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Abstract

Image denoising by regularization of coherence enhancing functionals have become in-
creasingly standard due to their structural preservation properties. One example of co-
herence enhancing regularization is formulated by Weickert (1999) as a PDE. A typical
drawback of such methods, however, is the creation of artifacts – structures created from
random noise by the denoiser. In this paper, we use coherence enhancing regularization
approaches to create and test low-level denoising algorithms based on the regularization
method of Weickert. To combat the artifact generation of the method, we propose as an
alternative a non-local functional, with the goal of inheriting the anisotropical enhance-
ment properties of the Weickert functional, while at the same time suppressing artifact
generation. Mathematically, the paper compares the two coherence enhancing functionals
and covers in detail both theory on existence of minimizers and how to find these minima.
Concluding the paper, we present some numerical results demonstrating the denoising
properties of both the Weickert functional and the proposed non-local functional.





Sammendrag

Støyfjerning i bilder ved regularisering av koherensfremmende funksjonaler har i større
grad blitt standard takket være de strukturbevarende egenskapene de har. Et eksempel
på en slik metode ble formulert som en partiell differensialligning i Weickert (1999). En
typisk ulempe ved bruk av slike metoder er forekommelser av artefakter – gjenstander
som genereres fra tilfeldig støy gjennom støyfjerneren. Vi tar i denne avhandlingen i
bruk koherensefremmende metoder til å lage og teste lavnivåalgoritmer for strøyfjerning,
basert på metoden Weickert introduserte. For å redusere mengden artefakter som gener-
eres, foreslår vi en alternativ ikke-lokal funksjonal. Målet ved dette alternativet er å be-
holde de anisotropifremmende egenskapene til Weickert-funksjonalen, samtidig som vi
demper forekomster av artefakter. Matematisk sammenlignes de to koherensefremmende
funksjonalene, og det gis en detaljert utledning av eksistensteori for minimum, samt en
måte å finne dem på. Mot slutten av avhandlingen presenterer vi noen numeriske resul-
tater som viser støyfjerningsegenskapene for både Weickert-funksjonalen og den foreslåtte
ikke-lokale funksjonalen





Preface

The field of image processing is an interesting way of visualizing rather abstract mathe-
matical concepts, while also being a highly applicable field of study. Image processing
covers a lot of different subjects, ranging from scientific purposes like forensic evidence
and seismological readings, to more everyday functionality like Snapchat R© filters enjoyed
by many people all over the world.

I have spent this year looking into image denoising. Throughout the research process, I
have had to both brush up on old knowledge gained throughout my years as a student,
as well as attain new knowledge to better understand the problems faced in the paper.
I have been through the field of measure theory, functional analysis, optimization and
numerics, and at the end of the process, I am left with deeper understandings of functionals,
topologies and more – and I have some really cool images to show for it.

In this paper, the reader will be taken through mathematical considerations, where some
knowledge of measure theory and functional analysis will be required. The discussions of
the results are qualitative and more tangible even for those who lacks said knowledge.

I would like to express my deepest gratitude to my supervisor, Associate Professor Markus
Grasmair, for his invaluable aid throughout the research process, without which the paper
would not have come to be. A word of thanks also go to my fellow students, close friends
and family, for helping me vent my frustrations, heightening my morale and simple reas-
surance.
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Chapter 1
Introduction

The denoising of images has applications in many fields, for instance in medical sciences
and space exploration and discovery. In the field of digital signal analysis, signals are
bound to be damaged and the data they carry is consequently distorted or lost. Such
problems can arise from things like errant signal reading and other hardware defects. It
could also arise from physical limitations like blurring because of finite lens sizes Jähne
(2005) and random noise due to low photon counts.

This paper covers a mathematical and computational study of image denoising through
variational methods, and the ultimate goal is to create software that can remove noise
in an image, while at the same time enhance its anisotropic structures through coher-
ence enhancing. A standard approach for regularization in image processing is to let
images be described as functions u : Ω → R over some rectangle Ω ⊂ R2, and de-
fine a functional F(u) penalizing unwanted properties in these functions. A regular-
ized image ū is thereafter defined as the minimizer of F in some function space. Usual
choices of F are integrals of some density f(x, u(x),∇u(x);u0(x)), or a non-local den-
sity f(x, y, u(x), u(y),∇u(x),∇u(y);u0(x)). In the field of image processing, such a
non-local density integral approach is called neighbourhood filtering, or more generally,
patch-based filtering, and has been widely applied. Some examples of this can be found in
the works of Buades et al. (2005) and Weickert (1999). Total variation filtering approaches
are closely connected to regularization through partial differential equations Scherzer et al.
(2009), and in this paper, we will focus on the former.

The method of anisotropic coherence enhancement seeks enhance internal image struc-
tures. To this end, one may define a structure tensor A and use it to recognize structures
in an image. These structures are characterized by profoundly distinguished eigenvectors
in some locale in an image. These eigenvectors are again related to their corresponding
eigenvalues, the difference between which are called the coherence. Coherence enhance-
ment thereby seeks to create clear anisotropic structures by increasing the difference of
eigenvalues, and consequently the eigenvectors, of A. In figures 1.1a, 1.1b and 1.1c, one
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Chapter 1. Introduction

(a) Original data. (b) Structure tensor. (c) Denoised image.

Figure 1.1: Example of how data can be denoised through structure tensor. In the top right corner
of fig. 1.1b we can see the connection between color and direction of flow.

can see one example of data, its structure tensor, and the denoised data. As can be seen
clearly, the denoiser has enhance flow-like structures in the image.

Figure 1.1 shows one result from the denoiser introduced in Weickert (1999). This arti-
cle proposes a denoising approach that, while proposed as a PDE in the article, can be
equivalently formulated as a regularization of the functional

FW (u) =
1

2
‖u− u0‖22 +

α

p

∫
Ω

∣∣A(u, x)∇u(x)
∣∣p
E
dx,

where the largest eigenvector of the local structure tensor A is pointing in a locally domi-
nant direction of∇u. Here and troughout the paper, ‖ ·‖E denotes the euclidean Rn norm.
The exact definition of this A will be given in section 2.3.

The abovementioned functional effectively enhances anisotropic structures in an image,
but it also poses a problem, namely that of artifact generation. Artifacts are structures
which the denoiser creates from random noise, or other structural distortions that may
enhances coherence. As in Grasmair and Lenzen (2010), we propose an alternative coher-
ence enhancing functional, defined by

F(u) =
1

2
‖u− u0‖22 +

α

2
‖∇u‖22 +

β

p

∫
Ω

∫
Ω

w(|x− y|)
∣∣〈∇u(x),∇u(y)⊥

〉∣∣p dy dx.
With this functional we hope to reproduce the coherence enhancing results of FW while
at the same time suppress artifact generation. In the case when p = 2 the minimization of
F is also significantly easier than the minimization of FW .

The goal of this paper is to denoise images through the functionals FW and F , prepare
data for post-processing, and compare numerical performance inbetween these functionals
with respect to the resulting denoised images. The functionals FW and F are uniquely
determined by the parameters α > 0, β > 0 and p > 1, as well as the function w : R≥0 →
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R≥0, and the choices of these affect the denoised images. Each term of the densities of F
andFW has specific properties of interest; the first term of both functionals ensures that the
denoised image ū resembles the data u0. The second term ofF is a standard regularization
term, while the third term seeks to create contrasts, draw straight lines, and enhance non-
local coherence to preserve the structures of the image. The second term of FW tries to
incorporate both regularization and coherence enhancement at once. Parameter choices
are discussed in detail in chapter 4.

Non-local function classes like the functional F have been studied in (Boulanger et al.,
2011, 131-154), and much of the theory needed in our study of F can directly or indirectly
use the results from this work. Beyond the theory, this paper focuses on p = 2, which will
significantly simplify all formulas, and a normalized gaussian kernel w.

The second chapter deals with existence of solutions to the minimization problems of FW
andF , and derivation of formal gradients and the minimizing sequences. The third chapter
describe a discretizations used in our numerical approach to find approximate solutions,
closely following the steepest descent approach described in Nocedal and Wright (2006).
The remainder of the paper discusses some numerical results, clearly demonstrating the
coherence enhancing properties of both functionals, and how the denoisers are affected by
parameter choices.
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Chapter 2
Basic Theory

In this chapter we look in detail at the regularization of the functionals mentioned in the
introduction and define them as minimising problems. Specifically, we look at the exis-
tence of minimizers through Tonelli’s direct method and the derivation of formal gradients
for both functionals, and prove explicitly that F is Gâteaux differentiable. We also find
the function spaces in which the proposed denoising problem makes sense. Key concepts
that are essential to create the denoising software, such as boundary conditions and con-
volutions over finite domains, are presented explicitly. We begin by introducing notation
for some basic concepts that will be used throughout the chapter.

2.1 Diagonalization of real symmetric matrices

Let A ∈ R2×2 be symmetric i.e. there are real numbers a, b and c such that

A =

[
a b
b c

]
.

Then there exists a unique diagonal matrix Σ of ordered eigenvalues ofA, and a unique(up
to signs) orthogonal matrix Q whose columns are eigenvectors corresponding to each of
these eigenvalues, such that

A = QΣQT .

The matrix Q is not unique if the eigenvalues of A coincide, in which case Q = ±Iδ. We
will revisit the consequences of this in section 4.1. For further details on the diagonaliza-
tion, see appendix A.1.

5



Chapter 2. Basic Theory

(a) The level curves of u. (b) The level curves of ue and the mirror axes
used in obtaining them.

Figure 2.1: The symmetric extension of ue of u to R2.

2.2 Convolution

In this section we define what we mean by convolution. In short, the convolution of two
functions f : R→ R and g : R→ R is defined by

(
f ∗ g

)
(x) =

∫
R
f(y)g(x− y) dy =

∫
R
g(y)f(x− y) dy.

Note that this definition of convolution only applies to functions f and g that are defined
over all of R. However, throughout the paper, we will only consider convolutions of func-
tions f : Ω → R for some rectangle Ω in R2, and kernels g : R2 → R, either rapidly de-
creasing or with compact support. We therefore need to define what a convolution should
look like in such cases.

Let Ω be a rectangle in R2, and let u : Ω → R. We define the symmetric extension
ue : R → R of u by mirroring u(Ω) repeatedly across its borders. For a geometric
depiction of this extension, see figure 2.1.

With this, we can define the convolution u ∗ g : Ω→ R by letting

(
u ∗ g

)
(x) :=

(
ue ∗ g

)
(x). (2.1)

With this, we are ready to define the minimization problems.

2.3 Minimizing problem definitions

Let Ω be a rectangle in R2 and u0 ∈ L∞(Ω) be an image.

First, let F : W 1,q(Ω)→ R be defined as

6



2.3 Minimizing problem definitions

F(u) =
1

2
‖u− u0‖22 +

α

2
‖∇u‖22 + βR(∇u), (2.2)

where α, β > 0, and whereR : Lq(Ω,R2)→ R is defined as

R(ξ) =
1

2p

∫
Ω×Ω

w(‖x− y‖E)
∣∣〈ξ(x), ξ(y)⊥

〉∣∣p dy dx, (2.3)

for some bounded Borel measurable function w : R≥0 → R≥0 such that w(0) > 0, and
p ≥ 1. Here, ξ⊥ denotes a vector in R2 that is orthogonal to ξ and of the same length. This
is a unique definition up to signs, which in this functional do not matter due to the absolute
value in the integral above. The function w serves as a definition of the non-locality of the
functional.

Note that F(u) is finite whenever u ∈ W 1,q , q ≥ max{2, p}. This should be clear
for the first two terms, and by the Cauchy-Schwarz inequality,

∣∣〈∇u(x),∇u(y)⊥〉
∣∣p ≤

‖∇u(x)‖pE‖∇u(y)‖pE , thus it also holds for R. In section 2.5.2 we will show that F is
Gâteaux differentiable when q ≥ max{2p, 2}.

Secondly, let FW : W 1,p(Ω)→ R be defined by

FW (u) =

∫
Ω

fW
(
x, u(x), A(u, x),∇u(x)

)
,

fW (x, v,B, ξ) =
1

2

(
v − u0(x)

)2
+
α

p
‖〈ξ,Bξ〉‖pE .

(2.4)

We define the operator A(u, x) : R2 → R2. First, let

Kσ(x) =
1

(2πσ2)m/2
exp

(
−|x|

2

2σ2

)
uσ =

(
Kσ ∗ u

)
A(u, x) =

(
Kρ ∗ (∇uσ ⊗∇uσ)

)
(x).

(2.5)

Here, and for the remainder of the paper, ⊗ denotes the R2 tensor product, that is, ξ⊗ ζ =
ξζT ∈ R2×2. It should be clear that A(u, x) ∈ RN×N is a symmetric positive semi-
definite matrix. It can therefore be diagonalized as

A(u, x) = (QΛQT )(x),

with Λ the diagonal matrix of decreasing eigenvalues of A(u, x), and Q the matrix of
orthonormal eigenvectors corresponding to these eigenvalues. Since A(u, x) is positive
semi-definite, we know that its eigenvalues are non-negative.
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Chapter 2. Basic Theory

For a diagonal matrix Λ, define hγ(Λ) by

[
λ1 0
0 λ2

]
→

[ 1

1+
(λ1−λ2)2

γ2

0

0 1

]
.

Next, for diagonalizable matrices B, we define g(B) = Qhγ(Λ)QT , where B = QΛQT .
We then define the operator A(u, x) by

A(u, x) = g(A(u, x)). (2.6)

In line with the introduced denoising approach, we now define the problems

min
u∈W 1,2p

F(u), (2.7)

and

min
u∈W 1,p

FW (u). (2.8)

The solution to (2.7) and (2.8) will then be our denoised images. These problems are
parameter dependant, the parameters being the numbers α, β, γ, σ, ρ and p, as well as the
original data u0.

