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Abstract. This paper addresses the fleet deployment problem and par-
ticularly the treatment of inventory in the maritime case. A new model
based on time-continuous formulation for the combined maritime fleet
deployment and inventory management problem in Roll-on Roll-off ship-
ping is presented. Tests based on realistic data from the Ro-Ro business
show that the model yields good solutions to the combined problem
within reasonable time.
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1 Introduction

In maritime transportation, ships typically operate in one of the three modes:
industrial, tramp or liner shipping. In industrial shipping, a shipping company
manages the ships and the cargoes to be transported, with the aim of minimizing
the transportation costs. In tramp shipping, the ships are assigned to the cargoes
(some of which may not be obligatory) under contracts between the shipping
company and the cargo owners, with the aim of maximizing profits, similar to a
taxi service. In liner shipping, the ships follow a predefined itinerary with given
port calls along routes according to a published schedule, similar to a bus service.
Christiansen et al. [7] provide a detailed review on ship routing and scheduling
for the various operational modes.

Roll-on Roll-off (Ro-Ro) shipping, a segment within liner shipping, is the
major mode for the long distance international transportation of automobiles
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and other types of rolling equipment, as well as cargoes that can be placed
on trolleys for loading and unloading. Meanwhile, the involvement of container
shipping companies in automobile transportation business provide tough com-
petition to Ro-Ro shipping companies. To improve profitability and strengthen
the ties with its customers, some Ro-Ro shipping companies may consider to
provide vertically integrated logistics services to automobile companies, where a
Ro-Ro shipping company is responsible for inventory management at the ports
and transportation at sea [5]. The automobile companies share the production
and consumption information with the shipping companies, while the shipping
companies share the ship schedules with automobile companies on a regular
basis.

Fleet deployment can be considered as a tactical planning problem of as-
signing ships in the fleet to voyages that must be serviced regularly on given
geographical routes. The fleet deployment gives which ship will perform which
voyage, as well as sailing routes for each ship in the fleet, i.e. each ship is as-
signed a sequence of voyages to service, probably with ballast sailing between
the last port of one voyage and the first port of the next voyage. In most litera-
ture, fleet deployment problems were first encountered in container shipping, the
largest segment within liner shipping. The models for fleet deployment problems
in container shipping usually assume:

1. Each ship is assigned a single route and loop during the planning horizon.

2. Individual ships of the same type are not distinguished.

Perakis and Jaramillo [10, 12] have contributed to develop mathematical
models for liner shipping fleet deployment problems. They proposed a linear pro-
gramming (LP) model for a liner ship fleet deployment problem. The LP model
minimizes the total operating costs for a fleet of liner ships over a given planning
horizon. The model assigns ships across the routes, determines the number, type
and duration of chartering-in ships and owned ships that are laid-up during the
planning horizon. In their approach, the ship speed is considered as a parameter
in the LP model. Their work was extended by Powell and Perakis [13]. They
proposed an integer programming (IP) formulation to optimally assign fleet of
ships for a real liner shipping company. Computational results show substantial
savings in total costs in comparison with the manual planning.

In Ro-Ro shipping, ship route planning works under more flexible assump-
tions. Fagerholt et al. [8] present a mixed integer programming (MIP) model for
fleet deployment in Ro-Ro shipping, and Andersson et al. [3] extend this model
for a real fleet deployment problem by including speed as a decision variable.

Inventory management deals with deciding the quantities to transport be-
tween the ports along the routes so that the port inventory level of products are
kept within given limits. There are a few examples in the literature for maritime
inventory routing problems, though mostly in the industrial and tramp shipping
(see for example [1, 6, 9, 11, 14–17]). These literature suggest substantial finan-
cial savings by combining ship routing and scheduling planning with inventory
management in industrial and tramp shipping. Therefore, it can be inferred that
the fleet deployment planning in Ro-Ro shipping can achieve better results by
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integrating inventory management of cargoes at associated production and con-
sumption ports.

In this paper, we propose a new time-continuous formulation for the combined
Maritime Fleet Deployment and Inventory Management Problem (MFDIMP),
along with computational testings on realistically generated test instances from
the Ro-Ro shipping companies. The fleet deployment combined with inventory
management in Ro-Ro shipping is rarely dealt with in the literature, but a
few studies exist. Chandra et al. [4, 5] propose a time-discrete model for the
combined MFDIMP. In deep sea shipping where the planning horizons can be
long, the time-continuous formulation is preferred as it is impractical to use time
discretization with large number of time periods in time-discrete model.

