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We demonstrate theoretically that a dissipationless spin-current can flow a long distance through a diffu-
sive normal metal by using superconductors interfaced with magnetic insulators. The magnitude of this spin-
supercurrent is controlled via the magnetization orientation of the magnetic insulators. The spin-supercurrent
obtained in this way is conserved in the normal metal just like the charge-current and interestingly has a term
which is independent of the superconducting phase difference. The quantum state of the system can be switched
between 0 and π by reversing the insulators from a parallel to antiparallel configuration with an external field.
We show that the spin-current is carried through the normal metal by superconducting triplet (odd-frequency)
correlations and that the superconducting phase difference can be used to enhance these, leaving clear spectro-
scopic fingerprints in the density of states.

INTRODUCTION

Using superconductors as active components in spintron-
ics devices is a research field that has attracted increasing
activity in recent years [1]. Such a synergy becomes possi-
ble both due to the special behavior of spin-polarized quasi-
particles in superconductors, featuring extremely long spin
lifetimes and spin relaxation lengths [2–4], and because su-
perconducting Cooper pairs can become spin-polarized [5–7].
This type of Cooper pairs occur not only in superconductors
with intrinsic triplet pairing, such as UGe2 [8] and its cousins
URhGe and UCoGe [9], but can in fact be artificially engi-
neered in hybrid structures between conventional supercon-
ductors and magnetic materials [10, 11]. For samples with
substantial impurity scattering, which is the experimentally
most common scenario, these triplet Cooper pairs acquire a
special property known as odd-frequency symmetry [12] in
order to satisfy the Pauli principle. What this means is while
the Cooper pair wavefunction is symmetric under both an ex-
change of space- and spin-coordinates, it is antisymmetric un-
der an exchange of time-coordinates. This property leads to
remarkable features such as gapless superconductivity [13],
anomalous Meissner effects [14–17], and the possibility to
create spin-supercurrents in diffusive ferromagnetic materi-
als [18]. It is worth mentioning that paramagnetic Meissner
effects and zero-bias conductance peaks can also originate
from other types of effects which are not related to uncon-
ventional superconductivity, as shown previously in the con-
text of d-wave superconductivity in the cuprates [19–21] and
more recently for topological insulators [22]. The quality of
the materials and avoiding crashing the STM tip into the sam-
ple are of paramount importance for proper identification of
unusual types of superconductivity such as the odd-frequency
one mentioned above.

In the context of utilizing superconductors for spintronics
purposes, the possibility of spin-supercurrents in ferromag-
netic materials [23] has earned the triplet Cooper pairs much
attention. It is known that in structures featuring inhomo-
geneous magnetic order, such as intrinsically textured ferro-
magnets like Ho [24, 25], or multilayers with several ferro-
magnets [26], triplet supercurrents can arise even when using

conventional s-wave superconductors which feature spinless
Cooper pairs. However, it can be difficult practically to con-
trol the magnetization direction of each of the individual lay-
ers when using complex structures as in Ref. [26] to create the
spin-supercurrent. A large amount of works have studied how
triplet supercurrents can arise in various types of structures in-
cluding both weakly and strongly polarized ferromagnets (see
e.g. Refs. [27–39]). However, it would be highly desirable to
create a spin-supercurrent flowing in a normal (non-magnetic)
metal with a minimum amount of magnetic elements required
due to the ensuing simplification in how to control the exis-
tence, and the properties, of the spin-supercurrent.

Now, it was recently experimentally shown in Ref. [40]
that by using magnetic insulators (MI) in a superconducting
spin-valve setup, it was possible to control the superconduct-
ing critical temperature Tc by changing the relative magneti-
zation configuration from parallel (P) to antiparallel (AP) by
application of an external field, causing an essentially infinite
magnetoresistance effect. This finding prompted us to pose
the question: what happens when magnetic insulators are used
in a Josephson junction that has a normal, non-magnetic metal

Magnetic insulator

Superconductor
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FIG. 1: (Color online) The proposed setup: a Josephson junction
with magnetic insulators (MIs) inserted between the superconduc-
tors and the normal metal. The magnetic insulators have a magneti-
zation that due to shape anisotropy is expected to be confined to the
plane perpendicular to the tunneling direction. The magnetic mo-
ments of the MIs on the left and right side of the junction, mL and
mR, may be misaligned and an applied superconducting phase dif-
ference across the junction drives both a charge and spin supercur-
rent.
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as its weak link? Can this create a spin-polarized dissipation-
less flow and, if so, can such a spin-supercurrent be controlled
externally? We here demonstrate that the presence of mag-
netic insulators in a Josephson junction offers an interesting
way to create a conserved spin-supercurrent in a normal metal
(see Fig. 1). This spin-flow is controlled with the relative
misalignment angle between the magnetic insulators. A main
advantage with this setup, compared to previous proposals us-
ing ferromagnets, is that the magnetic configuration is easily
tunable since the magnetization of one single very thin (1-2
nm) magnetic insulator needs to be altered.