In the above defined functionals, each term has its own purpose. The term 1
2‖u − u0‖22

ensures the denoised image should not be too different from the original data. The term
α
2 ‖∇u‖

2
2 is a standard tool occuring in most regularization problems, as it grows large

whenever u is irregular. In the field of image processing, however, large ∇u is often
an indicator of edges, thus this simple term causes blurring that can ultimately remove
important structures in the data. In a similar way, the term

∫
Ω
alpha
p ‖A(u, x)∇u(x)‖2E dx

penalizes irregularities parallell to local dominating flow lines in u. Finally, the term
β
pR(∇u) grows large whenever the directions of ∇u changes rapidly in areas weighted
by the function w, and as a consequence, the term tries to remove corners and create flow
lines.

2.4 Existence of minimizers by Tonelli’s direct method

We now proceed to show the existence of minimizers of FW and F . In the variation of
calculus, there is a well-established method of proving existence of minimizers of func-
tions called the Tonelli direct method [Fonseca and Leoni (2007)]. Let U be a normed
space, and let F : U → [−∞,∞]. The direct method provides conditions on F and U
to ensure the existence of minimizers of F . In short, the method roughly reduces to four
steps, as seen in section 3.2 of Fonseca and Leoni (2007):

8



2.4 Existence of minimizers by Tonelli’s direct method

Step 1 Consider some minimizing sequence {un} ∈ U , i.e. a sequence such that

F(un)
n→∞→ inf

u∈U
F(u).

Step 2 Prove that {un} admits a subsequence {unk} converging with respect to some
(possibly weaker) topology τ to some point u0 ∈ U .

Step 3 Establish the sequential lower semi-continuity of F with respect to τ .

Step 4 Conclude that u0 is a minimum of F because

inf
u∈U
F(u) ≤ F(u0) ≤ lim

k→∞
F(unk) = lim

n→∞
F(un) = inf

u∈U
F(u)

The two inequalities in step 4 follow from the definition of the infimum and the sequential
lower semi-continuity of F , while the two equalities follow from step 2 and step 1, respec-
tively. Thus proving the existence of minimizers of (2.7) and (2.8) amounts to applying
Tonelli’s direct method to F of (2.2) and to FW of (2.4).

Definition 1 (Sequentially lower semi-continuous). Let U be a topological space. A func-
tion J : U → R∪ {∞} is called sequentially lower semi-continuous(abbreviated slsc) if
for every sequence {uk}k∈N ∈ U converging to u ∈ U we have that

lim inf
k→∞

J (uk) ≥J (u). (2.9)

Definition 2 (Coercive). Let (U, ‖·‖U ) be a normed space. A function J : U → R∪{∞}
is called coercive if

lim
k→∞

J (uk) =∞ (2.10)

for all sequences {uk} such that limk→∞ ‖uk‖U =∞.

Sequential lower semi-continuity of F

The goal of this section is to show that F is slsc. Let F and R be as defined in (2.2)
and (2.3), respectively. We note that both ‖u − u0‖2W 1,q and ‖∇u‖2W 1,q are continuous
and convex on W 1,q . By lemma 10.6 of Scherzer et al. (2009) they are consequently also
weakly slsc(abbreviated wslsc) on W 1,q(Ω), that is, they are slsc with respect to the weak
convergence uk ⇀ u on W 1,q . Furthermore, for q ≥ 2 and bounded Ω, we have that
W 1,q is embedded in W 1,2, and it follows that both ‖u − u0‖2 and ‖∇u‖2 are wslsc on
W 1,2(Ω).

If we can prove thatR(∇u) = R ◦∇(u) is also wslsc on W 1,q(Ω), q ≥ max{p, 2}, then
also F must be wslsc on W 1,q(Ω).

9



Chapter 2. Basic Theory

We note that ∇ : W 1,q → Lq , the gradient operator, is a bounded linear operator, and
consequently the mapping u→ ∇u is weakly continuous. Therefore, the mappingR◦∇ :
W 1,q → R is wslsc if the mapping R : Lq → R is wslsc. We will show that R is wslsc
using the results of prop. 1. Before we show this, however, we must introduce some
terminology.

Definition 3. Carathéodory function(Kubińska (2004/05))

Let X ,Y be topological spaces and (T ,M, µ) be a measureable space. We say that f :
T ×X → Y is a Carathéodory function if

• f(·, x) is measurable for all x ∈ X .

• f(t, ·) is continuous for all t ∈ T .

Definition 4. Non-local functional(Boulanger et al. (2011)) Let n ∈ N and 1 ≤ q < ∞.
We call a mapping J : Lq(Ω;Rn)→ R∪{+∞}, which is not constantly equal to infinity,
a non-local functional on Lq(Ω;Rn) if there exists a function f : Ω×Ω×Rn ×Rn such
that

J (ξ) =

∫
Ω

∫
Ω

f(x, y, ξ(x), ξ(y))dx dy for all ξ ∈ Lq(Ω;Rn),

and such that

• f is Carathéodory,

• f has the symmetry property f(x, y, s, t) = f(y, x, t, s) for all x, y ∈ Ω and all
s, t ∈ Rn,

• f is bounded below.

We say such a functional is defined by f and we denote it J q
f (u).

From the above definition, we see that the functionalR(ξ) is non-local and defined by

r(x, y, s, t) = w(|x− y|)
∣∣〈s, t⊥〉∣∣p . (2.11)

Definition 5. Let f : Ω×Ω×Rn ×Rn → R. For fixed x, y ∈ Ω, we define the mapping
f(x,y) : Rn × Rn → R by

f(x,y)(s, t) = f(x, y, s, t).

Proposition 1 (Proposition 8.8 of Boulanger et al. (2011)). Let J q
f : Lq(Ω;Rn) →

R ∪ {+∞}, 1 ≤ q <∞, be a non-local functional. If there exist C ∈ R, γ ∈ L1(Ω× Ω)
and λ ∈ L1(Ω) such that

|f(x, y, s, t)| ≤ γ(x, y) + λ(x)|t|q + λ(y)|s|q + C|s|q|t|q (2.12)

10



2.4 Existence of minimizers by Tonelli’s direct method

for a.e. (x, y) ∈ Ω× Ω and all s, t ∈ Rn, then J q
f is sequentially lower semi-continuous

with respect to the weak topology on Lq(Ω;Rn).

We are now ready to show the following proposition:

Proposition 2. R is wslsc

The functionalR : W 1,q → R defined in (2.3) is wslsc.

Proof. Since we know thatw is bounded on Ω, we can defineW := supx,y∈Ω w(|x−y|) <
∞. It follows that

|r(x, y, s, t)| = w(|x− y|)
∣∣〈s, t⊥〉∣∣p ≤W |s|p|t|p

≤W (1 + |s|q)(1 + |t|q) = W (1 + |t|q + |s|q + |t|q|s|q) ,
(2.13)

for q ≥ max{2, p}. That is, r satisfies condition (2.12) with γ = λ = C = W , and
seeing as Ω is bounded, we know that γ ∈ L1(Ω)and λ ∈ L1(Ω × Ω). We therefore
know that R is sequentially lower semi-continuous with respect to the weak topology on
Lq(Ω;Rn).

By proposition 2,R is wslsc, and following the arguments at the beginning of this section,
we conclude that F is indeed wslsc.

Coercivity of F

We show coercivity of F as defined in (2.2).

From its definition, we knowR(ξ) ≥ 0. Hence,

F(u) ≥ 1

2
‖u− u0‖22 +

α

2
‖∇u‖22.

Further, we know that

‖u− u0‖22 ≥ (‖u‖2 − ‖u0‖2)
2

= ‖u‖22 − 2‖u‖2‖u0‖2 + ‖u0‖22
= ‖u‖2 (‖u‖2 − 2‖u0‖2) + C,

with C = ‖u0‖22 ≥ 0. Denoting ‖u‖2 − 2‖u0‖2 =: M(u), we see that for all u such that
‖u‖2 ≥ 3‖u0‖2, M(u) ≥ ‖u‖2. We then get that ‖u− u0‖22 ≥ ‖u‖2M(u) is coercive in
L2. In other words, for sufficiently large u there exists C1 such that ‖u− u0‖2 ≥ ‖u‖2. It
follows that

F(u) ≥ C1

2
‖u‖22 +

C

2
+
α

2
‖∇u‖22 ≥ C0‖u‖2W 1,2 + C2 ≥ C0‖u‖2W 1,2 ,

11
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where C0 = 1
2 min{C1, α}, C2 = C

2 . As F : W 1,q → R, we get that it is coercive when
q = 2.

As we have proven that F is coercive in W 1,2 and sequentially lower semi-continuous on
W 1,q for any q ≥ 1, it follows from proposition 1 that the problem (2.7) has a solution
ū ∈W 1,2. �

Sequential lower semi-continuity of FW (u)

In this section, we wish to show that the functional FW (u) is slsc with respect to the weak
topology on Lp(Ω). We will do this by applying theorem 7.5 of Fonseca and Leoni (2007)
to the functional. Before we do this, however, we need to introduce the notion a normal
integrand and a few results about them. We define a normal integrand as in Fonseca and
Leoni (2007):

Definition 6. Normal integrand(Fonseca and Leoni (2007))

Let E ⊂ RN be a Lebesgue measurable set and let B ⊂ Rm be a Borel set. A function
f : E ×B → [−∞,∞] is said to be a normal integrand if:

• For LN -a.e. x ∈ E the function f(x, ·) is lsc on B.

• There exists a Borel function g : E ×B → [−∞,∞] such that

f(x, ·) = g(x, ·)

for LN -a.e. x ∈ E.

The following results are found in Fonseca and Leoni (2007), and are stated without proof.

Theorem 1. (6.31 of Fonseca and Leoni (2007))

Let Ω ⊂ RN be Lebesgue measurable. Let f : Ω × Rm → [−∞,∞] be lsc for LN -a.e.
x ∈ Ω. Then f is a normal integrand if and only if f is LN ×B measurable.

Theorem 2. (6.34 of Fonseca and Leoni (2007))

Let Ω ⊂ RN be Lebesgue measurable, and let B ⊂ Rm be a Borel set. If f : Ω × B →
[−∞,∞] is a Carathéodory function, then f is a normal integrand.

Theorem 3. (7.5 of Fonseca and Leoni (2007))

Let Ω ⊂ RN be a Lebesgue measurable set of finite measure, 1 ≤ p, q < ∞, and let
f : Ω× Rd × Rm → (−∞,∞] be an LN × B measurable function, such that

f(x, z, ξ) ≥ 0

for LN -a.e. x ∈ Ω and all (z, ξ) ∈ Rd × Rm. Assume f(x, ·, ·) is lsc in Rd × Rm for
LN -a.e. x ∈ Ω. Then the functional

12
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(z, ξ) ∈ Lq(Ω;Rd)× Lp(Ω;Rm)→
∫

Ω

f(x, z(x), ξ(x))dx

is slsc with respect to strong convergence in Lq(Ω;Rd) and to weak convergence in
Lp(Ω;Rm), if and only if(up to equivalent integrands) f(x, z, ·) is convex in Rm for LN
a.e. x ∈ Ω and all z ∈ Rd.

Theorem 3 holds true even for integrands that allow negative values(on sets of non-zero
LN measure), however the conditions listed above become more complicated, and con-
sidering such functions is unneccessary for our purposes since the integrand of FW is
non-negative anyway.

Proving that the functional FW is slsc amounts to showing that theorem 3 is applicable to
it. This requires us to verify that all assumptions are valid and that the conditions listed
above are satisfied for the integrand fW . In other words, for B = (R × R2×2) × R2 and
Ω ⊂ R2 a rectangle, we need to prove the following:

• fW is L2 × B measurable.

• fW (x, z, ξ) ≥ 0 for L2-a.e. x ∈ Ω and all (z, ξ) ∈ B.

• fW (x, ·, ·) is lsc in B for L2-a.e. x ∈ Ω.

• fW (x, z, ·) is convex for L2-a.e. x ∈ Ω and all z ∈ R× R2×2.

We verify the list top-to-bottom.

i) f is L2 × B measurable

Following the results of theorem 1, we can conclude that fW is LN × B measurable by
showing that fW is a normal integrand. We show normality of fW by showing that fW is
Carathéodory and applying the results of theorem 2.

For fixed ((u,A), ξ) ∈ B, f(·, (u,A), ξ) = 1
2 (u− u0(·))2 + α

p |Aξ|
p is measurable when-

ever u0 ∈ L2(Ω). We have assumed our data u0 ∈ L∞(Ω) ⊂ L2(Ω), thus f(·, (u,A), ξ)
is indeed measurable.

We now fix x ∈ Ω. Define
gp : R2 → R by t→ |t|p,

h : R2 × R2 → R2 by (s, t)→ s− t, and

i : R2×2 × R2 → R2 by (A, ξ)→ Aξ.

Observe that these functions are all continuous. Further, note that fW (x, (u,A), ξ) =
1
2g2 ◦ h(u, u0(x)) + α

p gp ◦ i(A, ξ), i.e. f(x, ·, ·) is a composition of continuous functions.
It follows that fW (x, ·, ·) is itself a continuous function.

