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ABSTRACT i

Abstract

Some theory of real and stochastic analysis in order to introduce the Path Integration
method in terms of stochastic operators. A theorem presenting sufficient conditions
for convergence of the Path Integration method is then presented. The solution of
a stochastic Lotka-Volterra model of a prey-predator relationship is then discussed,
with and without the predator being harvested. And finally, an adaptive algorithm
designed to solve the stochastic Lotka-Volterra model well, is presented.



ii

Notation

• N: The set of all non-negative integers

• Z: The set of all integers

• Q: The set of all rational numbers

• R: The set of all real numbers

• C: The set of all complex numbers

• R+: The set of all non-negative real numbers

• Rn: the Cartesian product R× R× · · · × R
︸ ︷︷ ︸

n times
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Chapter 1

Preliminaries

1.1 Basic real analysis and probability theory

In this section, we shall review some of the basis concepts of real analysis, that will
be used later in defining and deriving other concepts.

We start by first defining σ-algebra.

Definition 1.1. Let X be a set, and denote by P(X) the power set of X. Then
A ⊆ X is called σ-algebra, if it satisfies the following conditions.

• A is non-empty

• if A ∈ A, then Ac ∈ A, where Ac denotes the complement of A in X.

• if the sets A1, A2, . . . are in A, then ⋃iAi ∈ A
A probability space is a triplet (Ω,A, P ), sometimes denoted simply by Ω, where

Ω is a set, A is a σ-algebra of subsets of Ω, and P is a probability measure on A.
Definition 1.2. A real-valued function P : A → [0, 1] is a probability measure on
A of the triplet (Ω,A, P ) if the following conditions are satisfied

• P (∅) = 0

• P (Ω) = 1

• If {Ei} is a countable collection of pairwise disjoint sets in A, then

P

(
⋃

i

Ei

)

=
∑

i

P (Ei)

For all practical purposes for this thesis, the set Ω will be Rn for some n ∈ N,
and the σ-algebra we use will be M(Rn), the collection of all subsets of Rn that
satisfies the Carathéodory criterion.

Definition 1.3. A set E ⊂ Rn is said to satisfy the Carathéodory criterion if

λ∗(W ) = λ∗(W ∩ E) + λ∗(W ∩ Ec) (1.1)

for all subets W of Rn, where λ∗ is the Lebesgue outer measure.

1



2 CHAPTER 1. PRELIMINARIES

Let ci < di for i = 1, 2, . . . , n be a collection of pairs of real numbers, and
define an open box in Rn as the set In = f(c1, d1, . . . , cn, dn) = {x ∈ Rn : ci < xi <
di, for i = 1, . . . , n}, and define the volume of the open box as V (In) =

∏n
i=1(di−ci),

then the Lebesgue outer measure on Rn is defined as:

Definition 1.4. For each subset A ⊂ Rn the Lebesgue outer measure of A, denoted
by λ∗(A), is defined by

λ∗(A) = inf

{
∑

i

V (I in) : {V i
n}i open boxes,

⋃

i

V i
n ⊃ A

}

Said in another way, the Lebesgue outer measure of a subset A of Rn is the
volume of the smallest covering of open boxes of A.

Theorem 1.5. M is a σ-algebra and M(Rn) ⊃ B(Rn), where B(Rn) is the Borel
set, the smallest σ-algebra containing all open sets in Rn

Denote by (Rn,M(Rn), λ) or simply Rn the basic measure space. Here, λ is the
Lebesgue measure, which is simply the Lebesgue outer measure restricted toM(Rn).
A function f : Rn → R is said to be Lebesgue-measurable if f−1(S) ∈ M(Rn) for
all S ∈ B(R).

Definition 1.6. A Lebesgue-measurable function f : Rn → R is said to be of class
Lp(Rn) if

‖f‖p =
[∫

Rn

|f(x)|p dx
](1/p)

<∞ (1.2)

for p ∈ [1,∞) and of class L∞(Rn) if it is bounded almost everywhere, that is:

‖f‖∞ = inf{C ≥ 0 : µ({|f | > C}) = 0}} <∞ (1.3)

where µ is the Lebesgue-measure. The families of functions LP (Rn), p ∈ [1,∞] are
normed spaces with norms ‖ · ‖p.

In the case of L2(Rn), the space has an inner product that induces the norm on

Lp(Rn) defined by‖f‖p =
[∫

Rn |f |p dx
](1/p)

Definition 1.7. L2(Rn) is an inner product space with inner product

〈f, g〉 =
∫

Rn

fg dx (1.4)

We also mention the very useful Cauchy-Schwartz inequality for this inner product
space

Theorem 1.8. For any pair of functions f, g ∈ L2(Rn), the following inequality
holds

|〈f, g〉| ≤ ‖f‖2‖g‖2
This inequality is valid for any inner product space, and thus in particular for

L2(Rn).
We also introduce the Cα space
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Definition 1.9. A function f : Rn → R is said to be of class Cα(Rn) for some
α ∈ N if its partial derivates

∂lf

(∂x1)l1(∂x2)l2 . . . (∂xn)ln
, where l =

n∑

i=1

li

exists, is continuous and is bounded for all 0 ≤ li ≤ n such that l ≤ α.

We now turn our attention more to stochastic analysis and define the stochastic
variable and the Markov chain.

We define the filtered probability space (Ω,F ,Ft, P ), where Ω is a set F is a
σ-algebra of Ω, while Ft is an increasing family of sub-σ-algebras with the properties
Ft ⊆ F for all t ∈ [0,∞) and in addition satisfies for all t ∈ [0,∞): Fs ⊆ Ft for all
s ∈ [0, t]. P is as before a probability measure satisfying the basic axioms mentioned
above.

A stochastic variable X is formally a mapping X : (Ω,F) → Rn that is meas-
urable with respect to (Ω,F), that is, X−1(S) ∈ F for all S ∈ B(Rn). A family
of stochastic variables {Xt}t is called a stochastic process if it is indexed by either
t ∈ [0,∞) or t ∈ N. The stochastic process is adapted to the filtration Ft if Xt is
measurable with respect to (Ω,Ft) for all t ∈ [0,∞). Next, we define what it means
for a stochastic variable to have a probability density.

Definition 1.10. A stochastic variable X is said to have a probability density if
there exists a function dX : Rn → R such that for all S ∈ B(Rn) we have

P ({ω ∈ Ω : X(ω) ∈ S}) =
∫

S

dX(x) dx. (1.5)

One very important density, which will also be important for the derivation of
Path Integration is the Gaussian density

Definition 1.11. A random variable X : (Ω,F) → Rn is said to be Gaussian or
Normal if there exists a vector µ ∈ Rn and a symmetric positive-definite n×n matrix
Σ such that

dX(x) =
1

(2π)n/2|Σ|1/2 exp
(

−1

2
(x− µ)TΣ−1(x− µ)

)

, (1.6)

where |Σ| is the determinant of Σ.

Definition 1.12. The expectation operator E applied on a stochastic variable X is
defined as

E[X] =

∫

Ω

X dP (1.7)

When X has a probability density dX , the expected value takes on the more
familiar form

E[X] =

∫

Rn

xdX(x) dx.

A mapped stochastic variable f(X) has an expected value defined as

E[f(X)] =

∫

Rn

f(x)dX(x) dx. (1.8)
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The concept of Markov processes will be very important for this thesis, as it will
turn out that the numerical approach we will use to derive Path Integration results
in a Markov process.

Definition 1.13. A stochastic process is called a Markov process if for times 0 ≤
t1 < t2 < · · · < tm < tm+1 < ∞ with corresponding spatial points x1, x2, . . . , xm ∈
Rn we have the the equality

P (Xtm+1 ∈ S|Xt1 = x1∩· · ·∩Xtm = xm) = P (Xtm+1 ∈ S|Xtm = xm), for all S ∈ B(Rn).
(1.9)

In a similar manner, we call the stochastic process Xt a Markov chain if the same
property holds, but for non-negative integer times.

Definition 1.14. Let Xt be a Markov Process. Define the measure K(S, x′, t′, t)
with t′ > t by

K(S, x, t′, t) = P (Xt′ ∈ S|Xt = x). (1.10)

We call K(S, x, t′, t) the transition measure of Xt. In addition, if there exists a
function k(y, x, t′, t) such that

K(S, x, t′, t) =

∫

S

k(y, x, t′, t) dy, for all S ∈ B(Rn), (1.11)

then we call k(y, x, t′, t) the transition kernel of Xt.

Sometimes the transition kernel will not depend explicitly on the times t and t′,
but rather, on ∆t = t′ − t. In this case we call the transition kernel time-invariant,
which is defined more precisely below

Definition 1.15. If the transition kernel is time-invariant, that is

k(y, x, t′, t) = k(y, x, t′ + h, t+ h), for all h ∈ [0,∞). (1.12)

We say that the Markov process is time-homogeneous and write k(y, x, t′ − t) =
k(y, x, t′, t).

One important consequence of a Markov process being time-homogeneous, is that
Chapman-Kolmogorov equation is valid for the transition kernel of these processes.
We mention this equation briefly, as it will be used later

Theorem 1.16. (Chapman-Kolmogorov Equation): The transition kernel of a time-
homogeneous Markov process satisfies

k(y, x, t+ t′) =

∫

Rn

k(y, z, t)k(z, x, t′) dz, for all t, t′ > 0. (1.13)
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1.2 The stochastic differential equation

The class of SDE that we will consider here is of the type

dXt = a(Xt, t) dt+ b(Xt, t) dWt, (1.14)

where Yt is an n-dimensional state space vector, and Wt is an m-dimensional Lévy-
process, a(Xt, t) : R

n × [0, T ]→ Rn is a vector function and b(Xt, t) : R
n × [0, T ]→

MAT(n,m) is a matrix function. A Lévy-process is characterized by the following
properties

• W0 = 0, almost surely

• Wt has independent increments

• Wt has stationary increments

• t→ Wt is almost surely Cádlág.

The independent increments property means that if 0 ≤ t1 < t2 < t3 < ∞, then
Wt2 − Wt1 and Wt3 − Wt2 are independent. The stationary increments property
means that for t > s, Wt −Ws distributed as Wt−s. The Cádlág property means
that for any 0 < t < ∞, the limit lims→t− Ws exists, and lims→t+ Ws = Wt almost
surely.

A lévy process is quite general, and has been studied quite extensively for use
with Numerical Path Integration in (Kleppe). In this thesis however, a specific Lévy
process will be used, namely the Wiener process, which is perhaps better know under
the name Brownian motion.

Definition 1.17. A Wiener process Bt is characterized by the following properties

• B0 = 0

• Bt is, almost surely, continuous

• Bt has independent increments with Bt − Bs ∼ N (0, t− s) : 0 ≤ s < t

For the purposes of this thesis, Bt always denotes a Wiener process.
We shall throughout this report, interpret equation (1.14) as a symbolic way of

representing the integral equation

Xt = Xt′ +

∫ t

t′
a(Xt, t) dt+ b(Xt, t)dWt (1.15)

where the last integral is an Itô Stochastic Integral, which is explained in the next
section. Furthermore, we shall sometimes, for typographical reasons write a(y) and
b(y) instead of a(y, t) and b(y, t), but all the below results are still valid for functions
a and b depending explicitly on time.

The term a(Xt, t) is often referred to the deterministic term, and b(Xt, t) is often
referred to the diffusion term. One way to explain this, is by observing that in
the absence of the term b(Xt, t), the solution Xt would have a purely deterministic
behavior, and in the absence of the term a(Xt, t), Xt −Xt′ would be a pure white-
noise process.
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1.3 Itô Calculus

On a probability space (Ω,A, P ), let {At, t ≥ 0} be an increasing family of sub-σ-
algebras of A. Let Wt be a Brownian motion process such that Wt is At-measurable
with

E(Wt|A0) = 0, and E(Wt −Ws|As) = 0.

Denote by L2
T the set of functions f : Ω× [0, T ]→ R that satisfies

• F is jointly L ×A-measurable

•
∫ T

0
Ex(f(x, t)

2) dt <∞

• Ex(f(x, t)
2) <∞ for all 0 ≤ t ≤ T

• gt(x) = f(x, t) is At-measurable for all 0 ≤ t ≤ T .

Let S2
T denote the subset of all step functions in L2

T , then it can be proved that S2
T

is dense in L2
T under the norm

‖f‖2,T =

√
∫ T

0

Ex(f(x, t)2 dt,

that is, any function in L2
T can be approximated arbitrarily well by a sequence of

step functions in S2
T . Let 0 = t0 < t1 < · · · < tn−1 < tn = T be a partition of [0, T ],

and let the corresponding step function that converges to f be represented by the
random variable fj(x) at time tj for 0 ≤ j ≤ n, then the Itô stochastic integral of f
is defined as

∫ T

0

f(x, s) dWs = lim
n→∞

n∑

j=1

fj(x)[Wtj+1
(x)−Wtj(x)].

The Itô stochastic integral has a couple of useful properties, which will be listed here,
but not proved. Supposing that the above conditions are satisfied and f, g ∈ L2

T ,
and α, β ∈ R then

∫ T

0

f(x, s) dWs is AT -measurable,

E

(∫ T

0

f(x, s) dWs

)

= 0

E

[(∫ T

0

f(x, s) dWs

)2
]

=

∫ T

0

E(f(x, s)2) dt

∫ T

0

αf(x, s) + βg(x, s) dWs = α

∫ T

0

f(x, s) dWs + β

∫ T

0

g(x, s) dWs

E

[(∫ t

t0

f(x, s) dWs

)

|At0

]

= 0, for 0 ≤ t0 ≤ t ≤ T

Zt(x) =

∫ t

t0

f(x, s) dWs has an, almost surely, continuous stochastic path
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We shall, throughout this report, assume that these conditions are true, so that the
above properties can be used.

Another interesting application of the Itô stochastic integral answers the ques-
tion; if Xt is governed by the equation

Xt = Xt0 +

∫ t

t0

a ds+

∫ t

t0

b dWs

and if Yt = U(Xt, t) is a transformation of Xt can we say something about the
behavior of Yt? It turns out that, if U has continuous partial derivatives ∂U

∂t
, ∂U

∂x
,

and ∂2U
∂x2 , then

Yt = Yt0 +

∫ t

t0

∂U(Xs, s)

∂t
+ a

∂U(Xs, s)

∂Xs

+
1

2
b2
∂2U(Xs, s)

∂X2
s

ds+

∫ t

t0

b
∂U(Xs, s)

∂Xs

dWs.

In [1], this is called The Itô Formula.

1.4 Existence and uniqueness of solution

The following theorem, which will be stated without proof, gives sufficient conditions
for existence and uniqueness of a solution of a SDE.

Theorem 1.18. Suppose that the functions a, b : Rn × [t0, T ] → Rn satisfies the
following conditions

• a(x, t) and b(x, t) are jointly L2-measurable in (x, t) ∈ Rn × [t0, T ]

• There exists a constant K > 0 such that

‖a(x, t)− a(y, t)‖ ≤ K‖x− y‖
‖b(x, t)− b(y, t)‖ ≤ K‖x− y‖

for all t ∈ [t0, T ] and x, y ∈ Rn

• There exists a constant D > 0 such that

‖a(x, t)‖2 ≤ D2(1 + ‖x‖2)
‖b(x, t)‖2 ≤ D2(1 + ‖x‖2)

and in addition, the random variable Xt0 is At0-measurable with E(‖Xt0‖) < ∞,
then the stochastic differential equation

dXt = a(Xt, t) dt+ b(Xt, t) dWt

has a pathwise unique solution Xt on [t0, T ] with

sup
t0≤t≤T

E(‖Xt‖2) <∞

The second and third requirement puts severe restrictions on the functions a
and b, but in many cases the solution will with a high probability be contained in
some bounded closed subset of Rn. If that is the case, then if a and b are bounded
continuous functions with bounded derivatives on this compact subset, then a and
b satisfies all the requirements. We shall throughout this thesis assume that a and
b are sufficiently regular, such that an unique solution to the SDE exists.
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1.5 The Kahan Summation Algorithm

In exact arithmetic, calculating a sum

S =
n∑

i=1

ai (1.16)

is a straightforward process. When calculating the sum on a computer however,
we can run into problems due to the finite representation of digits on a computer,
and round-off error when adding small numbers to big numbers. This can especially
become a problem when n is a very large integer, where we can end up with very big
relative round-off errors. This section assumes some knowledge of the finite precision
and round-off error in computer arithmetics.

The naive way to add up a large sum on a computer, can be given by the
algorithm

Input: {a1, a2, . . . , an}
Output: S, the sum of the inputs.
S := 0
foreach i ∈ {1, 2, . . . n} do

S ← S + ai
end

Algorithm 1: Naive summation algorithm

If S is the sum of the terms {a0, a1, . . . , an} calculated on a computer, it can be
shown [2] that the relative error of summation is bounded by

|S −∑n
i=1 ai|

|∑n
i=1 ai|

≤ ǫ
[(n− 1)|a1|+

∑n
i=2(n− i+ 1)|ai|]

|∑n
i=1 ai|

(1.17)

where ǫ is the machine epsilon, that is, the upper bound for the relative round-off
error for the data type the terms {a1, . . . , an} are stored in. For a double precision
number, the machine epsilon is approximately 10−16. Thus the relative error is in
the class of O(ǫn), and in the worst case scenario, the relative round-off error grows
linearly with n.

Round off-error is not something that we can prevent on a computer, we can,
however, employ a balancing strategy which severely reduces the round-off error. If
we define t = S + ai, then c = (t − S) − ai is always zero, in exact arithmetics. In
computer arithmetics, however, t−S only represents the digits of ai that was not cut
off by round-off, in short, it recovers the high-order parts of ai. When subtracting
ai from (t − S), we obtain the low-order part of ai, that is, the rounding error we
obtained by adding ai to S, up to rounding error. Balancing this round-off error, by
subtracting c from the next term ai+1 to be added to the sum, should thus provide
better results.

The Kahan summation algorithm is given as follow
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Input: {a1, a2, . . . , an}
Output: S, the sum of the inputs.
S := 0
c := 0
foreach i ∈ {1, 2, . . . n} do

y ← ai − c
t← S + y
c← (t− S)− y
S ← t

end

Algorithm 2: The Kahan summation algorithm
It can be shown that for the result of using the Kahan summation algorithm, the
following is valid

|S −∑n
i=1 ai|

|∑n
i=1 ai|

≤
[
2ǫ+O(nǫ2)

]
∑n

i=1 |ai|
|∑n

i=1 ai|
(1.18)

where (
∑n

i=1 |ai|)/|
∑n

i=1 ai| is called the condition number of the sum. We see that
here, the relative error is in the class of O(2ǫ + nǫ2), which is a considerable im-
provement over O(nǫ). The round-off error can be quite bad, also for the Kahan
summation algorithm, if the sum is badly conditioned. That means that the condi-
tion number (

∑n
i=1 |ai|)/|

∑n
i=1 ai| is very large in magnitude. But note that if all the

terms {a1, . . . , an} share the same sign, then the condition number is 1, which is the
lowest possible condition number we can obtain. The Kahan summation algorithm
will work very well in these cases.

This algorithm will be used in some calculations to improve accuracy, when
adding relatively large numbers of positive numbers.
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Chapter 2

Path Integration

2.1 Pathwise numerical approximation of Stochastic

Differential Equations

In this section, as an introduction to Path Integration, we shall look at the most
intuitive and simple method of approximating the path of a SDE. Consider the SDE

dXt = a(Xt, t) dt+ b(Xt, t) dBt (2.1)

Where B is a Brownian motion process as usual, Xt is a state vector in Rn and
a, b : Rn × [0, T ]→ Rn. Or written in its equivalent form

Xt′ = Xt +

∫ t′

t

a(Xτ , τ) dτ +

∫ t′

t

b(Xτ , τ) dBτ . (2.2)

We make the simple assumption that a(Xτ , τ) ≈ a(Xt, t) and b(Xτ , τ) ≈ b(Xt, t) in
τ ∈ [t, t′], thus we get

Xt′ ≈ Xt + a(Xt, t)∆t+ b(Xt, t)∆Bt (2.3)

where ∆t = t′ − t and ∆Bt = Bt′ − Bt. This approximation is known as the Euler
Scheme, as it uses the same idea Euler used to approximate ordinary differential
equations in his time. The Euler Approximation belongs to a more general class of
approximations called Runge-Kutta methods. Where in general, the explicit Runge-
Kutta method takes the form

Ĩ = ∆t
s∑

i=1

biki (2.4)

where

k1 = a(Xt, t)

k2 = a(Xt + a2,1∆tk1, t+ c2∆t)

...

ks = a(Xt + as,1∆tk1 + as,2∆tk2 + · · ·+ as,s−1∆tks−1, t+ cs∆t).

where {bi}i and {ai,j}i,j are appropriately chosen sequences of real numbers such
that the methods are consistent and converge. We make the notion of convergence
precise in the next definition.

11
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Definition 2.1. Given the Ordinary Differential Equation

dx = a(x, t) dt (2.5)

x(0) = x0 (2.6)

and some time interval [0, T ], with a corresponding set of times 0 = t0 < t1 < · · · <
tn−1 < tn = T . Denote by x(T ) the exact solution of the above ODE at time t = T ,
and by xT the approximate solution achieved from the RK-method by iterating over
Xtn+1 = Xtn + (tn+1 − tn)

∑s
i=1 biki, then we say that the RK-method converges at

time T if
lim
h→0+

‖x(T )− xT‖ = 0. (2.7)

where h = max
n
{tn+1 − tn}.

Definition 2.2. A convergent RK-method is of order k if we have the relationship
between the exact solution X(T ) at time T , the approximate solution xT at time T
and h = max

n
{tn+1 − tn}

‖x(T )− xT‖ < Chk (2.8)

Denote the term
∑s

i=1 biki by r(a,Xt, t) for short, then by replacing the vector
a(Xt, t) by r(a,∆t) we obtain a higher order approximation for the deterministic
term,

Xt′ = Xt + r(a,Xt, t)∆t+ b(Xt, t)∆Bt. (2.9)

It is also possible to obtain a higher order approximation for the diffusion term
b(Xt, t), and we shall also look at a higher order scheme, known as the Milstein
scheme later in this thesis.

It is interesting to know whether an approximation like in equation (2.9) con-
verges, and in what sense. We would at last want the approximate solution to
approximate the expected value and the variance of the exact solution arbitrarily
well as ∆t→ 0, as well as any pth moment. A notion of convergence that captures
all of these properties, is the notion of weak convergence, which is given below

Definition 2.3. A pathwise scheme X̃t approximating the solution of Xt of a given
stochastic differential equation at discrete equidistant times 0 ≤ t1 < · · · < tn = T ,
is said to have a weak convergence of order δ if there exists a number Ch < ∞
independent of δt = ti+1 − ti such that

|E[h(X̃T )]− E[h(XT )]| < Ch(∆t)
δ (2.10)

for all h ∈ C2(δ+1)
P . The subscript P denotes that h has at most polynomial growth.

The author has not been able to find any general hard results on the weak
convergence of the approximation type of equation (2.9), however theory exists and
is well known [1][3] that when r(a,Xt, t) = a(Xt, t), that is, the approximation is an
Euler Scheme, then the following result exists

Theorem 2.4. Suppose that r(a,Xt, t) = a(Xt, t), and that there exists constants
K,D > 0 such that for all t ∈ [0, T ], the following properties holds



2.1. PATHWISE NUMERICAL APPROXIMATIONOF STOCHASTIC DIFFERENTIAL EQUATIONS

• ‖a(x, t)− a(y, t)‖ ≤ K‖x− y‖

• ‖b(x, t)− b(y, t)‖ ≤ K‖x− y‖

• ‖a(x, t)‖2 ≤ D2(1 + ‖x‖2)

• ‖b(x, t)‖2 ≤ D2(1 + ‖x‖2)

• a(Xt, t), b(Xt, t) ∈ C4

• h(x) ∈ C4
p

• X0 has finite 4th moment.

