
Implementation and Application of
Method for Differential Correlation
Network Analysis.

Magnus Olav Helland

Master of Science in Physics and Mathematics

Supervisor: Rita de Sousa Dias, IFY
Co-supervisor: Eivind Almaas, IBT

Department of Physics

Submission date: August 2017

Norwegian University of Science and Technology

Abstract

A novel framework for differential co-expression networks have recently been developed
at the Department of Biotechnology and Food Science at the Norwegian University of
Science and Technology (NTNU). The method, referred to as the CSD-framework [1]
aims to conserve more information about the co-expression patterns in the analyzed gene-
expression data than other existing methods, by separating between three different forms
of differential co-expression; conserved (C), specific (S), and diverging (D).

As a contribution to this project, a new program, CSD-CS, for fast and easy generation
of differential co-expression networks using the CSD-framework, was developed in this
thesis. The entire software has been implemented, tested, and analyzed as part of this
thesis, and are described in chapters 3 and 4.

An application of the software, and a corresponding network analysis, were performed
to illustrate the full scope of the differential co-expression network methodology. The
analysis were performed on real-life gene-expression data from rheumatoid arthritis (RA)
patients, and a healthy control group. The analysis identified biology with known asso-
ciation to the disease-state, such as immune system and inflammation related biology. It
also identified the genes CD5, CCL21 and CCR6 in the network, which has been associ-
ated with RA. Additionally, enrichment of genes related to PRDM1 and TYK2, two other
RA-associated genes were identified. Finally, the analysis identified several genes with
possible RA-related functions, including CD72, FOXD1, AP8B2 and HAPLN4, which
could be interesting to analyze further.

Some of the findings from the analysis did not have any known relation to the disease-
state. The CSD-method is designed to only capture co-expression patterns related to genes
that are tightly co-regulated across all patients, in at least one of the datasets. It is therefore
reasonable to assume that the constructed network captures only essential and/or disease-
related expression-patterns. This means that the network provides a good basis for gen-
erating hypotheses about RA, and that the findings with unknown disease-relevance may
point to biology with currently undiscovered or indirect association to RA.

i

Sammendrag

Et nytt rammeverk for differensielle koekspresjonsnettverk har nylig blitt utviklet ved In-
stitutt for Bioteknologi og Matvitenskap ved Norges Tekniske og Naturvitenskaplige Uni-
versitet (NTNU). Metoden, kjent som CSD-metoden [1], bevarer mer av koekspresjons-
mønstrene i de analyserte genutrykksdataene, enn andre eksisterende metoder, ved skille
mellom tre forskjellige former for differensiell koekspresjon; konservert (C), spesifikk (S),
og divergerende (D).

Som et bidrag til denne metoden ble et nytt program, CSD-CS, for rask of enkel kon-
struksjon av differensielle koekspresjonsnettverk ved hjelp av CSD-metoden, utviklet i
denne masteroppgaven. Hele programmet har blitt implementert, testet og analysert som
en del av denne oppgaven, og er beskrevet i kapittel 3 og 4.

En anvendelse av programmet, og tilhørende netverksanalyse, ble utført med den hen-
sikt å illustrere hele metodologien bak differensielle koekspresjonsnettverk. Analysen ble
utført p virkelige genutrykksdata fra pasienter med revmatoid artritt (RA) og en frisk kon-
trollgruppe. Analysen identifiserte biologi med assosiasjoner til sykdomstilstanden, slik
som immunsystem- og inflammsjonsrelatert biologi. Den identifiserte også genene CD5,
CCL21 og CCR6 i nettverket, som har blitt assosiert med RA. I tillegg ble det detek-
tert en anrikelse av gener relatert til PRDM1 og TYK2, som er to andre RA-assosierte
gener. Analysen fant også flere gener med mulig RA-relaterte funksjoner, inkludert CD72,
FOXD1, AP8B2 and HAPLN4, som er kan være interessante prospekter for fremtidige
analyser.

En del av funnene i analysen har ingen kjent relasjon til RA. CSD-metoden er im-
midlertid designet for kun fange opp koekspresjonsmønstre relatert til gener som er
tett samregulerte over alle pasientene i minst ett av datasettene. Det er derfor rimelig å
anta at det konstruerte nettverket kun gjengir essensielle og/eller sykdomsrelaterte koek-
spresjonsmønstre. Dette gjør at nettverket er et godt hypotesegenererende verktøy for RA,
og at funnene fra analysen med ukjent sykdomstilknytning potensielt peker på biologi med
foreløpig uoppdaget eller indirekte tilknytning til RA.

i

Preface

This thesis marks the end of my 5 years as a student at the Norwegian University of Science
and Technology (NTNU) in Trondheim. The project concludes my M.Sc degree in Applied
Physics and Mathematics where I have specialized in Biophysics.

I would like to start by expressing my sincere gratitude towards my supervisor, profes-
sor Eivind Almaas, at the Department of Biotechnology and Food Science, for his assis-
tance with my thesis. His support and guidance have been indispensable for the outcome
of this thesis. His enthusiasm and ability to communicate his insights, have made this
project an inspiring conclusion to my studies at NTNU. I would also like to thank his Ph.D
student, André Voigt, for his input and assistance, and for his help in clarifying methods
and topics in this thesis. From the Department of Physics I would like to thank my internal
supervisor, Rita de Sousa Dias, for her thorough revision of the thesis and constructive
comments and feedback.

Last but not least, I would like to thank all of my friends and family. I would never
have managed this without your support. Thank you for all the good times, and for making
my time here both entertaining and meaningful. You are the ones that have made my stay
in Trondheim truly unforgettable.

Magnus Olav Helland
August 2017

ii

Table of Contents

Abstract i

Abstract (norwegian) i

Preface ii

Table of Contents v

List of Tables ix

List of Figures xiii

Abbreviations xiv

1 Introduction 1

2 Background 3
2.1 Network theory . 3

2.1.1 Adjacency matrix and node degree 4
2.1.2 Degree distribution and network topology 4
2.1.3 Hubs, communities and modularity 6
2.1.4 Louvain community detection algorithm 9
2.1.5 The significance of hubs and communities 9
2.1.6 Node parameters . 10
2.1.7 Network parameters . 11
2.1.8 Multilayer networks . 12

2.2 Gene co-expression networks . 13
2.2.1 Construction of gene co-expression networks 13
2.2.2 CSD-framework for differential co-expression networks 15

2.3 Microarray data . 17
2.3.1 Transcriptome profiling . 17

2.4 Rheumatoid arthritis . 18

iii

2.5 Computer science . 18
2.5.1 Asymptotic time complexity . 18
2.5.2 Parallel programming . 19

2.6 Correlation and similarity measures . 20
2.6.1 Pearson correlation . 20
2.6.2 Spearman correlation . 20
2.6.3 Kendall’s tau . 20
2.6.4 Biweight midcorrelation . 21
2.6.5 Mutual information . 22

2.7 Statistics . 22
2.7.1 Fisher exact test . 22
2.7.2 Bonferroni correction . 23
2.7.3 Benjamini-Hockberg method . 24

3 Methods: Software 25
3.1 Program overview . 26
3.2 Setting up and using the program . 26
3.3 Program parameters . 28

3.3.1 Input file . 28
3.3.2 Subsample size . 30
3.3.3 Importance level . 30
3.3.4 Input data and file format . 30
3.3.5 Output data . 30
3.3.6 Correlation method . 31
3.3.7 Subsampling parameters . 31
3.3.8 Threads . 31
3.3.9 The outfilePrefix parameter . 32
3.3.10 Default values and unnecessary parameters 32

3.4 Data formats . 32
3.5 Algorithms . 33

3.5.1 Preprocessing gene-IDs . 33
3.5.2 Correlation calculations . 33
3.5.3 Subsampling algorithms for variance estimation 34
3.5.4 Variance estimation . 36
3.5.5 Calculating CSD-scores . 36
3.5.6 Estimation of importance thresholds 37

3.6 Parallelization . 37

4 Results: Software 39
4.1 Subsampling algorithms . 39
4.2 Time consumption and parallel efficiency 41

4.2.1 Time complexity analysis . 41
4.2.2 Parallelization of correlation and variance calculations 43
4.2.3 Further parallelization . 44
4.2.4 Memory usage . 45

4.3 Program testing . 45

iv

5 Results: Application to empirical gene expression data 47
5.1 Data collection . 47

5.1.1 Rheumatoid arthritis expression data 47
5.1.2 Control group expression data 48

5.2 Network construction . 49
5.3 Network analysis: tools and procedure 49
5.4 Network properties . 51

5.4.1 Component analysis . 53
5.4.2 Module analysis . 57

5.5 Biological analysis . 58
5.5.1 Enrichment analysis . 58
5.5.2 Biological functions of central nodes 60
5.5.3 Localizing disease-associated genes 63

6 Discussion and further work 65
6.1 CSD-CS . 65

6.1.1 Code parallelization . 65
6.1.2 Memory reduction . 66
6.1.3 Increased functionality . 67

6.2 Network analysis . 68

7 Conclusion 71

Bibliography 73

Appendix A 83

Appendix B 84

Appendix C 89

Appendix D 92

Appendix E 95

Appendix F 99

Appendix G 100

v

vi

List of Tables

2.1 Example of contingency table for two nominal variables. 23

3.1 Overview of the indicators, and arguments used by CSD-CS. Upon calling
the program in the terminal, it should be followed by some combination of
these arguments to specify the execution of the program. Each argument
should be preceded by the appropriate indicator to specify which param-
eter it sets. The arguments given in italic are keywords specific for the
indicator. Attempting to set one of these parameters using anything other
than a keyword will return an error. 29

3.2 The table shows the default values of the input parameters of the CSD-CS-
program. 32

4.1 The time-complexity of different processes in the CSD-CS software. . . . 41

5.1 The input parameters used by CSD-CS in creating the network analyzed
in this thesis. 49

5.2 The number of nodes and edges in the networks and its major components,
along with the distribution of specific interaction types. 51

5.3 The network parameters for the full network and its two main components. 52
5.4 The table shows the average of the network parameters calculated for the

degree-preserving random networks based on the S-component. Differ-
ence in parameter values between the S-component and the random net-
works are highlighted in red. The radius is not comparable as the random
network give rise to pairs of nodes separated from the main component
yielding a radius of 1. 55

5.5 The table shows the average of the network parameters calculated for the
degree-preserving random networks based on the CD-component. Differ-
ence in parameter values between the CD-component and the random net-
works are highlighted in red. The radius is not comparable as the random
network give rise to pairs of nodes separated from the main component
yielding a radius of 1. 55

vii

5.6 The table shows a comparison between the Spearman correlation between
different node parameters within in the CD-dominated network compo-
nent (top half) and degree-preserving random networks based on the CD-
component (bottom half). Blue indicates strong correlations, while red
indicates notable differences in correlation scores. 56

5.7 The table shows a comparison between the Spearman correlation between
different node parameters within in the S-dominated network component
(top half) and degree-preserving random networks based on the S-component
(bottom half). Blue indicates strong correlations, while red indicates no-
table differences in correlation scores. 57

5.8 The 10 biggest modules identified by the Louvain algorithm sorted by the
number of nodes. 57

5.9 The table shows the enrichment scores for the C-, S- and D-networks most
relevant for RA. The listed scores are not the maximum observed scores,
but are the ones most relevant relevant with respect to RA. 60

5.10 The table shows the most interesting findings from the modular enrichment
analysis. The listed scores are not the maximum observed scores, but the
ones most relevant with respect to RA. 61

5.11 The highest degree nodes from the network. 62
5.12 The nodes with the highest clustering coefficient and degrees higher than 13. 62
5.13 The nodes with the highest betweenness centrality from within one of the

two largest components. 62
5.14 The nodes with the highest closeness centrality from within one of the two

largest components. 62
5.15 The nodes with the highest neighborhood connectivity of the nodes with a

degree higher than 15. 62
5.16 The nodes with the highest topological coefficient from nodes with degree

higher than 15. 62

6.1 A comparison of different similarity scores between 4 randomly chosen
genes (A, B, C and D) in the rheumatoid arthritis data set. The binning
of the values for calculation of MI-scores was chosen to generate scores in
the same size range as the rest of the similarity measures (for the purpose
of comparison). 67

1 This is a list of 52 genes with suspected association to rheumatoid arthritis. 83
2 Network parameters for the degree-preserving random networks generated

from the S-component. 89
3 Network parameters for the degree-preserving random networks generated

from the CD-component. 89
4 Spearman correlation between different node parameters within in the CD-

dominated network component. 93
5 Spearman correlation between different node parameters within in the S-

dominated network component. 94

viii

6 The table shows the Bonferroni corrected p-values related to the Spear-
man correlations between different node parameters for nodes within the
network as a whole (aside from minor components and single nodes). . . 95

7 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within the CD-
dominated network component. 95

8 The table shows the Bonferroni corrected p-values related to the Spear-
man correlation between different node parameters for nodes within the
S-dominated network component. 95

9 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 0. 96

10 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 1. 96

11 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 2. 96

12 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 3. 96

13 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 5. 97

14 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 6. 97

15 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 7. 97

16 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 10. 97

17 The table shows the Bonferroni corrected p-values related to the Spearman
correlation between different node parameters for nodes within module 15. 98

18 This is a list of 60 genes found in the network related to transcription of
the PRDM1 gene. 99

19 This is a list of 19 genes found in the network related to knockdown of the
TYK2 gene. 100

ix

x

List of Figures

1.1 The number of citations for the most cited papers in different areas re-
lated to complexity, over time. It shows a great interest in network science
starting approximately two decades ago. The figure is from [2]. 2

2.1 Example of an unweighted, undirected network and its corresponding ad-
jacency matrix. 4

2.2 The figure shows the different network regimes of a Erdös-Rényi [3] ran-
dom network as a function ofNG/N (a). (b) shows the subcritical regime,
(d) the supercritical regime, and (e) shows the connected regime. The fig-
ure is from [2]. 5

2.3 The figure, from [4], shows an example of a scale-free network. The net-
work represents protein interactions in yeast where red nodes represent
essential proteins, orange proteins of some importance, while yellow and
green indicate proteins of unknown and lesser significance respectively. . 7

2.4 Different definitions of a community; (a) maximum-clique, (b) strong-
community, (c) weak-community. Figure is from [2]. 8

2.5 Illustration of a multilayer network. Figure from [5]. 13

2.6 Graphical representation of the C-, S-, and D-type co-expression regions
of interest. 16

2.7 Graphical representation of the definitions of the asymptotic time-complexity
parameters Θ(f(n)), O(f(n)), and Ω(f(n)). 19

3.1 The figure illustrates the program modularity. Each module represents one
of the one of the main processes of the program, and can be performed
independently of each other. 27

3.2 The figure illustrates how the program can be executed using the linux
terminal. Notice how all parameters are preceded by an appropriate identifier. 28

xi

3.3 Illustration of the idea behind the preprocessing algorithm, for the case of
four input files. Each row is a sorted gene-list from one of the input-files.
The gene lists are iterated over incrementally, and all genes not present in
all data-sets are ignored. By sorting the gene-lists first, the algorithm only
needs to iterate over all elements once, allowing the comparison to run in
linear time. The color is added to highlight the successful comparisons
and make them easier to separate from one another. 34

4.1 The number of subsamples generated by the different subsampling algo-
rithms. The random subsampling algorithm generally outperforms the
other two methods. 40

4.2 The figure shows the CPU-time used by CSD-CS for input data containing
100 measurements for a various number of genes n ∈ [1000, 25000]. The
CPU-time is initially dominated by the contribution from the threshold es-
timation algorithm, which runs in approximately constant time for a given
combination of p and simp. The figure shows the strong influence of the
number of genes in the data set on the time consumption of the program.
For large n the time consumption is purely exponential and approximately
equal the time consumption of the correlation calculations. 42

4.3 The figure shows how the CPU-time of the program depends on the num-
ber of genes in the analyzed data-sets. A second degree polynomial fit (the
red line) verifies the estimated time-complexity of the program O(n2). . . 42

4.4 Result of parallelizing the correlation and variance calculations. The top
figure shows how the wall-time of the program section follows the the
number of cores used. The middle plot show the speed-up-factor S, and
the bottom figure shows the efficiency E of the parallelization. 43

4.5 The effect on the overall program performance from all the parallelized
code. 44

4.6 The maximum memory usage of the program as a function of the number
of genes in the data sets n. 46

5.1 The figure shows the full CSD-network produced by CSD-CS as visual-
ized by Cytoscape. Conserved interactions are indicated by blue edges,
while specific and diverging are shown in green and red respectively. . . . 52

5.2 The figure shows the degree distribution of the full network. Subplot 2 and
3 shows log-log plots of the degree-distribution. As indicated by the fitted
line in subplot 3, the degree-distribution follows a heavy-tailed power-law
(with γ = 1.886). 53

5.3 The neighborhood-connectivity distributions of the full network and the
two main components, along with a fitted power law (red line) . Interest-
ingly the CD- and S-components show opposite assortativity. 54

5.4 The 10 largest modules detected in the CSD-network by using the Louvain
community detection algorithm. 58

5.5 The figure shows the two small components where the RA-associated
genes CCL21 and CCR6 are located, as well as module 10 where CD5
is located. The relevant genes are highlighted by a different color. 64

xii

1 Example illustrating the ged file-format. 84
2 Example illustrating the corr file-format. 85
3 Example illustrating the csd file-format 86
4 Example illustrating the all file format. 87
5 Example illustrating the network file-format. 88
6 Example of a degree-preserving random network generated from the S-

dominated component in the arthritis-network. 90
7 Example of a degree-preserving random network generated from the CD-

dominated component in the arthritis-network. 91

xiii

Abbreviations

C = Conserved
S = Specific
D = Diverging
GB = Giga bytes
HLA = Human Leukocyte Antigen
NK-cell = Natural killer cell
RA = Rheumatoid Arthritis

xiv

Chapter 1
Introduction

”Reductionism, as a paradigm, is expired, and complexity, as a field is tired.
Data-based mathematical models of complex systems are offering a fresh per-
spective, rapidly developing into a new dicipline: network science.”

- Albert-Lázló Barabási (2011) [6]

Network science is a rapidly developing field of science, and has seen great interest
over the last two decades. Its goal is to analyze and characterize the structure, interactions
and behaviour of complex systems. A comparison between the number of citations of the
most prominent papers from network science and other fields related to complex systems
(figure 1.1) illustrates the impact of this novel scientific area. Although the field itself is
young, its theoretical foundations is by no means new. The history of graph theory, the
fundamental formalism of network theory, can be traced all the way back to Leonhard
Euler’s paper ”The seven bridges of Königsberg” from 1736. Network science distinguish
itself from graph theory however, in its more empirical nature. The focus is on function
and utility, and methods are judged by the insights offered about a system’s properties
and behaviour [2]. In addition to graph theory, network theory employs methods from
statistics, statistical physics [7], control and information theory [8], and computer science
[9, 10].

Network science has found applications across many different branches of science,
from social networks [11] to the metabolic networks in cells [12, 13]. This thesis will
explore an application of network science within the area of systems biology. The back-
ground for this thesis is the development of a new framework for generation of differen-
tial gene co-expression networks at the Institute for Biotechnology and Food Science at
NTNU. A differential gene co-expression network captures similarities and differences in
gene-expression patterns across suitably chosen tissues, conditions or specimens, provid-
ing insights into the genetic regulatory machinery causing different phenotypes. The novel
framework, referred to as the CSD-framework [1], separates itself from existing methods

1

Chapter 1. Introduction

Figure 1.1 The number of citations for the most cited papers in different areas related to
complexity, over time. It shows a great interest in network science starting approximately
two decades ago. The figure is from [2].

by distinguishing between three different forms of co-expression. It evaluates conserved
(C), specific (S) and diverging (D) co-expression, thus preserving more information about
co-expression patterns than comparable methods such as DCGL/DCe [14].

The main goal of this thesis was the development of a software for construction
of differential gene co-expression networks, using the CSD-framework. The software
was developed from scratch with focus on easy and efficient network construction.
Additionally, an application of the software and a corresponding network analysis was
performed to illustrate the full scope of a co-expression network analysis. As gene ex-
pression and regulation can be highly tissue-specific, differential co-expression analysis is
a suitable tool for detecting genes related to disease states [15, 16], tissue types [17] and
developmental stages [18], because these genes are more likely to be regulators that under-
lie phenotypic differences [19]. For the analysis performed in this thesis, gene expression
data from patients with the disease Rheumatoid Arthritis (RA), and a healthy control group
was evaluated. The goal of the analysis was to identify relevant biology in the network and
investigate potential roles of genes in the disease state.

The thesis consists of 7 chapters. Chapter 2 presents relevant theory and background
for the project. Chapter 3 and 4 are related to the software development, where chapter 3
describes the operation and functionality of the developed software, and chapter 4 features
an analysis of program performance. Chapter 5 then presents the network generated from
application of the software, and the corresponding network analysis. Finally chapter 6 and
7 contains a discussion of the results, and a conclusion.

The reader of this thesis is expected to have basic knowledge of biochemistry, cell
biology, programming, and mathematics. Detailed knowledge should however not be nec-
essary, as relevant concepts and theory is presented in chapter 2.

2

Chapter 2
Background

This chapter aims to give readers unfamiliar with the main topics of this thesis and its
methods an introduction to relevant concepts and background theory. Most topics dis-
cussed will be of direct relevance to later chapters, while some of the content is included
for overview or completeness. The section on network theory is mainly drawn from differ-
ent parts of Barabasi’s book ”Network Science” [2]. The reader is therefore referred to his
book for a more in-depth discussion of the subject, if so required. The general framework
for construction of gene co-expression networks presented in section 2.2.1 follows the one
proposed by Zhang and Horvath in their article ”A General Framework for Weighted Gene
Co-Expression Network Analysis” [20]. It does not describe their proposed method, but
simply lists the general steps of gene co-expression network construction.

2.1 Network theory
”A network consists of a set of items, which we will call vertices or sometimes nodes, with
connections between them called edges.” This is the definition of a network as presented
by Newman in his review article ”The Structure and Function of Complex Networks” [21].
The concept is simple; a set of objects (from here on referred to as nodes) share a connec-
tion or property which is represented by an edge, also often called links. This simple rep-
resentation, originating in the mathematical branch of graph theory, have proven effective
in capturing and describing complex systems and behaviour. The network representation
can be used to model a wide range of systems, across different scientific branches. Social
networks [11] for instance are networks in which nodes represent persons, and edges some
sort of relation between persons, be it friendliness, sexual relations or familiarity. Other
examples of networks include the World Wide Web [22], the internet [23], infrastructure
[24], metabolic networks in biology [12, 13], protein-protein interaction networks [25],
gene co-expression networks [26] and the human disease network [27] to mention but a
few. Network science has proven a powerful tool and can be used to describe and predict
complex behaviors such as spreading phenomena [28], system robustness [29], cascading
failures [30], structural phase transitions [31], synchronization [32] and cooperation [33].