Moreover, the spin-supercurrent is carried by odd-
frequency Cooper pairs which leave a clear spectroscopic fin-
gerprint in the density of states. We show that by tuning
the superconducting phase difference θ, one can qualitatively
change the nature of the proximity effect from a conven-
tional singlet one to a triplet one in situ. We also show that
the presence of magnetic insulators not only creates a spin-
supercurrent, but that it has important consequences for the
quantum phase of the system which undergoes a dynamic 0-
π transition for a single sample by changing from a P to AP
configuration for the insulators.

THEORY

We use the quasiclassical theory of superconductivity [41,
42] in the diffusive limit, where the physics is described by
the Green matrix function ǧ of the system which is an 8×8
matrix in Keldysh-Nambu space. It is defined in terms of the
retarded, advanced, and Keldysh part of the Green function:

ǧ =

(
gR gK

0 gA

)
. In the absence of non-equilibrium effects,

such as applied voltages and temperature-gradients, it is suf-
ficient to consider the retarded part gR ≡ g, which may be
parametrized conveniently as follows [43]:

g =

(
N (1 + γγ̃) 2Nγ
−2Ñ γ̃ −Ñ (1 + γ̃γ)

)
, g2 = 1. (1)

We have defined N = (1 − γγ̃)−1 for normalization and
the ˜. . . operation means complex conjugation and reversal of
quasiparticle energy. The Ricatti-matrices {γ, γ̃} are 2×2 ma-
trices in spin space and the Green function g satisfies the Us-
adel equation [44] in the normal metal

D∂x(g∂xg) + ı[ερ3, g] = 0. (2)

Here, D is the diffusion coefficient of the normal metal, ρ3 =
diag(1,−1), and ε is the quasiparticle energy measured rela-
tive the Fermi level. In order to account for the magnetic insu-
lators at the interfaces, we use spin-dependent boundary con-
ditions discussed in Ref. [45]. The most important effect of
the magnetic insulators is the spin-dependent phase-shifts ex-
perienced by quasiparticles scattering at the interface, which
are described by a parameter Gϕ to be defined below. The su-
perconducting regions are described by bulk Green functions

which for the left and right side of the junction are denoted gL
and gR, where

γ
j

= ıσys/(1 + 1c)eıθj , γ̃
j

= −ıσys/(1 + 1c)e−ıθj , (3)

with j = {L,R}. We have introduced

s = sinh Θ, c = cosh Θ, with Θ = atanh(∆0/ε), (4)

where ∆0 is the magnitude of the superconducting order pa-
rameter. The bulk solution is an excellent approximation for
low interface transparencies when using large superconduct-
ing reservoirs. We have used the second Pauli matrix σy , and
the superconducting phase difference across the junction is
defined as θ ≡ θR − θL. The boundary conditions read:

2dζLg∂xg = [gL, g] + ıGLϕ[ML, g] at x = 0,

2dζRg∂xg = [g, gR]− ıGRϕ [MR, g] at x = d,

(5)

where ζj = RB,j/RN is the ratio between the normal-state
barrier resistance on side j and the resistance of the nor-
mal metal, and Gjϕ = −

∑
n dϕn/

∑
n Tn where Tn is the

transmission probability for channel n and dϕn are the spin-
dependent part of the phase-shifts picked up by particles scat-
tered at the interface. Finally, the matrix Mj describes the
orientation of the magnetic moment of the magnetic insulator
on side j, while d is the length of the normal metal. Exper-
imentally, it is likely that the magnetic insulators will have
exchange fields lying in the plane perpendicular to the tunnel-
ing direction due to shape anisotropy if one uses a layered
’pancake’ geometry for the junction. This case, and other
configurations, are covered by us setting the right interface to
MR = diag(σz, σz) whereas the left interface is allowed to
have an arbitrary orientation, i.e.ML = cosαdiag(σz, σz) +
sinφ sinαdiag(σy,−σy) + cosφ sinαdiag(σx, σx). Here, φ
is the azimuthal angle in the xy-plane and α is the angle be-
tween the magnetization and the z-axis. For later use, we de-
fine the magnetic moments of the insulators on the left and
right side as mL and mR.

