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Abstract

The theory of laser-induced liquid-liquid interface deformation has been presented and
used to derive a differential equation describing the shape of the deformation. The differ-
ential equation has been investigated and solved numerically, and the results have been
compared to the experimental results of the Bordeaux group [24]. A model describing
the maximum depth of the deformation based on the theory of a sphere in an electric
field has also been investigated.

The deformations from the numerical solutions of the differential equation are too wide
compared to the experimental results. The shoulder-shape that has been observed in the
experiments is not present in the numerical solutions. There is reason to believe that the
differential equation may be too simple in order to describe the liquid-liquid interface
deformation for nonlinear cases. There may be thermal effects that changes the liquid
properties due to local temperature variations induced by the laser, causing the liquid
parameters to change along the deformation.

The model used to estimate the deformation depth does not give reasonable results, as
it leads to a deformation that is more than 100 times larger than what is observed in the
corresponding experiments. The assumptions made for this model may not be valid, and
a discussion on what should be done in order to improve the model is included in this
text.
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Chapter 1

Introduction

The idea that light carries momentum goes back to Kepler and Newton, and this idea
was later confirmed by Maxwell [1]. When the laser was invented, the momentum could
finally be used for practical applications. Today, there is a wide range of research areas
who use the laser pressure as an important laboratory tool, such as quantum optics,
trapping of atoms and biological particles, deformation of single cells, manipulation of
DNA, nanofabrication and microfluidic sorting [2].

In order to find new and improve existing applications, it is important not only to perform
experiments, but also to fully understand the theory behind the experiments. This text
will try to bring some of the laser radiation pressure theory closer to the corresponding
experimental observations.

The Bordeaux group

At the University of Bordeaux (Centre National de la Recherche Scientifique, France),
a group of scientists have performed experiments on liquid-liquid interface deformations
induced by radiation pressure from a laser. By using a near-critical phase-separated li-
quid mixture, the surface tension becomes weak [17]. The result is that even moderate
laser powers can lead to deformations of several tens of micrometers. Several types of
experiments have been performed using this low surface tension system, including liquid
bridge experiments [3], liquid optical fibre experiments [4], laser-related droplet (or jet)
experiments [6], [5], [7] as well as linear and nonlinear liquid-liquid interface bending
experiments (laser beam incoming from below) [24], [12], [17]. Many more articles and
other publications than those mentioned here have been released on the work by the
Bordeaux group.

Not all the observations and results that are found during these experiments have been
completely understood, not to mention reproduced from theory. This present text will
try to do just that; to describe some of the laser induced nonlinear liquid-liquid inter-
face deformations that have been observed by Casner, Delville et al. But first, a short
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description of this type of experiment will be given.

Description of the interface bending experiment

A more detailed description of this experiment can be found in Casner’s doctoral thesis
[24] (French), or [17]. A laser beam with assumed Gaussian intensity distribution is used
to create the interface deformation. The intensity of the beam depends on the laser
power, P , and the beam waist, ω0 (characteristic beam width). The interface is made
from two liquids with a difference in mass density, ∆ρ, and refractive index ∆n. The
size of these differences can be adjusted by varying the temperature. The laser beam
is placed below the two liquids, meaning that it will propagate from the medium with
highest mass density (and lowest refractive index) to the less denser medium. Due to
the radiation pressure from the laser beam, the interface will be bended downwards.
The force from the surface tension and the buoyancy will try to counteract the force
from the laser. Depending on the intensity of the laser beam (with given liquid mixture
parameters), the shape of the liquid-liquid interface deformation can be divided into two
types, linear and nonlinear deformation. The linear type occurs for low values of P .
The linear deformation is not as deep as the nonlinear deformations, and the shape is
simpler (see figure 1.1a and 1.1b). The system during this experiment is assumed to be
stationary.

(a) Linear deformation (b) Nonlinear deformation with
"shoulder"

Figure 1.1: Figure showing qualitative sketches of linear and nonlinear liquid-liquid in-
terface deformations. The nonlinear deformation is deeper and has a more complicated
shape than linear deformations.
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Theoretical description of the interface bending experiment

Several articles describing the theory of these experiments have been published. In 2002,
Alex Casner delivered his doctoral thesis on the work of radiation pressure experiments.
Among others, Iver Brevik, professor at the Norwegian University of Science and Tech-
nology, has later cooperated with the Bordeaux team in order to fully describe the theory
behind the deformations [12], [17].

In 2003, Aslak Hallanger wrote his M.Sc. thesis [16] (with Iver Brevik as supervisor)
about the linear and nonlinear liquid-liquid interface deformations. He was able to find
a numerical solution to the differential equation that described the deformation, using
the theoretical description of Brevik, Casner and Delville. The numerical results showed
good agreement for the case of small deformations (low power P ), but not for larger de-
formations. The solution did not fit the nonlinear shoulder-shaped deformations that has
been observed for large laser power. Hallanger concluded that the differential equation
(which is highly nonlinear) may have several solutions, and that he only found one of
them. The numerical results of Hallanger have been reproduced several times [15], [8],
but no one have obtained the shape of the nonlinear interface deformations.

The present text

In this text, the search for the shoulder-shaped nonlinear solution of the differential
equation describing the interface deformation will continue. The focus will not only be
on the computational calculations and the solution itself, but also to get some information
from the differential equation before it is solved. As will be seen later, the differential
equation is too complicated in order to be solved analytically, but it may be possible to
simplify the equation for special cases, and perhaps make some analytical approximations.
A discussion of the theoretical challenges with unknown parameters will also be included.

The second chapter contains a description of the different pressure forces that are involved
in the liquid-liquid interface deformation system. First, each force will be presented
separately and adjusted in order to be described by the shape of the deformation. Then,
the forces will be put together in order to form a differential equation for the liquid-liquid
interface deformation.

Chapter 3 includes some preparations for the numerical solving. The differential equation
has to be made dimensionless and boundary conditions need to be found before the
differential equation can be solved numerically. This chapter also contains a discussion
of the nonlinear "shoulder" that have been observed in the Bordeaux experiments, and
how this shape can be understood qualitatively from the differential equation and the
forces involved. An attempt to predict the depth of the deformation from theory by using
an adjusted model for spheres in an electromagnetic field is also included in this chapter.

The fourth chapter is called Numerical solution and contains some of the computational
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calculations that have been performed during the semester (Spring, 2011). First, a trial
solution will be put together from the analytical approximations achieved in chapter
3. Then, the attempts to solve the differential equation numerically will be presented
parallel to error estimates of the input trial solution for each parameter set. By doing
this, the hypothesis of Hallanger, that the shoulder-shape is an undiscovered solution to
the differential equation, will be investigated further.

Lastly, a summary and the conclusions from each chapter will be presented and discussed
shortly. Hopefully, some results will be achieved and certainly, some new questions will
arise.

There are two appendices included in this text. The first contains some of the extensive
and sometimes unpleasant calculations from chapter 2 and 3. The second contains the
theory of the model used in chapter 3. This model was developed by Iver Brevik during
the Spring 2011, and has not yet been investigated thoroughly or published.
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Chapter 2

Theory

This chapter includes the theory of laser-induced liquid-liquid interface deformation.
First, each force is presented separately. Then, they are rewritten and put together in
order to form a differential equation that describes the shape of the deformation. The
following theory is assumed to be valid for both linear and nonlinear stationary liquid-
liquid interface deformations.

2.1 Buoyancy

The pressure inside a liquid depends on the mass density. If the pressure at a given
height h0 in the liquid is p0, then the pressure at a height (or depth) h below h0 is

p(h0 + h) = p0 + ρgh, (2.1)

where ρ is the mass density of the liquid and g is the gravitational acceleration (see figure
2.1). Note that h points in negative z-direction.

When a liquid-liquid system is under deformation, as is the case when the interface is
illuminated by a laser, there will be a pressure difference between the inner and the outer
medium (liquid) along the deformation due to the difference in mass density.

The pressure difference can be written as

∆p = (ρout − ρin)gh, (2.2)

where ρout is the mass density of medium out and ρin is the mass density of medium in
[24] (see figure 2.2). This force is often called the buoyancy and always points normal to
the surface towards the medium of less mass density (medium in). The force is growing
with larger h.

In the experiments performed by the Bordeaux group, the different parameters and liquid
properties can be altered. For instance, the mass density difference ∆ρ = (ρout − ρin)
depends on the temperature difference T − Tc:
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Figure 2.1: The pressure inside a liquid increases with the depth, h, by a factor ρg, where
ρ is the mass density of the liquid and g is the gravitational acceleration.

Figure 2.2: Under interface deformation, the pressure at a given height (or depth), h,
below the surface is different inside and outside the deformation due to different mass
densities.

∆ρ = (∆ρ)0

(T − Tc
T

)β
, (2.3)

where the constant (∆ρ)0 = 285 kg
m3 , β = 0.325, Tc = 308.15 K and T is the temperature

of the system [24]. The temperature Tc is the critical temperature at which the surface
tension goes to zero (the two liquids are the same). With T −Tc varying from 1.5 – 25 K
in the experiments of Casner and Delville [16], the difference in mass density ∆ρ varies
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from 50 – 125 kg
m3 .

2.2 Surface tension

In addition to the buoyancy, the surface tension also plays an important role for the
shape of the deformation. At liquid-liquid interfaces, the molecules of one liquid have
only half as many neighbours of the same type as the molecules inside the liquid (the
other half are molecules from the other liquid). The result is that the surface is in tension
[9].

The surface tension depends on several parameters and on the properties of the two
fluids involved. For instance, the surface tension at air-water interfaces is larger than
for air-soap water. The two liquids in the Bordeaux group experiments are chosen such
that the surface tension is small. By using two types of oil with low surface tension, it
is possible to achieve nonlinear deformations with the use of moderate laser powers [17].
The surface tension is also dependent on temperature and the curvature of the surface.
Surface tension can be expressed as a pressure difference:

∆ps.t. = σ
( 1

R1
+

1

R2

)
, (2.4)

where σ is the coefficient of the surface tension in N
m , and R1 and R2 describes the shape

of the deformation in meters (principal radii of curvature at a given point of the surface
[16]). When there is no deformation of the surface, both R1 and R2 are infinitely large,
and the pressure difference goes to zero.

The coefficient of surface tension σ is a function of the temperature [24]:

σ = σ0

(T − Tc
Tc

)2ν
. (2.5)

Here, σ0 = 1.04 · 10−4 N
m (dependent of the two liquids), ν = 0.63 and Tc = 308.15 K

[15]. As mentioned before, in the experiments of Casner and Delville, the temperature
difference T − Tc varies between 1.5 – 25.0 K [16].

The expression
(

1
R1

+ 1
R2

)
can be replaced by an expression of the height (or depth) of

the deformation, h, the distance r from the laser beam center to a point on the interface
and the corresponding angle of r, θ [17].

1

R1
+

1

R2
= −1

r

∂

∂r

(
rhr√

1 + h2r + 1
rh

2
θ

)
− 1

r

∂

∂θ

(
hθ√

1 + h2r + 1
rh

2
θ

)
(2.6)

where hr ≡ dh
dr and hθ ≡ dh

dθ . The system, both the incoming laser beam and the
deformation, is assumed to be azimuthally symmetric. Therefore, hθ = 0 and equation
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(2.6) can be simplified to:

1

R1
+

1

R2
= −1

r

d

dr

(
rhr√
1 + h2r

)
. (2.7)

Then, the pressure difference coming from the surface tension can be written as

∆ps.t. = −σ
r

d

dr

(
rhr√
1 + h2r

)
. (2.8)

2.3 Radiation force

Radiation force density

The force that causes the liquid-liquid deformation is the electromagnetic force from
the laser beam. In order to find the magnitude of this force, the general expression of
electromagnetic force per volume in an isotropic and non-conducting medium [17] will
be the starting point:

~fe.m. = −1

2
~E2∇ε+

1

2
∇
(
E2ρ(

∂ε

∂ρ
)T
)

+
εr − 1

c2
∂

∂t
( ~E × ~H) (2.9)

where ~E is the electric field vector, ε = ε0εr is the permittivity, ~H is the magnetic field
vector and ρ is the mass density of the medium.

The first term of equation (2.9) is called the Abraham-Minowski term [14], because it
appears in both Abraham’s and Minowski’s formulation of the electromagnetic energy
momentum tensor. This term is zero except where the permittivity changes, e.g. at
liquid-liquid interfaces.

The second term of equation (2.9) represents electrostriction. The elastic deformation of
a dielectric under the forces exerted by an electrostatic field is called electrostriction [10].
This force may or may not be detectable in real experiments depending on the circum-
stances. One important parameter is the speed of the sound. If the elastic pressure has
enough time to build up, as is the case here, the electrostriction force is not detecable
[13]. The electrostriction force can therefore be neglected.

The last term of equation (2.9) is called the Abraham term after Abraham’s electro-
magnetic energy momentum tensor for isotropic, non-conducting bodies [14]. For optical
frequencies, as are dealt with in the laser induced liquid-liquid interface deformation ex-
periments, this term is not detectable (the frequencies are too high) [17]. In addition,
stationary conditions are assumed.

This means that only the first term of equation (2.9), the Abraham-Minowski term re-
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mains. Then, the electromagnetic force acting on the liquid-liquid surface is:

~fAM = −1

2
E2∇ε. (2.10)

Here, E = | ~E| is the length of the electric field vector. The field vector can be expressed
by two vector components, ET and EN , where ET is the component of the electric field
that is parallel to the surface and EN is the component of the electric field that is normal
to the surface. Then, E2 = E2

T +E2
N . The force only acts where there is a change in ε, i.e.

at liquid-liquid interfaces, air-water interfaces etc. As can be seen from equation (2.10),
the radiation force acts towards the medium with lower permittivity. In the Delville and
Casner experiments, the upper fluid has the highest permittivity and the lowest mass
density, ρ. This is different for the case of air-water interfaces, where the air (upper
fluid) has both lowest density and permittivity. Notice also that the direction of the
deformation does not depend on whether the incoming laser beam is propagating from
below or above.

Radiation force per surface area

Figure 2.3: Figure showing the coordinate system used when integrating the radiation
force per volume across the surface of the liquid-liquid interface. The undisturbed inter-
face is located at z = 0. The inner medium (above) has lower mass density, but a larger
refractive index. The laser beam comes from below, propagating in positive z-direction.

The next step towards finding the force balance causing the deformation of the liquid-
liquid interface is to find the radiation force per surface area. In order to find the radiation
force per area, ~fAM can be integrated across the surface boundary from medium out to

9



medium in, with respect to the surface normal unit vector ~n:

σAM =

∫ +

−

~fAM d~n = −
∫ in

out

1

2
E2 dε

dn
dn = −ε0

2

∫ in

out
(E2

T + E2
N ) dεr (2.11)

= −ε0
2

∫ in

out

[
E2
T +

D2
N

ε20ε
2
r

]
dεr = −ε0

2

[
E2
T εr −

D2
N

ε20εr

]in
out

= −ε0
2

[
E2
T (εrin − εrout) +

D2
N

ε20
(
εrin − εrout
εrinεrout

)
]

= −ε0
2

(εrin − εrout)
(
E2
T +

D2
N

ε20εrinεrout

)
In medium in, D2

N can be written as D2
Nin = ε20ε

2
rinE

2
Nin. Also, in a nonmagnetic

medium, ni =
√
εriµri =

√
εri. The indices nin and nout should not be confused with the

surface normal vector ~n. Then,

σAM = −ε0
2

(εrin − εrout)
(
E2
T +

εrin
εrout

E2
N

)
(2.12)

= −ε0
2

(n2in − n2out)
(
E2
T +

n2in
n2out

E2
N

)
Electric field components

Now, the radiation force per surface area is expressed as a function of the electric field
components ~ET and ~EN in medium in. The goal is to set up a differential equation
which describes the deformation of the liquid-liquid interface. Therefore, it will be more
convenient to find the radiation force per surface area as a function of the variables
describing the deformation itself in x-, y- and z-direction (see figure 2.4).

The electric field ~E in medium in can be decomposed into two other components than is
used above. If ~E‖ is defined as the part of the electric field in the plane of incidence (the
xz-plane) and ~E⊥ is the part of the electric field that is normal to the plane of incidence,
then:

E2
‖ = E2

x + E2
z , (2.13)

E2
⊥ = E2

y .

By using the geometry of the system as shown in figure 2.4 and figure 2.5, ~ET and ~EN
can be rewritten as functions of the new components ~E‖ and ~E⊥. The angle θt is the
angle of the transmitted beam relative to the surface normal.

E2
T = E2

‖ cos2 θt + E2
⊥ (2.14)

E2
N = E2

‖ sin2 θt

Recalling Snell’s law:
nout sin θi = nin sin θt, (2.15)
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Figure 2.4: The electric field components ~ET and ~EN shown in a cartesian coordinate
system. The field component ~ET is the part of the electric field ~E that is parallel to the
surface and ~EN is the part of ~E that is normal to the surface.

with θi being the angle of the incoming laser beam relative to the surface normal, the
radiation pressure force per area from equation (2.12) can then be written as:

σAM = −ε0
2

(n2in − n2out)
[
E2
‖ cos2 θt + E2

⊥ +
( nin
nout

)2
E2
‖ sin2 θt

]
(2.16)

= −ε0
2

(n2in − n2out)
[
(cos2 θt + sin2 θi)E

2
‖ + E2

⊥
]
.