3

Chapter 2. Background

2.1.1 Adjacency matrix and node degree
In order to completely describe a network, it is necessary to keep track of all involved
objects and their connections. A simple way of doing this is through an adjacency matrix.
In an adjacency matrix Aij each matrix element aij quantifies the connection between
node i and j, hence representing an edge in the network. For an unweighted network, each
matrix element is assigned a value of either 1, or 0 indicating an edge between two nodes,
or a lack thereof. For the case of weighted networks the elements of the adjacency matrix
are assigned a value from the interval [0, 1], indicating the strength of the connection.
One can also distinguish between directed and undirected networks. For an undirected
network aij = aji, resulting in an adjacency matrix symmetrical around the diagonal. In
the case of a directed network the direction in which an edge points convey meaningful
information. Thus, in the adjacency matrix of a directed network aij is not necessarily the
same as aji. This distinction gives rise to asymmetrical adjacency matrices for directed
networks. As the networks relevant for this thesis are all undirected and unweighted, all
further discussions assumes an unweighted, undirected network, unless explicitly stating
otherwise.

Figure 2.1 Example of an unweighted, undirected network and its corresponding adja-
cency matrix.

A fundamental property of networks are the degree distribution. The degree refers to
the number of nodes directly connected to a node i through edges. The degree of a node
thus describes the number of nearest neighbors of that node. For an undirected network
the degree of node i is given from its adjacency matrix by:

ki =
∑
j

aij (2.1)

The degree distribution of a network is the probability that a randomly selected node
from the network has a given degree. The nature of the degree distribution have important
implications for the properties of a network, as described in the section below.

2.1.2 Degree distribution and network topology
The section below is mainly based on the contents from Barabasi network science book [2].
Only main results are stated, and so the reader is referred to the book for a full derivation.
Several figures have been borrowed from [2] under its Creative Commons license.

4

2.1 Network theory

The degree distribution of a network convey important information about the struc-
ture of the network. To illustrate this, let’s consider two famous network models; random
networks as described by E.N. Gilbert [34], and scale-free networks [22, 35]. A random
network can be constructed by iteratively adding new nodes to the network, where each
new node is connected to the network through a predefined number of edges. The proba-
bility of an edge occurring between two nodes is equal for all nodes in the network. The
resulting degree distribution of a Gilbert random network is given by the binomial distri-
bution,

pk =

(
N − 1

k

)
pk(1− p)N−1−k (2.2)

whereN is the number of nodes, k is the degree, and p is the probability of a link occurring
between two nodes. Most real networks are sparse, causing the average node degree to be
much less than the number of nodes (〈k〉 � N). In this limit the degree distribution is
well approximated by the Poisson distribution:

pk = e−〈k〉
〈k〉k

k!
(2.3)

The degree distribution thus has its peak at k = 〈k〉, and a standard deviation of
σk = 〈k〉(1/2). In [2] three different topological regimes originating in this distribution are
discussed; subcritical, supercritical and connected 2.2.

Figure 2.2 The figure shows the different network regimes of a Erdös-Rényi [3] random
network as a function of NG/N (a). (b) shows the subcritical regime, (d) the supercritical
regime, and (e) shows the connected regime. The figure is from [2].

The subcritical regime appears when 0 < 〈k〉 < 1. In this regime only a small number
of nodes are connected hence the network consists mainly of many tiny clusters. The
number of genes in the largest clusterNG scales proportionally to ln(N) and so the relative
size of the largest cluster goes to zero: limN→∞

NG
N → 0.

5

Chapter 2. Background

In the supercritical regime (〈k〉 > 1) a large connected component emerges, develop-
ing a more connected network. In the vicinity of the critical point 〈k〉 = 1, the relative
size of the giant component scales as NG

N ∼ 〈k〉 − 1. Finally in the connected regime
(〈k〉 > ln(N)), NG ≈ N and the giant component absorbs more or less all nodes in the
network.

Real networks are usually not random. It turns out that the degree distribution of many
real networks follows a power law,

pk ∼ k−γ (2.4)

which is the defining characteristic of scale-free networks [35]. The important difference
between random and scale-free networks lies in the tail of the degree distribution. While
the great majority of nodes in a random network will have a degree of 〈k〉±

√
〈k〉, resulting

in a fairly homogeneous network, scale free networks lack a scale on the degree of a node.
What this means is that a randomly drawn node from a scale-free network can have a
wide range of different degrees, and distribution parameters such as mean and variance
yields little practical information about average node properties. Although the scale-free
property is used to describe any network following a power law distribution, the scale-
free behaviour is especially prominent for networks with γ ∈ 〈2, 3〉. The reason can
be seeen from the nth-moments of the degree distribution of networks with power law
distributions1:

〈kn〉 = C
kn−γ+1
max − kn−γ+1

min

n− γ + 1
(2.5)

As kmax = kmin · N
1

1−γ for power-law networks, all moments for which n > γ − 1
as N → ∞ diverge. The result is that the variance of the degree distribution (σ2 =
〈k2〉 − 〈k〉2) diverges for power-law networks with 2 < γ < 3. This allows the existence
of nodes of arbitrarily high degree. The existence of such nodes greatly affects the topol-
ogy of the corresponding network, making it more heterogeneous by introducing hubs and
communities. Figure 2.3 shows an example of a scale-free network. The scale-free net-
work in figure 2.3 shows a much more heterogeneous topology than the random networks
from figure 2.2.

2.1.3 Hubs, communities and modularity
A prominent feature of many real networks is the presence of hubs and communities. A
hub refers to a highly connected node, in other words, a high degree node. A community
however does not have a clear definition. Instead it is related to a set of hypotheses [2]:

1. Fundamental hypothesis:
“A network’s community structure is uniquely encoded in its wiring diagram.”

2. Connectedness and density hypothesis:
“A community is a locally dense connected subgraph in a network.”

1See Barabasi Network Science chapter 4 for the full derivation of equation (2.5)

6

2.1 Network theory

Figure 2.3 The figure, from [4], shows an example of a scale-free network. The network
represents protein interactions in yeast where red nodes represent essential proteins, orange
proteins of some importance, while yellow and green indicate proteins of unknown and
lesser significance respectively.

3. Random hypothesis:
“Randomly wired networks lack an inherent community structure.”

4. Maximal modularity hypothesis:
“For a given network the partition with maximum modularity corresponds to the
optimal community structure.”

The first hypothesis simply states that there is a ground truth about a network’s com-
munity organization, which can be learned from the adjacency matrix of the network. The
second hypothesis restricts the definition of a community by requiring that all nodes must
be reachable from other members of the same community. The definition of a locally dense
subgraph however is not well defined. In [2] three different definitions are presented; Max-
imum clique, Strong communities, and Weak communities.

A maximum clique is a complete2 subgraph within a network. The drawback of such
a definition is that complete subgraphs larger than triangles are rare, hence it may be too
restrictive. An alternative definition is that of strong communities, in which it is required

2In graph theory a complete graph is one in which all nodes are connected to all others.

7

Chapter 2. Background

that each node within a community has a higher internal degree than external degree. The
internal degree of a node kinti refers to the number of links node i makes with other nodes
within the community. The external degree kexti is the conjugate set of neighboring nodes,
so that ki = kinti + kexti . Mathematically, the criterion for including a node i in the strong
community C can be expressed as:

kinti (C) > kexti (C) (2.6)

Finally, the definition of a weak community requires the the total internal degree of a
subgraph to be greater than its external degree.∑

i∈C
kinti >

∑
i∈C

kexti (2.7)

Figure 2.4 Different definitions of a community; (a) maximum-clique, (b) strong-
community, (c) weak-community. Figure is from [2].

The above definitions of communities are given in decreasing order of rigidity, where
each consecutive definition entails the communities of the preceding one. These examples
are meant to illustrate that identification of communities is dependent on the definition
used.

The third hypothesis is related to the concept of modularity. The implication of this
hypothesis is that dense subgraphs can be verified by comparing its link density with a
random network consisting of the same number of nodes. The modularity is thus defined
as:

Mc =
1

2L

∑
(i,j)∈Cc

(Aij − pij) (2.8)

where L is the total number of links or edges in the network, and pij =
kikj
2L is the

probability of a random connection between two nodes of degree ki and kj . Equation 2.8
can be equivalently formulated as,

Mc =
Lc
L
−
(
kc
2L

)2

(2.9)

8

2.1 Network theory

where Lc is the total number of links within community Cc and kc is the total degree.
This equation can be generalized to evaluate an overall modularity score for a given way
of partitioning a network into nc communities:

M =

nc∑
c=1

[
Lc
L
−
(
kc
2L

)2
]

(2.10)

2.1.4 Louvain community detection algorithm

The Louvain algorithm [36] is a graph partitioning algorithm used for identifying commu-
nities within a network. The exact formulation of the problem, involving identification of
an optimal community partition, is known to be a computationally intractable optimiza-
tion problem. As a result there are many different algorithms for finding reasonably good
partitions of a network in a reasonable amount of time. The Louvain algorithm uses an
iterative two step approach to identify communities. Initially all nodes are assigned their
own community, resulting in an equal number of nodes and communities. The first step
then consists of the following process: for each node i, the change in modularity caused
by moving node i to the community of its neighboring node j is calculated for all possible
j. Node i is then placed in the community that maximizes the modularity score, whether
it means moving to a neighboring community or staying in its current one. This process
is repeated until no further improvements is in modularity score can be achieved. This
might involve multiple evaluations of each node. Phase one thus terminates upon reaching
a local modularity maximum.

The second phase of the algorithm consists of constructing a new network, where each
community detected in phase one is replaced by a node. The weight of the link between
two nodes is calculated as the sum of the links connecting nodes in the two communities.
After the generation of the new network, step one may be reapplied. These two processes
are repeated iteratively until no further increase in modularity score occurs.

The Louvain algorithm has been shown to produce good partitions with high mod-
ularity scores in a short amount of time [36]. The majority of time is spent in the first
pass through step one, as the problem size is reduced quickly through the generation of
the meta-networks in phase 2. The number of passes through both phase one and two is
therefore generally a small number even for large networks.

2.1.5 The significance of hubs and communities

The discussion from the two previous section raises the following question: Why are hubs
and communities of such interest? Knowing that hubs and modules do not arise from
random network construction, is it reasonable to assume that their presence convey some
information about the nature of the system? Two famous network models provide some
insight into these questions; the Barabasi-Albert model [35] and the Bianconi-Barabasi
model [37].

In the Barabasi-Albert model, the construction of a network is based on two mech-
anisms, growth and preferential attachment. This means that a network continuously
evolves and that the probability of attaching to a node increases with its degree. The

9

Chapter 2. Background

Bianconi-Barabasi model is somewhat similar to the Barabasi-Albert model, but intro-
duces a node property called fitness. In this model the probability of connecting a new
node to an existing one is dependent on both the existing node’s degree and its fitness. The
interesting about these models is the fact that the resulting networks are scale-free. Al-
though the modeling mechanisms is fairly simple, scale-free networks emerge, verifying
the distinction between random networks and scale-free ones. This result gives an indi-
cation that non-random organizing principles and system properties are what give rise to
the scale-free topology. It is generally recognized that the topology and evolution of real
networks are in fact governed by robust organizing principles [7].

Hubs and communities have been shown to have prominent roles in the structure and
properties of networks [7, 25, 29]. In protein-protein interaction networks for example,
it has been shown that deletion of hub genes is more likely to be lethal for the organism
than deletion of non-hub genes [38]. Different measures of topological properties is of
particular interest in static analysis [39], in which the topology of a network is correlated
to function and behavior. This type of analysis is highly relevant for gene co-expression
networks, which is the main focus of this thesis. In particular, analysis of network commu-
nities (also referred to as modules in relation to co-expression networks) are widely used
and have provided insight into biological function and disease [40, 41, 42, 43].

2.1.6 Node parameters
Many different node parameters exists for identifying nodes of interest and evaluating
their roles in a network. The node degree is an example of such a parameter. Several node
parameters convey similar information, and so only the ones used in the network analysis
presented later in this thesis will be described.

The clustering coefficient and centrality measures gives important information about
the roles of different nodes in a network. A cluster, or a component in graph theory, is a
connected subset of a network, for which addition of more nodes will break the connected-
ness. A properly placed link might connect two clusters, in which case the link will act as
a bridge. The clustering coefficient of a node describes the degree to which its neighbors
link to each other, acting as a measure of local link density around a node. It is defined as:

Ci =
2Li

ki(ki − 1)
(2.11)

where Li is the number of links between the ki neighbors of node i. For Ci = 0 none
of node i’s neighbors are linked, while for Ci = 1 node i and its neighbors constitutes a
complete graph.

The average clustering coefficient distribution gives the average of the clustering coef-
ficients for all nodes n with k neighbors for k = 2, 3, ...

Centrality is the concept of node or edge importance in a network. Thus different
centrality measures assign a score to each node yielding information about its role in the
network. The betweenness centrality measureCB [44] is defined as the fraction of shortest
paths between pair of nodes passing through a node i:

CB(i) =
∑
i 6=j 6=j

σjk(i)

σjk
(2.12)

10

2.1 Network theory

Here σjk is the total number of shortest paths between nodes j and k while σjk(i) is
the number of shortest paths through i. Nodes involved in a bridge as described above,
will typically have a high betweenness score, indicating their central role in information
transmission between different parts of the network.

Another centrality measure is the closeness centrality [45]. The closeness centrality
is defined as the reciprocal sum of shortest paths from a node i to all other nodes in the
network. The shortest path between two nodes is also referred to as geodesic path between
two nodes. Closeness is thus given by:

CC(i) =
1∑

j 6=i dg(i, j)
(2.13)

where dg(i, j) is the geodesic distance between node i and j. The closeness centrality can
be seen as a node’s ability to spread information to all other nodes of the network.

A nodes eccentricity ε is defined as the maximum finite distance of a shortest path
between i and any other node in the network. In the case of i being an isolated node, its
eccentricity is set to zero.

The neighborhood connectivity of a node kii is the average connectivity (degree) of
a node i’s ki neighbors. From the neighborhoods connectivities in a network, the neigh-
borhood connectivity distribution can be determined. It is given by the average of the
neighborhood connectivities for all nodes i with degree k for k = 1, 2, The neighbor-
hood connectivity distribution gives information about the assortative nature of a network.
If a network is assortative, high degree nodes tend to connect to high degree nodes, and low
degree nodes to other low degree nodes. The assortativity is related to degree correlations
between the nodes in the network, which have implications for clustering of a network, its
shortest paths, its diameter, and its robustness to perturbations [2].

Finally a topological coefficient for the network can be defined as follows [46]:

Ti =
mean(J(i, j))

ki
(2.14)

Here J(i, j) is defined for all nodes j that share at least 1 neighbor with i. J(i, j) is
then the number of neighbors shared between node i and j, plus one if node i and j are
connected directly. This topological coefficient is thus a measure of the extent to which
nodes share neighbors with its neighbors.

2.1.7 Network parameters
There are different network parameters, that capture various properties of a network. The
diameter of a network is defined as the largest geodesic path in a connected component.
The radius, on the other hand, is the minimum of the non-zero eccentricities3 in a network.
The two parameters can be formulated in terms of the eccentricity in the following way:

Diameter = max(εi) (2.15)

Radius = min(εi) (2.16)
3See subsection above for the definition of eccentricity.

11

Chapter 2. Background

A network’s characteristic pathlength refers to the expected geodesic distance between
two connected nodes. It is thus a measure of the average distance between nodes in the net-
work. All the three parameters defined so far yields information about inter-node distances
in a network.

Other interesting parameters are ones more directly related to network topology. The
network density for example gives the fraction of edges present in the network compared
to the maximum number of edges:

Density =
1

n(n− 1)

∑
i

∑
j6=i

aij (2.17)

The density is thus a measure of the connectedness of the network. Another topologi-
cally motivated parameter is the network centralization [47]:

Centralization =
n

n− 2

(
max(k)

n− 1
−Density

)
≈ max(k)

n
−Density (2.18)

The network centralization is related to the connectivity distribution. For instance
decentralized networks will have a centralization index close to 0, while networks with
star-like topologies have an index close to 1.

Network heterogeneity [47] is measure of a network’s tendency to contain hub nodes.
It is defined as:

Heterogeneity =
variance(k)

mean(k)
=

√
n · S2(k)

S1(k)2
− 1 (2.19)

The network clustering coefficient can be defined as the average clustering coefficient
for all nodes in the network. The network clustering coefficient is thus a measure of the
clustering tendency of the network.

2.1.8 Multilayer networks

In general, a network consists of a set of nodes (or vertices) V , and set of edges E. In
a graph theoretical formulation the graph G is thus represented by G = (V,E). In or-
der to accommodate the existence of several types of node-relations, multiple dimensions
(layers) can be added to the network [21]. The network graph is then represented by
G = (V,E,D), in which V is the set of nodes, D is the set of dimensions, and the edges
E is represented by a tuple (u, v, d, w). Here u, v ∈ V are nodes, d ∈ D is the dimension,
and w is the weight of the edge (w = 1 for unweighted networks). It might be instructive
to think of the multilayer network in terms of its adjacency matrix. The adjacency matrix
of a multilayer network can be represented by a 3-dimensional matrix, in which dimen-
sion 1 and 2 constructs a regular adjacency matrix for the layer d encoded in the third
matrix-dimension. An illustration of a multilayer network can be seen in figure 2.5.

12

2.2 Gene co-expression networks

Figure 2.5 Illustration of a multilayer network. Figure from [5].

2.2 Gene co-expression networks

Gene co-expression networks is an analytic tool for probing the genetic regulatory machin-
ery, and its role in disease and cell differentiation. The fundamental assumption behind the
study of gene co-expression networks (from here on simply referred to as co-expression
networks), is that genes showing predictable co-expression patterns somehow relates to
phenotypic and functional differences. Co-expression networks are generated by calculat-
ing correlation scores between all possible pair of genes from their measured expression
levels. Co-expression networks are limited in that they only identify correlations, but do
not provide information about causality or distinguish between regulated and regulatory
genes.

Differential co-expression network analysis is a more specialized method, in which the
analyst evaluates differences in expression patterns across appropriately chosen tissues,
conditions or specimens. As gene expression and regulation can be highly tissue-specific,
differential co-expression analysis is a suitable tool for detecting genes related to disease
states [15, 16], tissue types [17] and developmental stages [18], because these genes are
more likely to be regulators that underlie phenotypic differences [19].

2.2.1 Construction of gene co-expression networks

Many different methods for generating co-expression networks exist, utilizing a wide range
of different methods. The general structure laid out in this section is by no means the only
way of constructing co-expression networks. This section is rather meant as a guide for
the unfamiliar reader to help him/her identify the general process of converting gene-

13

Chapter 2. Background

expression data into a network adjacency matrix. The section draws inspiration from the
framework proposed by Zhang and Horvath in ”A general framework for weighted gene
co-expression network analysis” [20].

A gene co-expression network consists of a set of nodes, representing different genes,
connected by edges, representing a similarity in expression patterns. Constructing such a
network can divided into two main steps:

1. Estimating co-expression through a similarity measure

2. Calculating the adjacency matrix from the similarity scores

For differential co-expression networks the following step is also needed:

3. Relating co-expression scores from the different data sets

The first step of co-expression network generation is to define a measure of similarity
for comparing the gene expression profiles. Different correlation parameters are common
examples of similarity measures, such as Pearson correlation [48], Spearman correlation
[49] and biweight midcorrelation [50]. Other notable examples are mutual information
[51] and regression-models [52]. For each pair of genes the similarity score sij between
their expression patterns are calculated, resulting in the similarity matrix S = Sij .

The next step is transforming the similarity matrix Sij into the adjacency matrix using
an adjacency function. A simple example of an adjacency function is using the Heaviside
step function, to define a hard threshold:

aij(sij , τ) = H(sij − τ) =

{
1 sij > τ

0 sij < τ
(2.20)

Here aij is the argument for the adjacency matrix, sij is the corresponding similar-
ity score, and τ is the threshold. The result of using a hard threshold is that all gene-pairs
with a lower similarity score than τ are rejected. Zhang and Horvath [20] argues that a soft
threshold might be more advantageous as ”hard thresholding include loss of information
and sensitivity to the choice of threshold.” Also, ”on a more fundamental level, the ques-
tion is whether it is biologically meaningful to encode gene co-expression using binary
information”. Thus another approach is to use a smooth approximation of the Heaviside
step function for obtaining a soft threshold [20]:

aij(sij , τ0, α) =
1

1 + e−α(sij−τ0)
(2.21)

In this case, both the soft threshold parameter τ0, and α which gives the sharpness
of the transition, needs to be specified. Using a soft threshold yields a weighted gene
co-expression network, while a hard threshold yields an unweighted.

14

2.2 Gene co-expression networks

2.2.2 CSD-framework for differential co-expression networks
The CSD-framework for generating gene co-expression networks has been developed by
André Voigt and Eivind Almaas at the Department of Biotechnology and Food Science
at NTNU4 and is described in the article ”A composite network of conserved and tissue
specific gene interactions reveals possible genetic interactions in glioma” [1]. The CSD-
framework aims to conserve more of the information attainable from the co-expression
measures than other existing methods by classifying differential co-expression into three
categories; conserved (C), specific (S), and diverging (D). Conserved co-expression re-
flects a similar co-expression pattern in both the gene-expression data-sets. Specific, refers
to cases in which one of the cases exhibits a ”significant” level of co-expression between
two genes, while the other does not. Finally Diverging co-expression corresponds to op-
posite co-expression (i.e. positive vs negative correlation) between two genes in the two
data-sets. Figure 2.6 illustrates how the CSD-scores are related to the co-expression val-
ues.

Intra-cohort similarity

As the CSD-framework is a method for differential co-expression analysis, the method
uses two or more sets of gene expression data originating from different tissues, species
or conditions. The first step of the method is calculating the similarity scores for all pairs
of genes within the each of the data-sets. The similarity scores are based on Spearman’s
rank correlation, where sij is determined by calculating the Spearman correlation over all
measurement points at each gene. Thus, in a data-set consisting of expression data from
100 patients, the Spearman correlation is calculated between arrays with 100 data points
for each gene.