Then there exists a constant C independent of ∆t such that the approximation X̃t

of Xt at t = T , given by equation (2.9) satisfies

|E[h(X̃T )]− E[h(XT )]| < C∆t (2.11)

In particular, this means that the method converges weakly of order 1. It seems
reasonable to assume that similar results will also hold, when r(a,Xt, t) is a higher
order method

Consider now the stochastic process {Xi∆t}∞i=0 where (2.9) is the governing equa-
tion, we observe that by conditioning Xn∆t on its past, and using the independent
increment property of the Wiener-process, we obtain

(X(n+1)∆t|Xn∆t = xn ∩ · · · ∩X0 = x0)

= xn + r(a, xn, t) + b(xn, t)(∆Bn∆t|Xn∆t = xn ∩ · · · ∩X0 = x0)

= xn + r(a, xn, t) + b(x, t)∆Bn∆t = (X(n+1)∆t|Xn∆t = xn) (2.12)

Since ∆Bn∆t ∼ N (0,∆tI), then X(n+1)∆t should similarly also be Gaussian distrib-
uted under certain conditions.

If zero-rows in the n×m matrix b(Xt, t) exists, say r < n rows, then rearrange
the state space vector Xt and b(Xt, t) such that

bij(Xt, t) = 0 for i = 1, . . . , r and j = 1, . . . ,m

and such that the remaining n − r rows are not zero rows. Then by defining the
diffusion matrix g(x, t) as the matrix product g(x, t) = b(x, t)b(x, t)T , we see that
this matrix takes the form

g(x, t) =

[
0 0
0 g̃(x, t)

]

(2.13)

where 0 represents appropriate 0-matrices and g̃(x, t) is the (n−r)×(n−r) submatrix
corresponding to the product b̃(x, t)b̃(x, t)T , where b̃(x, t) is the (n−r)×m submatrix
of b(x, t) of non-zero rows. For reasons we shall see later, we would like the sub-
matrix g̃(x, t) to symmetric positive definite, the next lemma provides a nice criterion
for just that.

Lemma 2.5. Suppose that the n × m matrix b(t) has r < n zero-rows, then the
(n− r)× (n− r) sub-matrix g̃(t) of g(t) as defined in equation (2.13) is symmetric
positive definite if and only if b(t) has rank n− r
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Proof. Let b̃(t) be defined, as before, as the (n−r)×m sub-matrix of b(t) consisting
of the non-zero rows, then the rows b̃(t) must be linearly independent, as the rows
remaining r rows of b(t) are zero-rows and the rank of b(t) is n − r, thus the sub-
matrix b̃(t) also has rank n− r.

g̃(t) = b̃(t)b̃(t)T is positive definite if and only if xT g̃(t)x > 0 for all (x 6= 0) ∈
Rn−r, this product can be rewritten

xT g̃(t)x = xT (b̃(t)b̃(t)T )x = (b̃(t)Tx)T (b̃(t)Tx) = ‖b̃(t)Tx‖22. (2.14)

From the last equality, we can see that xT g̃(t)x ≥ 0 for all x ∈ Rn−r and that
xT g̃(t)x = 0 if and only if b̃(t)Tx = 0. Now we have already noted that b̃(t) has rank
n− r so b̃(t)Tx = 0 if and only if x = 0, thus xT g̃(t)x > 0 for all (x 6= 0) ∈ Rn−r.

g̃(t) is symmetric as g̃(t)T = (b̃(t)b̃(t)T )T = b̃(t)b̃(t)T = g̃(t).
Suppose that g̃(t) is positive definite, then b̃(t)Tx = 0 if and only if x = 0, which

implies that b̃(t) has rank n− r, which in turn implies that b(t) has rank n− r
Note that it is necessary to have m ≥ n− r for g̃(t) to be positive definite.
Suppose now that B(t) with r zero-rows has rank n − r, then by looking at

equation (2.12), it is clear that X(n+1)∆t has a degenerate multivariate Gaussian
distribution with mean value µ(x, t, t′) = x + r(a, x, t)∆t and covariance matrix
Σ(x, t, t′) = b(x, t)(∆tI)b(x, t)T = ∆tg(x, t), as long as g̃(x, t) is symmetric positive
definite, given by:

dX(n+1)∆t|Xn∆t
(x′, t′, x, t) =

r∏

i=1

δ(x′i − xi − ri(a, xi, t)∆t) · d̃X(n+1)∆t|Xn∆t
(x′, t′, x, t)

(2.15)
where δ denotes the Dirac delta function and

d̃X(n+1)∆t|Xn∆t
(x′, t′, x, t) =

1

(2π∆t)(n−r)/2|g̃(x, t)|1/2

exp

[

− 1

2∆t

n∑

i=r+1

n∑

j=r+1

(x′i − xi − ri(a, x, t)∆t)[g̃(x, t)−1]i−r,j−r(x
′
j − xj − rj(a, x, t)∆t)

]

(2.16)

where [g̃(x, t)−1]i,j denotes the element in the ith row and the jth column of the
inverse matrix of g̃(x, t). What has been discussed in this section can be nicely
summarized in the following theorem.

Theorem 2.6. The stochastic process {Xi∆t}∞i=0 governed by

Xt′ = Xt + r(a,Xt, t)∆t+ b(Xt, t)∆Bt (2.17)

is a Markov chain with transition kernel k(x′, x, t′, t) = dX(n+1)∆t|Xn∆t
(x′, t′, x, t) as

in (2.15) and transition measure

K(S, x, t′, t) =

∫

S

k(y, x, t′, t) dy (2.18)

if the n ×m matrix b(x, t) with r zero-rows has rank n − r for all values of x and
t ≥ 0

This result will be very central in deriving Path Integration.
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2.1.1 The Milstein Scheme

We shall here briefly discuss the Milstein scheme, which in a certain sense is a higher
order approximation for the diffusion term than the Euler scheme.

The idea of the scheme, starting with the stochastic differential equation

Xt′ = Xt +

∫ t′

t

a(Xτ , τ) dτ +

∫ t′

t

b(Xτ , τ) dBτ , (2.19)

is to apply Itô’s formula on the mapping Xt− > B(Xt, t), which gives

Xt′ = Xt +

∫ t′

t

a(Xτ , τ) dτ +

∫ t′

t

[b(Xt, t)

+

∫ τ

t

(
∂b(Xs, s)

∂s
+ b(Xs, s)

∂B(Xs, s)

∂Xs

+
1

2
(b(Xs, s))

2∂
2B(Xs, s)

∂x2

)

ds

+

∫ τ

t

b(Xs, s)
∂b(Xs, s)

∂Xs

dBs] dBτ (2.20)

It can be shown, that in a certain sense, in terms of order of convergence, dBt ≈√
dt[4], so applying this logic we have dt dBt ≈ (dt)(3/2). As the double integral

with dtdBt, heuristically speaking, is the highest order term, we neglect this double
integral, which leaves us with.

Xt′ ≈ Xt +

∫ t′

t

a(Xτ , τ) dτ +

∫ t′

t

[b(Xt, t) +

∫ τ

t

b(Xs, s)
∂b(Xs, s)

∂Xs

dBs] dBτ (2.21)

By assuming, as before, that the integrands are approximately constant over the
integration interval, then

Xt′ ≈ Xt + a(Xt, t)∆t+ b(Xt, t)∆Bt +
1

2
b(Xt, t)

∂b(Xt, t)

∂Xt

((∆Bt)
2 −∆t), (2.22)

this is known as the Miller scheme. By replacing a(Xt, t) with a Runge-Kutta ap-
proximation r(a,Xt, t), we get what we shall refer to as the Runge-Kutta-Milstein(RKMI)
approximation, given by

Xt′ ≈ Xt + r(a,Xt, t)∆t+ b(Xt, t)∆Bt +
1

2
b(Xt, t)

∂b(Xt, t)

∂Xt

((∆Bt)
2 −∆t). (2.23)

Theorem 2.6 is still valid for the stochastic process that arises from this approx-
imation, however, the transition kernel changes. By conditioning on Xt, it can be
shown[5], by observing that the right hand side of (2.23) is simply a quadratic poly-
nomial of the N(0,∆t)-distributed variable ∆Bt, that the transition kernel is given
by, assuming that the noise only enter through the last dimension

k(x′, t′, x, t) =
n−1∏

i=1

δ(x′i − xi − r(a, xi, t)∆t)
[k2(x

′
n − c)]−1/2

2
√
2π∆t

2∑

j=1

e

[

− (
√

(x′n−c)/k2+(−1)jk1)
2

2∆t

]

(2.24)

c = xn + rn(a, xn, t)∆t− k2∆t− k21k2

k1 =

(
∂bnn(xn, t)

∂xn

)−1

k2 =
1

2
bnn(xn, t)

∂bnn(xn, t)

∂xn
.
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This expression is valid if c < x′n, if it is not, then x(x′, t′, x, t) = 0.

It can be shown [1][4] that the approximation given in (2.22) converges weakly of
order 1, which is exactly the same as the order of convergence for the Euler scheme,
but with a more complicated expression. So how exactly is the Milstein scheme
better than the Euler scheme? The answer lies in the concept of strong convergence

Definition 2.7. A pathwise scheme X̃t approximating the solution of Xt of a given
stochastic differential equation at discrete equidistant times 0 ≤ t1 < · · · < tn = T ,
is said to have a strong convergence of order γ if there exists a numberK independent
of ∆t = ti+1 − ti such that

E

(

sup
t∈[0,T ]

|Xt − X̃t|
)

< K(∆t)γ (2.25)

Strongly, the Euler scheme only converges of order (1/2)[1][4], the Milstein ap-
proximation can be shown to converge of order 1, however, and is better in this
regard.

We shall also explore later in an example, if the solution can be improved with
the RKMI-approximation when b(Xt, t) takes on values close to zero, on the relevant
grid.

2.2 Generalized Cell Mapping

Before deriving Path Integration, we will introduce the technique of Generalized
Cell Mapping (GCM). It builds on the discussion of the previous section, and the
result of theorem 2.6, which states that the approximation given in equation (2.9).

The basic idea is very simple, we divide the state space into a countable number
of cells Ci, which are generally boxes, and assign some probability pi(n) for the
system to stay in cell Ci at time step n. The governing equation that gives the
probability for the cells at the next time step, is simply the law of total probability

pi(n) =
∑

j

P
(n,n−1
ij pj(n− 1) (2.26)

The transition probabilities P
(n,n−1)
ij are generally calculated from the transition

kernel, but the computation can be quite tricky. It is possible, and usual, to ap-
proximate by assigning the probability of cell j to its center cj and then use the
transition kernel defined in theorem 2.6, to approximate the transition probability
to cell i by

P
(n,n−1)
ij ≈

∫

Ci

p(x, n∆t, xj , (n− 1)∆t) dx (2.27)

Not surprisingly, the more cells that we divide a bounded subset of Rn into, the more
we expect the approximate distribution of the solution to follow the distribution of
the exact solution of the SDE.
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2.3 Derivation of Path Integration

Now that we have had a brief review of path-wise numerical approximation of the
SDE and the GCM method, we are ready to derive Path Integration.

The basic idea, and the governing equation is similar to the one used in deriving
Generalized Cell Mapping. But instead of first dividing the state space into subsets,
we look at the we look at the approximation in equation (2.9), which is valid for any
value of x ∈ Rn, and instead use the integral version of the law of total probability

p(x′, t′) =

∫

Rn

p(x′, t′|x, t)p(x, t) dx. (2.28)

We shall look at Path Integration in terms of Stochastic Operators. We first define
what we mean by the Path Integration Operator (PIO).

Definition 2.8. The Path Integration Operator is a mapping PIt : L1(Rn) →
L1(Rn), defined for each probability density u0 by

ut = PIt′,tu0 =

∫

Rn

k(y, x, t′, t)u0(x) dx (2.29)

where k is the transition kernel, given in theorem 2.6.
If transition kernel is time-invariant, we define the Time-Homogeneous Path

Integration Operator as

ut = PI∆tu0

∫

Rn

k(y, x,∆t)u0(x) dx (2.30)

Typically, we find an approximation for the distribution of the solution at time T ,
by dividing the set [0, T ] into subsets between the points 0 = t0 < t1 < · · · < tn = T ,
and iterate

uti = PIti,ti−1
uti−1

(2.31)

Now it should be noted that if the points are equidistant, that is ti+1 − ti = ∆t for
all i = 0, 2, . . . , n−1, and if the functions a and b in equation (2.9) do not depend on
time explicitly, then the PI-operator becomes time-homogeneous, and in particular,
it means that we only need to calculate the transition kernel once, and can use it
at every iteration. For a SDE not depending explicitly on time, this can be very
useful, and will be explored in later chapters

As it stands, we have said very little about the PI-operator other than stating
what it is. But there are properties the PI-operator is desired to have. For example,
if f is some distribution, we would like the PI-operator to preserve this property.
In particular, the function must be everywhere non-negative, and its norm must be
one.

Definition 2.9. Let (X,F , µ) be a measure space, then a linear operator P :
L1(X) → L1(X) is said to be a Markov Operator if the following properties are
satisfied

• Pf ≥ 0 for all f ∈ L1(Rn) satisfying f ≥ 0

• ‖Pf‖1 = ‖f‖1 for all f ∈ L1(Rn) satisfying f ≥ 0
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Theorem 2.10. The PI-operator is a Markov Operator

Proof. By linearity of an operator, we mean that for any functions f, g ∈ L1(Rn),

P (f + αg) = Pf + αPg, for all α ∈ C (2.32)

• The linearity property follows directly from the fact that function multiplica-
tion and integration are linear mathematical operators.

• If f(x) ≥ 0, then k(y, x, t′, t)f(x) ≥ 0, and a basic property of the Lebesgue
integral is then that PIt′,t =

∫

Rnk(y, x, t
′, t)f(x) dx ≥ 0.

• Note first that k(y, x, t′, t) ∈ L1
xR

n for all y ∈ Rn and t 6= t′, so from Fubini’s
theorem[6], we can exchange the order of integration:

‖PIt′,tf‖ =
∫

Rn

∫

Rn

k(y, x, t′, t)f(x) dx dy (2.33)

=

∫

Rn

f(x)

(∫

Rn

k(y, x, t′, t) dy

)

dx, (2.34)

note that the mapping y → k(y, x, t′, t), where k is as defined in theorem 2.6,
is a distribution for all values of x ∈ Rn and t′ 6= t, so

∫

Rnk(y, x, t
′, t) dy = 1,

thus

‖PIt′,tf‖1 =
∫

Rn

f(x) dx = ‖f‖1. (2.35)

So the PI-operator does preserve distributions, and in addition we also saw that
it is linear. This is a very nice property, that allows us to divide the state space into
subsets and use the PI-operator separately on each subset. To see this, let {Ci}
be a countable family of Borel-measurable subsets of Rn, then we can represent the
function f by f(x) =

∑

i 1Ci
(x)f(x), where 1 is the indicator function

1Ci
(x) =

{
1 : x ∈ Ci

0 : x /∈ Ci
(2.36)

Denote by fn(x) the sequence of partial sums fn(x) =
∑n

i=1 1Ci
(x)f(x), then clearly

fn(x) → f(x) as n → ∞,fn(x) ≤ f(x) ∈ L1(Rn) with f ≥ 0 for all n ∈ Z, and
fn(x) ∈ L1(Rn) for all n ∈ Z as 1Ci

∈ L1(Rn) for all Borel-measurable sets Ci. Thus,
by the Dominated Convergence Theorem we have

PIt′,tf = PIt′,t

(

lim
n→∞

fn

)

(2.37)

= lim
n→∞

PIt′,tfn (2.38)

= lim
n→∞

PIt′,t

(
n∑

i=1

1Ci
(x)f(x)

)

(2.39)

=
∑

i

PIt′,t(1Ci
(x)f(x)) =

∑

i

∫

Ci

k(y, x, t′, t)f(x) dx. (2.40)

In particular, for each time-step we can calculate each term in the sum independently
of each other, which is great for parallel-computing.

The concept of semi-groups is slightly more general, and can be defined as
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Definition 2.11. Let (X,F , µ) be a measure space. The family of stochastic oper-
ators Pt : L

1(X)→ L1(X) is said to form a Stochastic Semi-Group, if the operator
Pt is a Markov Operator for each t ≥ 0 and in addition

Pt+t′f = Pt(Pt′f), for all f ∈ L1(X). (2.41)

If in addition

lim
t→t′
‖Ptf − Pt′f‖1 = 0 (2.42)

the family of operators is called a Continuous Stochastic Semi-Group.

The time-homogeneous PI-operator forms a stochastic semi-group. We have
already shown that it is a Markov operator, the property that PIt+t′f = PIt(PIt′f)
follows directly from the Chapman-Kolmogorov equation, and by using Fubini’s
theorem once again to exchange order of integration

PIt+t′f =

∫

Rn

k(y, x, t′, t)f(x) dx =

∫

Rn

(∫

Rn

k(y, z, t′)k(z, x, t) dz

)

f(x) dx (2.43)

=

∫

Rn

k(y, z, t′)

(∫

Rn

k(z, x, t)f(x) dx

)

dz = PIt′(PItf). (2.44)

No that we have derived the PI-operator, the governing equation and seen that
the operator behaves as we want it, we take a look at the practical challenges of
implementing Path Integration numerically on a computer.

2.4 Implementation of Path Integration

Now that the theoretical groundwork the Path Integration has been laid, we will
discuss more practical consideration when implementing this method on a computer
which have finite memory and finite computation speed.

2.4.1 Calculating integrals of unbounded sets on a computer

We start by looking at the PI-operator

PIt′,tf =

∫

Rn

k(y, x, t′, t)f(x) dx. (2.45)

To be able to compute this in finite time on a computer, we need to restrict the
above integral to some subset of Rn, ideally we want to have a manageable subset
that covers most of the area where k(y, x, t′, t)f(x) > ǫ for some small value of ǫ.

If we consider the case where there is noise in only one dimension, that is, the
dimension of the matrix g̃(x, t) in equation (2.13) is 1×1, then the transition kernel
for the corresponding Markov chain becomes

k(x′, x, t′, t) =
n−1∏

i=1

δ(x′i − xi − ri(a, xi, t)∆t) · d̃X(n+1)∆t|Xn∆t
(x′, t′, x, t) (2.46)
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where

d̃X(n+1)∆t|Xn∆t
(x′, t′, x, t) =

1
√

2π∆tg̃(x, t)
exp

[

−(x′n − xn − rn(a, x, t)∆t)2
2∆tg̃(x, t)

]

(2.47)

We see that d̃X(n+1)∆t|Xn∆t
(x′, t′, x, t) is Gaussian with variance σ2 = g̃(x, t)∆t. If

g(x, t) is independent of x and t, say g(x, t) = C < ∞, then we can say by looking
at a standard table giving probabilities for normal distributions that

P (|X − µ| < 3σ) ≈ 0.998 (2.48)

In other words, the error when calculating Ĩ =
∫ µ+3σ

µ−3σ
dX(x) dx as opposed to the

exact integral I =
∫

R
dX(x) dx is

|Ĩ − I| ≈ 0.002, (2.49)

which should be small enough for most practical considerations.
We assume that k(y, x, t′, t)f(x) does not decay much slower to zero than k(y, x, t′, t),

which will most of the time be true for Path Integration, as the solution at the pre-
vious time step often is bounded and has exponential decay at the tails. To be even
more sure, we can make the length of the integration interval 10 times the variance
of k(y,x,t’,t), rather than 6.

Thus, as a rule of thumb, the integration interval [µ − 5σ, µ + 5σ] will be used
when calculating the integral given in the PI-operator, when there is noise in one
dimension, and the variance of the normal distribution part is constant.

Suppose that g̃(x, t) is not independent of x and t, but that supx |g(x, t)| exists
for each t, and is finite. Then we can set σ2 = supx |g(x, tn)| for each time-step tn
and apply the same integration interval as above.

If g̃(x, t) is not a 1 × 1 matrix, but is diagonal, and for each diagonal element
gii(x, t), supx |gii(x, t) exists and is finite for each t. Then we can set the σ2

i =
supx |gii(x, t)|, and let the integration area be the smallest box that contains the
n-ellipsoid with radii ri = 5σi.

The other cases gets more complicated, and will not be discussed in this thesis.

2.4.2 Numerical Integration

Just as we can not consider the whole space Rn when calculating a computer, we
can not consider non-finite subsets of points of Rn either. When we have chosen
an appropriate bounded subset to integrate over, we must choose some appropriate
finite set of points {xi} to represent the bounded subset. Typically, we divide the
bounded subset, which will often be a box, into a grid, and choose the set of points
{xi} where the lines intersects appropriately.

Consider now the transition kernel

k(y, x, t′, t) =
r∏

i=1

δ(x′i − xi − ri(a, x, t)∆t) · d̃(n+1)∆t(x
′, t′, x, t) (2.50)

where d̃(n+1)∆t(x
′, t′, x, t) is as in equation (2.16) as before. The distribution of the

solution at the next timestep t′ given the distribution of the solution p(x, t) at the
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previous time step then becomes

p(x′, t′) = PIt′,tp(x, t) =

∫

D

1̃d(n+1)∆t(x
′, t′, x, t)p(x, t) dx, (2.51)

where D = {(xr+1, . . . , xn) ∈ Rn−r: there exists (x1, . . . , xr) ∈ Rr such that x′i =
xi+ri(a, x, t)∆t) for each i = 1, . . . , r} . But to find the the setD is very impractical,
difficult, and in some cases impossible. A better approach, is to do a substitution
x̃ = x+ r(a, x, t)∆t, which removes the dependency of the integrals, and gives

p(x′, t′) =

∫

Rn−r

d̃(n+1)∆t(x
′, t′, x̃, t)p(g−1(x′1, x

′
2 . . . , x

′
r, x̃r+1, . . . , x̃n), t)|Jg−1| dx,

(2.52)
where g−1(x′1, x

′
2, . . . , x

′
r, x̃r+1, x̃n) is the unique vector x = (x1, x2, . . . , xn) such that

(x′1, x
′
2, . . . , x

′
r, x̃r+1, x̃n) = x+ r(a, x, t)∆t, |Jg−1| is the determinant of the Jacobian

of g−1(x′1, x
′
2 . . . , x

′
r, x̃r+1, . . . , x̃n), t), where the Jacobian is defined as

Jg−1 =











∂g−1
1

∂x1

∂g−1
1

∂x2
. . . . . .

∂g−1
1

∂xn
...

. . . . . . . . .
...

...
. . .

...
∂g−1

n

∂x1
. . . . . . . . . ∂g−1

n

∂xn











(2.53)

and

d̃(n+1)∆t(x
′, t′, x̃, t) =

1

(2π∆t)(n−r)/2|g̃(g−1(x′1, . . . , x
′
r, . . . , x̃n, ), t)|1/2

exp

[

1

2∆t

n∑

i=r+1

n∑

j=r+1

(x′i − x̃i)[g̃(g−1(x′1, . . . , x
′
r, . . . , x̃n), t)

−1]i−r,j−r(x
′
j − x̃j)

]

.

(2.54)

The main advantage of this substitution is to remove the dependency of the integra-
tion area that the delta functions enforce, by making the {x̃i} independent of each
other in the delta function, which the {xi} were not, such that we do not need to
integrate over the arbitrary, problem dependent set D. The second advantage is a
transition which has a simpler form, which becomes easier to use if one wants to
choose quadrature points, according to the transition kernel.

This substitution makes clear another challenge. We need to calculate
p(g−1(x′1, x

′
2 . . . , x

′
r, x̃r+1, . . . , x̃n), t) where g−1(x′1, x

′
2 . . . , x

′
r, x̃r+1, . . . , x̃n) generally

is not in the grid, for which we store function values for p. A method to solve this,
would be to approximate g−1(x′1, x

′
2 . . . , x

′
r, x̃r+1, . . . , x̃n) by choosing the point in

the grid which is closest to g−1(x′1, x
′
2 . . . , x

′
r, x̃r+1, . . . , x̃n) in the ‖ · ‖2-norm sense.

Let {x̃i} denote the set of points that solve x′,i = x+r(a, x̃i, t)∆t for each x
′,i. In

order to integrate, we need p(x̃i, t) for each i. These points will generally not lie in the
chosen grid however, and unless we choose a really dense grid, then approximations
by p(x̃i, t) ≈ p(xj, t) where xj is the closest point in grid, will generally be poor.