The next step is to replace E‖ and E⊥ with more convenient variables which describe
the shape of the deformation. The components E‖ and E⊥ describe the electric field in
medium in. However, when performing experiments, it is actually the incoming electric
field that is known. From Stratton [10], the energy transmission coefficients of the electric
field are:

T⊥ =
nin
nout

cos θt
cos θi

(E(t)
⊥

E
(i)
⊥

)2
=

sin (2θi)sin(2θt)

sin2 (θi + θt)
(2.17)

and

T‖ =
nin
nout

cos θt
cos θi

(E(t)
‖

E
(i)
‖

)2
=

sin (2θi)sin(2θt)

sin2 (θi + θt) cos2 (θi − θt)
. (2.18)

As with the electric field components, T‖ represents the transmission coefficient in the
case when the incoming electric field is lying in the plane of incidence, whereas T⊥ is
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Figure 2.5: The electric field components ET and EN relative to the components E‖ and
E⊥.

the transmission coefficient for case when the incoming electric field is perpendicular to
the plane of incidence. The superscripts (i) and (t) denotes the incoming electric field
and the transmitted electric field, respectively. Let a be an expression for the relation
between the two refractive indices, a ≡ nout

nin
. Using this definition and the rules for cosine

and sine, the last terms of equation (2.17) and (2.18) can be rewritten as:

T‖ = 4a
cos θi cos θt

(cos θt + a cos θi)2(cos θi cos θt + a sin2 θi)2
(2.19)

and
T⊥ = 4a

cos θi cos θt
(cos θt + a cos θi)2

. (2.20)

Moreover, E⊥ and E‖ can be expressed as

E2
⊥ =

nout
nin

cos θi
cos θt

T⊥E
(i)2
⊥ , E

(i)2
⊥ = E(i)2 sin2 α (2.21)

and
E2
‖ =

nout
nin

cos θi
cos θt

T‖E
(i)2
‖ , E

(i)2
‖ = E(i)2 cos2 α, (2.22)

where α is the angle between the incoming electric field vector ~E(i) and the plane of
incidence (see figure 2.6). With these new expressions, the radiation force per surface
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area from equation (2.16) can be rewritten to:

σAM = −ε0
2

(n2in − n2out)
[
(cos2 θt + sin2 θi)T‖ cos2 α+ T⊥ sin2 α

]nout
nin

cos θi
cos θt

E(i)2

= −ε0E
(i)2

2

(n2in − n2out)
nin

nout
cos θi
cos θt

[
(cos2 θt + sin2 θi)T‖ cos2 α+ T⊥ sin2 α

]
. (2.23)

Now, the radiation force per surface area σAM is given as a function of the incoming
electric field and the angles of the system.

Figure 2.6: Figure showing the angle α between the incoming electric field and the plane
of incidence.

The laser beam intensity

The intensity I of a monochromatic wave (as is the case for the incoming laser beam) is
given by [11]:

I = ε0nc〈E2〉. (2.24)

This means that the modulus of the incoming electric field can be written as

E(i)2 =
I

ε0noutc
. (2.25)

13



Inserting this into equation (2.23) results in a new expression for the radiation force per
surface area σAM :

σAM = − I

2c

n2in − n2out
nin

cos θi
cos θt

[
(cos2 θt + sin2 θi)T‖ cos2 α+ T⊥ sin2 α

]
(2.26)

The intensity is assumed to be Gaussian and circularly polarised, i.e. azimuthally sym-
metric. It is also assumed to be independent of z, as the deformations of Casner and
Delville are not more than about 80 µm for laser powers P up to 1 200 mW [16]. The
intensity then reduces to a function of the radius r [17]:

I(r, z) = I(r) =
2P

πω2
0

e
− 2r2

w2
0 (2.27)

where P is the power of the laser and ω0 is the laser beam waist. Typical values for P
in the Casner and Delville experiments that give nonlinear deformations are P : 300 – 1
200 mW [16]. The beam waist ω0 of the laser is from a couple of microns to some tens
of microns.

Figure 2.7: Figure showing how the expressions for cos θi and sin θi can be replaced with
expressions for the shape of the deformation. the height (or depth), h, is pointing in
negative z-direction.

Equation (2.26) contains the angles θi and θt. By using the geometry of the system, as
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can be seen in figure 2.7, cos θi and sin θi can be written as:

cos θi =
1√

1 + h2r
sin θi =

hr√
1 + h2r

. (2.28)

Expressions for cos θt and sin θt can also be achieved by using Snell’s law and that sin2 θt+
cos2 θt = 1.

sin θt =
ahr√
1 + h2r

cos θt =

√
1 + h2r(1− a2)√

1 + h2r
. (2.29)

Inserting the expressions for T‖ and T⊥ from equation (2.19) and (2.20) in addition to
the expressions for the angles, the radiation pressure force per surface area from equation
(2.26) can be expressed as a function of a, hr and α:

σAM = − I

2c

n2in − n2out
nin

cos θi
cos θt

[
(cos2 θt + sin2 θi)T‖ cos2 α+ T⊥ sin2 α

]
= − I

2c

n2in − n2out
nin

4a cos2 θi
(cos θt + a cos θi)2

[
cos2 θt + sin2 θi

(cos θi cos θt + sin θi sin θt)2
cos2 α+ sin2 α

]

= −2I

c

n2in − n2out
n2in

nout(
a+

√
1 + h2r(1− a2)

)2×
×

[
1 + (3− a2)h2r + (2− a2)h4r(
ah2r +

√
1 + h2r(1− a2)

)2 cos2 α+ sin2 α

]
(2.30)

For a full calculation of equation (2.30), see appendix A. To simplify the expression
above, f can be defined as a function of a, hr and α:

f(a, hr, α) =
(1 + a)2(

a+
√

1 + h2r(1− a2)
)2[1 + (3− a2)h2r + (2− a2)h4r(

ah2r +
√

1 + h2r(1− a2)
)2 cos2 α+ sin2 α

]
.

(2.31)
Then, the radiation force per surface area σAM can be written as:

σAM = −2I

c

(nin − nout
nin + nout

)
noutf(a, hr, α) (2.32)

As mentioned before, the laser beam is assumed to be circularly polarised. The angle
α depends on the polarisation of the incoming laser beam. With circular polarisation,
cosα and sinα can be averaged over α.

〈cos2 α〉 = 〈sin2 α〉 =
1

2
(2.33)

This reduces the function f(a, hr, α) from equation (2.31) to a function of only two
variables:

f(a, hr) =
(1 + a)2

[
1 + (2− a2)h2r + h4r + ah2r

√
1 + h2r(1− a2)

]
(
a+

√
1 + h2r(1− a2)

)2(
ah2r +

√
1 + hr(1− a2)

)2 (2.34)
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Figure 2.8: The function f(a, hr, α) as a function of hr. The angle α between the
incoming electric field and the plane of incidence is varying from 0◦ to 90◦. The constant
a is 0.996 for all three cases.

The full calculation from equation (2.31) to (2.34) can be found in appendix A.

Comment: What if the laser beam is not circularly polarised? How much will the function
f(a, hr, α) change if α is not 45◦? Figure 2.8 shows the function f(a, hr, α) as a function
of hr, with three different values of α, namely 0◦, 45◦ and 90◦. The constant a is set to
0.996, which is a reasonable value for T − Tc ≈ 2.5 K (see discussion in section 3.4). As
can be seen from figure 2.8, the function f(a, hr, α) the regions of hr � 1 and hr > 7
are not depending on the value of α. The middle region (hr from 0.25 to 6), however, is
varying more as α changes.

Comment: What if the system is not stationary? Only stationary liquid-liquid interface
deformations will be discussed in this present text. But also non-stationary experiments
have been performed by the Bordeaux team (see for instance Casner’s Ph.D. thesis [24]).
Then, a laser beam pulse is used to give non-stationary deformations. The intensity
changes from I(r) to I(r, t) = I(r) · I(t), it becomes time-dependent. With varying
intensity, the radiation force will change with time, and so will the deformation. For
further reading see, for instance, [16], [19] or [24].
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2.4 Putting the differential equation together

Now, the three forces that play an important role in the case of deforming liquid-liquid
interfaces with a laser beam have been presented. It is time to put the force terms
together in order to find a differential equation that describes the deformation. The next
step will be to solve the differential equation assuming nonlinear conditions, i.e. for large
incoming laser powers P , small beam waists ω0 and near critical liquid conditions (T −Tc
small).

It is important to keep in mind that the coordinate system that is used has z pointing
upwards from medium out to medium in, whereas the height of the deformation, h, is
pointing downwards. This has to be taken into account when balancing the forces.

The right hand side of the differential equation

The radiation force from the laser beam is causing the deformation. Without this force, h
would be equal to zero for all r. Since medium out has a lower permittivity than medium
in, this force will act along the surface normal towards medium out. The intensity is
assumed to have a Gaussian distribution, which means that the force will be stronger for
low r-values, hence larger deformations.

Figure 2.9: Qualitative sketch of the laser force acting on the surface under non-linear
deformation. The intensity of the laser beam is assumed to have a Gaussian distribution
with respect to the radius r. This means that the force from the laser beam is larger
for smaller values of r. When r goes to infinity, the force from the laser beam goes to
zero. The direction of the laser beam force is outwards from medium in to medium out
because nin > nout.
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The left hand side of the differential equation

The two other forces, namely the buoyancy and the surface tension will (in principal,
but this turns out to be more complicated for nonlinear cases) try to counterbalance the
force from the laser beam.

The buoyancy term is larger for increasing h, or for more negative z-values. It points
inwards, from medium out to medium in, due to a denser medium out (ρout > ρin). A
qualitative sketch can be seen in figure 2.10.

Figure 2.10: Qualitative sketch of the buoyancy force acting on the surface under nonlin-
ear deformation. The buoyancy increases linearly with larger values of h (more negative
z-values). The direction of the force is inwards, from medium out to medium in.

The surface tension is directed towards medium in when the surface is convex and towards
medium out when the surface is concave, as can be seen in figure 2.11. Putting all this

Figure 2.11: Qualitative sketch of the surface tension direction depending on the shape
of the surface.

together with the laser pressure force on the right hand side and the other two on the
left hand side of the equation results in

(ρout − ρin)h− σ

r

d

dr

( rhr√
1 + h2r

)
= −2I

c

(nin − nout
nin + nout

)
noutf(a, hr). (2.35)
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Equation (2.35) is the differential equation describing the deformation of a liquid-liquid
interface under illumination of an incoming laser beam. The system is assumed to be
cylindrical symmetric and stationary with a Gaussian laser beam intensity distribution.

2.5 Changing the free variable

One of the challenges when Hallanger solved this equation in his M.Sc. thesis [16] was
that hr grew to infinity in the middle region of r for high laser powers P . This may be
one of the reasons why Hallanger was not able to find shoulder-shape solutions of the
differential equation for nonlinear cases. To avoid numerical problems when hr goes to
infinity, an attempt will be made to solve the differential equation with respect to r. In
other words,

h(r)→ h r → r(h). (2.36)

Then, the derivative of h with respect to r, hr, can be expressed differently.

hr =
1

dr/dh
=

1

rh
(2.37)

Instead of hr growing to infinity in some of the middle region, there are now regions where
rh is zero. This should eliminate the numerical difficulties of infinite values when solving
the differential equation. The free variable is now h, and the differential equation must
be rewritten so it can be solved with respect to r. Inserting this change into equation
(2.34) results in

f(a, hr)→ f(a, rh) =
(1 + a)2r4h

[
r4h + (2− a2)r2h − arh

√
(r2h + 1− a2) + 1

]
(
ar2h − rh

√
(r2h + 1− a2)

)2(
a− rh

√
(r2h + 1− a2)

)2 . (2.38)

The full calculation from f(a, hr) to f(a, rh) in equation (2.38) can be found in appendix
A. By changing the free variable on the left hand side of the differential equation, the
new left hand side becomes

∆ρgh− σ

r

d

dr

( rhr√
1 + h2r

)
= ∆ρgh− σ

r
√
r2h + 1

− 2σrhh

(r2h + 1)
3
2

. (2.39)

Also this calculation can be found in appendix A. Combining equation (2.38) and (2.39)
gives the differential equation for r(h).

∆ρgh− σ

r
√
r2h + 1

− 2σrhh

(r2h + 1)
3
2

= −2I

c

nin − nout
nin + nout

noutf(a, rh) (2.40)

Equation (2.40) is the differential equation for the surface deformation of a liquid-liquid
interface that will be tried solved in order to match the shape of the deformations in
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the experiments of Delville et al. The focus will be on the nonlinear deformations, that
occurs at P > 300 µm [24]. The shoulder-shape of these nonlinear deformations has not
yet been reproduced from theory.

Due to the complexity of the differential equation (2.40), no attempt will be made in order
to solve it analytically. Before trying to solve it numerically, a couple of adjustments need
to be made. The differential equation must be made dimensionless, and the boundary
conditions may require some further adjustments. This will be discussed in the next
chapter.
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Chapter 3

Analysis of the differential equation

This chapter contains further investigations on the differential equation for the liquid-
liquid system. The differential equation needs some adjustments before it can be solved
numerically with a computer. Also, by studying the different elements of the equation,
some information can be obtained directly without needing to solve it. Discussions on the
boundary values, the challenges with unknown parameters and the difference between
linear and nonlinear deformations are also included in this chapter.

3.1 Dimensionless equation

The first step towards solving the differential equation numerically is to make the vari-
ables and the parameters dimensionless. This can be achieved by introducing two new
dimensionless variables to replace the radius r and the height h:

R =
r

ω0
H =

h

lc
, (3.1)

where lc =
√
σ/(g∆ρ) is the capillary length and ω0 is the beam waist of the incoming

laser beam. The dimensionless variables R and H are the same as used by Hallanger,
Brevik, Haaland and Sollie [15]. Inserting these two dimensionless variables into equation
(2.40) results in a new expression for the left hand side of the differential equation.

∆ρgh− σ

r
√
r2h + 1

− 2σrhh

(r2h + 1)
3
2

=
σlc
ω2
0

·
[
B0H −

1

R
√
R2
H + 1

B0

− 2RHH

(R2
H + 1

B0
)
3
2

]
(3.2)
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Here, the Bond number B0 ≡ (ω0/lc)
2 has been introduced. Replacing rh in the function

f(a, rh) gives:

f(a, rh) =
(1 + a2)r4h

[
r4h + (2− a2)r2h − arh

√
(r2h + 1− a2) + 1

]
(
ar2h − rh

√
(r2h + 1− a2)

)2(
a− rh

√
(r2h + 1− a2)

)2
=

(1 + a2) 1
B0
R4
H

[
B2

0R
4
H + (2− a2)B0R

2
H − aB0RH

√(
R2
H + (1−a2)

B0

)
+ 1
](

aR2
H −RH

√(
R2
H + (1−a2)

B0

))2(
a
B0
−RH

√(
R2
H + (1−a2)

B0

))2
(3.3)

= f(a,B0, RH)

The full calculation is presented in appendix A. For convenience, a new function f ′(a,B0, RH)
is introduced as:

f ′(a,B0, RH) = B0f(a,B0, RH). (3.4)

Using this new function f ′(a,B0, RH) together with the rest of the radiation pressure
force results in a new expression for the right hand side of the differential equation:

σAM = − 2I

cB0

nin − nout
nin + nout

noutf
′(a,B0, RH), (3.5)

with f(′a,B0, RH) given in equation (3.4). Then, the dimensionless differential equation
with the gravity force and the surface tension force on the left hand side and the radiation
pressure force on the right hand side yields

B0H −
1

R
√
R2
H + 1

B0

− 2RHH

(R2
H + 1

B0
)
3
2

= −AN
B0

e−2R
2
f ′(a,B0, RH). (3.6)

Here, A ≡ 4P
πcσlc

and N ≡
(
nin−nout
nin+nout

)nout is used to simplify the equation.

3.2 Boundary conditions

The boundary conditions of the differential equation in (3.6) has not yet been discussed.
Therefore, the next step is to determine the boundary conditions of the system. The
boundary conditions can be found both by studying the experimental results of the
Bordeaux group and by studying the force terms from theory. The two boundaries
correspond to R (or r) → 0 and R→∞.

The boundary at R→∞

It is the laser beam that is causing the deformation of the liquid-liquid interface. Without
it, the deformation heightH would be zero for allR. The laser beam intensity distribution
is assumed to be Gaussian, and is therefore stronger for low values of R. As R grows
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to infinity, the intensity goes to zero (zero intensity corresponds to no laser beam). In
other words, H → 0. Since there is no change in the height H for large R-values, also
HR → 0. In short we therefore have:

lim
R→∞

H = 0, lim
R→∞

HR = 0. (3.7)

The last condition in (3.7) can be rewritten as:

lim
R→∞

(RH)2 = lim
R→∞

( 1

HR

)2
=∞ (3.8)

Starting from equation (2.35), an analytical approximation for this region will be searched
for. As R grows, HR becomes smaller and smaller. Therefore, H2

R (and h2r) will be
assumed to be even smaller and set to zero. On the right hand side of (2.35), the term
exp (−2r2/ω2

0) in the expression for the intensity will bring the whole right hand side to
zero:

lim
r→∞

∆ρgh− σ

r

d

dr

( rhr√
1 + h2r

)
= −2I

c

(nin − nout
nin + nout

)
noutf(a, hr)

∆ρgh− σ

r

d

dr
(rhr) = 0

B0H −
1

R

d

dR
(RHR) = 0

B0H −
HR

R
−HRR = 0. (3.9)

The differential equation in (3.9) is known as the modified Bessel’s differential equation.
The general solution to equation (3.9) is

H(R) = c1I0(
√
B0R) + c2K0(

√
B0R), (3.10)

where c1 and c2 are constants and I0 andK0 are the 0th order of modified Bessel function,
first and second type, respectively. The modified Bessel function of second type, Kn(x)
is also known as the Basset function. Since H → 0 as R→∞, only the Basset function,
and not the first type of the modified Bessel function, is interesting, as this converges to
0 for large R-values. For large values of R:

H(R) = c2K0(
√
B0R), (3.11)

and the constant c2 needs to be found. If the differential equation (3.6) can be ap-
proximated to (adapted from previous work by Iver Brevik) B0H = −AN

2B0
= −F , then

H(R = 1) ≈ − F
B0

. Then,

H(R) ≈ − F

B0

K0(
√
B0R)

K0(R)
(3.12)

for large values of R.