Inter-cohort similarity

The next step in the CSD-method is quantifying the difference in co-expression patterns
across the different cohorts. Three different ”similarity”-scores are defined:

Cij =
|ρij,1 + ρij,2|√
σ2
ij,1 + σ2

ij,2

(2.22a)

Sij =
||ρij,1| − |ρij,2||√
σ2
ij,1 + σ2

ij,2

(2.22b)

Dij =
|ρij,1|+ |ρij,2| − |ρij,1 − ρij,2|√

σ2
ij,1 + σ2

ij,2

(2.22c)

The equations are given for the case of two different data-sets, indicated by the sub-
scripts 1 and 2. ρij,1 represents sij for case 1. σij,1 is the estimated variance in the

4Norwegian University of Science and Technology

15

Chapter 2. Background

Figure 2.6 Graphical representation of the C-, S-, and D-type co-expression regions of
interest.

Spearman correlation parameters. The variance is estimated by drawing independent sub-
samples of size k from the m measurement points in a data-set. For each subsample the
Spearman correlation is calculated, resulting in a distribution of correlation values for each
subsample. From this distribution the corresponding variance is estimated. This form of
variance estimation introduces some limitations on the data-sets that can be analyzed by
the methods. In order to achieve sufficiently good variance estimates a minimal num-
ber datapoints is required in each subsample to get sufficient accuracy in the subsample
correlations. Additionally a minimum number of values in each distribution is required
to obtain a representative estimate of the variance. The current subsampling algorithm
generates few subsamples when the number of data points is less than the square of the
subsample size (m ≈ k2). A minimum of 49 data points (m = 49), and a subsample size
of k = 7 is recommended in order to achieve good results using this method.

The argument for using a variance weighted comparison is that a distribution showing a
high variance is related to a pair of genes less consistently co-expressed than a distribution
with low variance. In other words; a gene-pair is less co-expressed the higher the variance
is. Therefore, as a measure of differential co-expression, the CSD-scores need to take this
variance into account.

The calculation of the CSD-scores results in three different interaction-scores for each
gene-pair, effectively making the network a 3-dimensional multilayer network5.

5Multilayer networks are described in section 2.1.7.

16

2.3 Microarray data

Adjacency function

The final step of the method is calculating the adjacency matrix from the inter-cohort
similarity matrix. The CSD-framework uses a hard threshold for the adjacency function
(i.e a Heaviside step function). However, as the three interaction scores (network layers)
have distributions with considerable differences in median, mean, variances, and shape in
general [1], a single cut-off value τ across the network layers might lead to inconsistent
significance requirements. Instead an empirical importance threshold Xp is determined
independently from the underlying distributions of each of the network layers. From theM
interaction scores calculated for the different gene pairs in each network layer, m samples
si of size L � M are drawn with replacement. The importance threshold is then defined
as the average of the maximum values from the generated samples:

Xp =
1

m

m∑
i=1

max{si}X (2.23)

The importance level associated with the threshold values XC
p , XS

p , and XD
p , is p =

1/L. In other words, the researcher picks the parameters p and m, from which the impor-
tance thresholds XC,S,D

p are determined. Using the formalism described in the previous
subchapter, the Heaviside step function is then applied to each of the network layers, using
τ = Xp.

2.3 Microarray data
Microarrays is a set of high-throughput analytic devises used for probing biological infor-
mation about an organism. A microarray generally consist of a solid substrate (glass slide
or silicon thin-film cell), labeled with a 2D grid of probes that interact with various biolog-
ical molecules. Typically the procedure of measuring the presence (and relative amount)
of a certain molecule involves labeling the relevant molecules with fluorescent markers.
The microarray is then scanned with a laser, and the observed fluorescent emission at a
probe becomes a relative measure of the amount present of the corresponding biological
molecule. The resulting data is usually normalized and corrected for background noise
as a part of the procedure [53]. Different types of microarrays exist for probing different
information. Examples are DNA microarrays, protein microarrays, peptide microarrays,
and antibody arrays amongst others.

2.3.1 Transcriptome profiling
DNA microarrays are used for profiling of a cell’s transcriptome6. The probes on a
DNA microarray consist of oligonucleotides (short segments of DNA) which allow for
hybridization with matching DNA-strands from the supplied specimen. In order to per-
form transcriptome profiling the mRNA from the specimen is isolated and copied into
stable double stranded cDNA. The cDNA is then fragmented and labeled with a fluores-
cent dye. The cDNA fragments are added to the microarray where hybridization between

6The set of all RNA-molecules present in a cell.

17

Chapter 2. Background

probes and targets occur. Finally, the probes are illuminated, and the resulting fluorescent
emission indicates the relative amount of the associated nucleotide sequence present in the
transcriptome of the specimen.

2.4 Rheumatoid arthritis
Rheumatoid arthritis (RA) is a common autoimmune disease that primarily affects the
joints. The effects are most prominent in the small joints of the hands and feet, where
immune cells invade the synovial membrane around the joints. The result of RA is inflam-
mation, hyperplasia, and progressive destruction of bone and cartilage. Other systemic
features related to RA includes cardiovascular, pulmonary, psychological, and skeletal dis-
orders, resulting in a higher mortality rate among RA-patients than for healthy individuals
[54].

RA is a multifactorial disease arising from a combination of environmental and ge-
netic factors. A twin study estimated that inherited genetic factors account for approxi-
mately 60% of the variation in disease liability [55, 56]. The the most highly associated
gene, HLA-DRB1, (HLA = human leukocyte antigen) has been estimated to account for
as much as 37% of the inherited liability [57] and as little as 18% for ACPA-positive
(Anti-citrullinated protein antibodies) and 2.4% for ACPA-negative patients [56]. The
fact that the most highly associated gene only show moderate association, illustrates the
difficulty in identifying single genetic factors related to RA. Instead, a combination of
several gene variants in combination with environmental factors causes the onset of the
disease. A list of 52 genes associated with the disease state can be found in appendix A
[58, 59, 60, 61, 62, 63, 64].

Non-genetic factors associated with RA include changes in sex hormones, occupa-
tional exposure to certain kinds of dusts and fibres, viral and bacterial infections, and long
term smoking [65].

2.5 Computer science

2.5.1 Asymptotic time complexity

The asymptotic time complexity describes how the time consumption of a program or func-
tion depends on the size of the input data. The reason it is called the asymptotic time
complexity is that it is expressed in terms of the dominating factor in the asymptotic limit
of the input data size. For instance, a program might have a worst-case running time de-
scribed by an3 + bn2 + cn+ d, where n is the size of input data and the other parameters
are constant factors. Such a function/program will have an asymptotic running time of
Θ(n3). For small input data the running time is not necessarily dominated by the third
order contribution. If the constant b is very high for instance, the running time will be
dominated by the second order contribution. However, for some value n = n0, the third
order contribution will start to dominate the running time, and will do so for all n > n0.
The time complexity notation thus describes the asymptotic time complexity of a function.

Three different time-complexity notations are used; Θ(f(n)), O(f(n)), and Ω(f(n)).

18

2.5 Computer science

Figure 2.7 Graphical representation of the definitions of the asymptotic time-complexity
parameters Θ(f(n)), O(f(n)), and Ω(f(n)).

Formally they are defined as follows [66]:

Θ(f(n)) means that there exist positive constants c1, c2 and n0 such that:
0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n > n0.

O(f(n)) means that there exist positive constants c and n0 such that:
0 < f(n) ≤ cg(n) for all n > n0.

Ω(f(n)) means that there exist positive constants c and n0 such that:
0 < cg(n) ≤ f(n) for all n > n0.

Figure 2.7 shows a graphical representation of the above definitions.

2.5.2 Parallel programming

In computer science a thread of execution is a sequence of instructions that can be per-
formed independently by a scheduler. A regular serial computer program executes on one
thread, where all computations involved are performed in sequence by the same thread.
Parallel computing is the process of structuring a program to accommodate parallel ex-
ecution of operations on multiple threads simultaneously. This opens up for significant
reduction in the time spent by a computer executing a program. This is of course provided
that the system contains hardware that supports parallel execution.

In the context of program time consumption it is important to distinguish between two
different concepts of time; CPU-time and wall-time. CPU-time is the number of opera-
tions required to execute the program, divided by the number of operations performed per
second by a CPU. Wall-time on the other hand, refers to the actual time it takes for the pro-
gram to execute. In other words, the wall-time is the time from you start the program until
the program terminates. The CPU-time is thus a measure of the amount of work required

19

Chapter 2. Background

to execute the code, and is independent of the number of cores executing the program7,
while the wall-time is the time it takes to execute the code.

2.6 Correlation and similarity measures
The following sections provide the definitions of different similarity measures used in co-
expression networks. Although Spearman correlation is used throughout this thesis, a brief
discussion on the choice of similarity measure is included in the discussion chapter. The
relevant methods are therefore described here as a reference.

2.6.1 Pearson correlation
Pearson’s correlation coefficient is a measure of linear correlation between two variables.
The formula for the Pearson correlation coefficient is as follows:

ρX,Y =
cov(X,Y)

σXσY
(2.24)

Here cov(X,Y) is the co-variance between the variables X and Y , and σ gives their
standard deviations. The Pearson correlation coefficient thus assumes a value between -1
and 1, where ρX,Y = 1 implies perfect positive linear correlation and ρX,Y = −1 perfect
negative correlation between X and Y .

2.6.2 Spearman correlation
The Spearman correlation coefficient is a measure of the monotonic relationship between
two variables. The formula for calculating the Spearman correlation coefficient is the same
as for Pearson’s correlation coefficient. However, while the Pearson correlation is calcu-
lated based on the actual values assumed by the variables X and Y , Spearman correlation
uses their relative ranks.

ρrX ,rY =
cov(rX, rY)

σrXσrY
(2.25)

Here rX and rY refers to the ranked values of the parameters X and Y . Perfect Spear-
man correlation (ρrX ,rY = 1) indicates a perfect monotonic relationship, linear or non-
linear.

2.6.3 Kendall’s tau
Just as the Spearman correlation, Kendall’s tau is a statistic used to measure ordinal asso-
ciation between two random variables. Kendall’s [67] tau is based on comparison of pairs
of measurements from the two variables. For two variables X and Y , (xi, yi) and (xj , yj)
are compared. If xi > yi and xj > yj , or the other way around, the pair is said to be
concordant. If this is not the case, and xi < yi for xj > yj for instance, the pair is called

7Technically the amount of work required increases with the number of cores due to increased overhead.

20

2.6 Correlation and similarity measures

discordant. By determining the number of concordant pairs nc and discordant pairs nd,
Kendall’s tau is given by:

τ =
nc − nd(
n(n−1)

2

) (2.26)

with the denominator representing the number of different ways of combining the n
measurements of the variables X and Y . A problem in both Spearman correlation and
Kendall’s tau is dealing with identical measurements of a variable. For variables contain-
ing many such ties (xi = xj or yi = yj), alternate versions of Kendall’s tau exist that
compensates for this. An example of this is the τB statistic:

τB =
nc − nd√

(nc + nd + nt,X)(nc + nd + nt,Y)
(2.27)

Here nt,X and nt,Y is the number of ties in X and Y respectively. This modification
effectively normalizes the τ -scores to the interval τ ∈ [−1, 1] even in the presence of large
amounts of tied variable values.

2.6.4 Biweight midcorrelation
Biweight midcorrelation is a median-based similarity measure. The fact that it is median
based makes it more robust to outliers than Pearson correlation, for example. It has there-
fore been suggested as a more robust alternative for evaluating co-expression patterns in
genes [51].

The biweight midcorrelation incorporates weights wi for each value assumed by the
variables X and Y , in order to remove outliers, and assigns more weight to values close to
the medians. The weights are calculated from median based parameters defined as follows:

ui =
xi −med(x)

9 ·mad(x)
(2.28a)

vi =
yi −med(y)

9 ·mad(y)
(2.28b)

Here med(x) is the median of x, and mad(x) is its median absolute deviation (mad(x) =
med(|Xi −med(X)|)). The weights are then defined as;

w
(x)
i = (1− u2i)2 · I(1− |ui|) (2.29a)

w
(y)
i = (1− v2i)2 · I(1− |vi|) (2.29b)

where,

I(x) =

{
1 x > 0

0 otherwise
(2.30)

21

Chapter 2. Background

The deviation from the median is calculated and normalized,

x̃i =
(xi −med(x)) · w(x)

i√∑m
j=1

[
(xj −med(x)) · w(x)

j

]2 (2.31a)

ỹi =
(yi −med(y)) · w(y)

i√∑m
j=1

[
(yj −med(y)) · w(y)

j

]2 (2.31b)

and the biweight midcorrelation is given by:

bicorr(x, y) =

m∑
i=1

x̃i · ỹj (2.32)

2.6.5 Mutual information

Mutual information is a measure of variable dependency. The mutual information (MI)
between variable X and variable Y gives the amount of information (in units of bits or
shannons) that is obtained about the variable X through variable Y or vice versa. Mutual
information is defined as follows [68]:

I(X,Y) =
∑
x∈X

∑
y∈Y

p(x, y)log

(
p(x, y)

p(x)p(y)

)
(2.33)

Here p(x, y) is the joint probability distribution of X and Y , and p(x) and p(y) the
corresponding marginal distributions. As mutual information is defined in terms of discrete
variables, binning procedures for the estimation of the discrete probability distributions is
needed for application on continuous data [69].

Mutual information has the advantage that it does not make any assumptions about
how two variables are related, it simply measures their dependency. A measure of zero
mutual information implies statistical independence between the variables, provided the
estimated probability distributions are correct.

2.7 Statistics

2.7.1 Fisher exact test

Fisher’s exact test [70] is a test used for evaluating dependencies in nominal variables.
Consider for instance a case of a 2× 2 contingency table,where the first variable represent
the gender, and the second variable whether or not a person is a student. The test assumes
constant margins sums in the table.

22

2.7 Statistics

Table 2.1: Example of contingency table for two nominal variables.

Male Female Total:
Student a b a+ b

Not student c d c+ d

Total: a+ c b+ d n = a+ b+ c+ d

Fisher’s exact test is based on a null hypothesis of independence between the variables.
The hypergeometric distribution is then used to calculate the probability of getting the
observed data or more extreme observations. The resulting probability is the p-value of
the test. For the two-tailed test, the probability of getting equally extreme observations but
in the opposite direction is also added. The probability of a given observation is calculated
from the hypergeometric probability function:

p =

(
a+b
a

)(
c+d
c

)(
n
a+c

) =
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n!
(2.34)

A multivariate generalization of the above function can be expressed in terms of the
row sums Ri, columns sums Cj and matrix elements mij as follows:

p =
Πi(Ri!) ·Πj(Cj !)

n! ·Πi,j(mij !)
(2.35)

For the estimation of the p-value of this test, the tables must be ordered by some criteria
to determine which observations are considered further away from independence.

Fisher’s exact test is mostly used when the number of observations is small, due to
the number of computations that needs to be performed. For cases with many observa-
tions, or approximately equal number of observations in each category (resulting in many
computations), the chi-squared test of independence can be used as a good approximation.

2.7.2 Bonferroni correction

Bonferroni correction [71] is a simple and conservative method for compensating for mul-
tiple testing in statistics. Let H1, ...,Hm be a set of hypothesis with a corresponding set
of p-values p1, ...pm. Here m is the total number of null hypotheses. Given m0 true null
hypotheses, the Bonferroni correction limits the familywise error rate (FWER)8 to less
than or equal to α by requiring that pi ≤ α

m :

FWER = P

{
m0⋃
i=1

(
pi ≤

α

m

)}
≤

m0∑
i=1

{
P
(
pi ≤

α

m

)}
= m0

α

m
≤ m α

m
= α (2.36)

8The probability of making a false discovery (type 1 error)

23

Chapter 2. Background

2.7.3 Benjamini-Hockberg method
The Benjamini-Hockberg method [72] for compensating for multiple testing is based on
limiting the false discovery rate (FDR) at a level α. The false discovery rate is defined as
the expected number of false discoveries among the discoveries. For a set of hypotheses
H1, ...,Hm with corresponding p-values P(1), ..., P (m), sorted in ascending order of p-
values, the Benjamini-Hockberg precedure is done the following way:

1. For a given α find the largest value k such that P(k) ≤ k
mα

2. Reject all null hypothesis H(i) for i = 1, 2, ..., k

The Benjamini-Hockberg method is valid for independent tests, but also for some cases
of dependency [73]. A modification to the method exists that compensates for dependence
[73]. The concept of controlling the false discovery rate, provides less stringent com-
pensation of type 1 error than controlling family wise error rate such as the Bonferroni
correction method. The increased power of the FDR-based methods comes at the cost of
increased probability of type 1 errors.

24

Chapter 3
Methods: Software

The main goal of this thesis was the development of a program for fast and easy gener-
ation of differential co-expression networks using the CSD-framework. The result is the
program CSD-CS, short for CSD-C++ Software. The entire software has been developed
as a part of this thesis, and so everything described in this chapter refers to work performed
by the author. The software can be found on github1, along with all related files. As the
name indicates, the program was implemented using the C++ programming language. It
comes with a GNU make file as the software was written and developed on Ubuntu 16.04.
Due to the computationally expensive nature of the CSD-method, a simple parallelization
scheme of the sections with highest temporal complexity was performed using OpenMP.
It should be noted that OpenMP is for shared memory systems only. The software have
been thoroughly tested during development, and appears to behave according to its speci-
fications. Potential users should however make themselves acquainted with the program’s
limitations and requirements before using it. The networks generated by the program are
written to file in a format compatible with the Cytoscape [74] software environment. This
makes it easy to both visualize and analyze the network using the network analyzer [75]
package.

The CSD-CS project is open source and comes with an MIT-License. Some effort has
been made to facilitate further development, and suggestions for possible projects for ex-
tended functionality and alternate solutions can be found in the discussion chapter. The
sections below contains a thorough description of the program. Hopefully this chapter will
make it easier for others to read and understand the code, and encourage further develop-
ment.

1www.github.com/magnusolavhelland/CSD-Software

25

www.github.com/magnusolavhelland/CSD-Software

Chapter 3. Methods: Software

3.1 Program overview
Following from the CSD-method, the CSD-software consists of three main processes; cal-
culating similarity scores within each dataset, determining CSD-scores, and determining
the adjacency matrices using the importance thresholds. The CSD-Software was devel-
oped in a modular fashion, where each of the processes above behaves as an independent
subprogram to the user. Any sequential combination of these subprograms are valid exe-
cutions of the program. The operation of the program is specified through the combination
of input parameters supplied by the user2. Which of the processes is executed depends on
the supplied input data and the requested output data. The program can only take one type
of input-data, but the user can request multiple output-files containing the results from
each of the ”subprograms” executed.

The full program, using expression data as input and returning a CSD-network, per-
forms the following steps:

1. Preprocessing of input data

2. Reading from files

3. Calculating correlation coefficients

4. Generating subsamples and estimating variances

5. Calculating CSD-scores

6. Determining importance thresholds for C-,S- and D-type interactions

7. Calculating adjacency matrices

8. Writing network to file

The first step of the software involves preprocessing of the input data. The purpose
of this step is to enable more flexible use of the program. The preprocessing algorithm
removes all genes not present in all input-files, and eliminates the need for identically
sorted gene-sequences in the input-files. As the three processes operates on different data-
formats, so does the program-modules. Although, the current version of the program
writes all output-data in a format the next module can read, only the first software module
contains a preprocessing function. This limits independent use of the other modules, as the
program can only use two sets of correlation data (or CSD-scores), provided that they were
analyzed together by module 1. The result is a somewhat limited modular functionality in
the current version of the software.

3.2 Setting up and using the program
After downloading CSD-CS repository from github and putting it in an appropriate folder,
the only remaining step before using the program is compiling it. The program was com-
piled using the g++ compiler (version 4.5.0). In the linux terminal, the program can be

2See section on ”Program parameters”.

26

3.2 Setting up and using the program

Figure 3.1 The figure illustrates the program modularity. Each module represents one of
the one of the main processes of the program, and can be performed independently of each
other.

27

Chapter 3. Methods: Software

Figure 3.2 The figure illustrates how the program can be executed using the linux terminal.
Notice how all parameters are preceded by an appropriate identifier.

compiled by moving to the directory where the program is located and enter the command
make. This should create an executable called CSD-CS. There is currently no make file
for Windows operating systems.

The operation of the program is specified by the parameters described in the sections
below. The program searches for all input files in the same folder as the executable is
located in. The program also places all output files, including a file containing mismatched
genes from the input files, in this same folder. Some of the output files have generic
default names, such as CSD Network.txt for the filtered CSD-network. For this reason the
user should make sure to remove or copy any previous results to a different folder before
running the program, or the files will be overwritten.

3.3 Program parameters
The CSD-CS program have a total of 13 input parameters that can be specified by the
user. A parameter is set upon calling the executable in the terminal, by following it by
an indicator and then a suitable argument. All elements should be separated by a space,
and all arguments should be preceded by an indicator. Table 3.1 shows an overview of
the indicators and arguments used by the program. The program verifies all keywords
before assigning them to their parameter, and returns an error if the argument does not
match one of the legal keywords for the parameter. If invalid file names are passed, the
program will terminate when trying to read the file and return an error. The program also
interprets the combination of parameters supplied by the user and validates its logic. For
instance, attempting to return correlation-data when using CSD-scores as input will cause
the program to terminate before execution and return an error. Assigning meaningful
values to the numerical parameters is left for the user.

3.3.1 Input file
Input files are added to the program by passing the -i indicator followed by the file name
when calling the program. The program can take an arbitrary number of input files. It is
however required that all the input files are of the same type. When receiving more than

28

3.3 Program parameters

Table 3.1: Overview of the indicators, and arguments used by CSD-CS. Upon calling the program in
the terminal, it should be followed by some combination of these arguments to specify the execution
of the program. Each argument should be preceded by the appropriate indicator to specify which
parameter it sets. The arguments given in italic are keywords specific for the indicator. Attempting
to set one of these parameters using anything other than a keyword will return an error.

Indicator Parameter Argument(-s)
-i input file filename
-k subsample size integer
-p importance level float
- -input type of input data ged

corr
csd

- -output type of output data corr
csd
network
all

- -corrMethod measure of coexpression spearman
- -format orientation of gene expression vertical

data in input file horizontal
–maxSubsamples maximum number of subsamples integer

to be generated by the
subsampling algorithm

–terminationLimit the maximum number of failed integer
attemts at generating a subsample

–randomSeed seed for random number generators integer
in program

–iSamples number of samples drawn in integer
importance threshold estimation

–threads number of parallel threads integer
spawned by the program

–outfilePrefix prefix for names of string
output files

29

Chapter 3. Methods: Software

two input files, the program generates one network for each possible combination of the
datasets. The memory and time consumption of the program when receiving more than
two files has not been verified, but both are assumed to scale linearly with the number of
ways of combining the x input files (x(x−1)2).