13
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Since the set B is a cartesian product of real vector spaces, it is a Borel set. Therefore f
is by definition a Carathéodory function. Theorem 2 then tells us that f is normal, and
consequently, theorem 1 tells us that f is LN × B measurable.

ii) fW (x, z, ξ) ≥ 0

Obvious.

iii) fW (x, ·, ·) is lsc for L2-a.e. x ∈ Ω

In step i) we proved that fW is Carathéodory, hence fW (x, ·, ·) is continuous, and in
conclusion fW is lsc.

iv) fW (x, z, ·) is convex for L2-a.e. x ∈ Ω and all z ∈ R2 × (R2 × R2)

Let x ∈ Ω and z = (u,A) ∈ R2×(R2×R2) be fixed. Recall from i) that f(x, (u,A), ξ) =
1
2g2 ◦ h(u, u0(x)) + α

p gp ◦ i(A, ξ). Clearly convexity of f in ξ is only dependant on
gp ◦ i(A, ·), hence f(x, z, ·) is convex if and only if gp ◦ i(A, ·) is convex.

Note that i(A, ·) : R2 → R2 is simply a linear transformation, and in particular, it is
convex. We calculate the Hessian of gp:

gp(x) = ‖x‖pE = (x2
1 + x2

2)p/2,

∇gp = p‖x‖Ep−2x,

∇2gp = p‖x‖p−2
E Iδ + p(p− 2)‖x‖p−4

E xxT forX 6= 0.

We see that ∇2gp is positive definite, hence gp is (strictly) convex. It follows from these
facts that gp ◦ i(A, ·) is convex, and consequently, so is fW (x, (u,A), ·).

As fW and Ω fulfills conditions i)-iv), theorem 3 then tells us that FW (u) is in fact slsc.�

Coercivity of FW

Next, we look into coercivity of FW . Recall from (2.6) that

A(u, x) = g(A(u, x)) = Qhγ(Σ)QT .

For any x ∈ Ω, we have that

‖A(u, x)ξ‖2E ≥
∣∣min{eig(A(u, x))}

∣∣ · ‖ξ‖2E =
1

1 +
(
λ1−λ2

γ

)2 ‖ξ‖
2
E ,
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2.4 Existence of minimizers by Tonelli’s direct method

where λi are the eigenvalues of A(u, x), defined in section 2.3. To find a lower bound
of eig(A(u, x)) for any x ∈ Ω, we will need to find an upper bound on λ1 − λ2 over Ω.
Since A(u, x) is a symmetric positive semi-definite matrix by construction, we know that∣∣λi∣∣ ≥ 0, hence it is bounded from below. Seeking an upper bound, we know that

∣∣max
i
λi
∣∣ = ‖A(u, x)‖2 ≤ ‖A(u, x)‖F

where ‖ · ‖2 and ‖ · ‖F the 2-norm and Frobenius norm, respectively. Further, we know
that

‖A(u, x)‖F ≤ 4 max
i,j
‖Kρ ∗ (∂iuσ · ∂juσ)‖∞ ≤ 4 max

y∈Ω
Kρ(y) max

i,j
‖∂iuσ∂juσ‖1.

Since Kρ is bounded, we know maxy∈ΩKρ(y) exists. Denote C := maxy∈ΩKρ(y). By
the Cauchy-Schwarz inequality, we now get

‖A(u, x)‖F ≤ 4cmax
i,j
‖∂iuσ‖2‖∂juσ‖2.

Furthermore, we have that

∂iuσ = ∂i(Kσ ∗ u) = (∂iKσ) ∗ u,

hence we find that

‖A(u, x)‖F ≤ 4cmax
i,j
‖u ∗ ∂iKσ‖2‖u ∗ ∂jKσ‖2 ≤ c̃‖u‖2L2 .

Here, c̃ = 4c
(
maxy∈ΩKσ(y)

)2
. Note that c̃ only exists when Kσ is a bounded function.

Given this, we now have

∣∣max
i
λi
∣∣ ≤ c̃‖u‖2L2 ,

thus providing the needed upper bound. Using the non-negativity of mini λi, we then
bound the difference

∣∣λ1 − λ2

∣∣ ≤ ∣∣max
i
λi
∣∣ = c̃‖u‖2L2 .

We now return to finding min{eig(A(u, x))}. We have
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min{eig(A(u, x))} ≥ inf
x∈Ω

min{eig(A(u, x))}

= inf
x∈Ω

 1

1 +
(
λ1(x)−λ2(x)

γ

)2


≥ 1

1 +
(

maxλi−minλi
γ

)2

=
1

1 + c̃
(‖u‖2

L2

γ

)2 =: h(‖u‖L2).

Notice that h : R≥0 → R≥0, h(s) > 0 for all s <∞ and h(s) ≤ 1 for all s. This means,
in the end, that

‖A(u, x)ξ‖E ≥ h(‖u‖L2)‖ξ‖E > 0 for ξ 6= 0.

Now, let u ∈W 1,p(Ω), and let ‖u‖1,p →∞. Then, either ‖u‖L2 →∞, or ‖u‖L2 ≤ C <
∞ and ‖∇u‖Lp →∞. If ‖u‖L2 →∞, we have

‖u‖1,p →∞⇒ ‖u− u0‖L2 →∞,

and consequently FW →∞. If ‖∇u‖Lp →∞, then we have

∫
Ω

‖A(u, x)∇u(x)‖pE ≥ h(‖u‖L2)‖∇u(x)‖Lp dx→∞,

and thus FW → ∞. Either way, as ‖u‖1,p → ∞, we consequently know that FW (u) →
∞, hence the functional is indeed coercive. �

Conclusions on existence of minimizers

In the previous section, we established sequential lower semi-continuity with respect to
the weak topology on W 1,p for both FW and F , coercivity in W 1,2 for F and coercivity
in W 1,p for FW . By the Tonelli direct method, we can then conclude with the existence
of minimizers of F and FW by creating any minimizing sequence un, for instance by the
steepest descent method of Nocedal and Wright (2006).
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2.5 Steepest Descent Algorithm

2.5 Steepest Descent Algorithm

The steepest descent method, also known as the gradient descent method is a simple and
logically straightforward optimization method. This method seeks to minimize a func-
tional G by iteratively minimizing G along its negative gradient direction at iterates vk –
hence the name of the algorithm. The method yields the minimizing sequence

vk+1 = vk − ckgradG(vk), (2.14)

where 0 < ck <∞ is the step length of iteration k. This number has to be found by some
line search, which will be further explained in section 2.5.1.

The gradient descent method is simple to implement and logically sound, but in practice
it is often very slow, having only a linear convergence rate. It is convergent, but not
necessarily to a minimizer of G – only to a critical point. Since neither F nor FW of eqs.
(2.7) and (2.8) are convex, a critical point might not necessarily be a minimum, global or
local. This is problematic for our solution method, but for now we ignore this fact and
move on.

2.5.1 Line search

The idea of a line search is to find a step length s that minimizes the functional G(vk+shk)
in some search direction hk.

Most line searches are at a minimum required to fulfill an Armijo-Goldstein condition,
which ensures the functional values decrease from one iterate to the next, but other condi-
tions can also be applied [Nocedal and Wright (2006)].

A simple backtracking line search tries to find a suitable sk such that

G(vk+1) = G(vk − skgradG(vk)) < G(vk)− τ〈skhk, gradG(vk;hk)〉

for some threshold 0 < τ < 1 and a search direction hk. For a general functional, our
algorithm will implement a backtracking line search as described in Nocedal and Wright
(2006).

Note, however, that for any quadratic positive definite functional, it is possible to perform
an exact line search. The idea is to consider vk+1 as a function of the step length s with
the parameters vk and ∇F(vk). Then one solves ∂s(vk+1) = 0. This could potentially
reduce running times and increase accuracy of the method.

In the gradient descent method, the search direction hk = gradG(vk), where it is as-
sumed that the formal gradient exists, i.e., the natural boundary conditions hold. For each
functional F and FW , these conditions are specified in lemmas 2 and 3, respectively.

To create the minimizing sequence of the gradient descent method, we need gradients of
our functionals. We devote this next section to find these.
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2.5.2 Formal gradients

Let F , R, FW and F̂W be as defined in (2.2), (2.3), (2.4) and (2.27), respectively. In this
section, we seek the formal gradients of F and FW .

Formal gradient of F

We first look for a directional derivative of F . To this end we compute the limit

lim
ε→0

F(u+ εh)−F(u)

ε
=: DF(u, h). (2.15)

Here, h ∈ W 1,q(Ω) indicates a direction in the space of admissible functions. If the limit
exists, and it defines a bounded linear operator DF(u) : W 1,q(Ω) → R, we say that the
functional F is Gâteaux differentiable, and that DF(u, h) is the directional derivative of
F at u in direction h.

We note that F consists three terms, and if each of these terms is Gâteaux differentiable,
then F is Gâteaux differentiable too. Let F1(u) = 1

2‖u − u0‖22 and F2(u) = α
2 ‖∇u‖

2
2,

such that F(u) = F1(u) + F2(u) + βR(∇u).

Lemma 1. Gâteaux differentiability ofR

The functional R defined in (2.3) is Gâteaux differentiable when q ≥ 2p. Its directional
derivative is

DR(ξ; τ) =

∫
Ω×Ω

w(|x− y|)
〈
ξ(x), ξ(y)⊥

〉
|
〈
ξ(x), ξ(y)⊥

〉
|p−2

〈
τ(x), ξ(y)⊥

〉
dx dy,

(2.16)

Proof. See Appendix A.2.3.

We state without proof that

DF1(u, h) = 〈u− u0, h〉L2(Ω) ,

DF2(u, h) = α 〈∇u,∇h〉L2(Ω) .

From this and the above lemma we can find that

DF(u, h) = 〈u− u0, h〉+ α 〈∇u,∇h〉+ βDR(∇u,∇h). (2.17)

This is the general form of the directional derivative of F at u in direction h.

18



2.5 Steepest Descent Algorithm

Lemma 2. Formal gradient of F

Let DF(u;h) be as defined in (2.17). If u satisfies, for all x ∈ ∂Ω, the natural boundary
condition 〈

∇u(x) + 2βV (x)∇u(x),n(x)

〉
= 0, (2.18)

where n(x) is the normal vector on Ω at x ∈ ∂Ω and

V (x) =

(∫
Ω

w(|x− y|)
∣∣〈∇u(x),∇u(y)⊥〉

∣∣p−2∇u(y)⊥ ⊗∇u(y)⊥dy

)
,

then DF(u, h) can be represented as

DF(u;h) = 〈gradF , h〉 =

∫
Ω

gradF(u, x)h(x)dx, (2.19)

where

gradF(u, x) = u(x)− u0(x) + α∆u(x)

+

∫
Ω

div

(
w(|x− y|)Υ(∇u(x),∇u(y)⊥)∇u(y)⊥

)
dy

(2.20)

is the formal gradient of F . Here, div denotes the R2 divergence operator, and Υ(ξ, ζ) =
〈ξ, ζ〉|〈ξ, ζ〉|p−2.

When p = 2 the formal gradient simplifies significantly to

gradF(u, x) = u(x)− u0(x) + α∆u(x)

+ div
((
w ∗ (∇u⊥ ⊗∇u⊥)

)
(x)∇u(x)

)
.

(2.21)

Proof. See appendix A.3.

Formal gradient of FW

Next, we seek the formal gradient of FW . We recall some notation from section 2.3. First,
define the anisotropic structure tensor A(u, x) by

A(u, x) = g
((
Kρ ∗ (∇uσ ⊗∇uσ)

)
(x)
)

= g ◦B(u, x),

B(u, x) =
(
Kρ ∗ (∇uσ ⊗∇uσ)

)
(x)

(2.22)

and let Q and Σ define the diagonalization of B(u, x), i.e.
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B(u, x) = QΣQT .

Consequently both Q and Σ are functions of u and x, however we will use the notation
above throughout the paper. SinceQ is a 2×2 matrix, its columns are orthonormal, thereby
yielding the form

Q =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

where θ is the phase angle. This means that Q is simply a rotation matrix. We will in the
following use the notation

cos(θ) = a, sin(θ) = b,

so that

Q =

[
a −b
b a

]
. (2.23)

Again, remember that a and b are functions of u and x. Moving on, we now introduce the
functions

T (u, x) = K∗σ ∗
[
H2∇uσK∗ρ ∗

(
N(u, ·)(a2 − b2)

)
− 2H3∇uσK∗ρ ∗

(
N(u, ·)(ab)

)]
(x),

f(u, x) = A(u, x)∇u(x),

M(u, x) =
(
‖f(u, x)‖2E

)p/2−1

,

(2.24)

where
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N(u, x) = 2M(u, x)β(u, x)
〈
H1(u, x)∇u(x), f(u, x)

〉
,

β(u, x; γ) =
2
(
σ1−σ2

γ

)
[
1 +

(
σ1−σ2

γ

)2]2 ,
H1(u, x) = Q

[
1 0
0 0

]
QT =

[
a2 ab
ab b2

]
,

H2 =

[
−1 0
0 1

]
,

H3 =

[
0 1
1 0

]
,

(2.25)

and the adjoints K∗σ and K∗ρ are defined by

K∗i (x) = −Ki(−x), i ∈ {σ, ρ}.

Lemma 3. Formal gradient of FW .

With the notation introduced above, the formal gradient of FW has the form

gradFW (u, x) = u(x)− u0(x)− α div
(
T (u, x) +M(u, x)A(u, x)T f(u, x)

)
(2.26)

where A(u, x)T is the transpose of A(u, x).

Proof. See appendix A.4.

With this we have all necessary theoretical tools to solve the minimising problems intro-
duced in section 2.3.