The boundary conditions used here can also be extended
[45] to include a magnetoresistance term GMR which ac-
counts for the different transmission probabilities for spin-↑
and spin-↓ particles. Inclusion of such a term amounts mainly
to an overall reduction of the superconducting proximity ef-
fect and we have explicitly verified numerically that the spin-
supercurrent exists even in its presence. The magnetic mo-
ment associated with each magnetic insulator should be un-
derstood as the net average moment of the interface region,
since a disordered interface might have an internal magnetic
structure. Moreover, interfaces in hybrid structures are intrin-
sically accompanied by the lack of inversion symmetry. For
this reason, spin-orbit effects could arise at the interface and
modify the spin-dependent scattering at the superconducting
interface [46–48]. However, it is currently unknown how to
incorporate such interfacial spin-orbit scattering in the bound-
ary conditions of quasiclassical theory. Nevertheless, even
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if such a mechanism existed, the spin-dependent phase-shifts
due to the magnetic insulators captured by the parameter Gϕ
in our work is sufficient to produce triplet Cooper pairs, and
so we do not expect that a second mechanism that accom-
plishes the same thing (due to spin-orbit interaction) would
bring about any major changes.

Finally, we will later on include non-ideal effects such as
spin-flip scattering due to magnetic impurities and spin-orbit
impurity scattering to see how they influence the spin- and
charge-flow as well as the density of states in the system.
These are accounted for [41, 42] by adding extra self-energy
terms in the commutator part of the Usadel equation Eq. (2):

Magnetic impurities: Σsf =
i

8τsf
τgτ ,

Spin-orbit scattering: Σso =
i

8τso
τρ3gρ3τ ,

(6)

Here we have defined the matrix vector τ = (τx, τy, τz),
where the components are given by:

τν = diag(σν , σ
∗
ν), ν = {x, y, z}. (7)

For future reference, we introduce the normalized strength of
magnetic impurity and spin-orbit scattering as gsf = 1/8∆0τsf
and gso = 1/8∆0τso, where τsf/so are the relaxation times as-
sociated with each type of scattering.

RESULTS

Spin-Supercurrent via Magnetic Insulators

We proceed to discuss how the charge- and spin-
supercurrents sustained by the system are influenced by the
presence of the ferromagnetic insulators. In the quasiclassical
framework, these are given by

IQ =
N0eDA

4

∫ ∞
−∞

dεTr{ρ3(ǧ∂xǧ)K} (8)

and

IνS =
N0~DA

8

∫ ∞
−∞

dεTr{ρ3τν(ǧ∂xǧ)K}. (9)

Here, N0 is the density of states at the Fermi-level in the
normal-state, e is the electric charge, ~ is the reduced Planck
constant, while A is the interface contact area. For future
use, we also define the bulk superconducting coherence length
ξS =

√
D/∆0. In the weak proximity effect regime, we were

able to find a general analytical result for the supercurrents of
spin and charge (see Appendix for details). We first briefly
consider the charge-supercurrent which reads:

IQ = (IQ,0 + IQ,1 cosαGLϕG
R
ϕ ) sin θ, (10)

where the coefficients IQ,0 and IQ,1 are lengthy expressions
that depend on junction parameters such as the width d, mis-
alignment angle α, temperature T , and the interface trans-
parencies ζL/R. The charge-current is found to be inde-
pendent of which orientation the magnetic moments have in
the xy-plane, φ. We see that the presence of magnetic in-
sulators coupled to the superconductors introduces a cosα-
dependence on the supercurrent, not only tuning its overall
magnitude, but also changing the quantum ground-state of the
junction from 0 to π when

IQ,1 cosαGLϕG
R
ϕ = −IQ,0. (11)

Thus, 0-π transitions can now occur even with a normal metal
interlayer by changing α, a feature which was also reported
in the ballistic limit in Ref. [27]. To demonstrate that this
is a robust feature, we have computed the charge supercur-
rent without any assumption of a weak proximity effect, thus
using the full Riccati parametrization. This is shown in Fig.
2(d), where the current changes sign at α ' 0.2π correspond-
ing to the 0-π transition. Further information may be inferred
from the analytical expression for the charge-supercurrent in
the Appendix, Eq. (18): as the width d of the junction in-
creases, larger values for the spin-dependent phase-shifts Gϕ
are required in order to make the 0-π transition possible.