The remainder of this paper is organized as follows: In the next section we
give a thorough description of the combined MFDIMP. Section 3 presents the
mathematical formulation for the problem with a special focus on the modeling
of the inventories at ports. A computational study is performed in Section 4,
while concluding remarks are given in the final section.

2 Problem Description

We consider a liner shipping company that operates a heterogeneous fleet of
ships with different capacities, service speeds and bunker consumption. At the
beginning of the planning horizon, all ships in the fleet have unique initial posi-
tions, either in a port or somewhere at sea. Moreover, the ships can have different
preparation times before they are able to commence new voyages because they
must continue their on-going voyages or dry dock (for example repair) first.

Fig. 1. A three route problem: America to Asia , Asia to Europe, Europe to America,
with associated ballast sailings

A route (also called service) is defined as a logistical network used to trans-
port all cargo from their loading ports in one geographical region to unloading
ports in another. In general, the shipping company serves several routes. In Fig.
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1, three routes are illustrated by solid lines and the ports are shown as dots.
Route 1 sails from America to Asia while route 2 connects four Asian ports with
five European ports. Similarly, route 3 starts from Europe and sails to America.
To maintain regular service, each route must be serviced according to a given
frequency, e.g. weekly or bi-weekly. Each sailing along a route is called a voyage.
Even though each route should be serviced according to the given frequency,
there is some flexibility when each voyage along a route must start, given by a
time window. Each voyage (for example voyage number 1 on route 1) must be
sailed by a ship and is often called a mandatory voyage. After a ship has com-
pleted one voyage on a route, it may serve another voyage on the same route or
another route or end its service. To start the next voyage, the ship sails without
load (i.e. ballast sailing) to the first port of the next voyage. As an example,
a ship may first serve a voyage on route 2 from Yokohama in the Asia. This
route ends at Gothenburg in the Europe. The ship may then continue to serve
a voyage on route 3 from Bremerhaven in the Europe. In this case, there would
be a ballast sailing from Gothenburg to Bremerhaven between the two voyages.
The ballast sailing between the two routes in Fig. 1 is illustrated by a dotted
line. Different contract terms and product types transported along the various
routes may restrict which ships can be assigned to voyages on a particular route,
regarding capacity and compatibility.

We assume deterministic sailing times for all ships between successive ports
along a route. We also consider deterministic sailing times for each ship between
the last port of one route and the first port of another route. It is assumed that
the time spent at each port is given regardless of quantities loaded/unloaded as
the most important part of the processing time at a port is to enter/leave the
port and berth. Waiting at the first port of a voyage is allowed, but waiting times
at successive ports along the voyage are not allowed. A time window associated
with each voyage, defined by an earliest and latest start time, defines within
what time interval the service in the first port of the voyage must start.

Servicing a voyage incurs costs such as port and fuel consumption costs,
depending on the ship type. It is common in this service that the automobile
company has responsibility for the storage of the cargo at both the produc-
tion and consumption ports. Therefore, the inventory costs can be considered
as disregarded. This assumption is consistent with most research on maritime
inventory routing, where inventory management is still a nontrivial part of the
problem even though inventory costs are not considered.

We assume that the shipping company has an option to charter spot ships
at a given cost from the market to service a voyage. The spot ships are assumed
to be ready to service any voyage during the whole planning horizon, and they
can start any time within its time window.

We use the term product for the same type of product transported along the
same route. Each product has given production rates at its associated loading
ports and given consumption rates at its associated unloading ports, which is
assumed constant during the planning horizon. Each port has a different pro-
duction and consumption rate for specified products. At a production port of a
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product, the shipping company must determine how many units to load of each
product transported to its corresponding unloading ports. Each ship is able to
carry a number of different products at the same time, and the products need to
be carried in dedicated compartments because some of these products cannot be
stored together. Similarly, each port has a storage capacity in terms of the max-
imum number of product it can hold. The size of spot ships for a given product
is assumed as the size of the largest ship in the fleet for that product. Cargoes
are rarely transshipped in Ro-Ro shipping, so transshipment is disregarded. The
aim of this combined MFDIMP is to determine:

– the ship routes and schedules (i.e. which ship should perform which voyages
and in what sequence),

– the start time of each voyage,

– which voyages should be serviced by spot ships, and

– the number of units of each product to be loaded/unloaded at associated
ports during each voyage.