H(R) ∼ K0(
√
B0R)

K0(R)
(3.13)
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The Basset function K0(x) can be written as [20]

K0(x) =
e−x√
x

(
1.25331− 0.7862 · 2

x
+ ....

)
(3.14)

for x ≥ 2. Inserting this into equation (3.13) (only including the first term) results in

H(R) ∼ e−
√
B0R

√
R

. (3.15)

In order to check whether the approximations made are acceptable, H(R) from equation
(3.15) is put back into the modified Bessel differential equation in (3.9).

H =
e−
√
B0R

√
R

, HR = −
( 1

2R
+
√
B0

)
H, HRR =

(
1

2R2
+
( 1

2R
+
√
B0

)2)
H (3.16)

into equation (3.9):

B0H −
1

R

( 1

2R
+
√
B0

)
H −

( 1

2R2
+

1

4R2
+

√
B0

R
+B0

)
H = − H

4R2
. (3.17)

This is an acceptable approximation when H → 0 and R → ∞, as the term −H/(4R2)
goes to zero. The approximative solution for H(R) when R grows to infinity is then

H(R) =
1√
R
e−
√
B0R. (3.18)

In order to rearrange this to a function R(H), the Lambert function needs to be intro-
duced [21], [22]. The Lambert W-function is defined as the inverse of

f(W ) = WeW , (3.19)

so that

R(H) =
1

2
√
B0
W
(2
√
B0

H2

)
, (3.20)

for H → 0.

The boundary at R→ 0

The next boundary condition to be introduced is the case when R → 0. As discussed
earlier, the laser beam intensity has its maximum at this boundary. It is therefore
reasonable to assume maximum deformation at this point. If H has its maximum (or
most negative z-value at R = 0, then HR must be equal to zero.

lim
R→0

H = Hmax, lim
R→0

HR = 0 (3.21)

The last term of equation (3.21) can, as before, be reformulated to

lim
R→0

(
R2
H

)2
= lim

R→0

( 1

HR

)2
=∞. (3.22)
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The boundary conditions at both ends, R→∞ and R→ 0, are in good agreement with
the experimental results of Casner and Delville.

Using the boundary conditions at the region of small R-values, an analytical approxim-
ation may be found. The exp (−2R2) term on the right hand side of equation (3.6) has
a limit value of

lim
R→0

e−2R
2

= 1. (3.23)

The function f ′(a,B0, RH) becomes:

lim
R2
H→∞

f ′(a,B0, RH) =
(1 + a2)R2

H ·B0R
4
H

(1 + a)2R2
H ·R4

H

=
(1 + a2)

(1 + a)2
B2

0 . (3.24)

The constant a is the relationship between the two refractive indices nout/nin. The
difference in the two refractive indices ∆n varies between 6 · 10−3 and 2 · 10−2 so that
0.989 < a 0.996 [16]. Therefore, a will be assumed to be unity.

lim
R2
H→∞

f ′(a,B0, RH) ≈ 1

2
B2

0 (3.25)

Then the right hand side of equation (3.6) has the limiting value

−∆nPB0

πcσlc
(3.26)

Here, also the term N = (nin−nout)
(nin+nout)

nout has been simplified by assuming a = 1 and
nin − nout = ∆n. Also the left hand side of equation (3.6) can be simplified near the
boundary of R→ 0.

lim
R→0

(
B0H −

1

R
√
R2
H + 1

B0

− 2RHH(
R2
H + 1

B0

) 3
2

)
= B0H −

1

RRH
, (3.27)

which then gives the following differential equation for R→ 0:

B0H −
1

RRH
= −C, (3.28)

where C ≡ (∆nPB0)/(πcσlc). This differential equation is separable and can be integ-
rated directly:

B0H −
1

RRH
= −C

RdR =
dH

B0H + C
1

2
R2 = ln (B0H + C) + ln (c0) (3.29)

25



The constant c0 can be determined by using the boundary condition H(R = 0) = Hmax.
Then,

R =

√
2 ln

( B0H + C

B0Hmax + C

)
(3.30)

or written more conveniently:

R(H) =

√
2
∣∣∣ ln( B0H + C

B0Hmax + C

)∣∣∣ (3.31)

as H only has negative z-values. (This last step may be considered as somewhat strange,
but keep in mind that the shape of this function indeed fit the experimental results of
Casner and Delville [24].)

Now, the two boundaries at R→∞ and R→ 0 have been investigated. Putting the two
approximate solutions for R(H) together results in the deformation shown in figure 3.1,
which at least qualitatively is in good agreement with the experimental results of Casner
and Delville for linear cases [24].

However, these two solutions do not cover the middle region for the nonlinear cases,
where an "shoulder" appears. Further investigations for this middle region is therefore
needed.

Figure 3.1: The approximative analytical functions for the two boundaries H → 0 and
H → Hmax put together. The case of P = 600 mW, ω0 = 4.8µm and T − Tc = 2.5
K is used, and Hmax is approximated to be 42.5 µm (Casner [24]). Note that these
parameters correspond to a nonlinear deformation with a "shoulder", but the shape of
the two functions put together does not include this complex middle region.
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3.3 Discussions of the middle region for nonlinear cases

In the cases where the laser beam power P is relatively weak (typically below 300 mW),
the deformation is so-called linear (see figure 1.1). Here, the surface tension and the
buoyancy are always pointing inwards, from medium out to medium in. The radiation
force is pointing outwards. But what happens when the laser beam power increases?
Suddenly, the middle region changes its shape by the appearance of a "shoulder". The
direction of the buoyancy and the radiation force is still the same, as these forces depend
on the difference in mass density and the refractive indices, respectively. The surface
tension, however, has direction depending on the shape of the surface (figure 2.11). This
means that in the nonlinear cases, the surface tension is pointing outwards in the middle
region.

Figure 3.2: Figure showing the nonlinear liquid-liquid interface deformations with the
shoulder-shaped divided into five sections.

What is causing this change in surface tension direction (and hence causing the shape
to change so dramatically)? As discussed in section 2.4, the buoyancy increases linearly
with the depth of the deformation, H. The laser beam intensity is assumed to have a
Gaussian distribution depending only on the radius, R, and not the z-component (H).
This means that in the regions B and D, as shown in figure 3.2, the force from the laser is
almost constant (as R is the same for varying H), while the buoyancy is increasing along
the deformation. The surface tension is also constant (and → 0), due to the straight
line (neither concave nor convex). It is therefore quite easy to imagine that at some
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point, the buoyancy grows so large that the force form the laser beam is no longer able
to pull the liquid-liquid interface downwards with the same width as the B-region has.
Therefore, the shape changes to the form of region C, where the radiation force and the
surface tension act outwards and the buoyancy inwards. Now, the radius R is decreasing,
which means that the radiation force is increasing until it (again) is able to withstand
the buoyancy without "help" from the surface tension. Note that this explanation is a
qualitatively guess based on the experimental observations.

In the cases of small deformations (low power P ), the height of the deformation is prob-
ably not large enough for the buoyancy to dominate and cause a change in the direction
of the surface tension.

The challenge with the middle region (B, C and D), that is characteristic for the non-
linear deformations, is that there are no analytical approximations for this area. As will
be seen later, in chapter 4, as well as in the results of Hallanger [16], there are some
numerical solutions for the cases of high laser beam intensity (in the nonlinear region).
But these solutions do not include the shoulder (although they satisfy the differential
equation). One probably needs some more information concerning the middle region of
nonlinear cases before being able to find the numerical solutions that match the experi-
ments.

Comment: What if the laser beam impinges from above? As discussed earlier, the direc-
tion on the radiation force does not depend on the direction of the laser beam (if it is
illuminating the surface from above or below), but on the refractive indices of the two
liquids. This does not mean, however, that the shape of the deformation is the same
for the two cases. In fact, if the laser beam is pointing downwards, from medium in to
medium out, much larger deformations can be obtained (long liquid column that emits
droplets or optical fiber-like deformations). The reason for this asymmetry may be total
reflection of the laser beam. For further reading, see for instance [17], [12], [18], [7] or
[23].

3.4 Estimating the value of hmax and discussion of the bot-
tom radius

As found in section 3.2, the boundary condition for r → 0 is h→ hmax (or H → Hmax).
Unfortunately, the maximum deformation hmax is an unknown parameter. It can be
estimated by measuring the photographs taken during the experiments of Casner and
Delville [24], but a theoretical model which gives hmax for a given laser power P and
beam waist ω0 is not available. The fact that one of the boundaries contains an unknown
parameter complicates the process of finding a numerical solution of the differential
equation (3.6).

To find some estimated values of hmax, the results from the doctoral thesis of Alex Casner
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[24] can be consulted. The values in table 3.1 are measured from the pictures included in
Casner’s thesis, so an inaccuracy of at least a couple of micrometers should in principle
be taken into account. These values are in other words (and as mentioned earlier) just
estimates, and should be used qualitatively rather than quantitatively, e.g. to check
whether numerical results are reasonable or not.

T − Tc [K] ω0 [µm] P [mW] hmax [µm] a0 [µm]
2.5 6.3 1 200 70 3.2
2.5 6.3 600 40 3.8
2.5 4.8 1 200 72 2.5
2.5 4.8 600 42.5 2.6

Table 3.1: Measured values of the deformation hmax and half of the width a of the
bottom part of the deformation at given beam waists, temperature and laser powers.
The values are measured from the experiments from Casner’s doctoral thesis [24] with
an inaccuracy of a couple of micrometers. The deformation increases with larger laser
power and narrower laser beam.

As can be seen from table 3.1, the deformation hmax increases with larger beam power P .
In addition, it seems like a narrower beam (smaller beam waist) also results in a larger
deformation.

Estimating the hmax– a0 dependence.

The bottom part of the liquid-liquid interface deformation can be assumed to have the
shape of a hemisphere. The radius of the hemisphere is a0 (see table 3.1). Then, by
considering this hemisphere under illumination by a laser beam and balancing with the
surface tension and buoyancy, an expression containing the two parameters hmax and a0
can be found. The difference between what is already done previously when searching for
the differential equation of this system and this case is that the shape of the deformation is
now known. By considering general expressions of the incoming and transmitted electric
an magnetic field components of plane waves, an expression for the laser force on the
hemisphere can be derived. Appendix B includes the work of Iver Brevik (Spring 2011)
on this particular case. It has not yet been published as an article, and is therefore
included as a whole (copied and translated from working notes). The model is based on
previous theoretical work by Brevik et al. on forces on a sphere from an electromagnetic
field (see, for instance [13] or [26]).

In this section, the results from appendix B will be investigated in order to estimate the
value of the maximum deformation hmax for a given bottom radius a0 (and given laser
power, beam waist and temperature) and vice versa. The results can be compared to the
measured values from table 3.1. If the results are reasonable, it means that the maximum
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deformation hmax can be predicted from theory, not only taken from experimental results.

The force balance for a hemisphere under illumination is (appendix B, equation (B.8)):

(ρout − ρin)gπa20h+ (ρout − ρin)
2

3
gπa30 + 2πσa0 = |FRAD|, (3.32)

where ρout and ρin are the mass densities of medium out and medium in, respectively,
a0 is the radius of the hemisphere and h is the depth of the deformation (see figure B.1).
The right hand side of equation (3.32) is the absolute value of the radiation force from
the laser. This can be expressed as (before equation (B.95)):

FRAD = Qε0E
2
0a

2
0 (3.33)

The electric field amplitude E0 can be written as a function of the laser intensity, as done
previously. The factor Q is in fact a quite complicated sum deduced from the expressions
for the electric field components. From Brevik (equation (B.96)):

Q = −1

8
(n212 − 1)

∞∑
l=1

2l + 1

l(l + 1)

{
n21|cl1|2[α2(ψl(n12α)′)2It +

(
l(l + 1)

)2
(ψl(n12α))2Ir]+

+ α2|dl1|2(ψl(n12α)2It

}
(3.34)

An explanation of all the parameters and variables included in the expression for Q is
given in table 3.2. The expression for Q can be evaluated numerically, by calculating the
series with the help of a computer (using software like Maple or similar). But first, the
case of l = 1 will be investigated analytically in order to get an idea of the size of each
term in Q.

Special case, l = 1.

The associated Legendre function for l = 1 can be written as P 1
1 (x) = −

√
1− x2. Then,

the integrals It and Ir become

It =

∫ 1

0
(x2 + 1)x dx =

[1

4
x4 +

1

2
x2
]1
0

=
3

4
, (3.35)

and

Ir =

∫ 1

0
(1− x2)x dx =

[1

2
x2 − 1

4
x4
]1
0

=
1

4
. (3.36)

The Riccati-Bessel functions of l = 1 are (from Appendix B) read:

ψ1(x) = xj1(x) =
sinx

x
− cosx, (3.37)

and
ξ
(1)
1 (x) = xh1(x) = −

(
1 +

i

x

)
eix. (3.38)
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Symbol Expression About Equation.
n1 nin Refractive index of medium in. fig. B.1
n12

nin
nout

Ratio of refractive indices. (B.17)

cl1
i·Al1

n2
12ψ(n12α)ξ

(1)′
l (α)−n12ψ′l(n12α)ξ

(1)
l (α)

Coefficient in the expression for the
electromagnetic field. Determined

(B.71)

by the boundary conditions of the
system.

Al1 il+1

α2

√
4π(2l+1)
l(l+1)

Coefficient from the incoming (B.71)
electromagnetic field.

α nout
ωa0
c = 2πa

λout

λout is the wavelength of the electro- bef. (B.17)
magnetic wave in medium out.

ψl x · jl(x) Riccati-Bessel function. (B.21)
ψ′l

d
dx(x · jl(x)) Derivative of ψl.

ξ
(1)
l (x) x · h(1)l (x) Riccati-Bessel function. (B.21)
ξ
(1)′

l (x) d
dx(x · h(1)l (x)) Derivative of ξ(1)l

It
∫ 1
0

[
(1− x2)

(dP 1
l

dx

)2
+

(P 1
l )

2

1−x2
]
x dx

Integral containing the associated (B.93)
Legendre function P 1

l .
Ir

∫ 1
0 (P 1

l )2x dx (B.93)

dl1
i·Bl1

ψ(n12α)ξ
(1)′
l (α)−n12ψ′l(n12α)ξ

(1)
l (α)

Coefficient in the expression for the
electromagnetic field. Determined

(B.73)

by the boundary conditions of the
system.

Bl1 il

α2

√
4π(2l+1)
l(l+1)

Coefficient from the incoming (B.73)
electromagnetic field.

Table 3.2: Table contaning the elements of equation (3.34).

The derivatives of the Riccati-Bessel functions then become

ψ′1(x) =
(

1− 1

x2

)
sinx+

cosx

x
, (3.39)

and
ξ
(1)′

1 = −
(
i− 1

x
− i

x2

)
eix =

(1

x
+ i
( 1

x2
− 1
))
eix. (3.40)

The coefficients A11 and B11 are (inserting l = 1)

A11 = − 1

α2

√
6π, B11 =

i

α2

√
6π. (3.41)

With all these expressions, the coefficients c11 and d11 can be found. Later, when inserting
them into the expression for Q, only the absolute value of c11 and d11 will be used, so
there are no problems with them being complex coefficients. In order to keep a sense of
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tidiness, the products of the Riccati-Bessel functions will first be investigated.

ψl(n12α)ξ
(1)′

1 (α) =
(sin(n12α)

n12α
− cos (n12α)

)( 1

α
+ i
( 1

α2
− 1
))
eiα

=

{[sin (n12α)

n12α2
− cos (n12α)

α

]
+ i
[sin (n12α)

n12α
− cos (n12α)

]( 1

α2
− 1
)}

eiα,

(3.42)

ψ′l(n12α)ξ
(1)
1 (α) = −

((
1− 1

(n12α)2

)
sin (n12α) +

cos (n12α)

n12α

)(
1− i

α

)
eiα

= −

{[(
1− 1

(n12α)2

)
sin (n12α) +

cos (n12α)

n12α

]
−

− i
[(

1− 1

(n12α)2

)sin (n12α)

α
+

cos (n12α)

n12α2

]}
eiα. (3.43)

Then, the coefficient c11 can be written as

c11 = − i
√

6π

α2n12

(
n12ψ1(n12α)ξ

(1)′

1 (α)− ψ′1(n12α)ξ
(1)
1 (α)

)−1
=

√
6π

α2n12eiα

{[( 1

α4
+

1

n212α
3
− 1

α2
− 1

α

)
sin (n12α) +

(
n12 −

1

n12α2
− n12
α2

)
cos (n12α)

]
+

+ i

[(
1 +

1

α2
− 1

(n12α)2

)
sin (n12α) +

( 1

n12α
− n12

α

)
cos (n12α)

]}−1
, (3.44)

so that the absolute value squared becomes

|c11|2 =
6π

α4n212

{[( 1

α4
+

1

n212α
3
− 1

α2
− 1

α

)
sin (n12α) +

(
n12 −

1

n12α2
− n12
α2

)
cos (n12α)

]2
+

+

[(
1 +

1

α2
− 1

(n12α)2

)
sin (n12α) +

( 1

n12α
− n12

α

)
cos (n12α)

]2}−1
. (3.45)

Next, the coefficient d11 reads:

d11 = −
√

6π

α2eiα

{[( 1

n12α2
+ n12 −

1

n12α2

)
sin (n12α) +

( 1

α2
− 1

α

)
cos (n12α)

]
+

+ i

[( 2

n12α3
− 1

n12α
− n12

α

)
sin (n12α) +

(
1− 2

α2

)
cos (n12α)

]}−1
(3.46)
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Taking the absolute value gives:

|d11|2 =
6π

α4

{[( 1

n12α2
+ n12 −

1

n12α2

)
sin (n12α) +

( 1

α2
− 1

α

)
cos (n12α)

]2
+

+

[( 2

n12α3
− 1

n12α
− n12

α

)
sin (n12α) +

(
1− 2

α2

)
cos (n12α)

]2}−1
. (3.47)

If the first term in Q (the case of l = 1) is called Q1, then one has

Q1 = − 3

64
(n12−1)

{
nin|c11|2

[
3α2
(
ψ′1(n12α)

)2
+4
(
ψ1(n12α)

)2]
+3α2|d11|2

(
ψ1(n12α)

)2}
.