Interestingly, there exists not only a superflow of charge in
the system, but also of spin. The polarization occurs in the
direction mL ×mR, and so we find that while IzS = 0, one
has:

IxS = GLϕG
R
ϕ sinφ sinα(IS,0 + IS,1 cos θ). (12)

Eq. (12) is one of the main results of this work. It is seen that
the spin-supercurrent vanishes if one only has one magnetic
insulator, in which case GLϕ or GRϕ is zero. Moreover, it is
proportional to sinα, which shows that it is also absent in the
P or AP alignment (α = 0, π). For other angles α, however, it
is in general present. The coefficients {IS,0, IS,1} are purely
real and vanish in the absence of superconductivity (∆ = 0).
There exists a simple relation between the components of the
spin-supercurrent in the xy-plane:

IxS
IyS

= − sinφ

cosφ
. (13)

This spin-supercurrent has several remarkable features: first
of all, it is conserved throughout the normal metal just like the
charge-current. Secondly, it is long-ranged as it flows through
a normal metal without any exchange field. Thirdly, it has one
component that is independent of the superconducting phase
difference θ. The other component goes like cos θ, mean-
ing that the total spin-supercurrent satisfies IxS(θ) = IxS(−θ).
This can be understood physically, since a spin-current is in-
variant under time-reversal symmetry. The latter operation
transforms θ → (−θ) and causes the charge-supercurrent to
change sign. In the Appendix, we give the full expression of
the spin-supercurrents including the coefficients and their de-
pendence on the junction parameters. The spin-supercurrent
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vs. misalignment angle α is shown in Fig. 2(a)-(c) for differ-
ent junction parameters.

The spin-supercurrent should be possible to control with a
weak external field coupling to the magnetic insulators, tuning
their relative orientation. We underline that our structure, un-
like previous works, does not include any ferromagnetic met-
als. In fact, a conceptually similar experimental structure to
the one that we propose to use in our manuscript has recently
been demonstrated in Ref. [40]. There, the authors inves-
tigated a spin-valve structure consisting of a superconductor
flanked by two magnetic insulators of slightly different thick-
nesses (both of order a few nm). Applying an external mag-
netic field would then control the magnetization orientation
of the thinner of these layers. This indicates that our results
are of experimental relevance using currently available tech-
niques.

In an experimental setting, the normal metal sample may
well include some degree of magnetic impurities or spin-orbit
scattering on impurities. Thus, it is of interest to see how such
non-ideal effects influence the predictions made in this paper.
Although no tractable analytical expression is accessible in
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FIG. 2: (Color online) Plot of the spin- and charge-supercurrents in
the system. We have used ξS = 30 nm and the relative temperature
T/Tc = 0.02. The interface parameters are set to be equal, Gϕ = 3
and ζ = 2, and the phase difference is the one supporting the critical
current, θ = π/2. In (a), we have set d = 20 nm, φ = 0. In (b),
we have d = 5 nm and φ = π/4. In (c), we set d = 20 nm and
φ = π/4. As expected, the components of the spin-supercurrents
are mirror-images of each other in (b) and (c) due to the choice of
magnetic configuration of the insulators, φ = π/4 [see Eq. (13)].
The charge-supercurrent is independent of φ. As seen, it changes
sign when going from α = 0 to α = π, signalling a 0-π transition.
The normalization constant of the charge-current is I0 = N0eDA/4
while for the spin-currents it is I0 = N0~DA/8. The contour plot in
the bottom panel (d) is the charge-supercurrent in the θ-α plane using
d = 20 nm, showing the occurrence of the 0-π transition around
α ' 0.2π (the dark green region corresponds to the π-phase).

this case, we have computed numerically the charge- and spin-
supercurrent in the presence of spin-flip scattering and spin-
orbit impurity scattering as described by Eq. (6). Interest-
ingly, the dissipationless flow of charge and spin are affected
very differently depending on the type of scattering. Consider
first the charge-supercurrent [top row of Fig. 3]. With in-
creasing spin-flip scattering, the current is monotonically sup-
pressed. However, this is not the case for spin-orbit impurity
scattering (middle panel). Instead, the 0-π transition point
vanishes and the current retains its order of magnitude even
for very large values of gso. Turning to the spin-supercurrent,
we find that both magnetic impurity scattering and spin-orbit
impurity scattering suppress the spin-flow monotonically.