Remark. An alternative definition of FW is

F̂W (u, v) =

∫
Ω

fW (x, u(x), A(v, x),∇u(x)) dx. (2.27)

Notice thatFW (u) = F̂W (u, u). The main purpose of this particular definition is that F̂W
is a quadratic positive definite functional in u when p = 2, consequently enabling exact
line search. We will not go into great detail of this functional in this paper. The inexact
u-gradient of F̂W and the corresponding boundary condition it imposes can then be found
by simply removing the T -term from gradF , that is,

gradu F̂(u, v) =

∫
Ω

u(x)−u0(x)+αdiv
(
A(v, x)TA(v, x)∇u(x)

)
‖A(v, x)∇u(x)‖p/2−1

E ,
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whenever

‖A(v, x)∇u(x)‖p/2−1
E 〈n(x), A(v, x)TA(v, x)∇u(x)〉 = 0 on ∂Ω.

With this it is possible to define a slightly different numerical scheme. Instead of using the
search direction grad F̂W (vk, vk), we use only the non-tensor gradient gradu F̂(vk, vk).
This sequence simply ignores the contribution of the structure tensor to the gradient. We
then obtain the minimizing sequence

vk+1 = vk − ckgradu F̂(vk, v), (2.28)

where the variable v is the image seen by the structure tensor A.

This implementation has been tested parallel to experiments of chapter 4, but depending on
parameter choices, produced results either identical to that of F , or were highly unstable,
likely due to stability issues of the diagonalization of A (for details, see appendix A.1).
We have therefore not included these experiments in the paper.
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For the remainder of the paper, we fix p = 2 and the function w : R≥0 → R≥0 as a
normalized Gaussian kernel

w(r) = C exp
(−r2

2ρ2

)
,

where C is the normalizing constant. Notice that this definition of w coincides with the
kernel Kρ defined in (2.3).

3.1 Discretizations

This section will define all discretizations used for implementing our numerical scheme
solving (2.7) and (2.8). This requires us to approximate Ω, u, ∇ and

∫
Ω
dx.

3.1.1 Discretization of Ω

Recall that that our data u0 is an M × N regular grid of pixel values. The simplest and
most natural choice for discretising Ω is therefore a 2D mesh whose points coincide with
the pixels. This results in a set of points

Ω̂ := {ωi,j}M,N
i,j=1,1 ⊂ Ω ⊂ R2.

As we will need access to points outside Ω for computing convolutions, it is necessary to
extend Ω̂ to R2. This extension is denoted by Ω̂e, and is obtained recursively by adding
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(a) The rectangle Ω ⊂ R2. (b) The discretization Ω̂ of Ω
indicated by red circles as a
set of points in Ω̄

(c) Ω̂e is the extension of Ω̂
covering all of R2

Figure 3.1: The extension Ω̂e of Ω̂ to R2.

mesh points in an appropriate distance and location away from the remainder of the grid.
For a geometric depiction of the descretization Ω̂ and its extension Ω̂e, see figure 3.1.

3.1.2 Discretization of integrals and convolution

We use a simple column approximation for integrals, that is, for any functional F (f) =∫
Ω
f(x)dx, with f : Ω→ R, we define

F (f) =

∫
Ω

f(x) dx ≈
∑
ω∈Ω̂

f(ω) =
∑
ω∈Ω̂

f(ω) =: F̂ (f).

This approximation implicitly introduces a scaling of our problem such that the size of one
pixel is exactly 1. Bearing this in mind, we can now discretize the convolution operation.
Let g : R2 → R have compact support, and let fe be the symmetric extension of f , as
defined in section 2.2. Then for any ω ∈ Ω̂, we have

(
f ∗ g

)
(ω) =

∫
R
g(ω)fe(y − ω)dy ≈

∑
α∈Ω̂e

g(ω)fe(α− ω) =:
[
f ∗ g

]
(ω). (3.1)

We call [f ∗ g] : Ω̂e → R the discrete convolution of f and g over Ω̂.

3.1.3 Discretization of∇

We now look for an operatorG ≈ ∇ on the grid Ω̂e. More precisely, we look for operators
Gx ≈ ∂x and Gy ≈ ∂y , and define G = [Gx, Gy]T . For simplicity, we let Gx and Gy be
the forward difference operators. That is, for some function f : Ω→ R,
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(Gx)i,j f̂ = Gxf̂e(ωi,j) =
1

δ

(
f̂e(ωi+1,j)− f̂e(ωi,j)

)
,

(Gy)i,j f̂ = Gy f̂e(ωi,j) =
1

δ

(
f̂e(ωi,j+1)− f̂(ωi,j)

)
,

where ωi,j ∈ Ω̂ and δ is the euclidean distance between neighbouring pixels. In line with
the problem scaling implicitly introduced in section 3.1.2, we define δ = 1, simplifying
the above equation to

(Gx)i,j f̂ = f̂e(ωi+1,j)− f̂e(ωi,j),

(Gy)i,j f̂ = f̂e(ωi,j+1)− f̂e(ωi,j).
(3.2)

By the above definition, calculating Gf̂ on the upper index boundaries of Ω, we find

(Gx)M,j f̂ = Gxf̂e(ωM,j) = f̂(ωM−1,j)− f̂(ωM,j),

(Gy)i,N f̂ = Gy f̂e(ωi,N+1) = f̂(ωi,N−1)− f̂(ωi,N ).
(3.3)

Notice that these are the negative backward difference operators.

It is possible to define Gx and Gy as discrete convolutions of f̂ with some kernels kd :

Ω̂e → R, d ∈ {x, y} using the definition of discrete convolution in (3.1). In such notation,
we can write

Gxf̂i,j = [kx ∗ f̂ ](ωi,j),

Gy f̂i,j = [ky ∗ f̂ ](ωi,j),
(3.4)

where

kx(r) =


−1, if r = [0, 0]T ,

1, if r = [1, 0]T ,

0, otherwise.
ky(r) =


−1, if r = [0, 0]T ,

1, if r = [0, 1]T ,

0, otherwise.
(3.5)

In conclusion, we define

Gf̂ = [Gxf̂ , Gy f̂ ]T .
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Discretization of div

Directly consequential from the definition of G, we can now approximate the R2 diver-
gence operator. Let f̂ approximate f : Ω→ R on the grid Ω̂. We then approximate

div f = 〈∇∗, f〉2R ≈ 〈G∗, f̂〉2R =
(
G∗x +G∗y

)
f̂ =: div f̂ , (3.6)

with G∗x and G∗y being the adjoint operators of Gx and Gy , respectively, and G∗ =

[G∗x, G
∗
y]T . Therefore finding the divergence operator requires finding the adjoint gra-

dient operator. With Gx and Gy as defined by (3.4), we now seek the adjoint operators
G∗x and G∗y relative to the L2(Ω̂) inner product, which we define by approximation of the
L2(Ω) inner product:

〈u, v〉L2(Ω) =

∫
Ω

u(x)v(x)dx ≈
∑
ω∈Ω̂

u(ω)v(ω) =: 〈u, v〉
L2(Ω̂)

. (3.7)

In this notation, we want to find G∗x and G∗y such that

〈Gxu, v〉L2(Ω̂) = 〈u,G∗xv〉L2(Ω̂) , (3.8)

〈Gyu, v〉L2(Ω̂) =
〈
u,G∗yv

〉
L2(Ω̂)

. (3.9)

We first look for G∗x. From (3.4), (3.1) and (3.9), we find that

〈Gxu, v〉L2(Ω̂) =
∑
ω∈Ω̂

[kx ∗ u](ω)v(ω)

=
∑
α∈Ω̂

∑
ω∈Ω̂

kx(ω − α)u(α)v(ω).
(3.10)

Letting k∗x(x) = kx(−x),

〈Gxu, v〉L2(Π) =
∑
ω∈Ω̂

∑
α∈Ω̂

k∗x(α− ω)u(α)v(ω),

=
∑
α∈Ω̂

∑
ω∈Ω̂

u(α)k∗x(α− ω)v(ω),

=
∑
α∈Ω̂

u(α)[k∗x ∗ v](α),

〈u,G∗xv〉 ,

(3.11)

thus
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G∗x = [k∗x ∗ ·]. (3.12)

An almost identical approach is used to find the adjoint operator G∗y of Gy , yielding the
result

G∗y = (k∗y ∗ ·). (3.13)

This concludes the search for G∗ of (3.6). With this, we define

div f̂ := 〈G∗, f̂〉 (3.14)

Discretization of ∆

The discrete Laplacian operator is further derived in a similar way. We recall that ∆ =
∇∗ · ∇ = div∇. Applying∇ ≈ G, we find that ∆ ≈ G∗G = G∗xGx +G∗yGy := L. This
explicitly gives

G∗xGx =
[
k∗x ∗ [kx ∗ ·]

]
, G∗yGy =

[
k∗y ∗ [ky ∗ ·]

]
By extending our definition of [f ∗ g] to Ω̂e, one can define

[
k∗x ∗ [kx ∗ ·]

]
= [Kx ∗ ·],

[
k∗y ∗ [ky ∗ ·]

]
= [Ky ∗ ·]

with [k∗x ∗ kx] =: Kx and [k∗y ∗ ky] =: Ky . In this notation, we conclude that

∆ ≈ L = G∗G = [Kx ∗ ·] + [Ky ∗ ·] =
[
(Kx +Ky) ∗ ·

]
(3.15)

by linearity of the discrete convolution.

3.1.4 Discretization of functions on Ω

Next, we look at how we discretize functions defined on Ω. Let f : Ω→ R. For any such
function, we denote its discretization f̂ : Ω̂→ R by letting

f̂ = {f(ω)}ω∈Ω̂.

Note that this discretization structures f̂ in the same way as Ω̂. That means f̂ is an M ×N
array of function values.

With the discretizations introduced in sections 3.1.1-3.1.4, we are fully equipped to create
our denoisers.
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Chapter 4
Analysis

4.1 Parameter effects

Before we go in detail into the analysis, it is worth our time to recap what behaviour we
expect from our functionals, and how our parameter choices affect this behaviour.

For the functional F , we must choose parameters α, β and the standard deviation ρ of the
normalized gaussian kernel w. The α parameter is included in the functional mostly to
guarantee coercivity, and is therefore mainly of theoretical interest. The effect of the α
term is isotropic denoising, and because we wish our denoiser to enhance anisotropy, we
wish to have as little isotropic denoising as possible. Hence we will opt to choose small
values of α. The β and ρ parameters are both key components of the non-local anisotropy
enhancer. Qualitatively, ρ describes the size of the structures we wish to enhance, or in
other words, the size of areas in which anisotropies in the image are roughly the same. We
should therefore expect better results when ρ coincides with the size of structures we wish
to enhance. In our case, ρ translates directly to pixel distances, that is, for all grid points,
mostly pixels no further than ρ away from the grid point are considered. Lastly, the value
of β should reflect the degree of anisotropy enhancement we would like. In general, large
values of β yield good denoising results. We note, however, that it is important to carefully
inspect the data u0 before choosing any parameters.

For the other functional, FW , it is required to define the parameters α, σ, ρ and γ. The
parameter ρ functions largely the same way as it did for F , and the values of it will be
chosen by the same means. As stated in Weickert (1999), the parameter σ reduces local
noise, and makes the structure tensor ignore changes less than O(σ). Qualitatively, σ is
interpreted as a noise scale in the data. Note also that it has similar properties as ρ in the
sense that it will consider pixels in a σ-sized neighbourhood of any grid point, hence to
reduce isotropic blurring, σ should not be chosen too large. The best way to describe γ is
that it acts as an ”inverse” tolerance of anisotropy. That is, small γ allows a higher degree
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(a) Original data (b) β = 1, ρ = 20 (c) β = 1, ρ = 3.

Figure 4.1: The figure shows how the choices of ρ affect the minimization results of F . Here
α = 0.001 and β = 1, and ρ are chosen as seen in the respective figure texts. Image size: 92× 172.

of anisotropic enhancement. Lastly, α here is a value reflecting the amount of anisotropic
enhancement we seek, in many ways similar to what β was in F .

Due to our construction of Ω̂, both σ and ρ will correspond to unit lengths in amounts of
pixels. In other words, a value of σ = 1 means that around any pixel ω in Ω̂, we take into
account mainly values in pixels with distance not much further than 1 pixel away from ω.

As an added experimental parameter, we also fix the amount of iterations the steepest de-
scent method performs before terminating the program. We do this because our functionals
F and FW are not convex, and as such there are no simple way of determining whether or
not the limit the program approaches is in fact a minimum. We do expect a higher number
of iterates to yield more ”correct” solutions, as seen by our functionals.

In the in the remainder of this section, the images presented are chosen such that the
features of each functional as a denoiser is presented clearly, and their effects may differ
from image to image even for the same parameter choices. Also, for each parameter
choice, we interrupt the denoiser after exactly 100 iterations unless otherwise specified.

4.1.1 Parameter effects on F

Figures 4.1 show how the parameter ρ affects the results, with α = 0.001 and β = 1. With
the stripes in figure 4.1a being very slim, it follows that enhancing them would require ρ to
be sufficiently small. Comparing figures 4.1b and 4.1c, the improvement from considering
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4.1 Parameter effects

Figure 4.2: Example of effects of the β parameter, with α = 0.001 and ρ = 20. The original image
on the left, and results with β = 1 in the middle and β = 100 on the right. Image size: 242× 164.

rather large anisotropy areas with ρ = 20 to considering smaller areas with ρ = 3 are
drastic.

