-oil dispersions of KBO and 

HBH are the physically adsorbed water molecules present at external surfaces of KBO and on 

external and internal surfaces of HBH. The recent application of water oxidation/reduction 

species was tested to remove organic pollutants from aqueous environment.48,49,50 In our case 

we suppose that water molecules are involved in the current conduction as used potentials are 

far above the water oxidation/reduction electrode over-potentials. Additionaly presence of 

different quantities of water was proved by TGA/DTG experiments (section 3.7).  

 It is well known from voltamperometric studies on e.g. ideally polarised electrodes, that 

current flow on the electrode after application of a certain potential results in a time dependent 

response connected to the consumption of electrochemical species in the close proximity to 

the electrode surface in electrochemical reaction (kinetic factor of diffusion rate of 

electrochemical species towards electrode surface).51 In our case of a highly non- conducting 

medium and a low concentration of conduction species from autoprotolysis of surface 

adsorbed water molecules, different magnitudes of electrical currents changes were found. 

However, this does not explain why, in the case of KBO, the current after 30 s observation 

time decreases, whereas for HBH it increases and why the response of the HBH current grows 

faster than for KBO. Another significant factor affecting the conductivity must be hence the 

generation of interparticle structures after voltage application to the measuring cell. In the 

case of KBO, highly ordered columnar structures and regular arrangement of particles can be 

seen in Figure 10. We argue that this must enable hopping of protons and hydroxyl anions on 

the kaolinite particle surface covered with water molecules towards the electrodes, and 

subsequently a fast consumption of current conducting species observable in the drop of 

current intensity observed after 30 s. On the contrary, the halloysite did not form regular 

columnar structures such as kaolinite, and additionally has more water adsorbed on external 

and internal surfaces. Hence after some columns are formed, more conducting species result 

in higher currents observation than in the case of KBO. The higher conductivity is possibly 

related to water content. It was found from TGA/DTG experiment that halloysite particles 

have roughly a double amount of water compared to kaolinite. Thus it is believed that the way 
                                                 
 
48 Mohana N., Balasubramanian N. and Basha C. A. (2007) J. Hazard. Mater. 147, 644-651. 
49 Lissens G., Pieters J., Verhaege M., Pinoy L. and Verstraete W. (2003) Electrochim. Acta 48, 1655-1663. 
50 Kraft A., Blaschke M., Kreysig D., Sandt B., Schröder F. and Rennau J. (1999) J. Appl. Electrochem. 29, 895-902. 
51 Li P. W. and Chyu M. K. (2003) J. Power Sources 124, 487-498. 
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in which these two types of clay make structures during the “chain/column” formation, as 

well as the concentration of available conducting species, are more important factors than the 

small differences between dielectric constants or material conductivity of the samples. 

 
Figure 13. Electric current measurements of KBO and HBH. 

 
 

3.7. TGA/DTG 

Thermal gravimetric analysis was conducted mainly to prove the mineral purity and water 

content in both minerals. Figure 14 shows typical TGA/DTG behaviour of both the KBO and 

the HBH samples in the temperature window 50-800 °C.  

 
Figure 14. TGA and DTG traces (50-800��C) of kaolinite (solid) and halloysite (dashed) samples. 

 
The first significant change in the mass ratio can be seen in temperature range up to 200 �C, 

and is attributed to the loss of physisorbed water molecules, i.e. located at micropores of the 

clay aggregate surfaces,52 observable for both the KBO and the HBH samples on the level of 

about 3%. However, with the temperature increase up to 400 �C, a continuous mass drop of 

about 3% is noted only for HBH. This is attributed to the loss of water molecules present on 
                                                 
 
52  Nicolini K. P., Budziak Fukamachi C. R., Wypych F. and Mangrich A. S. (2009) J. Colloid Interf. Sci., 338, 474-479. 
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the internal surfaces, hence the intercalated water molecules. As far as the XRD data revealed 

the characteristic distance for basal diffraction of HBH at 7.4 Å, this confirms the presence of 

some small amount of intercalated water molecules.53 The main mass loss corresponding to 

structural dehydroxilation of the samples occurs at ~490 °C for halloysite and at ~510 °C for 

kaolinite, which is in agreement with previously published results.43,54 The TGA/DTG 

analysis showed also that excess thermal reactions connected to any impurities present in the 

samples were not detected.  

  

4. Conclusions 
 
 Wide angle X-ray scattering was used to investigate the electric field induced structuring 

from two types of clay particles belonging to the kaolin group of minerals, namely kaolinite 

and halloysite. It was found that the overall alignment in E-field of the polarized kaolinite 

particles was significantly better compared to that of polarized halloysite particles. The 

authors believe that this is mainly a result of the different kind of aggregates each type of 

particles formed, although similar columnar final structures were made out of these 

aggregates in the presence of an external E-field. The disc-like kaolinite particles stack one 

another each other (in a coarse approximation) if immersed in a non-polar medium, and when 

an external E-field is applied such a stacked particle aligns with the E-field direction 

perpendicular to the stacking direction, which was evident in observed 2-D WAXS 

diffractograms. The halloysite samples were found to give no rise to anisotropy on the 2-D 

WAXS diffraction patterns, indicating no basal plane preferential orientation for this system. 

SEM and TEM images confirmed that the kaolinite sample is a well-crystallized mineral with 

platy particles of hexagonal symmetry, whereas the morphology of halloysite particles was 

found to be very different, consisting of irregular shape particles including flakes and tubular 

particles. Optical microscopy was used to observe the particle alignment in the presence of 

the E-field. In addition, the structural and morphological properties of both types of clays 

were probed in detail by means of XRD and FTIR techniques. The electrorheological 

response was considerably stronger for kaolinite suspensions compared to that of the 

halloysites. The validity of commonly used models describing the mechanisms of the 

electrorheological effects, namely polarization model and conduction model, was tested and it 

was found that they have no direct application here. In addition, electric currents at different 
                                                 
 
53  Moore D. M. and Reynolds R. C. Jr. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals,  
 Oxford University Press, Oxford.  
54 Horvath E., Frost R. L., Mako E., Kristof J. and Cseh T. (2003) Thermochim. Acta, 404, 227-234. 



 
 

21 

electric field strengths were measured and they scale as: IK�E4.1 and IH�E2.0 for kaolinite and 

halloysite, respectively. It is believed that the way in which these two types of clay make 

structures during the “chain/column” formation, as well as the concentration of available 

conducting species, are more important factors than the small differences between dielectric 

constants or material conductivity of the samples.  
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5. Supporting materials  
 
 

5.1. SEM 

   
 

Figure 15. Additional SEM images of KBO (left) and HBH (right) samples. 
 