The physical origin of the different behavior of the charge-
and spin-supercurrents when adding magnetic impurities and
spin-orbit scattering can be traced back to how the singlet
and triplet superconducting correlations are affected by them
[53, 54]. It can be demonstrated analytically that the singlet
component is insensitive to spin-orbit impurity scattering in
the absence of a magnetic field, as is reasonable since spin-
orbit scattering respects time-reversal symmetry. On the other
hand, the triplet component is suppressed as the spin-orbit
scattering rate increases. Based on this, one can now un-
derstand why the charge-supercurrent evolves different with
increasing spin-flip and spin-orbit scattering respectively. In
the former case, both the singlet and triplet components are
suppressed, i.e. the total superconducting proximity effect is
reduced, and the current simply decays montonically. In the
latter case, however, only the triplet part is suppressed. With
only the singlet part remaining in the normal metal, there is
no mechanism to cause a 0-π transition and the sign of the

FIG. 3: (Color online) Plot of the charge-supercurrent and the com-
ponents of the spin-supercurrent in the presence of spin-flip scatter-
ing due to magnetic impurities and spin-orbit impurity scattering.
Column (a) corresponds to magnetic impurity scattering (lines corre-
sponding to different values of gsf), column (b) to spin-orbit scatter-
ing (gso), and column (c) to both present with equal magnitude. The
parameters are set to d = 5 nm, ξS = 30 nm, Gϕ = 3, ζ = 2,
T/Tc = 0.02, and θ = π/2
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current remains positive and still of appreciable magnitude.
The same reasoning can be applied to the spin-current.

In this case, it is solely the triplet part which is responsible
for its existence. Since both magnetic impurities and spin-
orbit scattering suppress the triplet Cooper pairs, the spin-
supercurrent decays monotonically as the scattering rate in-
creases. It can be seen from Fig. 3 that the dependence of the
spin-supercurrent on the misalignment angle α between the
magnetic insulator moments goes toward a pure sinα profile
as gso becomes large.

Phase-tunable Triplet Superconductivity

Besides the appearance of this unusual spin-supercurrent,
a Josephson junction with magnetic insulator interfaces of-
fers a unique way to control triplet superconductivity as
we now demonstrate. It has previously been shown that a
crossover from pure conventional even-frequency pairing to
odd-frequency pairing is made possible via spin-active in-
terfaces in S|MI|N bilayer junctions [50]. The pivotal pa-
rameter is the ratio between the spin-dependent phase-shifts
and the normal-state tunnel conductance, in our notation Gϕ,
which causes a pure odd-frequency proximity pairing state at
the Fermi level (ε = 0) when Gϕ > 1 while a pure even-
frequency state occurs when Gϕ < 1. Experimentally, this
is manifested as a large zero-energy peak in the density of
states when the odd-frequency triplets dominate. Conversely,
a minigap appears in the spectrum for conventional singlet
pairing. To observe such an effect, it would be necessary to
fabricate several samples with a varying ratioGϕ. One way to
accomplish this could be to vary the width of the MI interlayer
in order to tune the tunneling probability.

Instead, we here show that when spin-active interfaces are
incorporated in a Josephson junction geometry, the crossover
from even- to odd-frequency pairing can now be controlled
by the superconducting phase difference θ, which in turn is
determined by the current flowing through the system. This
offers a new way to induce a triplet proximity effect which
can be changed in situ within a single sample, simply by vary-
ing θ. The crossover is manifested by the qualitative nature of
the proximity effect, going from a minigap (conventional sin-
glet proximity effect) to an enhanced low-energy peak (odd-
frequency triplet proximity effect). In order to probe how the
change in pairing symmetry is manifested experimentally, we
here compute the density of states in the normal metal region
and its phase-dependence numerically which allows us to re-
lax the assumption of a weak proximity effect. The DOS nor-
malized to its normal-state value is obtained from the solution
of the Ricatti equations via:

N(ε, θ) = Re{Tr[N (1 + γγ̃)]}/2. (14)

To make better contact with experimental measurements, we
have added a small imaginary part to the quasiparticle ener-
gies, ε→ ε+ ıδ where δ/∆0 � 1, which represents inelastic
scattering.