3.3.2 Subsample size

The subsample size is set by through the -k indicator. The argument must be an integer in
the interval 〈0,m] where m is the number of data points per gene in the gene-expression
file with the lowest number of data points. As explained in the theory chapter the subsam-
ple size should be at least 7 and ideally k ≤

√
m, thus the input files should contain at

least 49 data points per gene.

3.3.3 Importance level

The importance level of the method can be set by using the -p indicator. The argument
should be a decimal number in the interval 〈0, 1〉.

3.3.4 Input data and file format

The input data parameter is used to specify the data type in the input files. There are three
possible keywords that can be assigned to this parameter; ged (gene-expression data), corr
(correlation and variation data), or csd (all CSD-scores). The format of the input data used
by the program, is different for each case. The two latter cases have some resemblance
in that they give a sorted list of all possible gene pairs, along with the correlation and
variance, or CSD-scores respectively. For the case of gene-expression data, the input file
should contain a tab-separated two dimensional matrix, where the first row and column
should contain the gene-IDs and measurement-IDs. In the case of ged-input, the format
parameter can be used to specify along which axis the genes are oriented in the matrix.
Two possible arguments exist for the format parameter; vertical, and horizontal. Vertical
means that each row contains all the measurements of a single gene, while horizontal
means that the measurements of a gene are found along a column.

For examples of the data-formats see appendix B.

3.3.5 Output data

The output data parameter is used to specify which types of output the program should
return. The output data parameter is different from the other parameters in that it can take
multiple assignments, thus allowing the user to request multiple outputs. The keywords
for this parameter are: corr, csd, network and all. The corr keywords requests correlation
and variance data to be written to a file. csd tells the program to return the CSD-scores
before thresholding, while network returns the list of gene-pairs in CSD-network after
importance-filtering. Using the all-keyword writes correlation, variance and CSD-scores

30

3.3 Program parameters

for all gene-pairs to a single file. Note that requesting corr, csd, or all for datasets contain-
ing a large number of genes results in large output files.3

3.3.6 Correlation method
The correlation method parameter are used to specify which type of correlation function
that should be used as a similarity measure for co-expression. Currently only Spearman
correlation is supported, but a discussion on other correlation measures relevant for future
versions of CSD-CS is supplied in chapter 7.

3.3.7 Subsampling parameters
Two different subsampling schemes is used by the software4. The first subsampling scheme
is used for estimating correlation variances, and the second for determining the importance
thresholds. The subsampling scheme used for variance estimation uses the parameters
maxSubsamples, teminationLimit and randomSeed. maxSubsamples sets an upper limit
for the number of subsamples that can be generated. This is useful in cases where two
datasets have a large difference in the number of data points. For such cases, the dataset
with few measurement points will limit the subsample size, and cause a large number
of subsamples to be generated for the bigger dataset. This in turn increases the running
time of the program. By introducing a maximum number of subsamples, the subsampling
algorithm terminates when a sufficient number of subsamples have been generated.

As the first subsampling function is random based, a termination criterion for cases
in which the maximum number of subsamples is not reached is also required. This is
provided through the terminationLimit-parameter. When the subsampling algorithm has
unsuccessfully attempted to draw a subsample as many times as specified by the termina-
tionLimit, the algorithm terminates.

Finally, the randomSeed is used by the random number generator to generate repro-
ducible results.

The second subsampling function is used for threshold estimation. Similar to the first
subsampling function, it uses a random number generator in the drawing procedure. The
randomSeed is thus used by this function as well. In contrast to the first subsampling
algorithm, the second one draws the subsamples with replacement. In other words; af-
ter successfully generating a subsample, the drawn data-points can be re-drawn in later
subsamples. Thus, as long as the number of values drawn in each subsample is less then
the total number of values in the underlying distribution, the algorithm can generate an
arbitrary number of subsamples. The parameter iSamples is therefore used to specify the
number of subsamples drawn before termination.

3.3.8 Threads
The program is parallelized for shared memory systems in order to reduce the wall-time.
This feature is used through the threads-parameter. The program spawns the number of

3The all-file generated for the application in chapter 5 had a size of 9.4 GB. In this case the total number of
genes were 18490.

4See section 3.5 for description of the algorithms.

31

Chapter 3. Methods: Software

Parameter Default value
Subsample size 7
Importance level 0.001
Input data type ged
Correlation measure spearman
Data format vertical
Max subsamples 100
Termination limit 1000
Importance samples 10000
Outfile prefix ”CSD”
Threads 1

Table 3.2: The table shows the default values of the input parameters of the CSD-CS-program.

threads requested through the threads-parameter, and as long as the number of threads does
not exceed the number of cores, all threads are executed in parallel by relevant program
sections.

3.3.9 The outfilePrefix parameter
As mentioned earlier in this chapter, some of the output files have general names as
default. In order to avoid overwriting older files, a prefix for the output files can be
specified by the user. For instance, if the datasets analyzed is related to breast can-
cer, the prefix ”breast cancer” can be supplied, for which the output files will be called
”breast cancer corr.txt”, ”breast cancer csd.txt”, ”breast cancer network.txt” and
”breast cancer all.txt”, for the four different output types.

3.3.10 Default values and unnecessary parameters
All parameters have default values except for the output parameter, input file-list and ran-
dom seed. The default values have been chosen to accommodate a minimalist case with
respect to number of data points. The default values are listed in table 3.2.

Although all parameters will have some assigned value when the program is executed,
default or user specified, they will not necessarily have an impact. For instance if the user
feeds the program gene-expression data and requests correlation-data as the only output,
the program will terminate after writing the requested data to file. This means that the
importance level parameter will not be used by the program regardless of whether the user
specifies it or not. The program will not return any warnings or errors in such a case as it
does not affect the results in any way.

3.4 Data formats
Examples of the data formats used by the program can be found in appendix B. The pro-
gram assumes that all input files matches the specified format, and is sensitive to vari-
ations. For example, when using gene expression data as input, the program does not

32

3.5 Algorithms

tolerate empty space at the end of a line as this will cause it to overestimate the number of
columns. The program is then likely to crash, or worse; it will use uninitialized values in
its calculations. Empty space should also be avoided at the bottom of the file, although it
has not been registered to have any consequences.

Currently the program only performs any preprocessing5 int the case of gene expres-
sion data as input. The preprocessing algorithm filters out all gene-data that does not occur
in all input files. The software does not have an equivalent functionality for correlation-
data or CSD-scores as input, and so the flexibility in using these sections separately is
restricted. The user is then required to remove any gene-pairs that does not occur in all
files himself/herself, in order for the similarity and adjacency matrices to have the same
dimensions. It is also important that the gene-pairs are sorted for these data-types, as this
required by the file-reading algorithm.

3.5 Algorithms

3.5.1 Preprocessing gene-IDs
As a measure to increase the flexibility of the program in dealing with differences in data
from different sources, a preprocessing algorithm was implemented during this work. The
purpose of this algorithm is to remove the genes that do not occur in all input files. At
the same time the algorithm sorts the remaining genes by their identifiers, allowing the
subsequent function, that reads the data from each of the input files, to store the result-
ing data-matrices in the same order. This is useful as it makes it easier to keep track of
the genes and their combinations later on in the program, and ensures the similarity and
adjacency matrices contain the same gene pairs at each position [i, j].

The algorithm simply starts out be reading the gene-IDs from each input file into sep-
arate C++-vectors. All of them are then sorted using the quick-sort algorithm [66] by per-
forming character-by-character comparisons between the strings, and giving short strings
precedence before long strings. The vectors are then iterated through looking for matching
elements, and the intersection (i.e. the conjunction) of the gene-ID vectors is returned. The
algorithm is estimated to have an asymptotic running time of O(m · nmax · log(nmax)).
Here m is the number of input files, and nmax is the largest number of genes in any of
the input files. The asymptotic running time is caused by the quick-sort algorithm running
in O(nlog(n)). The intersection part of the algorithm will run in O(n1 + n2 + ...nm) ≈
O(m × navg), which is negligible in the asymptotic limit. Figure 3.3 shows the general
idea behind the filtering algorithm. All gene-IDs not found in the intersection vector, are
written to a separate file by the program. The file is called ”mismatchedGenes.txt” and is
put in the program’s directory.

3.5.2 Correlation calculations
The correlation calculations uses the Spearman correlation measure. Thus it consists of
two steps; ranking the measurements for each gene, and calculating the correlation coeffi-
cient for each different gene-pair. The merge-sort algorithm [66] was used for ranking the

5Algorithm described in the next section

33

Chapter 3. Methods: Software

Figure 3.3 Illustration of the idea behind the preprocessing algorithm, for the case of four
input files. Each row is a sorted gene-list from one of the input-files. The gene lists are it-
erated over incrementally, and all genes not present in all data-sets are ignored. By sorting
the gene-lists first, the algorithm only needs to iterate over all elements once, allowing the
comparison to run in linear time. The color is added to highlight the successful compar-
isons and make them easier to separate from one another.

data. Although both quick-sort and merge-sort have expected asymptotic time complexi-
ties of Θ(m · log(m), merge-sort has a larger constant factor causing quick-sort to perform
better on average. Merge-sort is however a stable sorting algorithm which was considered
important for consistent ranking, in particular for cases with multiple identical measure-
ment values. Merge-sort was therefore chosen over quick-sort for this purpose. For n
genes andmmeasurements, this first step results in a time complexity of Θ(n ·m · log(m).

The second step is calculating the correlation parameters. The formula is the same as
for Pearson correlation, and can be performed in linear time (Θ(m)). It does however need
to be repeated for all possible combinations of the n genes (n(n−1)/2) resulting in a time
complexity of Θ(m · n2) for the second step.

For the majority of cases, the number of genes n will be much bigger than the number
of measurements m. Therefore the total time-complexity of this algorithm is ≈ Θ(n2),
but with a large constant factor.

3.5.3 Subsampling algorithms for variance estimation

The CSD-method estimates the variance in the correlation measures by subsampling the
measurement points and calculating the correlations for each of the subsamples. From
the generated distributions the variance is then calculated. The problem is therefore to
generate a sufficient number of subsamples to get enough points in each distribution to get
a good estimate of the variance. At the same time, the number of subsamples should not
be too high, as this makes the method computationally expensive. The current solution
is to generate independent subsamples, so that no two measurements occur in the same

34

3.5 Algorithms

subsample twice. In the article describing the method [1], the following algorithm for
generation of independent subsamples was described:

1. Enumerate the objects in the set from which the sub-samples will be drawn.

2. Divide the total set of objects into groups of size k by their assigned values, thus
generating a set of initial subsamples.
(Ex: k = 4 will yield {(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), ...})

3. Now, staring at the object with the lowest index i = 1, sequentially iterate through
the objects and add to the current sub-sample any objects that have not previously
co-occurred in a sub-sample with any of the selected objects. Continue this process
until the sub-sample is of size k, or there are no more valid objects.

4. Repeat the step above until there are no more possible sub-samples including i.

5. Repeat steps 3 and 4, increasing i, until there are no more possible sub-samples to
be drawn.

During program and algorithm testing it was discovered that this structured method
of drawing subsamples did not generate an optimal amount of subsamples. Although the
algorithm is simple and predictable, it tended to draw the subsamples so that some of
the measurement points were left with many unused combinations. The reason seemed
to be that this form of systematic drawing favoured some of the data points over others.
For instance data points with low indices are favoured over high-index data points, as
the low-index ones have their domains exhausted earlier, and are thus less restricted by
the domains of the other variables. There also seemed to be some regular interval at
which unfavoured variables would occur, seemingly related to the grouping performed in
step 2 of the algorithm above. For this reason three different approaches to independent
subsampling were attempted. In addition to the algorithm above, a similar method omitting
step number 2 was implemented, and a random based subsampling algorithm. The current
version of CSD-CS uses the random subsampling algorithm described below, as it turned
out to perform better than the sequential algorithms (see section 4.1).

Implementation of sequential algorithms

The sequential subsampling algorithms was implemented using the backtracking-search
algorithm [76]. It is a depth-first search algorithm, that systematically traverses a search
tree looking for a solution. The search-tree traversed by the algorithm in this case has a
maximum depth of k and an initial branching factor of (m−1−d), where k is the subsam-
ple size, m is the number of measurements, and d is the depth in the search-tree. Finding
a solution (generating a valid subsample) consist in arriving at depth d = k in the search-
tree. Upon finding a valid solution, the subsample is stored and the search-tree modified,
removing all paths conflicting with the generated subsample (in terms of the independence
requirement). This guarantees that all consecutive subsamples will be independent. The
backtracking search algorithm is guaranteed to find a valid solution given its existence,
and so when it fails to generate a new subsample, the subsampling procedure terminates.
The backtracking-search algorithm was instructed to always evaluate the measurements

35

Chapter 3. Methods: Software

points with lowest index first. The only difference between the two sequential algorithms
is whether or not step 2 in the algorithm described above is performed before initiating the
backtracking search algorithm.

The worst-case time complexity of the algorithms is O(k · s · m2), where k is the
subsample size, m is the number of measurements at each gene, and s is the number of
subsamples generated. The memory complexity of the algorithm is O(m2).

Random subsampling algorithm

The random subsampling algorithm works much the same way as the incremental one.
The main difference is that in stead of using the backtracking search-algorithm, it simply
chooses a path randomly down the search-tree. If the algorithm reaches a dead end (a path
shorter than k), it starts from the top again.

Two different termination criteria are used by the function. The first one (set by termi-
nationLimit program parameter) causes the algorithm to terminate once a certain number
of unsuccessful paths has been explored. The algorithm has no memory of the paths tra-
versed, and so there is a possibility that a dead-end path may be attempted several times,
although this is unlikely to be a big problem. The second termination criterion (the one set
through the maxSubsamples parameter) causes the algorithm to terminate when a certain
number of successful paths have been explored.

The random subsampling algorithm runs in O(k ·m · (smax + fmax)) where k is the
subsample size, m is the number of measurements and smax and kmax refers to the two
termination limits above. The memory complexity is O(m2).

3.5.4 Variance estimation

After generating the subsamples using the algorithm above, the Spearman correlation pa-
rameter is calculated for each of the subsamples for all possible gene-pairs. Thus, for
each pair of genes, s (the number of subsamples) correlation parameters are calculated.
The variance in the correlation between the relevant gene-pair is then calculated from the
s subsample-correlations. As the variance estimation runs in linear time (Θ(s)), and the
Spearman correlation in Θ(k · log(k)) (due to the merge sort algorithm), the total time
complexity of this procedure is Θ((k · log(k) + 1) · s · n2), as the Spearman correlation
must be calculated for each of the s subsamples and each of the ∝ n2 gene pairs, while
the variance only needs to be calculated for each gene-pair.

3.5.5 Calculating CSD-scores

The CSD-scores are calculated from the correlation and variance using equations 2.22.
Assuming that the calculation of a square-root is performed in constant time, the time-
complexity of calculating CSD-scores is proportional to the number of gene-pairs (∝ n2).
The calculation of the CSD-scores thus runs in Θ(n2).

36

3.6 Parallelization

3.5.6 Estimation of importance thresholds
As explained in the previous chapter (section 2.2.2) the thresholds are estimated as the
average maximum C-,S- and D-scores drawn in a set of subsamples of size 1/p, where p
is the selected importance level. Each of the subsamples are drawn with replacement. The
current implementation of this subsampling scheme does not keep track of which elements
have been drawn, thus it does not guarantee that all elements in a subsample are separate
elements. In other words, it is possible to draw the same value twice in a subsample. For
the example analysis performed in this thesis, a datasets of approximately 20 000 genes
were used, resulting in approximately 2 · 108 C-, S-, and D-scores. An importance level
of p = 10−5 requires the subsamples to contain 105 elements each. This means that each
subsample only contains 0.05% of the total number of elements. Although it is likely
that some elements will be drawn multiple times, the effect of this is assumed negligible
as long as 1/p � n(n − 1)/2. The advantage of implementing the method this way is
increased speed and reduced memory consumption, as the algorithm does not need to keep
track of the elements drawn.

The time complexity of this algorithm is Θ(sp · 1p), where sp is the number of subsam-
ples generated by the algorithm set through iSamples.

3.6 Parallelization
The human genome contains about 20 000-25 000 protein coding genes [77], and so the
software must accommodate data sets of this size. As the previous subsection illustrated,
several of the processes runs in Θ(n2). Most notably, the correlation and variance estima-
tions has a time complexity proportional to n2 with high constant factors. With n = 2·104,
the computational complexity is proportional to 4 · 108 operations, resulting in high wall-
times for the program. As a measure to reduce time-consumption parallelization of the
most computationally expensive processes was performed using OpenMP6 [80, 81].

Parallelization of both the correlation and variance calculations was performed by par-
allelizing the outer for-loop in the algorithms. The parallelization uses a cyclic division of
the loop-indices over the threads. This means that if the indices 1 to 16 were to be divided
over 4 threads t1,t2,t3,t4, the division would be as follows:

t1 1,5,9,13
t2 2,6,10,14
t3 3,7,11,15
t4 4,8,12,16

In the current implementation of the program all loops iterating over the adjacency
or similarity matrices are constructed so that the workload associated with each index i is
proportional to n−i. This results in a slightly uneven distribution of the workload over the

6”OpenMP is a specification for a set of compiler directives, library routines, and environment variables
that can be used to specify high-level parallelism in Fortran and C/C++ programs.” [78] ”The OpenMP ARB
(Architecture Review Boards) mission is to standardize directive-based multi-language high-level parallelism
that is performant, productive and portable.”[79]

37

Chapter 3. Methods: Software

threads, when using the cyclic division described above. However, the loss in efficiency of
the parallelization is assumed to be small to negligible.

Although parallelizing the correlation and variance calculations was considered most
important, other program sections also lends itself to simple parallelization. Step 1 and
2 involving data preprocessing and file reading, can be performed independently of each
other, and so, if more threads are spawned by the program than the number of input files
given to the program, these processes are performed in parallel. Step 5 in the program,
calculating the CSD-scores, is also parallelized in a manner similar to the correlation cal-
culations; by cyclic division of the outer for-loop over available threads.

38

Chapter 4
Results: Software

As CSD-CS is a program developed for streamlined generation of differential co-expression
networks, it is interesting to evaluate the software’s performance in terms of resource re-
quirements. Aside from ease of use, an important aspect is the system requirements for
running the program. Limiting maximum memory usage is a key factor in determining
which systems are able to run the software, and how big data sets are supported. The fol-
lowing sections will present an analysis of the program performance with a special focus
on the time- and memory-complexity of the program.

4.1 Subsampling algorithms

As described in chapter 3, three different subsampling algorithms were implemented in
order to investigate possible improvements to the algorithm described in [1]. When testing
the algorithms the random subsampling algorithm was set to terminate after 1000 unsuc-
cessful attempts at drawing a subsample. For this termination limit the random subsam-
pling algorithm generally outperformed the other two methods for the subsample sizes and
number of measurements tested here (figure 4.1). As seen from the figures, the number of
subsamples generated by the random subsampling follows the number of measurements
more steadily and with fewer variations than the two other methods. This result might
seem surprising, as one would expect that random drawing would introduce a certain level
of variability in the number of subsamples generated. Although this is likely to be the
case, this result provides some evidence for the observed problems related to systematic
drawing described in chapter 3. Even if the exact mechanisms that cause this behaviour
are not fully known, it seems to limit the number of subsamples that can be drawn to such
an extent that random drawing is more successful. As a result the CSD-CS software was
implemented using the random subsampling algorithm described in section 3.5.3.

39

Chapter 4. Results: Software

Figure 4.1 The number of subsamples generated by the different subsampling algorithms.
The random subsampling algorithm generally outperforms the other two methods.

40

4.2 Time consumption and parallel efficiency

4.2 Time consumption and parallel efficiency

4.2.1 Time complexity analysis

A summary of the time complexity of different program sections is given in table 4.1.

Table 4.1: The time-complexity of different processes in the CSD-CS software.

Process Time-complexity
Preprocessing O(m · n · log(n))
File reading Θ(m · n)
Correlations Θ(m · n2)
Subsampling O(k ·m · (smax + fmax))
Variance estimation Θ((k · log(k) + 1) · s · n2)
CSD-scores Θ(n2)
Threshold estimation Θ(sp · 1p)

Adjacency matrix Θ(n2)
File writing Θ(n2)

As seen from table 4.1 the dominating factor for determining the time-complexity of
the program is the number of genes n in the data sets. Since n is also expected to be larger
than all other parameters (except for maybe 1/p), the program is thus expected to have
a running time proportional to n2. Of the listed processes, the correlation and variance
calculations are responsible for the major contribution to the wall-time. To verify the
expected time-complexity, the CPU-time used by the program for datasets containing a
varying number of genes n was tested along with the corresponding CPU-time related to
the correlation and variance calculations. The results can be seen in figure 4.2.

The program was run using two input files containing m = 100 data points for each
of the n genes. The other parameters were k = 10 and p = 10−5. As seen in figure 4.2,
for low n the time used by the program is not dominated by the correlation and variance
calculations. The majority of the time-consumption in these cases is caused by the thresh-
old estimations, whose time-complexity is independent of n. As the time-complexity of
the threshold estimation is independent of n, the effect of these calculations on the overall
time-consumption of the program quickly becomes negligible as n increases. Based on
the asymptotic time-complexities presented in table 4.1 one would expect the contribution
from the correlation and variance calculations to dominate the overall time-consumption.
This is verified by the observations from figure 4.2.

Figure 4.3 confirms that the time-complexity of the program is in fact proportional to
n2. The blue line shows the CPU-time of the program as a function of n, when run on 10
cores, with m = 100, k = 10, t = 1000, p = 10−5 and simp = 10000. The red line
shows a second degree polynomial fit on the form:

y = (3.78 · 10−5) · n2 + (2.47 · 10−2) · n+ 178.8 (4.1)

41

Chapter 4. Results: Software

Figure 4.2 The figure shows the CPU-time used by CSD-CS for input data containing
100 measurements for a various number of genes n ∈ [1000, 25000]. The CPU-time is
initially dominated by the contribution from the threshold estimation algorithm, which
runs in approximately constant time for a given combination of p and simp. The figure
shows the strong influence of the number of genes in the data set on the time consumption
of the program. For large n the time consumption is purely exponential and approximately
equal the time consumption of the correlation calculations.

Figure 4.3 The figure shows how the CPU-time of the program depends on the number of
genes in the analyzed data-sets. A second degree polynomial fit (the red line) verifies the
estimated time-complexity of the program O(n2).

