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Abstract: Meals are most challenging in the regulation of blood glucose levels (BGL) in
diabetes mellitus type 1, whether it is automated, semi-automated or manually controlled. The
common subcutaneous (SC) route for glucose sensing and insulin administration suffers from
large latencies. This paper investigates the impact of glucose sensing and insulin absorption
dynamics on the achievable glucose regulation when insulin boluses are triggered by a meal
detection system.
In silico patients from the academic version of the UVa/Padova simulator are studied. The
sub-models of glucose sensing and insulin absorption are adjusted to allow simulations with
different time delays and time constants. Meals are detected with published methods based on
threshold-checking of continuous glucose monitoring data.
Slow glucose sensing dynamics delay the meal detection. Delayed meal detection can be
compensated to some extent by exact knowledge about the insulin absorption. The combination
of slow glucose sensing and slow insulin administration reduces the effect of insulin boluses
on the postprandial BGL. The classical SC approach is, therefore, at high risk of large BGL
excursions despite meal detection.

Keywords: Artificial pancreas or organs; Biomedical system modeling, simulation and
visualization; Control of physiological and clinical variables

1. INTRODUCTION

The hormone insulin enables the body to utilize energy
contained in food and keep homeostasis of the blood glu-
cose level (BGL). The lack of natural insulin secretion
in diabetes mellitus type 1 (DM1) necessitates exogenous
insulin administration. Sensor-augmented insulin pumps
combine insulin infusion with continuous glucose moni-
toring (CGM). According to a pre-programmed protocol,
insulin is continuously administered into the subcutaneous
(SC) tissue while the SC glucose concentration is moni-
tored.

People using insulin pumps have to initiate insulin boluses
to avoid heavily elevated BGL after meals. The postpran-
dial BGL excursions depend not only on the amount of
consumed carbohydrates (CHO) but also on the glucose
absorption from the intestines. This variation is illustrated
in Fig. 1. Aside from the glucose rate of appearance in
blood, also the onset of insulin action and its duration
must be considered when estimating the size of prandial
insulin boluses. It is, for example, recommended to ad-
minister the boluses ahead of the meal to compensate
for the insulin absorption dynamics from the SC tissue
(Cobry et al., 2010). But even several hours after the meal,
slowly absorbed insulin can cause hypoglycemia. With
that in mind, it is hardly surprising that many people are

struggling to estimate the bolus size (Burdick et al., 2004;
Brazeau et al., 2013). Furthermore, occasionally omitted
insulin boluses compromise the outcome of the therapy.

A fully automated system, an artificial pancreas (AP),
is the goal of worldwide research efforts. Most clin-
ical studies on AP have focused on closed-loop so-
lutions including feed-forward prandial insulin boluses.
The AP clinical trial database provided by the Doyle
Group (http://thedoylegroup.org/apdatabase/) lists 61
published clinical trials from 2004–2015 that used meal
announcements, whereas only 23 trials refrained from meal
announcements in the same period. Two studies from
2016 demonstrate the potential benefit of meal detection.
Pinsker et al. (2016) compared the performance of the
two controller types model predictive control (MPC) and
proportional integral derivative (PID) in 20 adult subjects.
The study protocol included an unannounced lunch with
65 g COH. Neither MPC nor PID were able to maintain
the BGL in the target range after the unannounced meals
for all studied subjects. On average, less than 50% of the 5
first postprandial hours were spent in the target range (70–
180 mg/dL). In another clinical study, eight adult subjects
underwent closed-loop control with a beta-cell-imitating
algorithm (similar to a conventional PID controller) for 24
hours (Reddy et al., 2016). An unannounced dinner with
80 g CHO and a partly announced lunch were consumed
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Fig. 1. Glucose concentration following meals with dif-
ferent carbohydrate content for 10 simulated adults.
High variability between subjects is demonstrated.
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Fig. 2. Meal compensation in people with diabetes mellitus
type 1 (DM1) and with normal physiology (Non-
DM1). This figure is licensed under a Creative Com-
mons BY-NC-SA 4.0 license.

during the study. The lunch contained 50 g CHO, of which
25 g were announced to the controller. The glucose concen-
tration, measured with a SC sensor, stayed in the target
range (70–180 mg/dL) for less than 50% of the time.

Meals can be explicitly detected to trigger meal boluses
or to adjust the controller tuning. Suggested methods
for meal detection based on threshold checking use the
raw CGM data either directly or revised by removing
measurement noise using a linear noise model in a Kalman
filter (KF) (Dassau et al., 2008; Lee and Bequette, 2009;
Harvey et al., 2014).