 

5.2. Electric current measurements – table. 

 

 
Table 2 Comparison of DC currents for KBO and HBH suspensions measured at different E-field strengths. Recordings were 
taken immediately after the E-field was applied (left values) and 30 s later (right values). Note: KBO current values decrease 

with time, whereas HBH current values increase.      
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Abstract. The effect of magnetic field on the structure formation in an oil-based magnetic fluid with various
concentrations of magnetite particles was studied. The evaluation of the experimental data obtained from
small-angle X-ray scattering and ultrasonic attenuation indicates the formation of chain-like aggregates
composed of magnetite particles. The experimental data obtained from ultrasonic spectroscopy fit well
with the recent theoretical model by Shliomis, Mond and Morozov but only for a diluted magnetic fluid. In
this model it is assumed that a dimer is the main building block of a B-field–induced chain-like structure,
thus the estimation of the nematic order parameter does not depend on the actual length of the structure.
The scattering method used reveals information about the aggregated structure size and relative changes in
the degree of anisotropy in qualitative terms. The coupling constant λ, concentrations φ, average particle
size d and its polydispersity σ were initially obtained using the vibrating sample magnetometry and these
results were further confirmed by rheometry and scattering methods. Both the particles’ orientational
distribution and the nematic order parameter S were inferred from the ultrasonic measurements. The
investigation of SAXS patterns reveals the orientation and sizes of aggregated structures under application
of different magnetic-field strengths. In addition, the magnetic-field–dependent yield stress was measured,
and a relationship between the yield stress and magnetic-field strength up to 0.5 T was established.

1 Introduction

Magnetic fluids (ferrofluids) are colloidal suspensions con-
taining magnetic nanoparticles dispersed in an organic or
inorganic liquid carrier. Due to their small core diameters,
d, of 4–200 nm, the particles generally form a single do-
main of uniform magnetization with a magnetic moment μ
given by μ = MbV , where Mb denotes the bulk magnetiza-
tion of the particle material and V = πd3/6 is the volume
of the core of the particle. Many applications of magnetic
fluids require structural stability, i.e. no formation of ag-
gregates even in strong magnetic fields. The aggregation
of nanoparticles can be avoided by covering particles with
a single or double layer of surfactant. However, large val-
ues of the coupling constant, λ = μ0μ

2/4πdh
3kBT [1],

and volume fractions of magnetic grains φ lead to the for-
mation of magnetic aggregates in the form of chain-like
structures. In the expression for λ, dh is the hydrodynamic
diameter of the particle which is greater than the size of
the magnetic core, d, by twice the thickness of protective
surfactant layer [2]. Detecting the particle aggregation is

a e-mail: zbigniew.rozynek@ntnu.no

possible only by indirect experimental methods based on
magnetorelaxometry [3], viscosity [4,5], ultrasound atten-
uation measurements [6], or SANS/SAXS [7–9] performed
in external magnetic field.

Ferrofluids exhibit special properties that make them
suited for many technical and medical applications. Some
of these properties are determined by the particular
physics of small-sized magnetic nanoparticles. Therefore
it is important to search for better methods and the-
ories describing the physical behaviour of these liquids,
and in particular, the magnetic-field–induced structuring
from magnetic particles. Concerning the measurements
of the ferrofluid degree of anisotropy, typically scatter-
ing methods such as small-angle X-ray/neutron scatter-
ing (SAXS/SANS) are used and several approaches for
the calculation of the nematic order parameter are com-
mon [10,11]. It can be seen that the value of the or-
der parameter changes drastically when different meth-
ods of calculations are chosen. If for example the so-
called “wide angle diffuse ring” approach is used (sug-
gested by Leadbetter et al. [12]), several assumptions need
to be applied and those normally tend to overestimate
the value of the order parameter. The derivation of the
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orientational distribution functions from scattering data
is generally complicated by the coupling between the ori-
entational and positional orders of the scattering moieties.
Therefore it is suggested here to employ a different mea-
surement technique, i.e. ultrasonic spectroscopy and the
theory described by Shliomis, Mond and Morozov [13] as
an alternative approach to scattering methods.

The layout of this work is as follows. The sample prepa-
ration is first described briefly, followed by the first major
part that focuses on the sample characterization. This in-
cludes determination of a particle average diameter, vol-
ume concentration and estimation of a coupling constant
employing VSM (see below), rheology and SAXS. The sec-
ond part covers the investigation of the B-field–induced
structuring from magnetic particles. The average dimen-
sions of the aggregated structures, their preferred orienta-
tion and nematic order parameter are studied with SAXS
and ultrasonic spectroscopy measurements.

2 Sample preparation

The magnetic liquids composed of mineral oil ITO 100
and Fe3O4 particles coated with oleic acid were prepared
in the Institute of Experimental Physics in Košice. Mag-
netic particles were obtained by chemical precipitation of
ferrous and ferric salts in alkali medium. The appropriate
amounts FeSO4 and FeCl3 solution were mixed and pre-
cipitated by a 25% (v/v) solution of NH4OH. Magnetite
was formed as a black precipitate. To remove impurities
formed during chemical reaction, the obtained magnetite
particles were washed several times by magnetic decanta-
tion. After the last washing, the oleic acid (as surfactant
to prevent irreversible aggregation of magnetic particles)
and mineral oil ITO 100 (as carrier liquid) were added
at 70 ◦C in the volume ratio 1:1. Subsequently ITO 100
was added dropwise during stirring and heating in order to
obtain the appropriate volume concentration of magnetite
nanoparticles [14].

Samples with four different nanoparticle concentra-
tions were prepared. The initial ferrofluid FF was diluted
with mineral oil in the following proportions: FF:4, FF:64
and FF:128, respectively. The exact concentration value
for the initial ferrofluid FF was obtained by means of the
VSM method (see sect. 3.1).

3 Experimental techniques and results

3.1 VSM—vibrating sample magnetometry

A vibrating sample magnetometer (VSM) measures the
magnetic hysteresis loop of the magnetic fluid studied.
Volume concentrations of magnetite particles in the mag-
netic liquids, the average diameter of magnetite parti-
cles and the corresponding standard deviation were de-
termined by VSM measurements.