In figure 4.2, we present the functionality of the β parameter. With changes in β, the
differences between results after 100 iterations were minuscule, and therefore we have in
this particular figure performed 1000 iterations. The figure shows how blurring occurs
near the corners of the white sheet, which are areas in which the β term should be large.
Similar behaviour is seen near the curved string in the top left corner of figure 4.2. These
effects demonstrate that the functional tries to draw straight lines. While the blurring of
edges occur throughout the entire result images in figure 4.2, it is clear that its effect are
greatest near corners, which makes perfect sense from a mathematical point of view. We
also see that the changes in the results appear small when compared to the huge change
in β, though revelations from experiments show that for β = 500, the effects actually
seem to diminish. This behaviour, along with the large amount of iterations needed to spot
the parameter effects, likely stems from the nature of the steepest descent method, as this
behaviour resembles how the method acts on a simple Rosenbrock function. This tells
us that the Hessian of the problem is ill-conditioned. It is therefore likely that the result
images in figure 4.2 – and probably most other results from F presented in this paper –
are not necessarily close to an actual minimum.

4.1.2 Parameter effects on FW

From figure 4.3 we can see some interesting effects. First of all, we notice that the en-
gravings on each coin have been distorted near the edges. This distortion is a result of
the functional trying to preserve the outline of the coins. The reason for prioritizing the
outline is due to the large contrasts between the coins and the background, which opts the
functional to leave the outlines untouched, rather than focus on preserving the engravings.

An unwanted side effect of image denoising through minimizing functionals is artifact
production. While mathematically explicable, the functional FW seems to find flow struc-
tures where there are supposed to be none, and they could be generated from noise or
from non-flowing structures in the image. In figure 4.4, we compare how the denoiser
behaviour changes with noise. The results seen in the bottom right image show that the
background has been littered with artifacts that are clearly not there in the original image.
While a value of α = 100 might be a bad parameter choice for decent denoising, it clearly
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Figure 4.3: Example of how some structures can dominate others when minimizing FW , here with
parameters α = 100, γ = 1 σ = 1 and ρ = 10. The original data is on the left, and the denoised
data is on the right. Image size: 300× 246

Figure 4.4: An example of how noise can lead to artifact generation. In both cases, α = 100, γ = 1
and ρ = 10. The left column contains non-noisy and noisy data, and the right column are their
respective denoised results. Image size: 145× 56.

demonstrates the problem of artifact generation. Similar effects are seen in figure 4.5. Al-
though these artifacts are not generated from noise, but rather from spots, such structural
degradation should still be regarded as a defect.

Remark. The keen observer may also notice the tendencies of instability in the upper right
corner of the top right image of figure 4.4. Comparing this area to the original image on the
top left, what could appear to simply be dust on the camera lens has been severely distorted.
These issues could have risen from theoretical problems of uniqueness of diagonalization
whenever the eigenvalues of the structure tensor coincide, mentioned in appendix A.1. The
fact that experiments reveal that this particular artifact completely dissappears by lowering
γ, further increasing suspicion towards these theoretical issues.

Figure 4.6 captures the effects of ρ, σ and γ – three parameters which for this functional
all occur in the same term. The figure shows a satellite image of a hurricane. Compare first
figures 4.6c–4.6e to figure 4.6b. When ρ is small, every pixel focuses only on a small area,
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Figure 4.5: An example of structural distortions when minimizing FW . Original data on the left
and denoised data on the right. Here α = 100, γ = 1, σ = 1 and ρ = 10.

and the large amounts of noise makes it difficult for the functional to correctly determine
the flow directions. In this case, the entire image contains a single structure of interest,
thus by increasing ρ, more data is accounted for and the superstructure of the hurricane
can eventually be found, as seen in figure 4.6c. Increasing σ immediately reduces local
noise, thereby significantly reducing artifact generation, which can be seen by comparing
figures 4.6b and 4.6e. Comparing figures 4.6b and 4.6d, we can see that by decreasing γ,
the flow lines have become more distinguished. Finally, figure 4.6f shows the result of a
smart choices of parameters. In its entirety, figure 4.6 again demonstrates how parameter
choices should reflect the data we wish to denoise.

4.2 Verdict

At the epitaph of this paper, we now wish to compare some results in which both func-
tionals excel. Figure 4.7 shows the results of the denoiser on both non-noisy, noisy and
very noisy data, with the results of F in the middle column and FW in the right column,
respectively. The top row is the results of non-nosiy data, while to the middle and bot-
tom row we have added random Gaussian noise of intensity 50 and 100, respectively. By
comparing the different rows of figure 4.7, we can see for the non-local functional more
apparent blurring, particularly in the bottom parts of the pictures, while for the functional
FW , these same areas are more prone to artifact generation. The main features of the
fingerprint, however, have been clearly reproduced by the denoisers. The conclusion from
these results then has to be that the denoisers indeed removes noise, and quite effectively
so, from images with clear anisotropies. Comparing the results in the middle and right
columns, we can see that the prints are slightly more contrasted for FW . At the same time,
looking at the bottom parts of the images, the functional FW tends to create more apparent
artifacts than the non-local F . Other experiments on this very image also reveal that for
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(a) Original data. (b) γ = 1, ρ = 10, σ = 2. (c) γ = 1, ρ = 50, σ = 2.

(d) γ = 0.001, ρ = 10, σ = 2. (e) γ = 1, ρ = 10, σ = 10. (f) γ = 0.001, ρ = 100, σ =
10.

Figure 4.6: Examples signifying the importance of structure sizes. In all cases, α = 50. Remaining
parameter selection is shown in figure texts. Image size: 400× 378.
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other parameter choices for FW , artifact generation is more apparent and occur in other
parts of the image as well.
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(a) Original data with increas-
ing amounts of noise.

(b) α = 0.001, β = 1, ρ = 20. (c) α = 50, γ = 0.01, σ = 2,
ρ = 20.

Figure 4.7: Results of the denoisers. Row-wise the data become increasingly noisy, with the top
image having no added noise, the middle row has an added Gaussian noise of intensity 50, and the
bottom image has an added Gaussian noise of intesity 100. The middle column show results of
denoising through the non-local F , while the right column show results of denoising through FW .
Parameter choices are seen below their respective columns. Image size: 512× 512.
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Chapter 5
Conclusion

In this paper, we have proposed a non-local coherence enhancing functional F for denois-
ing images. We have also compared its behaviour to that of the functional FW , formu-
lated as a PDE in Weickert (1999). For both functionals, we have proven the existence of
minimizers and derived their formal gradients. The denoising properties of the proposed
non-local functional F and the functional FW are demonstrated through numerical ex-
periments. These experiments reveal that both functionals preserve anisotropy and reduce
local noise, and work very well for images of distinct and uniformly sized structures, sharp
contrasts and protruding anisotropies. By choosing parameters to align with the given data
and the amount of enhancement we seek, noise is removed while important features like
edges are preserved.

However, neither method is without drawbacks. The functional FW produced artifacts
and structural distortions in areas where no dominating anisotropy were found or when
conflicting flows met, while the proposed F instead blurred such areas. As for numerical
results, the denoisers require many iterations to converge, and do not necessarily converge
to a minimum. For the non-local FW we have seen that for large parameter choices,
the number of iterations required to reach a minimum increased. The large amount of
iterations required likely stem from an ill-conditioned Hessian of the functional, and due to
this, the steepest descent method may be not optimal for solving the minimising problems.
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Appendix

A.1 Diagonalization of real symmetric matrices

Let A ∈ R2×2 be symmetric i.e. there are real numbers a, b and c such that

A =

[
a b
b c

]
.

Then there exists a unique diagonal matrix Σ of ordered eigenvalues of A, and an orthogo-
nal matrix Q whose columns are eigenvectors corresponding to each of these eigenvalues,
such that

A = QΣQT .

Note that Q is unique if and only if the eigenvalues of A are different. The eigenvalues of
A are the solutions of

det(σI −A) = 0, (A.1)

and it is simple to show that these solutions are

σ =
a+ c±

√
(a− c)2 + 4b2

2
. (A.2)

From this it is clear that the eigenvalues coincide only when a = c and b = 0, and thus,
stability issues are bound to arise whenever A is almost equal to I . More details on this
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can be found in section A.1.1. As Q is orthogonal, QQT = QTQ = I . As such, we find
that Q has to be on the form

Q =

[
cosα − sinα
sinα cosα

]
.

The phase angle α can be found by solving [(σI − A)]iQi = 0 for either column vector
Qi, that is

(σ1 − a) cos(α) + b sin(α) = 0, or
−b sin(α) + (σ2 − c) cos(α) = 0.

Either way, for b 6= 0, we find the phase angle to be

α = arctan
(σ1 − a

b

)
= arctan

(c− σ2

b

)
. (A.3)

The last equality in the equation above is easily verified by inserting σ1 and σ2 from (A.2).

In the case when b = 0, the matrix A is already diagonal. If a > c, we see immediately
that A = Σ and thus Q = ±I . If a < c, we can find, by calculating QAQT = Σ, that

Q = ±
[
0 1
1 0

]
.

This corresponds to the phase angle α = ±π/2.

A.1.1 Stability issues for small b

When b is small relative to a − c, very tiny perturbations of b will lead to large changes
in α. This will likely lead to numerical issues when attempting to diagonalize matrices
that are already almost diagonal on a computer. A very simple quick fix is simply to use
the approxamtion b = 0 for a certain threshold |b| < ε. In other words, for |b| < ε, we
approximate

A =

[
a b
b c

]
≈
[
a 0
0 c

]
.
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A.2 Directional derivative ofR

In this section, we seek to derive a formula for directional derivative of R as defined in
section 2.3 and find the criteria needed for a formal gradient to exist. That is, for a fixed
ξ ∈ R2, we wish to find the functional

DR(ξ; τ) = lim
ε→0

R(ξ + ετ)−R(ξ)

ε

and find a function gradR(ξ, x) such that

DR(ξ; τ) =
〈
gradR(ξ), τ

〉
L2(Ω)

.

A.2.1 First variation ofR, part one

LetR : Lq(Ω;R2)→ R ∪ {+∞} be the functional

R(ξ) =
1

2p

∫
Ω×Ω

w(|x− y|)
∣∣〈ξ(x), ξ(y)⊥

〉
R2

∣∣p dx dy (A.4)

where Ω ⊂ R2, p > 1, and w : R≥0 → R≥0 is a bounded Borel measureable function,
with w(0) > 0. The first variation ofR in direction τ is then defined as the limit

DR(ξ; τ) := lim
ε→0

R(ξ + ετ)−R(ξ)

ε
(A.5)

for some direction τ : Lq(Ω;R2) → R2. If the limit exists for any τ ∈ Lq(Ω;R2)
and defines a bounded linear mapping DR(ξ) : Lq → R, we say the functional R(ξ) is
Gâteaux differentiable, and thatDR(ξ; τ) is the directional derivative ofR(ξ) in direction
τ .

Define now the functions g : R → R and f1, f2 : R2 × R2 → R as f1(x, y) = 〈x, y〉,
g(t) = |t|p and f2(x, y) = f1 ◦ g(x, y). Then

R(ξ) =
1

2p

∫
Ω×Ω

w(|x− y|)f2(ξ(x), ξ(y)⊥)dx dy, (A.6)

and consequently,

DR(ξ; τ) = lim
ε→0

1

ε

[
1

2p

∫
Ω×Ω

w(|x− y|)f2

(
(ξ + ετ)(x), (ξ + ετ)(y)⊥

)
dx dy

− 1

2p

∫
Ω×Ω

w(|x− y|)f2(ξ(x), ξ(y)⊥)dx dy

]
.

(A.7)
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One can prove by applying the Lebesgue dominated convergence theorem that the limit
and integral of (A.7) can switch places, under sufficient criteria. Proving this is quite a bit
of work, so for now, we focus on that, and come back to the first variation later.

A.2.2 Convergence of the directional derivative

Our goal in this section is to derive sufficient criteria such that we can apply the Lebesgue
dominated convergence theorem to the functional R(ξ). Similar work has already been
done in theorem 3.37 of Dacorogna (2008), where the author finds exactly such criteria,
and moreover, some interesting consequences of these. To lessen confusion, we first intro-
duce some notation similar to that of Dacorogna (2008).

First we define the density

s
(
x, y; ξ(x), ζ(y)

)
=

1

2p
w(|x− y|)

∣∣∣〈ξ(x), ζ(y)⊥
〉∣∣∣p.

such that (x, y) ∈ Ω× Ω and
(
ξ(x), ζ(y)

)
∈ R2 × R2. We define

S(ξ, ζ) =

∫
Ω×Ω

s
(
x, y; ξ(x), ζ(y)

)
dy dx

and notice that S(ξ, ξ) = R(ξ). Let φ, ψ : Ω× Ω→ R. Define the functional

L
(
(u, v), (φ, ψ)

)
:=

∫
Ω×Ω

(〈
Dξs

(
x, y;∇u(x),∇v(y)

)
,∇φ

〉
+
〈
Dζs

(
x, y;∇u(x),∇v(y)

)
,∇ψ

〉)
dy dx

which is the directional derivative of S(∇u,∇v) in direction (∇φ,∇ψ).

Theorem 3.37 of Dacorogna (2008) now states that if s is a Carathéodory function and

∣∣∣s(x, ; ξ(x), ζ(y)
)∣∣∣ ≤ α0(x, y) + β

(
|ξ(x)|q + |ζ(y)|q

)
∀ (ξ(x), ζ(y)) ∈ R2 × R2,∣∣∣Dξs

(
x, y; ξ(x), ζ(y)

)∣∣∣ ≤ α1(x, y) + β
(
|ξ(x)|q−1 + |ζ(y)|q−1

)
,∣∣∣Dζs

(
x, y; ξ(x), ζ(y))

)∣∣∣ ≤ α2(x, y) + β
(
|ξ(x)|q−1 + |ζ(y)|q−1

)
,

for a.e. (x, y) ∈ Ω× Ω, α0 ∈ L1(Ω× Ω), α1, α2 ∈ Lq/(q−1) and β > 0, then for any φ̄,

L
(
(ū, ū, (φ̄, φ̄)

)
= 0
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for a solution ū to the minimising problem (2.7). In the proof of the theorem it is also
shown that L is the Gâteaux derivative of S.