The problem is to be solved subject to the following constraints:

– all voyages are serviced within their given time windows, either by a ship in
the fleet or by a spot ship,

– the aggregate inventory limit of all products in a particular port should not
exceed the maximum storage limit and

– there is no backlogging of demand for any product in any of the ports.

The objective is to minimize total costs, which consist of the sailing costs for
ships in the fleet and the time charter costs for spot ships, over a given planning
horizon.

3 Model Formulation

The number of visits to each route during a given horizon is assumed fixed in
Ro-Ro shipping. Thus, we use a time-continuous formulation which considers an
ordering of the route visits according to the time of the visit, and introduce an
index indicating the visit number to a particular route (i.e. voyage). The ship
paths are defined on a network where the nodes correspond to route visits. As far
as we know, there exist no studies in the literature which use a similar modeling
approach as the one proposed in this paper.
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Fig. 2. Illustration of nodes and arcs with three ships: a ship services voyage 1 on route
1, voyage 2 on route 2, voyage 2 on route 3, voyage 5 on route 1 and voyage 5 on route
2; a ship services voyage 2 on route 1, voyage 3 on route 2; a ship services voyage 4 on
route 2, voyage 3 on route 3.

Fig. 3. Illustration of structure inside nodes: set of ports along the two routes. In (2,2),
a ship loads product 1 and 2 at Yokohama, sails and loads product 1 at Kobe, sails and
loads product 2 at Shanghai and Singapore, sails and unloads product 2 at Alexandria
and Piracus, sails and unloads product 1 at Southampton, sails and unloads product 1
and 2 at Zeebrugge, finally arrives at Bremerhaven and unloads product 2. Similarly,
a ship carries two types of products from their associated loading ports to unloading
ports in (3,2).

We need to explain how nodes and arcs should be interpreted before we
start with the modeling. In this model a node represents a given voyage along a
route as illustrated in Fig.2. Thus, the pair denoted by (i,m) corresponds to a
node in the model, i.e. voyage number m on route number i. Inside each node,
all the ports along the route are visited by the ship in sequence as shown in
Fig.3. The arc between the nodes is represented by dotted line and denote the
ballast sailing. For example in Fig.2 and Fig.3, the arc {(2, 2)(3, 2)} represents
the ballast sailing from the last port of voyage number 2 on route 2 to the first
port of voyage number 2 on route 3. For a given route of a ship v in Fig.3, the



A New Formulation for the Combined MFDIMP 7

decision variable x2232v is a binary variable that is equal to 1 if the ship performs
voyages (2, 2) and (3, 2) in sequence, and 0 otherwise.

Section 3.1 describes the notations used in the model, while the mathematical
model for the problem in Section 2 is presented in Section 3.2. Finally, the non-
linear constraints in the model are linearized in Section 3.3.

3.1 Notation

The notation used in the model is presented in this section for easy reference.

Sets
I set of routes, i ∈ I
M set of voyages, m ∈M
N set of nodes, i.e. a voyage m along a route i, (i,m) ∈ N
Nv set of nodes visited by ship v, Nv ⊆ N
Av set of arcs (i,m)(j, n) that can be serviced by ship v
VR set of ships in the fleet, v ∈ VR

VA set of spot ships, v ∈ VA

V set of ships, VA ∪ VR = V
Pi set of ports along route i, p ∈ Pi

Ki set of products transported along route i, k ∈ Ki

Parameters
Mi the number of voyages along route i during the planning horizon
Pi the number of ports along route i
Ki the number of products transported along route i
CO

iv cost for ship v sailing from its initial position to the start position
of route i

Cijv cost of performing voyage along route i and sailing ballast from
the last port of route i to the first port of route j with ship v

CR
iv cost of performing voyage along route i with ship v

TO
iv sailing time for ship v from its initial position to the start position

of route i
Tijv sailing time of performing voyage along route i and sailing ballast

from the last port of route i to the first port of route j with ship
v

TP
ip time spent at port p along route i

TR
ip sailing time on route i from the start position of route i to port p

T im the earliest start time of servicing node (i,m)
T̄im the latest start time of servicing node (i,m)
T the length of the planning horizon
SO
ipk the initial inventory level of product k at port p along route i at

the beginning of the planning horizon



8 B. Dong et al.

Ripk production rate of product k at port p along route i, positive if port
p is producing the product, and negative if port p is consuming
the product

