
Anisotropic Paramagnetic Meissner Effect by Spin-Orbit Coupling

Camilla Espedal1, Takehito Yokoyama2, and Jacob Linder1
1Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway and

2Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
(Dated: March 7, 2016)

Conventional s-wave superconductors repel external magnetic flux. However, a recent experiment [A. Di
Bernardo et al., Phys. Rev. X 5, 041021 (2015)] has tailored the electromagnetic response of superconducting
correlations via adjacent magnetic materials. We consider another route to alter the Meissner effect where spin-
orbit interactions induce an anisotropic Meissner response that changes sign depending on the field orientation.
The tunable electromagnetic response opens new paths in the utilization of hybrid systems comprised of magnets
and superconductors.

Introduction. The Meissner effect in superconductors is the
expulsion of magnetic fields and it is one of its two defining
properties, the other being the absence of electrical resistance.
Experiments have shown [1] that a non-superconducting ma-
terial can also exhibit a Meissner response when it is in prox-
imity to a superconductor. Via the proximity effect, super-
conducting correlations leak into the neighbouring metal. In-
tuitively, one might expect stronger superconducting correla-
tions to give rise to a stronger Meissner response of the normal
metal. The modelling of such systems via quasiclassical the-
ory largely confirms this picture [2], except the observation
that the magnetic susceptibility has a puzzling re-entrant be-
havior as a function of temperature [3–5].

When superconductors are placed in contact with ferromag-
nets, triplet Cooper pairs emerge that carry a net spin [6–9].
Such pairs are additionally characterized by an odd-frequency
symmetry [10] which influences several physical properties,
such as the electronic density of states and electromagnetic re-
sponse. Very recently, an experiment [11] observed a param-
agnetic Meissner effect in an Nb/Ho/Au structure. In this sys-
tem, superconductivity enhanced the magnetic signal rather
than expelling it. Such a finding is of a fundamental interest,
since it questions the hallmark property of perfect diamag-
netism in superconductors. From a practical point of view, a
paramagnetic Meissner effect could lead to an integration of
magnetic and superconducting materials in a way that has not
been possible previously. Moreover, the recent demonstration
of remotely induced magnetism via a superconductor reported
in Ref. [12] suggests that the study of how superconductivity
influences magnetic signals is particularly timely.

Motivated by these experimental advances, we show in
this Letter that by combining superconductors with spin-orbit
coupled materials, the Meissner effect can be modulated by
the orientation of an external magnetic field. Not only does
the Meissner response of the system become anisotropic as a
function of field orientation, but it can even change sign. This
offers a way to control the electromagnetic response of a su-
perconducting system in situ. In addition, we demonstrate that
magnetic exchange fields h that are much smaller than the su-
perconducting gap ∆0, e.g. induced via the Zeeman-effect of
an external field, can lead to a similar re-entrant behavior of
the susceptibility as in the experiments Ref. [3–5].

Theory. We consider a superconductor/normal metal (S/N)
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FIG. 1: (Color online) The proposed experimental setup. A super-
conductor/normal metal (S/N) bilayer where inversion symmetry is
broken in the N part, giving rise to intrinsic spin-orbit coupling. In-
version symmetry breaking is assumed throughout the N part, e.g.
by using a noncentrosymmetric crystal such as InAs or InSb, and the
applied magnetic field is oriented an angle θ relative to the direction
of the broken inversion symmetry.