We plan to utilize this theorem to show that the Gâteaux derivatives DS(ξ, ζ;φ, ψ) of
S(ξ, ζ) exists — i,e, that the dominated Lebesgue convergence theorem holds forDS(ξ, ζ).
We will prove that condition (A.2.2) holds for our functional in three parts.

i) s is Carathéodory and the estimate for s.

Recall

s
(
x, y; ξ(x), ζ(y)

)
=

1

2p
w(|x− y|)

∣∣∣〈ξ(x), ζ(y)⊥
〉∣∣∣p.

Since w(·) is a Borel function and 〈·, ·〉 is a continuous functional, it follows that s is
Carathéodory .

Further, we know that

∣∣∣s(x, y; ξ(x), ζ(y)
)∣∣∣ ≤ 1

2p
sup

(x,y)∈Ω×Ω

(
w(|x− y|)

)∣∣∣〈ξ(x), ζ(y)⊥
〉∣∣∣p

≤ 1

2p
sup

(x,y)∈Ω×Ω

(
w(|x− y|)

)∣∣ξ(x)
∣∣p∣∣ζ(y)

∣∣p.
We denote sup(x,y)∈Ω×Ω w(|x− y|) := W . Noting that for any non-negative numbers a,
b and n, we have anbn ≤ a2n + b2n. It follows that

∣∣∣s((x, y), (ξ(x), ζ(y)
))∣∣∣ ≤ W

2p

(
|ξ(x)|2p + |ζ(y)|2p

)
≤ α0(x) + β

(
|ξ(x)|q

′
+ |ζ(y)|q

′) (A.8)

with β = W/2p > 0, α0(x) = 0 and q′ = 2p. Obviously α0 ∈ L1(Ω).

Hence s is Carathéodory, and

∣∣∣s((x, y), (ξ(x), ζ(y)
))∣∣∣ ≤ α0(x) + β

(
|ξ(x)|q

′
+ |ζ(y)|q

′
)

for some 0 < α0(x) ∈ L1(Ω), proving part i).
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ii) Estimate for |Dξs|.

From the definition of s, we get immediately

∣∣∣Dξs
(
x, y; ξ(x), ζ(y)

)∣∣∣ =
1

2p
w
(
|x− y|

) 〈
ξ(x), ζ(y)⊥

〉 ∣∣∣〈ξ(x), ζ(y)⊥
〉∣∣∣p−2

dy (A.9)

Consequently, as p ≥ 1 > 0 and w(·) is non-negative,

∣∣∣Dξs
(
x, y; ξ(x), ζ(y)

)∣∣∣ ≤ 1

2p
sup

(x,y)∈Ω

(
w(|x− y|)

)∣∣〈ξ(x), ζ(y)⊥
〉∣∣p−1

≤ 1

2p
sup

(x,y)∈Ω

(
w(|x− y|)|

)
ξ(x)|p−1|ζ(y)|p−1

(A.10)

Again, denote W := sup(x,y)∈Ω×Ω w(|x− y|) and exploit the fact that anbn ≤ a2n + b2n

for non-negative a, b and n to find that

∣∣∣Dξs
(
x, y; ξ(x), ζ(y)

)∣∣∣ ≤ 1

2p
W |ξ(x)|p−1|ζ(y)|p−1

≤ 1

2p
W
(
|ξ(x)|2(p−1) + |ζ(y)|2(p−1)

)
≤ α1(x, y) + β

(∣∣ξ(x)
∣∣2(p−1)

+ |ζ(y)|2(p−1)
)
,

(A.11)

where β = W/2p and α1(x, y) = 0. Defining 2(p− 1) = q − 1, we find that∣∣∣Dξs
((
x, y
)
,
(
ξ(x), ζ(y)

))∣∣∣ ≤ α1(x, y) + β
(∣∣ξ(x)

∣∣q−1
+ |ζ(y)|q−1

)
, (A.12)

thus proving part ii).

iii) Estimate for |Dζs|.

This is completely analogous to part ii).

We have seen that (A.8) holds whenever q ≥ 2p, and that (A.12) and (A.12) hold for
q ≥ 2p − 1. Theorem 3.37 of Dacorogna (2008) thus holds true for S(∇u,∇v) for any
u, v ∈ W 1,2p(Ω), and its Gâteaux derivatives DS(∇u,∇v;∇τ,∇η) exist for any direc-
tion (τ, η) ∈ W 1,2p. Consequently we know that as long as u, h ∈ W 1,2p, the Lebesgue
dominated convergence theorem is applicable onDR(∇u)(∇h) = DS(∇u,∇u;∇h,∇h)
for any uk → u, hk → h. �

The criteria we were looking for in section A.2.1 are therefore that u, h ∈ W 1,2p, and are
also the criteria required mentioned in section 2.5.2 for F to be differentiable, i.e. that the
Lebesgue dominated convergence theorem can be applied.
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A.2.3 First variation ofR, part two

Having proven that the Lebesgue dominated convergence theorem is indeed applicable to
the functional R, we continue where we left at the end of section A.2.1. We now know
that we can switch the order of limit and integration of (A.7) whenever u, h ∈W 1,2p. We
thus find that

DR(ξ; τ) =
1

2p

∫
Ω×Ω

w(|x− y|) lim
ε→0

1

ε

[
f2

(
(ξ + ετ)(x), (ξ + ετ)(y)⊥

)
− f2(ξ(x), ξ(y)⊥)

]
dx dy.

(A.13)

Recalling f1(x, y) = 〈x, y〉, g(t) = |t|p and f2(x, y) = f1 ◦ g(x, y), we recognize the
limit in (A.13) as

lim
ε→0

1

ε

[
f2

(
(ξ + ετ)(x), (ξ + ετ)(y)⊥

)
− f2(ξ(x), ξ(y)⊥)

]
=: Df2

(
ξ(x), ξ(y)⊥; τ(x), τ(y)⊥

)
.

Thus finding DR(ξ; τ) reduces to finding Df2(ξ(x), ξ(y)⊥; τ(x), τ(y)⊥). By the defini-
tion of f2 and using the chain rule, one obtains that

Df2(ξ(x), ξ(y)⊥; τ(x), τ(y)⊥) = g′
(
f1(ξ(x), ξ(y)⊥)

)
·Df1

(
ξ(x), ξ(y)⊥

)
(τ(x), τ(y)⊥),

with g′(t) = p|t|p−1sgn(t) = pt|t|p−2, and

Df1(ξ(x), ξ(y)⊥; τ(x), τ(y)⊥) = lim
ε→0

1

ε

[
f1

(
(ξ + ετ)(x), (ξ + ετ)(y)⊥

)
− f1(ξ(x), ξ(y)⊥)

]
= lim
ε→0

1

ε

[〈
ξ(x), ξ(y)⊥

〉
+ ε
〈
∇+ h(x), ξ(y)⊥

〉
+ ε
〈
ξ(x), τ(y)⊥

〉
+O(ε2)

−
〈
ξ(x), ξ(y)⊥

〉]
= lim
ε→0

[〈
τ(x), ξ(y)⊥

〉 〈
ξ(x), τ(y)⊥

〉
+O(ε)

]
=
〈
τ(x), ξ(y)⊥

〉
+
〈
ξ(x), τ(y)⊥

〉
=
〈
τ(x), ξ(y)⊥

〉
−
〈
τ(y), ξ(x)⊥

〉
,

where we have used that
〈
a, b⊥

〉
= −

〈
a⊥, b

〉
. This gives us that
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Df2(ξ(x), ξ(y)⊥; τ(x), τ(y)⊥) = p〈ξ(x), ξ(y)⊥〉
∣∣∣〈ξ(x), ξ(y)⊥〉

∣∣∣p−2

·
(〈
τ(x), ξ(y)⊥

〉
−
〈
τ(y), ξ(x)⊥

〉)
,

which in turn yields

DR(ξ; τ) = p

∫
Ω×Ω

w(|x− y|)〈ξ(x), ξ(y)⊥〉
∣∣∣〈ξ(x), ξ(y)⊥〉

∣∣∣p−2

·
(〈
τ(x), ξ(y)⊥

〉
−
〈
τ(y), ξ(x)⊥

〉)
dx dy.

We split the integrand to get

DR(ξ; τ) = p
1

2p

∫
Ω×Ω

w(|x− y|)
〈
ξ(x), ξ(y)⊥

〉 ∣∣∣〈ξ(x), ξ(y)⊥
〉∣∣∣p−2 〈

τ(x), ξ(y)⊥
〉
dx dy

− p 1

2p

∫
Ω×Ω

w(|x− y|)
〈
ξ(x), ξ(y)⊥

〉 ∣∣∣〈ξ(x), ξ(y)⊥
〉∣∣∣p−2 〈

τ(y), ξ(x)⊥
〉
dx dy.

Next, we again use the fact that
〈
a, b⊥

〉
= −

〈
a⊥, b

〉
and 〈a, b〉 = 〈b, a〉 to find

DR(ξ; τ) =
1

2

∫
Ω×Ω

w(|x− y|)
〈
ξ(x), ξ(y)⊥

〉 ∣∣∣〈ξ(x), ξ(y)⊥
〉∣∣∣p−2

·
〈
τ(x), ξ(y)⊥

〉
dx dy

+
1

2

∫
Ω×Ω

w(|x− y|)
〈
ξ(y), ξ(x)⊥

〉 ∣∣∣− 〈ξ(y), ξ(x)⊥
〉∣∣∣p−2

·
〈
τ(y), ξ(x)⊥

〉
dx dy

Noting that | − a| = |a| for all a ∈ R and that the order of integration can be switched,
one can see by relabelling the variables of the second integral that

DR(ξ; τ) =

∫
Ω×Ω

w(|x− y|)
〈
ξ(x), ξ(y)⊥

〉
|
〈
ξ(x), ξ(y)⊥

〉
|p−2

〈
τ(x), ξ(y)⊥

〉
dx dy

=

∫
Ω

〈∫
Ω

τ(x)w(|x− y|)
〈
ξ(x), ξ(y)⊥

〉
|
〈
ξ(x), ξ(y)⊥

〉
|p−2dx, ξ(y)⊥

〉
dy

where in the last equality we have moved the integral over x into the inner product involv-
ing τ(x). Define

Υ(ξ, ζ) = 〈ξ, ζ〉
∣∣∣〈ξ, ζ〉∣∣∣p−2

,
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such that

DR(ξ; τ) =

∫
Ω

〈∫
Ω

τ(x)w(|x− y|)Υ(ξ(x), ξ(y)⊥) dx, ξ(y)⊥
〉
dy. (A.14)

This is the general form of the directional derivative DR(ξ; τ), and is exactly (2.16) from
lemma 1.

A.3 The formal gradient of F

For a series of practical applications, for instance in the gradient descent method, it is of
interest to derive a gradient of a functional. We now want to derive the formal gradient of
F . From eq. (2.17) and lemma 1, we have that

DF(u;h) =

∫
Ω

[
(u(x)− u0(x))h(x) + α∇u(x)T∇h(x)

+

〈
β

∫
Ω

w(|x− y|)Υ(∇u(x),∇u(y)⊥)∇u(y)⊥dy,∇h(x)

〉]
dx.

(A.15)

We integrate by parts and find that

DF(u;h) =

∫
Ω

[(
u(x)− u0(x)

)
h(x) + α∆u(x)h(x)

+ 2β

∫
Ω

div
(
w(|x− y|)Υ(∇u(x),∇u(y)⊥)∇u(y)⊥

)
dy h(x)

]
dx

+

∫
∂Ω

h(x)

〈
∇u(x)

+ β

∫
Ω

w(|x− y|)Υ(∇u(x),∇u(y)⊥)∇u(y)⊥dy,n(x)

〉
dx

where n(x) is the normal vector on Ω at x ∈ ∂Ω. For a formal gradient to exist, this
boundary integral has to vanish. By a variational argument in h, this imposes the following
natural boundary condition on u:

〈
∇u(x)+β

∫
Ω

w(|x−y|)Υ(∇u(x),∇u(y)⊥)∇u(y)⊥dy,n(x)

〉
= 0, x ∈ ∂Ω. (A.16)

When the above condition holds, it follows that
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DF(u;h) =

∫
Ω

[
(u(x)− u0(x))h(x) + α∆u(x)h(x) + J (x,∇u)h(x)

]
dx

=

∫
Ω

[
u(x)− u0(x) + α∆u(x) + J (x,∇u)

]
h(x) dx

where

J (x, ξ) =

∫
Ω

div
(
w(|x− y|)Υ(∇u(x),∇u(y)⊥) dx, ξ(y)⊥dy

)
.

This yields the formal gradient of F as

gradF(u, x) = u(x)− u0(x) + α∆u(x) + 2βJ (x,∇u(x)),

leading immediately to the following representation of DF(u;h):

DF(u;h) = 〈gradF , h〉L2 =

∫
Ω

gradF(u, x)h(x)dx (A.17)

�

A.3.1 Simplification for p = 2

The main interest of this paper will be for the case when p = 2. For the functional F ,
defined in (2.2), the main results to draw from this special case is that Υ(ξ, ζ) reduces
to 〈ξ, ζ〉, and that we can reformulate R(ξ) using convolution – both which significantly
simplify the computations. These reformulations also have interesting consequences for
the formal gradient gradF .