A better approach, is to use the values we already have for p at time t at the
points {xi} to interpolate p at {x̃i}. The interpolation method we will use, is basis
splines (B-splines), which will be discussed in section 2.4.4.
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2.4.3 Methods of integration

As noted earlier, we cannot in general calculate the integral

p(x′, t′) =

∫

Rn−r

d̃(n+1)∆t(x
′, t′, x̃, t)p(g−1(x′1, x

′
2 . . . , x

′
r, x̃r+1, . . . , x̃n), t)|Jg−1| dx,

(2.55)
analytically. We need to restrict the integral to a bounded subset of Rn−r and even
then we cannot calculate the integral analytically, because we only know the function
value at a finite number of points within the bounded subset.

We therefore generally use quadrature rules, which given points a ≤ x1 ≤ · · · ≤
xn ≤ b approximate the integral of f(x) from x = a to x = b, by the sum

∫ b

a

f(x) dx ≈
n∑

i=1

wif(xi) (2.56)

where wi are finite weights, which generally have the property
∑n

i=1wi = b− a.
There are many different ways of both choosing the weight and the quadrature

points in order to obtain different degrees of precision, but for ease we will stick with
equidistant quadrature points and a couple of basic quadrature rules. In particular,
the quadrature we will be looking at, are all based on polynomial interpolation.

The first, and simplest rule of interpolation, is to simply assume that f(x) is
approximately equal to f(a) over the interval [a, b], which leads to the quadrature
rule ∫ b

a

f(x) dx ≈
∫ b

a

f(a) dx = f(a)(b− a) (2.57)

if the function f(x) actually is constant of the interval [a, b] that is, it is a 0-degree
polynomial, then naturally, the above formula calculates the integral of the function
exactly, but if f is not constant over the interval, the above formula does not ne-
cessarily give the exact value of the integral. We therefore say that this quadrature
rule is of precision 0.

The second rule, which is commonly known as the trapezoidal rule, and it is
derived from approximating the function f by linear interpolation between f(a) and
f(b), that is

f(x) ≈ x− b
a− bf(a) +

x− a
b− a f(b) (2.58)

which leads to the quadrature rule

∫ b

a

f(x) dx ≈
∫ b

a

x− b
a− bf(a) +

x− a
b− a f(b) dx

=
1

2

[
(x− b)2
a− b f(a) +

(x− a)2
b− a f(b)

]b

a

=
b− a
2

(f(a) + f(b)). (2.59)

As a linear function is uniquely defined by two function values, the polynomial
interpolation of any linear function, that is, first order polynomial is exact. Thus,
the above formula also exactly integrates any first order polynomial over [a, b]. But
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it does not necessarily integrate exactly a polynomial of any higher degree, therefore
we say that this quadrature rule is of precision 1.

The third and final rule which will be presented here, is commonly known as
Simpson’s rule. This rule is based on interpolation of the the function f by a second
order polynomial, using f(a), f((a+ b)/2) and f(b) by

f(x) ≈ 2
(x− a+b

2
)(x− b)

(a− b)2 f(a) + 4
(x− a)(x− b)
(b− a)(a− b) f

(
a+ b

2

)

+ 2
(x− a)(x− a+b

2

(b− a)2 f(b)

(2.60)
With an easy but longer calculation, it can be shown that this leads to the quadrature
rule
∫ b

a

f(x) dx

≈
∫ b

a

2
(x− a+b

2
)(x− b)

(a− b)2 f(a) + 4
(x− a)(x− b)
(b− a)(a− b) f

(
a+ b

2

)

+ 2
(x− a)(x− a+b

2

(b− a)2 f(b) dx

=
b− a
6

[

f(a) + 4f

(
b+ a

2

)

+ f(b)

]

(2.61)

It can be shown that, not only does Simpson’s rule integrate second degree polyno-
mials, as one might expected, but it also integrates third degree polynomials exactly.
But it does not necessarily integrate exactly polynomials of degree 4 or higher, so
Simpson’s rule is said to be of precision 3.

These quadrature rules are good, but become imprecise when b − a > 1, we
therefore often divide the interval [a, b] into smaller sub-intervals restricted by the
points a = x1 < x2 < · · · < xn = b, where they are equidistant: xi+1 − xi = h for
i = 1, . . . , n− 1 and we preferably have that h << 1. We can thus write

∫ b

a

f(x) dx =
n−1∑

i=1

∫ xi+1

xi

f(x) dx (2.62)

By applying the quadrature rules on each of these sub integrals, we get composite
quadrature rules. For the first mentioned rule, it becomes

∫ b

a

f(x) dx ≈ h
n−1∑

i=1

f(xi). (2.63)

For the trapezoidal rule, we get

∫ b

a

f(x) dx ≈ h

2
(f(x1) + 2f(x2) + 2f(x3) + · · ·+ 2f(xn−1) + f(xn)). (2.64)

And finally, for Simpson’s rule, we get, provided that [a, b] is divided into an even
number of sub-intervals
∫ b

a

f(x) dx ≈ h

3
(f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + · · ·+4f(xn−1) + f(xn)) (2.65)

Note that h in (2.65) corresponds to 2h in (2.61), we therefore get 3 in the denom-
inator instead of 6 in the composite rule of Simpson’s rule.
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Because of no added cost of calculation, and the high precision, we will stick
with Simpson’s rule for calculating the integral in equation (2.55). In the following
example we will present a rule of thumb for the amount of quadrature point for a
certain type of SDE

Example 2.12. Consider the SDE

dXt = a1(Xt, Yt, t) dt (2.66a)

dYt = a2(Xt, Yt, t) dt+
√

DξdBt (2.66b)

where Dξ is a positive constant. The solution at time t′ then becomes, according to
equation (2.55)

p(x′, y′, t′) =

∫

R

exp
(

− (y′−ỹ)2

2∆tDξ

)

√
2π∆tDξ

p(g−1(x′, ỹ, t))|Jg−1| dỹ (2.67)

where g−1 is, as usual, the inverse of the transformation (x̃, ỹ) = (x+r1(x, y, t)∆t, y+
r2(x, y, t)), where r is the RK-step vector for the SDE, and |Jg−1| is the determinant
of the Jacobian of the inverse of the transformation.

Assuming that the assumption that the transition kernel dominates the behavior
of the integral, we earlier presented the rule of thumb for the integration interval,
where we chose the length of the integration interval to be 10 times the size of the
variance. In other words, we integrate over [y′ − 5

√
∆tDξ, y

′ + 5
√
∆tDξ] where

∆tDξ in this case is the variance. In a similar manner, we want to find a rule of
thumb for the number of equidistant points when numerically integrating over this
interval.

By introducing the linear transformation y = (y′ − ỹ)/
√

∆tDξ, we obtain from
the integral

∫ y′+5
√

∆tDξ

y′−5
√

∆tDξ

1
√
2π∆tDξ

exp

(

−(y′ − y)2
2∆tDξ

)

dx =

∫ 5

−5

1√
2π

exp

(

−y
2

2

)

dx (2.68)

which is the standard normal distribution with mean value 0 and variance equal to
1. Since the transformation this transformation only translates and magnifies the
solution, we do not change any of the basic properties of the function, and finding
a good number of quadrature point for the standard normal distribution, should
therefore be equally good for any other normal distribution unless

√
∆tDξ is a very

small number.
Since the value of the integral in equation (2.68) ideally should be close to 1,

we define the integration error in calculating the numerical approximation using the
composite trapezoidal rule with a number n of equidistant quadrature points, as the
absolute value of the difference of the calculated approximation and 1.

Table 2.1 shows the progression of the error when using an increasing number
of quadrature nodes on the standard normal distribution, while integrating on the
interval, and as can be seen, for n > 25, not much is gained in terms of accuracy by
having more quadrature points. So as to not use an excessive amount of quadrature
points, choosing n = 25 quadrature points seems to be a good rule of thumb, which
at the same time provides high accuracy.
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n Error
9 0.028
13 5.48 · 10−4

17 2.88 · 10−6

25 6.12 · 10−7

29 5.96 · 10−7

33 5.87 · 10−7

Table 2.1: The table shows integration error in example 2.12 as a function of the
number of quadrature points, used for the numerical integration. The error is repres-
ented by the absolute value difference between the calculated values of the integral
from the composite Simpson’s rule and 1.

2.4.4 B-splines

In one dimension, a basis spline is formally constructed from a set of points x0 < x1 <
. . . xm ∈ R called knots. Associated to these knots, we have numbers {P0, P1, . . . , Pm−n−1

called control points. A B-spline is then a function

S(x) =
m−n−1∑

i=0

Pibi,n(x) (2.69)

where bi,n is the basis polynomial-spline associated with Pi of degree n, given by the
recursive formula

bi,0 =

{
1 : xi ≤ x ≤ xi+1

0 : otherwise
(2.70)

bi,n =
t− ti
ti+n − ti

bi,n−1(x) +
xi+n+1 − x
xi+n+1 − xi+1

bi+1,n−1(x) (2.71)

given a uniform sequence of knots−m∆x < −(m+1)∆xz < · · · < (n−1)∆x < n∆x,
it can be seen that the cubic basis-splines with n = 3, becomes

bi−2,3 =







1
6

(
2 +

(
x−i∆x
∆x

))3
: (i− 2)∆x ≤ x ≤ (i− 1)∆x

1
6

(

4− 6
(
x−i∆x
∆x

)2 − 3
(
x−i∆x
∆x

)3
)

: (i− 1)∆x ≤ x ≤ i∆x

1
6

(

4− 6
(
x−i∆x
∆x

)2
+ 3

(
x−i∆x
∆x

)3
)

: i∆x ≤ x ≤ (i+ 1)∆x

1
6

(
2−

(
x−i∆x
∆x

))3
: (i+ 1)∆x ≤ x ≤ (i+ 2)∆x

(2.72)

For ease of notation, and since we shall only use cubic splines, we shall henceforth
denote bi(x) = bi−2,3(x).

Suppose that for a function f(x) we have sampled the points {f(−m∆x), f((−m+
1)∆x), . . . , f((n−1)∆x), f(n∆x)} and want S(x) to interpolate f(x) at the sampled
points, then it becomes clear from the definition of S(x) and bi(x) that we need to
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solve a linear system of equations

P−mb−m(−m∆x) + P−m+1b−m+1(−m∆x) = f(−m∆x)

P−m+1b−m+1((−m+ 1)∆x) + P−m+1b−m+1((−m+ 1)∆x)

+ P−m+2b−m+2((−m+ 1)∆x) = f((−m+ 1)∆x)

...

Pn−2bn−2((n− 1)∆x) + Pn−1bn−1((n− 1)∆x) + Pnbn((n− 1)∆x) = f((n− 1)∆x)

Pn−1bn−1(n∆x) + Pnbn(n∆x) = f(n∆x)

Evaluating the function bi(x) at knots, and representing the system of equations as
a matrix, we get:

Mp =
1

6














4 1 0 · · · · · · 0

1 4 1 0 · · · ...

0 1 4 1
. . .

...
... 0

. . . . . . . . . 0
... · · · . . . 1 4 1
0 · · · · · · 0 1 4

























P−m

P−m+1
...
...

Pn−1

Pn












=












f(−m)
f(−m+ 1)

...

...
f(n− 1)
f(n)












Since A is strictly diagonal-dominant, it can easily be established from Gershgorin’s
theorem thatM is positive definite, and thus invertible. Thus we can find an unique
set control points for the cubic B-spline S(x), such that S(x) interpolates f(x).

2.4.5 Implementation of Basis-splines in R2

It is not immediately obvious, how to extend the interpolation of cubic B-splines from
R to R2 in a sensible way: We should find a way to compute the spline coefficients
from function data, without too much computations. Chapter 17 in [7] provides
a quite long exposition of this, by generalizing and making abstract the notion of
interpolation. We will, however, only need one result from this chapter, which is
explained in the following paragraph.

Given some knots defined in the grid y1 × y2, where y1 is a vector, defined
element-wise by y1(i) = i∆x for i = −m1,−m1 + 1, . . . , n1 − 1, n1 and y2 is a vector
defined element-wise by y2(i) = i∆x for i = −m2,−m2 + 1, . . . , n2 − 1, n2, with a
corresponding (m1 + n1 +1)× (m2 + n2 +1)-matrix Γ of spline coefficients. Let the
cubic B-spline on these knots be defined by

S(y1, y2) =
∑

i,j

Γ(i, j)bi ⊗ bj =
∑

i,j

Γ(i, j)bi(y1)bj(y2) (2.73)

where bi(x) are the cubic basis-splines defined in the previous section. Furthermore,
let A and B be matrices defined by A(i, j) = bj(y1(i)) for i, j = 1, . . . ,m1 + n1 + 1
and B(i, j) = bj(y2(i)) for i, j = 1, . . . ,m2+n2+1, and let LS be the matrix of values
of equation (2.73) at the knots. Then we have the following relationship between
the matrix Γ and the matrix LS

LS = AΓBT
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This can be shown directly by writing up

LS(r, s) = S(y1(r), y2(s)) =
∑

i,j

Γ(i, j)bi(y1(r))bj(y2(s))

=
∑

i,j

Γ(i, j)A(r, i)B(s, j)

= (AΓBT )(r, s), for all r, s.

The last equation needs some thought to see, but can easily be verified by con-
structing the matrix-product. In particular, we can retrieve the spline coefficients
from the values we wish the B-spline to have at the knots, simply by calculating:
Γ = A−1LSB

−T , if such inverse matrices exists.
For simplicity, let m = m1 + n1 + 1 and n = m2 + n2 + 1, we see that A and B,

such that they are defined, for the basis-splines defined in the previous section, are
simply m×m and n× n versions, respectively, of the matrix M also defined in the
previous section. That is, the tri-diagonal matrix with the value 4

6
on the diagonal,

and the value 1
6
on both the sub-diagonal, and 0 elsewhere. As we noted earlier, this

matrix is always positive definite, so A−1 and B−1 naturally exists.
The matrix Γ can be calculated from LS = AΓBT in the following way: Set

X = ΓBT , and let L
(j)
S and X(j) be the jth column of LS and X, then we can obtain

the matrix X by solving

AX(j) = L
(j)
S , for j = 1, . . . , n

After we obtain X, we have ΓBT = X, or equivalently: BΓT = XT , so by letting
X(i) and Γ(i) be the ith row of X and Γ, then we finally obtain Γ by solving

BΓT
(i) = XT

(i), for i = 1, . . . ,m

There is much to gain by calculating the spline matrix in such a manner, as
opposed to calculating them the ”brute-force” method by solving the linear system
of equations

∑

i,j

Γ(i, j)bi(y1(r))bj(y2(s)) = LS(r, s), for r = 1, . . . ,m , s = 1, . . . , n.

This is a system of nm equations with nm unknowns, which results in a nm ×
nm-matrix, which, in order to solve using Gauss-elimination, requires O((nm)3)
operations. In contrast, the above calculations, requires us to solve a m×m system
of equations n times, and then a n × n system of equations m times, which leads
to a total cost of O(m3n + n3m), which is substantially better. This is not even
the best we could do, we could produce an LU -factorization of the matrices A and
B, which costs O(m3 + n3), however for the subsequent calculations, we only need
O(m2n + n2m) calculations, which brings us up to a total cost of O(m3 + m2n +
n2m+ n3).

2.5 Implementation of Runge-Kutta

In calculating the PI-operator we need to calculate g−1(x′1, x
′
2, . . . , x̃r+1, . . . , x̃n),

which is the unique vector x = (x1, x2, . . . , xn) such that x+r(a, x, t)∆t = (x′1, x
′
2, . . . , x

′
r, x̃r+1, . . . , x̃n)
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for the relevant SDE. x can be approximated by using a root finding algorithm,
such as Newton’s method for example. It is however important to note, that even
if we find x exactly, then this is still just an approximation to the stochastic path
governed by the SDE that begins in some point x′′ ∈ Rn at time t, and end in
(x′1, x

′
2, . . . , x̃r+1, . . . , x̃n) at time t′. If the order of the Runge-Kutta method used is

p, then the error is in the order of O((∆t)p+1).
We can however do better than this, by exploiting the simple fact, that for the

general explicit Runge-Kutta method of order p:

x′ = xt+∆t = xt +∆t
s∑

i=1

biki(xt,∆t, k1, . . . , ki−1) +O((∆t)p+1)

the above equation is valid for any ∆t. In particular, it is valid for negative time-
steps, so by replacing yt with y and ∆t with −∆t, we obtain

x = xt−∆t = x′ −∆t
s∑

i=1

biki(x
′,−∆t, k1, . . . , ki−1) +O((∆t)p+1).

This gives a method that is implicit for steps forward in time, but explicit for y′, thus
we retain the same order of convergence, without the need to solve any non-linear
system of equations! Two different RK-schemes have been implemented, which are
given below, in where we in both cases assume a standard SDE with deterministic
term a(x, t).

2.5.1 Euler’s method

Euler’s method, which is the simplest RK-method, becomes when we step backwards
in time

xn = xn+1 − a(xn+1, tn+1)∆t+O(∆t2)

2.5.2 RK4

RK4 is perhaps the most used RK-method, and is very accurate, as it is a fourth
order method. The idea is to first calculate the slope at the known solution, suc-
cessively get to estimates for the slope in the middle of the interval time interval
between the known solution and the unknown solution from this, and then finally
get an estimate for the slope at the unknown solution. From this slopes, an weighted
average is produced, where extra weight is given to the two mid-point estimates. For
the backwards-stepping method, we calculate

k1 = a(xn+1, tn+1)

k2 = a(xn+1 −
1

2
k1∆t, tn+1 −

1

2
∆t)

k3 = a(xn+1 −
1

2
k2∆t, tn+1 −

1

2
∆t)

k4 = a(xn+1 − k3∆t, tn)

yn = xn+1 −
∆t

6
(k1 + 2k2 + 2k3 + k4)
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2.6 The Fokker-Planck Equation

The Fokker-Planck equation describes physically the probability density of the ve-
locity of a particle, and is due to Adriaan Fokker and Max Planck. The equation is
also known under the name Kolmogorov forward equation.

In one spatial dimension x, when the particle is driven by an Itô drift D1(x, t)
and diffusion D2(x, t), the Fokker-Planck equation can mathematically be given by

∂

∂t
f(x, t) = − ∂

∂x
[D1(x, t)f(x, t)] +

∂2

∂x2
[D2(x, t)f(x, t)]. (2.74)

This can be extended to more dimensions, when x = (x1, . . . , xn) ∈ Rn and the
equation is given by

∂

∂t
f(x, t) = −

n∑

i=1

∂

∂xi
[D1

i (x)f(x)] +
N∑

i=1

N∑

j=1

∂2

∂xi∂xj
[D2

ij(x)f(x)], (2.75)

where D1 : Rn → Rn is the drift vector and D2 : Rn → MAT(n,m) is the diffusion
matrix.

One great advantage of the Fokker-Planck equation is that it can be used to
compute the probability density for a stochastic process described by a stochastic
differential equation (interpreted in the Itô-sense)

dXt = a(Xt, t) dt+ b(Xt, t) dBT (2.76)

where the solution Xt, if the problem is well posed, satisfies the Fokker-Planck
equation with drift and diffusion terms

D1
i (x, t) = ai(x, t) (2.77a)

D2
ij(x, t) =

1

2

∑

k

bik(x, t)bjk(x, t), (2.77b)

so the time-depended distribution of the solution can sometimes be directly cal-
culated from the Fokker-Planck equation. It is mainly used to calculate time-
independent (stationary) solutions, however, which is readily given by the Fokker-
Planck equation by setting ∂

∂t
f(x, t) = 0.

In the examples that follows, we shall look at some of the stationary solutions as
well as explicit time dependent solutions that exists for various stochastic differential
equations

Example 2.13. A well known 1-dimensional SDE that models the velocity Xt of a
particle submerged in fluid, is calles the Langevin equation, and is given by

dXt = −aXt dt+ b dBt, Xt ∈ R, a, b ∈ R+ (2.78)

This equation does in fact have a well known exact analytical solution[1]. We can
find this heuristically by assuming that Xt = exp(−at)Yt and that the common
product rule for differentiation applies to this term. We then obtain, by plugging
into the equation:

− a(exp(−at)Yt) + exp(−at)Ẏt = −a(exp(−at)Yt) + bḂt+ (2.79)

=⇒ dYt = g exp(at) dBt (2.80)
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integrating the last integral, yields Yt = Y0+ b
∫ t

0
exp(as) dBs, which, with the initial

condition Y0 = x ∈ R gives the exact solution

Xt = exp(−at)
(

x+ b

∫ t

0

exp(as) dBs

)

(2.81)

Since the integrand in the above expression is non-stochastic, then the resulting
random variable is Gaussian, with expected value and variance that can be found,
by using properties of the Itô stochastic integral:

E[Xt] = exp(−at)x+ exp(−at)bE
[∫ t

0

exp(as) dBs

]

= exp(−at)x (2.82)

Var(Xt) = e−2atb2Var

[∫ t

0

eas dBs

]

= e−2atb2
∫ t

0

E([eas]2) ds =
b2

2a
(1− e−2at)

(2.83)

Thus as the solution of a stochastic differential equation forms as stochastic process,
an explicit expression for the exact analytical is at hand which is also the SDEs
analytic transition kernel, and is given by

k(x′, x,∆t) =
1

√

2πb2(1− exp(−2a∆t))/(2a)
exp

(

− (x′ − x exp(−a∆t))2
b2(1− exp(−2a∆t))/a

)

.

(2.84)
We can confirm by using the Fokker-Planck equation that this is indeed the distri-
bution of a time-dependent solution for the SDE by calculating

∂k(x′, x, t)

∂t
= ae−2at

(

− 1

(1− e−2at)
− 2axeat(x′ − xe−at)

b2(1− e−2at)
+

2a(x′ − xe−at)2

b2(1− e−2at)2

)

k(x′, x, t)

(2.85)

∂

∂x′
(x′ · k(x′, x, t)) =

(

1− 2ax′(x′ − xe−at)

b2(1− e−2at)

)

k(x′, x, t) (2.86)

∂2k(x′, x, t)

∂x′2
=

(

− 2a

b2(1− e−2at)
+

4a2(x′ − xe−at)2

(b2(1− e−2at))2

)

k(x′, x, t) (2.87)

By combining fractions, it can be seen (we omit the calculations here, as the expres-
sions become very large) that

∂

∂t
k(x′, x, t)− (a

∂

∂x
(x′ · k(x′, x, t)) + b2

2

∂2

∂x′2
k(x′, x, t)) = 0. (2.88)

We see on letting t→∞ that

f(y) = lim
t→∞

k(y, x, t) =
1

√

2πb2/(2a)
exp

(

− y2

b2/2

)

(2.89)

By calculating (yf(y))′ and f ′′(y), it can readily be shown that

a
∂

∂y
(yf(y)) +

b2

2

∂2

∂y2
f(y) = 0 (2.90)
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showing that f(y) is a stationary solution for the Langevin equation. In particular,
this shows us that starting at any distribution of the type pX0(x

′) = δ(x′ − x), the
solution always reaches this stationary solution as t → ∞. Which shows that this
stationary solution is stable in some sense.

As noted in [8], a stationary solution for a SDE can often be found if a analytical
expression for the transition kernel k(x′, x,∆t) is at hand, by letting ∆t→∞.

Example 2.14. A Stochastic Oscillator with damping is simply a modification of
the 1-dimensional classic oscillator with driving force F(t)

ẍ+ αẋ+ ω2x = F (t) (2.91)

where α relates to the damping of the system, and ω is the natural oscillation
frequency of the system. By setting the driving force F (t) = ξ(t), where ξ(t) is a
Gaussian white noise process with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t + τ)〉 = D2

ξδ(τ), where
Dξ is a positive constant, the equation becomes a coupled stochastic differential
equation given by

dXt = Yt dt (2.92a)

dYt = −(αYt + ω2Xt) dt+Dξ dBt. (2.92b)

The PDE for the joint stationary distribution f(x, y) of Xt and Yt becomes by the
Fokker-Planck equation

−y ∂
∂x
f(x, y) + α

∂

∂y
(yf(x, y)) + ω2x

∂

∂y
f(x, y) +

D2
ξ

2

∂2

∂y2
f(x, y) = 0. (2.93)

One can readily see that if ∂
∂y
f(x, y) = − 2α

D2
ξ
yf(x, y), then the fourth term in the

above equation cancels the second one, and the PDE is reduced to the system

∂

∂x
f(x, y) = −2αω2

D2
ξ

xf(x, y) (2.94a)

∂

∂y
f(x, y) = − 2α

D2
ξ

yf(x, y). (2.94b)

Integrating the first equation with respect to x gives f(x, t) = h(y) exp(−αω2

D2
ξ
x2).