The resulting magnetization curve is shown in fig. 1a.
The magnetization of the diluted magnetic fluid can be

Fig. 1. Magnetization curve (a) and the particle size distri-
bution function (b) for the mineral oil-based magnetic fluid
obtained by means of the VSM method.

expressed as a superposition of the Langevin functions [2]

M = Ms

∫ ∞

0

L(ξ)p(x)dx, (1)

where MS is the saturation magnetization, L(ξ) =
coth(ξ) − 1/ξ is the Langevin function with ξ =
μ0μH/kBT , μ0 is the magnetic permeability of vacuum,
H is the magnetic-field strength, kB is the Boltzmann con-
stant and T is the absolute temperature. For the descrip-
tion of the dispersion of the magnetite particle size, the
lognormal distribution is usually employed [2]

p(x) =
1

xs
√

2π
exp

(
− ln2(x/D)

2s2

)
, (2)

where D and s are the parameters determined from the
magnetization curve. On the basis of these parameters the
mean diameter, 〈d〉, and standard deviation of particle size
σ, can be determined from the formulae:

〈d〉 = D exp
(

s2

2

)
, (3)

σ = D exp
(

s2

2

) √
exp s2 − 1. (4)

The particle size distribution function p(x) extracted from
VSM measurements using eq. (1) with the parameter val-
ues of MS = 29.19 kA/m, D = 9.48 nm, and s = 0.407 is
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shown in fig. 1b. From the saturation magnetization MS

the volume fraction of the magnetic phase can be deter-
mined via the expression

φ =
Ms

Mb
, (5)

where Mb = 446 kA/m is the spontaneous magnetization
of magnetite grains. In the case of the initial ferrofluid
(FF) studied here, eq. (5) leads to a value φ = 6.6% (v/v).
The particle size average value, 〈d〉 = 10.27 nm, obtained
from VSM data using eq. (3), and hydrodynamic diam-
eter dh = 14.27 nm, calculated on the assumption that
the length of the oleic acid molecule equals 2 nm, leads
to a coupling constant λ = 0.54. In conventional ferroflu-
ids like maghemite (γ-Fe2O3) or magnetite (Fe3O4), with
typical particle size 5–10 nm, the magnetic interaction is
generally weak (λ < 1), mainly reinforcing the vdW at-
traction [15]. Although the coupling constant λ = 0.54
is relatively small and the studied fluid magnetic dipole
interaction is rather weak, it is still possible for nanopar-
ticles to form chain-like structures. This was confirmed by
the rheological studies described in the next section and
the chain-like structuring observed via SAXS investigation
reported in the next paragraphs.

From the VSM data, the mean-spherical and the high-
temperature approximation models give the same lognor-
mal distribution of magnetite particle diameters [16,17].

3.2 Rheology

3.2.1 Experimental method

The magneto-rheology (MR) of the ferrofluid was mea-
sured under different magnetic fields using an Anton
Paar Physica MCR 300 rotational rheometer equipped
with a thermostat unit MRD 180 and measuring sys-
tem PP20/MR, specially designed for plate-plate–type
MR measurements. All rheological measurements were un-
dertaken at constant temperature (21 ◦C) and a gap of
0.2 mm. The shear stress τ as a function of a shear rate
γ was measured by means of controlled shear rate (CSR)
tests. For the samples in this study, and under applica-
tion of a magnetic field, this dependence is well described
by the Herschel-Bulkley rheological model: τ = τy + bγ̇p,
where τy, b, p are constants named yield stress, consistency
index, and power law index, respectively. The effective vis-
cosity of the Herschel-Bulkley fluids upon deformation is
not constant but follows a power law type behaviour in
contrast to the constant viscosity found in Bingham flu-
ids [18,19].

3.2.2 Rheology results

In general, the yield stress values for ferrofluids are low in
comparison with those of magnetorheological fluids consti-
tuting bigger particle (sizes in the range of μm), since the
maximum dipolar attraction (if two dipoles in head-to-tail

Fig. 2. A log-log plot of the flow curves of the initial ferrofluid
(FF). The inset shows the yield stress τy dependence on the
applied magnetic-field strength.

configuration are considered) scales as Vm ∝ d3, where d
is the core diameter, including the surfactant shell if it is
present [20]. As suggested by Zubarev and Iskakova [21],
the saturated magnitude of the yield stress (considering
thin-film ferrofluids with thickness significantly smaller
than 1mm) can be estimated using the equation

τ sat
y = 0.162μ0M

2
b ψ ·

[
φh

(1 + 2ds/d)3

]2

, (6)

where φh is the hydrodynamical concentration, ψ is the
concentration of particles that are big enough (> 18 nm)
and able to form large domains, ds is the thickness of the
surface shell on the particle, and finally d is the diameter
of the magnetic core of the particle. When employing the
following values: ds = 2nm, φh = 0.5 (both assumed as
typical values), d = 10.27 nm and ψ varying from 0.001
to 0.002 (both provided by the VSM measurement, see
fig. 1b), the calculated value of τ sat

y , based on eq. (6),
lies between 1.4 and 2.8Pa, which encompasses the results
presented below.

Figure 2 shows a log-log plot of the flow curves for
our samples, fitted with the Herschel-Bulkley model. The
yield stress values obtained from CSR measurements by
fitting with this model are 0.14, 0.31, 0.72, 1.02, 1.34 and
1.51Pa for the magnetic-field strengths of 50, 100, 200,
300, 400 and 500mT, respectively. The dependence of the
yield stress τy on the applied magnetic-field strength is
presented in the log-log plot in the inset of fig. 2. From
the fit (black solid line) a nearly linear power law was de-
rived for the dependence on the magnetic-field strength
(B < 300mT) and the yield stress τy scales as τy ∝ Bκ,
with the power law exponent κ = 1.1. However, for higher
values of the magnetic-field strength the power law expo-
nent κ decreases sharply below 1 (dotted line). Further
increase of the magnetic field would make the saturation
yield stress appear.
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Fig. 3. Scattered intensity from FF:128 without and with horizontally applied magnetic field. Images were taken at the q-range
corresponding to the distance 2π/q of around 9–90 nm.

3.3 Small-angle X-ray scattering

3.3.1 Experimental method

Small-angle X-ray scattering is a useful technique to study
shape and size of macromolecules, characteristic distances
of partially ordered materials, disordered structures and
porous media. In a SAXS experiment, the dependence of
the scattered intensity on the scattering angle is controlled
by the size of the colloidal particles, their tendency to ag-
gregate, the concentration of the dispersed system, the
magnitude of the specific surface area, and more gener-
ally, by the inhomogenieties characterizing the structure
of the disperse system. The scattered intensity I(q), as
a function of the momentum scattering vector q, given
as q = 4π sin(θ/2)/λ, where λ is the wavelength of the
incident beam and θ is the scattering angle, is propor-
tional to the Fourier transform of the geometric correla-
tion function of the electron density. The scattering vec-
tor q has the dimension of the inverse length (i.e. Å−1),
so that the length in real space corresponding to a cer-
tain q-value equals 2π/q [22,23]. The X-ray scattering ex-
periments were performed employing synchrotron radia-
tion (ESRF, France). The experiment was conducted at
the Dutch-Belgian Beamline (DUBBLE) at ESRF [24].
In order to induce alignment of the ferrofluid, different
magnetic-field strengths, 0 to 0.71T, were employed. The
beam was pointed along the radial direction of a 1mm
capillary whose cylindrical axis was vertical, and the mag-
netic field was applied horizontally, perpendicular to the
X-ray beam. An X-ray beam with a wavelength of 1.033 Å
was used. The sample-to-detector distance was calibrated
and set to 7m, enabling the scattering detection in a
q-range of approximately 0.007–0.07 Å−1. For the SAXS
measurements in a magnetic field, samples were prepared
in capillaries and placed between the poles of a permanent
magnet. The gap of the latter can be continuously varied
between 20 and 3mm, which allowed changing the field
strength from 0.37 to 0.71T.