bilayer, where intrinsic spin-orbit coupling (SOC) exists in
the N part. Possible candidates are materials with a noncen-
trosymmetric crystal structure such as InAs, which addition-
ally has a high effective g-factor (strong coupling between ex-
ternal field and electron spins). We take into account an ex-
ternal magnetic field applied to this structure and describe its
orientation via the angle θ (see Fig. 1). The superconductor
is assumed to act as a reservoir by setting its dimension much
larger than the superconducting coherence length ξS . To de-
termine the Meissner response of the system under consider-
ation, we use the quasiclassical theory of superconductivity
[13–15]. In the diffusive limit, the resulting physics is de-
scribed by the Green function matrix ĝ that solves the Usadel
equation [16]. We use a linear-response theory [2, 17] to com-
pute the supercurrent due to the external magnetic field. Such
an approach quantitatively accounts for experimental findings
of the conventional diamagnetic Meissner effect in conven-
tional S/N structures [2]. Considering a strength of the exter-
nal field in the range 10 mT − 100 mT and assuming [18]
g = 20 as relevant for InAs or InSb, the resulting induced
Zeeman-splitting h is (0.005 − 0.05)∆0. Due to the external
field, a small Zeeman splitting is present in the normal metal
since the Meissner response is incomplete, which we model
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by adding a small exchange term h. The SOC is accounted
for by treating it as an SU(2) gauge-field [19, 20], included
in the differentiation operator ∇̃X = ∇X − i[Â, X]−, where
X is an arbitrary function. The inversion symmetry is bro-
ken along the unit-vector n̂ = [− sin θ, cos θ, 0]. To linear
order in the momentum, this corresponds to having a Rashba-
term HR = −α(σ × k) · n̂ in the Hamiltonian where σ is
the Pauli vector and n̂ points along the direction of inversion
asymmetry. In our calculations, we fix the external field in the
y-direction and vary n̂. The resulting gauge-field then reads
Â = −α(sin θσ̂y + cos θσ̂x). However, we emphasize that
this procedure is fully equivalent to rotating the external field
and keeping the sample intact which might be preferable ex-
perimentally. The S/N interface is located at z = 0, and the
vacuum interface at z = L, where L is the length of the N.
The Usadel equation in the N is

iD∇̃z(ĝN ∇̃z ĝN ) =
[
ερ̂3 + M̂, ĝN

]
−
, z ∈ [0, L] (1)

with ρ̂3 = diag(1, 1,−1,−1) where D = τv2F /3, ε, and
M̂ = hdiag(σ,σ∗)ŷ are the diffusion constant, the quasi-
particle energy measured relative to the normal-state Fermi
level, and the exchange term, respectively. The Usadel
equation is accompanied by the boundary conditions [21]
2(LΩN )ĝRN ∇̃ĝRN = [ĝRi , ĝ

R
N ]− at z = 0, where R indicates

that we refer to the retarded component of the Green func-
tion, and ĝRi = ĝRBCS , where ĝRBCS is the bulk BCS-solution
of the Usadel equation, at the SN-interface, and ∇̃ĝRN = 0 at
the vacuum interface. ΩN is a parameter describing the in-
terface transparency. In all the numerical calculations, we use
ΩN = 4. Once ĝ has been obtained, one may compute the su-
percurrent density flowing through the system via the formula
[13]:

j =
N0eD

16

∫ ∞
−∞

dεTr{ρ̂3(ǧ∇̃′ǧ)K}. (2)

where the covariant derivative, ∇̃′, contains both the U(1)
electromagnetic vector-field and the SU(2) SOC-field. The
Green function matrix, ǧ, includes the retarded, advanced, and
Keldysh components [15]. We find the Meissner response cur-
rent from Eq. (2), by extracting the term which is proportional
to the electromagnetic vector potential,

jdi = −i
N0e

2D

16
Ai(r)

∫ ∞
−∞

dε jdε,i(r, ε) tanh

(
βε

2

)
(3)

where jdε (r, ε) = Tr{(ρ̂3ĝR)2−(ρ̂3ĝ
A)2}. In linear response,

we solve the Usadel equation without the electromagnetic vec-
tor potential and use the solution for ĝ in Eq. (3) in order to
find the Meissner current. One can show that the contributions
from ∇ and Â in ∇̃′ to the current in Eq. (2) vanish. The last
step consists of solving the Maxwell equation ∇×B = µ0j
in order to obtain the magnetic vector potential A(z) in the
normal metal. Having determined A(z), we may then com-
pute e.g. the local supercurrent or the magnetic susceptibility

which both probe the Meissner-response of the system. We
choose the London gaugeA = [A(z), 0, 0], and obtain