Substituting this into the second equation gives h′(y) = − 2α
D2

ξ
yh(y), with the solution

h(y) = C exp(− α
D2

ξ
y2). Thus a stationary solution for the SDE becomes

f(x, y) = C exp

(

− α

D2
ξ

(ω2x2 + y2)

)

, (2.95)

where C is some appropriate normalization constant. Note that for the distribution
to make sense, it must be in L1(R2), which in particular implies that we must have
α > 0, for the stationary solution to exist.



32 CHAPTER 2. PATH INTEGRATION

Example 2.15. We shall now look at a SDE that can be written on the form

Ẋt =
∂H

∂Yt
(2.96a)

Ẏt = −
∂H

∂Xt

− k∂H
∂Yt

+DξḂt, (2.96b)

where H(X, Y ) is a differentiable continuous function. The PDE for the joint dis-
tribution of the solution becomes, according to the Fokker-Planck equation

− ∂

∂x

[
∂H

∂y
f(x, y)

]

+
∂

∂y

[
∂H

∂x
f(x, y)

]

+ k
∂

∂y

[
∂H

∂y
f(x, y)

]

+
D2

ξ

2

∂2

∂y2
f(x, y) = 0

(2.97)
By letting ∂

∂y
f(x, y) = − 2k

D2
ξ

∂H
∂y
f(x, y) the fourth term cancels the third term, and

by applying the product rule of differentiation on the two remaining terms, we get

− ∂2H

∂x∂y
f(x, y)− ∂H

∂y

∂

∂x
f(x, y) +

∂2H

∂x∂y
f(x, y)− 2k

D2
ξ

∂H

∂x

∂H

∂y
f(x, y) = 0

=⇒ ∂

∂x
f(x, y) = − 2k

D2
ξ

∂H

∂x
f(x, y). (2.98)

Thus, we are left with the following set of partial differential equations

∂

∂x
f(x, y) = − 2k

D2
ξ

∂H

∂x
f(x, y) (2.99a)

∂

∂y
f(x, y) = − 2k

D2
ξ

∂H

∂y
f(x, y). (2.99b)

Integrating the first equation with respect to x, gives

f(x, y) = C exp

(

− 2k

D2
ξ

H(x, y)

)

(2.100)

where C is some appropriate normalization constant. We see that f(x, y) also sat-
isfies (2.99b), so f(x, y) is a stationary solution for the system. As before, f(x, y)
must be in L1(R2), therefore, it is necessary for H(x, y) to satisfy

lim
(|x|,|y|)→(∞,∞)

H(x, y) =∞ (2.101)

Example 2.16. We shall in this example return to the SDE introduced in example
2.14, but with specific parameters α = 5, ω2 = 4 and Dξ = 1. We shall, by
introducing a transformation to obtain two seperate Langevin equations and derive
an explicit time solution.

Originally, the time-dependent solution derived for this equation was intended
to benchmark the order of convergence of the PI-method in a separate chapter.
But this later turned out to be outside the scope of this thesis, and the author
wanted to concentrate more on the Lotka-Volterra equation. It is nonetheless a nice
illustration of how we can use the explicit time solution for the Langevin equation,



2.6. THE FOKKER-PLANCK EQUATION 33

obtained from the Fokker-Planck equation, to derive explicit time solutions for more
complicated problems.

We start by noting, that with the parameters α = 5, ω2 = 4 and Dξ = 1, the
system can be rewritten in matrix form as

[
dXt

dYt

]

=

[
0 1
−4 −5

] [
Xt

Yt

]

dt+

[
0 0
0 1

] [
dB1

t

dB2
t

]

= A

[
Xt

Yt

]

+ B

[
dB1

t

dB2
t

]

(2.102)

We want to introduce a transformation (Xt, Yt)
T = U(Vt,Wt)

t where U is a invert-
ible 2× 2 matrix, such that when we multiply the equation from the left with U−1,
U−1AU becomes a diagonal matrix. With an spectral decomposition, we can do pre-
cisely this. A has eigenvalue λ1 = −1 and λ2 = −4 with corresponding normalized
eigenvectors u1 = (1,−1)T/

√
2 and u2 = (−1, 4)T/

√
5. So by letting U =

[
u1 u2

]
,

we obtain, by inserting (Xt, Yt)
T = U(Vt,Wt)

t

[
dVt
dWt

]

=

[
−1 0
0 −4

] [
Vt
Wt

]

dt+ U−1

[
0 0
0 1

] [
dB1

t

dB2
t

]

(2.103)

The inverse of the matrix U is given by

U−1 =

[
4
3

√
2 1

3

√
2

1
3

√
5 1

3

√
5

]

(2.104)

We obtain the two seperate Langevin equations

dVt = −Vt dt+
√
2

3
dB2

t (2.105)

dWt = −4Wt dt+

√
5

3
dB2

t (2.106)

With the solutions assuming the initial conditions (V0,W0)
T = (v0, w0)

T =
U−1(x0, y0)

Vt = exp(−t)
(

v0 +

√
2

3

∫ t

0

exp(s) dBs

)

(2.107)

Wt = exp(−4t)
(

w0 +

√
5

3

∫ t

0

exp(4s) dBs

)

(2.108)

transforming back to the original variables with (Xt, Yt)
T = U(Vt,Wt)

t, we get

Xt =

(

e−t v0√
2
− e−4t w0√

5

)

+
1

3

∫ t

0

es−t − e4(s−t) dBs (2.109)

Yt =

(

e−4t4w0√
5
− e−t v0√

2

)

+
1

3

∫ t

0

4e4(s−t) − es−t dBs (2.110)

and finally, we obtain the solution, as we transform the initial conditions back with
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(v0, w0)
T = U−1(x0, y0)

Xt = x̃0(t) +
1

3

∫ t

0

es−t − e4(s−t) dBs (2.111)

Yt = ỹ0(t) +
1

3

∫ t

0

4e4(s−t) − es−t dBs (2.112)

x0(t) =
1

3

[
(4e−t − e−4t)x0 + (e−t − e−4t)y0

]
(2.113)

y0(t) =
1

3

[
4(e−4t − e−t)x0 + (4e−4t − e−t)y0

]
(2.114)

As with the Langevin equation, the integrand in the stochastic integral is non-
stochastic, so the distribution of is Gaussian. As a Gaussian distribution is uniquely
defined by its expected value and covariance matrix, we calculate these values, and
obtain

E(Xt) = x̃0(t) (2.115)

E(Yt) = ỹ0(t) (2.116)

E[(Xt − x0(t))2] =
1

9

∫ t

0

e2(s−t) − 2e5(s−t) + e8(s−t) ds

=
1

40
(1− 1

9
(20e−2t − 16e−5t + 5e−8t)) (2.117)

E[((Xt − x0(t))(Yt − y0(t))] =
1

9

∫ t

0

4e5(s−t) − e2(s−t) − 4e8(s−t) + e5(s−t) ds

=
1

18
(2e−5t − e−2t − e−8t) (2.118)

E[(Xt − x0(t))2] =
1

9

∫ T

0

16e8(s−t) − 8e5(s−t) + e2(s−t) ds

=
1

10
(1− 1

9
(5e−2t − 16e−5t + 20e−8t)) (2.119)

Let Σ be the corresponding covariance matrix, then the joint distribution of the
solution of the solution, which also is the analytical transition kernel for the problem,
is

p(x, y, t) =
1

2π
√

|Σ|
exp

(

−1

2

[
x− x0(t) y − y0(t)

]
Σ−1

[
x− x0(t)
y − y0(t)

])

(2.120)

We can see, by looking at the expressions for the expected value and the covariance
matrix, that in the limit t→∞

lim
t→∞

p(x, y, t) =
10

π
exp

(
−5(4x2 + y2)

)
(2.121)

We obtain precisely what is the stationary solution for this SDE with the parameters
α = 5, ω2 = 4 and Dξ = 1.

It should be noted, as a final remark on this example, that the method presented
to get an analytical solution is not limited to this example, but can be used for any
linear system of SDE if A has n distinct real eigenvalues. If there are n distinct
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complex eigenvalues, then we generally get a complex solution as well. It should
however in most cases be possible to find a workaround, to obtain a real solution,
typically with sinusoidal terms.

In theory, we should be able to approximate the time evolution of the distribution
of the solution of a SDE, by applying the finite difference method or the finite element
method to the Fokker-Planck equation, in order to compare results to PI. In reality
however, there is a problem with this approach: We must choose a bounded subspace
of the space Rn in which the state vector Xt lies in, and must apply boundary values
to this subspace for the distribution of the solution. These boundary values are
generally unknown and generally non-zero and non-constant however. One solution
is to choose a very large subspace, and set the boundary value to some low constant
value, but this becomes an unreliable solution, unless we have a very large number
of grid nodes, which quickly increases computation time. On the contrary, PI does
not explicitly require boundary conditions, and is therefore more advantageous in
this regard.

2.7 Convergence

In this section we will look at the convergence of the PI-method. A thorough
exposition of the convergence of the PI-method is given in [8], we shall however only
present the most central theorems, and mostly without proof here.

It should first be noted that Path Integration does in general not converge as
(h,∆t)→ (0, 0), in particular if we let h be positive and fixed and let ∆t→ 0 while
evaluating the solution on a non-degenerate time-interval then the error will diverge
to infinity. This has to do with interpolation error and the non-exact numerical
evaluation of transition kernel.

To see this, suppose that we can calculate the exact transition kernel for each
step, that is, we ignore any error that arises from the time discretization of the SDE,
the spline interpolations and so forth, then in evaluating the PI operator (2.29) in
order to calculate p(x, y, t), we will need to use a numerical method, which will
generally not be exact. Depending on the order of the method, we will typically
have an error each time we evaluate this integral of order O(hp) where p is an
integer that represents the order of the method. This error accumulates with each
time step, and if Nt is the number of time-steps over the time interval [0, t], then
the global error will be of order

‖p̃(x, y, t)− p(x, y, t)‖| = O(Nth
p) = O

(

t
hp

∆t

)

where p̃(x, y, t) is the approximate solution and p(x, y, t) is the exact solution.
From this expression, it is clear that even if we get an exact representation of
k(x′, y′, t′x, y, t) for each step, the approximate solution will still diverge if h is fixed
and positive while we let ∆t → 0, this error will of course accumulate even more
if we take interpolation error and the error from evaluating A′

1 and A′
2 numerically

into consideration.
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Figure 2.1: Plot of error for the stationary solution from example 2.14 with α = 0.5,
γ = 1 and ω2 = 0.1, with different values for ∆t with the fixed number of 20 grid
points in x- and y-direction on the mesh [−10, 10]×[−10, 10]. The initial distribution
was the stationary solution. The error was measured at t = 1

Figure 2.1 illustrates this divergence for the SDE used in example 2.14, and as
we see the error decreases until ∆t ≈ 0.05, but then takes a sharp turn when ∆t
becomes smaller, and increases quickly, exactly as expected.

2.7.1 Convergence of the forward time discrete transition

kernel

We will first look at the behavior of the mapping x′ → k(x′, x, t) which we shall call
the forward transition kernel, for an autonomous SDE of the type

Xt′ = Xt +

∫ t′

t

a(Xt) dx+ b∆Bt (2.122)

with the Euler approximation

Xt′ = Xt + a(Xt)∆t+ b∆Bt (2.123)

we get a forward transition kernel, that we shall in this section refer to as the forward
time discrete transition kernel, that is given by

f(x) = k̃(x′, x,∆t) =
r∏

i=1

δ(x′i − xi − ai(x, t)∆t) · e[
1
2
(x̃′−x̃−ã(x,t))T g̃−1(x̃′−x̃−ã(x)∆t)]

(2.124)
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where x̃ = (xr+1, . . . , xn), ã(x, t) = (ar+1(x, t), . . . , an(x, t)) and g̃ = b̃T b̃, where b̃ is
the submatrix of b, containing all the non-zero rows of b. Suppose that we an exact
forward transition kernel is obtainable, then the following result provides conditions
for the forward time discrete transition kernel to converge

Theorem 2.17. Let 1 > ǫ > 0, and suppose that

• ‖a(x, t)− a(y, t)‖ ≤ K‖x− y‖

• ‖b(x, t)− b(y, t)‖ ≤ K‖x− y‖

• ‖a(x, t)‖2 ≤ D2(1 + ‖x‖2)

• ‖b(x, t)‖2 ≤ D2(1 + ‖x‖2)

• a(Xt, t), b(Xt, t) ∈ C4

• The exact and time discrete transition kernel x→ k(x′, x,∆t), x→ k̃(x′, x,∆t) ∈
C4

P

Then there exists a constant Kǫ independent of ∆t such that

‖k(x′, x,∆t)− k̃(x′, x,∆t‖x′,2 < Kǫ

√
∆t for all ∆t > ǫ (2.125)

Proof. Given the five first conditions, we know by theorem 2.4 that the exact solution
Xt and the Pathwise Euler approximation of the solution X̃t satisfies

|E[h(X̃T )]− E[h(XT )]| < Ch∆t (2.126)

We know that pXt(x, t) =
∫

Rnk(x, y, t)p0(x,∆t) dy and pX̃t
(x, t) =

∫

Rn k̃(x, y,∆t) dy,
for some initial distribution p0(x, t). Fix an ǫ > 0 and a points x0 ∈ Rn, then the
initial distribution becomes p0(x, t) = δ(x − x0) =

∏n
i=1 δ(xi − xi,0), and we can

calculate

|E[g(X∆t)]− E[g(X̃∆t)]| =
∣
∣
∣
∣

∫

Rn

h(y)

∫

Rn

[k(y, x,∆t)− k̃(y, x,∆t)]δ(x− x0) dx dy
∣
∣
∣
∣

(2.127)

=

∣
∣
∣
∣

∫

Rn

g(y)[k(y, x0,∆t)− k̃(y, x0,∆t)] dy
∣
∣
∣
∣
. (2.128)

Since x → k(x′, x,∆t), x → k̃(x′, x,∆t) ∈ C4
P , then so is x → [k(x′, x,∆t) −

k̃(x′, x,∆t)], and we can set h∆t(y) = [k(y, x,∆t)− k̃(y, x,∆t)]. Moreover by setting

K2
ǫ = sup

∆t∈(ǫ,1)

(
Kh∆t(y)

)
<∞ (2.129)

then we finally obtain

‖k(x′, x,∆t)− k̃(x′, x,∆t‖2x′,2 < K2
ǫ∆t (2.130)
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It should be noted that the above theorem does not guarantee that the forward
time discrete transition kernel converges as ǫ→ 0: The time discrete forward trans-
ition kernel given in (2.124) is, if a(x, t) and b(x, t) is sufficiently well behaved, in C∞

and for all ∆t ∈ [ǫ, 1), the expression is bounded, and thus of polynomial growth.
however, with ∆t = ǫ the resulting expression when ǫ → 0+ becomes unbounded,
and not of polynomial growth, making the above theorem invalid in this limit.

However, as long as Kǫ = O(ǫ−r) with r < 1, then the above result shows us
that we can at least make the error very small, by choosing ∆t to be small. We
shall illustrate this with the Langevin equation from example 2.13, where we found
the exact analytical transition kernel given by

k(x′, x,∆t) =
1

√

2πb2(1− exp(−2at))/(2a)
exp

(

− (x′ − x exp(−at))2
b2(1− exp(−2at))/a

)

.

(2.131)
The corresponding time discrete transition kernel, if we use the Euler scheme on
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(b) The blue solid line gives
ln(‖k(x′, x,∆t) − k̃IE(x

′, x,∆t)‖2,x′),
while the dashed red line gives
ln(‖k(x′, x,∆t) − k̃RK4(x

′, x,∆t)‖2,x′),
both with x = 4

Figure 2.2: The figures displays log-plots of the error of the time discrete transition
kernel in terms of the ‖ · ‖2 norm, for different approximation methods for the
deterministic term −

∫
aXt dt of the Langevin equation. The parameters used were

a = 0.5 and b = 1

the SDE, is

k̃E(x
′, x,∆t) =

1√
2πb2∆t

exp

(

−(x′ − (1− a∆t)x)2
2b2∆t

)

(2.132)

This allows us to test the bounds found in the above theorem, by computing
‖k(x′, x, t) − k̃(x′, x, t)‖ with an appropriate numerical method and integration in-
terval.

This has been done with MATLAB and the results are displayed in figure 2.2(a)
which gives the error in terms of the ‖ · ‖2 norm of the forward transition kernel
against the time discrete transition given in equation (2.132). The plot displays,
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more or less, straight lines and fitting the given curves with a linear polynomial in
the least square sense, gave 0.74 ln(∆t)−2.16 which seems to indicate a convergence
of order O((∆t)3/4)), indicating that the bound found in theorem 2.17 might be
slightly conservative.

It is also interesting to find out if the order of convergence changes if we improve

the approximation of the deterministic term
∫ t′

t
−aXt dt. We will try this with the

improved Euler method and RK4. The corresponding transition kernels become,
respectively

k̃IE(x
′, x,∆t) =

1√
2πb2∆t

exp

(

−(x′ − (1− a∆t+ 1
2
(a∆t)2)x)2

2b2∆t

)

(2.133)

k̃RK4(x
′, x,∆t) =

1√
2πb2∆t

exp

(

−(x′ − (1− a∆t+ 1
2
(a∆t)2 − 1

6
(a∆t)3 + 1

24
(a∆t)4)x)2

2b2∆t

)

(2.134)

Figure 2.2(b) shows the calculated error for these transition kernels as a function of
∆t, and goes to show that the improvement, if any, is very slight by using higher
order approximation for the deterministic term. Just as was the case with Euler’s
method, the error seems to decay in the order of O((∆t)3/4). This might seem
surprising, but it should be noted that while we improve the approximation of
the expected value of the exact Gaussian transition kernel, we retain the same
approximation for the variance, which is not better than an Euler approximation.

2.7.2 Convergence of the backward time discrete transition

kernel

We shall look at the convergence of the the backward time discrete transition kernel,
that is the mapping x → k̃(x′, x,∆t). The author has not been able to find any
concrete results on this, as was the case with the forward transition kernel, however
we shall continue to look at the example of the Langevin equation.

Figure 2.3 gives the error in a log-plot in terms of the numerical calculated
‖ · ‖2-norm of the difference between the exact backward transition kernel and the
time discrete transition kernel. The results are very similar as the results obtained
with the forward transition kernel, and the slope of the line fitted to the curves in
the least square sense, for sufficiently small ∆t, was approximately 3

4
which agrees

with the results found in the previous section, and indicates a convergence of order
O((∆t)3/4). This also indicates that there might exist similar bounds on the error,
as presented in theorem 2.17.

Under sufficient regularity conditions on the deterministic term a(Xt, t) and the
diffusion term b(Xt, t) of the SDE (that is, such that a unique solution of the SDE
exists) , it seems reasonable to assume, following this example, that we should have
‖k(x′, x,∆t)− k̃(x′, x,∆t)‖2,x → 0 for all x′ ∈ Rn as ∆t→ 0.

Interestingly, just as with the forward time discrete transition kernel, any differ-
ence in the error observed in the Langevin equation example when using different
approximations for the deterministic term is only visible for large values of ∆t. In
the heuristic discussion that follows, we shall attempt to explain this.
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Figure 2.3: log(error)= ‖k(x′, x,∆t) − k̃(x′, x,∆t)‖2,x, where k̃(x′, x,∆t) =
k̃E(x

′, x,∆t) in (2.132) for the brown solid curve, k̃(x′, x,∆t) = k̃IE(x
′, x,∆t) in

(2.133) for the dashed blue curve, and k̃(x′, x,∆t) = k̃RK4(x
′, x,∆t)for the red

dashed and dotted curve. The parameters used were α = 0.5, β = 1 and x′ = 4

In order to do this, for ease of notation, we first introduce

f(∆t) = exp(−a∆t) (2.135)

g(∆t) =
b2

2a
(1− exp(−2a∆t)) (2.136)

Let us at first ignore all error from the exponential function in the time discrete
transition kernel, thus ‖k(x′, x,∆t)− k̃(x′, x,∆t)‖2,x′ becomes
∥
∥
∥
∥
∥

[

1√
2πb2∆t

− 1
√

2πg(t)

]

e

(

− (x′−xf(∆t))2

g(∆t)

)
∥
∥
∥
∥
∥
2,x′

=

[

1√
2πb2∆t

− 1
√

2πg(t)

]

O((∆t)1/4)

(2.137)
The above calculation can be seen by noting that

g(∆t) = O(∆t) = b2∆t+O((∆t)2) (2.138)

and by computing the integral

∥
∥
∥
∥
∥
e

(

− (x′−xf(∆t))2

2g(∆t)

)
∥
∥
∥
∥
∥
2,x′

=

√
∫

R

e−
(x′−xf(∆t))2

g(∆t) dx′ =

√
√

g(t)

2
= O(∆t)1/4). (2.139)
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Next, by expanding (2πb2∆t)−(1/2) = (2πg(t) + O((∆t)2))−(1/2) in a Taylor series
around x = 2πg(t), we get

1√
2πb2∆t

=
1

√

2πg(t)
− O((∆t)

2)

(2πg(t))3/2
+
O((∆t)4)
(2πg(t))5/2

− · · · = 1
√

2πg(t)
+O((∆t)1/2).

(2.140)
Thus, by inserting this Taylor expansion into equation (2.137), we get that the error
between the exact and time discrete transition kernel, when we ignore error from
the exponential function, is in the order of O((∆t)3/4). This means that an error
in the order of O((∆t)3/4) is the best we can achieve with the current transition
kernel for this example, no matter how good the RK-approximation of the drift-
term −aXt of the original SDE. This also teaches us the important heuristic lesson,
that a numerical approximation is only as good as its weakest link, so improving
stronger links, does not help very much.

t ‖k(x′, x, t)− k̃(x′, x, t)‖2,x′ ‖k(x′, x, t)− k̃(x′, x, t)‖2,x′ ‖k(x′, x, t)− k̃(x′, x, t)‖2,x′

(Euler’s method) (IE method) (RK4)
1
2

435 · 10−4 740 · 10−5 23 · 10−6

1
4

174 · 10−4 146 · 10−5 1.1 · 10−6

1
8

71 · 10−4 29 · 10−5 5.88 · 10−8

1
16

29 · 10−4 6.2 · 10−5 3 · 10−9

1
32

12 · 10−4 1.2 · 10−5 1 · 10−10

1
64

5.2 · 10−4 0.2 · 10−5 8.2 · 10−12

1
128

2.1 · 10−4 0.05 · 10−5 4.3 · 10−13

Table 2.2: Convergence rate of the time discrete transition kernel given in equation
(2.141) with parameters α = 0.5 and b = 1.

The same result, that the error is bound from below for the backward trans-
ition kernel, can be shown by writing exp[(x′ − f(t)x)2/(2g(t))] = exp[f(t)2(x −
x′/f(t))/(2g(t))], as f(t) = O(1), we get the same bounds on the error when taking
the ‖ · ‖2-norm with respect to x.

It should be interesting to see what kind of error we could expect if the variance
of the gaussian transition kernel was exact, while we had a RK-approximation for
the determinstic term, that is, a transition kernel of the form

k̃(x′, x,∆t) =
1

√

2πg(t)
exp

[

−(x′ − x− r(a, x)∆t)2
2g(t)

]

(2.141)

where x+ r(a, x)∆t is a RK-approximation of xf(t), that is x+ r(a, x)∆t = xf(t)+
O((∆t)p+1) where p is the order of the RK-method. Focusing first at the argument
of the exponential function we get

(x′ − x− r(a, x)∆t)2
2g(t)

=
(x′ − xf(t))2 − (x′ − xf(t))O((∆t)p+1) +O((∆t)2p+2)

2g(t)

=
(x′ − x− r(a, x)∆t)2

2g(t)
+O((∆t)p)(x′ − xf(t)) (2.142)
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expanding exp
[

− (x′−x−r(a,x)∆t)2

2g(t)

]

around its taylor series (centered at x=0) yields

exp

[

−(x′ − x− r(a, x)∆t)2
2g(t)

]

= exp

[

−(x′ − xf(t))2
2g(t)

](

1 +
O((∆t)p)(x′ − xf(t))

2
+ . . .