In the study of Harvey et al. (2014), the mean time of
detection of meals with 25, 50, 75 and 100 g CHO was
at least 30 min using the common 5-min sampling rate of
CGM devices. Although the postprandial peaks and the
time spent in hyperglycemia could be significantly reduced
by their meal detection method, the studied in silico
subjects still remained in hyperglycemia for 1.5 hours after
a meal with 75 g COH (Harvey et al., 2014). In the course
of a year that easily adds up to more than 1500 hours with
insufficiently controlled BGL.

The primary reasons for the poor performance of meal
detection algorithms are most likely the slow dynamics
of glucose and insulin diffusion between the SC tissue
and blood (Stavdahl et al., 2016). Figure 2 illustrates

the course of meal compensation. During meal digestion,
the glucose is absorbed from the intestines causing the
BGL to rise. The speed and peak of glucose appearance in
blood depends on meal composition and size, previously
consumed meals, and probably other factors. In people
without DM1, the pancreas reacts to increased BGL by
directly secreting insulin into the blood. A person with
DM1 lacks this immediate, natural feedback. Instead, the
blood transports the glucose first through the whole body
where it diffuses into tissues that are used as measuring
sites. Based on the glucose measurements, the artificial
meal response begins: The meal is detected, an appropriate
bolus size estimated and the bolus administered. The
insulin is absorbed from the infusion site into the blood
and distributed through the body, eventually lowering the
glucose concentration. The glucose appearance from blood
to the measuring site and the insulin absorption from the
infusion site into the blood are part of the physiology of
the body. Despite faster-absorbed insulin analogues (Heise
et al., 2015), the physiology presents a number of profound
limitations.

An artificial pancreas must not put the user on an un-
necessary risk of hypoglycemia. Therefore, significantly
increased insulin infusion rates, be it by more aggressive
controller actions or superimposed insulin boluses, are only
defensible if a meal has occurred. To detect a meal with a
certain probability takes time. This study investigates the
impact of glucose sensing dynamics on the time to meal
detection and the achievable glucose normalizing effect of
insulin boluses administered upon meal detection. The aim
is to answer the question whether or not meals can be
sufficiently compensated with an insulin bolus whose effect
is delayed by meal detection and the insulin absorption
dynamics. If a “perfect” insulin bolus upon detection can-
not compensate a meal in an “ideal” setting, an artificial
pancreas without meal announcements will not achieve
good glucose regulation in real-world scenarios.

2. METHODS

2.1 Simulator

The academic version of the UVA/Padova T1DM simula-
tor S2013 (Dalla Man et al., 2014) is used for simulations.
In this study, only adult subjects are simulated. Among the
simulator options, no-error models are selected for the in-
sulin pump and the sensor. The simulator model describes
the glucose insulin metabolism in people with DM1. The
sub-models for glucose sensing and insulin absorption are
adjusted to study the impact of different dynamics.

2.2 Sub-model of glucose sensing

The sub-model for glucose sensing is:

dGsens

dt
=

1

τG
(Gp(t− θG)−Gsens(t)) , (1)

where Gsens (mg/dL) is the sensed glucose concentration
at the measurement site,Gp (mg/dL) is the plasma glucose
concentration, τG (min) is the time constant related to
the measurement site, and θG (min) is the time delay
from plasma to the measurement site. The dynamics of
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Fig. 3. Sensed glucose concentration with different sensing
dynamics within the first two hours following a meal
with 50 g carbohydrate content without prandial in-
sulin bolus for one adult subject.

physiological glucose diffusion and the sensor dynamics are
combined in the glucose sensing dynamics.

The subject-specific time constant of SC glucose sensing
in the adult population of the simulator ranges from 7 to
11 min. Reported mean values for SC glucose appearance
including the sensor dynamics in pigs are τG = 13 min and
θG = 2 min (Burnett et al., 2014), while faster dynamics
of τG = 6 min and θG = 1 min have been observed for
peritoneal glucose sensing in pigs (Burnett et al., 2014;
Fougner et al., 2016). However, the SC route excluding
sensor dynamics can be as fast as τG = 5 min and θG =
1 min for single subjects under well controlled clinical
conditions (Basu et al., 2015). Influencing factors are the
time since sensor insertion, the perfusion and fat content
of the SC tissue. Based on the earlier mentioned studies,
the parameters of (1) are varied as follows:

• Time constant τG ∈ {5, 10, 15}min,
• Time delay θG ∈ {0, 1, 2}min.