42

4.2 Time consumption and parallel efficiency

Figure 4.4 Result of parallelizing the correlation and variance calculations. The top figure
shows how the wall-time of the program section follows the the number of cores used. The
middle plot show the speed-up-factor S, and the bottom figure shows the efficiency E of
the parallelization.

4.2.2 Parallelization of correlation and variance calculations
As a response to the strong influence from the correlation and variance calculations on the
time consumption of the program, a parallelization scheme was implemented to reduce
the wall-time of the program. In evaluating the effect of the parallelization two parame-
ters are of main interest; speed-up factor S and efficiency E. They both convey similar
information, and are defined as follows:

S =
T (1)

T (c)
(4.2)

E =
S

c
(4.3)

Here T (c) is the wall-time of the program when run on c cores. The speed-up factor is
thus a measure of how much faster the program terminates when run on c cores, while the
efficiency gives the relative speed-up of adding another core. Figure 4.4 shows the wall-
time, speed-up, and efficiency associated with the parallelizing the correlation calculations.

Based on the way that the correlation calculations are parallelized, the highest expected
efficiency would be linear. At linear efficiency the speed-up is the same as the number of
cores used to execute the code. Figure 4.4 shows a slight deviation from linear efficiency.
Two possible explanations for this are related to increased overhead, and imperfect loop-
division. When parallelizing code there are always some associated overhead, related

43

Chapter 4. Results: Software

Figure 4.5 The effect on the overall program performance from all the parallelized code.

to communication, copying memory and setting up the jobs for each of the cores. The
amount of overhead generally increases with the number of cores. An additional factor
comes from imperfect division of the work load over the cores. As described in section
3.6, the parallelization scheme uses a cyclic division of the loop-indices over the cores,
with uneven workload associated with each index. Although this may cause a slightly
uneven distribution of labour over the cores, it is less than differences in work load caused
by a assigning a different number of indexes to each core (as will happen with for instance
5 indices divided over 2 cores), and is not expected to reduce the efficiency significantly.
As the loss in efficiency is fairly small and the observed efficiency is close to linear, the
parallelization is considered successful.

4.2.3 Further parallelization
As explained in section 3.6, step 1, 2, and 5 in the program1 was also parallelized. While
section 1 and 2 have 0 efficiency for cases with more cores than input-files, process 5 is
assumed to have the same efficiency as the parallelization of the correlation and variance
estimation. The effect of all parallelization on the wall-time used by the program as a
whole, as well as the overall speed-up and efficiency of parallelizing the different program
sections can be seen in figure 4.5.

As seen from figure 4.5, a program consisting of both serial and parallel code results in
a drop in efficiency. As the efficiency is reduced, the effect on the wall-time from adding
further cores diminishes and the wall-time converges towards its minimum value Tmin.
The wall-time can be modeled by T (c) = Ts + Tp(c), where Tp(c) is the wall time of

1See list in section 3.1.

44

4.3 Program testing

the parallelizable parts of the program, while Ts is the wall time of the serial parts and
Ts = Tmin. This model results in the following formula for the speed-up factor:

S =
T (1)

T (p)
=
Ts + Tp(1)

Ts + Tp(c)
=

TCPU
Ts + Tp(c)

(4.4)

This formula predicts a drop in speed-up factor and thereby efficiency, as a result of
the unparallelized code in the program, which fits well with observations.

4.2.4 Memory usage
An important factor in the programs portability is its maximum memory usage. How large
data sets are supported by the machine executing the code, depends mainly on how much
memory (RAM) the system has. Although the program may execute even if it requires
more memory than available, the increased overhead caused by memory allocation and
reading and writing to long term memory makes the program run significantly slower.
As an example, a former version of the program had a wall-time of approximately 11.5
minutes for data sets of m = 100 and n = 1.5 · 104 when executed on 10 cores. When
increasing n to 2 ·104, the peak memory use exceeded the amount available on the system,
resulting in a wall-time of approximately 4.7 hours. The expected wall-time for data sets
of this size were estimated to 20 minutes by extrapolating the growth observed in scaling
n for lower values.

The memory usage of the current version of CSD-CS scales primarily with the the
number of genes n in the data sets. Figure 4.6 shows the peak memory usage as a function
of n. As the majority of memory consumption comes from storing the similarity-matrices
and adjacency-matrices, the maximum required memory scales proportional to n2. This
is typically much larger than m · n for most data sets, and so the the memory usage is
approximately independent of m. The software is also implemented so that number of
subsamples generated, s, does not contribute significantly to memory consumption.

4.3 Program testing
The program was debugged and tested in several steps. All functions have been tested
individually to verify their behaviour. Each step of the program (as listed in section 3.1)
was also tested before assembling the program. All valid combinations on input and output
files have been tested, to verify the program’s behaviour.

After finishing the program, an artificial test case was created to check that the software
calculations generates correct results. Two 8× 8 matrices with tailor-made test-data were
fed to the program, and the output-parameter was set to all. For both files, all of the
n(n − 1)/2 = 28 gene-pairs, had their correlation and variance verified, along with their
corresponding CSD-scores. All results were as expected.

45

Chapter 4. Results: Software

Figure 4.6 The maximum memory usage of the program as a function of the number of
genes in the data sets n.

46

Chapter 5
Results: Application to empirical
gene expression data

This chapter features an analysis of the rheumatoid arthritis network generated using CSD-
CS. The goal is to illustrate how the developed software, in combination with tools from
network science and systems biology, can be used to analyze gene expression patterns
across appropriately chosen data-sets. Although the identification and implication of un-
known genetic factors is the target of the analysis, the purpose of this thesis is not to
perform an extensive biological analysis. RA is a highly heterogeneous and complex au-
toimmune disease arising from both genetic and environmental factors. An extensive liter-
ature review and thorough analysis of the network is possibly required in order to identify
disease related biology in the network. As the focus is on the methodology rather than the
actual results, the analysis will be restricted to superficial evaluations. The analysis will be
limited to examining the presence of genes of known associations and related pathways.

5.1 Data collection

5.1.1 Rheumatoid arthritis expression data
The expression data for rheumatoid arthritis used in this thesis, was collected by Walsh et
al. in their article on “Integrative genomic deconcolution of rheumatoid arthritis GWAS
loci into gene and cell type associations” [82]. The data consist of whole-blood RNA
expression data collected from a cohort of 377 patients with active rheumatic arthritis
despite Methotrexate1 therapy. The paragraph below is taken from the article, describing
the exact procedure used for collecting the RNA-expression data.

“Peripheral whole blood was collected in PAXgene tubes (Preanalytix, Switzerland).
RNA was isolated using the Qiagen Biorobot (Qiagen, Valencia, CA, USA), which fol-

1Methotrexate is an anti-inflammatory drug used for treatment of autoimmune disease, in particular rheumatic
diseases and myositis.

47

Chapter 5. Results: Application to empirical gene expression data

lowed the protocol from the Qiagen PAXgene MDX kit (cat# 752431), and was modified
to collect both total and microRNA. Subject cDNA was amplified through utilization of the
NuGEN Ovation Pico WTA System V2 (NuGEN, San Carlos, CA, USA). Microarray hy-
bridization was performed on GeneChip Human Genome U133 Plus 2.0 Array according
to the manufacturers protocol (Affymetrix, Santa Clara, CA, USA). Data were normalized
using Robust Multi-array Average (RMA) algorithm and log base 2 transformed using R.
Data are available from NCBI GEO with accession number GSE74143.” [82]

The expression data from the Affymetrix GeneChip Human Genome U133 Plus 2.0
array consisted of expression values for 54715 probes for each individual. This data set
was reduced to 20741 points by mapping the expression values for all probes to their
associated gene, and throwing away all measurements from probes related to non-coding
DNA-segments. For genes with multiple associated probes, the expression value was set
as the average of the expression values of the probes.

5.1.2 Control group expression data

In order to effectively probe the regulatory mechanisms underlying RA using the CSD-
framework, a reference data set was needed. This was acquired from the Genotype-Tissue
Expression (GTEx) Project [83], a database containing various types of genetic data2.
GTEx data is collected post mortem from donors fulfilling the following criteria:

1. 21 ≤ Age (years) ≤ 70

2. 18.5 < Body Mass Index < 35

3. Time between death and tissue collection less than 24 hours

4. No whole blood transfusion within 48 hours prior to death

5. No history of metastatic cancer

6. No chemotherapy or radiation therapy within the 2 years prior to death

7. Generally unselected for presence or absence of diseases or disorders, except for po-
tentially communicable diseases that disqualify someone to donate organs or tissues
would also be disqualifying for GTEx.

The data is thus considered to originate from healthy individuals. The expression data
used in this thesis originates from whole-blood samples from 191 individuals in GTEx v4.
The expression data was collected using an Affymetrix GeneChip Human Gene 1.0 ST
Array, and reduced from probe expression to gene expression in a similar manner as for
the RA-data, resulting 18490 protein coding genes.

2https://www.gtexportal.org/home/

48

https://www.gtexportal.org/home/

5.2 Network construction

Table 5.1: The input parameters used by CSD-CS in creating the network analyzed in this thesis.

Parameter Value Description
-i arthritisData.txt Gene expression data from

rheumatoid arthritis patients
-i controlData.txt Gene expression data from

from healthy control group
–input ”ged” Specifying input type
–output ”all” Requesting all data to be written

to file
–output ”filtered” Requesting file containing network

node pairs
-k 10 Subsample size
-p 0.00001 Importance level
–iSamples 10 000 Number of samples to be drawn

for threshold estimation
–threads 10 The number of parallel threads

spawned by the program
–format ”vertical” Specifying the orientation of

the expression data in the input files
–randomSeed 3 Seed for random number generator
–maxSubsamples 100 Upper bound for number of

subsamples generated by the
subsampling algorithm

–terminationLimit 1 000 Maximum number of failed attemts
at drawing a subsample allowed by the
subsampling algorithm before termination

5.2 Network construction
The differential co-expression network analyzed in this thesis was generated using the
purpose-built software; CSD-CS. The network was constructed using the two data-sets de-
scribed in the sections above, originating from rheumatoid arthritis patients and a healthy
control group. The program was executed with the parameters listed in table 5.1.

5.3 Network analysis: tools and procedure
The main tools used in analyzing the network was the Cytoscape v2.8.1 [74] software
environment, and python. The format of the output file containing the network generated
by CSD-CS is intended for easy use with Cytoscape. Cytoscape was used for visualization
of the network, calculation of node- and network-parameters using the network analyzer-
module [75], as well as construction of degree-preserving random networks. The degree-
preserving random networks were used to identify which properties of the network arise
purely from the nature of the degree distribution, and which properties can be attributed

49

Chapter 5. Results: Application to empirical gene expression data

to other organizing principles. The resulting data was exported and further analyzed using
python.

The NetworkX-python package combined with an implementation of the Louvain com-
munity detection algorithm3 was used to identify network modules. The algorithm assigns
an index to each node indicating their module affiliation. These indices were transported
back into Cytoscape for further analysis of the modules.

The scipy-library was used to estimate correlations between node-parameters within
the network. The Spearman rank-based correlation was used here to evaluate any potential
relations between the node parameters. Spearman correlation was chosen over Pearson
correlation to reduce the constraint on observable relations, and test for any monotonous
correlation between the node-parameters. This choice opens up for capturing potential
non-linear correlations which might be relevant to the network structure. Not all the node
parameters calculated by Cytoscape were included in the correlation matrices. Several
parameters have such similar definitions that they show almost perfect linear Pearson cor-
relation and perfect Spearman correlation. For these cases one of the parameters were
omitted in the analysis, as they gave rise to pairs of identical correlation scores, thus pro-
viding no new information to the analysis. The omitted parameters were stress, average
shortest path-length, and radiality (on account of betweenness centrality, closeness cen-
trality, and betweenness centrality respectively).

Next enrichment analysis was performed for network components and modules of in-
terest, using the Enrichr web-site [84, 85]. Enrichment analysis consists of matching a
set of genes, with genes of known biological associations. A significant enrichment means
that the number of genes present, related to the specific biological factor/function, is higher
than would be expected by chance. The Enrichr web page takes a list of genes as in-
put, and matches it with transcription-, pathway-, disease-, cell-, and ontology-associated
genes from various databases. Four different enrichment values are calculated. The first
value is a p-value based on the Fisher exact test. The test assumes a binomial distribu-
tion and independent probabilities for any gene belonging to any set. The second score is
an adjusted p-value (here referred to as the q-value), calculated by using the Benjamini-
Hochberg method for correction for multiple hypothesis testing. The third score is a rank
based ranking. It is calculated by running the Fisher exact test for many random gene sets
in order to estimate the mean rank and its standard deviation. The corresponding z-score is
then calculated to evaluate the deviation from the expected rank. The last score is a com-
bination of scores 1 and 3, calculated as the product of the logarithm of the p-value and
the z-score. The enrichment-scores may give valuable information about the underlying
biology of the network, and its modules.

As a further step in analyzing the biological information captured by the co-expression
network, the function and associations of central nodes in the network were evaluated.
Nodes with high, yet non-trivial, parameter scores were identified. The most prominent
ones were evaluated for possible links to the disease state. The genecards web-resource
[86] was used to acquire information about the identified genes.

Finally, a search for genes of known relevance to the disease state were performed.
Their distribution in the network were visualized, in order to evaluate possible regions
containing a high density of associated genes. Such regions might capture important bi-

3https://github.com/taynaud/python-louvain/

50

https://github.com/taynaud/python-louvain/

5.4 Network properties

ological functions relating to the disease state, and implicate roles of non-associated ad-
jacent genes in the disease state. A special interest is given to specific (S) and diverging
(D) interactions, as these capture differences in gene regulation across healthy and disease
states.

5.4 Network properties

Figure 5.1 shows the full CSD-network generated using the CSD-CS. One striking feature
of the network is that it consists of two major components. These components are sep-
arated from one another, and appears different by visual inspection. The left component
consist of a majority of S-interactions, and appears to have a more connected and dense
structure than its neighbor. As the right component consists almost exclusively of C- and
D-type interactions, the two components will from now on be referred to as the S- and the
CD-components respectively.

Table 5.2 shows number of nodes and edges, and the distribution of interaction types
for the network and its main components. Although the two components consist of approx-
imately the same number of nodes, the S-component contains over 50% more edges than
the CD-component. This confirms the observation that the S-component is more connected
than its neighbor. Notably, the CD-component only contain one single S-interaction, while
the S-component consists of a majority of them. In the context of analyzing a disease ver-
sus non-disease state, S- and D-type interactions are of greatest interest. The reason is
that a change in co-expression pattern across the two cohorts is more likely to be related
to phenotypic differences. Thus both the identified components are of interest for further
analysis, as they both may convey relevant biological information.

To further analyze the differences between the different components, a set of network
parameters were calculated for the network as a whole and its two main components in-
dividually. The results can be seen in table 5.3. The calculated parameters supports the
notion of structural differences between the two network components. While the CD-
component has a lower density, average degree, radius, diameter and characteristic path-
length, it shows higher centralization, heterogeneity, and clustering coefficient. Thus, de-
spite the component being more sparse and less connected, it seems to have more promi-
nent clustering around hubs.

Table 5.2: The number of nodes and edges in the networks and its major components, along with
the distribution of specific interaction types.

Full network S-component CD-component
Nodes: 1064 481 428
Edges: 2164 1267 778
C-type: 672 343 263
S-type: 783 767 1
D-type: 708 157 514

51

Chapter 5. Results: Application to empirical gene expression data

Figure 5.1 The figure shows the full CSD-network produced by CSD-CS as visualized
by Cytoscape. Conserved interactions are indicated by blue edges, while specific and
diverging are shown in green and red respectively.

Table 5.3: The network parameters for the full network and its two main components.

Full network S-component CD-component
Radius - 6 10
Diameter 18 9 18
Characteristic pathlength 4.813 4.113 5.669
Average degree 4.068 5.261 3.598
Network density 0.004 0.011 0.008
Network centralization 0.040 0.058 0.097
Network heterogeneity 1.120 0.944 1.207
Clustering coefficient 0.121 0.111 0.147

The degree distributions of the full network and the two main components were plot-
ted and inspected. There were no major differences in the degree distributions. Figure
5.2 shows the degree distribution of the full network. The degree distribution follows
approximately a power law with γ = 1.886 (subplot 3), indicating a scale-free network.

The neighborhood-connectivity distribution of the network and its major components
was also evaluated. While the full network and the S-component show positive assortativ-
ity, the CD-component shows disassortativity (the fitted power-law has a negative expo-
nent). What this means is that on average high-degree nodes in the CD-network tend to
favour connections with lower degree-nodes, and vice-versa. This trend is opposite for the
S-component. This further confirms the observations of a more dispersed, hub-centered

52

5.4 Network properties

Figure 5.2 The figure shows the degree distribution of the full network. Subplot 2 and 3
shows log-log plots of the degree-distribution. As indicated by the fitted line in subplot 3,
the degree-distribution follows a heavy-tailed power-law (with γ = 1.886).

topology for the CD-component.

5.4.1 Component analysis

Although the two network components are part of the same regulatory network, and only
appear distinct due to the choice of importance level used in the CSD-CS, a further analysis
of their differences was deemed to be of interest. The idea was to detect any differences in
their structure and organization, and evaluate whether this was reflected in the properties
of the underlying biology. Another advantage of analyzing the two components individ-
ually is the ability to more accurately probe local differences in network structure when
analyzing intra-component modules. Further comparisons with the full network will not
be considered, as the information encoded in the full network is heavily dependent on both
the main components, and thus will mostly be an average of the their properties. It will
therefore yield a minimal amount of new information.

An interesting question in the evaluation of network parameters is; how do the com-
ponents differ from random networks of equal degree distribution? This question yields
information about which parameter values are expected due to the nature of the degree
distribution, hence illuminating whether the observed parameter values can be attributed
to organizing principles rather than randomness. To examine this, 10 degree-preserving
random networks were generated for each of the two main components. The same net-
work parameters as in the section above were calculated for each of the random networks.
Tables 5.4 and 5.5 shows comparisons between the average network parameters acquired

53

Chapter 5. Results: Application to empirical gene expression data

Figure 5.3 The neighborhood-connectivity distributions of the full network and the two
main components, along with a fitted power law (red line) . Interestingly the CD- and
S-components show opposite assortativity.

54

5.4 Network properties

from the random networks, and the corresponding component-parameters. The full set of
network parameters from all the random networks can be found in appendix C along with
an example of a random networks generated from each of the components.

Table 5.4: The table shows the average of the network parameters calculated for the degree-
preserving random networks based on the S-component. Difference in parameter values between
the S-component and the random networks are highlighted in red. The radius is not comparable as
the random network give rise to pairs of nodes separated from the main component yielding a radius
of 1.

S-component S-based random
Radius 6 -
Diameter 9 8.3
Characteristic pathlength 4.113 3.682
Average degree 5.261 5.261
Network density 0.011 0.011
Network centralization 0.058 0.058
Network heterogeneity 0.944 0.944
Clustering coefficient 0.111 0.025

Table 5.5: The table shows the average of the network parameters calculated for the degree-
preserving random networks based on the CD-component. Difference in parameter values between
the CD-component and the random networks are highlighted in red. The radius is not comparable as
the random network give rise to pairs of nodes separated from the main component yielding a radius
of 1.

CD-component CD-based random
Radius 10 -
Diameter 18 9.6
Characteristic pathlength 5.669 4.081
Average degree 3.598 3.598
Network density 0.008 0.008
Network centralization 0.097 0.097
Network heterogeneity 1.207 1.207
Clustering coefficient 0.147 0.023

The results from the two tables shows that the real networks have a larger diame-
ter, characteristic pathlength and clustering coefficient than than their random equivalents.
This indicates that the real networks show a more distributed, cluster based topology. Fig-
ures 6 and 7 in appendix C supports this notion, as the topology of these networks is more
revolved around a single central cluster.

To take this analysis a step further, the Spearman correlation between different node
parameters were calculated for the two components and their respective random networks.
The results can be seen in tables 5.6 and 5.7. Once again, the presented values for the
random networks is the average of those obtained from each of the random networks.

55

Chapter 5. Results: Application to empirical gene expression data

For the CD-component there are several notable differences between the node-parameter
correlations in the component and its randomized equivalents. The clustering coefficients
of nodes in the CD-component show a much higher correlation with the topological co-
efficient than for the random networks. On the other hand clustering coefficient is more
correlated with the betweenness centrality in the random networks. The first of these ob-
servations can be seen as an confirmation of the clustering tendency of the CD-components
as discussed above. What this means is that for the CD-component a high level of clus-
tering around a node implies a much higher level of sharing of neighboring nodes, than
for both the random networks and for the S-component. This might account for the more
separated, localized clustering observed in the CD-component than in any of the others.

There are some other minor changes between both the CD-component and its random
networks, and the S-components and its random networks, but these are limited to around
0.2 difference in correlation scores, from which it is difficult to draw conclusions about
changes is network properties.

Table 5.6: The table shows a comparison between the Spearman correlation between different node
parameters within in the CD-dominated network component (top half) and degree-preserving ran-
dom networks based on the CD-component (bottom half). Blue indicates strong correlations, while
red indicates notable differences in correlation scores.

CC Ci ki ε kii Ti
CB 0.4608 0.3303 0.8920 -0.3564 -0.0647 0.4757
CC - 0.5195 0.6067 -0.6068 0.6637 0.2185
Ci - - 0.6457 -0.3479 0.2964 0.4873
ki - - - -0.4305 0.0589 0.5243
ε - - - - -0.3371 -0.2383
kii - - - - - 0.0579
CB 0.5731 0.5009 0.9567 -0.4358 0.1318 0.5291
CC - 0.5097 0.6160 -0.8392 0.4300 0.1783
Ci - - 0.5689 -0.4027 0.2737 0.0855
ki - - - -0.4653 0.1691 0.5243
ε - - - - -0.3261 -0.1198
kii - - - - - 0.1383

56

5.4 Network properties

Table 5.7: The table shows a comparison between the Spearman correlation between different node
parameters within in the S-dominated network component (top half) and degree-preserving random
networks based on the S-component (bottom half). Blue indicates strong correlations, while red
indicates notable differences in correlation scores.

CC Ci ki ε kii Ti
CB 0.8011 0.1962 0.8937 -0.6564 -0.0788 -0.0572
CC - 0.4384 0.8833 -0.7934 0.3630 -0.0264
Ci - - 0.4954 -0.2496 0.5623 0.1537
ki - - - -0.6669 0.1427 -0.0105
ε - - - - -0.2358 -0.0138
kii - - - - - 0.1601
CB 0.7998 0.5148 0.9506 -0.6002 0.0636 -0.0200
CC - 0.5980 0.8593 -0.7737 0.4223 -0.1071
Ci - - 0.5855 -0.4317 0.2539 -0.1527
ki - - - -0.6387 0.1020 -0.0490
ε - - - - -0.3566 0.0033
kii - - - - - 0.0956

5.4.2 Module analysis
In order to further refine the topological analysis of the network, the Louvain community
detection algorithm was applied to identify network modules. 58 modules were detected,
but many of them were of negligible sizes, such as those created by the minor groups of
nodes separated from the main components. The 10 biggest modules, listed in table 5.8,
can be seen plotted in figure 5.4.