)

(2.143)
thus, for the error of the forward transition kernel, we get the following expression
for ‖k(x′, x,∆t)− k̃(x′, x,∆t)‖2,x′

√
∫

R

(x′ − xf(t))2O((∆t)
2p)

2πg(t)
exp

[

−(x′ − xf(t))2
g(t)

]

(2.144)

=

√
∫

R

(x′ − xf(t))2O((∆t)
2p−1/2)

√

πg(t)
exp

[

−(x′ − xf(t))2
g(t)

]

(2.145)

=O((∆t)p−1/4)

√
∫

R

(x′ − xf(t))2 1
√

πg(t)
exp

[

−(x′ − xf(t))2
g(t)

]

(2.146)

we recognize the integral under the square root of the second central moment of a
Gaussian distribution, which is equal to its variance g(t)/2 = O(∆t), we thus get

‖k(x′, x,∆t)− k̃(x′, x,∆t)‖2,x′ = O((∆t)p−1/4)
√

O(∆t)) = O((∆t)p+1/4) (2.147)

The data given in table 2.2 confirms these calculations, as plotting the data in
log plots gives more or less straight lines, with the slope of the line fitted to the
logarithm of the data in the least square sense were 1.27, 2.26 and 4.29 for Euler’s
method, improved Euler’s method and RK4, respectively.

2.7.3 Convergence of Path Integration

We shall in this section present a theorem, that was given a lengthy exposition and
proof for in [8]. As proving the convergence is not one of the main goals of this
thesis, we shall only give the theorem, without proving it.

We shall first introduce some concepts. In particular, in order to prove the
convergence, we need to make sure that the PI-operator preserves smoothness of
the density, that it does not suddenly introduce singularities or discontinuities in
the solution. We make this concept precise by introducing the space D, the space
of smooth densities

Definition 2.18. A function f : R → R ∈ L1(R) is said to be of class D if the
following condition are satisfied

• f ≥ 0.

•
∫

R
f dx = 1.

• f ∈ C2(R)
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Furthermore, in implementing the PI operator PI∆tu0 =
∫

R
k(x′, x,∆t)u0(x, t) dx

we must limit the integration interval to one with finite length. We can do this form-
ally by replacing the transition kernel by a truncated transition kernel k[L,R](x

′, x,∆t)
defined by

k[L,R](x
′, x,∆t) = k(x′, x,∆t)1[L,R] (2.148)

Furthermore, we evaluate the the path integration solution only at discrete points
within a bounded interval [L,R] ⊂ R on a computer. We denote this bounded
interval and the bounded interval in the truncated transition kernel as truncations
limits (L,R).

We look at a 1-dimenisional autonomous well-posed (a unique solution exists)
SDE of the type

dXt = a(Xt) dt+ b(Xt) dBs pX0(x) = u0 (2.149)

Let u∗T = pXt(x, T ) for the exact solution Xt. LetM ∈ N and define ∆t = T/M . Let
usi denote the ith timestep corresponding to ti = i∆t of the numerical PI solution
density represented as a spline, resulting from the time discrete transition kernel
k̃(x′, x,∆t).

Theorem 2.19. The numerical path integration error, of the problem presented in
equation (2.16), in terms of the 2-norm ‖u∗T − usM‖2 can be made arbitrarily small,
provided that the following conditions are satisfied:

• The time discrete transition kernel has the backward convergence property

lim
∆t→0

‖k(x′, x,∆t)− k(x′, x,∆t)‖x,2 = 0, for all x′ ∈ R. (2.150)

• u∗t ∈ D for all t ∈ [0, T ].

• All truncation limits (L,R)→ (−∞,∞).

• The spatial grid step ∆x→ 0.

• The quadrature grid step ∆I → 0.
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Chapter 3

Lotka-Volterra system with

harvesting

3.1 The basic equation

The basic equation that we shall consider is given by the pair of differential equations

U̇ = −mU + kβUV (3.1a)

V̇ = αV [1 + h(t)]− βUV − γV 2 (3.1b)

which describes the dynamics of the population of two interacting species. We group
these species into two groups: predators/parasites and prey/hosts, and denote by
U(t) the population of predators/parasites and V (t) the population of prey/hosts.
The function h(t) essentially modifies parts of the reproduction rate α according
to temporal variations of the prey’s environment. m and k denotes the death rate
and growth rate of the predator, respectively. β is a parameter that relates to the
response of the predator to the prey, while 1

γ
governs the carrying capacity of the

population of prey in the presence of the self-limitation term V 2.
As h(t) simulates temporal variations in the growth of prey, we might expect

periodic annual variations due to the seasons. However, there might also be more
complex factors involved, that are better modeled by random components. We shall
consider two different random processes for h(t)

h(t) = ξ(t) (3.2)

where ξ(t) is a Gaussian white noise process in the Stratonovich sense, with 〈ξ(t)〉 =
0 and 〈ξ(t)ξ(t+ τ)〉 = Dξδ(t), where Dξ is a constant related to the strength of the
diffusion process, and δ(t) is the Dirac delta function. This model only accounts
for purely random variations, and in case we want to take seasonal varations into
account, it is appropriate to study a model of h(t) with some underlying periodicity.
Adding a sinusoidal to (3.2) gives such a model, and gives

h(t) = λ sin(νt) + ξ(t) (3.3)

where ξ(t) is as given in (3.2). These are the two models which will be discussed.

45
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3.2 Harvesting

Harvesting is a way to to control population dynamics and avoid unwanted popu-
lation dynamics. One such technique is called Treshold Policy (TP), which works
in the following simple way: When the population of a species is above a certain
level of threshold, harvesting starts, and when the population falls below that level,
harvesting stops. If u denotes the population of the species, then a simple function
that models TP would be

φ(u) =

{
0 : u < T
ǫ : u ≥ T

(3.4)

where T is the population threshold and ǫ is the harvesting rate. This is not a model
that is very usable for real-life applications however, as the function is discontinuous
at u = T , time delays and capital constraints preventing a sudden start of harvesting
makes it difficult to follow this in practice. An alternative continuous threshold
policy give a gradual increase in harvesting rate as the population increases above
the threshold:

ψ(u) =







0 : u < T
ǫ(u−T )
α−t

: T ≤ u < α

ǫ : u ≥ α

(3.5)

where ǫ represents the maximal harvesting rate, and α represents the threshold
where the maximal harvesting rate starts if the population goes above it.

A slightly more practical function, and which captures the idea of a gradual
continuous increase is one given in is

H(u) =

{

0 : u < T
h(u−T )
h+(u−T )

: u ≥ T
(3.6)

where h is the upper limit of harvesting rate, this is the representation that shall be
used in this thesis. Figure 3.1 illustrates how the harvesting rate as a function of u
increases.

We will study the effects of controlling the population of predators, so the modi-
fication of the basic model becomes

U̇ = −mU + kβUV −H(U) (3.7a)

V̇ = αV [1 + h(t)]− βUV − γV 2 (3.7b)

where the function H is as given in (3.6).

3.3 Equilibrium points and stationary solutions

We will first make a brief analysis of the equilibrium points of equations (3.1) and
(3.7). The deterministic system corresponding to equation (3.7) is

u̇ = −u[m− kβv]−H(u) (3.8a)

v̇ = v[α− βu− γv] (3.8b)
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Figure 3.1: The harvesting function H(u) with T = h = 1

if we constrain u < T , then the above equations represents the corresponding de-
terministic system of equation (3.1). In this case, we see immediately that (u, v) =
(0, 0) and (u, v) = (0, α

γ
) are two equilibrium points where one or both of the species

are extinct. For the purposes of this discussion, however, we are more interested in
equilibrium points where both species remain alive. In addition, we also want to
make sure that the population sizes u and v are physically acceptable i.e. u, v ≥ 0.
Since the mapping x → exp(x) is a bijection from R to (0,∞), the logarithmic
transformation

x = ln u, y = ln v (3.9)

will do nicely for these purposes. Inserting this into (3.8) gives

ẋ = −m+ kβ exp(y)− H̃(x) (3.10a)

ẏ = α− β exp(x)− γ exp(y) (3.10b)

where

H̃(x) =

{

0 : x < ln(T )
h(1−T exp(−x))
h+(exp(x)−T )

: x ≥ ln(T )
(3.11)

Still constraining x < ln(T ); the system given by equation (3.10) has a single equi-
librium point (ln(α

β
− γm

kβ2 ), ln(
m
kβ
)). By linearizing the system at this equilibrium

point, we get
[
ẋ
ẏ

]

=

[
0 m

−
(

α− γm
kβ

)

−γm
kβ

] [
x− ln(α

β
− γm

kβ2 ))

y − ln( m
kβ
)

]

(3.12)

The characteristic equation for the above matrix is λ2+ γm
kβ
λ+m(α− γm

kβ
) = 0, with

roots

λ1,2 =
−γm

kβ
±
√
(

γm
kβ

)2

− 4m(α− γm
kβ

)

2
(3.13)
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Cleary, if the equilibrium point is physically acceptable, that is m
kβ

> 0 and (α
β
−

γm
kβ2 ) > 0 and and all parameters are positve then the two eigenvalues of the above

matrix satisfies Re(λ1,2) < 0, which makes the equilibrium point stable. We should
therefore expect to see, in any stationary solution of the corresponding stochastic
system when the term H(U) is not present, a global maximum of the probability
distribution near this point.

Indeed, by stating the SDE that arises in the absence of the term H̃(x), and
h(t) = ξ(t), where ξ(t) is a Gaussian white noise process with 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t + τ)〉 = Dξδ(τ), we get by applying Itô’s formula to the transformations
XT = ln(Ut) and Yt = ln(Vt)

dXt = (−m+ kβ exp(Yt)) dt (3.14a)

dYt = (α̃− β exp(Xt)− γ exp(Yt)) dt+ α
√

Dξ dBt, (3.14b)

where α̃ = α− 1
2
α2Dξ. This set of equations can, when

G(x, y) = kβ exp(y)−my + β exp(x)− (α̃− γm/kβ)x, (3.15)

be rewritten as

dXt =
∂G(Xt, Yt)

∂Yt
dt (3.16a)

dYt = −
(
∂G(Xt, Yt)

∂Xt

− γ

kβ

∂G(Xt, Yt)

∂Yt

)

dt+ α
√

dξ dBt. (3.16b)

As we have previously shown by using the Fokker-Planck equation, such a SDE has
a stationary solution given by the function

pXY (x, y) = C exp[−(2γ/kβDξα
2)G(x, y)]. (3.17)

As long as k,m, β, (α− γm/kβ) > 0, then the above equation is valid as a distribu-
tion. As PXY (x, y) → 0 as (|x|, |y|) → (∞,∞), the global maximum of must be at
a critical point of G(X, Y ). Setting ∂G

∂x
= 0 and ∂G

∂y
= 0 gives

x = ln

(
1

β
(α− 1

2
α2Dξ −

γm

kβ
)

)

(3.18a)

y = ln

(
m

kβ

)

(3.18b)

this point is close to the equilibrium point that was found in equation (3.10) when the
constraint x < ln(T ) was put on x, as predicted, in the sense that the y-component
is equal to the equilibrium point, while the argument of the log-function in x is the
same as for the argument of the x-component of the equilibrium point, but shifted
with the factor −1

2
α2Dξ. That the x-component of the maximum of the solution

shifts in such a way, compared to the equilibrium point found in equation (3.10) is a
strange peculiarity of Itô stochastic calculus, but nonetheless, if Dξ is not big, they
should still be close.
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(a) No harvesting term present (b) Harvesting term present, with ln(T ) = 0
and h = 1

(c) Harvesting term present, with ln(T ) =
−1 and h = 1

(d) Harvesting term present, with ln(T ) =
−1 and h = 2

Figure 3.2: Phase diagram for (3.10) with m = k = β = α = 1 and γ = 0.05.

By denoting by the shifted arguments of the equilibrium points: u0 = (α −
1
2
α2Dξ − γm

kβ
)/β and v0 = m

kβ
, the stationary solution in the absence of the term

H̃(x), becomes, in terms of the equilibrium point:

pXY (x, y) = C exp[−(2γ/Dξα
2)((exp(x)− u0x)/k + exp(y)− v0y)]. (3.19)

We now return to equation (3.10) and drop the restriction x < ln(T ). By taking into
account the the term H̃(x) becomes non-zero when x > ln(T ), the analysis of equi-
librium becomes much more complicated, and we shall only discuss this qualitatively
by looking at an example.

Numerical calculations of the phase portrait of (3.10) can be quite useful for
making hypotheses of how the dynamics of the system changes when introducing
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Figure 3.3: Expected value for Xt and Yt in (3.14) calculated on t = [0, 30] using PI
with ∆t = 0.001 on the mesh [−6, 3]× [−6, 3] with 80 grid points in each direction.
The parameters used were m = K = β = α = 1, γ = 0.05, ln(T ) = −1, h = 2
and Dξ = 0.05, with the corresponding stationary solution given in (3.19) as initial
distribution.

the harvesting term H̃(x). Four phase portraits of equation (3.10) are shown in
figure 3.2, with m = k = β = α = 1 and γ = 0.05. It is quite interesting to see that
the introduction of the harvesting term, does not seem to change the nature of the
dynamics: There is seemingly still just one real-valued equilibrium point, and that
equilibrium point seems to remain a stable spiral point.

As seen in figure 3.2 (b) the position of the equilibrium point does not change
much by introducing a harvesting threshold at the equilibrium point ln(u0) = 0,
this is not that surprising as with x > ln(u0) and y > ln(v0) the solution declines
very rapidly towards the equilibrium point as long as x, y, v0, u0 < ln(α/γ) (if y >
ln(α/γ), then x→ −∞ as t→∞, and the predator will eventually becomes extinct
[9].

However, when harvesting starts at ln(T ) = −1 as in figure 3.2(c) and 3.2(d),
then there is a noticeable shift of the equilibrium point, where the value for x
decreases and y increases. As exp(x) denotes the population of the predator, and
the predator is the species that is being harvested, this is not surprising: When the
predator is being harvested, the state of the system where the predator and the prey
is in will naturally shift in a way that favors the prey. By increasing the maximal
harvesting rate h, the equilibrium point is further shifted in the same direction, as
seen in figure 3.2(d).

Following this discussion, it might be reasonable to conjecture that a station-
ary solution exists when the harvesting function is present in this example in the
neighborhood of the stationary solution with no harvesting function present. Fig-
ure 3.3 shows the expected value for a simulation of this example starting at the
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Figure 3.4: Marginal distribution for Xt and Yt in (3.14) calculated at t = 30 using
PI with ∆t = 0.001 on the mesh [−6, 3]×[−6, 3] with 80 grid points in each direction.
The parameters used were m = K = β = α = 1, γ = 0.05, ln(T ) = −1, h = 2
and Dξ = 0.05, with the corresponding stationary solution given in (3.19) as initial
distribution. The solid blue line represents the solution when the harvesting term
was present, the dashed red line represents the solution when it was not.

corresponding stationary solution when no harvesting term is present, this figure
provides additional evidence that a stationary solution exists when a harvesting
term is present, as there is a clear trend that the expected value seem to stabilize
at a time-independent value.

Figure 3.4 shows the marginal distributions of the same simulation at T = 30
against the marginal distributions of the stationary solution, that the simulation
was started at. Assuming that this is indeed a good approximation of the stationary
solution of this example, if it exists, then there are a couple of interesting facts that
can be read from this graph: First of all the global maximum of the the distributions
corresponds to the equilibrium point found in the phase diagram of figure 3.2(d)
with the same parameters. This is exactly as expected, and further reinforces the
conjecture that a stationary solution exists.

What is slightly more surprising however, is that introducing a harvesting term
seems to decrease the variance, and thus the uncertainty of the population size of
both species, which is clearly seen by the sharper peak of the distribution in both
Xt and Yt. In retrospect however, since we are essentially directly manipulating and
controlling the size of the population of one of the species, this might be expected.

Going back to the stationary solution given in equation (3.19), we find the cor-
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responding distribution for Ut = ln(Xt) and Vt = ln(Vt), by calculating

pUV (u, v) =
∂2

∂u∂v
PXY (ln(u), ln(v)) =

1

uv
pXY (ln(u), ln(v)), (3.20)

where PXY (x, y) =
∫ x

−∞
∫ y

−∞pXY (x, y) dx dy is the joint cumulative distribution of
Xt and Yt.

On applying the normalization condition on the first quadrant of the (u, v)-plane,
we thus obtain the stationary distribution of the solution pUV (u, v) = pU(u)PV (v)
where it turns out that Ut and Vt are independently Γ-distributed [9], with distri-
butions given by

pU(u) = [(δ/k)δu0/kuδu0/k−1 exp(−δu/k)]/Γ(δu0/k) (3.21)

pV (v) = [(δ)δv0vδv0−1 exp(−δv)]/Γ(δv0) (3.22)

where Γ(·) is the Euler Gamma function, u0 = (α− 1
2
α2Dξ−γm/kβ)/β, v0 = m/kβ

and δ = 2γ/α2Dξ.
It can readily be verified by insertion into the Fokker-Planck equation, that this

is indeed a stationary solution for (3.7), when h(t) is Gaussian white noise. In fact,
we can show that this is the only integrable stationary distribution of the form
pUV (u, v) = uk1−1vk2−1 exp(−uθ1 − vθ2), by calculating

− ∂

∂u
[(−m+ kβv)upUV (u, v)] =mk1 − kβk1y −mθ1x+ kβθ1yx (3.23)

− ∂

∂v
[(α− βu− γv)vpUV (u, v)] =− αk2 + ((1 + k2)γ + αθ2)y + βk2x

− βθ2xy − γθ2y2 (3.24)

∂2

∂v2
[
1

2
α2Dξv

2pUV (u, v)] =
1

2
α2Dξ(k2 + k22 − 2(1 + k2)θ2y + θ22y

2). (3.25)

By setting− ∂
∂u
[(−m+kβv)upUV (u, v)]− ∂

∂v
[(α−βu−γv)vpUV (u, v)]+

∂2

∂v2
[1
2
α2Dξv

2pUV (u, v)] =
0, and collecting terms of equal power, we get the following set of equations

mk1 − αk2 +
1

2
α2Dξ(k2 + k22) = 0 (constant term) (3.26)

βk2 −mθ1 = 0 (x) (3.27)

kβθ1 − βθ2 = 0 (xy) (3.28)

− kβk1 + γ(1 + k2)− α2Dξ(1 + k2)θ2 + αθ2 = 0 (y) (3.29)

1

2
α2Dθ22 − γθ2 = 0 (y2). (3.30)

The last equation gives that either: θ2 = 0 or θ2 = 2γ/α2Dξ = δ, the first option
gives from the second and third equation that k2 = θ1 = 0, inserting this into the
first and fourth equation however, gives two equations for k1 that does not agree
unless γ = 0, but in this case, we obtain the solution pUV (u, v) = (uv)−1 which is
not integrable, thus, we must have θ2 = δ.

Proceeding with θ2 = δ, we obtain uniquely from the second and the third
equation that θ1 = δ/k, k2 = δ(m/kβ) = δv0, inserting this into the first and



3.3. EQUILIBRIUM POINTS AND STATIONARY SOLUTIONS 53

fourth equation, gives two equal expressions for k1, which gives uniquely that k1 =
(δ/k)(α− 1

2
α2Dξγm/kβ)/β = δu0/k.

We shall conclude this section on stationary solutions with an example, showing
how PI performs with equation (3.7).

Example 3.1. Consider the SDE

dUt = (−mUt + kβUtVt) dt (3.31a)

dVt = (αVt − βUtVt − γV 2
t ) dt+ α

√

DξVt dBt (3.31b)

where Ut, Vt ≥ 0. Implementation of this SDE requires some extra care, as the
diffusion term α

√
Dξv → 0 as v → 0. By writing up the transition kernel that

results from an Euler approximation, we get

k(u′, v′, u, v,∆t) = δ(u′ − u− r1(u, v)∆t)
exp

(
(v′−v−r2(u,v)∆t)2

2α2Dξv2∆t

)

√
2πα2Dξv2∆t

. (3.32)

By doing the usual transformation (ũ, ṽ) = (u+ r1(u, v)∆t, v+ r2(u, v))∆t = g(u, v)
we obtain

k(u′, v′, u, v,∆t) = δ(u′ − ũ)
exp

(
(v′−ṽ)2

2α2Dξ(g
−1
v (ũ,ṽ))2∆t

)

√

2πα2Dξ(g−1
v (ũ, ṽ))2∆t

. (3.33)

where v = g−1
v (ũ, ṽ) is the unique real number such that together with u = g−1

u (ũ, ṽ)
we have (ũ, ṽ) = g(u, v), we approximate v by (u, v) = g−1(ũ, ṽ) ≈ (ũ−r1(ũ, ṽ)∆t, ṽ−
r2(ũ, ṽ)∆t). The probability density of the solution at the next time step then
becomes

p(u′, v′, t′) =

∫

R

exp
(

(v′−ṽ)2

2α2Dξ(ṽ−r2(u′,ṽ)∆t)2∆t

)

√

2πα2Dξ(ṽ − r2(u′, ṽ)∆t)2∆t
p(g−1(u′, ṽ))|Jg−1| dṽ (3.34)

where |Jg−1| is the determinant of the Jacobian of the inverse transformation. One
quickly realizes that the transition probability, which can for small ∆t be approx-
imated by exp((v′− ṽ)2/2α2Dξṽ

2∆t)/
√
2πα2Dξṽ2∆t is highly localized and peaked

around ṽ = v′ as shown for some sample functions in figure 3.5(a), but is not in-
tegrable over R+ as the function is asymptotically bounded from below by C/ṽ as
ṽ →∞ for some constant C ∈ R+.

That the transition probability is non-integrable is not a problem in terms of
evaluating equation (3.34) as the integrand is dominated by p(u, v), which is integ-
rable. It does however present a challenge in terms of choosing quadrature points
for the numerical integration. Due to non-integrability of the transition probability,
we must integrate over the entire interval v ∈ [Vmin, Vmax] in which we represent the
distribution of the numerical solution in order to keep reasonable bounds on the
error due to truncating the function: We can not simply choose quadrature points
around the peak of the transition probability, as we can in the case of the diffusion
term being constant.

Due to the peaked nature of the transition probability however, we should choose
quadrature points densely around the peak. Having uniformly distributed quadrat-
ure points chosen dense over the interval [Vmin, Vmax] is not prudent however, as it
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quickly leads to excessive computation time: As we do not need densely distributed
quadrature points at the tails of the transition probability, a better idea would be
to choose a non-uniform grid with a dense distribution around the peaks: More pre-
cisely, we would like to implement an algorithm that chooses the quadrature points
adaptively according to the nature of the transition probability function.

The algorithm which will be used, and which will shortly be described is based
on a step-size control which is commonly implemented for Runge-Kutta methods:
It is an idea due to Fehlberg [10], and for a more thorough explanation, the reader
is referred to [10].

The basic idea in this case is to choose two different quadrature rules, one of
order p,and one of order p+1 to approximate

∫ x+∆x

x
f(x) dx for some function f(x).