3.3.2 SAXS results

When the dipolar interactions are much stronger than
the thermal energies (i.e. λ � 1 or when an exter-
nal magnetic field is applied), the fluid develops clusters
(dimers, trimers, etc.) and longer chains. Particles of ar-
bitrary shape would exhibit statistically isotropic scatter-

Fig. 4. Azimuthal plots of SAXS intensities at different
q-ranges.

ing if they are randomly oriented, i.e., the measured in-
tensity depends only on the magnitude of the scattering
vector q, whereas oriented anisometric particles result in
anisotropic scattering patterns [25].

Figure 3 shows the 2D SAXS patterns with and with-
out a horizontally applied external magnetic field. For
B = 0 the intensity pattern is isotropic and it does not
depend on the direction of the scattering vector q. How-
ever, when the magnetic field is applied, anisotropy devel-
ops and the scattering intensity is both radially and az-
imuthally dependent. In particular, the intensity perpen-
dicular to, the field direction increases, while it decreases
in the parallel direction. Since the particles have a diame-
ter starting at about 5 nm (see fig. 1b), or ca. 9 nm when
including the surfactant layer, the observable anisotropy
caused by the smallest aggregated structure, namely a
dimer, can be seen for the q-range starting from around
0.35 nm−1 and lower, which corresponds to 2π/q > 18 nm
in real space. This is observed in fig. 3, where the appli-
cation of an external field changes the pattern from being
circular at no field to elliptical when the field is present.
The anisotropy is more pronounced when approaching the
lower q-range (down to q = 0.09 nm−1 for sample FF:128
at B = 0.71T). This is clearly shown in the azimuthal
plots in fig. 4. Interestingly, the anisotropy reaches a max-
imum at a certain q-value (qan) and then the isotropy
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Fig. 5. Ratio of intensities normal and parallel to the
magnetic-field direction as a function of wave vector q for sam-
ples FF:128 (top) and FF:4 (bottom), respectively.

starts to recover leaving a long and H/kT -dependent tail.
This, however, is not readily observed form either fig. 3
or fig. 4, but can be revealed by plotting the ratio of the
intensities I⊥(q)/I‖(q) (perpendicular and parallel to the
B-field direction) as a function of the wave vector q shown
in fig. 5 (top). The ratio displays maxima shifting from
qan ∼ 0.11 nm−1 to qan ∼ 0.09 nm−1 for sample FF:128
at magnetic-field strengths of 0.37T and 0.71T, respec-
tively. The peak’s broadening decreases when the mag-
netic field strength increases indicating gradually more
well-defined ordering. In the thermodynamic limit at the
lowest values of q the scattering approaches an isotropic
behaviour, while at the highest q isotropy is recovered be-
cause we have reached the size of the primary particles
in the aggregates, which are spherical. Such behavior sug-
gests that the aggregates are non-spherical assemblies of
primary particles that become oriented in the magnetic
field: as B increases the radius of gyration (of the aggre-
gated structure) in the parallel direction increases, while
that in the perpendicular direction decreases (or remains
the same) [26]. If the position of the peak centers (marked
with dashed lines) is used as an estimate of the aggregate
radius of gyration (as proposed by Teixeira et al. [26]), i.e.

Fig. 6. Optical microscope image of FF:4 at approximately
0.5 T. The length of the bar corresponds to 10 μm.

Rg ∼ 2/qan, one obtains overall aggregate sizes 2Rg from
about 115 to 140 nm for FF:128, depending on the field
strength. There is however no peak present in the probed
q-range when the intensity ratio is plotted for a sample
with high particle concentration (FF:4), see fig. 5 (bot-
tom). This indicates that larger structures are formed for
samples with high particle concentration (above 1%) in
comparison with those formed in diluted samples. In ad-
dition, it can be seen that a significant anisotropy starts
building up already at a lower value of the B-field. The in-
fluence of polydispersity on the structural behaviour can-
not be neglected. In particular for highly concentrated
samples the formation of both chain-like structures with
higher-order oligomers and other forms of aggregates are
expected. It can thus be assumed that in the low q-range
direction (outside our SAXS q-range) the I⊥(q)/I‖(q) ra-
tio has a long tail reaching q ∼ 0.03 nm−1 or lower (see
also ref. [26]). One may even expect some of the sub-μm
clusters to appear in the presence of high magnetic field.
This was in fact observed for the sample with high particle
concentration (FF:4) using optical microscopy, as shown
in fig. 6. Note that the size of the aggregates cannot be
precisely retrieved, since the image was captured with a
certain exposure time during particle motion and was also
enhanced by adjusting contrast and brightness.

The derivation of the orientational distribution func-
tions from scattering data is generally complicated by the
coupling between the orientational and positional orders
of the scattering moieties. In the field of liquid crystals, the
nematic order parameter S is usually calculated either by
considering single-molecule scattering, so that positional
correlations are irrelevant, or by assuming ideal positional
correlations within a small group of molecules [27]. The
situation in our system is not trivial, since there might be
no positional correlations within the q-range probed. The
azimuthal intensity variations (and thus the nematic order
parameter S that depends on the azimuthal peak width)
are also q-dependent as shown in fig. 4. In addition, if one
assumes the formation of a rod-like structure, a further
broadening of the azimuthal peak width is expected due to
the rod diameter variations and the structure’s finite size
in general. Therefore only an analysis in qualitative terms
can be presented here and relative changes between the
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Fig. 7. Normalized order parameter for samples FF:4 (with
high particle concentration) and FF:128 (diluted sample) cal-
culated at different q-ranges.

order parameter values for samples FF:4 and FF:128 are
illustrated in fig. 7. The order parameter was calculated
according to the so-called “wide-angle diffuse ring” ap-
proach, where azimuthal plots (examples shown in fig. 4)
were fitted using the classical Maier-Saupe distribution
function g(β), and the order parameter S is given as

g(β) ∼ exp(m cos2 β), (7)

Sn =
1
2

〈
3 cos2 β − 1

〉
g
, (8)

where m is a parameter that controls the width of the
distribution and β is the angle between the major chain
axis and the nematic director (along the B-field). Along
the whole detectable q-range, the order parameter values
for the sample with high particle concentration FF:4 were
found to be lower than those from the diluted sample
FF:128. The order parameter values shown in fig. 7 for
FF:4 and FF128 at q = 0.1 and q = 0.35 nm−1 (top and
bottom panels, respectively) have been normalized to the
maximum value of S for FF:128. Normally the thermal
motion as well as the interaction between the magnetic
moments of the particles leading to more complex struc-
ture formation (such as rings, clusters, etc.) will prevent a
perfect alignment. The latter effect is more pronounced for
samples with higher particle concentration and it can ex-
plain a lower degree of anisotropy for FF:4 in comparison
to FF:128.