Table 5.8: The 10 biggest modules identified by the Louvain algorithm sorted by the number of
nodes.

Module ID Nodes Location
2 155 CD-component
0 154 S-component
3 134 S-component
7 126 S-component
5 107 CD-component
1 98 CD-component
6 64 S-component
10 34 CD-component
15 30 CD-component
4 18 Separate

Node-parameter correlations were calculated for all the modules (except for module
4 as this is separated from the main components) and a comparative analysis similar to
the one described in the section above was performed. The comparison-tables can be
found in appendix D, and the corresponding significance scores can be found in appendix

57

Chapter 5. Results: Application to empirical gene expression data

Figure 5.4 The 10 largest modules detected in the CSD-network by using the Louvain
community detection algorithm.

E. Due to the high number of nodes involved in the most of the modules, the detected
correlations have high significance even for very low correlation scores, and are thus of
little practical interest. The modules showing the least similarity with their component and
neighboring modules are modules 10 and 15 for the CD-component, and module 6 for the
S-component. Figure 5.4 shows that both modules 10 and 15 are peripheral modules with
a sparse connections, that visually distinguish themselves from the other CD-modules.
Module 6 in the S-component is harder to distinguish from its neighbors visually, except
for observation that it seem less interconnected with the other modules of the component.
Interestingly module 6 seems to be localized to the area of the S-component containing a
high level of C- and D-type interactions. Upon inspection, module 6 turned out to consist
of 174 C-interactions, 13 S-interactions and 37 D-interactions. As argued earlier, a high
level of conserved relationships is less likely to explain phenotypic differences related to
disease. It is interesting however to see what biological information is captured by module
6 as its neighboring modules show a highly S-dominated co-expression pattern, which the
biology of module 6 might be related to.

5.5 Biological analysis

5.5.1 Enrichment analysis
The Enrichr [84, 85] web site was used for enrichment analysis of all detected modules,
as well as the two components and the network as a whole. In addition, the C-,S- and
D-interaction networks were separated and tested for enrichment individually. Main fo-

58

5.5 Biological analysis

cus was given to the categories, Pathways, Ontologies and Disease/Drugs, and processes
related to inflammation, immune system or other processes relevant for the disease state.

The general trend was that large groups of genes, such as the full network, the large
components, and the interaction networks showed lower enrichment values than the mod-
ules. Usually the same biology was highlighted, but with lower scores, indicating that
the modules in fact show more specific biological associations than the larger groups of
genes. It should be noted however, that the requirement for high enrichment scores, in
terms of number of matching genes, increase with the number of genes assessed, adding
to this trend. Another feature observed where very high enrichment scores for tissue types
when assessing large groups of genes. Typically many different organs where highlighted
with high enrichment scores, indicating that a lot of the genes in the network are related to
general cellular processes and are not tissue specific.

Many enrichment scores were considered too low to be of interest. Typically, biology
related to cell signaling pathways, blood coagulation and clotting, T- and B-cells, and other
blood related factors were slightly enriched. In order to assess whether this is caused by
the fact that whole-blood samples were used, or the disease state, the interaction-specific
networks are useful. In general the S- and D-networks are assumed to capture more of the
disease related biology, while the C-network will highlight conserved biological processes.

For the S-network the majority of prominent enrichments were related to blood clotting
cascade, prothrombin activation, and blood coagulation. A strong signal for carcinoma was
also detected. The C-network showed slight enrichment for signaling pathways related to
T-cells, and an equivalent carcinoma signal to the S-network. Similar to the C-network,
the D-network also showed slight enrichment for processes related to the immune system.
Here B-cell and T-cell receptor signaling showed some enrichment, but at the same levels
as for the C-network. Interestingly transcription related to the gene PRDM1, an RA-
associated gene [87], showed some enrichment. Also TYK2-knockdown showed some
enrichment, with TYK2 being another RA-related gene [88].

Module level enrichment were also performed, to evaluate more local enrichment pat-
terns. No RA-specific associations were detected, but more general traits showed local
enrichments. Modules 3,4,6, and 10 showed immune system related enrichments. Notably
module 6 showed enrichment for apoptosis, death receptor signaling and abnormal NK-
cells, all of which were not detected elsewhere. Module 3 showed strong enrichment for
T-cell receptor complex, while module 10 showed strong enrichment for B-cell receptor
complex and immunoglobulin complex. Module 4 showed enrichment for T-lymphocytes.
Another interesting result, is the enrichment in T-cell receptor signaling for CD4+ T-cells
in module 3 (although the enrichment value is a bit low). These T-cells have been assumed
to have a role in RA pathogenesis [89]. Module 3 also turned out to have a strong signal
for the blood clotting related biology observed in the S-network.

The enrichment analysis showed disease related enrichments, relevant for the systemic
effects of RA. Module 3 showed enrichment for venous thrombosis, and module 4 for
myocardial infarction. Module 6 showed enrichment for carcinoma, but also a small en-
richment for osteoporosis, which might be related to the bone degrading nature of RA.

The discussed enrichment scores can be found in tables 5.9 and 5.10.

59

Chapter 5. Results: Application to empirical gene expression data

Table 5.9: The table shows the enrichment scores for the C-, S- and D-networks most relevant for
RA. The listed scores are not the maximum observed scores, but are the ones most relevant relevant
with respect to RA.

Location Description p q z Combined score
C-network T-cell activation 0.004358 0.2136 -1.60 2.47

T-cell receptor 0.001598 0.2479 -1.88 2.62
signaling pathway

Carcinoma 0.0002970 0.1485 -5.87 11.19
S-network Blood clotting cascade 0.001012 0.2246 -2.02 3.01

Formation of fibrin clot 0.001235 0.3114 -2.15 2.51
Blood clotting, 0.0004520 0.2802 -3.19 4.06

intrinsic pathway
Intrinsic prothrombin 0.00009493 0.007310 -1.63 8.03

activation pathway
Carcinoma 0.0007571 0.1315 -5.76 11.69

D-network PRDM1 0.0002810 0.08092 -1.74 4.37
TYK2 knockdown 0.0003239 0.04616 -1.77 5.45

T-cell receptor 0.01363 0.2800 -1.66 2.11
signaling pathway

B-cell receptor 0.001288 0.1803 -1.84 3.14
signaling pathway

5.5.2 Biological functions of central nodes

An interesting analysis is whether central nodes of the network are related to the disease.
If genes with key locations, both in terms of information transmission and connectivity, are
in fact related to the disease, they may convey clues as to where in the network a potential
disease signal is located. It will further support the working hypothesis that the network in
fact captures biological information related to the disease state.

As the goal of this thesis is simply to illustrate the procedure for analyzing a differential
gene co-expression network, the list of nodes assessed were restricted to the top 5 nodes for
each chosen parameter. For a more thorough analysis additional nodes could be included,
but this was not considered viable given the time available.

The top 5 nodes for each of the node parameters treated in the correlation analysis
above, spare the eccentricity, were identified and are listed in tables 5.11-5.16. Only the
two major components were included in order to avoid identifying nodes with trivially
high parameter values due to the low number of neighbors. For some of the parameters a
degree threshold was also selected in order to avoid identifying nodes with high parameter
values caused by their low connectivity.

60

5.5 Biological analysis

Table 5.10: The table shows the most interesting findings from the modular enrichment analysis.
The listed scores are not the maximum observed scores, but the ones most relevant with respect to
RA.

Location Description p q z Combined score
Module 3 Blood clotting cascade 0.0004126 0.03032 -1.94 6.78

Intrinsic prothrombin 0.0004721 0.01558 -1.63 6.80
activation pathway
Role of MEF2D in 0.001046 0.01726 -1.71 6.96
T-cell apoptosis
T-cell receptor 0.0001545 0.01746 -3.09 12.52
complex
T-cell receptor 0.009098 0.1913 -1.67 2.76
signaling in naive
CD4+ T-cells
T-cell receptor 0.005395 0.1913 -1.65 2.73
signaling in naive
CD8+ T-cells

Module 4 Helper T-cell 0.02703 0.3080 -7.33 8.64
Cytotoxic T-cell 0.02520 0.3080 -7.22 8.51
Blood clotting, 0.0004520 0.2802 -3.19 4.06
Myocardial infarction 0.001065 0.01810 -2.44 9.79

Module 6 Death receptor 0.0004877 0.04150 -2.06 6.56
signaling
Apoptosis signaling 0.004283 0.02141 -1.70 6.53
pathway
Abnormal NK-cell 0.0004300 0.07495 -2.62 6.80
physiology
Carcinoma 0.03149 0.1207 -4.95 10.47
Osteoporosis 0.03465 0.03465 -1.02 3.43

Module 10 IgA immunoglobulin 0.00004578 0.009820 -2.48 11.48
complex
IgA B-cell receptor 0.00006482 0.009820 -2.26 10.43
complex

61

Chapter 5. Results: Application to empirical gene expression data

Table 5.11: The highest degree nodes from
the network.

Node Degree (ki)
PPM1G 46
PSPC1 33
MTTP 28
IFT88 28
DNAJB5 27

Table 5.12: The nodes with the highest clus-
tering coefficient and degrees higher than 13.

Node Degree Ci
BAG4 15 0.4190
C17orf64 17 0.4118
ACVR1B 18 0.3922
PXMP2 14 0.3846
AMIGO2 16 0.325

Table 5.13: The nodes with the highest be-
tweenness centrality from within one of the
two largest components.

Node CB
PPM1G 0.33573447
TMEM18 0.19230653
FOXD1 0.15981781
MTTP 0.15617865
MSX2 0.14097653

Table 5.14: The nodes with the highest
closeness centrality from within one of the
two largest components.

Node CC
PDPK1 0.32454361
CD72 0.32193159
PSPC1 0.32150033
PLEKHG3 0.32042724
GOLIM4 0.31978681

Table 5.15: The nodes with the highest
neighborhood connectivity of the nodes with
a degree higher than 15.

Node Degree kii
C17orf64 17 18.167
CD72 24 16.167
GOLIM4 21 15.439
PDPK1 19 15.368
ACVR1B 18 15.056

Table 5.16: The nodes with the highest topo-
logical coefficient from nodes with degree
higher than 15.

Node Degree Ti
ACVR1B 18 0.1955
AMIGO2 16 0.1909
C17orf64 17 0.1731
C1orf227 16 0.1707
GPR4 20 0.1598

The web-resource genecards4 [86] was used as a primary step to identify the function
of the identified genes. None of the genes had any known relevance to the disease state, but
were related to various biological processes such as transcription, cell cycle, cell growth,
protein transport and signaling pathways.

Of the identified genes, the most promising prospects to be related to RA are FOXD1
and CD72. The CD gene-family is a group of genes associated with cell surface molecules,
often coding for receptors or ligands. Many CD-molecules are thus related to the function
of the immune system, and several are associated with RA including CD2, CD21, CD28,
CD40 and CD58. The CD72 is assumed to play a role in both B-cell [90] and T-cell
proliferation [91] proliferation and differentiation. It is also shown to play important roles
in other autoimmune diseases [92, 93, 94].

4genecards.org

62

genecards.org

5.5 Biological analysis

The FOX (forkhead boxes) proteins are a family of transcription factors that play im-
portant roles in regulating gene expression related to cell growth, proliferation, and differ-
entiation. Forkhead transcription factors also plays important roles in maintaining immune
homeostasis, and FOXD1 have been shown to coordinate the regulation of NF −AF and
NF − κB which are two key inflammatory transcription factors. It has been suggested to
possibly prevent autoimmunity by directly regulating anti-inflammatory regulators of the
NF −AF -pathway [95].

5.5.3 Localizing disease-associated genes
The final step in this analysis was evaluating the locations of genes with known biologi-
cal associations to the disease state in the network. The idea is much the same as for the
previous two steps; to identify potential disease signals in the network. The presence of
disease-associated genes and their locations may convey interesting biological informa-
tion. Potential clustering of associated genes may also imply roles of neighboring genes
through so-called guilt-by-association.

In order to do this, the Online Mendelian Inheritance in Man (OMIM) [64] database,
and several articles on the genetics of RA [58, 59, 60, 61, 62, 63] was consulted to iden-
tify genes with associations to RA. A list of 55 genes were identified (appendix A), and
matched against the constructed network. Of these, only three genes were found to be
present in the network. The relevant genes are CCL21, CCR6 and CD5. Of these three
genes, only CD5 was located in one of the major network components. Also in this section
the genecards web-resource [86] was used to identify the functions of genes.

CD5 was found to be located in module 10 with two neighbors (HAPLN4 and ATP8B2)
both connected to CD5 through D-interactions. CD5 is a gene codes for a member of the
scavenger receptor cysteine rich (SRCR) superfamily. The protein is a type 1 transmem-
brane glycoprotein found on the surface of thymocytes, T-cells and a subset of B-cells. It
is assumed to have roles in T-cell proliferation and B-cell development.

Its first neighbor, ATP8B2, is connected through a D-type interaction. Interestingly,
AP8B2 is also connected to KIAA1468. KIAA is a group of protein-coding sequences of
uncharacterized human genes. The gene KIAA1468 has been associated with chronic re-
current multifocal osteomyelitis (CRMO) [96]. CRMO is a rare autoinflammatory skeletal
disorder of unknown aetiology [97]. AP8B2 is thus connected to 2 different genes with
associations to inflammatory skeletal disorders. A further investigation of AP8B2 and
KIAA1468 in relation to RA, could yield interesting information about the genetics of
RA.

The other gene connected to CD5 is HAPLN4 (Hyaluronan And Proteoglycan Link
Protein 4). Also HAPLN4 is connected through a D-interaction. The relevant gene has
GO-annotations [98] for extracellular matrix structural constituent and hyaluronic acid
binding. The association between CD5 and a hyaluronic acid binding protein is interesting
in relation to RA. Hyaluronic acid is a major constituent of synovial fluid, and has been
related to autoimmune inflammation and disease progression in autoimmune insulitis pa-
tients with type 1 diabetes [99] and autoimmune encephalomyelitis in mouse [100, 101].
Some studies have implicated a role of hyaluronic acid and hyaluronan synthesis in RA
pathogenesis [102, 103], while others indicates anti-inflammatory effects of hyaluronic
acid [104, 105]. Hyaluronic acid definitely plays some role in RA pathology, and thus it

63

Chapter 5. Results: Application to empirical gene expression data

would be interesting to evaluate how HAPLN4 and CD5 relates to this. The gene CD44,
coding for the hyaluronan receptor [106] and with roles in inflammation [107], was also
found in the network close to module 10.

Figure 5.5 The figure shows the two small components where the RA-associated genes
CCL21 and CCR6 are located, as well as module 10 where CD5 is located. The relevant
genes are highlighted by a different color.

Both CCL21 (C-C Motif Chemokine Ligand 21) and CCR6 (C-C Motif Chemokine
Receptor 6) are genes coding for proteins related to cytokine signaling and play im-
munoregulatory roles. The neighbor of CCL21, UNC45A codes for a myosin chaperone.
The neighbor of CCR6, THBS2 codes for a glycoprotein that mediates cell-cell and cell-
matrix interactions. One could ask whether the function of the glycoprotein coded by
THBS2 is somehow related to the function of the CCR6 receptor, but no obvious connec-
tions were found in literature. The same was the case for CCL21 and UNC45A. Further,
as both CCR6-THBS2 and THBS2-RNF220 shows a conserved co-expression pattern, it
is reasonable to assume that CCR6 and RNF220 also shows a certain level of conserved
co-expression, but less than that required by the chosen importance level. The RNF220
codes for an E3 ubiquitin ligase, a group of proteins that assists in ligation of ubiquitin.
Ubiquitin in turn serves diverse functions such as signaling of degradation by the protea-
some, intracellular transport, protein interactions, and protein activity [108]. No known
relations to neither CCR6 or THBS2 were found in published literature.

64

Chapter 6
Discussion and further work

6.1 CSD-CS

6.1.1 Code parallelization

The current parallelization schemes successfully reduces the wall-time of the program, al-
lowing for fast construction of differential co-expression networks using the CSD-
framework. As seen from figure 4.5 however there is room for increased efficiency by
reducing the constant time contribution from serial parts of the program. Steps 6 and 7
listed in section 3.1, determining the importance thresholds and calculating the adjacency
matrix respectively, are examples of unexplored program sections in terms of paralleliza-
tion. The first one should be possible to parallelize by exchanging the outer while-loop
with a for-loop and introducing OpenMP reduction variables in the parallel domain. Step
7 should be possible to parallelize the same way that the correlations calculations were
parallelized; by cyclic division of the outer for-loop that iterates over the index i in the
adjacency matrix Aij . Due to a lack of time these changes are left for further work.

The program have currently been tested on two different computer systems. On the
one used to generate the results presented in chapter 5, the parallelization behaved exactly
as expected. On the other system however, a dysfunction occurred. The correlation and
variance calculations are repeated for all input-files in a sequential manner. This is done
is through a for-loop that iterates over all the list of input-files and calls the function cal-
culating the correlation and variance for each one. For some yet unidentified reason, the
parallelization within the correlation/variance-function fails for the first input file on this
other system. For the second input-file however, it appears to function as expected. This
matter require further investigation, but as the second computer-system is a fairly new
high-performance system and recently assembled, it is possible that the problem lies in the
assembly of the system and not in the code itself. For the older and more thoroughly tested
computer system the code performed as expected.

65

Chapter 6. Discussion and further work

6.1.2 Memory reduction

For increased program portability, further reduction in memory consumption should be
performed, as the program still requires around 28 GB RAM to evaluate data sets contain-
ing the approximately 20 000 protein coding genes in the human genome. A peak memory
consumption below 16 GB is an ideal first target, as this is the memory-capacity of many
modern desktop systems.

A first step towards limiting the memory consumption has been performed, exchang-
ing the datatype of the similarity and adjacency matrices from double to float. As these
matrices constitutes the majority of memory requirement, this step was expected to effec-
tively reduce memory consumption by 50%. The program-version using double as data
type required approximately 35 GB of memory for two datasets containing 20 000 genes,
while the current version uses 28 GB. Thus the actual observed memory reduction from
this step was about half of that expected.

An attempt at relating the peak memory consumption to size of the input data was
performed. For two input files, the maximum memory usage was estimated to be approx-
imately 7 · (n × n) multiplied by the size of the data-type of the matrices (2 matrices
for correlation values, 2 matrices for variance values, and 3 matrices for CSD-scores;
2 + 2 + 3 = 7). For input data of size n = 2 · 104, and using float as the data-type, the
estimated maximum memory usage, should be 11.2 GB. Although this is a slight underes-
timate, the fact that the program peaks at approximately 28 GB indicates that the program
does not behave entirely as intended in terms of memory management. The memory peak
appears towards the end of the program execution, later than assumed in the estimation
above. This gives rise to a couple of hypotheses as to where the problem lies. One possible
explanation is that de-allocation of some matrix or matrices is forgotten or somehow fails,
resulting in a longer than intended lifetime for some of the data. Another possibility is that
uncautious implementation of one of the latter procedures of the program causes the pro-
gram to consume more memory than intended. A systematic analysis of the latter program
sections and evaluation of their memory consumption is left for further work. Finding the
cause of the memory leak, and reducing the peak memory consumption is considered high
priority for future program versions, as it will increase the software portability.

Another possibility for memory reduction, is only storing half of the elements in the
similarity and adjacency matrices. As the networks generated using the CSD-framework
are undirected, the similarity and adjacency matrices are symmetric across the diagonal.
This means that all information is conserved upon discarding one of the matrix halves.
The current version stores the entire matrices as this was easier to implement, and getting
a reliable, working version of the program was more important than the actual performance
of the program for this first version. As all matrices of size n×n in the program share this
property, and the peak memory use of the program is dominated by the contribution from
these matrices, this has the potential to reduce the memory consumption with 50%.

Successful identification of the memory leak, and removing half of the matrices as
described above, have the potential of reducing the memory consumption of the program
to around 5.6 GB for data-sets containing 20 000 genes. This is well within the target of
16 GB. It is even below the next target of 8 GB, which will make the program feasible
for most mid-price range laptops. This makes the program highly portable, and opens up
for analyzing expression data for full probe-sets of n ≈ 50000. This will however still be

66

6.1 CSD-CS

reserved for high-performance systems, as it will require ≈ 70 GB of memory.

6.1.3 Increased functionality

Preprocessing algorithms

The current version of CSD-CS only contains a preprocessing algorithm for gene-expression
data as input. This is somewhat limiting for the functionality of the program. Ideally it
should be possible to run the program using gene-expression data, correlation data or CSD-
scores, and return anything from correlation data to a finished network. In order for this to
be fully supported, it is necessary to implement preprocessing algorithms for correlation
data and CSD-scores. This is so that the user will be able to calculate the correlation values
or CSD-scores for for data-sets independently of each other, and then feed the results into
the program at a later stage. The current version has no preprocessing algorithms for these
input types however, requiring the input files to consist of identical and sorted sets of genes
in order to for the similarity and adjacency matrices to match. This is property is guaran-
teed if the the relevant data sets are fed into the program together as gene-expression data.
If not, the user need to manipulate the data sets him-/herself, which is cumbersome and
error-prone, and thus should be avoided. Implementation of these additional preprocessing
algorithms is left as further work.

Correlation measures

The choice of similarity measure will affect the output of the method. Table 6.1 illus-
trates this, by showing a comparison between 5 different similarity measures for a set of
4 randomly chosen genes from the rheumatoid arthritis data set. It might be of interest
to generate CSD-networks using different similarity measures, as a potential extension to
the method itself, and the software. The current program version uses Spearman’s rank
correlation, and have an implementation of Pearson’s correlation, currently unused. Other
interesting prospects are for instance Kendall’s tau [109], Biweight mid-correlation [51]
or mutual information [69, 110]. The program is designed to accommodate integration of
other similarity measures, despite only supporting Spearman correlation at the moment.
Implementation and integration of other similarity measures is left as further work.

Table 6.1: A comparison of different similarity scores between 4 randomly chosen genes (A, B, C
and D) in the rheumatoid arthritis data set. The binning of the values for calculation of MI-scores
was chosen to generate scores in the same size range as the rest of the similarity measures (for the
purpose of comparison).