If we let f̃1 and f̃2 denote the value of the approximate value for the first and the
second quadrature rule, such that

f̃1 =
N∑

i=1

aif(xi) =

∫ x+∆x

x

f(x) dx+O(hp) (3.35)

f̃2 =
N∑

i=1

bif(xi) =

∫ x+∆x

x

f(x) dx+O(hp+1) (3.36)

then |f1 − f2| should be a pth order approximation of the error, that is

|f1 − f2| = e+O(∆xp), (3.37)

where e is the true difference in absolute value between the exact and the approxim-
ate integration for f1 and f2. If e1 = |f1 − f2| and e2 is the bound which we do not
want the error to exceed when integrating over [x, x+∆x]. Then we should expect
to have approximately the following relationship between the current step size ∆x1
and the desired step size ∆x2 where the error should be approximately e2

e2
e1

=

(
∆x2
∆x1

)p

(3.38)

Suppose now that we for some step size ∆x1 calculate the error e1 ≤ e2, then
naturally we want to keep the current step size, but we also want to increase the
step size for the next step, so that we do not take an unnecessary number of steps.
Conversely, if e1 > e2, we want to redo the step with a decreased step size. We
choose the new step size with a slight modification of equation (3.38):

∆x2 = P

(
e2
e1

)1/p

∆x1 (3.39)

where P ∈ (0, 1) is known as the pessimistic constant: We want to choose a ∆x2
slightly lower than the predicted one, in order to not waste too many steps, it is
typically chosen between 0.7 and 0.9.

The function f we integrate, and which we choose the quadrature points from is
a slightly modified version of the transition probability, and is given by

f(v) =
exp

(
(v′−v)2

2α2Dξv2∆t

)

√
2πα2Dξv2∆t

. (3.40)
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Figure 3.5: Illustration of the shape of transition probabilities when using the Euler
approximation in (a), and illustration of the distribution of quadrature points, when
using the adaptive algorithm in (b) using e2 = 10−3. The parameters used in all
cases were α = m = k = β = 1, γ = 0.05 and Dξ = 0.01, on the grid [0, 5]× [0, 5].

This function is the same as the transformed transition kernel, but omits the ex-
pensive to calculate RK-step in the denominator of the exponential argument and
the denominator of the transition kernel. For small ∆t, this should be a reasonably
good approximation. The implementation of the algorithm using the first order
Euler’s method

f1 = ∆xf(x1) (3.41)

and the second order trapezoidal rule

f2 =
∆x

2
(f(x1) + f(x2)). (3.42)

Figure 3.5(b) illustrates the distribution of quadrature points using the described
algorithm with the Euler-trapezoidal rule pair. We see that we achieve the distri-
bution of points we desired, with quadrature points densely distributed around the
peak, and a much sparser distribution elsewhere.

In figure 3.6 the results from a simulation using the algorithm just described, and
as can be seen, the computed PI-solution does not preserve the stationary solution
very well, as a significant deviation can be seen for the computed function at t = 60
from the stationary solution. The computed solution is peculiar, in that it does not
seem to fundamentally change the shape or the expected value of the distribution,
but rather the variance: It seems to stabilize at a stationary solution with a lower
value for α.

The author has tried to figure out the reason for this discrepancy, and has worked
with a couple of theories. The first theory was that this perhaps is due to the
singularity of the denominator of the expontential argument in the transition kernel
as v → 0. Since the denominator goes to infinity as O(v−2) there might be a
significant round-off error in the solution. To test out this theory, an implementation
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Figure 3.6: Marginal distribution for Ut on the left hand-side and Vt on the right-
hand side in (3.31) calculated at t = 60 using PI using an Euler-discretization
and the algorithm for choosing quadrature points described in example 3.1 with
e2 = 10−3, ∆t = 0.01 on the mesh [0, 5]× [0, 5] with 80 grid points in each direction.
The parameters used were m = K = β = α = 1, γ = 0.05, Dξ = 0.01, with
the corresponding stationary solution as initial distribution. The solid blue line
represents the PI-solution at t = 60, the dashed red line represents the stationary
solution.

of this algorithm, using a Milstein scheme for time-discretization rather than the
Euler scheme. The transition kernel in this case becomes

k(u′, v′, t′, u, v, t) = δ(u′ − v − r(u, v)∆tk̃(u′, v′, u, v, t) (3.43)

where

k̃(u′, v′, t′, u, v, t) =
[k2(v

′ − c)]−1/2

2
√
2π∆t

2∑

j=1

e

[

− (
√

(v′−c)/k2+(−1)jk1)
2

2∆t

]

(3.44)

c = v + r2(u, v)∆t− k2∆t− k21k2
k1 = D

−1/2
ξ

k2 =
1

2
Dξv.

Here, there is also a singularity in the denominator term of the exponential argument
at v = 0, but here it only goes to infinity as O(v−1), if the theory of round off error is
correct, we should see a significantly more accurate solution, when using a transition
kernel based on the Milstein scheme.

In using the Milstein scheme, we use an algorithm for choosing the quadrature
points completely analogous to the one we used when using an Euler discretization,
but we use another function f , which we choose the quadrature points from, which
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Figure 3.7: Marginal distribution for Ut on the left-hand side and Vt on the right-
hand side in (3.31) calculated at t = 60 using PI using the Milstein scheme and
the algorithm for choosing quadrature points described in example 3.1 with e2 =
10−3 ∆t = 0.01 on the mesh [0, 5] × [0, 5] with 80 grid points in each direction.
The parameters used were m = K = β = α = 1, γ = 0.05, Dξ = 0.01, with
the corresponding stationary solution as initial distribution. The solid blue line
represents the PI-solution at t = 60, the dashed red line represents the stationary
solution.

is given by the expression

f(v) =
[k2(v

′ − c)]−1/2

2
√
2π∆t

2∑

j=1

e

[

− (
√

(v′−c)/k2+(−1)jk1)
2

2∆t

]

(3.45)

where

c = v − k2∆t− k21k2
k1 = D

−1/2
ξ

k2 =
1

2
Dξv.

which results once again from doing the usual transformation (ũ, ṽ) = (u+r1(u, v)∆t, v+
r2(u, v)∆t), and then omitting the expensive to calculate terms r(u, v).

Figure 3.7 the results from using the Milstein scheme are shown, and also here,
there is a significant difference between the stationary solution that the simulation
began with, and the obtained solution at t = 60, though it is visibly closer than
with the Euler discretization.

This leaves us with three possibilities, as far as the author can see. The first
possibility is that the error is indeed due to a large round-off error which could still
be possible: Even though the singularity grows slower in the exponential argument
of the Milstein scheme transition than the singularity in the exponential argument
of the Euler scheme, there is still a singularity in the denominator of the transition
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kernel, which grows us O(v−1) both when using the Milstein scheme, and when using
the Euler scheme.

A second possibility is that this is a an example of an SDE for which the PI-
solution does not converge, an assumption which is made somewhat stronger by the
fact that the PI-solution, while using both the Euler scheme and the Milstein scheme
seemed to diverge when choosing ∆t smaller than 0.01. The SDE does certainly not
satisfy the criteria for convergence of the PI-solution, as an existence and uniqueness
of the solution is not guaranteed, since the deterministic term of the SDE does not
satisfy the Lipschitz-criterion.

A third possibility, which the author finds more likely than the second possibility,
is that there is simply a bug in the program which was written to simulate the
solution, or an implementation mistake: Even though there is a possibility of a
large round-off error, the grid was intentionally chosen coarse, such that the grid
points with the smallest values for v wouldn’t be too small. In addition, the case
of v = 0 was handled analytically by adding the constraint of the PI-solution that
p(u, 0) = 0, which is true for the stationary solution in this example. The author
has looked very carefully throughout the whole code for an implementation error or
a bug, but was unsuccessful in this regard. The entire source code, which can be
run as a stand-alone C++ program has therefor been included in apppendix A.

3.4 Non-stationary solutions

In the previous section we considered h(t) when it was a pure Gaussian white noise
process. We shall now turn our attention to temporal variations with hidden time-
depended periodicity. That is, h(t) of the form

h(t) = λ sin(υt) + ξ(t) (3.46)

where ξ(t) still is a Gaussian white noise process with 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t+τ)〉 =
Dξδ(τ). The transformed SDE with no harvesting term thus becomes

dXt = (−m+ kβ exp(Yt)) dt (3.47a)

dYt = (α(1 + λ sin(υt)
1

2
Dξα

2)− β exp(Xt)− γ exp(Yt)) dt+ α
√

Dξ dBt (3.47b)

Due to the non-autonomous nature of this SDE, it can be shown quite easily that
the corresponding deterministic ODE (i.e. we set Dξ = 0) has no equilibrium points.
We should therefore not expect any stationary solution for the SDE to exist, we do
however get periodic non-stationary solutions [9].

A realization of the solution, using PI confirms the existence of the periodic non-
stationary solution. Figure 3.8 shows the time-evolution of the expected value with
respect to Xt and Yt, and as can be seen, the expected value seems to be a sinusoidal
oscillation with an oscillating amplitude which asymptotically becomes stable at a
fixed value.

The author counted approximately 24.5 periods for λ = 0.05 over t ∈ [0, 150]
and approximately 48.5 periods for λ = 0.5 over t ∈ [0, 300], which implies a period
of 6.12 and 6.18 respectively, which is just short of 2π. This suggests that the oscil-
lations of the expected values are independent of α, and is driven by the sinusoidal
term.
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(a) λ = 0.05 on the mesh [−1.5, 1.5]× [−1.5, 1.5]
with 100 grid points in each direction
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(b) λ = 0.5 on the mesh [−4, 2]× [−4, 2] with 80
grid points in each direction

Figure 3.8: Calculated expected value of the PI-realization of equation (3.47) with
∆t = 0.01, using the parameters α = m = k = β = 1, γ = 0.05, υ = 1 and
Dξ = 0.05. The initial distribution used is given in equation (3.19) with the relevant
parameters

It is also interesting to note that the function seems to oscillate about the function
values which are the maximal value of the Lotka-Volterra equation, with only pure
white noise as the variation of the growth rate of the prey for the same parameters.
That is in figure 3.8, the expected value for Xt and Yt oscillates around E(Xt) =
ln(0.925) ≈ −0.078 and E(Yt) = ln(1) = 0, which are, respectively, the x- and y-
coordinates of the global maximum of the corresponding stationary solution, when
the variation in the growth rate of the prey is driven only by white noise.

The oscillations in the amplitude may be due to natural oscillations in the system
which occurs when it is not in a state of equilibrium, and when the system eventually
reaches a periodic equilibrium state the large oscillations die out. It also seems that
the oscillations in the amplitude are present longer when λ = 0.5 than with λ = 0.05,
as can be seen in figure 3.8(b) where the big oscillations are quite pronounced, even
when t = 150, the physical reason for this might be a delayed reaction from the
predator in response to the more rapid change of growth of the prey. As a result,
the large oscillations also takes a longer time to die out.

Figure 3.9 shows the time averaged solution on t ∈ [100, 150] for figure 3.9(a) and
on t ∈ [250, 300] for figure 3.9(b), for the same calculations used in figure 3.8, and as
the expected value suggested, we see that the solutions typically go in elliptical-like
orbits with bigger radii as α is chosen bigger.

We now return to the transformed Lotka-Volterra equation with harvesting and
random temporal variations in the growth rate of prey

dXt = (−m+ kβ exp(Yt)− H̃(Xt)) dt (3.48a)

dYt = (α̃− β exp(Xt)− γ exp(Yt)) dt+ α
√

Dξ dBt, (3.48b)

where H̃(x) is given in equation (3.11). We are interested in seeing qualitatively
how the the harvesting term affects the solution of the Lotka-Volterra equation with
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(a) λ = 0.05 on the mesh [−1.5, 1.5]× [−1.5, 1.5]
with 100 grid points in each direction

(b) λ = 0.5 on the mesh [−4, 2] × [−4, 2] with
80 grid points in each direction

Figure 3.9: Time averaged solution of the PI-realization of equation (3.47) with
∆t = 0.01, using the parameters α = m = k = β = 1, γ = 0.05, υ = 1 and
Dξ = 0.05. The initial distribution used is given in equation (3.19) with the relevant
parameters

random temporal variations in the growth rate of the prey.
We can make some a priori guesses of how the solution will behave. We have

good reasons to believe that we will asymptotically obtain a periodic solution, as
that was the case with the Lotka-Volterra equation with random temporal variations
in the growth rate of the prey. The sinusoidal seemed to be the driving force behind
the small oscillations, and we should expect to at least see them in the solution
when the harvesting term is present.

We should expect to see a noticeable change of the radii of the ellipses and the
focus towards bigger values of y and smaller values for x, because x, which represents
the population of the predator is being harvested.

In figure 3.10(b) the results from simulations of equation (3.48) for the given
parameters can be seen, which is compared side-to-side with the simulation of the
same equation with the same parameters but without the harvesting term in figure
3.10(a). With the parameter λ = 0.05 for the temporal variation in the growth rate
of the prey, there is not a large difference between the two graphs: The amplitude
of the expected value, can be seen to be a little more damped, and stabilizes a little
quicker in figure 3.10(b) where the harvesting term is present, but except for that
there are little differences.

In the analog figure 3.11 with the same parameters but where λ = 0.5 however,
one can see that there is a significant damping of the oscillation of the amplitude
of the expected values. It is not very surprising that the harvesting term has a
damping effect on the amplitude of the expected values, because the damping term
can essentially be thought of as a force that acts against movement of Xt and
thus also Yt towards extreme values, preventing the initial big oscillations in the
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(a) λ = 0.05 on the mesh [−1.5, 1.5]× [−1.5, 1.5]
with 100 grid points in each direction, no har-
vesting term
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(b) λ = 0.05 on the mesh [−1.5, 1.5]× [−1.5, 1.5]
with 100 grid points in each direction, no har-
vesting term

Figure 3.10: Calculated expected value of the PI-realization of equation (3.48) with
∆t = 0.01, using the parameters α = m = k = β = 1, γ = 0.05, υ = 1, Dξ = 0.05,
ln(T ) = −1 and h = 2. The initial distribution used is given in equation (3.19) with
the relevant parameters.

amplitude.

We also see a slight tendency in figure 3.10(b), but more so in figure 3.11(b) that
when the amplitude of the expected values stabilize at a constant value, that the
minimum values for E(Xt) become slightly lower, and the and the maximal values
of E(Yt) becomes higher.

This is in line with what we discovered for the stationary solution and the equi-
librium point analysis for the Lotka-Volterra equation, when the variation in the
growth of the predator is a pure white noise process: When harvesting occurs, there
is a slight shift negative shift in Xt, the population of the predator, and a larger gain
in Yt, the population of the prey. The reason for the discrepancy in shift is likely the
following: The prey population was held in check primarily by the population of the
predator, but since the population of the predator is controlled by the harvesting,
there is a gain in the population of the prey. This gain in population in the prey,
results in increased growth of the predator, which balances out much of the negative
effect of the growth of the predator which is introduced by the prey, therefore there
is only a slight net loss in the maximal population of the predator.

Figure 4.6 shows plots of the time averaged solution for t ∈ [100, 150] in figure
4.6(a) and 4.6(b), and the time averaged solution for t ∈ [250, 300] in figure 4.6(b)
and 4.6(d), with a corresponding side-by-side comparison of the solution without the
harvesting term in figure 4.6(a) and 4.6(c). We see that introducing the harvesting
term, we get a reduction of the variance of the solution and the path of the orbital
becomes more sharply defined. This is a phenomenon that we also saw in the
stationary solution the Lotka-Volterra equation, when the variation in the growth
of the prey is controlled by pure white noise, when introducing a harvesting term,
and the reasons are most likely the same.

The shape however, remains largely unchanged. We see interestingly that figure
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(a) λ = 0.5 on the mesh [−4, 2]× [−4, 2] with 80
grid points in each direction, no harvesting term
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(b) λ = 0.5 on the mesh [−4, 2] × [−4, 2] with
80 grid points in each direction, with harvesting
term

Figure 3.11: Calculated expected value of the PI-realization of equation (3.48) with
∆t = 0.01, using the parameters α = m = k = β = 1, γ = 0.05, υ = 1, Dξ = 0.05,
ln(T ) = −1 and h = 2. The initial distribution used is given in equation (3.19) with
the relevant parameters.

4.6(b) is almost a mirror reflection of figure 4.6(a), and in both figure 4.6(b) and
4.6(d) the maximal values of the solutions shift from high values of y to low values
of y. Except for that, there are not many differences. This shows that the a priori
assumption that the radii of the ellipses would change, increasing in the direction
of y and decreasing in the direction of x was somewhat false.
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(a) λ = 0.05 on the mesh [−1.5, 1.5]× [−1.5, 1.5]
with 100 grid points in each direction, no har-
vesting term

(b) λ = 0.05 on the mesh [−1.5, 1.5]× [−1.5, 1.5]
with 100 grid points in each direction, with har-
vesting term

(c) λ = 0.5 on the mesh [−4, 2] × [−4, 2] with
80 grid points in each direction, no harvesting
term

(d) λ = 0.5 on the mesh [−4, 2] × [−4, 2] with
80 grid points in each direction, with harvesting
term

Figure 3.12: Time averaged solution of the PI-realization of equation (3.48) with
∆t = 0.01, using the parameters α = m = k = β = 1, γ = 0.05, υ = 1, Dξ = 0.05,
ln(T ) = −1 and h = 2. The initial distribution used is given in equation (3.19) with
the relevant parameters.
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Chapter 4

An adaptive algorithm

In this section, we will try to develop an algorithm that is fast but also accurate by
exploiting, and building on specific properties of SDE that we will be looking at.
The type of SDE that we will consider, are two dimensional autonomous SDE with
noise in one dimension of the type

dXt = a1(Xt, Yt) dt (4.1a)

dYt = a2(Xt, Yt) dt+
√

Dξ dBt (4.1b)

where we will look at the logarithm-transformed Lotka-Volterra equation

dXt = (−m+ kβ exp(Yt)) dt (4.2a)

dYt = (α− 1

2
α2Dξ − β exp(Xt)− γ exp(Yt)) dt+ α

√

Dξ dBt (4.2b)

which requires extra care in the space domain, for reasons that will be made clearer
later.

The method developed here, will make strong use of the time-independent nature
of the Lotka-Volterra equation, to show how we can pre-calculate most of the heavy
calculations and greatly reduce the number of calculations for each subsequent time
step. We will also implement adaptive mesh refinements, which is refined according
to the current information of the stationary solution. We will also use the stability
of the stationary solution, that is that we obtain a stationary solution, regardless
of initial smooth condition, to hopefully gain gradually better estimates of the true
stationary solution, by gradually decreasing the time step size.

4.1 PI for an autonomous SDE

Recall that when we apply the PI-operator to the solution p(x, y, t), in order to get
the solution at the next time step p(x′, y′, t′) for the equation of the type given in
(4.1), we have to calculate

p(x′, y′, t′) =

∫

R

exp
(

(y′−ỹ)2

2Dξ∆t

)

√
2πDξ∆t

p(g−1(x′, ỹ))|Jg−1| dỹ (4.3)

65
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where g−1(x, y) ≈ (x−r1(x, y,−∆t)∆t, y−r2(x, y,−∆t)∆t), where (r1(x, y), r2(x, y)
represents a step with the RK-method chosen, where the time step is done back-
wards, that is, the time step is negative.

Since the position of g−1(x, y) can be arbitrary, we must either choose to ap-
proximate p(g−1(x′, ỹ)) by choosing the point (x̄, ȳ) in the grid, which is closest to
g−1(x′, ỹ), or represent p(x, y) as a spline. We choose the latter, as it adds relatively
little costs, but increases accuracy quite dramatically. We thus represent

p(x, y, t) =
nx∑

i=1

ny∑

j=1

Γt(i, j)bi,j,n(x, y) (4.4)

where Γt(i, j) is the control point associated with (xi, yj) in the grid, and bi,j,n(x, y)
is the basis function of degree n, associated with (xi, yj). By this representation we
thus get

p(x′, y′, t′) =
nx∑

i=1

ny∑

j=1

Γt(i, j)

∫

R

exp
(

(y′−ỹ)2

2Dξ∆t

)

√
2πDξ∆t

bi,j,n(g
−1(x′, ỹ))|Jg−1| dỹ (4.5)

As was observed in [11], when the SDE is autonomous (time independent) and ∆t
is constant, the integral in each term of the sum is also time independent, and thus,
only needs to be calculated once. By denoting

Bk,l
i,j =

∫

R

exp
(

(yl−ỹ)2

2Dξ∆t

)

√
2πDξ∆t

bi,j,n(g
−1(xk, ỹ))|Jg−1| dỹ (4.6)

We thus get for each point (xi, yj) in the grid {x1, . . . , xnx} × {y1, . . . , yny} that

p(xk, yl, t
′) =

nx∑

i=1

ny∑

j=1

Γt(i, j)B
k,l
i,j , (4.7)

all we need to do at each time step is to calculate the control points Γt(i, j) and
evaluate the above sum.

In this particular section, we will use linear basis functions, which has the basis
properties that it is linear and that bi,j(xk, yl) = δi,kδj,l. These basis functions are
also called tent-functions, for obvious reasons. Linear basis functions are preferred
here, because of ease of implementation when we are dealing with non-uniform grids,
and the fact that we don’t have to expensively calculate the control points Γt(i, j)
from linear systems of equations, we obtain the controls points directly by Γti, j =
p(xi, yj , t), as only the basis function bi,j,1(x, y) is non-zero at (x, y) = (xi, yj). The
calculation is then reduced, for each time step to simply adding up the terms in the
sum

p(xk, yl, t
′) =

nx∑

i=1

ny∑

j=1

p(xi, yj , t)B
k,l
i,j (4.8)

It should be realized that the tensor Bk,l
i,j has a strongly banded character, with

elements decreasing rapidly towards zero off the main diagonals i = k and j = l. In
fact, since each basis function bi,j,1(x, y) is compactly supported in the convex hull
of the nearest points of (xi, yj), most of the terms in the above sum are zero. This
has important implications for the implementation, which will be discussed later.
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4.2 Adaptive mesh refinement

Consider the stationary solution for the logarithm-transformed equation Lotka-
Volterra equation, given by

PXY (x, y) = C exp[−(2γ/kβDξα
2)G(x, y)], (4.9)

where

G(x, y) = kβ exp(y)−my + β exp(x)−
(

α− 1

2
α2Dξ − γm/kβ

)

x. (4.10)

since PXY (x, y) decreases as an iterated exponential, that is, as exp(− exp(x)) when
x → ∞, and similarly for y, there is a very steep decrease of the function towards
zero for y > ln(m/kβ) and x > ln(α− 1/2α2Dξ − γm/kβ)/β), the global maximum
of the stationary solution.

Figure 4.1: Plot of an unscaled version the stationary solution of the Lotka-Volterra
equation on the grid [−4, 2] × [−4, 2], with parameters k = β = m = α = 1 and
γ = β = 0.05. The scaling constant C, was set to 1.

This is illustrated in figure 4.1, where you can see that the decrease in the function
value is much more rapid for x, y > 0 than for x, y < 0, where the function is decaying
exponentially. For this reason, a finer grid would be desired around x ∈ [0, 1] and
y ∈ [0, 1] to get a more accurate spline representation of the function here. I fine
enough grid to accurately represent the function around the areas of x ∈ [0, 1] and
y ∈ [0, 1] would be wasted on other domains of the functions, in particular for large
or small values of x and y, where the function is almost constantly equal to zero.
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Therefore, we should adopt a non-equidistant grid. The question is how we can
do this in a systematic manner without having to make a plot of the analytical
solution, and consider it qualitatively each time we want to do it.

We will base the terminology and the method on a technique of adaptive mesh
refinement often used when forming a finite element method solution of a static
PDE. What we will do, is to start PI from an initial distribution, using a usual
Cartesian equidistant grid, which is quite coarse, and run PI on this grid until we
approximately have a stationary solution for the discrete PI-operator on this level
of refinement. We then go to each square cell on the grid, and test some criterion
that measures whether the true stationary solution is accurately represented on that
cell, if it is not, then we divide this cell into smaller sub-cells.

Figure 4.2: Illustration of the process of cell refinement.

Figure 4.2 illustrates how the process of cell-refinement is implemented. The 4
by 4 grid is what we start with, where each black node represents a grid-point for
which we calculate a function value for the PI calculation. We then run PI on these
grids on those grid-points, until we reach an approximate solution, and then go to a
finer 7 by 7 grid as illustrated in the middle picture, where we store the value for the
black nodes in every two grid node, such that there is one free grid point between
each grid point, horizontally, vertically and diagonally. We then go over each cell,
which are formed by the thick border, and test whether the cell should be refined.
The final picture shows that the bottom-left, the middle and the top-middle cell
has been tagged for refined, where one black node is added for each free grid point
inside each cell tagged.