3.4 Ultrasonic spectroscopy

3.4.1 Experimental method

In the ultrasonic measurements a broad-band transducer
(Optel) with centre frequency of 5MHz was used. The
power spectrum of the echo signal was determined by us-
ing a Fast Fourier Transform algorithm. The measuring
cell (made of brass) with fixed distance between trans-
ducer and reflector was used. The path length (back and

forth) traversed by the ultrasonic pulse inside the medium
was 12mm. The attenuation coefficient measured in excess
to that of reference medium (water) can be expressed as

α(f) = − 1
2L

ln
Pm(f)
Pw(f)

+
1

2L
ln

Rmb

Rwb
, (9)

where Pm(f), Pw(f) are the power spectrums of the echo
signal reflected from the wall of the measuring cell filled
with magnetic liquid and water, respectively, Rmb =
0.9319 is the acoustic power reflection coefficient at the
inner side of the measuring cell containing magnetic liq-
uid, and Rwb = 0.8314 is the acoustic power reflection co-
efficient at the inner side of the measuring cell containing
water. The accuracy of the ultrasonic measurements de-
scribed above amounted to about ±2–5%. For the angular-
dependence experiment the magnetic field was rotated by
ten degrees each time, while the measuring cell remained
stationary in the gap between pole pieces of an electro-
magnet which produced a field of 75mT. The magnetic-
field strength was measured with a Resonance Technology
RX21-type teslameter to within 0.5%.

3.4.2 Ultrasonic anisotropy—results

The compression or stretching of the chain-like aggre-
gates under the influence of the ultrasonic wave results
in a magnetic restoring force which leads to forced oscilla-
tions of the aggregates. This mechanism was first proposed
by Taketeomi [28] and later reconsidered by Pleiner and
Brand [29] and Shliomis, Mond and Morozov [13]. The
structural changes are manifested by a dependence of the
ultrasonic wave absorption on the direction of the wave
with respect to the magnetic field. According to Shliomis,
Mond and Morozov [13], two-particles chains (dimers) os-
cillations in the ultrasonic field lead to additional dissi-
pation of ultrasonic wave energy with the coefficient of
absorption given by

αdim =
ηφd

2ρc3

〈
r2

〉
d2

ω4τ2

1 + ω2τ2
F (ϕ), (10)

where c is the velocity of the ultrasonic wave propagat-
ing with angular frequency ω, τ is the relaxation time of
the dimer oscillations scaled by the Brownian diffusion
time τB = 3ηV/kBT for a single particle (τ ≈ τB), ρ is
the mass density and η the shear viscosity of the mag-
netic liquid, respectively, φd is the volume fraction the
dimers, and 〈r〉 is the average distance between magnetic
particles in the dimer. The anisotropy function F (ϕ) can
be expressed by a field-induced nematic order parameter
S(λ, ξ) = 1/2(3〈cos2 β〉 − 1), β being the angle between
the dimer axis and the applied magnetic field H (similarly
as eq. (8)), through the relation

F (ϕ) =
[
1 + S(3 cos2 ϕ − 1)

]2
, (11)

where ϕ is the angle between the wave vector and the di-
rection of the external magnetic field. The upper graph in
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Fig. 8. Angular dependence of the ultrasonic attenuation α(ϕ)
for a wave of frequency f = 5 MHz in mineral oil-based mag-
netic liquid in an external magnetic field of B = 75 mT. Upper
graph shows the results for a diluted magnetic fluid (FF:64)
and lower graph for a concentrated fluid (FF:4). The solid line
on the upper graph was calculated using eq. (12).

fig. 8 shows the results of the ultrasonic anisotropy data
αdim(ϕ) for the diluted mineral oil-based magnetic liquid
with concentration (FF:64) subjected to a constant mag-
netic field of B = 75mT. The solid line was obtained by
fitting the expression

α(ϕ) − α(π/2)
α(0) − α(π/2)

=
2(1 − S) cos2 ϕ + 3S cos4 ϕ

2 + S
, (12)

following from the Shliomis, Mond and Morozov [13] the-
ory to the experimental data. The observed dependence
of αdim on ϕ is characteristic of short-chains aggregates
that are formed as a result of the pair interparticle mag-
netic dipole-dipole interaction. More specifically, there is
a monotonic decrease of the ultrasonic attenuation with
increasing ϕ, and the attenuation is maximal when the

Table 1. Characteristic particle features—summary.

Volume fraction φ 6.6 (%)

Mean diameter 〈d〉 10.27 (nm)

Hydrodynamic diameter dh 14.27 (nm)

Coupling constant λ 0.54

Saturated yield stress τ sat
y 1.4–2.8 (Pa)

Order parameter S 0.06

field is applied parallel to the direction of the sound prop-
agation and minimal when the field is applied perpendic-
ularly. It should be noted that this behaviour is character-
istic only to the weakly concentrated magnetic fluids with
predominant presence of two-particle chains. In a more
concentrated magnetic fluids (FF:4), lower graph in fig. 8,
the structure of the aggregates and angle dependence of
the ultrasound coefficient become much more complicated
and cannot be explained using the mechanism suggested
in the Shliomis, Mond and Morozov theory [30]. This con-
clusion is supported by the analysis of the SAXS data al-
ready discussed in the previous section. The value of the
nematic order parameter S = 0.06 ± 0.01 calculated from
the best fit of eq. (10) to ultrasonic data is in agreement
with the theoretical value of S calculated for λ = 0.54 and
ξ = 5.43 [13].

4 Conclusions

This study has been focused on the magnetic-field–
induced structuring from nanoparticles. A considerable
part also covers particle characterization without field,
since it is important to know in advance the particle aver-
age size d and the size distribution σ in order to estimate
the coupling constant λ and predict the particle behav-
ior in the colloidal system. Those initial parameters were
obtained using the VSM method, giving an average parti-
cle diameter d = 10.27 nm and a hydrodynamic diameter
dh = 14.27 nm. In table 1 the characteristic parameters of
the system studied are summarized. The list includes the
volume fraction φ, the average particle diameter, the value
of the coupling constant λ, the yield stress, and finally the
order parameter acquired from ultrasonic spectroscopy.