A-B A-C A-D B-C B-D C-D
Pearson 0.1285 -0.0069 0.1179 0.1571 0.4427 0.1682

Spearman 0.1084 -0.0184 0.0985 0.1507 0.4301 0.1508
Kendall’s tau 0.0720 -0.0146 0.0661 0.1023 0.2962 0.0998

Biweight midcorrelation 0.1099 -0.0020 0.1030 0.1492 0.4390 0.1609
Mutual information 0.3056 0.2205 0.2463 0.1572 0.1849 0.1066

67

Chapter 6. Discussion and further work

Multiple files as input

Although not discussed in this thesis, the CSD-framework is generalizable to an arbitrary
number of data sets. This has been taken into account when writing the program, and so
it accommodates an arbitrary number of input files. The current version simply generates
a network for each combination of the input files, resulting in a rapid increase in memory
and time consumption when increasing the number of files. The genes in the networks are
filtered by the preprocessing algorithm so that only the genes/probes occurring in all data
sets are included. Further development of this feature, including specifying how to relate
the resulting networks, alternatively calculating higher dimension CSD-scores, is left for
further work.

Graphical user interface

Although the software is fairly simple to use, the long list of input parameters requires the
user to have good knowledge about the functionality of the software. As some users might
feel more comfortable using a graphical user interface (GUI), and program portability and
ease of use is in focus, an idea for further work might be to develop a GUI. This will make
it easier for users to identify which parameter options are available and, and the program
can display all default values. As the program functionality is limited, implementing a
GUI should not be a demanding task, and can be considered for future program versions.

Support for other operating systems

The current version of the software is developed solely for linux-based operating systems.
For program portability, support for other operating systems, most noticeably Windows
and OS X, would be useful extensions. Facilitating use with these environments is left as
further work.

6.2 Network analysis
RA is a highly heterogeneous disease, with multiple genetic associations and environmen-
tal factors playing a role in the disease development. This makes it unlikely to identify a
clear disease signal in the network, as the underlying processes are complex. As RA is an
autoimmune disease, one would expect to detect a change in immune response between
the healthy and infected cohorts. Especially the S- and D-interaction networks are of in-
terest in this respect. The S-network showed highest enrichment for blood clotting and
coagulation related biology. It could therefor be interesting to evaluate how the observed
coagulation-signal relates to the disease state, and whether these genes are more or less co-
expressed in the disease dataset. Both the C- and the D-network, showed some enrichment
for immune system related biology, but fairly low scores. When performing enrichment on
the two major components, a slight enrichment of T-cell related signaling was observed in
the S-component. The module level enrichment supported this last observation by show-
ing fairly high enrichment scores for T-cell receptor complex and binding in module 3.
Module 3 contains only 12 C-interactions, and 4 D-interactions, while consisting of 168
S-interactions. This is thus a strong indication of a change in immune regulation captured

68

6.2 Network analysis

by this module. Further analysis on the localization and interactions of the relevant genes
should be performed in order to verify this. Whether the apparent change in co-expression
is linked to a general inflammatory response or possible mechanisms behind RA needs to
be evaluated in future projects as well.

Module 6 showed moderate enrichment for apoptotic signaling, abnormal NK-cell
physiology, and increased T-cell proliferation. Module 6 does however consist of a large
majority of C-type interactions, which makes it unlikely that the observed enrichment is
related to changes in immune system response. It is however interesting to observe the
proximity of module 3 and 6 given their related biology, supporting the hypothesis that
network structure is related to biological function.

Furthermore module 4 showed high ontological enrichment for helper T-lymphocytes
and cytotoxic T-lymphocytes, and module 10 for IgA immunoglobulin complex and IgA
B-cell receptor complex. As module 4 consists exclusively of C-interactions it is not of
great interest to the disease state. Module 10 however contains 11 C-type and 26 D-type
interactions, and are thus an interesting candidate for RA related biology. The fact that
CD5 is located in this module, and its neighboring genes are related to RA-biology, makes
this module an interesting prospect for further analysis. As module 10 is fairly sparse,
an interesting analysis would be to generate a new CSD-network with a lower importance
threshold. New genes and new interactions would then likely occur in and around module
10, possibly conveying additional RA-related biology.

An interesting finding from the enrichment analysis was that PRDM1-transcription
related enrichment was found for the D-network. PRDM1 (also knows as BLIMP1; B
lymphocyte induced maturation protein 1) is a transcription factor important in antigen-
dependent activation of both T-cells and B-cells (although it plays different roles in the
two cell types) [111]. PRDM1 have been associated with RA [87], and although the gene
itself is not present in the network it could be interesting to evaluate the location and co-
expression pattern of the related genes. For completeness, and to facilitate further analysis,
a list of the PRDM1-transcription related genes have been added in appendix F.

The detected TYK2-knockdown enrichment was also an interesting result from the D-
network enrichment analysis. TYK2 (Tyrosine Kinase 2) codes for a protein that activates
cytokine signals by phosphorylating subunits of cytokine receptors. The protein is also
involved in type 1 and 3 interferon signaling, and is suspected to protect against RA and
autoimmune disease [88]. This finding may indicate a change in TYK2 expression or
similar changes in expression patterns for RA patients. A similar analysis as described
in the paragraph above could be of interest here, and so the relevant genes are listed in
appendix G and the analysis itself left for further work.

Other procedures that can be interesting for further network analysis include; reducing
importance level and retry guilt-by-association, investigating relations between the CSD-
network and PPI-networks1, and identification and analysis of nodes involved in a lot of
S- and D-interactions. In addition the genes CD72 and FOXD1 was found in the network,
both of which play regulatory roles in relation to autoimmunity [93, 92, 95]. Investigat-
ing their locations and co-expression patterns may yield interesting information. Further
analysis of modules with high immunological enrichment such as module 6 may also be
of interest.

1Protein-protein interaction network

69

Chapter 6. Discussion and further work

Although the results commented on so far are mainly those with probable connections
to the disease state, other nodes, such as those identified in section 5.5.2 are all of interest.
The fact that the CSD-scores are based on both correlation scores and variance weight-
ing, ensures that only gene-pairs showing predictable and tight co-expression across all
the measurements in a data-set are highlighted by the method. The highlighted genes
are thus likely to be related to central biological processes, or cellular responses. The S-
and D-interactions in a network will therefore effectively capture responses that may ex-
plain phenotypic differences. A CSD-network thus provides a good tool for generating
hypotheses about the genetics behind phenotypic differences, and may identify new genes
of interest.

70

Chapter 7
Conclusion

This thesis have successfully generated a new software-tool for the generation of differ-
ential co-expression networks using the CSD-framework. An example of a co-expression
network analysis have also been provided, on a network generated from rheumatoid arthri-
tis expression data. The analysis identified RA-related biology in the network, such as im-
mune system and inflammation related biology. Some RA-associated genes were found in
the network, while others were implied through enrichment-analysis. Several prospective
genes for further analysis, including CD72, FOXD1, AP8B2 and HAPLN4 were identified.
The findings from this preliminary analysis give some clues as to where disease-related in-
formation may be localized in the network, and provide a solid basis for further analysis.

Although the target of the CSD-method and the illustrated application was on gene
expression data, the methodology lends itself to a much broader set of problems. By using
a network formalism to visualize complex correlation patterns in one or more data-sets, a
researcher can apply all the tools of network science in probing the underlying structure of
the data. The biological analysis performed illustrates how case-specific knowledge can
be applied to further refine the analysis.

71

Chapter 7. Conclusion

72

Bibliography

[1] A Voigt, K Nowick, and E Almaas. A composite network of conserved and tissue
specific gene interactions reveals possible genetic interactions in glioma. submitted.

[2] A-L Barabási. Network Science Book. Cambridge University Press, 2015.

[3] P Erdös and a Rényi. On random graphs. Publicationes Mathematicae, 6:290–297,
1959.

[4] A-L Barabási and E Bonabeau. Scale-free networks. Scientific American, 3(1):50–
59, 2003.

[5] M Kivela. Multilayer Networks Library for Python,
http://people.maths.ox.ac.uk/kivela/mln library/visualizing.html, Accessed:
2017-08-01.

[6] A-L Barabási. The network takeover. Nature Physics, 8(1):14–16, 2011.

[7] R Albert and A-L Barabasi. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74(1):47–97, 2002.

[8] Y Y Liu and A-L Barabási. Control principles of complex systems. Reviews of
Modern Physics, 88(3), 2016.

[9] B F Zhan. Three fastest shortest path algorithms on real road networks: Data struc-
tures and procedures. Journal of Geographic Information and Decision Analysis,
1(1):70–82, 1997.

[10] J Leskovec, K J Lang, and M Mahoney. Empirical comparison of algorithms for
network community detection. Conference on World Wide Web {WWW}, pages
631–640, 2010.

[11] S Wasserman and K Faust. Social Network Analysis: Methods and Applications,
1994.

[12] H Jeong, B Tombor, R Albert, Z N Oltvai, and A-L Barabasi. The large-scale
organization of metabolic networks. Nature, 407(6804):651–654, 2000.

73

[13] J Schwender. Plant Metabolic Networks. 2009.

[14] B H Liu, H Yu, K Tu, C Li, Y X Li, and Y Y Li. DCGL: An R package for iden-
tifying differentially coexpressed genes and links from gene expression microarray
data. Bioinformatics, 26(20):2637–2638, 2010.

[15] D Amar, H Safer, and R Shamir. Dissection of Regulatory Networks that Are Al-
tered in Disease via Differential Co-expression. PLoS Computational Biology, 9(3),
2013.

[16] D Kostka and R Spang. Finding disease specific alterations in the co-expression of
genes. In Bioinformatics, volume 20, 2004.

[17] E Pierson, D Koller, A Battle, and S Mostafavi. Sharing and Specificity of Co-
expression Networks across 35 Human Tissues. PLoS Computational Biology,
11(5), 2015.

[18] Z Xue, K Huang, C Cai, L Cai, C Y Jiang, Y Feng, Z Liu, Q Zeng, L Cheng, Y E
Sun, and Et Al. Genetic programs in human and mouse early embryos revealed by
single-cell RNA sequencing. Nature, 500(7464):593–597, 2013.

[19] S van Dam, U Võsa, A van der Graaf, L Franke, and J P de Magalhães. Gene co-
expression analysis for functional classification and genedisease predictions. Brief-
ings in Bioinformatics, 2017.

[20] B Zhang and S Horvath. A General Framework for Weighted Gene Co-Expression
Network Analysis A General Framework for Weighted Gene. Statistical applica-
tions in genetics and molecular biology, 4(1), 2005.

[21] M E J Newman. The structure and function of complex networks. Siam Review,
45(2):167–256, 2003.

[22] R Albert, H Jeong, and A-L Barabasi. Diameter of the World Wide Web. Nature,
401:130–131, 1999.

[23] M Faloutsos, P Faloutsos, and C Faloutsos. On power-law relationships of the
Internet topology. ACM SIGCOMM Computer Communication Review, 29(4):251–
262, 1999.

[24] R Albert, I Albert, and G L Nakarado. Structural vulnerability of the North Ameri-
can power grid. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
69(2 2), 2004.

[25] H Jeong, S P Mason, A-L Barabási, and Z N Oltvai. Lethality and centrality in
protein networks. Nature, 411(6833):41–42, 2001.

[26] S Roy, D K Bhattacharyya, and J K Kalita. Reconstruction of gene co-expression
network from microarray data using local expression patterns. BMC bioinformatics,
15(7):S10, 2014.

74

[27] K-I Goh, M E Cusick, D Valle, B Childs, M Vidal, and A-L Barabási. The human
disease network. Proceedings of the National Academy of Sciences of the United
States of America, 104(21):8685–8690, 2007.

[28] M E J Newman. Spread of epidemic disease on networks. Physical Review E -
Statistical, Nonlinear, and Soft Matter Physics, 66(1), 2002.

[29] R Albert, H Jeong, and A-L Barabási. Error and attack tolerance of complex net-
works. Nature, 406: 378482, 2000. Nature, 406(6794):378–382, 2000.

[30] A E Motter. Cascade control and defense in complex networks. Physical Review
Letters, 93(9), 2004.

[31] S Dorogovtsev, A Goltsev, and J Mendes. Critical phenomena in complex networks.
Reviews of Modern Physics, 80(4):1275–1335, 2008.

[32] A Arenas, A Diaz-Guilera, J Kurths, Y Moreno, and C Zhou. Synchronization in
complex networks, 2008.

[33] R Olfati-Saber, J A Fax, and R M Murray. Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[34] E N Gilbert. Random Graphs. The Annals of Mathematical Statistics, 30(4):1141–
1144, 1959.

[35] A-L Barabasi and R Albert. Emergence of Scalling in Random Networks. Science,
286(5439):509–512, 1999.

[36] V D Blondel, J-L Guillaume, R Lambiotte, and E Lefebvre. Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment, (10):10008, 2008.

[37] G Bianconi and A-L Barabási. Competition and multiscaling in evolving networks.
Europhysics letters, 54(4):436–442, 2001.

[38] X He and J Zhang. Why do hubs tend to be essential in protein networks? PLoS
Genetics, 2(6):826–834, 2006.

[39] T G Lewis. Network science - theory and applications. chapter 13. Wiley, 2009.

[40] D M Wolf, M E Lenburg, C Yau, A Boudreau, and L J Van’t Veer. Gene co-
expression modules as clinically relevant hallmarks of breast cancer diversity. PLoS
ONE, 9(2), 2014.

[41] G J Tawa, M D M AbdulHameed, X Yu, K Kumar, D L Ippolito, J A Lewis, J D
Stallings, and A Wallqvist. Characterization of chemically induced liver injuries
using gene co-expression modules. PLoS ONE, 9(9), 2014.

[42] J Jiang, P Jia, Z Zhao, and B Shen. Key regulators in prostate cancer identified by
co-expression module analysis. BMC genomics, 15(1):1015, 2014.

75

[43] B Cai, C-H Li, and J Huang. Systematic identification of cell-wall related genes in
Populus based on analysis of functional modules in co-expression network. PloS
one, 9(4), 2014.

[44] U Brandes. A faster algorithm for betweenness centrality. Ulrik Brandes The Jour-
nal of Mathematical Sociology, 25(252):163–177, 2001.

[45] M E J Newman. A measure of betweenness centrality based on random walks.
Social Networks, 27(1):15, 2003.

[46] U Stelzl, U Worm, M Lalowski, C Haenig, F H Brembeck, H Goehler,
M Stroedicke, M Zenkner, A Schoenherr, S Koeppen, and Et Al. A human
protein-protein interaction network: A resource for annotating the proteome. Cell,
122(6):957–968, 2005.

[47] J Dong and S Horvath. Understanding network concepts in modules. BMC Systems
Biology, 1(1752-0509):24, 2007.

[48] U Ala, R M Piro, E Grassi, C Damasco, L Silengo, M Oti, P Provero, and F Di
Cunto. Prediction of human disease genes by human-mouse conserved coexpres-
sion analysis. PLoS Computational Biology, 4(3), 2008.

[49] J Nie, R Stewart, H Zhang, J A Thomson, F Ruan, X Cui, and H Wei. TF-Cluster:
a pipeline for identifying functionally coordinated transcription factors via network
decomposition of the shared coexpression connectivity matrix (SCCM). BMC sys-
tems biology, 5(1):53, 2011.

[50] C-H Zheng, L Yuan, W Sha, and Z-L Sun. Gene differential coexpression analysis
based on biweight correlation and maximum clique. BMC bioinformatics, 15 Suppl
1(Suppl 15):S3, 2014.

[51] L Song, P Langfelder, and S Horvath. Comparison of co-expression measures:
mutual information, correlation, and model based indices. BMC Bioinformatics,
13(1):328, 2012.

[52] S Persson, H Wei, J Milne, G P Page, and C R Somerville. Identification of genes
required for cellulose synthesis by regression analysis of public microarray data
sets. Proceedings of the National Academy of Sciences of the United States of
America, 102(24):8633–8638, 2005.

[53] M Schena. Microarray analysis. John Wiley and Sons Inc., 1st editio edition, 2003.

[54] I B McInnes and G Schett. The Pathogenesis of Rheumatoid Arthritis. New England
Journal of Medicine, 365(23):2205–2219, 2011.

[55] A J MacGregor, H Snieder, A S Rigby, M Koskenvuo, J Kaprio, K Aho, and A J
Silman. Characterizing the quantitative genetic contribution to rheumatoid arthritis
using data from twins. Arthritis & Rheumatism, 43(1):30–37, 2000.

76

[56] D Van Der Woude, J J Houwing-Duistermaat, R E M Toes, T W J Huizinga,
W Thomson, J Worthington, A H M Van Der Helm-Van Mil, and R R P De Vries.
Quantitative heritability of anti-citrullinated protein antibody-positive and anti-
citrullinated protein antibody-negative rheumatoid arthritis. Arthritis and Rheuma-
tism, 60(4):916–923, 2009.

[57] C M Deighton, D J Walker, I D Griffiths, and D F Roberts. The contribution of
HLA to rheumatoid arthritis. Clinical genetics, 36(3):178–182, 1989.

[58] J Kurkó, T Besenyei, J Laki, T T Glant, K Mikecz, and Z Szekanecz. Genetics of
rheumatoid arthritis - A comprehensive review, 2013.

[59] E A Stahl, S Raychaudhuri, El F Remmers, G Xie, S Eyre, B P Thomson, Y Li,
F A S Kurreeman, A Zhernakova, A Hinks, and Et Al. Genome-wide association
study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nature ge-
netics, 42(6):508–514, 2010.

[60] S Viatte, D Plant, and S Raychaudhuri. Genetics and epigenetics of rheumatoid
arthritis. Nature reviews. Rheumatology, 9(3):141–53, 2013.

[61] S Eyre, J Bowes, D Diogo, A Lee, A Barton, P Martin, A Zhernakova, E Stahl,
S Viatte, K McAllister, and Et Al. High-density genetic mapping identifies new sus-
ceptibility loci for rheumatoid arthritis. Nature genetics, 44(12):1336–1340, 2012.

[62] S Raychaudhuri, C Sandor, E A Stahl, J Freudenberg, H-S Lee, X Jia, L Alfredsson,
L Padyukov, L Klareskog, J Worthington, and Et Al. Five amino acids in three HLA
proteins explain most of the association between MHC and seropositive rheumatoid
arthritis. Nature genetics, 44(3):291–296, 2012.

[63] D Diogo, F Kurreeman, E A Stahl, K P Liao, N Gupta, J D Greenberg, M A Rivas,
B Hickey, J Flannick, B Thomson, and Et Al. Rare, Low-Frequency, and Com-
mon Variants in the Protein-Coding Sequence of Biological Candidate Genes from
GWASs Contribute to Risk of Rheumatoid Arthritis. American Journal of Human
Genetics, 92(1):15–27, 2013.

[64] MD) McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University
(Baltimore. Online Mendelian Inheritance in Man, OMIM R©.

[65] L Carmona, M Cross, B Williams, M Lassere, and L March. Rheumatoid arthritis.
Best practice & research. Clinical rheumatology, 24(6):733–45, 2010.

[66] T H Cormen, C C E Leiserson, R R L Rivest, and C Stein. Introduction to Algo-
rithms, Third Edition, volume 7. The MIT Press, 2009.

[67] M G Kendall. Biometrika Trust A New Measure of Rank Correlation. Source:
Biometrika, 30(12):81–93, 1938.

[68] T M Cover and J A Thomas. Elements of Information Theory 2nd Edition. 2006.

77

[69] C O Daub, R Steuer, J Selbig, S Kloska, M Schena, D Shalon, R W Davis, P O
Brown, V E Velculescu, I Zhang, and Et Al. Estimating mutual information using
B-spline functions an improved similarity measure for analysing gene expression
data. BMC Bioinformatics, 5(1):118, 2004.

[70] R. A. Fisher. Statistical methods for research workers. Number V. 1934.

[71] O J Dunn. Estimation of the Medians for Dependent Variables. The Annals of
Mathematical Statistics, 30:192–197, 1959.

[72] Y Benjamini and Y Hochberg. Controlling the false discovery rate: a practical and
powerful approach to multiple testing, 1995.

[73] Y Benjamini and D Yekutieli. The control of the false discovery rate in multiple
testing under dependency. Annals of Statistics, 29(4):1165–1188, 2001.

[74] P Shannon, A Markiel, O Ozier, N S Baliga, J T Wang, D Ramage, N Amin,
B Schwikowski, and T Ideker. Cytoscape: A software Environment for integrated
models of biomolecular interaction networks. Genome Research, 13(11):2498–
2504, 2003.

[75] N T Doncheva, Y Assenov, F S Domingues, and M Albrecht. Topological analysis
and interactive visualization of biological networks and protein structures. Nature
Protocols, 7(4):670–685, 2012.

[76] S J Russell and P Norvig. Artificial intelligence: a modern approach (Global Edi-
tion). Pearson Education Ltd., 3rd edition, 2016.

[77] International Human Genome Sequencing Consortium. Finishing the euchromatic
sequence of the human genome. TL - 431. Nature, 431(7011):931–945, 2004.

[78] OpenMP - FAQ, http://www.openmp.org/about/openmp-faq/, Accsessed: 2017-08-
02.

[79] OpenMP - About us, http://www.openmp.org/about/about-us/, Accessed: 2017-08-
02.

[80] B Chapman, G Jost, and R Van Der Pas. Using OpenMP: Portable Shared Memory
Parallel Programming, volume 10. 2008.

[81] P Pacheco. An Introduction to Parallel Programming. 2011.

[82] A M Walsh, J W Whitaker, C C Huang, Y Cherkas, S L Lamberth, C Brodmerkel,
M E Curran, R Dobrin, I B McInnes, G Schett, and Et Al. Integrative genomic de-
convolution of rheumatoid arthritis GWAS loci into gene and cell type associations.
Genome Biology, 17(1):79, 2016.

[83] J Lonsdale, J Thomas, M Salvatore, R Phillips, E Lo, S Shad, R Hasz, G Walters,
F Garcia, N Young, and Et Al. The Genotype-Tissue Expression (GTEx) project.
Nature genetics, 45(6):580–585, 2013.

78

[84] E Y Chen, C M Tan, Y Kou, Q Duan, Z Wang, G V Meirelles, N R Clark, and
A Ma’ayan. Enrichr: interactive and collaborative HTML5 gene list enrichment
analysis tool. BMC bioinformatics, 14(1):128, 2013.

[85] M V Kuleshov, M R Jones, A D Rouillard, N F Fernandez, Q Duan, Z Wang,
S Koplev, S L Jenkins, K M Jagodnik, A Lachmann, and Et Al. Enrichr: a com-
prehensive gene set enrichment analysis web server 2016 update. Nucleic acids
research, 44(1):90–97, 2016.