Iipk 1 if port p is a loading port, −1 if port p is a unloading port, and
0 otherwise

Sip the minimum inventory level at port p on route i
S̄ip the maximum inventory level at port p on route i
Qikv the capacity of the compartment of ship v dedicated for product

k along route i
QC

v the total capacity onboard ship v

Variables
xO
imv 1 if ship v sails directly from its initial position to the start position

of node (i,m), 0 otherwise
zOv 1 if ship v is not used, 0 otherwise
ximjnv 1 if ship v sails directly from node (i,m) to node (j, n) (ship v

sails node (i,m) and then ballast sailing to node (j, n) directly
afterwards), 0 otherwise

zimv 1 if ship v sails node (i,m) as its last voyage, 0 otherwise
wimv 1 if ship v visits node (i,m), 0 otherwise
tim the time at which service starts at node (i,m)
simpk inventory level of product k at port p at the start of service for

node (i,m)
sEimpk inventory level of product k at port p at the end of service for

node (i,m)
limpkv the amount of product k onboard ship v when leaving port p on

node (i,m)
qimpkv the amount of product k loaded/unloaded to/from ship v at port

p on arrival of node (i,m)

3.2 Mathematical Model

Objective Function. The objective function (1) is to minimize the total trans-
portation costs. It consists of the sailing costs for ships in the fleet (i.e. initial
ballast sailing costs, voyage costs and ballast sailing costs between successive
voyages) and the time charter costs for spot ships.

Minimize
∑
v∈V

∑
(i,m)∈Nv

CO
ivx

O
imv +

∑
v∈VR

∑
((i,m),(j,n))∈Av

Cijvximjnv+

∑
v∈V

∑
(i,m)∈Nv

CR
ivzimv

(1)

Routing Constraints. Constraints (2) ensure that ship v either departs from
its initial position and sails towards node (i,m) , i.e. to serve a voyage, or it is
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not used. ∑
(i,m)∈Nv

xO
imv + zOv = 1, v ∈ V (2)

Constraints (3) and (4) are the flow conservation constraints, ensuring that a
ship arriving at a node also leaves that node by either visiting another node or
ending its route.∑

(j,n)∈Nv

xjnimv + xO
imv − wimv = 0, v ∈ V, (i,m) ∈ Nv (3)

wimv −
∑

(j,n)∈Nv

ximjnv − zimv = 0, v ∈ V, (i,m) ∈ Nv (4)

Constraints (5) ensure that ship v either ends after servicing some node or it is
not used. ∑

(i,m)∈Nv

zimv + zOv = 1, v ∈ V (5)

Voyage Completing Constraints. Constraints (6) ensure that each node is
serviced once by either a spot ship or a ship in the fleet.∑

v∈V
wimv = 1, (i,m) ∈ N (6)

Load Management Constraints. Constraints (7) and (8) relate the quantity
on board a ship to the quantity (un)loaded from the ship. Constraints (7) ensure
that if ship v sails from port p− 1 to port p, then the quantity of product k on
board at the departure from port p should be equal to the quantity on board
at departure from port p− 1 plus (or minus) the quantity loaded (or unloaded)
from p.

wimv(lim(p−1)kv + Iipkqimpkv − limpkv) = 0,

v ∈ V, (i,m) ∈ Nv, p ∈ Pi \ {1}, k ∈ Ki

(7)

We assume that all ships in the fleet start their voyages empty. Constraints (8)
relate the quantity on board with the quantity loaded or unloaded at the start
position of node (i,m).

wimv(Ii1kqim1kv − lim1kv) = 0,

v ∈ V, (i,m) ∈ Nv, k ∈ Ki

(8)

Similarly, all ships in the fleet are assumed ending their voyages empty.

limPikv = 0, v ∈ V, (i,m) ∈ Nv, k ∈ Ki (9)
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The ship capacity constraints are given by (10) and (11) imposing an upper
bound on the quantity on board for a single product and all the products re-
spectively. Constraints (10) also impose an lower bound on the the quantity on
board.

0 ≤ limpkv ≤ Qikvwimv, v ∈ V, (i,m) ∈ Nv, p ∈ Pi, k ∈ Ki (10)∑
k∈Ki

limpkv ≤ QC
v wimv, v ∈ V, (i,m) ∈ Nv, p ∈ Pi (11)

Constraints (12) impose lower and upper bounds on the quantity loaded or
unloaded.