We then run PI anew on the new set of black nodes, until we obtain an approx-
imate stationary solution on this level of refinement, and then do the same process
over again. The initial values of the new black nodes which were previously not in
the grid, we simply obtain from linear interpolation of the nearest black nodes which
we have a PI-solution for.

4.2.1 Criteria for cell-refinement

An easy criterion, and one somewhat common from FEM, is to set some maximum
value for the mass of each cell, that is, the volume under the surface of each cell.
Over cell i with (xj, yk) as the bottom-left corner that covers l + 1 grid-nodes, we
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have that the mass over that cell is approximately by the trapezoidal rule

Mi =

∫ xj+l

xj

∫ yk+l

yk

p(x, y, t) dy dx

≈
∫ xj+l

xj

lh

2
[p(x, yk) + p(x, yk+l)] dx

≈ (lh)2

4
[p(xj, yk) + p(xj, yk+l) + p(xj+l, yk) + p(xj+l, yk+1)] = M̂i (4.11)

We then apply the restriction that

M̂i < τ , for all cells i (4.12)

where τ represents the maximum mass for each cell. If one of the cells mass exceeds
τ , then we divide it into sub-cells as shown in figure 4.2. The idea is then to refine
the grid one level at the time, and then run PI each time until we obtain a stationary
solution that satisfies the above criterion. The hope is that to ensure, ideally, equal
mass over each cell, we get a good representation of the stationary solution on the
non-equidistant grid.

Another criterion that can be applied, is to try to to control the integration error
when we calculate the mass of each cell. We will consider two ways of doing this.
The first one is to calculate the mass of each cell, using methods of different order.
A second order method, which is based on the trapezoidal rule, is already given as

Mi ≈ M̂i =
(lh)2

4
[p(xj, yk) + p(xj, yk+l) + p(xj+l, yk) + p(xj+l, yk+1)] . (4.13)

A first order method of integration, would be to assume that the function is con-
stantly equal to some value over the cell, say, p(xj, yk), then

Mi ≈ M̃i = (lh)2p(xj, yk). (4.14)

With two different schemes for approximating the mass of the cell of different order,
we can approximate the integration error on that cell, by calculating

|M̂i − M̃i| =
(lh)2

4
|p(xj, yk+l) + p(xj+l, yk) + p(xj+l, yk+1)− 3p(xj, yk)|. (4.15)

We then put a similar constraint on this quantity, that is

|M̂i − M̃i| < τ (4.16)

where τ is the maximal integration error. We proceed to refine the grid in the same
manner with this criterion, as the maximum mass criterion.

Another approach to approximating the integration error, is to use a step-halving
approach. This needs a new approach to how we define the cells, which is illustrated
in figure 4.3. The left picture how we initially divide cells, which covers 9 black nodes
instead of 4. We then follow the same procedure as before to move to a finer grid,
store the value of each black node in every other grid node, and then divide cells
into 4 sub-cells where appropriate. In the case of figure 4.3, only the bottom-left
cell was refined.
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Figure 4.3: Illustration of the process of cell refinement, when one cell covers 9 nodes
instead of 4

If, again, 2l denotes the size of a cell, then the approximate mass of that cell,
using the trapezoidal rule is

M̂i = (lh)2 [p(xj, yk) + p(xj, yk+2l) + p(xj+2l, yk) + p(xj+2l, yk+21)] . (4.17)

We can, however, also form the approximation of the mass of the cell by seeing that
we can integrate over four cells of size l and, then add these together, this gives us

M̃i =
(lh)2

4
[p(xj, yk) + p(xj, yk+l) + p(xj+l, yk) + p(xj+l, yk+1)]

+
(lh)2

4
[p(xj+l, yk) + p(xj+l, yk+l) + p(xj+2l, yk) + p(xj+2l, yk+1)]

+
(lh)2

4
[p(xj, yk+l) + p(xj, yk+2l) + p(xj+l, yk+l) + p(xj+l, yk+21)]

+
(lh)2

4
[p(xj+l, yk+l) + p(xj+l, yk+2l) + p(xj+2l, yk+l) + p(xj+2l, yk+21)]

=
(lh)2

4
[p(xj, yk) + 2p(xj, yk+l) + p(xj, yk+2l) + 2p(xj+l, yk) + 4p(xj+l, yk+1)

+ 2p(xj+l, yk+21) + p(xj+2l, yk) + 2p(xj+2l, yk+l) + p(xj+2l, yk+2l)] (4.18)

approximating the integration error, as before, by |M̂i − M̃i|, we get

|M̂i − M̃i| =
(lh)2

4
| − 3p(xj, yk) + 2p(xj, yk+l) +−3p(xj, yk+2l) + 2p(xj+l, yk)

+ 4p(xj+l, yk+1) + 2p(xj+l, yk+21)− 3p(xj+2l, yk) + 2p(xj+2l, yk+l)− 3p(xj+2l, yk+2l)|
(4.19)

Using the criterion again in (4.16), and the same procedure for refining the cells, we
then obtain a non-uniform grid for the stationary solution based on this step-halving
technique.

Example 4.1. We will take a look at the distribution

pXY (x, y) = exp[−(exp(x)− x+ exp(y)− y)] (4.20)

which is based on the stationary solution for the logarithm-transformed Lotka-
Volterra equation, to see how the criteria for cell-refinement performs. Integrating
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(a) Number of grid nodes: 81, number of black nodes: 81

(b) Number of grid nodes: 289, number of black nodes: 212

(c) Number of grid nodes: 1089, number of black nodes: 560

Figure 4.4: Plot of the black nodes, along with a plot of the stationary solution of
the Lotka-Volterra equation using the black nodes, starting with 9 × 9 nodes. The
refinement-criterion used here, was the maximal mass criterion given in (4.14), using
τ = 10−3.

this distribution over some subset of R2 is quite easy, as when we introduce the
transformation (u, v) = (exp(x), exp(y)), we get

∫ y2

y1

∫ x2

x1

e[−(ex−x+ey−y)] dx dy =

∫ v2

v1

∫ u2

u1

e[−(u−x+v−y)] du

ex
dv

ey

=

∫ v2

v1

∫ u2

u1

e−(u+v) du dv

= (e−u1 − e−u2)(e−v1 − e−v2) (4.21)

where u1 = exp(x1), u2 = exp(x2), v1 = exp(y1) and v2 = exp(y2). In particular,
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we see that when (x1, x2)→ (−∞,∞) and (y1, y2)→ (−∞,∞), then the integral is
equal to 1, showing that it is indeed a distribution.

We will look at this distribution over grids constrained by [−7, 2]× [−7, 2], which
should be a reasonable representation of the whole solution, as the mass over this
area is approximately 0.99908, and will test each of the criteria to see which one
performs best, in terms of which method gives a distribution of black nodes, which
gives the best approximation of the mass of the distribution over [−7, 2] × [−7, 2],
when we integrate numerically, using linear elements. This should also give us
a reasonably good measure of how good linear interpolation of the black nodes
approximates the actual function.

In figure 4.4, one can see the process of cell refinement for the maximal mass
criterion, using τ = 10−3, and how the graph of the stationary solution becomes
more detailed as we refine the grid. Notice how the graph of the function in figure
4.4 (c) is represent with black nodes that are only half in number of the grid nodes,
while still getting more or less the same representation, by concentrating the black
nodes around the area of the graph where it is significantly greater than zero.

Number of grid nodes Number of black nodes % of black nodes Error

289 289 100% 0.0018
1089 1089 100% 2.98 · 10−4

4225 4222 99.9% 8.77 · 10−5

16641 16404 98.5% 2.49 · 10−5

66049 62449 94.5% 6.18 · 10−6

263169 229449 87.1% 1.33 · 10−6

1050625 788386 75% 3.79 · 10−8

4198401 2396020 57% 5.84 · 10−7

16785409 6506308 38.7% 9.16 · 10−7

Table 4.1: Table for the integration error over the function in (4.20) when using
linear interpolation over the black nodes, while using the maximal mass criterion,
where the numerically calculated mass is given in (4.11) for cell refinement, with
τ = 10−7. The calculations were performed on the grid [−7, 2]× [−7, 2].

Tables 4.1, 4.2 and 4.3 shows how the three different cell refinement techniques,
given in equations (4.11), (4.15) and (4.19) performs, in terms of calculating the mass
under the curve, using linear interpolation, when compared to the exact mass under
the curve, given in equation (4.21) for u1 = v1 = exp(−7) and u2 = v2 = exp(2).

Note that in all cases, the error actually increases as the number of black nodes
becomes big in all three cases. In table 4.1 and 4.2, this happens after the number of
grid nodes exceeds 1050625, while in table 4.3 this happens when the number of grid
nodes exceeds 4198401. One might think that this is due to the increasing number
of black nodes, and that the round-off error is starting to dominate the error, due to
the large sum that needs to be calculated. This is not very likely the case however,
since the Kahan summation algorithm, introduced in chapter 1, is used on the very
good-conditioned sum, of only positive numbers.

The cause of the increasing error, is much more likely due to the following: The
distribution given in equation (4.20) is both convex and concave. In particular, this
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Number of grid nodes Number of black nodes % of black nodes Error

289 289 100% 0.0018
1089 1089 100% 2.98 · 10−4

4225 4225 100% 1.16 · 10−4

16641 16596 99.7% 2.59 · 10−5

66049 63330 95.8% 6.19 · 10−6

263169 220711 83.8% 1.73 · 10−6

1050625 620869 59% 3.35 · 10−7

4198401 1363903 23.8% 3.78 · 10−7

16785409 1487944 8.8% 8.86 · 10−7

Table 4.2: Table for the integration error over the function in (4.20) when using
linear interpolation over the black nodes, while using the maximal integration error
criterion for cell refinement, where the approximate error is given in (4.15), with
τ = 5 · 10−9. The calculations were performed on the grid [−7, 2]× [−7, 2]

Number of grid nodes Number of black nodes % of black nodes Error

289 289 100% 0.0018
1089 1089 100% 2.98 · 10−4

4225 4225 100% 1.16 · 10−4

16641 16641 100% 2.70 · 10−5

66049 66037 99.9% 6.31 · 10−6

263169 250781 95.2% 1.55 · 10−6

1050625 773785 73.6% 3.76 · 10−7

4198401 1680377 40% 2.2 · 10−7

16785409 2005433 11.9% 7.47 · 10−7

Table 4.3: Table for the integration error over the function in (4.20) when using
linear interpolation over the black nodes, while using the maximal integration error
criterion for cell refinement, where the approximate error is given in (4.19), with
τ = 2 · 10−10. The calculations were performed on the grid [−7, 2]× [−7, 2]

means that when we use linear interpolation to integrate elements, we will have es-
timates of the integral over the relevant element that overshoots the true value of the
integral, and estimates of the integral over the relevant elements which undershoots
the integral. When adding up the integrals, over the individual elements, these over-
estimates and underestimates cancel out in a rather arbitrary fashion, sometimes
bringing the final integral closer to the true value of the mass, than each individual
part of integration would suggest.

But when the grid becomes finer, these overestimates and underestimates become
less relevant as we get a tighter fit around the distribution, and the actual error
from the sum of the integrals becomes something more in line with the accuracy of
integrating each element. The measure of the accuracy of representing the stationary
solution by linear interpolation by measuring the accuracy of mass-calculation by
linear interpolation is therefore slightly deceptive, and the results for lower number
of grid nodes, generally seem better than what they are.
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Nonetheless the author has used the mesh refinement criterion based on the the
step-halving measure, as it taking into account the curvature of the function over
a cell. Since the function is best approximated by linear basis functions where the
curvature of the function is small.

4.3 Computing the PI-coefficients

In order to compute the PI-coefficients

Bk,l
i,j =

∫

R

exp
(

(yl−ỹ)2

2Dξ∆t

)

√
2πDξ∆t

bi,j,n(g
−1(xk, ỹ))|Jg−1| dỹ, (4.22)

we need to find a good way to represent the basis functions on the non-equidistant
grid. The basis functions are, as previously mentioned, linear “tent”-functions,
with the basic property that bi,j,1(xk, yl) = δi,kδj,l. A good way to represent these
functions, is to split them up in parts by making a triangulation of the grid. For
each triangle element Ωk, we assign three linear functions defined on the triangle
which is equal to 1 in one corner of the triangle, and zero in the two others.

The question is then, how we can define these functions mathematically on an
arbitrary triangle. The answer, which we borrow from the finite element method,
is that we do not: Instead we only operator on a master triangle with corners in
(0, 0), (1, 0) and (0, 1). And more precisely, we do this by introducing the following
transformation for the arbitrary triangle with corners in (x1, y1), (x2, y2) and (x3, y3)

[
x
y

]

=

[
ψ1(ξ, η)x1 + ψ2(ξ, η)x2 + ψ3(ξ, η)x3
ψ1(ξ, η)y1 + ψ2(ξ, η)y2 + ψ3(ξ, η)y3

]

(4.23)

where

ψ1(ξ, η) = 1− ξ − η (4.24)

ψ2(ξ, η) = ξ (4.25)

ψ3(ξ, η) = η (4.26)

ξ

η

0 1

1

Ω̂

Master element
x

y

(x3, y3)

Node 3

(x1, y1)

Node 1(x2, y2)
Node 2

Ωk

Figure 4.5: Illustration of the master triangle

This transformation transforms the three corners (x1, y1), (x2, y2) (x3, y3) in the
xy-plane to (0, 0), (1, 0) and (0, 1), respectively, in the ξη-plane, and transforms
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each point within the arbitrary triangle to the corresponding position in the master
triangle. Figure 4.5 illustrates the master triangle and the transformation visually.

Suppose now that we know some point (x, y) within a triangle, say, the triangle
Ωk, then in order to find the corresponding (ξ, η)-coordinates, we need to write up
the transformation in (4.23) in terms of the variables ξ and η. It can be written in
matrix form in the following way

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

] [
ξ
η

]

+

[
x1
y1

]

=

[
x
y

]

(4.27)

If the points (x1, y1), (x2, y2) and (x3, y3) are not all on a straight line, then the left
matrix is non-singular, and has an inverse given by

1

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

[
y3 − y1 x1 − x3
y1 − y2 x2 − x1

]

(4.28)

Isolating ξ and η on the left-hand side and multiplying with the inverse matrix from
the left, then gives
[
ξ
η

]

=
1

(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

[
y3 − y1 x1 − x3
y1 − y2 x2 − x1

] [
x− x1
y − y1

]

(4.29)

Once we have calculated ξ and η we can calculate the value for the three parts
of the basis functions that belong to that triangle. These are simply ψ1(ξ, η) =
1−ξ−η which corresponds to the part of the basis function that belongs to (x1, y1),
ψ2(ξ, η) = ξ which corresponds to a part of the basis function belonging to (x2, y2)
and ψ3(ξ, η) = η which corresponds to a part of the basis function belonging to
(x3, y3).

In order to calculate the PI-coefficient Bk,l
i,j , we integrate the integral in equation

(4.22) by restricting the integration interval to [yl−5
√
Dξ∆t, yl+5

√
Dξ∆t], and then

subdividing this integration interval into an odd number n of equidistant quadrature
points yl−5

√
Dξ∆t = ỹ1 < ỹ2 < · · · < ỹn = yl+5

√
Dξ∆t. Once we have calculated

the integrand at all of the quadrature points we add these up, using the composite
Simpson’s rule. We can break the process of calculating the Bk,l

i,j for each fixed (k, l)
into performing the following tasks for each i ∈ {1, 2, . . . , n}
• Calculate (x, y) = g−1(xk, ỹi), where g

−1 as usual is the inverse of the trans-
formation g(x, y) = (x̃, ỹ) = (x+ r1(x, y, t)∆t, y + r2(x, y, t)∆t)

• Find which triangle element Ωk belongs to. The mathematics for doing this,
is not presented here, as the author has simply used a built-in function in
MATLAB called pointLocation, which takes as input a Delaunay-triangulation
of the grid, as well as the point (x, y) and returns the index k of the triangle
in the triangulation in which (x, y) lies.

• Calculate the corresponding value for (ξ, η) by using equation (4.29)

• Suppose for example that bi,j,1(x, y), bi+2,j,1(x, y) and bi,j+3,1(x, y) are the basis
functions that belongs to the corners (x1, y1), (x2, y2) and (x3, y3) respectively
of the triangle element Ωk, then the final step consists of adding to the PI-
coefficients Bk,l

i,j , B
k,l
i+2,j and Bk,l

i,j+3 the integrand of equation (4.22) according
to the composite Simpson’s rule, using the basis functions ψ1(ξ, η) = 1−ξ−η,
ψ2(ξ, η) = ξ and ψ3(ξ, η) = η, respectively.
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4.4 Integration over a triangle element

Suppose that the function f is represented by linear basis functions on a grid, then
it can be represented on the triangle Ωk by, say

f(x, y) = f(x1, y1)bi,j,1(x, y) + f(x2, y2)bi+2,j,1(x, y) + f(x3, y3)bi,j+3,1 (4.30)

where bi,j,1)(x, y), bi+2,j,1(x, y) and bi,j+3,1(x, y) are the linear basis functions corres-
ponding to the points (x1, y1), (x2, y2) and (x3, y3). These are not actual grid points,
but are given this way for simplicity.

The integral of the function over this element is then given by

∫

Ωk

f(x) dx

=

∫

Ωk

f(x1, y1)bi,j,1(x, y) + f(x2, y2)bi+2,j,1(x, y) + f(x3, y3)bi,j+3,1(x, y) dx, dy.

(4.31)

By using the transformation in (4.23), the integration area is then transformed to
that of the master triangle, and the basis functions are transformed to the basis
functions for the master triangle, that is, we get

∫

Ωk

f(x) dx

=

∫ 1

0

∫ 1−η

0

(f(x1, y1)ψ1(ξ, η) + f(x2, y2)ψ2(ξ, η) + f(x3, y3)ψ3(ξ, η))|det(J)| dξ dη,
(4.32)

where det(J) is the determinant of the Jacobian of the transformation, which is
precisely the matrix

J =

[
x2 − x1 x3 − x1
y2 − y1 y3 − y1

]

. (4.33)

An observant reader will see that the absolute value of the determinant of the above
Jacobian, is simply equal to the area of the parallelogram formed by the vectors
[x2 − x1, y2 − y1] and [x3 − x1, y3 − y1]. Therefore Ak = |det(J)|/2 is equal to the
area of the triangle. By calculating the above integral, we then get

∫

Ωk

f(x) dx =
Ak

3
[f(x1, y1) + f(x2, y2) + f(x3, y3)] (4.34)

where Ak = |(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1)|. We clearly see from this
formula, that the integral of the function f represented by linear basis functions
over the triangle element Ωk is simply given by the area of the triangle multiplied
the average value of the three function values in the corners of the triangle.
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4.5 Results

In order to gauge the results we will use the unharvested transformed Lotka-Volterra
equation

dXt = (−m+ kβ exp(Yt)) dt (4.35a)

dYt = (α− 1

2
α2Dξ − β exp(Xt)− γ exp(Yt)) dt+ α

√

Dξ dBt (4.35b)

A plot of the solution, where we have gradually refined the mesh and made the time
step smaller in order to try to obtain a better estimate of the stationary solution
of the SDE. There is unfortunately a bug in the program, which causes the scale of
the solution to be wrong. But as can be seen, the refinement of the cells works as
intended, giving a fine mesh around the critical areas of the function, and a much
coarser grid where the function is close to zero.

Unfortunately, the author did not have the time to explore more of the aspects
of the solution using this algorithm.
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(a) Initial level of refinement, black nodes: 441 (b) First level of refinement, Black nodes: 1033

(c) Black nodes:2045

Figure 4.6: An approximation of the stationary solution of equation (4.35) using
parameters α = m = k = β = 1, γ = Dξ = 0.05. The initial number of black nodes
was set to 441, and initial time step was ∆t = 0.1, which is reduced by a factor of
10 for each refinement. The algorithm went to the next level of refinement when the
maximal difference in absolute values between the solution at two subsequent time
steps was less than 10−4



Chapter 5

Conclusion

Through the first part of this thesis the mathematical ground work for the Path
Integration method, as well as a discussion of the practical considerations of its
implementation on a computer has been discussed. We have discussed convergence,
and referred to sufficient conditions for convergence of the Path Integration method.
The second part, which uses results from the first part, concerns itself mainly with
the solution of a stochastic model of the Lotka-Volterra equation, where we have
discussed it qualitatively for some chosen parameters, with and without harvesting
on the population of the predator.

We ultimately presented an adaptive algorithm which was designed to be a fast
and accurate method to seek out the stationary solution for an autonomous 2D-
SDE with constant noise entering through the last dimension. It was designed to be
especially well suited to find the stationary solution of the logarithm-transformed
Lotka-Volterra equation, since it requires a precise space-representation around the
critical points of the solution.
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Appendix A

Source code

/∗This i s the source code used f o r c a l c u l a t i o n s on PI with f i x ed time s t ep s .
The code i s h igh ly based on code wr i t t en by E i r i k Mo in h i s Ph .D−th e s i s , and i s converted
from FORTRAN to C++ l i n e f o r l i n e in most l i n e s .

The main func t i on in t h i s program i s at the bottom of the source code , where the program i s f u r th e r
expla ined , above i t , are func t i on d e c l e r a t i o n s .

This code has been a l t e r e d s e v e r a l t imes during the pro j ec t , as I never wrote a complete i n t e r f a c e to
cover every p o s s i b l e s i t u a t i o n . Thus there i s not inc luded code f o r a l l the c a l c u l a t i o n s done in t h i s
p r o j e c t . The cur rent ve r s i on o f the code , does only support constant va lues f o r the no i s e p roce s s f o r
example .