∂2zA(z) = −µ0j
d
x (4)

We assume that the applied field is completely screened within
the bulk superconductor, and that there is no screening at the
vacuum edge of N [17]. With these assumptions, the boundary
conditions become A(z = 0) = 0, dA

dz (z = L) = µ0H . The
susceptibility, χ, the response of the material to the external
field integrated over L, is then obtained as:

χ = A(L)/µ0HL− 1. (5)

Having solved the Maxwell equation, one can also find
the magnetization, which is related to the vector poten-
tial M(z) = (1/µ0)B(z) − H . For our system, hav-
ing B = ∇ × A(z) pointing in the y-direction, we
get M(z) = (0,M(z), 0). In our simulations, we set
N0e

2D∆0µ0L
2/(16~) ≡ k = 16 and ξS/L = 0.3. We have

verified that altering the value of k in a wide range of five or-
ders of magnitude does not influence the results qualitatively,
and hence the results presented herein are representative.

We have solved the above set of differential equations
(the Usadel and Maxwell equations) numerically, utilizing the
Ricatti-parametrization [22] for the quasiclassical Green func-
tion ĝ extended to include SOC [23, 24].

Results. Before providing a fully numerical solution, it is
instructive to consider how the exchange field and SOC induce
triplet Cooper pairs. The odd-frequency symmetry of these
pairs results in a paramagnetic Meissner response in contrast
to the conventional spin-singlet pairs which generate a screen-
ing supercurrent [25–28]. Assuming a weak proximity effect,
one derives the following diffusion equations for the singlet
fs and triplet f t superconducting correlations:

i

2
D∂2zfs(z) = εfs(z)− h · f t(z),

i

2
D∂2zf t(z) =(ε+R)f t(z)− hfs(z), (6)

where the exchange field points in the y-direction so that
h = hŷ, h is the strength of the exchange field, and R =
2iD

(
α2Ωr + αΩp∂z

)
. We define s ≡ sin θ, c ≡ cos θ, and:

Ωr =

−s2 cs 0
−cs c2 0

0 0 1

 , Ωp =

0 0 s
0 0 −c
s c 0

 . (7)

The exchange field h induces the triplet component f t ‖ h.
The SOC, however, allows the coupling to the triplet Cooper
pairs to be varied by changing θ, i.e. rotating the magnetic
field. As will be demonstrated below, the fact that the Meiss-
ner response becomes highly anisotropic with regard to varia-
tions in θ indicates that the triplet generation is an important
factor in determining the electromagnetic response of the su-
perconducting correlations. In particular, one should note that
for an orientation θ = π/2 of the external field, we can see
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FIG. 2: (Color online) (a) Magnetic susceptibility χ vs. temperature
in the absence of SOC, α = 0. When a small exchange field is
present, the re-entrant effect comes into play. The dashed lines are
added as a guide to the eye. Inset: Re-entrance effect for ξS/L =
0.043 and h = 0.001∆0. Spectral Meissner response, −ijdε , for (b)
h/∆0 = 0 and (c) h/∆0 = 0.05 shows that a positive contribution
to the spectral current appears when we add the exchange field. Note
while we only plotted for positive energy, the spectral current is an
odd function of the energy, while −ijdε tanhβε/2 is even.

from Eqs. (6) and (7) that the triplet components become de-
coupled and the situation is equivalent to having no SOC. Our
numerical results are also consistent with this statement.