(3.48)
Now, the parameters n12, α and nin need to be determined in order to find a numerical
solution of the first term Q1 (as well as the terms of higher degree l). In the experiments
of Casner and Delville, an argon (Ar+) laser was used. The wavelength of this laser is
λ0 = 5 145 Å[24]. In addition, the refractive index nin is assumed to be quite close to
nout, such that

nout ≈ nin ≈ n = 1.464 (3.49)

The value of n12 is then slightly above one, as ∆n/∆ρ = −1.22 · 10−4 [16]. For T −Tc =
2K, the difference in mass density ∆ρ = 55.4 kg

m3 [24], which gives a value ∆n = -0.00676.
Note that a temperature of T − Tc = 2.5 K is used in the experiments of Casner and
Delville, but the table in [24] does not contain this value. Then, n12 can be found:

nout − nin
nout

= 1− n12 =⇒ n12 ≈ 1− ∆n

n
≈ 1.0046. (3.50)

The values used above lead to a value α of α ≈ a0 ·2.44 ·107. The radius a0 is not known,
as discussed earlier, so it has to be estimated from the experimental results of Casner
and Delville in order to find the maximum deformation hmax. Using a beam waist of
4.8µm and T −Tc = 2.5 K, the radius will be estimated to 2.5 µm (see table 3.1). Then,
α ≈ 44.70 and the first term in Q has a numerical value of

Q1 = −2.921317760 · 10−5 (3.51)

In the expression for FRAD (equation (3.33)), the electric field amplitude E0 can be
replaced by

E2
0 =

I

ε0noutc
=

2P

πω2
0ε0noutc

, (3.52)

so that

FRAD =
2Pa20Q

πω2
0noutc

. (3.53)

Using the case of T − Tc = 2.5 K, ω0 = 4.8µm and P = 1200 mW (again, see table 3.1),
the contribution from Q1 to the radiation force is

FRAD1 =
2Pa20Q1

πω2
0noutc

= −0.0138 pN (3.54)
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In order to compare the size of this force relative to the whole force balance of this system,
the left hand sider of equation (3.33) can also be estimated numerically. Inserting 72 µm
for hmax (table 3.1) and σ = 1.8 · 10−7 N

m (Casner, page 85 [24]):

LHS = ∆ρgπa20hmax + ∆ρg
2

3
πa30 + 2πa0σ

= 0.768 pN + 0.0178 pN + 2.827 pN

= 3.613 pN (3.55)

This means that the first term in Q represents about 0.4 % of the total radiation force if
this model is representative for the liquid-liquid system. To answer this question, more
terms in Q must be included.

Finding Q and FRAD, l > 1

The first term in Q has been calculated analytically and estimated numerically. Now,
the rest of the terms will be obtained numerically for in order to investigate whether
the model is describing the bottom part of the liquid-liquid deformation. Due to the
complexity of each term, this will be done numerically (using the software Maple 15).
The input parameters that can be adjusted to give different values of Q are α, n12 and
n. In order to find the corresponding radiation force, FRAD, the radius a0, the beam
waist ω0 and the laser power P must also be given. Since the model has to be checked
against the experimental values of a0 and hmax before it can be used to predict these
values for arbitrary inputs and parameters, the left hand side of equation (3.33) will first
be compared to the right hand side for the cases given in table 3.1. The stability of Q
with respect to the input parameters will also be investigated.

It seems reasonable to start where the last subsection ended, using the same parameters
as for the term Q1. Summing up all the terms up to l = 100 gives a numerical value of

Q(α = 44.7, n12 = 1.0046, n = 1.464) =
100∑
l=1

Ql = −0.8080427735. (3.56)

Summing l up to 200 also gives Q = −0.8080427735, so the first 100 terms is assumed
to be sufficient. This corresponds to a radiation force of

FRAD(α = 44.7, n12 = 1.0046, n = 1.464) = 381.3 pN, (3.57)

which in fact is more than 100 times the estimated value of the forces on the left hand
side (as above, P = 1.2 W, a0 = 2.5µm and ω0 = 4.8µm). Some of this deviation may
be explained by the uncertainties in the measurements of the experimental results, but
most likely there are some problems with the model itself. All the terms in the sum are
plotted in figure 3.3. As can be seen, the terms from l = 10 to l = 50 are dominating,
with term values up to 0.095 (l ≈ 40). This term alone represents a 10 times larger force
than the whole left hand side of equation (3.33). The terms from l ≈ 60 and above are
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Figure 3.3: Figure showing the absolute value of the terms Ql for l from 0 to 100 with
parameters α = 44.7, n12α = 44.9 and n = 1.464. The total sum Q of the terms Ql is
-0.8080427735 and corresponds to a total radiation force of |FRAD| = 381.3 pN.

close to zero, which is also confirmed by comparing the sum of
∑100

l=1Ql and
∑200

l=1Ql.
Before concluding and dismissing the model, also the other some other parameter sets
will be checked. The parameter values are taken from Casner’s doctoral thesis (table
3.1), and the numerically estimated values for FRAD and the corresponding left hand
side of equation (3.33) can be found in table 3.3. The imbalance of the left hand side

ω0 [µm] P [mW] hmax [µm] a0 [µm] α |Q| |FRAD| [pN] LHS [pN]
6.3 1 200 70 3.2 57.2 1.72061611 772.2 4.880
6.3 600 40 3.8 67.9 3.48691702 1103.3 5.345
4.8 1 200 72 2.5 44.7 0.808042774 381.3 3.613
4.8 600 42.5 2.6 46.5 1.10666415 887.2 3.452

Table 3.3: Table showing the numerically estimated values for |FRAD| and the left hand
side of equation (3.33) based on the four measured cases from Casner and Delville [24].
Here, T − Tc = 2.5 K, ∆ρ = 55.4 kg

m3 , n = 1.464, λ0 = 5 145 Å, n12 = 1.0046 and
σ = 1.8 · 10−7 N

m . As can be seen in all cases, the left hand side and the radiation force
are not in balance. The size of each term in the four cases are given in figure 3.4.

and the radiation force is too large to accept the model for this system. But what are
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the reasons for this model failing? In order to find a model that fits the system better,
this question should be tried answered.

How Q depends on n12, α and n.

As mentioned previously, Q is a function of the parameters α, n and n12. In the last
subsection, the only parameter that changed was α. This dimensionless parameter is a
wave number α = (2πa0n)/λ0 [27]. It contains the relation between the radius a0 of the
hemisphere and the wavelength λ0 of the laser beam. The case of α > 100 is referred
to as the region of geometrical optics (λ0 much smaller than a0), whereas α < 10 is the
region of wave optics (λ0 about the same order as a0) [27]. The Rayleigh-region occurs
when α < 1. Here, only low degrees l will contribute to the sum, whereas higher degree
terms must be included for geometrical optics (see the article of Brevik and Almaas
on radiation force on a sphere [27]). This description fits the present model, as higher
degree terms seem to be more important for α around 60–70 (figure 3.4a and 3.4b) than
for α ≈ 45 (figure 3.4c and 3.4d). Note that the last term in Q that contributes to
the sum, Qlmax , (not equal to zero) is related to α. Judging by figure 3.4, it seems like
lmax ≈ α. Also, the sum Q itself seem somewhat larger for high values of α than lower.
This may be explained by the value of the radius a0, as lower laser powers (and larger
beam waists, ω0) seem to result in a wider bottom part of the liquid-liquid interface
deformation, hence a larger value of a0. It is reasonable to assume that the total force
of a big hemisphere is larger than the total force on a smaller hemisphere.

Now, what happens if the value of n12 changes? Going back to the case first investigated,
with a power P = 1 200 mW and beam waist ω0 = 4.8µm, what is Q with a slightly larger
n12? Remembering that ∆n = −1.22 · 10−4 m3

kg · ∆ρ(T − Tc), a change in temperature
and hence mass density ∆ρ will lead to a change in n12. For instance, two examples from
Casner can be used [24]:

∆ρ(T − Tc = 3 K) = 63.3
kg

m3
=⇒ n12 = 1− ∆n

n
= 1.0053 (3.58)

and
∆ρ(T − Tc = 10 K) = 93.5

kg

m3
=⇒ n12 = 1− ∆n

n
= 1.0078. (3.59)

These changes in n12 (but keeping α = 44.7 and n = 1.464) will lead to new values of Q:

Q(α = 44.7, n12 = 1.0053, n = 1.464) = −0.9425797598 (3.60)
Q(α = 44.7, n12 = 1.0078, n = 1.464) = −2.255140355 (3.61)

The corresponding terms can be seen in figure 3.5. As both the plots and sums imply
(recall figure 3.3), a larger value of n12 leads to a higher radiation force. Remembering the
expression for the radiation force per volume from chapter 2, equation (2.10), it depends
on the change in the permittivity ε. In other words, the bigger difference between the
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(a) Figure showing the terms Ql for l from 0 to
100 with parameters α = 57.2, n12α = 57.5 and
n = 1.464. The total sum Q of the terms Ql is
-1.720616108.

(b) Figure showing the terms Ql for l from 0 to
100 with parameters α = 67.9, n12α = 68.2 and
n = 1.464. The total sum Q of the terms Ql is
-3.486917023.

(c) Figure showing the terms Ql for l from 0 to
100 with parameters α = 44.7, n12α = 44.9 and
n = 1.464. The total sum Q of the terms Ql is
-0.8080427735.

(d) Figure showing the terms Ql for l from 0 to
100 with parameters α = 46.5, n12α = 46.7 and
n = 1.464. The total sum Q of the terms Ql is
-1.106664151.

Figure 3.4: Plots of the terms in Q (y-axis) as a function of the degree l (x-axis). The
input parameters are given below each plot and the total sum and corresponding radiation
force are given in table 3.3.
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(a) Figure showing the terms Ql for l from 0 to
100 with parameters α = 44.7, n12 = 1.0053 and
n = 1.464. The total sum Q of the terms Ql is
-0.9425797598.

(b) Figure showing the terms Ql for l from 0 to
100 with parameters α = 44.7, n12 = 1.0078 and
n = 1.464. The total sum Q of the terms Ql is
-2.255140355.

Figure 3.5: Plots of the terms in Q (y-axis) as a function of the degree l (x-axis). The
input parameter n12 in figure 3.5b is slightly larger than the value of n12 in figure 3.5a,
resulting in higher values for the terms Ql.

refractive indices of medium in and medium out, the larger the radiation force becomes.
The n12-dependence can also be investigated directly by studying the expression for Q
(equation (3.34)). If n12 = 1, Q will go to zero as it contains the factor (n212 − 1). The
larger n12 is, the larger this factor will be, and it is reasonable to expect a larger value
of Q.

Lastly, the parameter n will be discussed. This parameter is not a function of the
temperature, but is set by the liquids used in the experiment. A change in n will affect
both the wave number α and the factor n12. As this parameter is not likely to change
during the experiments, and since it changes both the parameters α and n12, it will not
be investigated further.

Conclusions on the model for the bottom part of the deformation.

By assuming that the bottom part of the liquid-liquid interface deformation has the
shape of a hemisphere, the force balance for the buoyancy, surface tension and radiation
force can be found as function of the bottom radius a0 and the maximum deformation
height hmax. By estimating one of them, the other can be predicted from theory without
needing experimental measurements. It seems, however, that the model used above is
not describing the liquid-liquid interface deformation satisfactorily, as the radiation force
turns out to be at least 100 times larger than the counterforces (buoyancy and surface
tension), indicating that the deformations should be much larger than what is observed
in the experiments of Casner and Delville.
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By investigating the factor Q in the expression of the radiation force factor Q, it seems
like the terms behave like expected for the laser radiation force as the input parameters
α and n12 change. The absolute value of the terms, however, are too large compared to
the expected values of the surface tension and the buoyancy.

The reason, or reasons, to why this model does not fit this system is not known. But
some explanations could be:

– The assumption of a hemisphered shape for the bottom part of the deformation is not
valid, it may be too simple (remember that the boundary conditions at r → 0 lead to an
analytical approximation for this region that is different to a circle (see equation (3.31))).

– The theory leading to the expression Q does not fit the case of a hemisphere (it should
be correct in the case of a full sphere, see article by Brevik and Almaas [27]). For in-
stance, the assumption that only the case of l = l′ contributes to the sum may be correct
for a sphere, but not for the hemisphere.

– Calculation errors can have occured, either in this section or in the derivation of equa-
tion (3.33).

These possible explanations should be investigated further in order to find a new model,
or make changes to this model. The consequence of finding the relation between the
bottom width of the deformation and the maximum depth hmax from theory would be
that this relation could be predicted, and not only found after performing experiments.

3.5 First order differential equation

The last section of this chapter contains the final preparations before the numerical
solving. Because a computer will be used to solve the differential equation, the differential
equation describing the liquid-liquid interface deformation has to be fitted to a standard
form and converted into first order. Because the differential equation is of second order,
it has to be converted to a set of first order equations. Then, a new variable can be
introduced:

G(H) = RH(H), (3.62)

so that

GH(H) = RHH(H). (3.63)
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Inserting this into the differential equation (3.6) results in:

B0H −
1

R
√
R2
H + 1

B0

− 2RHH(
R2
H + 1

B0

) 3
2

= −AN
B0

e−2R
2
f(a,B0, RH)

B0H −
1

R
√
G2 + 1

B0

− 2GH(
G2 + 1

B0

) 3
2

= −AN
B0

e−2R
2
f ′(a,B0, G), (3.64)

where

f ′(a,B0, G) =
(1 + a2)G4

[
B2

0G
4 + (2− a2)B0G

2 − aB0G
√(

G2 + (1−a2)
B0

)
+ 1
]

(
aG2 −G

√(
G2 + (1−a2)

B0

))2(
a
B0
−G

√(
G2 + (1−a2)

B0

))2 . (3.65)

Equation (3.64) can then be solved for GH :

GH =
1

2

(
B0H +

AN

B0
e−2R

2
f ′(a,B0, G)

)(
G2 +

1

B0

) 3
2 − G2

2R
− 1

2B0R
. (3.66)

Then, the set of differential equations to be solved areRH = G

GH = 1
2

(
B0H + AN

B0
e−2R

2
f ′(a,B0, G)

)(
G2 + 1

B0

) 3
2 − G2

2R −
1

2B0R

, (3.67)

with f ′(a,B0, G) given in equation (3.65). The boundary conditions are:
R(0) =∞
G(0) = −∞
R(Hmax) = 0

(3.68)

Now, as the differential equation (or set of differential equations) is dimensionless, of first
order and the boundary conditions are set, it is time to try solving it numerically.
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Chapter 4

Numerical solution

In this chapter, the differential equation will be solved numerically in order to search for
the shoulder-shaped nonlinear solution that has been observed during the experiments of
the Bordeaux group. The numerical solutions depend on the given boundary conditions
in addition to the differential equation itself. Not least, whether or not a solution is
found at all depends on the method used for solving and the initial parameters and trial
functions that are fed into the computer. Both the inputs and the corresponding outputs
will be discussed in this chapter.

4.1 Solving method

The software that will be used to solve the differential equation is MATLAB R© (7.6.0.324,
R2008a). This is the same software that was used by Hallanger in his M.Sc. thesis in 2003
[16]. There will be, however, some differences in the approach of finding the solution,
as Hallanger searched for the solution H(R), whereas here, the differential equation will
be solved for R(H). In addition, as will be investigated later, the trial solution function
will be different. Different inputs may lead to finding other solutions to the differential
equation (if there are any), even though the boundary conditions of the systems are the
same.

bvp4c

An built-in solver called bvp4c for boundary value problems will be used (again, the same
as used by Hallanger in 2003). Here follows a short description of the solver, but a full
description can be found in [25].

The bvp4c solver is a finite difference method solver. In order to solve a boundary
value problem in MATLAB (bvp4c), the differential equation has to be of first order.
If the differential equation is of second or higher order, the differential equation can be
rearranged to a set of first order differential equations. In addition to the differential
equation itself, two other types of inputs must be given before the solving can begin.
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The first are the boundary conditions. The boundary conditions should be arranged to
the form b.c.(a) = 0, meaning that a function describing the boundary condition at the
limit a is zero. The last input is a trial function, an initial guess. Due to the complexity
and high nonlinearity of the differential equation that is to be solved, whether or not the
solution to the differential equation is found using the bvp4c method depends on how
good this initial guess is. This trial function will be derived in the next section.