Figure 3 illustrates the sensed glucose concentration for
the chosen glucose sensing dynamics following a meal with
50 g of carbohydrates.

2.3 Sub-model of insulin absorption

The insulin absorption is modeled as a two-compartment
model where only insulin from the second compartment
reaches the plasma (Lee et al., 2013), although the dy-
namics of some routes may be better described by more
complex models. In contrast to Lee et al. (2013), the
latency is differentiated into a time constant and a time
delay. The following model replaces the insulin absorption
dynamics (Eqs. (A15),(A16) from Dalla Man et al. (2014)):

Rai(t) =
1

τI
I2(t− θI) , (2)

dI1
dt

= − 1

τI
I1(t) + IIR(t) , (3)

dI2
dt

=
1

τI
I1(t)− 1

τI
I2(t) , (4)
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Fig. 4. Rate of insulin appearance in blood with different
insulin absorption dynamics for one adult subject
following an insulin bolus of 4 IU at t = 0.

where Rai (pmol/kg/min) is the rate of appearance of
insulin in the blood from the infusion site, I1 and I2
(pmol/kg) are the amount of insulin in compartment 1
and 2 of the infusion site, IIR (pmol/kg/min) is the insulin
infusion rate, τI (min) and θI (min) are the time constant
and the time delay of the insulin absorption from the
infusion site to plasma. This two-compartment structure
was achieved by setting the original model parameters in
(A15),(A16) (Dalla Man et al., 2014) to ka1 = 0 min-1,
ka2 = 1/τI min-1 and kd = 1/τI min-1.

Pharmacokinetic studies state times between 1 and 12 min
for the onset of insulin appearance in plasma dependent
on the insulin type (Heise et al., 2015) and the route
of administration (Micossi et al., 1986; Oskarsson et al.,
2000). The onset of appearance in plasma is represented
by the time delay θI in (2). Lee et al. (2013) identified
time constants for the two-compartment model without
time delay for different insulin analogues administered sub-
cutaneously. The time constants are lower when the time
delay is considered. The insulin administration parameters
in (2) to (4) are varied as follows:

• Time constant τI ∈ {15, 30, 60}min,
• Time delay θI ∈ {0, 5, 10, 15}min.

Figure 4 shows that insulin appears in plasma later and at
a lower rate for slower dynamics.

2.4 Meal detection method

The applied methods for meal detection use the informa-
tion contained in pure CGM data. More advanced methods
relying on any kind of model or statistical information
are not considered here in order to reduce the effect of
model mismatch and other uncertainties. By this restric-
tion, thresholds on the measured glucose (Gsens), its rate
of change (G′sens) and its acceleration (G′′sens) remain as
tuning parameters.

The postprandial glucose excursions vary significantly for
different carbohydrate contents and subjects, as illustrated
in Fig. 1. For the ten adult subjects, the maximum blood
glucose elevation ranges from 40 mg/dL for a 25 g-CHO



meal in adult 10 to 430 mg/dL for a 100 g-CHO meal in
adult 7. This wide range indicates the challenge of choosing
suitable thresholds.

The detection logic of the Glucose Rate Increase Detector
(GRID) from Harvey et al. (2014) was applied in this
study. A meal is detected according to GRID at instant
k if:

G(j) > Gmin for j = k (5)

and

G′(j) > G′min,3 for j = k − 2, k − 1, k (6)

or G′(j) > G′min,2 for j = k − 1, k . (7)

The rate of change G′(j) in (6),(7) is derived using
the three-point Lagrange interpolating polynomial. The
CGM data is passed through a preprocessing section that
removes spikes and noise by guaranteeing a maximum
rate of change of 3 mg/dL/min and a low-pass filter
before the detection logic is applied. Best detection results
were achieved in the study of Harvey et al. (2014) with
the tuning parameters Gmin = 130 mg/dL, G′min,3 =

1.5 mg/dL/min, and G′min,2 = 1.6 mg/dL/min for both
clinical and simulated data sets.

This study applies also the meal detection methods from
Dassau et al. (2008) and Lee and Bequette (2009). Similar
to the GRID algorithm, these methods detect meals when
CGM data and its first and second derivatives exceed
defined thresholds. More details can be found in the
original publications.