0 ≤ qimpkv ≤ Qikvwimv, v ∈ V, (i,m) ∈ Nv, p ∈ Pi, k ∈ Ki (12)

Time Constraints. Constraints (13) ensure that if ship v travels from its initial
position to node (i,m) to start a voyage at time t, then the service at node (i,m)
can only occur after the ship has arrived.

tim ≥
∑
v∈V

TO
ivx

O
imv, (i,m) ∈ N (13)

Constraints (14) ensure that if ship v sails directly from node (i,m) to node
(j, n), then the service at node (j, n) can only start after the start time of service
at previous node (i,m) plus the time required to travel from route i to route j.

ximjnv(tim + Tijv − tjn) ≤ 0, v ∈ VR, ((i,m), (j, n)) ∈ Av (14)

Constraints (15) define the time windows for each node.

T im ≤ tim ≤ T̄im, (i,m) ∈ Nv (15)

Inventory Constraints. The inventory constraints are necessary to ensure
that the inventory levels are kept within the corresponding bounds and to link
the inventory levels to the (un)loading quantities.

Constraints (16) and (17) define the inventory level upon arrival at each port
on route i for the first time. Constraints (17) calculate the inventory level of
each product at the first port on route i for the first time the route is visited,
i.e. first voyage on the route.

si1pk = SO
ipk + Ripk(ti1 + TR

ip +

p−1∑
p′=1

TP
ip′), (i, 1) ∈ N , p ∈ Pi \ {1}, k ∈ Ki (16)

si11k = SO
i1k + Ri1kti1, (i, 1) ∈ N , k ∈ Ki (17)

The inventory level when service finishes at any port call (i,m, p) can be cal-
culated from the inventory level upon arrival at the port in the call (i,m, p),
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adjusted for the loaded/unloaded quantity at the port call and the quantity
produced/consumed when ships operates at port as in constraints (18).

sEimpk = simpk − Iipk
∑
v∈V

qimpkv + TP
ipRipk,

(i,m) ∈ N , p ∈ Pi, k ∈ Ki

(18)

The inventory level upon arrival at any port call (i,m, p) can be calculated from
the inventory level when the service finishes at the port in the call (i,m− 1, p),
adjusted for the quantity produced/consumed in between as in constraints (19).

simpk = sEi(m−1)pk + Ripk(tim − ti(m−1) − TP
ip),

(i,m) ∈ N \ {(i, 1)}, p ∈ Pi, k ∈ Ki

(19)

The upper and lower bounds on the inventory levels are ensured by constraints
(20) - (22). For a loading port, the inventory level increase monotonously before
the start of any port operation. Therefore the possible maximum inventory level
immediately before any loading port operation cannot exceed the upper bounds
on the inventory level. Then the inventory level at the end of any port opera-
tion decrease due to the operation at the loading port. Therefore the possible
minimum inventory level immediately after any loading port operation cannot
less than the lower bounds on the inventory level as in (20). (21) describe the
similar requirements for unloading ports.∑

k∈Ki

simpk ≤ S̄ip,
∑
k∈Ki

sEimpk ≥ Sip, (i,m) ∈ N , p ∈ PL
i (20)

∑
k∈Ki

simpk ≥ Sip,
∑
k∈Ki

sEimpk ≤ S̄ip, (i,m) ∈ N , p ∈ PU
i (21)

Constraints (22) ensure that the inventory level at the end of the planning
horizon is within the limits.

Sip ≤
∑
k∈Ki

(sEimpk + Ripk(T − tim − TR
ip −

p∑
p′=1

TP
ip′) ≤ S̄ip,

(i,m) ∈ N|m = Mi, p ∈ Pi

(22)

Binary and Non-negativity Constraints. Constraints (23) - (25) define
the variables as binary. The nonnegativity requirements (26) are given for the
variables representing the inventory level.

ximjnv ∈ {0, 1}, v ∈ VR, ((i,m), (j, n)) ∈ Av (23)

xO
imv, zimv, wimv ∈ {0, 1}, v ∈ V, (i,m) ∈ Nv (24)

zOv ∈ {0, 1}, v ∈ V (25)

simpk, s
E
impk ≥ 0, (i,m) ∈ N , p ∈ Pi, k ∈ Ki (26)
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3.3 Linearization