4.2 Trial function

As mentioned above, the trial function used here will be slightly different than the one
Hallanger used in order to obtain his numerical results (see [16]). Hallanger used the
analytical approximative solution for large R-values, the same as derived in subsection
3.2. At R → 0, a simple function was derived to fit the boundary conditions. First,
the differential equation was solved for low laser powers P . Then, the solutions for low
laser powers was used as the trial solution for a slightly larger laser power. This iterative
process was then repeated up to P = 1 200 mW. This may be one of the reasons why
Hallanger did not find the shoulder-shaped nonlinear solution to the differential equation,
as his trial function did not include this shape. If there are more than one solution to
the differential equation with the given boundary conditions, it seems reasonable that
the initial guess should be as close to the wanted solution as possible. Therefore, a more
complex trial function will be searched for in order to investigate the possibility of finding
the shoulder-shaped nonlinear solution.

The analytical approximations for the two boundaries from chapter 3 will be used. Then,
the boundary conditions of the system are satisfied. But as mentioned before, the two
approximative functions put together do not contain the special middle region shape of
the nonlinear cases. Therefore, an extra function must be introduced.

Hyperbolic tangent

The hyperbolic tangent function is qualitatively similar to the middle region of the non-
linear deformations; keeping a constant value until a critical point, where the function
suddenly changes to another value. Therefore, this function will be introduced in order
to make a trial function that qualitatively (if not quantitatively) is similar to the ob-
served liquid-liquid interface deformations for larger laser powers. In contrast to the two
analytical approximations, this part of the trial function has not been derived from the
differential equation itself, but is purely chosen by the shape of the function.

Figure 4.1 shows the the three functions for R(H) that are to form the trial function, as
well as the three functions put together. The first (yellow) is the Lambert W-function,
and is dominating at low H-values (R → ∞). The second (green) is the hyperbolic
tangent function. The position of the sudden change as well as the amplitude and the
speed of the change can be adjusted from a total of three parameters in order to fit
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Figure 4.1: The trial function for the case of P = 1 200 W, ω0 = 4.8µm and T −Tc = 2.5
K. The maximum value of H is estimated from the experiments in [24], as well as the
position of the middle region bend.
– R1(H): The Lambert function, analytical approximation for R→∞.
– R2(H): A hyperbolic tangent function fitted to the nonlinear shape seen in the experi-
ments of Casner and Delville.
– R3(H): Analytical approximation for R→ 0.
– Rtrial(H): R1(H) + R2(H) + R3(H).

each experiment performed by Casner and Delville. The third (red) is the analytical
approximation for R → 0. Also this function has an adjustable parameter, namely the
maximum deformation depth Hmax. Because the model for estimating this value from
theory was not accurate enough, this parameter will be measured from the experiments
of the Bordeaux group. Note that this parameter may have a slight error, due to the in-
accuracy during measurements. This means that the solution to the differential equation
may be affected by this possible error in the boundary.

The trial function from figure 4.1 (blue) is used as the initial guess for the numerical
solver. It is the sum of the three functions mentioned above. The advantage of making
this sum is that one function can describe the whole deformation, and both the derivative
and the double derivative of the function is continuous. This means that it can easily be
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put back into the differential equation in order to investigate the deviation between the
actual solution and the trial function. This will be done later in this chapter. In addition,
both ends are derived from the differential equation itself, meaning that it satisfies the
boundary conditions of the system.

To summarise, the trial function that will be used can be written as:

Rtrial(H) =
W
(
2
√
B0

H2

)
2
√
B0

+

√
2
∣∣∣ ln (C +B0H)

(C +B0Hmax)

∣∣∣− 1

b
tanh (κ(H −H1)), (4.1)

where C = (P∆n)/(πcσω0), b is a parameter to adjust the amplitude of the hyperbolic
tangent function, κ is a parameter determining how fast the hyperbolic tangent function
changes and H1 is the depth of the middle region sudden change. The parameters b, κ
and H1 will be adjusted to fit each parameter set.

4.3 Results

The numerical solutions will be presented in the following subsections, one for each input
parameter set. The input parameters will be chosen to fit some of the experiments
performed by Casner and Delville (from the Ph.D. thesis of Casner [24]). By doing this,
the numerical solutions can be compared to the experimental results. For each parameter
set, two types of boundary condition sets will be used. While Hallanger used that H → 0
as R→∞ andHR → 0 as R→ 0 as boundary conditions [16], these are not as convenient
when solving for R(H). Instead, three boundary conditions will be used in two different
combinations.

Boundary conditions, type 1

The first set of the boundary conditions is{
RH → −∞ when H → 0

R→ 0 when H → Hmax

(4.2)

In reality, the computer cannot deal with singularities. Therefore, the boundary condi-
tions are depending on the trial function. Instead of using −∞ for RH when H → 0, the
corresponding value of the trial function will be used:

RH →
d

dH
(Rtrial), as H → 0. (4.3)

A H-value of ≈ 0.05 will be used instead of 0, so that d
dH

(
Rtrial(0.05)

)
is finite. At the

other end, the value of Rtrial will also be used as a boundary condition when H → Hmax.

Note that a differential equation can have infinitely many solutions, it is the boundary
conditions that narrows it down. This means that errors in the boundary conditions
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may lead to unwanted solutions. This has to be taken into account when comparing the
numerical solutions of the differential equation to the experimental results. The boundary
Hmax itself is also inaccurate, because it has been estimated from the experimental data.

Boundary conditions, type 2

The other set of boundary conditions that will be used is{
R→∞ when H → 0

R→ 0 when H → Hmax

(4.4)

Compared to the type 1 conditions, the first boundary condition is replaced with the
function R(H) instead of the derivative, RH(H). The trial function will be used to find
corresponding values for ∞ as H → 0.

Comment: what will the depth of the numerical solution be if only the functions R(0) and
RH(0) are given as boundary conditions? An attempt to solve the differential equation
with these boundary conditions has also been performed, leaving no information about
the case of H → Hmax. By doing this, the inaccuracy of estimating the value of Hmax is
avoided. However, it turned out be difficult to solve the differential equation for R(H).
In fact, only when the differential was rearranged to be a differential equation for H(R)
(same as Hallanger), this was made possible. As can be seen from figure 4.2, only the
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Figure 4.2: Numerical solution of H(R) for P = 1 200 mW, ω0 = 4.8µm and T−Tc = 2.5
K. Only the boundary conditions for H and HR at R→∞ are given (the plot has been
converted to h of r). The Lambert function (or inverse) is used as an initial guess. The
differential equation could not be solved for smaller values of R with the given boundary
conditions.
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upper part of the deformation was found with the given boundary conditions, leaving no
information of the total depth of the deformation.

Input parameters

As mentioned earlier, different input parameter sets will be used to fit five different
experimental setups and results. Some of the parameters are determined by the setup of
the experiments (P , ω0, T −Tc, etc.), other are measured from the experimental results.

Below follows a table (table 4.1) with the numerical values of the input parameters.

Set P ω0 T − Tc lc B0 hmax h1 Hmax H1 κ b

1 1 200 4.8 2.5 20.3 0.0558 72 44 3.54 2.17 10 4π
2 890 8.9 2.5 20.3 0.1919 54 30 2.66 1.48 10 4π
3 600 4.8 2.5 20.3 0.0558 42.5 17.5 2.10 0.86 10 2π
4 1 200 6.3 2.5 20.3 0.0962 70 42.7 3.45 2.10 10 4π
5 600 6.3 2.5 20.3 0.0962 40 14.4 1.97 0.71 10 π

Table 4.1: Table containing some of the input parameters for the different sets. The laser
power P and beam waist ω0 can be adjusted before the experiment. The liquid-liquid
properties are controlled by the temperature difference T − Tc. The capillary length
lc, as well as the mass density ∆ρ, the surface tension coefficient σ and the refractive
indices are functions of the temperature. The bond number B0 is the relation between
the laser beam waist and the capillary length (squared). The parameters hmax and h1
are measured from the experimental results, and the trial function parameters κ and b,
both dimensionless, are set to match the trial function to the experimental results.

4.3.1 Parameter set 1

This and the following subsections include some of the results from the numerical solu-
tions. The green and purple plots are the results using boundary conditions of type 1,
while the other plots (yellow and turquoise) are the results using boundary conditions of
type 2. All the axes are adjusted to give the deformation in micrometers, meaning that
the dimensionless variables R and H are converted back to r and h, respectively.

As can be seen from figure 4.3, the numerical solution gives a much wider deformation
than is suggested by the trial function, not least the corresponding experimental results
(figure 4.4a). The boundary condition only restricts the deformation to have the same
derivative RH(H) for low H-values (type 1 conditions), and this has resulted in a much
broader deformation. The characteristic nonlinear shape for the middle region, which
is present in the trial function, is not included in the numerical solution. The depth of
the deformation is determined by the boundary condition R(Hmax) = 0. This estimated
value is smaller than the maximum depth from the numerical results of Hallanger [16].
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Figure 4.3: Figure showing the numerical results when solving the differential equation
from (3.6) with the type 1 boundary conditions and parameter set 1 from table 4.1.
The green plot is the trial function, and the purple plot is the numerical solution to the
differential equation.

Figure 4.4 shows both a photograph of the deformation from the experiments of Casner
and Delville [24] and the numerical results of parameter set 1 and boundary conditions
type 2. Compared to the numerical solution in figure 4.3, the deformation is not as wide.
The reason is that the boundary condition at H → 0 controls the value of R(0), not
RH(0). However, it may look as the deformation will continue beyond the H = 0 limit,
which is physically not acceptable. This means that the numerical solution using the
type 1 conditions seems to be the most reasonable one.

In the next subsections, the numerical results from the four other parameter sets from
table 4.1 are presented. The results are not discussed separately, but a summarise of
observations from all the numerical solutions (both boundary condition types and all the
parameter sets) are included.
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(a) Photograph of the liquid-liquid
interface deformation in the case of
P = 1 200 mW, ω0 = 4.8µm and
T − Tc = 2.5 K. From the Ph.D.
thesis of Casner [24].
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(b) Figure showing the numerical results when solving the dif-
ferential equation (3.6) with the type 2 boundary conditions and
parameter set 1 from table 4.1. The yellow plot is the trial func-
tion, and the turquoise plot is the numerical solution.

Figure 4.4
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4.3.2 Parameter set 2

Here follows the numerical results of parameter set 2.
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Figure 4.5: Figure showing the trial function (green) and the numerical solution of equa-
tion (3.6) for parameter set 2 and boundary conditions type 1. The corresponding ex-
perimental result can be seen in figure 4.6a.

(a) Photograph of interface deformation ex-
periment with laser power P = 890 mW, ω0 =
8.9µm and T −Tc = 2.5 K. From Casner [24].
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(b) Numerical results using parameter set 2 and
boundary conditions type 2. The trial function is yel-
low and the numerical solution is turquoise.

Figure 4.6
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4.3.3 Parameter set 3

Here follows the numerical results of parameter set 3.
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Figure 4.7: Figure showing the trial function (green) and the numerical solution of equa-
tion (3.6) for parameter set 3 and boundary conditions type 1. The corresponding ex-
perimental result can be seen in figure 4.8a.

(a) Photograph of interface deforma-
tion experiment with laser power P =
600 mW, ω0 = 4.8µm and T − Tc =
2.5 K. From Casner [24].
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(b) Numerical results using parameter set 3 and boundary con-
ditions type 2. The trial function is yellow and the numerical
solution is turquoise.

Figure 4.8
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4.3.4 Parameter set 4

Here follows the numerical results of parameter set 4.
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Figure 4.9: Figure showing the trial function (green) and the numerical solution of equa-
tion (3.6) for parameter set 4 and boundary conditions type 1. The corresponding ex-
perimental result can be seen in figure 4.10a.
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(a) Photograph of interface deform-
ation experiment with laser power P
= 1 200 mW, ω0 = 6.3µm and T−Tc
= 2.5 K. From Casner [24].
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(b) Numerical results using parameter set 4 and boundary con-
ditions type 2. The trial function is yellow and the numerical
solution is turquoise.

Figure 4.10

52



4.3.5 Parameter set 5

Here follows the numerical results of parameter set 5.
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Figure 4.11: Figure showing the trial function (green) and the numerical solution of
equation (3.6) for parameter set 5 and boundary conditions type 1. The corresponding
experimental result can be seen in figure 4.12a.

(a) Photograph of interface de-
formation experiment with laser
power P = 600 mW, ω0 =
6.3µm and T−Tc = 2.5 K. From
Casner [24].
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(b) Numerical results using parameter set 5 and boundary conditions
type 2. The trial function is yellow and the numerical solution is
turquoise.

Figure 4.12

As can be seen from the results presented above, the observations made for the numer-
ical solutions for parameter set 1 are also observable at the other sets. The numerical
solutions with boundary condition type 2 may be invalid as it looks like the boundary
condition limH→0R =∞ is not satisfied. It seems like (although the numerical solutions
for smaller H-values than is plotted above has not been found) the deformation does not
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converge towards R→∞ for H → 0, as is required by the boundary condition, not least
the physical properties of the liquid-liquid system.

Another observation is that the numerical deformations are too wide compared to the
experimental results. This is the case for both the boundary condition types (1 & 2),
even though the maximum width is restricted in the boundary condition type 2.

The last, and maybe most important observation for the purpose of the present text, is
that the numerical solutions do not include the "shoulder" in the middle region, even
though this is present in the trial function (initial guess). Further investigations are
therefore needed in order to find the class of solutions to the differential equation which
contains this "shoulder". There is also a possibility that the nonlinear shoulder-shaped
deformation is not a solution to the presented differential equation that is assumed to
describe the liquid-liquid interface deformations.

The next two sections contain a brief discussion of both possibilities, that further invest-
igations can lead to another solution with the observed middle region shoulder, and that
it is not possible to find this solution from the differential equation in (3.6).

4.4 Dependence of the middle region in the trial function

This section investigates the possibility of finding a numerical solution containing the
middle region "shoulder" by changing the trial function. The boundary conditions will
be kept the same as before. The hyperbolic tangent component of the trial function
has three parameters that can be adjusted in order to change the appearance of middle
region "shoulder" in the trial function (equation (4.1)). The first is b, a parameter that
determines the amplitude of the hyperbolic tangent function. The second, κ, determines
how fast the middle region changes (how sharp the "shoulder" is). The third parameter,
H1, determines at which H-value the "shoulder" is placed. These parameters have been
adjusted in order to make the trial function qualitatively (if not completely quantitat-
ively) look like the corresponding experimental result. But these parameters can also be
adjusted freely (one by one, or simultaneously) in order to see if the numerical result
depends on these parameters in the initial guess. In other words; can a change in the
part of the trial function that describes the middle region "shoulder" result in a different
numerical solution?

In the following subsections, the three different parameters κ, b andH1 will be varied, and
the numerical solutions will be compared to each other. Parameter set 1 and boundary
condition type 1 will be used as a starting point, and then one middle region parameter
at a time will be changed.
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Changing κ

First, the parameter that controls how sharp the "shoulder" in the trial function is, κ,
will be investigated further. According to parameter set 1, κ has a value of 10. A higher
value will lead to a sharper change in the middle region, whereas a smaller value leads to
a slow change. Figure 4.13 shows the trial function with three different values of κ (10,
25 and 0), and the corresponding numerical solutions.
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(a) κ = 10 (standard)
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(b) κ = 25
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(c) κ = 0

Figure 4.13: Figure showing the trial function (red) with three different values of κ, the
parameter that changes the sharpness of the middle region "shoulder" and the corres-
ponding numerical solutions (orange). In the first plot (4.13a), the standard parameters
(parameter set 1) is used. In the second (4.13b), κ is increased to 25. The last plot shows
the case of κ = 0, meaning that there are no shoulder in the trial function.

As can be seen from figure 4.13, the numerical solutions are the same independent of how
sharp the "shoulder" in the trial function is. This was also confirmed by solving for other
values of κ than those used to obtain the results presented here, as well as changing the
boundary condition type to 2 (and then solve for different values of κ). The nonlinear
numerical solution containing the middle region "shoulder" can in other words not be
found by changing the trial function parameter κ.
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Changing b

The second parameter to be changed is b. This parameter controls the amplitude or range
of the hyperbolic tangent function. The smaller b is, the larger the amplitude becomes.
This parameter will ultimately also have a minor impact on the value Hmax, slightly
changing the boundary condition for R = 0. The numerical solutions for different values
of b are therefore expected to be slightly different. The question is, however, if a change
in b can result in a different type of numerical solution, a type that includes the middle
region "shoulder".
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(a) b = 4π (standard)
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(b) b = 2π
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(c) b = 8π

Figure 4.14: The trial function (dark purple) with three different amplitudes in the
hyperbolic tangent function and the corresponding numerical solutions (pink / purple).
A change in the amplitude is adjusted by the parameter b in equation (4.1). A change in
b will also change the point where R is 0, namely the value of Hmax slightly. In the three
plots, the parameter b varies from 2π to 8π, where 2π results in the largest amplitude.

By investigating figure 4.14, it can be seen that the point where R = 0 varies somewhat,
as expected. There is, however, no change in the type of shape of the numerical solu-
tions. None of the plots in this figure (or other plots that are not included here) have
a "shoulder" present in the numerical solutions. There is therefore no reason to believe
that a change in the amplitude of the hyperbolic tangent function in the trial function
will lead to a different type of numerical solution of the differential equation (3.6).
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Changing H1

The last parameter that will be investigated more closely controls the position (H-value)
of the "shoulder" in the trial function, namely H1. The standard value for H1 in para-
meter set 1 is 2.17 (plot 4.15a), but the case of H1 = 1.5 and H1 = 2.8 are also included
(plot 4.15b and 4.15c, respectively).
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(a) H1 = 2.17 (standard)
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(b) H1 = 1.5
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Figure 4.15: Figure showing the trial function (purple) with corresponding numerical
solution (green) in three different cases. Parameter set 1 with boundary condition type
1 is used, but the parameter H1 changes in order to move the position (H-value) of the
middle region "shoulder" in the trial function.