FIG. 4: (Color online) Proximity-induced density of states N(ε, θ)
(normalized to its normal-state value) in the middle of the normal
metal region. In all cases, we are considering the P configuration
where both magnetic insulators have moments pointing in the z-
direction. The strength of the spin-dependent phase-shifts occuring
at the interfaces are given by (a) Gϕ = 0.55, (b) Gϕ = 1.05, and (c)
Gϕ = 1.55. We have used the parameters d = 20 nm, ξS = 30 nm,
and ζ = 5.
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We consider the most general case where each supercon-
ducting interface contains a magnetic insulator. The results
are shown in Fig. 4, where we have focused on the exper-
imentally most accessible configuration with the insulators
in the P state. Three choices of the strength of the spin-
active scattering at the interfaces are considered in (a)-(c) with
Gϕ = {0.55, 1.05, 1.55}. It is seen that the nature of the
superconducting proximity changes qualitatively due to the
presence of the magnetic insulators. It is known that in the ab-
sence of magnetic elements (Gϕ = 0), a minigap is induced
in the normal metal which is largest for θ = 0 and closes at
θ = π. In Fig. 4(a), the minigap is prominent at small phase-
differences θ. However, instead of monotonically closing the
minigap as θ is driven towards π, the density of states becomes
strongly enhanced at low energies. This feature arises due to
the odd-frequency symmetry of the triplet Cooper pairs in the
normal metal [49–51]. When the spin-active scattering, taking
place at the insulators, becomes stronger in Fig. 4(b) and (c),
the minigap has vanished all-together, leaving behind only a
clear zero-energy peak in the density of states.

The qualitative change in the density of states (going from
fully suppressed to enhanced at low energies) can be seen
clearly also when keeping the superconducting phase differ-
ence θ fixed and varying the magnetic configuration α. This is
shown in Fig. 5: as one changes from a P to AP configuration
(going from α = 0 to α = π), the system makes a transition
from hosting proximity-induced triplet superconductivity to
singlet superconductivity. Our work thus demonstrates a con-
version between singlet and triplet Cooper pairs in a normal
metal by tuning either the superconducting phase difference
or the configuration of the magnetic insulators. This has the
important advantage that it can be done in situ, as opposed to
using ferromagnets where e.g. several samples with different
widths are created to suppress the singlet component relative
the triplet one.

It is interesting to note that the density of states for each
electron-spin is highly non-degenerate and tunable, as shown
in Fig. 6. This could potentially be utilized in creating large
thermoelectric effects based on the idea of Ref. [55] which
demonstrated that the spin-splitted density of states arising
in superconductor/ferromagnet hybrids could yield a thermo-
electric figure of merits far exceeding what is obtained in the
non-superconducting phase.

Similarly to our treatment of the spin- and charge-
supercurrent, we also investigate the influence of spin-flip and
spin-orbit scattering on the density of states. In the left col-
umn of Fig. 7, we consider different values for Gϕ and the
spin-flip scattering rate. Regardless of the value ofGϕ, in par-
ticular of whether it is smaller than or greater than the critical
value Gϕ,c = 1, the influence of the superconducting proxim-
ity effect on the DOS is diminished. As discussed previously
in the context of the charge- and spin-supercurrents, this may
be understood physically from the fact that magnetic impu-
rities suppress singlet and triplet components alike, such that
the DOS eventually reverts to its normal-state value for any
phase-difference and energy. The situation is different when

considering spin-orbit impurity scattering, shown in the right
column of Fig. 7. Now, the spectroscopic manifestation of
the superconducting proximity effect depends on whether we
are in the singlet-dominated regime Gϕ < 1 or the triplet-
dominated regime Gϕ > 1. For Gϕ = 0.55, the presence of
spin-orbit scattering leaves the minigap intact while suppress-
ing the zero-energy peak that emerges as the superconducting
phase-difference increases. Hence, the superconducting prox-
imity effect remains clearly visible in the DOS. For Gϕ > 1
shown in (d) and (f), however, increasing the spin-orbit scat-
tering rate causes the low-energy enhancement of the DOS
to be absent since the triplet component is suppressed by this
type of scattering. When applying even stronger values of
spin-orbit scattering, a clear minigap appears for all the values
of Gϕ. It should also be noted that the spectroscopic finger-
prints of the superconducting proximity effect are much more
sensitive toward the presence of magnetic impurity and spin-
orbit scattering than the charge- and spin-supercurrents, the
former being suppressed in magnitude faster compared to the
current at a given value of gsf/so.

FIG. 5: (Color online) Proximity-induced density of states N(ε, θ)
(normalized to its normal-state value) in the middle of the normal
metal as a function of quasiparticle energy ε and the misalignment
angle α of the magnetic insulators. In (a), the superconducting phase
bias is set to θ = 0, corresponding to zero current-flow. In (b), we
have θ = π/2, corresponding to the critical current-flow. The other
parameters are set to d = 20 nm, ξS = 30 nm, Gϕ = 1.05, ζ = 5.
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FIG. 6: (Color online) Spin-resolved density of states (normalized to
its normal-state value) in the ε − θ plane. In (b), the total density
of states is shown whereas in (a) and (c) the spin-↓ and spin-↑ con-
tributions are shown, respectively. The parameters used are ζ = 5,
Gϕ = 0.9, d = 10 nm, ξS = 30 nm, and α = 0.