Since constraints (7) are non-linear and cannot be solved by a linear solver, we
linearize the constraints (7) by replacing them with the following two sets of
constraints (27) and (28), which forces lim(p−1)kv + Iipkqimpkv = limpkv when
wimv = 1.

lim(p−1)kv + Iipkqimpkv − limpkv ≤ Qikv(1− wimv),

v ∈ V, (i,m) ∈ Nv, p ∈ Pi \ {1}, k ∈ Ki

(27)

lim(p−1)kv + Iipkqimpkv − limpkv ≥ Qikv(wimv − 1),

v ∈ V, (i,m) ∈ Nv, p ∈ Pi \ {1}, k ∈ Ki

(28)

Similarly, non-linear constraints (8) can be linearized in (29) and (30).

Ii1kqim1kv − lim1kv ≤ Qikv(1− wimv), v ∈ V, (i,m) ∈ Nv, k ∈ Ki (29)

Ii1kqim1kv − lim1kv ≥ Qikv(wimv − 1), v ∈ V, (i,m) ∈ Nv, k ∈ Ki (30)

Constraints (14) are linearized as constraints (31), following [2].

tim − tjn + max{T̄im+
∑
v∈VR

Tijv − T jn, 0}
∑
v∈VR

ximjnv ≤ T̄im − T jn,

((i,m), (j, n)) ∈ A
(31)

4 Computational Study

The mathematical model described in Section 3 has been implemented in Mosel
using Xpress IVE and solved using Xpress 27.01.02. All computational tests are
performed on a Windows 8 computer with an Intel i5 core, 2.2 GHz processor and
8 GB RAM. Section 4.1 describes the test instances used, while the performance
of the tests using Xpress is presented and discussed in Section 4.2.

4.1 Test Instances

Four sets of test instances have been generated and used in the computational
study. The first two sets consists of 6 instances, and the other two sets consists
of 8 instances. These test instances are based on reduced versions of a real sized
problem faced by a Ro-Ro shipping company, the first set of instances based
on the Asia to Europe route, the second and third set of instances based on the
three routes shown in Fig. 1, and the fourth set of instances based on five routes.

The information on routes and ports with respective sailing distances and
corresponding costs and sailing times are based on real data. Two ship types
are considered, large and small, with capacities of approximately 7100 and 5800
Car Equivalent Units (CEUs), respectively. The cost associated with assigning
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a voyage to a spot ship is assumed almost three times the variable (i.e. fuel and
port) cost of serving the voyage with a large ship from the company’s own fleet.
The cost of serving the voyage with a small ship is set to be 20% lower than the
cost of serving the voyage with a large ship from the company’s own fleet.

The number of voyages on each route during the planning horizon, time
windows for starting the voyages, products produced/consumed on a route and
production/consumption rate of respective products at each port are estimated
by the authors. Inventory management is taken into consideration at both the
production and the consumption ports of each product.The number of products
to be transported along each route ranges between 2 and 5. The daily production
or consumption rates of a product at the respective ports are estimated as a
random number between 10 and 100 units of the product.

The typical planning horizon varies from months to a year. Here we con-
sider planning horizons of 90, 120, 150 and 180 days, respectively. Table 2
summarizes the test instances developed for the computational study. The in-
stances are named according to the number of ships in the fleet (v), routes (r),
ports (p), products (k) and length of planning horizon (d), for example instance
9v1r3p2k90d represent test instance with nine ships, one route, three ports, two
products and planning horizon of 90 days. For each test instance, the number of
ships, routes, ports, voyages, port calls, products and length of planning horizon
(in days) are given.

Table 2. Test instances. For the number of ships, the number on the left denotes the
number of ships in the fleet, while the number on the right is the number of available
spot ships.