The nematic order parameter found by means of ul-
trasonic spectroscopy converges well with the theoretical
values only for low concentrated magnetic fluids. This is
due to the structure-size distribution independence of the
Shliomis, Mond and Morozov method, since it is assumed
that the main building block of the system is a dimer,
and larger structures (N -particle oligomers) may be con-
sidered as short flexible chains (with 3N − 6 oscillatory
degrees of freedom) represented also as a single dimer (see
ref. [13]).

The analysis of the two-dimensional SAXS showed a
development of the anisotropy starting from a q-range of
around 0.35 nm−1 (corresponding to the size of a dimer).
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The anisotropy was more pronounced when approaching a
lower q-range (down to qan = 0.09 nm−1 for sample FF:128
at B = 0.71T) and interestingly, the anisotropy reached
its maximum value and peaks at qan and then the isotropy
started to recover leaving a long and H/kT -dependent tail.
This was revealed by plotting the ratio of the intensities
I⊥(q)/I‖(q) (perpendicular and parallel to the B-field di-
rection) as a function of the wave vector q shown in fig. 5
(top). The ratio displayed maxima shifting from q0.35T

an ∼
0.11 nm−1 to q0.71T

an ∼ 0.09 nm−1 for sample FF:128 at
magnetic-field strengths of 0.37T and 0.71T, respectively.
The aggregate radius of gyration changed from 115 to
140 nm for FF:128, depending on the field strength. There
was however no peak present at the detectable q-range for
a sample with high particle concentration (FF:4). This
indicates that larger structures were formed for samples
with high particle concentration (above 1%) in compar-
ison with those formed in diluted samples. The relative
values of the nematic order parameter were calculated via
fits to azimuthal plots of the SAXS data. It was found
that along the whole detectable q-range, the relative or-
der parameter values for the sample with high particle
concentration FF:4 were lower than those from the di-
luted sample FF:128. The lower degree of anisotropy for
FF:4 in comparison to FF:128 was caused by the forma-
tion of more complex structure formations (such as rings,
clusters, etc.) that prevented a better alignment. This was
also confirmed by the ultrasonic spectrometry.

In addition, the magnetic-field–dependent yield stress
was measured, and a relationship between the yield stress
and the magnetic-field strength up to 500mT was ob-
tained. Based on the results from VSM, the value of the
saturated magnitude of the yield stress τ sat

y was estimated
to be between 1.4 and 2.8Pa, which converged well with
the results obtained from rheometry. These results provide
once more the experimental confirmation of the recently
described theory by Zubarev and Iskakova.
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Abstract: In the general context of self-assembly of nanolayered clay, we have studied both 
kaolinite and montmorillonite guided assembly into chain-like structures in gelatin hydrogel. 
The electrorheological (ER) elastomers, containing clay particles which dispersed in 
gelatin/water matrix, were prepared with or without the applied DC electric field and cross-linked  
polymerized with the help of formaldehyde. The experimental techniques include synchrotron 
X-ray scattering, atomic force microscopy, optical microscopy.  The aim is to produce a water-
based, low-cost and environmentally friendly ER hydrogel. The wide-angle x-ray scattering 
(WAXS) patterns observed from clay/gelatin ER elastomers curing in the DC field are highly 
anisotropic and show differences clearly compared to that without curing in the field. Both clay 
nanolayers have preferential orientation in gelatine hydrogel along the direction of electric 
field.      

1.  Introduction  
      The physical properties of stimuli-responsive soft materials dramatically change corresponding to 
the external stimuli such as temperature, pH, electric and magnetic fields [1-3]. These materials are 
called as intelligent materials and have been harnessed in novel systems, for example, sensors, 
actuators, and biomedical applications [4, 5]. Electrorheological (ER) effects refer to the change of 
rheological properties of a material upon application of an electrical field [6-11]. When an ER fluid, a 
suspension of polarizable particles in an insulating medium (such as mineral oil or silicone oil), is 
subjected to an electric field, the particles polarize, which results in an anisotropic structure of aligned 
chains of particles along the direction of the uniaxial electrical field. ER fluids exhibit drastic 
changes in their rheological properties, including a large enhancement in apparent viscosity and 
yield stress under an applied electric field. An obvious problem with ER fluids is sedimentation of 
the particles [12-13]. Because of the fluidity, ER fluids must be sealed to prevent leakage, which can 
complicate the design. Another design problem with fluids is the electrodes, which must be fully 
supported by the container for the fluid, yet electrically insulated to resist high voltage. Recently, ER 
elastomers, cross-linked polymer gels with dispersed polarizable particles–have attracted attention. 
The dispersed phases filled with particles responsive to an applied electric or magnetic field include 
intercalated or exfoliated platelets obtained from clays, mica, or graphite, nanocages, nanotubes, dual 
fillers, porous particles, and nanocatalysts etc. Comparing with ER fluid, the liquid medium of ER 
elastomer is cross linked polymerized after particle alignment, so the anisotropic arrangement of 
polarisable particles is “frozen”. In the gel network, as matrix’s solid-like nature, particles are 
restricted and the congregation of particles is eliminated. Consequently, the instability of the ER 
effect, which is caused by the particles’ congregation in ER fluid, is improved. At the same time, the 
interaction among the polarized particles under the applied electric field induces the elasticity change 
of the ER elastomer, and then the elasticity change induces a notable ER effect. The advantages of ER 
elastomers over ER fluids include no leakage, no sedimentation of particles and possibility to produce 
custom-made ER objects of exactly the right shape and size for the application (Because the shape and 
size of ER elastomer can be designed for the practical requirement) [14,15]. In present work, 
montmorillonite (MMT) and kaolinite guided assembly into chain-like structures in gelatin hydrogel 
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under the external electric field are studied using synchrotron X-ray scattering, AFM and optical 
microscopy. There are several green chemistry concepts in our present strategy: the choice of friendly 
solvent, the selection of friendly benign and non-toxic matrix, the one-step reaction. Gelatin is a water-
soluble natural polymer with a long and soft polypeptide backbone and its individual monomer 
contains an amino acids group. It is a commercially available and inexpensive material. In our 
approach, firstly water is used as a based component. The second concept is the choice of the low-cost 
and benign clay and gelatin. The third one is the simple and reproducible syntheses. The aim is to 
produce a water-based, low-cost and environmentally friendly ER hydrogel. 