The observation from changing the position of the "shoulder" (parameter H1) is the
same as for the change of κ; the numerical solution to the differential equation (3.6) is
not depending on the parameter H1, the position of the "shoulder", in the trial function.
The same result was obtained using boundary type 2 (not shown here).

After investigating the parameters that controls the shape of the middle region in the
trial function more closely, it can be concluded that the type of numerical solution to
the differential equation (3.6) does not depend on the middle region of the trial function
from equation (4.1) and the middle region "shoulder". This does not mean that there
are no chance of finding a numerical solution to the given differential equation that do
include the complex shape of the middle region that is observed in the experiments of the
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Bordeaux group. It is, however, reason to believe that this solution (if it exists) only can
be found by changing the trial function (initial guess) entirely or by changing the way
the boundary conditions are given. This attempt will not be performed in this present
text, but may be a suggestion for further work.

4.5 Numerical solutions with the middle region "shoulder"

Now, as it may look like the trial function used is not capable of leading to the type of
numerical solution that is searched for, it seems reasonable to investigate what may be
the main problem with the initial guess. By doing this, two answers will be searched for.
Is there a solution to the differential equation in (3.6) that contains the middle region
"shoulder"? What should the trial function look like in order to find this solution?

Figure 4.16: Figure showing the trial function (gold) and the right hand side minus the
left hand side of the differential equation from (3.6) with the trial function inserted (blue)
for parameter set 1. The height (or depth) H is along the x-axis, and the radius R follows
the y-axis. As can be seen, the difference between the right hand side and the left hand
side of the equation increases at the middle region "shoulder" of the trial function. At
H → 0, the difference goes to 0.

The method that will be used to check the trial function is based on the advantage of the
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trial function given in (4.1), that one continuous function describes the whole deforma-
tion. Then, the derivative of the trial function (and the second derivative) can be found
and put back into the differential equation in (3.6). By taking the difference between
right hand side and the left hand side of the differential equation (with the trial function
put into it), an estimate on how wrong the trial function is can be achieved. A function
that satisfies the differential equation will give RHS(H)−LHS(H) = 0 for all H-values.

Figure 4.16 shows the trial function for parameter set 1 (gold) and the differenceRHS(H)−
LHS(H) with the trial function put in (blue). The difference is close to zero for low H-
values, up to the middle region "shoulder". In fact, it converges to zero as H → 0,
meaning that the trial function satisfies the differential equation at H → 0. At H = H1,
where there is a sudden change in the trial function (the "shoulder"), the difference
RHS − LHS increases. This may indicate that the differential equation does not toler-
ate the shape of a "shoulder", but it can also mean that the "shoulder" should be placed
differently, that the amplitude or sharpness of it should be changed, or that the hyper-
bolic tangent function is not suitable to describe the middle region of the deformation
(there are other functions with the same shape, for instance arctan (x)).

The corresponding plots for parameter set 2 – 5 are given in figure 4.17. Also here, it
seems like the difference between the right hand side and the left hand side of equation
(3.6) increases where the "shoulder" is placed. Another observation is that the differ-
ence RHS − LHS increases towards the bottom of the trial function deformation, at
H → Hmax. This may indicate that the parameter Hmax is measured inaccurately from
the experimental results in [24]. It may also indicate that the approximative analytical
solution for this area is not accurate.

The two areas of interest from the plots in figure 4.16 and 4.17, the middle region and
the end, will be investigated a bit more closely in the following subsections.
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(a) Parameter set 2 (b) Parameter set 3

(c) Parameter set 4 (d) Parameter set 5

Figure 4.17: Figure showing the trial function (gold) and the right hand side minus the
left hand side of the differential equation from (3.6) with the trial function inserted (blue)
for parameter set 2 to 5 (see table 4.1). The height (or depth), H, is along the x-axis, and
the radius R follows the y-axis. As can be seen, the difference between the right hand
side and the left hand side of the equation increases at the middle region "shoulder" of
the trial function. At H → 0, the difference goes to 0.
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4.5.1 The middle region "shoulder"

Again, parameter set 1 will be used as a starting point. Similar to section 4.4, the three
parameters that controls the middle region of the trial function will be changed one by
one in order to see how the difference between the right hand side and the left hand side
of the differential equation depends on these parameters.

Figure 4.18: Figure showing the function RHS(H) − LHS(H) with the trial function
in equation (4.1) put in. Parameter set 1 is used as a starting point, buth the middle
region paramter H1, which controls the position of the middle region "shoulder", varies
from 1.77 to 2.37 (H1 = 2.17 is used for the numerical solution).

Figure 4.18 shows the function RHS(H)−LHS(H) with the trial function from equation
(4.1) put in, using four different values of H1 (the rest of the parameters from set 1). The
parameter H1 controls the position of the middle region "shoulder" in the trial function,
and the shown H-values are close to H1 (see figure 4.16 for a larger H-range). As can
be seen, a change in H1 does not lead to a larger deviation between the right hand side
and the left hand side of the differential equation (3.6), but only changes the position of
the "shoulder" response observed in figure 4.16.

The next parameter to investigate is κ. This parameter controls the sharpness of the
"shoulder" in the trial function. In figure 4.19, κ varies between 0 and 30, and four plots
of the difference between the right hand side and the left hand side of the differential
equation (3.6) are shown. The red plot shows the case of κ = 0, which corresponds to
no middle region "shoulder" in the trial function. As can be seen, this case shows more
agreement between the right hand side and the left hand side for the middle region than
the other plots. The case of κ = 30 gives the largest deviation, meaning that the trial
function is farther away from satisfying the differential equation in the case of large κ-
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Figure 4.19: Figure showing the function RHS(H) − LHS(H) with the trial function
in equation (4.1) put in. Parameter set 1 is used as a starting point, buth the middle
region paramter κ, which controls the sharpness of the middle region "shoulder", varies
from 0 to 30 (κ = 10 is used for the numerical solution). Note that κ = 0 corresponds
to no middle region "shoulder".

values. The width of the middle region "shoulder" deviation in the four plots are almost
the same, but a small value of κ gives a slightly broader middle region deviation than a
larger κ-value.

The last parameter is b, the amplitude of the middle region "shoulder". Figure 4.20
shows four plots of RHS −LHS with parameter set 1, but with b varying from π to 8π.
Remember that a larger value of b corresponds to a smaller value of the amplitude (see
equation (4.1)). As can be seen, the larger the amplitude of the trial function "shoulder"
is, the larger and wider the difference RHS − LHS is for the same area.

After investigating how the difference between the right hand side and the left hand side
of the differential equation in (3.6) with the trial function from (4.1) put in varies with
the three parameters b, κ and H1, some conclusions can be made. The trial function does
not satisfy the differential equation in the middle region with the "shoulder" parameters
given in set 1. If the amplitude (1/b) and the sharpness (κ) of the hyperbolic tangent
function increases, the difference RHS − LHS grows larger for the middle region. In
fact, the difference is smallest if κ = 0, meaning that there is no "shoulder" in the middle
region of the trial function. In other words, it may seem like the differential equation
does not allow any shoulder-shaped solutions. It should be stressed that the middle
region of the trial function is based on a function that is chosen based on the looks; it
is chosen to make the trial function look (qualitatively) like the experimental results of
Casner and Delville. This may explain why it does not satisfy the differential equation,
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Figure 4.20: Figure showing the function RHS(H) − LHS(H) with the trial function
in equation (4.1) put in. Parameter set 1 is used as a starting point, buth the middle
region paramter b, which controls the amplitude of the middle region "shoulder", varies
from π to 8π (b = 4π is used for the numerical solution).

because it is not derived directly from the differential equation as the two other parts of
the trial function. The difference RHS − LHS is a function on RH and RHH as well
as R, so a small error in R may escalate to larger errors in the derivatives. There is,
however, some reason to believe that the trial function is closest to a solution of the
differential equation without the "shoulder" that has been observed in the experiments
of the Bordeaux group.

4.5.2 The analytical approximation at Hmax

The last investigation of this section, as well as the chapter, is to briefly check what
happens if the parameter Hmax is changed. This value is approximated from measuring
the experimental results in [24], but it can be chosen freely in order to check whether the
difference between the right hand side and the left hand side of the differential equation
in (3.6) becomes smaller. In figure 4.21, the function RHS − LHS is shown for four
different Hmax-values in the trial function. All four Hmax-values are in the vicinity of
the Hmax-value estimated in table 4.1. Based on these plots, it seems like the size of
the deviation observed and discussed near Hmax in figure 4.16 is not depending on the
parameter Hmax, it just changes position. This means that the deviation may come
from the second term in the trial function, the analytical approximation for H → Hmax.
This approximation may not be as accurate as hoped for, but the numerical results from
section 4.3 behaves satisfactorily towards R → 0 and H → Hmax. There is therefore no
reason to change this part of the trial function.

Comment: what if the second term in the trial function is removed? Can the parameter
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Figure 4.21: Figure showing the difference between the right hand side and the left hand
side of the differential equation in (3.6) with the trial function in (4.1) put in. Parameter
set 1 is used, but the value of Hmax is varied from 3.44 to 3.74.

Hmax then be estimated from the difference RHS − LHS? In figure 4.22, the second
term of the trial function is removed so that

Rtrial(H) =
W
(
2
√
B0

H2

)
2
√
B0

− 1

b
tanh (κ(H −H1)) + 0.5. (4.5)

The constant 0.5 is put in to avoid that R(H) is 0 for several values of H. Then, the right
hand side minus the left hand side of the differential equation in figure 4.22 is behaving
differently compared to the previous case (see figure 4.16). The difference seems to be
changing at a constant rate for H > 3, and there are still no indication of where the end
(maximum depth) of the deformation should be.

4.6 Conclusions to the numerical solutions

There may be several types of functions that describe the middle region of the deformation
containing the "shoulder" more satisfactorily than the hyperbolic tangent function used
here. The same can be said about the analytical approximation used for H → Hmax, not
least the resulting trial function itself. It should be mentioned, however, that by using
the boundary condition type 1, the numerical solutions are behaving as wanted in the
two boundaries; the converge towards H → 0 for R→∞ and RH → −∞ at H → Hmax

(these properties are not given in boundary condition type 1, but are boundary conditions
of the system).

There are two main deviations between the numerical solution obtained in this chapter
and the corresponding experimental results. The first is that the numerical deformation
is too wide compared to the experimental results. The other is that the observed middle
region "shoulder" is not included in the numerical results, even though it is present in
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Figure 4.22: Figure showing the trial function from (4.5) and the corresponding RHS −
LHS of the differential equation in (3.6) with the trial function put in. There are no
clear indication to where the maximum depth Hmax should be, based on investigation of
the difference RHS − LHS.

the initial guess (trial function). Further investigations by putting the trial function
used (equation (4.1)) into the differential equation in (3.6) have suggested that there is
a possibility that the differential equation does not accept a middle region "shoulder".
This means that the differential equation used for the liquid-liquid interface system may
be too simple to describe the nonlinear deformations. If this is the case, a new and more
extensive differential equation must be derived before further numerical investigations
can be performed. There may, for instance, be some laser-induced local temperature
variations, causing a change in the surface tension coefficient σ, the mass densities and
the refractive indices. All these parameters are temperature dependent. Whether or not
the laser is causing temperature variations can be checked by performing the liquid-liquid
interface bending experiments while using heat sensitive cameras.

It should be stressed, however, that it has not been proven that the differential equation
does not have any solutions containing the nonlinear shoulder-shape observed in the
experiments of Casner and Delville.

65



66



Chapter 5

Conclusions

In the previous chapters, the theory of laser-induced liquid-liquid interface deformation
has been presented and used to derive a differential equation describing the system.
Then, this differential equation has been investigated and prepared for numerical solu-
tion. Finally, the differential equation has been solved numerically and the results are
compared to the experimental results of the Bordeaux group [24]. The main focus has
been the cases where a nonlinear shoulder-shaped deformation is observed from exper-
iments, and which have not been reproduced numerically (or analytically) from theory.
The numerical results from this present text have also been compared to the numerical
results of Hallanger [16]. A model (see appendix B) that describes what the maximum
depth Hmax of the deformation is given the bottom width of the deformation has also
been tested. The model is based on the theory of a sphere (or hemisphere) in an electric
field.

5.1 Finding Hmax from theory

If the bottom part of the liquid-liquid interface deformation is assumed to have the
shape of a hemisphere, the total radiation force can be calculated by using the theory
of the forces on a hemisphere from an incoming electric field. Then, the total depth of
the deformation can be estimated by balancing the calculated radiation force with the
buoyancy and the surface tension. A model developed by Iver Brevik during the spring
2011 (appendix B) has been tested for some of the parameter sets used in the Ph.D.
thesis of Casner [24] in order to find the maximum depth Hmax from theory rather than
measuring it from experimental results. It seems, however, like the model is not in good
agreement with the experimental results, as the calculated Hmax turns out to be at least
100 times larger than the measured value. A parameter dependence investigation showed
that the sum Q given in (B.96) or (3.34) (in other words, the radiation force) behaves as
expected for the laser-induced liquid-liquid interface deformation system.

The main problem with the model is believed to be that some of the assumptions made are
not valid for hemispheres, although they seem to be correct for spheres. One example is
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the assumption that only l = l′ will contribute to the sum (see equation (B.79)). There
may also be some resonance terms in Q that should not be included (see figure 3.3).
Further investigations to why the model does not work should be performed in order
to make improvements to the model. There are (to this writer’s knowledge) no other
models available that leads to the parameter Hmax from theory.

5.2 Numerical results and the appearance of a middle region
"shoulder"

A differential equation was derived based on the theory of the forces that play an import-
ant role in the liquid-liquid interface deformations. This differential equation was then
solved numerically with the given boundary conditions (presented in two different ways,
type 1 and 2) and a trial function. Five parameter sets were used based on five different
experiments from the Ph.D. thesis of Casner [24]. The obtained numerical solutions were
found to give too wide deformations compared to the corresponding experimental results.
In addition, the shoulder-shape that is observed for the middle region of the deformation
in nonlinear cases is not present in the numerical solutions.

Further investigations showed that the numerical solution to the differential equation
with the given boundary conditions does not depend on the middle region of the trial
function and the parameters determining the properties of the shoulder-shape. In fact,
when putting the trial function into the differential equation and studying the difference
between the right hand side and the left hand side of the equation, there is best agree-
ment when the trial function is given without the "shoulder" (the case of κ = 0). This
may indicate that the differential equation does not have any solutions containing the
middle region shoulder-shape that is observed in the experiments. If this is the case,
the differential equation believed to describe the liquid-liquid interface deformations may
not be valid for nonlinear deformations, even though it seems to be describing the linear
deformations satisfactorily: The numerical solutions of the differential equation (same as
used here) achieved by Hallanger et al. ([16], [15]) are in good agreement with the exper-
iments using low laser powers (P < 200 mW), but as the power increases, the numerical
results do not match the experimental deformations.

The nonlinear deformations with larger laser powers may be more complex, requiring
more details and locally adjusted parameters. One possibility, as was also mentioned by
Hallanger, Brevik, Haaland & Sollie [15], is that there may be some thermal effects. The
liquid properties are closely related to the temperature, meaning that a slight change
in temperature leads to different surface tension, mass densities and refractive indices.
There is a possibility that the laser beam will cause local variations in the liquid tem-
perature, meaning that the liquid properties will change along the deformation so that

σ → σ(r), ∆ρ→ ∆ρ(r), ∆n→ ∆n(r). (5.1)
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Then, the differential equation in (3.6) must be modified and becomes even more complex.
There may also be other reasons to why the differential equation does not contain any
shoulder-shaped solutions, if this is the case. The laser intensity distribution may be
too simple, or there may be some other effects making an influence on the liquid-liquid
system with an incoming laser beam. Whether or not there are significant laser-induced
temperature variations, can be checked by performing liquid-liquid interface bending
experiments with heat sensitive cameras to check if the temperature is constant or not.

Note that the investigations in this text has not shown that the differential equation
used to describe the laser-induced liquid-liquid interface deformation does not include
a nonlinear shoulder-shaped solution. The numerical results and further investigations
have only suggested the possibility that the differential equation may be too simple in
order to describe the nonlinear deformations satisfactorily.

5.3 Further work

Further work should include a review of the model tested in chapter 3 (see also appendix
B). The possibility that not only the l = l′ terms in Q contribute to the total radiation
force on a hemisphere should be investigated more closely. There may also be other
factors that make the model unsuitable for estimating the value of Hmax. If the max-
imum depth of the deformation can be predicted from theory, this will be a large step
towards making a full theoretical description of the laser-induced liquid-liquid interface
deformations.

As the numerical solutions including the nonlinear shoulder-shape were not found in this
work, further effort should be put into this task. This may be done by performing the
numerical calculations in a more elegant way than is presented here, but there may also
be a chance that the differential equation itself is not describing the liquid-liquid interface
deformations for nonlinear cases (laser power P > 300 mW). If this is the case, a more
complex differential equation must be derived including more details concerning local
temperature variations and possibly other aspects.
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Appendix A

Calculations from the theory section

In this appendix, detailed calculations of some of the equations are presented.

A.1 σAM(θi, θt)→ σAM(hr), equation (2.30).