When p = 2, the functionalR(ξ) becomes

R(ξ) =

∫
Ω×Ω

w(|x− y|)
〈
ξ(x), ξ(y)⊥

〉2
R2 dy dx

=

∫
Ω×Ω

w(|x− y|) (ξ(x)1ξ(y)2 − ξ(x)2ξ(y)1)
2
dy dx

=

∫
Ω

[
ξ1(x)2

∫
Ω

w(|x− y|)ξ2(y)2dy + ξ2(x)2

∫
Ω

w(|x− y|)ξ1(y)2dy

− 2ξ1(x)ξ2(x)

∫
Ω

w(|x− y|)ξ1(y)ξ2(y)dy

]
dx.

=

∫
Ω

[
ξ1(x)2(w̃x ∗ ξ2)(x) + ξ2(x)2(w̃x ∗ ξ1)(x)

− 2ξ1(x)ξ2(x)(w̃x ∗ ξ1ξ2)(x)
]
dx.
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On the other hand, DR(ξ, τ) becomes

DR(ξ; τ) =

∫
Ω

∫
Ω

w(|x− y|)〈ξ(x), ξ(y)⊥〉〈τ(x), ξ(y)⊥〉dy dx

=

∫
Ω

∫
Ω

〈
τ(x), w(|x− y|)〈ξ(x), ξ(y)⊥〉ξ(y)⊥

〉
dy dx

=

∫
Ω

〈
τ(x),

∫
Ω

w(|x− y|)〈ξ(x), ξ(y)⊥〉ξ(y)⊥dy
〉
dx

=

∫
Ω

〈τ(x),
(
w ∗ (ξ⊥ ⊗ ξ⊥)

)
(x)ξ(x)〉dx,

where⊗ is the R2 tensor product. Let now∇h = τ , as is the case in our problem. Inserting
the above into DF(u;h) and integrating by parts then yield

DF(u;h) =

∫
Ω

(
u(x)− u0(x)

)
h(x) + α〈∇u(x),∇h(x)〉

+ β〈∇h(x),
(
w ∗ (ξ⊥ ⊗ ξ⊥)

)
(x)ξ(x)〉dx

= −
∫

Ω

h(x)
(
u(x)− u0(x)

)
dx+

∫
Ω

α∆u(x)

+ βdiv
((
w ∗ (ξ⊥ ⊗ ξ⊥)

)
(x)ξ(x)

))
dx

+

∫
∂Ω

〈
h(x)

(
∇u(x) +

(
w ∗ (ξ⊥ ⊗ ξ⊥)

)
(x)ξ(x)

)
,n(x)

〉
dx.

The imposed boundary integral is the same as in (2.18), only reformulated for p = 2.
Imposing the boundary condition

〈∇u(x) + (w ∗ (ξ⊥ ⊗ ξ⊥)
)
(x)ξ(x),n(x)〉 = 0 on ∂Ω, (A.18)

yields the directional derivative

DF(u;h) =

〈
u− u0 − α∆u− β div

((
w ∗ (∇u⊥ ⊗∇u⊥)

)
∇u
)
, h

〉
L2

= 〈gradF(u, ·), h〉L2 .

(A.19)

where the formal gradient gradF has the form

gradF(u, x) = u(x)− u0(x)− α∆u(x)

− β div
((
w ∗ (∇u⊥ ⊗∇u⊥)

)
(x)∇u(x)

)
.

(A.20)
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A.4 Formal gradient of FW

Let FW : W 1,p → R be defined by,

FW (u) =

∫
Ω

1

2

(
u(x)− u0(x)

)2
+
α

p
‖A(u, x)∇u(x)‖pE dx (A.21)

where α > 0 and u0 ∈ L∞, and ‖·‖E is the R2 euclidean norm. The directional derivative
of F in direction φ is then

DFW (u;φ) =
〈
u− u0, φ

〉
L2(Ω)

+ αDG(u;φ) (A.22)

where

G(u) =
1

p

∫
Ω

∥∥A(u, x)∇u(x)
∥∥p
E
dx.

From (2.22), recall that

A(u, x) = g
((
Kρ ∗ (∇uσ ⊗∇uσ)

)
(x)
)

= g ◦B(u, x),

B(u, x) =
(
Kρ ∗ (∇uσ ⊗∇uσ)

)
(x)

with g defined on diagonalizable matrices A as

A = QΣQT ,

g(A) = Qhγ(Σ)QT ,

hγ(Σ) =

[ 1

1+
(σ1−σ2)2

γ2

0

0 1

]
,

where the eigenvalues of Σ are ordered in descending order. We can find that

DG(u;φ) =
1

p

p

2

∫
Ω

(∥∥A(u, x)∇u(x)
∥∥2

E

)p/2−1

t′(u, x;φ) dx

with
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t′(u, x;φ) =
〈
A′(u, x;φ)∇u(x), A(u, x)∇u(x)

〉
R2

+
〈
A(u, x)∇φ(x), A(u, x)∇u(x)

〉
R2

+
〈
A(u, x)∇u(x), A′(u, x;φ)∇u(x)

〉
R2

+
〈
A(u, x)∇u(x), A(u, x)∇φ(x)

〉
R2

= 2
(〈
A′(u, x;φ)∇u(x), A(u, x)∇u(x)

〉
R2

+
〈
A(u, x)∇φ(x), A(u, x)∇u(x)

〉
R2

)
=: 2h(u, x;φ),

which when put into DG(u;φ) gives

DG(u;φ) =

∫
Ω

(
‖A(u, x)∇u(x)‖2E

)p/2−1

h(u, x;φ) dx. (A.23)

The next step is to make sense of all terms in h(u, x;φ).

A.4.1 Computation of h(u, x;φ)

We have

h(u, x, φ) =
〈
A′(u, x;φ)∇u(x), A(u, x)∇u(x)

〉
R2

+
〈
A(u, x)∇φ(x), A(u, x)∇u(x)

〉
R2
.

(A.24)

Both ∇u(x) and ∇φ(x) are sensible, and A(u, x) was described section 2.3 and recalled
in eq. (2.22). It remains to make sense ofA′(u, x;φ), and we now seek to do so. Applying
standard differentiation rules,

A′(u, x;φ) =
(
g′ ◦B(u, x)

)
·B′(u, x;φ)

=
(
g′ ◦B(u, x)

)
·Kρ ∗ (∇uσ ⊗∇uσ)′φ(x)

=
(
g′ ◦B(u, x)

)
·
(
Kρ ∗

(
(∇uσ ⊗∇φσ) + (∇φσ ⊗∇uσ)

))
(x)

=
(
g′ ◦B(u, x)

)
· C(u, x;φ),

(A.25)

with B(u, x) as defined in (2.22), and

C(u, x;φ) =
(
Kρ ∗

(
(∇uσ ⊗∇φσ) + (∇φσ ⊗∇uσ)

))
(x). (A.26)
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In (A.25), (g′ ◦B) · C is interpreted as the directional derivative of g – defined in (A.4) –
in direction of the matrix C, evaluated at the matrix B. That is,

(
g′ ◦B

)
· C := lim

ε→0

1

ε

[
g(B + εC)− g(B)

]
.

For the above definition to make sense, both B and C must be diagonalizable, otherwise
g(B + εC) is undefined. For our purposes, both B(u, x) and C(u, x) will always be
symmetric by construction, hence they will also be diagonalizable.

Remark. The diagonalization ofB(u, x) is not unique whenever σ1 = σ2. From appendix
A.1, we find that σ1 and σ2, the eigenvalues of B(u, x) are

σi = Kρ∗(∂1u)2+Kρ∗(∂2u)2±
√

[Kρ ∗ (∂1u)2 −Kρ ∗ (∂2u)2]2 + 4[Kρ ∗ (∂1u∂2u)]2.

Note that this equation is a function of x. We see that σ1 = σ2 when the root vanishes,
that is, when

[Kρ ∗ (∂1u)2 −Kρ ∗ (∂2u)2]2 + 4[Kρ ∗ (∂1u∂2u)]2 = 0.

The only way this can be true is ifKρ ∗ (∂1u∂2u) = 0 andKρ ∗ (∂1u)2−Kρ ∗ (∂2u)2 = 0
simultaneously. Qualitatively speaking, this this happens in areas where ∂1u · ∂2u aver-
ages to 0 relative to the kernel Kρ, and (∂1u)2 on average equals (∂2)2, also relative to
the kernel Kρ. These issues occur when there are either multiple conflicting dominant di-
rections, for instance in a corner, or no dominant direction at all, for near-constant locales,
throughout an area of radius ρ.

Define J(ε) = g(B+ εC) and define P (ε) and Λ(ε) by B+ εC := P (ε)Λ(ε)P (ε)T . Then

(
g′ ◦B

)
· C = J ′(0),

where

J ′(ε) =
∂

∂ε
g
(
P (ε)Λ(ε)P (ε)T

)
⇒ J ′(0) = ∂ε=0P (ε)hγ

(
Λ(0)

)
P (0)T

+ P (0)∂ε=0hγ
(
Λ(ε)

)
P (0)T

+ P (0)hγ
(
Λ(0)

)
∂ε=0P (ε)T .

(A.27)

It should be clear that Λ(0) = Σ and P (0) = Q, hence the only unknowns in the equation
above are ∂ε=0P (ε) and ∂ε=0hγ

(
Λ(ε)

)
. We will find these matrices step-by-step, first in

the case where B is already diagonal, and then for arbitrary symmetric matrices B.
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Case I) B is diagonal

When B is diagonal, the diagonalization of B is semi-trivial:

B =

[
b1 0
0 b2

]
= Q

[
σ1 0
0 σ2

]
QT = Σ = QΣQT ,

with

Q =



[
1 0

0 1

]
, if b1 ≥ b2[

0 −1

1 0

]
, if b2 < b1

.

These matrices are equivalent to no rotation, or rotation by π/2. With this, we guarantee
that σ1 ≥ σ2, and thus that Σ is indeed in descending order. Next, we look to diagonalize
the matrix

B + εC =

[
σ1 + εc11 εc12

εc12 σ2 + εc22

]
,

whose eigenvalues λ are the solutions of

det
(
λI −B − εC

)
= 0

⇒ λ(ε) =
1

2

(
(σ1 + εc11) + (σ2 + εc22)

±
√[

(σ1 + εc11)− (σ2 + εc22)
]2 − 4ε2c212

)
.

Differentiating λ with respect to ε yields

λ′(ε) =
1

2
(c11 + c22)±

[(
(σ1 + εc11)− (σ2 + εc22)

)
(c11 − c22)− 4εc212

]
2

√[
(σ1 + εc11)− (σ2 + εc22

)2 − 4ε2c212

which evaluated at ε = 0, whenever σ1 6= σ2, reduces to

λ′(0) =
1

2

(
c11 + c22 ± (c11 − c22)

)
=

{
c11,

c22.

(A.28)
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Equation (A.28) tells us that the immediate changes in eigenvalues of B in direction of
the symmetric matrix C depend only in the diagonal entries of C, and also that λ′1(0) =
∂Cσ1 = c11 and λ′2(0) = ∂Cσ2 = c22. Furthermore, we know that

P (ε) =

[
cos
(
α(ε)

)
− sin

(
α(ε)

)
sin
(
α(ε)

)
cos
(
α(ε)

) ] ,
α(ε) = arctan

(
λ1(ε)− (σ1 + εc11)

εc12

)
.

(A.29)

As it turns out, ∂ε=0Q(ε) vanishes at 0. We show this by simple calculus rules and ex-
panding α(ε) around 0, giving that

∂ε=0P (ε) = ∂αP (0)∂ε=0α(ε)

with the Taylor expansion of α being

α(ε) = α(0) + α′(0)ε+O(ε2)

= α(0) + ∂ε=0

[
arctan

(λ1(ε)− (σ1 + εc11)

εc12

)]
ε+O(ε2)

= α(0) + ∂ε=0

[λ1(ε)− (σ1 + εc11)

εc12
]ε+O(ε2)

= α(0) +
ε
(
∂ε=0λ1(ε)− c11

)
−
(
λ1(0)− σ1

)
ε2c12

+O(ε2)

= α(0) +O(ε2),

where in the last equality we have used that λ′1(0) = c11(as was the result of (A.28)) and
λ1(0) = σ1. Differentiating α with respect to ε now easily shows us that

∂εα(ε) = O(ε)
ε=0
= 0,

ultimately telling us that ∂ε=0P (ε) = 0. Recalling (A.27), this simplifies the equation
significantly, reducing J ′(0) to

J ′(0) = P (0)∂ε=0g
(
Λ(ε)

)
P (0)T

P (0)=Q
= Q∂ε=0hγ

(
Λ(ε)

)
QT .

Next, we observe that
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∂ε=0hγ(Λ(ε)) = lim
ε→0

1

ε

[
hγ(Λ(ε))− hγ(Λ(0))

]
= lim
ε→0

1

ε

 1

1+

(
(λ1(ε)−λ2(ε)

γ

)2 0

0 1

−
 1

1+

(
(λ1(0)−λ2(0)

γ

)2 0

0 1


= lim
ε→0

1

ε

(1 +
(

(λ1(ε)−λ2(ε)
γ

)2
)−1

−
(

1 +
(

(λ1(0)−λ2(0)
γ

)2
)−1

0

0 0


=

[
∂ε=0τ(ε) 0

0 0

]
,

where

τ(ε) =

[
1 +

(λ1(ε)− λ2(ε)

γ

)2
]−1

.