The detection thresholds that are reported in the original
publications are used. Thereby, the same tuning is applied
for all subjects. As the glucose response to meals is highly
diverse between subjects, individual tuning may improve
the detection capabilities but is tested only for the GRID
algorithm. The following individualized thresholds are
defined in this study:

(1) Gmin = 1.05Gb ,

(2) G′min,3 = 1.5 ∆Gmax(50 g)
∆tmax(50 g) ,

(3) G′min,2 = 1.6 ∆Gmax(50 g)
∆tmax(50 g) .

The fraction ∆Gmax(50 g)/∆tmax(50 g) describes the max-
imum glucose deviation from the basal level after the
ingestion of 50 g CHO divided by the time it takes to
reach this maximum from the start of ingestion. These
values could be gained by an oral glucose tolerance test
with regular sampling of blood glucose.

The thresholds of the original studies were not tuned for
the same group of patients, i.e. adults (Lee and Bequette,
2009; Harvey et al., 2014) vs. children (Dassau et al.,
2008), which may influence the detection performance.
Consequently, absolute numerical results are not indicative
of the fundamental performance of each algorithm. Rather,
it is the relative sensitivity of each algorithm to different
dynamics that is the focus of this study.

The cited detection methods have been published for
CGM data sampled every 5 min. A more frequent sampling
of 1 min shall be used in this study to investigate the
differences between the varied dynamics. In order to apply
the published threshold values nevertheless, the detection

Table 1. Simulated open-loop scenarios with
different timing of prandial insulin bolus ad-

ministration.

Scenario Time of bolus Meal detection

Uncompensated meal - no
Announced meal at meal start no
Detected meal at detection yes

intervals of 5 min are kept but simultaneous runs of the
same detection algorithm are started one minute apart
from each other. The detection statistics of whichever
run detects the meal first are taken. Common CGM
devices sample every 3 or 5 min but 1-minute sampling
may become standard with increasing accuracy of CGM
devices. However, the results of this study cannot be
directly compared with results from other studies with
different sampling rates.

2.5 Prandial insulin boluses

In order to compare the best achievable glucose regulation
in each scenario, the following two criteria are used to
determine the bolus size (Visentin et al., 2016):

(C1) G(t = 120 min) < 8.9 mmol/L
(C2) G(t > 0) > 3.9 mmol/L

The bolus size is increased by 0.1 international units of
insulin (IU) if criterion C1 is violated, as long as criterion
C2 is fulfilled.

It is not always possible to keep the BGL between 3.9
and 8.9 mmol/L. Nevertheless, criterion C2 safeguards
against hypoglycemic events that present an asymmetri-
cally higher risk than hyperglycemic episodes. This analy-
sis does thus not weigh hypo- and hyperglycemia against
each other but rather focuses on the comparison of hyper-
glycemic excursions.

2.6 Scenarios

Single meal scenarios are simulated. All meals last for
15 min. The subjects are controlled at their basal glucose
concentration before the meals start. This is achieved by
administering insulin continuously at the subject-specific
basal rate defined in the simulator. Prandial insulin bo-
luses are superimposed.

No faults, neither pump nor sensor related such as occlu-
sion or pressure induced sensor attenuation, are simulated.
The sensor signal contains no outliers.

The three main scenarios are listed in table 1. The scenario
of an uncompensated meal describes the situation without
prandial insulin bolus. The resulting glucose regulation of
this scenario serves as example of manual glucose therapy
where the insulin bolus is forgotten. An announced meal
starts at the same time as the insulin bolus is injected.
This is common practice in closed-loop set-ups using
announced meals and allows to study how the insulin
absorption dynamics influence the postprandial glucose
response. The additional impact of the glucose sensing
dynamics is investigated in the detected meal scenario
where the insulin bolus is administered when the meal is
detected. The bolus calculation and insulin administration
happens in all scenarios immediately without delay.
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Fig. 5. Average detection time of 50 g meal for 10 subjects
dependent on time constant τG for different time
delays θG. Numbers indicate number of non-detected
meals. Harvey’s method with original (orig.) and
individualized (ind.) thresholds.

Table 2. Percentage of non-detected meals
from in total 120 50 g meals (12 for each of
10 subjects) for CGM data without noise and
with noise (PACF = 0.25 as simulator option).