σAM = − I

2c

n2in − n2out
nin

cos θi
cos θt

[
(cos2 θt + sin2 θi)T‖ cos2 α+ T⊥ sin2 α

]
= − I

2c

n2in − n2out
nin

4a cos2 θi cos θt
cos θt(cos θt + a cos θi)2

[
(cos2 θt + sin2 θi) cos2 α

(cos θi cos θt + a sin2 θi)2
+ sin2 α

]
= −2I

c

n2in − n2out
n2in

nout(
cos θt
cos θi

+ a
)2[(1 + h2r(1− a2) + h2r)(1 + h2r) cos2 α(√

1 + h2r(1− a2) + ah2r
)2 + sin2 α

]

= −2I

c

n2in − n2out
n2in

nout(
a+

√
1 + h2r(1− a2)

)2[
(
1 + (1− a2 + 1 + 1)h2r + (1 + 1− a2)h4r

)
cos2 α(

ah2r +
√

1 + h2r(1− a2)
)2 + sin2 α

]
= −2I

c

n2in − n2out
n2in

nout(
a+

√
1 + h2r(1− a2)

)2[1 + (3− a2)h2r + (2− a2)h4r(
ah2r +

√
1− h2r(1− a2)

)2 cos2 α+ sin2 α

]
(A.1)
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A.2 sin2 α = cos2 α = 1
2, equation (2.34).

f(a, hr, α) =
(1 + a2)(

a+
√

1 + h2r(1− a2)
)2[1 + (3− a2)h2r + (2− a2)h4r(

ah2r +
√

1 + h2r(1− a2)
)2 cos2 α+ sin2 α

]
=

(1 + a2)

2
(
a+

√
1 + h2r(1− a2)

)2 ·
·
[

1 + (3− a2)h2r + (2− a2)h4r + a2h4r + 2ah2r
√

1 + h2r(1− a2) + 1 + h2r(1− a2)(
ah2r +

√
1 + h2r(1− a2)

)2 ]

=
(1 + a2)

2
(
a+

√
1 + h2r(1− a2)

)2[2 + 2(2− a2)h2r + 2h4r + 2ah2r
√

1 + h2r(1− a2)(
ah2r +

√
1 + h2r(1− a2)

)2 ]

=
(1 + a2)

[
h4r + (2− a2)h2r + ah2r

√
1 + h2r(1− a2) + 1

]
(
a+

√
1 + h2r(1− a2)

)2(
ah2r +

√
1 + h2r(1− a2)

)2 (A.2)

A.3 f(a, hr)→ f(a, rh), equation (2.38).

f(a, hr) =
(1 + a2)

[
1 + (2− a2)h2r + h4r + ah2r

√
1 + h2r(1− a2)

]
(
a+

√
1 + h2r(1− a2)

)2(
ah2r +

√
1 + h2r(1− a2)

)2
=

(1 + a)2
[
1 + (2− a2) 1

r2h
+ 1

r4h
+ a

r2h

√
1 + h2r(1− a2)

]
(
a+

√
1 + 1

r2h
(1− a2)

)2(
a
r2h

+
√

1 + 1
r2h

(1− a2)
)2

=
(1 + a2)r4h

[
r4h + (2− a2)r2h + 1− arh

√
r2h + (1− a2)

]
(
ar2h − rh

√
r2h + (1− a2)

)2(
a− rh

√
r2h + (1− a2)

)2 (A.3)

Remember that rh < 0, so that the square root of r2h becomes
√
r2h = −|rh|.

A.4 LHS(h(r))→ LHS(r(h)), equation (2.39).

Using that

hr =
dh

dr
=

1

dh/dr
=

1

rh
,

hrr =
d

dr

(dh

dr

)
=

d

dr

( 1

rh

)
=

d

dh

dh

dr

( 1

rh

)
=

d

dh

( 1

r2h

)
= −2

rhh
r3h

: (A.4)
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LHS = ∆ρgh− σ

r

d

dr

( rhr√
1 + h2r

)
= ∆ρgh− σ

r

[
hr + rhrr√

1 + h2r
− 1

2

2rh2rhrr

(1 + h2r)
3
2

]
= ∆ρg − σ

r
√

1 + 1
h2r

+ σ
hrr(1 + h2r)− h2rhrr

(1 + h2r)
3
2

= ∆ρg − σ

r
√

1 + 1
h2r

+
σhrr

(1 + h2r)
3
2

= ∆ρg − σ

r
√

1 + r2h

− 2σrhh

(1 + r2h)
3
2

(A.5)

A.5 f(a, rh)→ f(a,B0, RH), equation (3.3).

f(a, rh) =
(1 + a2)r4h

[
r4h + (2− a2)r2h − arh

√
r2h + 1− a2 + 1

]
(
ar2h − rh

√
r2h + 1− a2

)2(
a− rh

√
r2h + 1− a2

)2
=

(1 + a2)B2
0R

4
H

[
B2

0R
4
H + (2− a2)B0R

2
H − a

√
B0RH

√
B0R2

H + 1− a2 + 1
]

(
aB0R2

H −
√
B0RH

√
B0R2

H + 1− a2
)2(

a−
√
B0RH

√
B0R2

H + 1− a2
)2

=

(1 + a2) 1
B0

[
B2

0R
4
H + (2− a2)B0R

2
H − aB0RH

√
R2
H + (1−a2)

B0
+ 1

]
(
aR2

H −RH
√
R2
H + (1−a2)

B0

)2(
a
B0
−RH

√
R2
H + (1−a2)

B0

)2 (A.6)
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Appendix B

Radiation force on a liquid-liquid
interface curved as a sphere

The following calculations are adapted from the work of Iver Brevik during the spring,
2011. This work has not been published, and is therefore rewritten as a whole in this
appendix.

Force balance

Figure B.1: Figure showing the liquid-liquid system. Medium in has index 1, and medium
out has index 2. The laser beam is coming from below.

The force balance of the bottom hemisphere with radius a0 will be investigated. The
pressure force difference between the bottom side and the top of the hemisphere can be

75



written as
γ2(H + d)− γ1H. (B.1)

The subscripts 1 and 2 stands for the inner and the outer medium, respectively. Then,
the resulting net force working upwards on an area dAx of the hemisphere becomes (see
figure B.2)

[γ2(H + d)− γ1H] · dAx = (γ2 − γ1)H · dAx + γ2 · dAx (B.2)

Integrating this expression over the hemisphere results in

Figure B.2: Figure showing the bottom part of the liquid-liquid interface deformation.
It is assumed to have the shape of a hemisphere with radius a0.

(γ2 − γ1)H · dAx → (γ2 − γ1)πa20H, (B.3)

γ2d · dAx → γ2V = γ2
2

3
πa30. (B.4)

The buoyancy force FB can then be written as

FB = (γ2 − γ1)πa20H + γ2
2

3
πa30 (B.5)

with upwards direction. The weight of the hemisphere (acting downwards) is

W = gρ1
2

3
πa30 = γ1

2

3
πa30. (B.6)

Next, the surface tension force, Fσ, needs to be calculated. The liquid-liquid interface is
convex and hence the surface tension force is acting upwards.

Fσ = 2πa0σ (B.7)
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The last force in the balance is the radiation force FRAD. Because n1 > n2, this force is
acting downwards (FRAD < 0). Then the force balance can be written as

FB + Fσ = W + |FRAD|

(γ2 − γ1)πa20H + γ2
2

3
πa30 + 2πa0σ = γ1

2

3
πa30 + |FRAD|

(γ2 − γ1)πa20H + (γ2 − γ1)
2

3
πa30 + 2πa0σ = |FRAD| (B.8)

Radiation pressure on a hemisphere

Figure B.3: A plane wave hits a hemisphere from the left. The outer medium is 2 and
the inner is 1. Only the left side of the drawn sphere will be included in the calculations.

The complex representation for a circularly polarised incoming wave can be written
as

~E(i) = E0
~Λei(kzz−ωt), ~Λ = ~ex + i ~ey, (B.9)

where the superscript (i) denotes the incoming wave. The real field components Ex and
Ey are:

E(i)x = <(E(i)
x ) = E0 cos (kzz − ωt) (B.10)

E(i)y = <(E(i)
y ) = E0 cos (kzz − ωt+

π

2
) = −E0 sin (kzz − ωt) (B.11)

Assuming a non-magnetic medium: ~D = ε0εr ~E = ε0n
2 ~E and ~B = µ0 ~H. The energy

density in the incoming electromagnetic field is:

w =
1

2
ε0n

2〈~E2〉+
1

2
µ0〈 ~H2〉 = ε0n

2〈~E2〉

=
1

2
ε0n

2<( ~E ~E∗) =
1

2
ε0n

2E2
0 (B.12)

The intensity, I, can be written as

I = w · c
n2

=
1

2
εcn2E

2
0 = ε0cn2〈E2〉. (B.13)
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Figure B.4: The hemisphere seen from below. The electric field is assumed to be circularly
polarised.

General representation of the incoming electromagnetic field

The general representation of the incoming electromagnetic field in spherical coordinates
is [26]

E(i)
r =

E0

r̃2

∞∑
l=1

l∑
m=−l

l(l + 1)Almψl(αr̃)Ylm (B.14)

E
(i)
θ =

αE0

r̃

∞∑
l=1

l∑
m=−l

[
Almψ

′
l(αr̃)

∂Ylm
∂θ
− m

n2
Blmψl(αr̃)

Ylm
sin θ

]
(B.15)

E
(i)
φ =

αE0

r̃

∞∑
l=1

l∑
m=−l

[
imAlmψ

′
l(αr̃)

Ylm
sin θ

− i

n2
Blmψl(αr̃)

∂Ylm
∂θ

]
(B.16)

Here, α = k2a0 = n2
ω
c a0 = 2π

λ , λ being the wavelength in medium 2. Also, r̃ = r
a0
.

Introducing two new constants n12 and n21 as the relative refractive index:

n12 =
n1
n2

=
nin
nout

> 1, n21 =
n2
n1

=
nout
nin

< 1. (B.17)

With these expressions, the internal electric field components can be written as

E(w)
r =

E0

r̃2

∞∑
l=1

l∑
m=−l

l(l + 1)clmψl(n12αr̃)Ylm (B.18)

E
(w)
θ =

αE0

r̃

∞∑
l=1

l∑
m=−l

[
n12clmψ

′
l(n12αr̃)

∂Ylm
∂θ
− m

n2
dlmψl(n12αr̃)

Ylm
sin θ

]
(B.19)

E
(w)
φ =

αE0

r̃

∞∑
l=1

l∑
m=−1

[
imn12clmψ

′
l(n12αr̃)

Ylm
sin θ

− i

n2
dlmψl(n12αr̃)

∂Ylm
∂θ

]
(B.20)
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The Riccati-Bessel functions are given by:

ψl(x) = xjl(x), ξ
(1)
l (x) = xh

(1)
l (x). (B.21)

For the special case of l = 1, the Riccati-Bessel functions can be written as:

ψ1(x) = xj1(x) =
sinx

x
− cosx (B.22)

χ1(x) = −xn1(x) =
cosx

x
+ sinx (B.23)

ξ
(1)
1 (x) = ψ1 − iχ1 = −

(
1 +

i

x

)
eix. (B.24)

Taking the Wronskian:
W{ψl, ξ

(1)
l } = ψlξ

′(1)
l − ψ′lξ

(1)
l = i (B.25)

All Riccati- Bessel functions w satisfies [20] (page 445):

x2w′′ + [x2 − l(l + 1)]w = 0, l = 0,±1,±2, ... (B.26)

General expressions for the magnetic field components for a incoming wave can be written
as:

H(i)
r =

H0

r̃2

∞∑
l=1

l∑
m=−l

l(l + 1)Blmψl(αr̃)Ylm (B.27)

H
(i)
θ =

αH0

r̃

∞∑
l=1

l∑
m=−l

[
Blmψ

′
l(αr̃)

∂Ylm
∂θ

+mn2Almψl(αr̃)
Ylm
sin θ

]
(B.28)

H
(i)
φ =

αH0

r̃

∞∑
l=1

l∑
m=−l

[
imBlmψ

′
l(αr̃)

Ylm
sin θ

+ in2Almψl(αr̃)
∂Ylm
∂θ

]
. (B.29)

The corresponding components of the inner field are:

H(w)
r =

H0

r̃2

∞∑
l=1

l∑
m=−l

l(l + 1)dlmψl(n12αr̃)Ylm (B.30)

H
(w)
θ =

αH0

r̃

∞∑
l=1

l∑
m=−l

[
n12dlmψ

′
l(n12αr̃)

∂Ylm
∂θ

+mn2n
2
12clmψl(n12αr̃)

Ylm
sin θ

]
(B.31)

H
(w)
φ =

αH0

r̃

∞∑
l=1

l∑
m=−l

[
imn12dlmψ

′
l(n12αr̃)

Ylm
sin θ

+ in2n
2
12clmψl(n12αr̃)

∂Ylm
∂θ

]
, (B.32)

where α = n2
ωa
c , n12 = n1

n2
and H0 =

√
ε0
µ0
E0. When E

(i)
r and H

(i)
r are known, the

coefficients Alm and Blm can be found by [27]

Alm =
1

E0l(l + 1)ψl(α)

∫
sphere

E(i)
r (a, θ, φ)Y ∗lm(θ, φ) dΩ (B.33)
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Blm =
1

H0l(l + 1)ψl(α)

∫
sphere

H(i)
r (a, θ, φ)Y ∗lm(θ, φ) dΩ (B.34)

In order to find FRAD, also the coefficients {clm, dlm} need to be determined. These
coefficients can be found by using the electromagnetic boundary conditions at r = a0.
[26]

clm =
i

n212ψl(n12α)ξ
(1)′

l (α)− n12ψ′l(n12α)ξ
(1)
l (α)

·Alm (B.35)

dlm =
i

ψl(n12α)ξ
(1)′

l (α)− n12ψ′l(n12α)ξ
(1)
l (α)

·Blm (B.36)

Circularly polarised plane wave

The incoming electric and magnetic field of a circularly polarised plane wave can be
written as:

~E(i) = E0(~ex + i ~ey)e
ikzz−iωt (B.37)

and
~H(i) =

n2E0

cµ0
(~ex + i ~ey)e

ikzz−iωt. (B.38)

A useful relation from Jackson (1975, page 771) [28] is that:

∇× jl(kr) ~Xlm =
i~n
√
l(l + 1)

r
jl(kr)Ylm +

1

r

∂

∂r

[
rjl(kr)

]
~n× ~Xlm, (B.39)

where ~n = r̂. In the hemisphere, there will only be contributions from m = +1 (positive
helicity of the polarisation). Then,

E0
~Λeikzz = E0

∞∑
l=1

il
√

4π(2l + 1)
[
jl(kr) ~Xl1 +

1

k
∇× jl(kr) ~Xl1

]
. (B.40)

Here, ~Xlm(θ, φ) denotes the spherical harmonics:

~Xlm =
~LYlm
l(l + 1)

, ~L =
1

i
~r ×∇, L2Ylm = l(l + 1)Ylm

∇2Ylm = −L
2

r2
Ylm = − l(l + 1)

r2
Ylm

l∑
m=−l

| ~Xlm|2 =
2l + 1

4π
=

l∑
m=−l

|Ylm|2. (B.41)

Some useful relations are:

r̂ ~ex = sin θ cosφ, r̂ ~ey = sin θ sinφ, r̂ ~ez = cos θ

θ̂ ~ex = cos θ cos θ, θ̂ ~ey = cos θ sinφ, θ̂ ~ez = − sin θ

φ̂ ~ex = − sinφ, φ̂ ~ey = cosφ, φ̂~ez = 0. (B.42)
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From the vector ~Λ = ~ex + i ~ey and the expressions in (B.42), it follows that

Λr = ~exr̂ + i ~ey r̂ = sin θeiφ (B.43)

Λθ = ~exθ̂ + i ~ey θ̂ = cos θ cosφ+ i cos θ sinφ = cos θeiφ (B.44)

Λφ = ~exφ̂+ i ~ey θ̂ = − sinφ+ i cosφ = ieiφ. (B.45)

One needs the expression for eikz:

ei
~k~r = eikz =

∞∑
l=0

il(2l + 1)jl(kr)Yl0(θ) =
∞∑
l=0

il
√

4π(2l + 1)jl(kr)Yl0(θ), (B.46)

where

Yl0(θ, φ) = Yl0 =

√
2l + 1

4π
Pl(cosθ), (B.47)

Yl1(θ, φ) =

√
2l + 1

4π

(l − 1)!