2.  Materials and characterization methods  
      Gelatin and formaldehyde solution (A.R. 37%, diluted to 5% when used) were purchased from 
Merck Schuchardt OHG, Germany. Kaolinite is a 1:1 dioctahedral clay mineral with the ideal 
composition of Al2Si2O5(OH)4. It was used without further purification. Montmorillonite is a typical 
2:1 smectites and was purchased from Southern Clay Products, Inc. as a fine gray powder. In this 
study, firstly 20% gelatin of aqueous solution was prepared at 70°C for 1h. Then appropriate clay 
(kaolinite or montmorillonite) particles (such as 1wt%, 5wt%, 10wt% etc.) were added into the 
gelatin/water matrix to further stir for 6h at 70°C. The clay/gelatin/water mixture will be transferred 
into a custom-made casting cell (Fig.1) and cured under E=1 kV/mm DC electric field for 1 h. At the 
same time, the temperature will be retained at 70°C during the curing process. After that the system 
naturally cooled down to 25°C, the clay/gelatin physical hydrogel is obtained. Then this physical 
hydrogel was dipped into the chemical crosslinking agent (5wt% formaldehyde solution) over a night. 
The chemical crosslinking clay/gelatin ER hydrogel can be obtained. For comparison, samples with 
the same chemical composition but in the absence of an electric field were prepared.  

Figure 1. Schematic equipment for curing an elastomer. HV: DC power source, VM: volt meter.

The reaction of the gel chemical crosslinking is described as follows: 

R

H2N CH C OH

O R

NH2CHCHO

O

HCHO

R

CHCHO

O R

CH C OH

O

NH CH2 HN H2O

R is amino acid polypeptide macromolecule.
        Relative orientations of the clay particles inside the electrorheological elastomers were 
determined using synchrotron X-ray scattering experiments. These experiments were performed at the 
Swiss-Norwegian Beamlines (SNBL) at ESRF (Grenoble, France), using the WAXS setup with a 2D 
mar345 detector at beamline BM01A. The X-ray beam with a wavelength of 0.72 Å and 0.3×0.3 mm2

beam size were used. The AFM images were taken using a Multi ModeTM Atomic Force Microscope 
(nanoscope IV) from Veeco Instruments with a contact model.  

3.  Results and discussion 

3.1.  1:1 type clay (kaolinite) assembly in gelatin 
The morphology of pure kaolinite is illustrated in Figure 2. It can be seen that kaolinite is 

composed of stacked small platelets (1~10�m). Furthermore, kaolinite particles are sharing 
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morphology with well defined hexagonal edges and corner angles (120°) shown in large resolution 
image. Figure 3 shows the optical image of kaolinite/gelatin hydrogel without curing in the field. 
Solid-like or gel-like behaviour is observed. Kaolinite have hydroxyl group, which is beneficial for 
homogeneously dispersing in the gel network.  

Solid kaolinite/gelatin 
ER elastomer is 
prepared by arranging 
suspended kaolinite 
particles in gelatin with 
an electric field and 
crosslinked the 
obtained structure with 
the help of 
formaldehyde to 
“freeze” the chain. 
Figure 4(a) shows the 
micrograph of 
kaolinite particles in 

the elastomer cured without the externally applied electric field, and Figure4(b) shows the 
elastomer cured under the field with E= 1 kV/mm. It is observed that particles are randomly 
dispersed and aligned dispersed in Figure4 (a) and (b), respectively. By comparing and 
analyzing the two elastomers, it is obvious that the particles have been assembled by the 
applied DC field during the curing process.  

      Relative orientations of the 
kaolinite particles inside the 
electrorheological elastomer were 
determined using synchrotron X-ray 
scattering experiments: chain and 
column formations were observed.  
The three-dimensional WAXS 
patterns obtained from 
kaolinite/gelatin ER elastomer are 
shown in figure 5. 

Figure 5.The three Dimensional 
WAXS patterns obtained from 
10wt% kaolinite/gelatin  hydrogel 
curing in a DC external electric field 
(a) E=0kV/mm, isotropic pattern; 
(b)(c)(d)  E=1kV/mm, anisotropic 
pattern; the distance between the 
detector and the sample is different as 
follow (b) 350mm (c) 200mm 
(d)110mm, which more scattering 
rings of kaolinite/gelatin ER hydrogel 
can be observed; e) pure gelatin 
hydrogel  without curing in a field; f)  
pure gelatin hydrogel  curing in a 
field E=1kV/mm

Figure 2. AFM images of pure kaolinite 
particles,                             kaolinite/gelatin   

the scale bar 20×20�m (left) and 500×500nm 
(right). 

Figure 3. Optical images 
of hydrogel without 
curing in the field. 

Figure 4. Optical micrographs of the kaolinite/gelatin 
elastomers cured in the absence/presence of the applied 

electric field (E=1kV/mm). 

a 
b c d

001 peak scattering ring of kaolinite 

fe

n�

E=1kV/mmE=0kV/mm

(a) (b)
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       The 001 scattering ring of kaolinite is indicated by arrows respectively in figure 5. Clay minerals 
are sheet silicates or layered silicates, whose primary particles are platelet shape. Each clay platelet is 
~1 nm thick (c-direction). Kaolinite is a 1:1 dioctahedral clay mineral with the ideal composition of 
Al2Si2O5(OH)4. Its structure is composed of AlO2(OH)4 octahedral sheets and SiO4 tetrahedral 
sheets. Normally, the 001 peak of clay indicates the interlayer spacing between the two basic sheets. 
For the first strong peak of kaolinite in WAXS patterns represents the diffraction from the (001) 
crystal surface of the kaolinite, and the associated interlayer d-spacing of this peak is 0.715 nm (In 
figure 4) [16]. For kaolinite/gelatin hydrogel without curing in the electric field, the kaolinite particles 
are randomly dispersed into the gelatin matrix, so its WAXS pattern is isotropic shape due to the non-
orientation of kaolinite particles (shown in figure 5a). However after curing in the electric field, 
kaolinite partilces will polarized and assemble or orient to respond with field. Kaolinite particle have 
preferential orientation in gelatine hydrogel along the direction of electric field and show an 
anisotropic pattern after the curing of DC electric field compared with the isotropic pattern of 
kaolinite/gelatin hydrogel without curing in the field (shown in figure 5b, c and d). These two patterns 
show clearly that the kaolinite particles assemble or orient in the direction of electric field. Likewise, 
the electric field should be high enough such that the electric force can overcome the effect of the 
gravitational force acting on the dense kaolinite particles. However�applying a DC field over E=2 
kV/mm or much higher can cause the water to hydrolyze and air bubble is observed obviously. The 
sample will be shrunken during the curing process. The colour of sample will be changed from light 
gray to green for kaolinite/gelatin hydrogel. Furthermore, too weak electric field strength (below 
300V/mm) is difficult to ensure particle polarized for orientation or forming chain-like structure. So 
we chose a medium electric field strength (E=1 kV/mm) to make sure clay assembling into gelatin 
matrix and in this case the hydrolyzation is not serious. The multipolar interactions from the highly 
polarizable particles undoubtedly contribute significantly to the ER response. The result indicates that 
the orientation of particle chain relative to the field is an important structure factor in the designing of 
the ER elastomers. Spatial arrangement influences the interparticle forces, especially those within the 
chains. Furthermore, pure gelatin samples with or without curing in an electric field is prepared and 
their three-Dimensional WAXS patterns are shown in figure 5 e) and f), respectively. Comparing with 
kaolinite/gelatin ER elastomer (figure5b), no kaolinite scattering ring, only gelatin scattering ring is 
shown in the pattern. Furthermore the anisotropic pattern (figure 5f) also indicates that pure gelatin 
hydrogel can respond with the electric field and oriented along the direction of electric field.   