Instance Nships Nroutes Nports Nvoyages NportCalls Nproduct Time (days)

9v1r3p2k90d 9/0 1 3 9 27 2 90
9v1r6p2k90d 9/0 1 6 9 54 2 90
9v1r9p2k90d 9/0 1 9 9 81 2 90

7v3r9p6k90d 7/3 3 9 27 81 6 90
10v3r17p6k90d 10/3 3 17 27 162 6 90
10v3r28p6k90d 10/3 3 28 27 225 6 90

10v3r28p11k90d 10/3 3 28 27 225 11 90
10v3r28p11k120d 10/3 3 28 36 300 11 120
10v3r28p11k150d 10/3 3 28 45 375 11 150
10v3r28p11k180d 10/3 3 28 54 450 11 180

18v5r47p17k90d 18/3 5 47 40 341 17 90
18v5r47p17k120d 18/3 5 47 53 451 17 120
18v5r47p17k150d 18/3 5 47 67 572 17 150
18v5r47p17k180d 18/3 5 47 80 682 17 180
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4.2 Computational Performance

The computational results for solving the MIP model are presented in Table 3.
The size of the model for each of the instances is presented in terms of number
of constraints and variables. Moreover, Table 3 gives details related to the best
MIP solution value (in M$) obtained, and the optimality gap (in %), Gap =
BestIntegerSolutionV alue−BestBound

BestIntegerSolutionV alue × 100, is reported if the model could not be
solved to optimality within the time limit which is set to one hour. The actual
number of spot ships used is also reported.

Table 3. Computational results from the MIP model for the test instances.

Instance ProblemSize Best Sol.Value Gap(%) Spot Ship Time(s)
# Constraint # Variable (M$)

9v1r3p2k90d 2831 1341 5.09 0.00 0 0.5
9v1r6p2k90d 5240 2421 5.29 0.00 0 1.0
9v1r9p2k90d 7649 3501 5.49 0.00 0 1.9

7v3r9p6k90d 10358 10261 22.21 0.00 3 12.6
10v3r17p6k90d 21516 17098 24.51 0.00 3 12.4
10v3r28p6k90d 30913 21298 30.70 0.00 3 39.3

10v3r28p11k90d 52642 32302 30.70 0.00 3 73.9
10v3r28p11k120d 70695 46523 39.09 0.00 3 165.6
10v3r28p11k150d 89014 62473 42.98 0.00 3 1599.3
10v3r28p11k180d 107599 80152 50.21 0.00 3 1636.2

18v5r47p17k90d 118536 84406 40.09 0.00 2 40.2
18v5r47p17k120d 158126 124587 52.27 0.00 3 193.9
18v5r47p17k150d 201789 175209 68.05 0.50 3 3600.0
18v5r47p17k180d 242625 228473 79.70 1.31 3 3600.0

The MIP model could be solved to optimality for most small instances
within reasonable times except for the two largest ones, 18v5r47p17k150d and
18v5r47p17k180d, for which the feasible integer solutions are found and the gaps
are reported are 0.5% and 1.3%, respectively.

Even for the two largest instances, 18v5r47p17k150d and 18v5r47p17k180d,
good solutions are obtained within the time limit. It is however clear that the
computational time increases rapidly with the increase of the number of ships,
routes, ports and products. The real problem that can involve up to 19 routes
and 60 ships, as well as a larger number of products would result in much longer
computational time. Moreover, the computational results also show that the size
of the instances as well as the computational time increases dramatically with
the increased length of the planning horizon. For budgeting reasons, some Ro-Ro
shipping companies could be interested in solving problems with up to one year
planning horizons, which would be impossible using only a commercial solver
(like Xpress).
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5 Concluding Remarks

In this paper, we have presented a planning problem faced by Ro-Ro shipping
companies providing integrated logistic services to its customers. We have pro-
posed a new mathematical model, combining inventory management at the ports
with the planning of ship routes. This planning problem is called a combined
Maritime Fleet Deployment and Inventory Management Problem (MFDIMP).

Test instances are created based on reduced version of a real Ro-Ro ship-
ping company. Out of the 14 test instances, the two largest instances with 18
ships, 5 routes and planning horizons of 150 and 180 days could not be solved to
optimality. The computational results also indicate that the time-continuous for-
mulation performs better than time-discrete model in [4], especially for instances
with long planning horizon.

It should be emphasized that even though the results are promising for our
test instances, the combined MFDIMP is a very complex problem and instances
of realistic size with more ships, routes and longer planning horizon could be
even harder or impossible to solve within reasonable computational times by
only using a commercial mixed-integer programming solver. Therefore, there are
many possible directions for future research. In order to find optimal solutions
within reasonable computational times, it would be interesting to study exact
solution techniques, for example decomposition approaches. Moreover, the pos-
sibility of tightening the formulation and including suitable valid inequalities
for the inventory management part of the problem could also be explored. In
addition, advanced heuristics could also be developed to obtain near optimal
solutions for large realistic instances of the problem.
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