Detection method
Noise-free Noise

Glucose dynamics Glucose dynamics
Fast Slow Fast Slow

Lee 0% 30% 7% 23%
Dassau 40% 80% 38% 71%
Harvey original 10% 50% 20% 57%
Harvey individual 0% 0% 0% 0%

2.7 Metrics

The performance of meal detection is described by the
time of detection after meal start (tdet). The percent-
age of time that is spent within the target range of
3.9–10 mmol/L (70–180 mg/dL) and the tight target range
of 4.4–7.8 mmol/L (80–140 mg/dL) are often used as met-
rics for the performance of glucose regulation. By design,
the prandial insulin boluses will always lead to a minimum
BGL slightly above 3.9 mmol/L (70 mg/dL). The mini-
mum BGL and time in tight target are thus not suitable for
comparison. The maximum glucose concentration (Gmax)
and the mean glucose concentration (Gmean) can, however,
be used as measures for the performance of glucose regu-
lation.

Some methods do not detect all meals for all subjects.
Non-detected meals are considered in the statistics by
Gmax, Gmean, ttarget for uncompensated meals. For tdet,
the number of undetected meals is indicated in the figure.

3. RESULTS

3.1 Glucose sensing dynamics

The first step in meal mitigation is meal detection. De-
tection times are compared for different glucose sensing
dynamics in Fig. 5. The upwards-trend shows that the

time of detection increases with slower glucose dynamics.
Moreover, the number of non-detected meals (indicated
by the numbers next to the marks) is increasing with
increasing time constant τG, whereas the number is the
same for different time delays θG. The only exception is one
subject where an increase of the sensing delay to two min-
utes renders the meal undetectable to the original method
by Harvey. All meals are detected by Harvey’s method
with individualized thresholds. As a result of the earlier
detection, the glucose deviations at detection are lower
(not shown), and the insulin bolus can be administered
earlier.

The percentage of non-detected meals for noise-free and
noisy CGM data is compared in table 2. Fast glucose
dynamics result in the detection of more meals for all
methods. The methods by Lee and Bequette (2009) and
Dassau et al. (2008) reveal slightly more meals if noise is
present. This, together with a higher number of false meal
detections (not shown), demonstrates that the tuning of
thresholds is important and should possibly be individu-
alized.

3.2 Insulin absorption dynamics

Table 3 summarizes the glycemic measures for the uncom-
pensated and the announced meal scenarios for a meal
with 50 g CHO. A missed meal bolus results in elevated
glucose levels for prolonged time, and the percentage of
time that is spent in the target range is therefore as low
as 27.9% for the 50 g meal. When the meal is announced,
this percentage can be increased to 100% with fast insulin
absorption dynamics, whereas the glucose concentration
exceeds the target range for almost all subjects with
the slowest insulin absorption dynamics (τI = 60 min,
θI = 15 min).

Slower dynamics result in delayed insulin appearance in
plasma. The maximum and mean glucose concentrations,
Gmax and Gmean, are thus increasing. Another effect of
the delayed insulin appearance is that less insulin can be
used to lower the BGL. If the amount of insulin that was
found for the fastest dynamics were administered using the
slowest route, the glucose concentration would fall below
the lower limit of 3.9 mmol/L causing hypoglycemia.

3.3 Combined dynamics

Administering the prandial insulin bolus upon meal detec-
tion, the time that is spent in target range is significantly
increased compared to the 28% after an uncompensated
meal (Table 3). Figure 6 further reveals, unsurprisingly,
that faster dynamics of glucose sensing and insulin ab-
sorption prolong the time in target independent of the
detection method and its particular tuning. When the
method by Harvey et al. (2014) is used with individualized
thresholds, the 50 g meal is detected for all subjects leading
to a significant increase of time spent in target range
for the slow glucose dynamics. The percentage converges
to the announced meal scenario as the dynamics become
faster. The average time in target is significantly lower us-
ing the other detection methods because the non-detected
meals remain uncompensated.



Table 3. Comparison of the effect of bolus time on glucose regulation. Meal compensation
characteristics for a meal with 50 g of carbohydrates during the 6 hours after meal onset. Average
values of all ten subjects are given for each measure with standard deviations in parentheses.

Scenario Uncompensated Announced

Insulin absorption fast medium slow
dynamics τI = 15min, θI = 0min τI = 30min, θI = 10min τI = 60min, θI = 15min

Insulin bolus [IU] - 6.3 (2.5) 5.7 (2.1) 5.1 (1.8)
Gmax [mg/dL] 234.6 (36.4) 144.1 (5.4) 167.8 (7.5) 183.6 (11.6)
Gmean [mg/dL] 201.9 (29.3) 95.7 (3.6) 103.9 (4.6) 117.7 (6.5)
ttarget (3.9–10 mmol/L) [%] 27.9 (14.5) 100 (0) 100 (0) 92.9 (6.6)
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Fig. 7. Average maximum and mean glucose concentra-
tions during the 6 hours following a 50 g meal for 10
subjects for the fastest dynamics (open marks) and
slowest dynamics (filled marks).