Figure 6. a) Dependence of the intensity of circular scattering rings (only integrating kaolinite 001 
peak in figure 4 a and b) on the azimuthal angle for 10wt% kaolinite/gelatin composite at the different 
electric field; b) Dependence of the intensity of circular scattering rings (kaolinite 001 peak plus the 
first peak of gelatin in figure 4 c) on the azimuthal angle. 

Figure 6 shows how the intensity of circular scattering rings such as those presented in figure4 a) 
and b) evolve as a function of the azimuthal angle , between 0 and 360°. For the 10wt% 
kaolinite/gelatin composite, we firstly have considered the first-order Bragg peak of kaolinite (001). 
The scattered intensity at a given azimuthal angle is proportional to the number of particles that meet 
the Bragg condition for that angle, so the shapes of the scattered intensities in figure 6a provide the 
orientation distributions of clay particle orientations inside the chains and columnar structures. For E
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= 0 kV/mm, the intensities are independent of  and the two-dimensional scattering pattern is 
isotropic because the kaolinite particles is randomly dispersed in gelatin hydrogel. For E =1kV/mm, 
the azimuthal positions of the maxima along the plots is anisotropic and this demonstrate that the 
preferred orientation of the kaolinite particles is with the lamellar stacking plane parallel to the 
direction of the electric field. Secondly, we have considered both the 001Bragg peak of kaolinite and 
the first peak of gelatin evolve as a function of the azimuthal angle , between 0 and 360°. From 
figure 6 b), we can see that the azimuthal positions of the maxima along the plots is anisotropic and 
have 4 maxima. So that means both the visible diffraction rings correspond to the diffraction of 
kaolinite and gelatin are anisotropic. The reason is probably because the macromolecules of the matrix 
are polymerized anisotropically under an applied dc electric field for curing. Since the clay particles 
are platelets with a thickness much smaller than their lateral dimension, this suggests that they are 
lying in the ER bundles with one of their lateral dimensions parallel to the field; i.e., on average, the 
clay particles have their directors aligned perpendicular to the direction of applied field [17]. 
Furthermore, the gelatin matrix polarizes along their macromolecules chain parallel to the direction of 
the electric field, and hence in figure 5b, c and d we can see that two perpendicular directions for 
anisotropic rings are observed for kaolinite and gelatin separately. 

3.2.  2:1 type clay (MMT) assembly in gelatin 
The wide angle X-ray diffraction (WAXS) patterns of a series of MMT/gelatin hydrogel are also 
studied. The two-dimensional WAXS patterns obtained from MMT chains of particles dispersed in 
gelatin hydrogel, in the presence (a) 10wt%MMT with field(E=1kV/mm); (b) 5wt% MMT with field 
(E=1kV/mm)  or (c) absence of a DC external  electric field are shown in figure 7. The 001 scattering 
ring of MMT is indicated by arrows respectively in figure 7.  The basic structural unit of so-called 2:1 
clays (such as MMT) is a 1 nm-thick platelet consisting of two tetrahedral silica sheets sandwiching 
one octahedral silica sheet. The interlayer d-spacing for the peak of free MMT (001 crystal surface) is 
near 1nm. 

Figure 7. The 2-dimensional WAXS 
patterns obtained from the 

MMT/gelatin hydrogel, in the 
presence (a) 10wt%MMT with field 
(E=1kV/mm); (b) 5wt% MMT with 
field (E=1kV/mm); (c) 5wt% MMT 

without field (E=0kV/mm).

Similarly, the isotropic pattern of 5wt% MMT absence of a DC external electric field in figure 7(c) 
means that MMT particles are randomly dispersed into gelatin hydrogel and no preferential orientations 
for the clay aggregates. The two-dimensional WAXS patterns obtained from this MMT/gelatin 
hyrogel elastomer (figure7 b and c) are clearly anisotropic, reflecting the preferential orientation of the 
particles in the electric field. Taking advantage of the nano-layered nature of the clay crystallites, we 
were able to infer MMT particle orientations inside the particle bundles from the anisotropy of two-
dimensional WAXS images. This study suggested that the MMT particles polarize along their silica 
sheets, and hence, that their directors were, on average, perpendicular to the direction of the electric 
field[18].  Dependence of the intensity of scattering vector for MMT/gelatin hydrogel with and 
without electric field for 5wt% and 10wt% MMT content are shown in figure 8, respectively. A sharp 
and strong peak attributable to a low degree of ordering is observed for MMT/gelatin hydrogel 
elastomer with electric field comparing that of MMT/gelatin hydrogel without electric field �(d001 =10 
Å, d = 2�/q). This is due to dipolar interaction between polarized MMT particles, which orientate and 
aggregate to forms chains and then column structures along the direction of applied electric field 
which also lead to the enhancement of MMT concentration. The intensity of 001 diffraction peak was 
increased, indicating an increase of MMT particles assembling along the direction of electric field. A 

ca b

001 scattering ring of MMT 
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chain-like structure of ER composites enhances their electrostriction response to normal and shear 
deformations. This makes feasible application of ER composites in stand-alone sensing systems as 
well as implementation of electrostriction to achieve self-sensing capabilities in ER devices. 
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Figure 8. Dependence of the intensity of 
scattering vector q for 5wt% or 10wt% 
MMT/gelatin hydrogel with and without 
curing in an electric field. 

4.  Conclusions   
 A serial of clay/gelatin ER elastomers have been synthesized and characterized by wide angle -ray 

scattering. The resulting materials show different structures compared to uncuring clay/gelatin 
hydrogel. Two and three-dimensional WAXS images from bundles of clay inside the gelatin matrix 
exhibits a clear anisotropy, reflecting the preferential orientation of the clay particles in the field. The 
anisotropy of 2-dimesional diffractogram also provides the angular distribution of clay particles inside 
the clay assemble into gelatin hydrogel. 
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