FIG. 7: (Color online) Plot of the density of states N(ε, θ) (nor-
malized to its normal-state value) in the energy-superconducting
phase difference (ε-θ) plane. The top row illustrates the case where
Gϕ = 0.55 and (a) gsf = 0.05, (b) gso = 0.05. The middle row has
Gϕ = 1.05 and (c) gsf = 0.10, (d) gso = 0.10. The bottom row
shows Gϕ = 1.55 and (e) gsf = 0.15, (f) gso = 0.15. The remaining
parameters are set to d = 20 nm, ξS = 30 nm, and ζ = 5, in the P
configuration.

DISCUSSION AND CONCLUDING REMARKS

We here discuss in more detail how our work is related
to previous findings. In the proposal by Houzet and Buzdin
[28], a ferromagnetic trilayer was suggested as the minimal
structure that would be able to generate a long-ranged triplet
supercurrent. In another work by Grein et al. [32], strongly
polarized ferromagnets with two spin-active interfaces were
considered, thus in some sense being similar to the trilayer
system of Ref. [28] with the exception that the spin-bands
were now assumed to be completely decoupled in the bulk due
to the large exchange field. In this case, a spin-supercurrent
was shown to also be generated. Shomali et al. [31] stud-
ied the spin-current in a Josephson junction with a ferromag-
netic metal bilayer and it was realized that a long-ranged su-
percurrent in ferromagnets could in fact be generated with
only two ferromagnets [29], albeit only as a higher-order ef-
fect. More precisely, there would be a contribution to a long-
ranged triplet supercurrent from the second Josephson har-
monic sin(2θ). This could make experimental detection dif-
ficult, since the magnitude of the second harmonic latter is
usually much smaller than the first harmonic, and a very spe-
cific fine-tuning of the junction parameters would be required
to observe the effect. Spin-supercurrents have also been ana-
lyzed in other types of superconducting structures, including
magnetic textures such as spirals, and also using intrinsically
triplet bulk superconductors [58–62]. Very recently [64], spin
supercurrents in junctions composed of multiband supercon-
ductors coexisting with a spin-density wave state was stud-
ied theoretically. Similar dependencies on the superconduct-
ing phase difference and magnetic misalignment between the
spin-density waves as in our case was shown, even if the sys-
tem under consideration in this work is physically quite dif-
ferent from Ref. [64].

The spin-supercurrent reported in our work occurs in the
first harmonic, i.e. it is not a higher-order effect, meaning
that it is present without any fine-tuning of parameters in or-
der to suppress the first harmonics in favor of higher ones.
Moreover, it occurs without use of any ferromagnetic met-
als: the spin superflow takes place in a non-magnetic normal
metal. There are several different choices for magnetic insu-
lators that can be used in the proposed setup shown in Fig.
1. Previous experiments considering superconducting hybrid
structures have utilized magnetic insulators such as EuO [52],
EuS [40], and GdN [56]. The particular choice of magnetic
insulator also depends on how well it can be grown at the in-
terface between the superconductor and the normal metal. We
speculate that suitable material combinations to construct our
setup could be Nb and EuO as the superconductor and mag-
netic insulator, or alternatively NbN and GdN. Concerning the
phase-dependent density of states in the normal metal, experi-
mental techniques are available for measuring this quantity as
demonstrated in Ref. [57] in a conventional SNS Josephson
junction. By integrating the junction in a loop geometry, the
superconducting phase θ is then tunable via a minute magnetic
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flux. Using AFM-spectroscopy, a complete mapping of how
the density of states evolves spatially through the junction as
a function of θ is possible.

We note that very recently, quasiclassical boundary condi-
tions valid for any strength of the barrier polarization were
derived [63]. This opens the possibility to study theoretically
systems with very strongly spin-polarized magnetic insulators
and even half-metallic (fully polarized) ferromagnets. Con-
cerning direct experimental detection of the spin-polarization
of the supercurrent itself, one possibility could be to, once it
has been created, inject it into a magnetic material with a weak
magnetic anisotropy and observe the resulting magnetization
dynamics as a result of spin-transfer. There have also been
proposals utilizing optical detection of spin transport through
non-magnetic metals [65] as well as electrical detection [66]
via a spin-current induced Hall effect. Further work is needed
to clarify precisely if and how this could be possible using

spin-supercurrents in superconducting structures.
In summary, we have shown that by integrating supercon-

ductors with magnetic insulators, one arrives at a unique way
to both create and control triplet superconductivity in a well-
defined way with the superconducting phase-difference, and
to also create a conserved and tunable spin-supercurrent flow-
ing through a normal metal.
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APPENDIX: DETAILED EXPRESSIONS FOR CHARGE- AND SPIN-SUPERCURRENTS

We here provide comprehensive results for the analytical expressions of the supercurrents of charge and spin supported by the
system. In the weak proximity effect, one finds the following completely general expressions:

IQ =
N0eDA

4

∫ ∞
0

dεtanh
(βε

2

)
4Re

{
[2fs∂xf̃s − 2ft∂xf̃t − f↑∂xf̃↑ − f↓∂xf̃↓]− [ ˜. . .]