(l + 1)!
P 1
l (cos θ)eiφ =

√
2l + 1

4π(l + 1)l
P 1
l (cos θ)eiφ. (B.48)

Taking the r-component from equation (B.40):

E0Λre
ikz = E0

∞∑
l=1

il
√

4π(2l + 1)
1

k

i

r

√
l(l + 1)jl(kr)Yl1(Ω)

sin θeiφ
∞∑
l=0

il
√

4π(2l + 1)jl(kr)Yl0(θ) =

∞∑
l=1

il+1

kr

√
4π(2l + 1)(l(l + 1)jl(kr)

√
2l + 1

4π(l + 1)l
P 1
l (cos θ)eiφ

sin θ

∞∑
l=1

il
√

4π(2l + 1)jl(kr)Yl0(θ) =
1

kr

∞∑
l=1

il+1(2l + 1)jl(kr)P
1
l (cos θ)

sin θ

∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ) =
1

kr

∞∑
l=1

il+1(2l + 1)jl(kr)P
1
l (cos θ). (B.49)

The electric field of a circularly polarised incoming beam

From Jackson (1999, page 472, [29]), the incoming electric field when assuming circularly
polarisation can be written as:

~E(i) = E0

∞∑
l=1

[
a+jl(kr) ~Xlm +

i

k
b+∇× jlkr ~Xlm

]
~Xlm(Ω) =

~LYlm(Ω)√
l(l + 1)

, ~L =
1

i
~r ×∇, L2Ylm = l(l + 1)Ylm

l∑
m=−l

| ~Xlm(Ω)|2 =
2l + 1

4π
=

l∑
m=−l

|Ylm|2 (B.50)
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When the helicity m = +1 (and circular polarisation) [29],

a+ = il
√

4π(2l + 1), b+ = −ia+, (B.51)

so that

~E(i) = E0

∞∑
l=1

il
√

4π(2l + 1)
[
jl(kr) ~Xl1(Ω) +

1

k
∇× jl(kr) ~Xl1(Ω)

]
. (B.52)

Because [∇× jl(kr) ~Xlm]r = i
r

√
l(l + 1)jlkrYlm (equation (B.39)), the radial component

of the incoming electric field becomes:

E(i)
r = E0

∞∑
l=1

il+1
√

4π(2l + 1)l(l + 1)
jl(kr)

kr
Yl1. (B.53)

With ψl(kr) = krjl(kr), equation (B.53) becomes:

E(i)
r =

E0

(kr)2

∞∑
l=1

il+1
√

4π(2l + 1)l(l + 1)ψl(kr)Yl1 (B.54)

From the general form

Ylm =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ, (B.55)

follows that

Yl1 =

√
2l + 1

4π

1

l(l + 1)
P 1
l (cos θ)eiφ, (B.56)

where Pml (cos θ) is the associated Legendre function. Inserting the expression for Yl1
into equation (B.54) results in

E(i)
r =

E0e
iφ

(kr)2

∞∑
l=1

il+1(2l + 1)ψl(kr)P
1
l (cos θ) (B.57)

for cases of circular polarisation. Comparing equation (B.14) and equation (B.54), with
m = +1 gives

E0

∞∑
l=1

l(l + 1)Al1ψl(kr)Yl1 = E0

∞∑
l=1

il+1
√

4π(2l + 1)l(l + 1)ψl(kr)Yl1, (B.58)

where

Al1 =
il+1

α2

√
4π(2l + 1)

l(l + 1)
, l = 1, 2, 3, ... Bl1 =

Al1
i
. (B.59)
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The magnetic field of a circularly polarised incoming beam

The magnetic field (circular polarisation) of an incoming wave can be written as (Jackson,
[29])

~H(i) = H0

∞∑
l=1

[
− i

k
a+∇× jl(kr) ~Xl1 + b+jl(kr) ~Xl1

]
, (B.60)

where H0 =
√

ε0
µ0
E0.

~H(i) = −H0

∞∑
l=1

il+1
√

4π(2l + 1)
[1

k
∇× jl(kr) ~Xl1 + jl(kr) ~Xl1

]
. (B.61)

The radial component of the magnetic field becomes

H(i)
r = −H0

∞∑
l=1

il+1
√

4π(2l + 1)
i

kr

√
l(l + 1)jl(kr)Yl1(Ω)

=
∞∑
l=1

il
√

4π(2l + 1)l(l + 1)
jl(kr)

kr
Yl1(Ω)

=
H0

(kr)2

∞∑
l=1

il
√

4π(2l + 1)l(l + 1)ψl(kr)Yl1(Ω). (B.62)

Again, by inserting Yl1 =
√

2l+1
4π

1
l(l+1)P

1
l (cos θ)eiφ the following expression is achieved:

H(i)
r =

H0e
iφ

(kr)2

∞∑
l=1

il(2l + 1)ψl(kr)P
1
l (cos θ). (B.63)

Comparing this expression to the earlier one from equation (B.27):

H0

α

∞∑
l=1

il
√

4π(2l + 1)l(l + 1)ψl(kr)Ylm(Ω) = H0

∞∑
l=1

l(l + 1)Blmψl(αr̃)Ylm(Ω). (B.64)

Hence, the coefficients Bl1 and Al1 must be

Bl1 =
il

α2

√
4π(2l + 1)

l(l + 1)
, l = 1, 2, 3, ..., Al1 = iBl1l. (B.65)

Radiation force on the sphere

The surface force density σAM at r = a0 can be found by integrating the radial force
density across the surface from right outside the hemisphere, a0−, to the inside at a0+:

σAM = −1

2
ε

∫ a0+

a0−

E2dεr
dr

dr = −1

2
ε0

∫ a0+

a0−

[
E2
t + E2

r

]dεr
dr

dr. (B.66)
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Figure B.5: Figure showing the incoming electric field and the hemisphere with radius
a0.

Both Et and Dr = εEr are continuous:

σAM = −1

2
ε0E

2
t (ε2 − ε1)−

1

2ε0

∫ a0+

a0−

D2
r

ε2r

dεr
dr

dr

= −1

2
ε0E

2
t (ε2 − ε1) +

1

2ε0
D2
r

( 1

ε2
− 1

ε1

)
= −1

2
ε0n

2
2E

2
t (1− n212) +

1

2ε0
n21E

2
r (a0−)

(ε1
ε2
− 1
)
. (B.67)

Here, Et and Er are real fields components. Then,

σAM =
1

2
ε0n

2
2(n

2
12 − 1)(E2

t + n212E
2
r )|a0− . (B.68)

The radiation force is pointing utwards when n1 > n2. The radial force on an area
dA = a20 sin θdθdφ is σAMdA. The total radiation force on the hemisphere is then
(FRAD < 0)

FRAD = a20

∫ 2π

0
dφ

∫ π

π
2

σAM |a0− cos θ sin θ dθ (B.69)
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The internal electric field components at r = a0− are (from (B.18))

E(w)
r = E0

∞∑
l=1

l(l + 1)cl1ψl(n12α)Yl1, Yl1 =

√
2l + 1

4π

1

l(l + 1)
P 1
l (cos θ)eiφ,

E
(w)
θ = αE0

∞∑
l=1

[
n12cl1ψ

′
l(n12α)

∂Yl1
∂θ
− 1

n2
dl1ψl(n12α)

Yl1
sin θ

]
,

E
(w)
φ = αE0

∞∑
l=1

[
in12cl1ψ

′
l(n12α)

Yl1
sin θ

− i

n2
dl1ψl(n12α)

∂Yl1
∂θ

]
, (B.70)

where

cl1 =
i

n212ψl(n12α)ξ
(1)′

l (α)− n12ψ′l(n12α)ξ
(1)
l (α)

Al1, Al1 =
il+1

α2

√
4π(2l + 1)

l(l + 1)
, (B.71)

dl1 =
i

ψl(n12α)ξ
(1)′

l (α)− n12ψ′l(n12α)ξ
(1)
l (α)

Bl1, Bl1 =
il

α2

√
4π(2l + 1)

l(l + 1)
. (B.72)

The function ψl(x) = xjl(x) is real and ξ(i)l (x) = xh
(1)
l (x) is complex, where h(1)l (x) =

jl(x)+ inl(x) is the spherical Hankel function (nl(x) is the spherical Neumann function).
With a physical electric field ~E , then

σAM =
1

2
ε0n

2
2(n

2
12 − 1)[E2t + n212E2r ], (B.73)

where E2t = E2θ + E2φ. Taking the contribution from E2r results in:

a20

∫
FRONT

E2r cos θ dΩ =
a20
2

∫
FRONT

|Er|2 cos θ dΩ

=
a20
2
E2

0

∞∑
l,l′=1

l(l + 1)l′(l′ + 1)cl1c
∗
l′1ψl(n12α)ψ′l(n12α)

∫
FRONT

Yl1(Ω)Y ∗l′1(Ω) cos θ dΩ,

(B.74)

where the integral from equation (B.74) is:∫
FRONT

Yl1(Ω)Y ∗l′1(Ω) cos θ dΩ =

∫ 2π

0
sin θ cos θYl1(Ω)Y∗l′1(Ω) dθ. (B.75)

Inserting that Yl1(Ω) =
√

2l+1
4π(l+1)lP

1
l (cos θ)eiφ results in:

∫
F
Yl1(Ω)Y ∗l′1(Ω) cos θ dΩ = 2π

√
2l + 1

4π(l + 1)l

√
2l′ + 1

4π(l′ + 1)l′

∫ π

π
2

sin θ cos θP 1
l (cos θ)P 1

l′ (cos θ) dθ,

(B.76)
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where integral in equation (B.76) can be written as:∫ π

π
2

sin θ cos θP 1
l (cos θ)P 1

l′ (cos θ) dθ = −
∫ −1
0

xP 1
l (x)P 1

l′ (x) = −
∫ 1

0
xP 1

l (−x)P 1
l′ (−x) dθ

(B.77)
Since Pl(−x) = (−1)lP 1

l (x), and P 1
l (x) = −

√
1− x2 d

dxP
1
l (x) [29],

P 1
l (−x) = (−1)l−1P 1

l (x). (B.78)

As usual (for spheres), there will only be contributions from the case when l′ = l. Then,∫ π

π
2

sin θ cos θ[P 1
l (cos θ)]2 dθ = −

∫ 1

0
x[P 1

l (cos θ)]2 dx < 0. (B.79)

The contribution on this side of the sphere has same, but different direction, to the other
hemisphere: ∫ π

2

0
sin θ cos θ[P 1

l (cos θ)]2 dθ = +

∫ 1

0
x[P 1

l (x)]2 dx > 0. (B.80)

From the front side of the sphere:∫
FRONT

Yl1(Ω)Y ∗l1(Ω) = 2π
2l + 1

4π(l + 1)l

[
−
∫ 1

0
x[P 1

l (x)]2 dx
]

= − 2l + 1

2(l + 1)l

∫ 1

0
x[P 1

l (x)]2 dx, (B.81)

which then gives∫
FRONT

E2r cos θ dΩ =
a20
2
E2

0

∞∑
l=1

[l(l + 1)]2|cl1|2ψ2
l (n12α)

[
− 2l + 1

2(l + 1)l

] ∫ 1

0
x[P 1

l (x)]2 dx

= −a
2
0

4
E2

0

∞∑
l=1

[
l(l + 1)(2l + 1)

]
|cl1|2ψ2

l (n12α)

∫ 1

0
x[P 1

l (x)]2 dx.

(B.82)

Then, it is time for the contribution from E2
t = E2

θ+E2
φ. The integral

∫
FRONT E

2
t cos θ dΩ

needs to be calculated.∫
FRONT

E2θ cos θ dΩ =
a2

2

∫
FRONT

|Eθ|2 dΩ

=
a2

2
α2E2

0

∞∑
l=1

∫
FRONT

[
n12cl1ψ

′
l(n12α)

∂Y ∗l1
∂θ
− 1

n12
d∗l1ψl(n12α)

Yl1
sin θ

]
·

·
[
n12c

∗
l1ψ
′
l(n12α)

∂Y ∗l1
∂θ
− 1

n2
d∗l1ψl(n12α)

Yl1
sin θ

]
cos θ dΩ (B.83)
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The expression for Yl1 =
√

2l+1
4πl(l+1)P

1
l e

iφ gives

∣∣∣∂Yl1
∂θ

∣∣∣2 =
2l + 1

4πl(l + 1)

(dP 1
l

dθ

)2
, (B.84)

|Yl1|2 =
2l + 1

4πl(l + 1)
[P 1
l ]2. (B.85)

Then, the integral from equation (B.83) can be reformulated as:

a20

∫
FRONT

E2θ cos θ dΩ

=
a0
2
α2E2

0

∞∑
l=1

∫
FRONT

2l + 1

4πl(l + 1)

{
n212|cl1|2(ψ′l)2

[dP 1
l

dθ

]2
+

1

n22
|dl1|2ψ2

l

[P 1
l ]2

sin2 θ

}
cos θ dΩ

(B.86)

Next, the integral for Eφ needs to be investigated (only including l′ = l):

∫
FRONT

E2φ cos θ dΩ =
a20
2

∫
FRONT

|Eφ|2 cos θ dΩ =

=
a20
2
α2E2

0

∞∑
l=1

∫
FRONT

[
in12cl1ψ

′
l(n12α)

Y ∗l1
sin θ

+
i

n2
d∗l1ψl(n12α)

∂Y ∗l1
∂θ

]
·

·
[
− in12c∗l1ψ′l(n12α)

Y ∗l1
sin θ

− i

n2
d∗l1ψl(n12α)

∂Y ∗l1
∂θ

]
cos θ dΩ

=
a20
2
α2E2

0

∞∑
l=1

∫
FRONT

{
n212|cl1|2[ψ′l1]2

|Yl1|2

sin2 θ
+

1

n22
|dl1|2ψ2

l

∣∣∂Yl1
∂θ

∣∣2} cos θ dΩ

=
a20
2
α2E2

0

∞∑
l=1

∫
FRONT

2l + 1

4πl(l + 1)

{
n212|cl1|2(ψ′l)2

[P 1
l ]2

sin2 θ
+

1

n22
|dl1|2ψ2

l

[dP 1
l

dθ

]2}
cos θ dΩ

(B.87)

Then, the contributions from E2
θ and Eφ can be put together:

a20

∫
FRONT

E2t cos θ dΩ = a20

∫
FRONT

(E2θ + E2φ) cos θ dΩ =

=
a20
2
α2E2

0

∞∑
l=1

2l + 1

4πl(l + 1)

[
n212|cl1|2(ψ′l)2 +

1

n22
|dl1|2ψ2

l

] ∫
FRONT

[(dP 1
l

dθ

)2
+

(P 1
l )2

sin2 θ

]
cos θ2π sin θ dθ

=
a20
4
α2E2

0

∞∑
l=1

2l + 1

l(l + 1)

[
n212|cl1|2(ψ′l)2 +

1

n22
|dl1|2ψ2

l

] ∫ π

π
2

[(dP 1
l

dθ

)2
+

(P 1
l )2

sin2 θ

]
cos θ sin θ dθ.

(B.88)
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Here, ψl = ψl(n12α), n12 = n1
n2

and α = k2
ωa0
c . Also, P 1

l (x) = −
√

1− x2 dPl(x)dx . Focusing
on the θ-integral gives:

dP 1
l (cos θ)

dθ
= − sin θ

dP 1
l (cos θ)

d(cos θ)
= −

√
1− x2dPl(x)

dx
,

P 1
l (cos θ)

sin θ
=
−
√

1− x2√
1− x2

dP 1
l (x)

dx
= −dPl(x)

dx
(B.89)

Since ∫ π

0

[(dP 1
l

dθ

)2
+

(P 1
l )2

sin2 θ

]
cos θ sin θ dθ = 0, (B.90)

and
∫ π
π
2

= −
∫ π

2
0 , the integral from equation (B.88) can be written as:

a20

∫
FRONT

E2t cos θ dΩ = −a
2

4
α2E2

0

∞∑
l=1

2l + 1

l(l + 1)

[
n212|cl1|2(ψ′l)2 +

1

n22
|dl1|2ψ2

l

]
·

·
∫ 1

0

[
(1− x2)

(dP 1
l

dx

)2
+

(P 1
l )2

1− x2
]
x dx. (B.91)

Finally, all the result for Eφ, Eθ and Er and be put back into the original integral for
FRAD (equation (B.73)):

FRAD =
a20
2
ε0n

2
2(n12 − 1)

∫
FRONT

[
E2t + n212E2r

]
cos θ dΩ

= −a
2
0

8
ε0E

2
0n

2
2(n

2
12 − 1)

∞∑
l=1

2l + 1

l(l + 1)

{[
α2n212|cl1|2(ψ′l)2 +

α2

n22
|dl1|2ψ2

l

]
· It+

+ [l(l + 1)]2n212|cl1|2ψ2
l · Ir

}
, (B.92)

where

It =

∫ 1

0

[
(1− x2)

(dP 1
l

dx

)2
+

(P 1
l )2

1− x2
]
x dx, (B.93)

Ir =

∫ 1

0
(P 1

l )2x dx. (B.94)

Defining the dimensionless Q = FRAD
ε0E2

0a
2
0
:

Q = −1

8
(n212 − 1)

∞∑
l=1

2l + 1

l(l + 1)

{[
α2n21|cl1|2(ψ′l)2 + α2|dl1|2ψ2

l

]
· It+

= [l(l + 1)]2n21|cl1|2ψ2
l · Ir

}
(B.95)
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Here, ψl = ψl(n12α) = ψl(n1α0), if α0 is defined as α0 = ωa0
c . The coefficients cl1 and

dl1 are given in equations (B.35) and (B.36). Q can also be expressed as

Q = −1

8
(n212 − 1)

∞∑
l=1

2l + 1

l(l + 1)

{
n21|cl1|2

[
α2(ψ′l)

2It +
(
l(l + 1)

)2
ψ2
l Ir
]
+

+ α2|dl1|2ψ2
l It

}
. (B.96)

This expression is found based on two assumptions. The first assumption is that only
the l′ = l terms are included. The second is that cross terms can be neglected.

Using the definition of α0:

Q = −1

8
(n212 − 1)

∞∑
l=1

2l + 1

l(l + 1)

{
n21|cl1|2

[
n22α

2
0[ψ
′
l(n1α0)]

2It + [l(l + 1)]2ψ2
l (n1α0)Ir

]
+

+n22α
2
0|dl1|2ψ2

l (n1α0)It

}
. (B.97)

Also, remembering the equation from (B.8):

(γ2 − γ1)πa20H + (γ2 − γ1)
2

3
πa30 + 2πa0σ =

∣∣Qε0E2
0a

2
0

∣∣. (B.98)
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