[86] M Rebhan, V Chalifa-Caspi, J Prilusky, and D Lancet. GeneCards: A novel func-
tional genomics compendium with automated data mining and query reformulation
support. Bioinformatics, 14(8):656–664, 1998.

[87] S Raychaudhuri, B P Thomson, E F Remmers, S Eyre, and A Hinks. Genetic
variants at CD28, PRDM1 and CD2/CD58 are associated with rheumatoid arthritis
risk. Nature Genetics, 41(12):1313–1318, 2009.

[88] D Diogo, L Bastarache, K P Liao, R R Graham, R S Fulton, J D Greenberg, S Eyre,
J Bowes, J Cui, A Lee, and Et Al. TYK2 protein-coding variants protect against
rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic ef-
fects on non-autoimmune complex traits. PLoS ONE, 10(4), 2015.

[89] A P Cope, H Schulze-Koops, and M Aringer. The central role of T cells in rheuma-
toid arthritis. Clinical and experimental rheumatology, 25(5):S4–11, 2007.

[90] H J Wu, C Venkataraman, S Estus, C Dong, R J Davis, R a Flavell, and S Bon-
dada. Positive signaling through CD72 induces mitogen-activated protein kinase
activation and synergizes with B cell receptor signals to induce X-linked immun-
odeficiency B cell proliferation. Journal of immunology (Baltimore, Md. : 1950),
167:1263–1273, 2001.

[91] X Jiang, N K Björkström, and E Melum. Intact CD100-CD72 Interaction Necessary
for TCR-Induced T Cell Proliferation. Frontiers in immunology, 8:765, 2017.

[92] C Akatsu, K Shinagawa, N Numoto, Z Liu, A Konuskan Ucar, M Aslam, S Phoon,
T Adachi, K Furukawa, N Ito, and T Tsubata. CD72 negatively regulates B lympho-
cyte responses to the lupus-related endogenous toll-like receptor 7 ligand Sm/RNP.
Journal of experimental medicine, 213:2691–2706, 2016.

[93] T Tsubata. CD22 und CD72 sind in BLymphozyten dominant exprimierte
inhibitorische Rezeptoren und regulieren systemische Autoimmunerkrankungen.
Zeitschrift für Rheumatologie, 75(1):86–89, 2016.

[94] M Lyu, Y Hao, Y Li, C Lyu, W Liu, H Li, F Xue, X Liu, and R Yang. Upregula-
tion of CD72 expression on CD19+ CD27+ memory B cells by CD40L in primary
immune thrombocytopenia. British journal of haematology, 2017.

[95] L Lin and S L Peng. Coordination of NF-kappaB and NFAT antagonism by the fork-
head transcription factor Foxd1. Journal of immunology (Baltimore, Md. : 1950),
176:4793–4803, 2006.

79

[96] A Golla, A Jansson, J Ramser, H Hellebrand, R Zahn, T Meitinger, B H Belohrad-
sky, and A Meindl. Chronic recurrent multifocal osteomyelitis (CRMO): evidence
for a susceptibility gene located on chromosome 18q21.3-18q22. European Journal
of Human Genetics, 10(3):217–221, 2002.

[97] D Aygun, K Barut, and Y Camcioglu. Chronic recurrent multifocal osteomyelitis:
A rare skeletal disorder, 2015.

[98] Gene Ontology Consortium. The Gene Ontology Consortium. Gene ontology: tool
for the unification of biology. Nature Genetics, 25(1):25–29, 2000.

[99] N Nagy, G Kaber, P Y Johnson, J A Gebe, A Preisinger, B A Falk, V G Sunkari,
M D Gooden, R B Vernon, M Bogdani, and Et Al. Inhibition of hyaluronan syn-
thesis restores immune tolerance during autoimmune insulitis. Journal of Clinical
Investigation, 125(10):3928–3940, 2015.

[100] A M Mueller, B H Yoon, and S A Sadiq. Inhibition of hyaluronan synthesis protects
against central nervous system (CNS) autoimmunity and increases CXCL12 expres-
sion in the inflamed CNS. Journal of Biological Chemistry, 289(33):22888–22899,
2014.

[101] H F Kuipers, M Rieck, I Gurevich, N Nagy, M J Butte, R S Negrin, T N Wight,
L Steinman, and P L Bollyky. Hyaluronan synthesis is necessary for autoreactive
T-cell trafficking, activation, and Th1 polarization. PNAS, 113(5):1339–1344, 2016.

[102] X Chang, R Yamada, and K Yamamoto. Inhibition of antithrombin by hyaluronic
acid may be involved in the pathogenesis of rheumatoid arthritis. Arthritis research
& therapy, 7(2):268–273, 2005.

[103] Y Yoshioka, E Kozawa, H Urakawa, E Arai, N Futamura, L Zhuo, K Kimata,
N Ishiguro, and Y Nishida. Suppression of hyaluronan synthesis alleviates inflam-
matory responses in murine arthritis and in human rheumatoid synovial fibroblasts.
Arthritis and Rheumatism, 65(5):1160–1170, 2013.

[104] C-L Chou, H-W Li, S-H Lee, K-L Tsai, and H-Y Ling. Effect of intra-articular
injection of hyaluronic acid in rheumatoid arthritis patients with knee osteoarthritis.
Journal of the Chinese Medical Association : JCMA, 71(8):411–415, 2008.

[105] K Masuko, M Murata, K Yudoh, T Kato, and H Nakamura. Anti-inflammatory
effects of hyaluronan in arthritis therapy: Not just for viscosity, 2009.

[106] A Aruffo, I Stamenkovic, M Melnick, C B Underhill, and B Seed. CD44 is the
principal cell surface receptor for hyaluronate. Cell, 61(7):1303–1313, 1990.

[107] S Misra, V C Hascall, R R Markwald, and S Ghatak. Interactions between Hyaluro-
nan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation
and Cancer. Frontiers in Immunology, 6(May):201, 2015.

[108] O Kerscher, R Felberbaum, and M Hochstrasser. Modification of proteins by ubiq-
uitin and ubiquitin-like proteins. Annual review of cell and developmental biology,
22:159–180, 2006.

80

[109] S Kumari, J Nie, H Chen, H Ma, R Stewart, X Li, M-Z Lu, W M Taylor, and H Wei.
Evaluation of gene association methods for coexpression network construction and
biological knowledge discovery. PloS one, 7(11):e50411, 2012.

[110] I Priness, O Maimon, and I Ben-Gal. Evaluation of gene-expression clustering via
mutual information distance measure. BMC bioinformatics, 8:111, 2007.

[111] K Calame. Activation-dependent induction of Blimp-1, 2008.

81

82

Appendix A

Table 1: This is a list of 52 genes with suspected association to rheumatoid arthritis.

AFF3 FCGR3A IRAK1 RBPJ
ARID5B FCGR3B IRF5 RCAN1
C5 GATA3 IRF8 REL
CCL21 HLA-B KIF5A RUNX1
CCR6 HLA-DPB1 PADI4 SPRED2
CD2 HLA-DRB1 PIP4K2C STAT4
CD5 IKZF4 POU3F1 TAGAP
CD28 IL2 PRDM1 TLE3
CD40 IL2RA PRKCQ TNFAIP3
CD58 IL2RB PTPN22 TNFRSF14
CTLA4 IL6R PTPRC TRAF1
FCGR2A IL6ST PYK TRAF6
FCGR2B IL21 RASGRP1 TYK2

83

Appendix B

Figure 1 Example illustrating the ged file-format.

84

Figure 2 Example illustrating the corr file-format.

85

Figure 3 Example illustrating the csd file-format

86

Figure 4 Example illustrating the all file format.

87

Figure 5 Example illustrating the network file-format.

88

Appendix C

Table 2: Network parameters for the degree-preserving random networks generated from the S-
component.

Network nr. 1 2 3 4 5 6 7 8 9 10
Radius 1 1 1 1 1 1 1 1 1 1
Diameter 9 9 8 8 8 7 10 8 8 8
Char.pt.len 3.704 3.685 3.666 3.671 3.647 3.697 3.734 3.656 3.707 3.658
Avg.degree 5.261 5.261 5.261 5.261 5.261 5.261 5.261 5.261 5.261 5.261
Density 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
Centralization 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058
Heterogeneity 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944
Clust.coeff. 0.025 0.017 0.025 0.024 0.032 0.021 0.031 0.024 0.021 0.027

Table 3: Network parameters for the degree-preserving random networks generated from the CD-
component.

Network nr. 1 2 3 4 5 6 7 8 9 10
Radius 1 1 1 1 1 1 1 1 1 1
Diameter 10 11 10 9 9 9 9 10 10 9
Char.pt.len 4.203 4.029 4.084 4.076 4.049 4.084 4.072 4.080 4.099 4.034
Avg.degree 3.598 3.598 3.598 3.598 3.598 3.598 3.598 3.598 3.598 3.598
Density 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008
Centralization 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097
Heterogeneity 1.207 1.207 1.207 1.207 1.207 1.207 1.207 1.207 1.207 1.207
Clust.coeff. 0.024 0.021 0.022 0.019 0.032 0.021 0.026 0.021 0.020 0.023

89

Figure 6 Example of a degree-preserving random network generated from the S-
dominated component in the arthritis-network.

90

Figure 7 Example of a degree-preserving random network generated from the CD-
dominated component in the arthritis-network.

91

Appendix D

92

Table 4: Spearman correlation between different node parameters within in the CD-dominated net-
work component.

Module CC Ci ki ε kii Ti
CD CB 0.4608 0.3303 0.8920 -0.3564 -0.0647 0.4757

CC - 0.5195 0.6067 -0.6068 0.6637 0.2185
Ci - - 0.6457 -0.3479 0.2964 0.4874
ki - - - -0.4305 0.0589 0.5243
ε - - - - -0.3371 -0.2383
kii - - - - - 0.0579

1 CB 0.6549 0.3043 0.9149 -0.4495 -0.0714 0.3127
CC - 0.3332 0.6477 -0.6484 0.5403 0.0698
Ci - - 0.5879 -0.2127 0.1274 0.5525
ki - - - -0.4557 -0.0738 0.4122
ε - - - - -0.3212 -0.1401
kii - - - - - -0.0661

2 CB 0.6198 0.2950 0.8997 -0.3665 0.0001 0.3050
CC - 0.5455 0.7215 -0.5619 0.6690 0.3182
Ci - - 0.5851 -0.2951 0.3372 0.5489
ki - - - -0.4372 0.1128 0.3713
ε - - - - -0.4536 -0.1832
kii - - - - - 0.2343

5 CB 0.5914 0.5223 0.9470 -0.4870 -0.1138 0.6655
CC - 0.6308 0.6809 -0.7406 0.6041 0.4171
Ci - - 0.7173 -0.3270 0.3180 0.5198
ki - - - -0.5042 -0.0027 0.6884
ε - - - - -0.3300 -0.2962
kii - - - - - 0.0448

10 CB 0.4471 -0.1132 0.8622 -0.3859 -0.1588 0.4085
CC - -0.0087 0.3002 -0.9902 0.0827 0.1430
Ci - - 0.2667 -0.0553 -0.3048 0.5096
ki - - - -0.2654 -0.4133 0.5569
ε - - - - -0.0649 -0.1228
kii - - - - - -0.2151

15 CB 0.6277 0.4580 0.9423 -0.4863 -0.1441 0.8835
CC - 0.5378 0.5992 -0.9150 0.5370 0.5109
Ci - - 0.6681 -0.3672 -0.0952 0.3114
ki - - - -0.4474 -0.2203 0.8295
ε - - - - -0.6596 -0.3243
kii - - - - - -0.0833

93

Table 5: Spearman correlation between different node parameters within in the S-dominated net-
work component.

Module CC Ci ki ε kii Ti
S CB 0.8011 0.1962 0.8937 -0.6564 -0.0788 -0.0572

CC - 0.4384 0.8833 -0.7934 0.3630 -0.0264
Ci - - 0.4954 -0.2496 0.5623 0.1537
ki - - - -0.6669 0.1427 -0.0105
ε - - - - -0.2358 -0.0138
kii - - - - - 0.1601

0 CB 0.8413 0.2387 0.9148 -0.6717 -0.1114 -0.1006
CC - 0.5293 0.9182 -0.7881 0.3109 -0.0713
Ci - - 0.5124 -0.3267 0.5586 0.1183
ki - - - -0.6932 0.0657 -0.0473
ε - - - - -0.2312 0.0705
kii - - - - - 0.1588

3 CB 0.7800 0.2366 0.9341 -0.7212 0.0447 0.1084
CC - 0.3364 0.8691 -0.8184 0.4581 0.1548
Ci - - 0.3333 -0.3164 0.2323 0.0672
ki - - - -0.7569 0.0791 0.0966
ε - - - - -0.3821 -0.2373
kii - - - - - 0.2323

6 CB 0.8315 -0.1611 0.8649 -0.6007 -0.4697 -0.3544
CC - 0.0424 0.7980 -0.8196 -0.1323 -0.2754
Ci - - 0.1626 -0.1869 0.3532 0.6485
ki - - - -0.5966 -0.2944 -0.2667
ε - - - - 0.0190 0.0593
kii - - - - - 0.1344

7 CB 0.8510 0.2779 0.9478 -0.6468 -0.1561 -0.0891
CC - 0.4810 0.9265 -0.7811 0.2624 -0.0619
Ci - - 0.4454 -0.3145 0.4598 0.0695
ki - - - -0.7143 -0.0173 -0.0390
ε - - - - -0.2490 0.0571
kii - - - - - 0.1498

94

Appendix E

Table 6: The table shows the Bonferroni corrected p-values related to the Spearman correlations
between different node parameters for nodes within the network as a whole (aside from minor com-
ponents and single nodes).

CC Ci ki ε kii Ti
CB 4.954e-73 4.382e-12 1.703e-298 1.024e-26 9.921e-01 3.704e-14
CC - 4.953e-16 8.200e-142 5.282e-246 1.408e-41 4.489e-05
Ci - - 8.065e-63 1.0 8.836e-37 3.569e-23
ki - - - 1.265e-50 1.113e-02 1.829e-16
ε - - - - 1.330e-08 2.246e-03
kii - - - - - 1.960e-02

Table 7: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within the CD-dominated network component.

CC Ci ki ε kii Ti
CB 4.399e-23 2.738e-11 3.902e-151 3.045e-13 1.0 8.649e-25
CC - 2.542e-30 4.614e-44 4.490e-44 1.239e-55 8.216e-05
Ci - - 1.035e-51 1.374e-12 5.181e-09 3.430e-26
ki - - - 7.205e-20 1.0 5.693e-31
ε - - - - 8.919e-12 9.464e-06
kii - - - - - 1.0

Table 8: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within the S-dominated network component.

CC Ci ki ε kii Ti
CB 9.824e-108 3.011e-04 7.149e-168 2.089e-59 1.0 1.0
CC - 9.774e-23 1.133e-158 3.129e-104 3.852e-15 1.0
Ci - - 6.870e-30 5.901e-07 3.268e-40 1.493e-02
ki - - - 5.428e-62 3.531e-02 1.0
ε - - - - 3.405e-06 1.0
kii - - - - - 8.770e-03

95

Table 9: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 0.

CC Ci ki ε kii Ti
CB 4.012e-41 6.032e-02 2.045e-60 3.132e-20 1.0 1.0
CC - 3.576e-11 1.086e-61 1.595e-32 1.830e-03 1.0
Ci - - 2.308e-10 7.437e-04 1.086e-12 1.0
ki - - - 4.681e-22 1.0 1.0
ε - - - - 8.237e-02 1.0
kii - - - - - 1.0

Table 10: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 1.

CC Ci ki ε kii Ti
CB 5.392e-12 4.865e-02 2.857e-38 7.203e-05 1.0 3.612e-02
CC - 1.684e-02 1.193e-11 1.111e-11 1.961e-07 1.0
Ci - - 4.110e-09 7.456e-01 1.0 7.745e-08
ki - - - 5.076e-05 1.0 5.182e-04
ε - - - - 2.645e-02 1.0
kii - - - - - 1.0

Table 11: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 2.

CC Ci ki ε kii Ti
CB 1.707e-16 4.091e-03 1.282e-55 5.719e-05 1.0 2.395e-03
CC - 4.499e-12 6.998e-25 5.908e-13 3.882e-20 1.145e-03
Ci - - 2.724e-14 4.055e-03 3.748e-04 2.985e-12
ki - - - 2.700e-07 1.0 4.152e-05
ε - - - - 6.449e-08 4.719e-01
kii - - - - - 7.010e-02

Table 12: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 3.

CC Ci ki ε kii Ti
CB 2.485e-27 1.241e-01 1.432e-59 1.812e-21 1.0 1.0
CC - 1.485e-03 7.442e-41 3.056e-32 5.471e-07 1.0
Ci - - 1.741e-03 4.115e-03 1.452e-01 1.0
ki - - - 7.805e-25 1.0 1.0
ε - - - - 1.098e-04 1.211e-01
kii - - - - - 1.453e-01

96

Table 13: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 5.

CC Ci ki ε kii Ti
CB 4.186e-10 1.664e-07 2.814e-52 2.182e-06 1.0 1.110e-13
CC - 6.907e-12 1.491e-14 1.627e-18 1.187e-10 1.647e-04
Ci - - 7.579e-17 1.230e-02 1.776e-02 2.021e-07
ki - - - 6.462e-07 1.0 5.351e-15
ε - - - - 1.087e-02 4.096e-02
kii - - - - - 1.0

Table 14: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 6.

CC Ci ki ε kii Ti
CB 3.746e-16 1.0 6.758e-19 3.235e-06 1.896e-03 8.536e-02
CC - 1.0 6.126e-14 2.590e-15 1.0 5.799e-01
Ci - - 1.0 1.0 8.820e-02 1.444e-07
ki - - - 4.131e-06 3e823e-01 6.956e-01
ε - - - - 1.0 1.0
kii - - - - - 1.0

Table 15: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 7.

CC Ci ki ε kii Ti
CB 3.690e-35 3.424e-02 4.222e-62 5.854e-15 1.0 1.0
CC - 2.495e-07 3.655e-53 8.237e-26 6.281e-02 1.0
Ci - - 3.641e-06 7.042e-03 1.279e-06 1.0
ki - - - 1.262e-19 1.0 1.0
ε - - - - 1.036e-01 1.0
kii - - - - - 1.0

Table 16: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 10.

CC Ci ki ε kii Ti
CB 1.686e-01 1.0 1.192e-09 5.079e-01 1.0 3.459e-01
CC - 1.0 1.0 1.385e-27 1.0 1.0
Ci - - 1.0 1.0 1.0 4.371e-02
ki - - - 1.0 3.172e-01 1.311e-02
ε - - - - 1.0 1.0
kii - - - - - 1.0

97

Table 17: The table shows the Bonferroni corrected p-values related to the Spearman correlation
between different node parameters for nodes within module 15.

CC Ci ki ε kii Ti
CB 4.294e-03 2.295e-01 1.639e-13 1.350e-01 1.0 2.122e-09
CC - 4.573e-02 9.825e-03 3.144e-11 4.656e-02 8.212e-02
Ci - - 1.148e-03 9.637e-01 1.0 1.0
ki - - - 2.766e-01 1.0 3.072e-07
ε - - - - 1.543e-03 1.0
kii - - - - - 1.0

98

Appendix F

Table 18: This is a list of 60 genes found in the network related to transcription of the PRDM1 gene.

C11orf30 FOXE3 ZCCHC10
FAM13B SLC35F2 ACTG2
SLC8A1 AKAP12 CTSO
SLC22A17 PP2R5E BBX
DLGAP1 CTNNBL1 SPINK4
PDIA3 TRIM63 MINK1
ZNF10 SLC39A14 MUT
C12orf54 SCAMP2 CYP27A1
MINPP1 SHQ1 GPRC5A
PIK3CA PSPC1 TRAF5
CMPK1 ATF7 PNLIPRP3
ASTN1 ICA1L SP140
CXCR5 CD1A MALT1
SLC5A4 BAG4 PDZD2
PRPSAP2 ASB10 MFN2
UQCC HSF5 CCL17
SLC38A4 GRIA4 SPEN
P2RY12 XRCC4 PRRX2
SNF8 RCL1 SLC2A9
BHMT CCNYL1 F13B

99

Appendix G

Table 19: This is a list of 19 genes found in the network related to knockdown of the TYK2 gene.

PUS3 MRPS27 SLC35F2
UBE2G1 URB2 IKZF1
THOC2 CD3D C1orf123
PDLIM1 MRPL3 ACLY
NSDHL PPP2R5E C1QBP
ARHGDIA BCAT1 CUTC
NUP37

100

	Abstract
	Abstract (norwegian)
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	Network theory
	Adjacency matrix and node degree
	Degree distribution and network topology
	Hubs, communities and modularity
	Louvain community detection algorithm
	The significance of hubs and communities
	Node parameters
	Network parameters
	Multilayer networks

	Gene co-expression networks
	Construction of gene co-expression networks
	CSD-framework for differential co-expression networks

	Microarray data
	Transcriptome profiling

	Rheumatoid arthritis
	Computer science
	Asymptotic time complexity
	Parallel programming

	Correlation and similarity measures
	Pearson correlation
	Spearman correlation
	Kendall's tau
	Biweight midcorrelation
	Mutual information

	Statistics
	Fisher exact test
	Bonferroni correction
	Benjamini-Hockberg method

	Methods: Software
	Program overview
	Setting up and using the program
	Program parameters
	Input file
	Subsample size
	Importance level
	Input data and file format
	Output data
	Correlation method
	Subsampling parameters
	Threads
	The outfilePrefix parameter
	Default values and unnecessary parameters

	Data formats
	Algorithms
	Preprocessing gene-IDs
	Correlation calculations
	Subsampling algorithms for variance estimation
	Variance estimation
	Calculating CSD-scores
	Estimation of importance thresholds

	Parallelization

	Results: Software
	Subsampling algorithms
	Time consumption and parallel efficiency
	Time complexity analysis
	Parallelization of correlation and variance calculations
	Further parallelization
	Memory usage

	Program testing

	Results: Application to empirical gene expression data
	Data collection
	Rheumatoid arthritis expression data
	Control group expression data

	Network construction
	Network analysis: tools and procedure
	Network properties
	Component analysis
	Module analysis

	Biological analysis
	Enrichment analysis
	Biological functions of central nodes
	Localizing disease-associated genes

	Discussion and further work
	CSD-CS
	Code parallelization
	Memory reduction
	Increased functionality

	Network analysis

	Conclusion
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G