}
,

IxS =
N0~DA

8

∫ ∞
0

dεtanh
(βε

2

)
4Re

{
[−(f↑ + f↓)∂xf̃t − ft∂x(f̃↑ + f̃↓)]− [ ˜. . .]

}
,

IyS =
N0~DA

8

∫ ∞
0

dεtanh
(βε

2

)
4Im

{
[(f↑ − f↓)∂xf̃t − ft∂x(f̃↑ − f̃↓)] + [ ˜. . .]

}
,

IzS =
N0~DA

8

∫ ∞
0

dεtanh
(βε

2

)
4Re

{
[−f↑∂xf̃↑ + f↓∂xf̃↓]− [ ˜. . .]

}
. (15)

Above, the notation ( ˜. . .) means changing the sign of energy and complex conjugate and we defined the inverse temperature
β = 1/(kBT ). It is seen that the spinless singlet correlations fs do not contribute to any of the spin-currents. In the special case
of a normal metal separating the superconductors, one can work further with the above expressions by inserting the solutions

fm = Ameıkx +Bme−ıkx,m = {s, t, ↑, ↓}. (16)

We then get expressions for the supercurrents which is independent of position:

IQ = N0eDA

∫ ∞
0

dεtanh
(βε

2

)
Re
{

2ık[(A↑Ã↑ −B↑B̃↑) + 2(AtÃt −BtB̃t)− 2(AsÃs −BsB̃s) + (A↓Ã↓ −B↓B̃↓)]
}
,

IxS =
N0~DA

2

∫ ∞
0

dεtanh
(βε

2

)
Re
{

2ık[(A↑ +A↓)Ãt − (B↑ +B↓)B̃t + (Ã↑ + Ã↓)At − (B̃↑ + B̃↓)Bt]
}
,

IyS =
N0~DA

2

∫ ∞
0

dεtanh
(βε

2

)
Re
{

2k[−(A↑ −A↓)Ãt + (B↑ −B↓)B̃t + (Ã↑ − Ã↓)At − (B̃↑ − B̃↓)Bt]
}
,

IzS =
N0~DA

2

∫ ∞
0

dεtanh
(βε

2

)
Re
{

2ık[(A↑Ã↑ −B↑B̃↑)− (A↓Ã↓ −B↓B̃↓)]
}
. (17)

The coefficients {Am, Bm} for the singlet and each of the triplet components are determined by the boundary conditions. For
instance, one finds for the charge-supercurrent that

IQ = N0eDA sin θ

∫ ∞
0

dεtanh
(βε

2

)
Re
{

4ıkΓ−1 sin(kd) sinh2 Θ
(
k2d2ζLζR +GLϕG

R
ϕ cosα

)}
. (18)
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upon defining the quantity:

Γ =
(
k2d2ζ2

R + (GRϕ )2
)(
k2d2ζ2

L − (GLϕ)2 + 2(GLϕ)2 cos2 α
)

cos2(kd)−
(
k2d2ζLζR −GLϕGRϕ cosα

)2

,

(19)

The spin-supercurrent is given by:

IxS =
N0~DA sinφ sinαGLϕG

R
ϕ

2

∫ ∞
0

dεtanh
(βε

2

)
Re
{

4ıkΓ−2 sin(kd) sinh2 Θ
(
a1 + a2 cos θ

)}
, (20)

where we have defined the expressions

a1 =
(

2(GLϕ)2 cos2 α− (GLϕ)2 + k2d2(ζ2
L + ζ2

R) + (GRϕ )2
)(
k2d2ζLζR −GLϕGRϕ cosα

)
cos2(kd), (21)

a2 =
(
k2d2ζ2

L + 2(GLϕ)2 cos2 α− (GLϕ)2
)(
k2d2ζ2

R + (GRϕ )2
)

cos2(kd) +
(
k2d2ζLζR −GLϕGRϕ cosα

)2

. (22)
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