In the case o f non−l i n e a r system of equat ions needing to be solved , a method from the GNU s c i e n t i f i c
l i b r a r y has been implemented . I t used method o f s t e ep e s t descent to approximate the s o l u t i on f i r s t
and when the s o l u t i on i s c l o s e enough , uses Newton ’ s method to a c c e l e r a t e the s o l u t i on ∗/

#include <iostream>
#include <vector>
#include <fstream>
#include <cmath>
#include <s t d l i b . h>
#include <s t d i o . h>
#include <c s td io>
#include <g s l / g s l v e c t o r . h>
#include <g s l / g s l mu l t i r o o t s . h>
#include <g s l / g s l l i n a l g . h>
#include <g s l / g s l e r r n o . h>
#include <g s l / g s l mat r i x . h>
//#inc lude <g s l / g s l o d e i v 2 . h>

using namespace std ;

typedef vector<double> Vector ;
typedef vector<vector<double> > Matrise ;
double maxnorm( Matr ise X, Matr ise Y, int nx , int ny ) {

//Returns the maximal e lementwise d i f f e r e n c e between the matrix Y and X in abso lu te value
double max=0;
double t e s t ;
for ( int i = 0 ; i < nx ; i += 1)
{

for ( int j = 0 ; j < ny ; j += 1)
{

t e s t=fabs (X[ i ] [ j ]−Y[ i ] [ j ] ) ;
i f ( t e s t>max)
{

max=t e s t ;
}

}
}
return max ;

}
Vector vector add ( Vector X, Vector Y, double c ) {
//Computes X+c∗Y, and re tu rns the r e s u l t
X[0]=X[0]+ c∗Y[ 0 ] ;
X[1 ]=X[1]+ c∗Y[ 1 ] ;
return X;
}
Vector vec tor prod ( Vector X, Vector Y) {
// produces the e lementwise product o f the two vec to r s X and Y and re tu rns the r e s u l t as a vector
X[0]=X[ 0 ] ∗Y[ 0 ] ;
X[1 ]=X[ 1 ] ∗Y[ 1 ] ;
return X;
}
Vector l i n s p a c e (double min , double max , int nx ) {

//Creates a vector o f l ength nx with an uniform gr id s t a r t i n g at min and ending at max
Vector x (nx ) ;
double h=(max−min )/( nx−1);
for ( int i = 0 ; i < nx ; i += 1) {

x [ i ]=min+i ∗h ;

81
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}
return x ;

}
double mi l s t e i n (double y , double x , double dt , double by){
double PI=3.1415926535;
double k1=1/by ;
double k2=0.5∗by∗by∗x ;
double c=x∗(1−0.5∗k1 ) ;
double norm factor =1/(2∗ sq r t (2∗PI∗dt∗k2∗(y−c ) ) ) ;
return norm factor ∗( exp(−pow( sq r t (y−c )/ sq r t ( k2)+k1 , 2 )/ (2∗ dt ))+exp(−pow( sq r t (y−c )/ sq r t ( k2)−k1 , 2 ) / (2∗ dt ) ) ) ;
}
Vector p a r t i t i o n (double y , double dt , double by , double dy in i t , double ymin ,
double ymax , double TOL, double n min ) {
Vector p ;
double x ;
i f ( ymin>0)
{

x=ymin ;
}
else

x=0;
double PI=3.1415926535;
bool t ry con t ;
double e r r ;
double f x o l d =0;
double fx new ;
double fx mid ;
double dy=dy i n i t ;
while (x<ymax)
{

fx new=fx o l d ;
t ry con t=true ;
while ( t ry con t )
{

fx new=exp(−pow(y−(x+dy ) ,2 )/ (2∗ dt∗pow(by∗(x+dy ) , 2 ) ) ) / sq r t (2∗PI∗dt∗pow(by∗(x+dy ) , 2 ) ) ;
fx mid=exp(−pow(y−(x+0.5∗dy ) , 2 )/ (2∗ dt∗pow(by∗(x+0.5∗dy ) , 2 ) ) ) / sq r t (2∗PI∗dt∗pow(by∗(x+0.5∗dy ) , 2 ) ) ;
e r r=dy∗ f abs ( fx new−2∗ fx mid+f x o l d ) /2 ;
i f ( err>TOL)
{

dy=0.9∗pow(TOL/ err , 1 . 0 / 3 )∗ dy ;
}
else

{
x=x+dy ;
i f (x<ymax)
{

p . push back (x ) ;
}
// cout << x << ” ” << fx new ;
// c in . get ( ) ;
i f ( err>TOL∗pow(10 ,−4))
{

dy=0.9∗pow(TOL/ err , 1 . 0 / 3 )∗ dy ;
}
else

dy=2∗dy ;
t ry con t=fa l se ;

}
}

}
p . push back (ymax ) ;
i f (p . s i z e ()<n min )
{

p=pa r t i t i o n (y , dt , by , d y i n i t /10 , ymin , ymax ,TOL/3 , n min ) ;
}
i f (p . s i z e ()>4000)
{

p=pa r t i t i o n (y , dt , by , dy in i t , ymin , ymax ,TOL∗2 , n min ) ;
}
return p ;
}
double heval (double x ) {

double T=1;
double h=10;
i f ( exp (x)<T)
{

return 0 ;
}
return h∗(1−T∗exp(−x ) ) / ( h+(exp (x)−T) ) ;

}
Vector aeva l ( Vector x , double t ) {

/∗This i s the d e t e rm in i s t i c term in the SDE dX t = a (X t , t ) dt + b(X t , t ) dW t , in t h i s case
we have used the SDE from example 3 in the repor t ∗/
Vector a ( 2 ) ;
a [0]=(−1.0+x [ 1 ] ) ∗ x [ 0 ] ;
a [1]=(1.0−x [0 ] −0.05∗x [ 1 ] ) ∗ x [ 1 ] ;
return a ;

}
Vector a d i f f e v a l ( Vector x , double t ) {

Vector a ( 2 ) ;
a [0]=−1.0+x [ 1 ] ;
a [1]=1.0−x [0 ] −0.1∗x [ 1 ] ;
return a ;

}
Vector RK4step ( Vector x , double t , double h) {

/∗This r ep r e s en t s the r e s u l t o f one step o f RK4, us ing the func t i on a (X t , t ) as
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the d e r i v a t i v e ∗/
Vector k1=aeva l (x , t ) ;
Vector k2=aeva l ( vector add (x , k1 ,−h/2) , t−h /2 ) ;
Vector k3=aeva l ( vector add (x , k2 ,−h/2) , t−h /2 ) ;
Vector k4=aeva l ( vector add (x , k3 ,−h ) , t−h ) ;
Vector k ( 2 ) ;
k [0 ]=x [0] −( k1 [0]+2∗ k2 [0]+2∗ k3 [0 ]+ k4 [ 0 ] ) ∗ ( h /6 ) ;
k [1 ]=x [1] −( k1 [1]+2∗ k2 [1]+2∗ k3 [1 ]+ k4 [ 1 ] ) ∗ ( h /6 ) ;
return k ;

}
Vector RK4stepd ( Vector x , double t , double h) {

Vector one ( 2 ) ;
one [ 0 ]=1 ;
one [ 1 ]=1 ;
Vector k1=aeva l (x , t ) ;
Vector k1d=ad i f f e v a l (x , t ) ;
Vector k2=aeva l ( vector add (x , k1 ,−h/2) , t−h /2 ) ;
Vector k2d=vector prod ( vector add ( one , k1d ,−h/2) , a d i f f e v a l ( vector add (x , k1 ,−h/2) , t−h / 2 ) ) ;
Vector k3=aeva l ( vector add (x , k2 ,−h/2) , t−h /2 ) ;
Vector k3d=vector prod ( vector add ( one , k2d ,−h/2) , a d i f f e v a l ( vector add (x , k2 ,−h/2) , t−h / 2 ) ) ;
Vector k4d=vector prod ( vector add ( one , k3d ,−h ) , a d i f f e v a l ( vector add (x , k3 ,−h ) , t−h ) ) ;
Vector k ( 2 ) ;
k [0]=1−(k1d [0]+2∗ k2d [0]+2∗ k3d [0 ]+ k4d [ 0 ] ) ∗ ( h /6 ) ;
k [1]=1−(k1d [1]+2∗ k2d [1]+2∗ k3d [1 ]+ k4d [ 1 ] ) ∗ ( h /6 ) ;
return k ;

}
void Matrise2matr ix ( g s l mat r i x ∗ matrix , Matr ise matrise , int nx , int ny ) {

for ( int i = 1 ; i < nx−1; i += 1)
{

for ( int j = 1 ; j < ny−1; j += 1)
{

g s l ma t r i x s e t ( matrix , i −1, j −1,matr i se [ i ] [ j ] ) ;
}

}
}
Matrise matr ix2Matr ise ( g s l mat r i x ∗matrix , int nx , int ny ) {

Matrise matr i se (nx , vector<double>(ny , 0) ) ;
for ( int i = 0 ; i < nx−2; i += 1)
{

for ( int j = 0 ; j < ny−2; j += 1)
{

matr i se [ i +1] [ j+1]= g s l ma t r i x g e t ( matrix , i , j ) ;
}

}
return matr i se ;

}
Matrise Pathint ( int nx , int ny , double t , double dt , int nt , double by , double xmin ,
double xmax , double ymin , double ymax , int method , char∗ f i l ename ){

/∗This i s the main rout ine in t h i s program , c a l c u l a t i n g the PI s o l u t i on a f t e r
a chosen number o f t imesteps from an i n i t a l d i s t r i b t i o n .

Input :
nx = Number o f g r id po in t s in x−d i r e c t i o n
ny = Number o f g r id po in t s in y−d i r e c t i o n
t = s t a r t i n g time
dt = time step
nt = number o f time s t ep s
by = The constant f o r the d i f f u s i o n proce s s : dX t = a (X t , t ) dt + by dW t
xmin , xmax , ymin , ymax = de f i n e s the c a l c u l a t i o n domain [ xmin , xmax ]X[ ymin , ymax ]
method = number f o r the method used , exp la ined in the main func t i on
f i l ename = name o f the f i l e to wr i t e the r e s u l t to

Output :
Matrix p new with the numerical s o l u t i on .
∗/
const double PI=3.1415926535;
Matr ise p new (nx+2, vector<double>(ny+2, 0) ) ;
Matr ise avg=p new ;
Matr ise ex (nx+2, vector<double>(ny+2, 0) ) ;
vec tor < vector <double > > p a r t i t i o n s ; /∗ the number o f i n t e g r a t i o n po in t s in order to
c a l c u l a t e equat ion (2) in the report , in t h i s case i t i s always chosen
to be twice the number o f g r id po in t s in y−d i r e c t i o n ∗/

/∗Ca l cu l a t e s the Diagonal o f the U matrix f o r the LU f a c t o r i z a t i o n o f the
uniform cubic B−s p l i n e . ∗/
Vector qx=mo sp l i n i t ( nx ) ;
Vector qy=mo sp l i n i t ( ny ) ;

/∗Pre ca l cu l a t e some constants that w i l l be r epea ted ly used l a t e r ∗/
double norm factor ;
double norm exponent ;

// Counters
int i , j , k ;

// I n i t i a l i z e s g r id
double mass=0;
Vector x=l i n s pa c e (xmin , xmax , nx ) ;
double dx=x[1]−x [ 0 ] ;
Vector y = l i n s pa c e (ymin , ymax , ny ) ;
double dy = y[1]−y [ 0 ] ;
//Construct the i n i t a l d i s t r i b u t i o n
for ( i = 1 ; i < nx+1; i += 1) {

for ( j = 1 ; j < ny+1; j += 1) {
//p new [ i ] [ j ]=exp ( − (2 .0/0 .5)∗ (pow(x [ i −1]−2,2)+pow(y [ j −1] −2 ,2))) ;
//p new [ i ] [ j ]=pow(x [ i −1 ] ,0 .85)∗pow(y [ j −1] ,1)∗ exp(−2∗(y [ j−1]+x [ i −1 ] ) ) ;
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p new [ i ] [ j ]=pow(x [ i −1 ] ,8 .25)∗pow(y [ j −1] ,9)∗ exp(−10∗(x [ i −1]+y [ j −1 ] ) ) ;
mass=mass+p new [ i ] [ j ] ;

}
}
mass=mass∗dx∗dy ;
for ( j = 1 ; j < ny+1; j += 1)
{

for ( k = 1 ; k < nx+1; k += 1)
{

p new [ k ] [ j ]=p new [ k ] [ j ] / mass ;
ex [ k ] [ j ]=p new [ k ] [ j ] ;

}
}
double masstmp=mass ;
mass=0;
// I n i t i a l i z e v a r i a b l e s that w i l l be used in the f o l l ow ing c a l c u l a t i o n s
vector < vector < vector <double> > > x f i n a l ;
vec tor < vector < vector <double> > > y f i n a l ;
vec tor < vector < vector < vector < double > > > > j a c ;
// a l l o c a t e s memory f o r the 3D−array x f i n a l and y f i n a l
x f i n a l . r e s i z e (ny ) ;
y f i n a l . r e s i z e (ny ) ;
j a c . r e s i z e (ny ) ;
for ( j = 0 ; j < ny ; j += 1)
{

x f i n a l [ j ] . r e s i z e (nx ) ;
y f i n a l [ j ] . r e s i z e (nx ) ;
j a c [ j ] . r e s i z e (nx ) ;

}
vector <double> pp tab ;
vec tor <double> su c c e s s ;
Vector tmp ( 2 ) ;
double xv , yv ;
double py1 , py2 , py3 , py4 , px1 , px2 , px3 , px4 ;
int kk2 , l l 2 ;
double pp ;
Vector Ex( nt +1 ,0) ;
Vector Ey( nt +1 ,0) ;
for ( i = 1 ; i < nx+1; i += 1) {

for ( j = 1 ; j < ny+1; j += 1) {
Ex[0]=Ex[0]+x [ i −1]∗p new [ i ] [ j ]∗ dx∗dy ;
Ey[0 ]=Ey[0]+y [ j −1]∗p new [ i ] [ j ]∗ dx∗dy ;

}
}
Matrise po ;
g s l mat r i x ∗po c=g s l ma t r i x a l l o c (nx , nx ) ;
g s l v e c t o r ∗ e=g s l v e c t o r a l l o c (nx ) ;
g s l v e c t o r ∗ f=g s l v e c t o r a l l o c (nx−1);
g s l v e c t o r s e t a l l ( e , 4 . 0 / 6 ) ;
g s l v e c t o r s e t a l l ( f , 1 . 0 / 6 ) ;
double ptmp ;
double e r r o r ;
double error max=0;
double yy ;
//Main loop
fstream output ( f i l ename , f s t ream : : out ) ; //open f i l e to wr i t e the r e s u l t to
f s tream
gra f ( ” g ra f ” , f s t ream : : out ) ;
//Generates g r id
for ( j = 0 ; j < ny−1; j += 1)
{

p a r t i t i o n s . push back ( p a r t i t i o n (y [ j +1] , dt , by , 0 . 001∗ sq r t ( dt ) , y [ j ]−(by∗by∗dt )∗5 ,ymax , 0 . 0 1∗ sq r t ( dt ) , ny ) ) ;
}
cout << ”done” ;
c in . get ( ) ;
for ( i = 0 ; i < nt ; i += 1) {

// Store s the old dens i ty
po=p new ;
Matr ise2matr ix ( po c , po , nx+2,ny+2);
// Ca lcu la te B−s p l i n e c o e f f i c i e n t s .

for ( int l l =0; l l < ny ; l l ++) {
g s l v e c t o r v i ew b = gs l matr ix co lumn ( po c , l l ) ;
g s l l i n a l g s o l v e s ymm t r i d i a g ( e , f ,&b . vector ,&b . vec tor ) ;

}
for ( int kk=0; kk< nx ; kk++) {

g s l v e c t o r v i ew b=gs l mat r ix row ( po c , kk ) ;
g s l l i n a l g s o l v e s ymm t r i d i a g ( e , f ,&b . vector ,&b . vec tor ) ;

}
//FILE∗ ko e f f=fopen (” ko e f f ” ,”w” ) ;
// g s l m a t r i x f p r i n t f ( koe f f , po c , ”%g ” ) ;
// f c l o s e ( k o e f f ) ;
po=matr ix2Matr ise ( po c , nx+2,ny+2);

for ( j = 1 ; j < ny ; j += 1) {
pp tab . r e s i z e ( p a r t i t i o n s [ j −1] . s i z e ( ) ) ;
s u c c e s s . r e s i z e ( p a r t i t i o n s [ j −1] . s i z e ( ) ) ;
for ( k = 0 ; k < nx ; k += 1) {

i f ( i==0)
{
for ( int i p a r t i t i o n = 0 ; i p a r t i t i o n < p a r t i t i o n s [ j −1] . s i z e ( ) ; i p a r t i t i o n += 1) {

// cout << i p a r t i t i o n << ” ” << tmp [ 0 ] << ” ” << tmp [ 1 ] << endl ;
tmp[0]=x [ k ] ;
tmp[1]= pa r t i t i o n s [ j −1] [ i p a r t i t i o n ] ;
i f (method==1)
{

// I f Euler ’ s method was chosen as method
tmp=Estep (tmp , t , dt ) ;
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}
else i f (method==2)
{

// I f Improved Euler ’ s method was chosen as method
tmp=rs t ep (tmp , t , dt ) ;

}
else i f (method==3)
{

// I f RK4 was chosen as method
//RK4step (tmp , t , dt ) ;
j a c [ k ] [ j ] . push back (RK4stepd (tmp , t , dt ) ) ;
tmp=RK4step (tmp , t , dt ) ;

}
else i f (method==4)
{

// I f imp l i c i t RK4 was chosen as method
tmp=nmet (tmp , t , dt , tmp , pow( dt , 5 ) , 1 ) ;

}
else i f (method==5)
{

// I f Crank−Nicholson was chosen as method
tmp=nmet (tmp , t , dt , tmp , pow( dt , 5 ) , 2 ) ;

}
else i f (method==6)
{

// I f imp l i c i t Euler ’ s method was chosen as method
tmp=nmet (tmp , t , dt , tmp , pow( dt , 5 ) , 3 ) ;

}
x f i n a l [ k ] [ j ] . push back (tmp [ 0 ] ) ;
y f i n a l [ k ] [ j ] . push back (tmp [ 1 ] ) ;
}

}
p new [ k+1] [ j +1]=0;
int f a i l u r e s =0;
for ( int i p a r t i t i o n = 0 ; i p a r t i t i o n < p a r t i t i o n s [ j −1] . s i z e ( ) ; i p a r t i t i o n += 1)
{

yy=pa r t i t i o n s [ j −1] [ i p a r t i t i o n ] ;
xv=x f i n a l [ k ] [ j ] [ i p a r t i t i o n ] ;
yv=y f i n a l [ k ] [ j ] [ i p a r t i t i o n ] ;
e r r o r=exp(−2∗(exp ( yv)−yv+exp ( xv)−0.95∗xv ) )/masstmp ;
/∗Find the po s i t i o n o f x and y in the r e f e r e n c e domain∗/
i f ( yv>y [ 0 ] && yv<y [ ny−1] && xv>=x [ 0 ] && xv<x [ nx−1])
{

l l 2=f l o o r ( ( yv−y [ 0 ] ) / dy ) ;
yv=(yv−y [ l l 2 ] ) / dy ;
kk2=f l o o r ( ( xv−x [ 0 ] ) / dx ) ;
xv=(xv−x [ kk2 ] ) / dx ;

/∗Computing the par t s o f the uniform cubic B−s p l i n e ∗/
py4=pow(yv , 3 ) / 6 ;
py3=−pow(yv ,3)/2+pow(yv ,2)/2+yv/2+1.0/6;
py2=pow(yv ,3)/2−pow(yv ,2 )+2 .0/3 ;
py1=pow(yv ,2)/2−yv/2+1.0/6−py4 ;

px4=pow(xv , 3 ) / 6 ;
px3=−pow(xv ,3)/2+pow(xv ,2)/2+xv/2+1.0/6;
px2=pow(xv ,3)/2−pow(xv ,2 )+2 .0/3 ;
px1=pow(xv ,2)/2−xv/2+1.0/6−px4 ;
pp=(po [ kk2 ] [ l l 2 ]∗ px1+po [ kk2+1] [ l l 2 ]∗ px2+po [ kk2+2] [ l l 2 ]∗ px3+po [ kk2+3] [ l l 2 ]∗ px4 )∗py1
+(po [ kk2 ] [ l l 2 +1]∗px1+po [ kk2+1] [ l l 2 +1]∗px2+po [ kk2+2] [ l l 2 +1]∗px3+po [ kk2+3] [ l l 2 +1]∗px4 )∗py2
+(po [ kk2 ] [ l l 2 +2]∗px1+po [ kk2+1] [ l l 2 +2]∗px2+po [ kk2+2] [ l l 2 +2]∗px3+po [ kk2+3] [ l l 2 +2]∗px4 )∗py3
+(po [ kk2 ] [ l l 2 +3]∗px1+po [ kk2+1] [ l l 2 +3]∗px2+po [ kk2+2] [ l l 2 +3]∗px3+po [ kk2+3] [ l l 2 +3]∗px4 )∗py4 ;
e r r o r=abs (pp−e r r o r ) ;
i f ( e r ror>error max )
{

error max=e r r o r ;
}
/∗Corrects , i f the value i s under zero ∗/
i f (pp<0)
{

pp=0;
}
i f ( y f i n a l [ k ] [ j ] [ i p a r t i t i o n ]==0)
{

pp tab [ i p a r t i t i o n −f a i l u r e s ]=0;
}
else

{
double norm factor=1/( sq r t (2∗PI∗dt )∗by∗ y f i n a l [ k ] [ j ] [ i p a r t i t i o n ] ) ;

double norm exponent=1/( sq r t (2∗ dt )∗by∗ y f i n a l [ k ] [ j ] [ i p a r t i t i o n ] ) ;
pp tab [ i p a r t i t i o n −f a i l u r e s ]=pp∗norm factor ∗exp(−pow( ( y [ j ]−yy )∗ norm exponent , 2 ) )
∗ j a c [ k ] [ j ] [ i p a r t i t i o n ] [ 0 ] ∗ j a c [ k ] [ j ] [ i p a r t i t i o n ] [ 1 ] ;

}
su c c e s s [ i p a r t i t i o n −f a i l u r e s ]= p a r t i t i o n s [ j −1] [ i p a r t i t i o n ] ;

}
else

{
f a i l u r e s++;

}
}
for ( int i p a r t i t i o n = 0 ; i p a r t i t i o n < ( int ) p a r t i t i o n s [ j −1] . s i z e ()−1− f a i l u r e s ; i p a r t i t i o n += 1)
{

p new [ k+1] [ j+1]=p new [ k+1] [ j+1]+ fabs ( suc c e s s [ i p a r t i t i o n+1]− su c c e s s [ i p a r t i t i o n ] )
∗( pp tab [ i p a r t i t i o n ]+pp tab [ i p a r t i t i o n +1])/2 ;

}
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mass=mass+p new [ k+1] [ j +1] ;
}

}
// cout << error max ;
mass=mass∗dx∗dy ;
for ( j = 1 ; j < ny+1; j += 1)
{

for ( k = 1 ; k < nx+1; k += 1)
{

// Sca l e s the d i s t r i b u t i o n such that the t o t a l mass i s 1 .
p new [ k ] [ j ]=p new [ k ] [ j ] / mass ;
i f ( t>10)
{

avg [ j ] [ k]=avg [ j ] [ k]+p new [ j ] [ k ] ;
}

}
}
t=t+dt ; // updates the time
mass=0;
for ( j = 1 ; j < nx+1; j += 1) {

for ( k = 1 ; k < ny+1; k += 1) {
Ex [ i +1]=Ex [ i +1]+x [ j −1]∗p new [ j ] [ k ]∗ dx∗dy ;
Ey [ i +1]=Ey [ i +1]+y [ k−1]∗p new [ j ] [ k ]∗ dx∗dy ;

}
}

}
for ( j = 0 ; j < nx ; j += 1)
{

for ( k = 0 ; k < ny−1; k += 1)
{

/∗Writes the r e s u l t to a chosen f i l e in a format MATLAB can read
by us ing the command dlmread ( ’ f i l enam ’ ) . This func t i on r e tu rns a
matrix in MATLAB equal to p new∗/
g ra f << p new [ j +1] [ k+1] << ” , ” ;

}
g ra f << p new [ j +1] [ ny ] << endl ;

}
for (unsigned int j = 0 ; j < nt+1; j += 1)
{

output << j ∗dt << ” , ” << Ex [ j ] << ” , ” << Ey [ j ] << endl ;
}
output . c l o s e ( ) ; // c l o s e s the output f i l e
g r a f . c l o s e ( ) ;
cout << maxnorm( ex , p new , nx+2,ny+2);
return p new ;

}
int main ( int argc , char ∗argv [ ] ) {

/∗
argv [ 1 ] = number o f g r id po in t s in x−d i r e c t i o n
argv [ 2 ] = number o f g r id po in t s in y−d i r e c t i o n
argv [ 3 ] = t imestep
argv [ 4 ] = number o f t imesteps
argv [ 5 ] = number f o r the method used :

1 : Backward Euler ’ s method
2 : Backward Improved Euler ’ s method
3 : Backward RK4
4 : RK4 forward , imp l i c i t l y so lved
5 : Crank Nicholson , imp l i c i t l y so lved
6 : Forward Euler , imp l i c i t l y so lved

argv [ 6 ] = name o f the f i l e to wr i t e the r e s u l t s to
∗/
Pathint ( a t o i ( argv [ 1 ] ) , a t o i ( argv [ 2 ] ) , 0 , a t o f ( argv [ 3 ] ) , a t o i ( argv [ 4 ] ) , 0 . 1 , 0 , 2 , 0 , 2 , a t o i ( argv [ 5 ] ) , argv [ 6 ] ) ;

}
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[3] Arnulf Jentzen and Martin Hutzenthaler. Convergence of the stochastic euler
scheme for locally lipscitz coefficients, November 2009.

[4] Jan Palczewski. Milstein scheme and convergence, 2009.

[5] A. Naess and V.Moe. Efficient path integration methods for nonlinear dynamic
systems. Probabilistic engineering mechanics, (15):221–231, 2000.

[6] John N. McDonald and Neil A. Weiss. A Course in Real Analysis. Academic
Press, 2001.

[7] Carl de Boor. A Practical Guide to Splines, Revised Edition. Springer, 2001.

[8] Tore Selland Kleppe. Numerical path integration for lèvy driven stochastic
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