Differentiating and evaluating τ(ε) at ε = 0 gives

∂ε=0τ(ε) = −
[
1 +

(λ1(0)− λ2(0)

γ

)2
]−2

· 2
(λ1(0)− λ2(0)

γ

)(
λ′1(0)− λ′2(0)

)
= −

[
1 +

(σ1 − σ2

γ

)2
]−2

· 2
(σ1 − σ2

γ

)
(c11 − c22)

=
2(c22 − c11)

(
σ1−σ2

γ

)
[
1 +

(
σ1−σ2

γ

)2]2 .

With this, we can compute J ′(0) with only the eigenvalues of B, the parameter γ and the
direction C:

J ′(0) = (g′ ◦B) · C = QΣτQ
T ,

Στ =

[
1 0
0 0

] 2(c22 − c11)
(
σ1−σ2

γ

)
[
1 +

(
σ1−σ2

γ

)2]2
=

[
1 0
0 0

]
β(u, x; γ)(c22 − c11),

(A.30)

where
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β(u, x; γ) =
2
(
σ1−σ2

γ

)
[
1 +

(
σ1−σ2

γ

)2]2 .
Recall at this moment that B is diagonal and that C is an arbitrary symmetric matrix.

Case II) B is arbitrary symmetric

In this case, let B = QΣQT . Note that since Q is orthogonal, we have for any matrix
C the identity C = Q(QTCQ)QT = QDQT , where D := QTCQ. In words, D is the
matrix C presented in the eigenbasis of B. Let us now define

G(ε) = g(B + εC)

= g(QΣQT + εQ(QTCQ)QT )

!
= Qg(Σ + εD)QT

= QĴ(ε)QT ,

(A.31)

with Ĵ(ε) = g(Σ + εD). In the third equality of (A.31), we have used that g is invariant
under orthogonal similarity transformations. It can now be shown, completely analogously
to eqs. (A.29) through (A.30), that

G′(0) = Q∂ε=0Ĵ
′(0)QT ,

where Ĵ ′(0) = (g′ ◦ Σ) ·D. This yields the directional derivative

G′(0) = Q
[
(g′ ◦ Σ) ·D

]
QT . (A.32)

Inserting

B = B(u, x) =
(
Kρ ∗ (∇uσ ⊗∇uσ)

)
(x) = QΣQT

and

D = QTC(u, x;φ)Q = QT
(
Kρ ∗

(
(∇uσ ⊗∇φσ) + (∇φσ ⊗∇uσ)

))
(x)Q

into (A.32) gives us A′(u, x;φ) from (A.25), which gives us everything we need to com-
pute the directional derivative DG(u;φ). Noting that A(u, x) = QΣQT , this explicitly
yields
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DG(u;φ) =

∫
Ω

M(u, x)h(u, x;φ) dx,

M(u, x) =
(
‖A(u, x)∇u(x)‖2E

) p
2−1

,

h(u, x;φ) =
〈
g′ ◦B(u, x) ·D(u, x;φ), f(u, x)

〉
R2

+
〈
A(u, x)∇φ(x), f(u, x)

〉
R2
,

=
〈
g′ ◦B(u, x) ·D(u, x;φ), f(u, x)

〉
R2

+
〈
∇φ(x), A(u, x)T f(u, x)

〉
R2
,

f(u, x) = A(u, x)∇u(x),

D(u, x;φ) = QTC(u, x;φ)Q,

(A.33)

with B(u, x) and C(u, x;φ) as defined in (2.22) and (A.26).

A.4.2 Formal gradient

The directional derivative DFW (u;φ) described in the previous section can under certain
conditions be interpreted as the L2(Ω) inner product of φ and some function grad FW .
In this section, we seek to find the function grad FW , called the gradient of FW , and the
conditions under which this interpretation is valid.

Recall eqs. (A.22) and (A.33), that is,

DFW (u;φ) =

∫
Ω

[(
u(x)− u0(x)

)
φ(x)

+ αM(u, x)h(u, x;φ)
]
dx

=
〈
u− u0, φ

〉
L2(Ω)

+ α

∫
Ω

M(u, x)〈(∇φ(x), A(u, x)T f(u, x)〉R2dx

+ α

∫
Ω

M(u, x)〈A′(u, x;φ)∇u(x), f(u, x)〉R2dx.

(A.34)

In both the first and second term of the last equality, we have managed to get the depen-
dency on φ expressed explicitly. This is not so straightforward with the last integral, which
we now take a closer look at. Beginning with A(′(u, x;φ), following the results of section
2.5.2, we find that
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A′(u, x;φ) = g′ ◦B(u, x) ·D(u, x;φ),

B(u, x) = Kρ ∗
(
∇uσ ⊗∇uσ

)
(x),

= QΣQT ,

Q =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
=:

[
a −b
b a

]
,

D(u, x;φ) = QTC(u, x;φ)Q,

C(u, x;φ) = ∇uσ ⊗∇φσ +∇φσ ⊗∇uσ.

As we progress, note in the above that Q and Σ are both functions of u and x. From
(A.25), we have

g′ ◦B(u, x) ·D(u, x, φ) = H1(u, x)β(u, x; γ)
(
D22(u, x)−D11(u, x)

)
with

H1(u, x) = QT
[
1 0
0 0

]
QT

=

[
a2 ab
ab b2

]
,

D(u, x;φ) =

[
D11 D12

D21 D22

]
(u, x).

From the definition, we have that D(u, x;φ) = QTC(u, x;φ)Q. We express C(u, x;φ)
and Q in matrix form as

C(u, x;φ) = Kρ ∗
[

2∂1uσ∂1φσ ∂1uσ∂2φσ + ∂2uσ∂1φσ
∂2uσ∂1φσ + ∂1uσ∂2φσ 2∂2uσ∂2φσ

]
(x)

=

[
Kρ ∗ [2∂1uσ∂1φσ](x) Kρ ∗ [∂1uσ∂2φσ + ∂2uσ∂1φσ](x)

Kρ ∗ [∂2uσ∂1φσ + ∂1uσ∂2φσ](x) Kρ ∗ [2∂2uσ∂2φσ](x)

]
:=

[
c1 c2
c2 c3

]
,

Note at this point that a, b and ci are all functions of u and x (and φ), though for the sake
of readability, we will for now not explicitly write this down. Continuing from above,
straightforward matrix multiplications then yield
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D(u, x;φ) = QTC(u, x;φ)Q =

[
a b
−b a

] [
c1 c2
c2 c3

] [
a −b
b a

]
=

[
a −b
b a

] [
ac1 + bc2 −bc1 + ac2
ac2 + bc3 −bc2 + ac3

]
=

[
a2c1 + abc2 + abc2 + b2c3 −abc1 + a2c2 − b2c2 + abc3
−abc1 − b2c2 + a2c2 + abc3 b2c1 − abc2 − abc2 + a2c3

]
=

[
D11 D12

D21 D22

]
.

This means that

D22 −D11 = (a2 − b2)(c3 − c1)− 4abc2.

Furthermore,

c3 − c1 = 2Kρ ∗ [∂2uσ∂2φσ − ∂1uσ∂1φσ](x)

= 2Kρ ∗
〈

(H2∇uσ),∇φσ
〉
R2

(x)

= 2Kρ ∗
〈

(H2∇uσ),Kσ ∗ ∇φ
〉
R2

(x),

where

H2 =

[
−1 0
0 1

]
,

and

c2 = Kρ ∗ [∂1uσ∂2φσ + ∂2uσ∂1φσ](x)

= Kρ ∗
〈

(H3∇uσ),Kσ ∗ ∇φ
〉
R2

(x),

where

H3 =

[
0 1
1 0

]
.

In this notation, we can currently conclude that

D22 −D11 = 2(a2 − b2)Kρ ∗
〈

(H2∇uσ),Kσ ∗ ∇φ
〉
R2

(x)

− 4abKρ ∗
〈

(H3∇uσ),Kσ ∗ ∇φ
〉
R2

(x).
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This, in turn, tells us that

A′(u, x;φ) = 2H1(u, x)β(u, x)
(

(a2 − b2)Kρ ∗
〈

(H2∇uσ),Kσ ∗ ∇φ
〉
R2

(x)

− 2abKρ ∗
〈

(H3∇uσ),Kσ ∗ ∇φ
〉
R2

)
.

(A.35)

This form of A′(u, x;φ) is explicit in φ. We now put this result back into the last term of
(A.34), giving the full integral

α

∫
Ω

M(u, x)
〈
A′(u, x;φ)∇u(x), f(u, x)

〉
R2dx

=α

∫
Ω

M(u, x)

〈
H1(u, x)β(u, x)

[
2(a2 − b2)

(
Kρ ∗

〈
H2∇uσ,Kσ ∗ ∇φ

〉
R2

)
(x)

− 4abKρ ∗
〈

(H3∇uσ),Kσ ∗ ∇φ
〉
R2

(x)

]
∇u(x), f(u, x)

〉
R2

dx

=α

∫
Ω

N(u, x)

[
(a2 − b2)

(
Kρ ∗

〈
H2∇uσ,Kσ ∗ ∇φ

〉
R2

)
(x)

− 2abKρ ∗
〈

(H3∇uσ),Kσ ∗ ∇φ
〉
R2

(x)

]
dx

where

N(u, x) = 2M(u, x)β(u, x)
〈
H1(u, x)∇u(x), f(u, x)

〉
.

In the integrals above, ∇φ does not show up outside convolutions. As such, to proceed
towards our goal, we must now find some adjoint form of the integrand. Proceeding, we
again remind the reader that a and b are functions of u and x. We write out convolutions
in full, giving

α

∫
Ω

M(u, x)
〈
A′(u, x;φ)∇u(x), f(u, x)

〉
R2dx

=α

∫
Ω

∫
Ω

∫
Ω

N(u, x)

[
(a2 − b2)(x)

(
Kρ(y)Kσ(z)

〈
H2∇uσ(x− y),∇φ(x− y − z)

〉
R2

)
− 2ab(x)Kρ(y)Kσ(z)

〈
(H3∇uσ(x− y)),∇φ(x− y − z)

〉
R2

]
dz dy dx.

Substituting x̃ = x− y − z, ỹ = −y and z̃ = −z, we arrive at

60



A.4 Formal gradient of FW

α

∫
Ω

M(u, x)
〈
A′(u, x;φ)∇u(x), f(u, x)

〉
R2dx

=α

∫
Ω

∫
Ω

∫
Ω

N(u, x̃− ỹ − z̃)
[
(a2 − b2)(x̃− ỹ − z̃)

·
(
K∗ρ(ỹ)K∗σ(z̃)

〈
H2∇uσ(x̃− z̃),∇φ(x̃)

〉
R2

)
− 2ab(x̃− ỹ − z̃)K∗ρ(ỹ)K∗σ(z̃)

〈
(H3∇uσ(x̃− z̃)),∇φ(x̃)

〉
R2

]
dz̃ dỹ dx̃,

where we have introduced the adjoint convolution kernels K∗ρ and K∗σ , defined by

K∗i (x) = −Ki(−x).

After some consideration of the integral above, we can recognize it as

α

∫
Ω

M(u, x)
〈
A′(u, x;φ)∇u(x), f(u, x)

〉
R2dx

=α

∫
Ω

〈
K∗σ ∗

[
H2∇uσK∗ρ ∗

(
N(u, ·)(a2 − b2)

)
− 2H3∇uσK∗ρ

(
N(u, ·)(ab)

)]
(x),∇φ(x)

〉
R2

dx.

We now define

T (u, x) = K∗σ ∗
[
H2∇uσK∗ρ ∗

(
N(u, ·)(a2 − b2)

)
− 2H3∇uσK∗ρ ∗

(
N(u, ·)(ab)

)]
(x)

(A.36)

yielding the condensed

α

∫
Ω

M(u, x)
〈
A′(u, x;φ)∇u(x), f(u, x)

〉
R2dx

=α

∫
Ω

〈
T (u, x),∇φ(x)

〉
R2

dx

=α

〈〈
T (u, ·),∇φ

〉
R2

〉
L2(Ω)

At this point, we recall the directional derivative
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DFW (u;φ) =
〈
u− u0, φ

〉
L2(Ω)

+ α

∫
Ω

M(u, x)〈(∇φ(x), A(u, x)T f(u, x)〉R2dx

+ α

∫
Ω

M(u, x)〈A′(u, x;φ)∇u(x), f(u, x)〉R2dx

=
〈
u− u0, φ

〉
L2(Ω)

+ α

∫
Ω

〈
T (u, ·) +M(u, x)A(u, ·)T f(u, ·),∇φ

〉
R2dx.

Integration by parts now yield

DFW (u;φ) =
〈
u− u0 − αdiv

(
T (u, ·) +M(u, x)A(u, ·)T f(u, ·)

)
, φ
〉
L2(Ω)

+

∫
∂Ω

〈
n(x), T (u, ·) +M(u, x)A(u, x)T f(u, x)

〉
R2(x)φ(x).

Above, n(x) denotes the outward-pointing normal vector to Ω at x ∈ ∂Ω.By variational
arguments, the integral over the boundary vanishes whenever

〈
n(x), T (u, ·) +M(u, x)A(u, x)T f(u, x)

〉
R2 = 0 on ∂Ω (A.37)

Whenever (A.37) holds, DFW (u;φ) reduces to

DFW (u;φ) =
〈
u− u0 − αdiv

(
T (u, ·) +M(u, ·)A(u, ·)T f(u, ·)

)
, φ
〉
L2(Ω)

=:
〈
grad FW , φ

〉
L2(Ω)

.
(A.38)

where we recognize

grad FW (u, ·) = u− u0 − αdiv
(
T (u, ·) +M(u, ·)A(u, ·)T f(u, ·)

)
(A.39)

as the formal gradient of FW . �
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