Figure 7 illustrates the inter-individual variation. Each
mark represents the maximum and mean glucose concen-
tration for one subject during the 6 hours following a
50 g meal. After an announced meal, all subjects remain
within the target range when the insulin absorption is
fast (black open circles). This good glucose regulation
is almost approached using Harvey’s method with origi-

nal and individualized thresholds and the fastest glucose
sensing dynamics (dark-blue open diamonds, light blue
open squares). However, several subjects exceed the up-
per bound of 10 mmol/L. Larger glucose excursions follow
with slow glucose sensing and insulin absorption dynamics
(filled marks), and the inter-subject variation becomes
larger. For some subject, the meal is not even detected,
resulting in an uncompensated meal.

4. DISCUSSION

This study demonstrates that the glucose sensing dynam-
ics and insulin absorption dynamics have similar impact
on the performance of glucose regulation achieved by
threshold-based meal detection, using the glucose levels
and its rates-of-change, and subsequent insulin bolus ad-
ministration. Slow glucose sensing dynamics delay the de-
tection of the meal and thus the insulin administration but
most critical with respect to meal mitigation is whether the
meal is detected at all. A delayed detection of medium-
sized meals can be well compensated by administering an
optimal insulin bolus upon detection. However, the ability
to keep the glucose concentration within the target range
decreases with larger meal sizes (not shown). Estimating
prandial boluses is a large challenge in real-world scenar-
ios because the insulin sensitivity and the characteristics
of insulin absorption must be considered and are highly
variable. Moreover, the timing of the insulin bolus affects
the maximum amount of insulin that can be used without
causing hypoglycemia.

The time until meal detection based on threshold-checking
of CGM data could be reduced by measuring glucose
concentration in other tissues than the SC tissue. The
IP route is currently being investigated (Burnett et al.,
2014; Fougner et al., 2016). A quick onset of the glucose-
lowering effect of administered insulin significantly con-
tributes to the performance of meal compensation. Insulin
formulations with faster absorption kinetics from the SC
tissue are being developed (Heise et al., 2015). Alterna-
tively, the peritoneal cavity could be chosen as a site for
insulin infusion (Micossi et al., 1986; Oskarsson et al., 2000;
Renard et al., 2010) to enhance the meal mitigation. Faster
dynamics may even obviate the need for explicit meal
detection. Nevertheless, binary information about meals
could increase the safety by allowing more aggressive con-
trol actions until the meal disturbance is rejected, whereas
the aggressiveness of the controller is otherwise low in
order to be robust to noise. A detected meal could also
directly trigger the administration of insulin boluses.

Neither faults or noise nor changing physiological dynam-
ics that appear in real systems are considered in this study.



That decision was made on purpose to focus on the impact
of the overall dynamics. The influence of the tuning as a
tradeoff between high specificity and sensitivity is reduced
by that. The first step of a sufficient meal compensation
is an accurate meal detection. Mathematically more ad-
vanced methods for meal detection should be investigated
in order to face the intra-subject variability in real-world
scenarios. The detection could also benefit from additional
information beyond CGM data. Anticipatory approaches,
for example, take into account meal prior probabilities
based on general or individual eating behavior and sleeping
times in order to improve the meal detection (Patek et al.,
2009; Cameron et al., 2012). The impact of glucose sensing
dynamics on the estimation of meal sizes, and thus allow-
able bolus sizes, should be analyzed in subsequent work.
Both closed-loop scenarios and meals with overlapping
BGL responses should be investigated in this context.

5. CONCLUSION

Glucose sensing and insulin absorption dynamics have
similar impact on the achievable glucose regulation with
insulin bolus administration upon detection of medium-
sized meals. Delayed detection can be compensated if the
insulin absorption is well known but the regulation is sig-
nificantly deteriorated if both dynamics are slow. A system
with subcutaneous glucose sensing and insulin infusion
might therefore be insufficient. However, most important is
that the meal is detected at all. Using detection algorithms
based on threshold checking on CGM data and its deriva-
tives, the thresholds should be individualized because of
the high inter-subject variability and the higher number
of false positive detections.
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