We consider first the case without SOC for a long normal
metal as in the experiments of Refs. [3–5]. The magnetic sus-
ceptibility as a function of temperature T is shown in Fig. 2(a)
both with and without an exchange field. For h = 0, we see
as expected a conventional diamagnetic Meissner effect. In-
terestingly, even for a very small exchange field h/∆0 = 0.05
we observe that χ vs. T displays a re-entrant behavior. To
understand the physical origin of this behavior, we first note
that when the normal metal length satisfies L � ξS , the
proximity-induced minigap is much smaller than the super-
conducting gap ∆0. The minigap is determined by the Thou-
less energy [29] εT = D/L2, so that longer samples have
smaller minigaps. Now, in the presence of exchange fields
h/∆0 ∼ εT /∆0 = (ξS/L)2, the triplet proximity effect be-
comes resonant and results in a zero-energy peak in the den-
sity of states [30]. For smaller minigaps (larger L), only a
small exchange field is needed to get sufficiently close to res-
onance, which explains why a long normal metal can be influ-
enced by a small h. As seen in the inset of Fig. 2 (a), a change
in ξS/Lwill also give re-entrant behaviour as long as h is low-
ered accordingly. Since εT is now smaller, the minimum of χ
occurs at a lower temperature.

The resonant behavior also influences the spectral cur-
rent density and inspection of this quantity reveals why the
Meissner current, and in turn susceptibility χ, behaves non-
monotonically. Consider Fig. 2(b) and (c) where we have
plotted the spectral current without and with the exchange
field. When the exchange field is turned on, there is both a

positive and negative contribution in the spectral supercurrent.
What ultimately determines the total Meissner supercurrent in
Eq. (3) is how these low-energy contributions are weighted by
the distribution function factor tanh(βε/2). At low tempera-
tures, where β is large, the positive contribution to the shield-
ing supercurrent is weighted more efficiently. Increasing the
temperature shifts the weight toward the negative contribution
and the Meissner response becomes more diamagnetic. There
thus exists a crossover temperature regime where there is a
competition between these two phenomena, which leads to
the re-entrant effect shown in Fig. 2(a).

We now turn to the effect of including SOC and show that
altering the field orientation θ causes a transition from a stan-
dard Meissner effect to a paramagnetic Meissner response.
This pertains uniquely to the presence of SOC: in its absence,
the Meissner response is completely independent of the field
orientation. To see that this is a robust effect that occurs over
a broad range of exchange field values, we have plotted in Fig.
3 the supercurrent-induced magnetization response for θ = 0
and θ = π/2 for several values of h. It is found that rotating
the field by 90◦ (from θ = 0 to θ = π/2) now inverts the sign
of the orbital response and the supercurrent generates a mag-
netization that enhances the net magnetic field. To the best of
our knowledge, this is the first prediction of how the Meissner
response in a normal metal can be inverted in situ.

The physical origin of this phenomenon can be traced back
to how the generation of triplet Cooper pairs depends on the
magnetic field orientation θ, as seen from the analytical equa-
tions. For θ = 0, Eqs. (6) and (7) show that the various triplet
components of f t are coupled, which might suggest that the
Meissner response should become more paramagnetic due to
the increased pathways to create triplets. In contrast, we see
in Fig. 3 that the opposite takes place: a diamagnetic effect
occurs for θ = 0, while the signal becomes paramagnetic for
θ = π/2 (where the SOC has no effect). The reason for this
is that besides coupling the components of f t, the SOC has
an additional consequence: it introduces a depairing effect on
the triplet correlations in the system due to the term ∝ Ωr

which adds an imaginary component to the quasiparticle en-
ergy. We find this effect that typically dominates for weak ex-
change fields and hence it restores the orbital response of the
system to a conventional Meissner effect. The modification of
the spectral supercurrent due to the presence of SOC for θ = 0
is shown in the inset of Fig. 3: the presence of triplets is man-
ifested via a positive contribution to the current, whereas the
diamagnetic response (negative peak) is larger and results in a
net conventional Meissner response.

Discussion. Previously, paramagnetic Meissner effects
have been discussed in the context of high-Tc superconduc-
tors [31–34]. For such a system, the presence of Andreev
surface-bound states give a paramagnetic contribution to the
shielding supercurrent but are not strong enough to render the
total Meissner response paramagnetic in large superconduc-
tors [35]. Ref. [36] showed that repulsive interactions in the
N can induce a midgap bound state at an SN interface, leading
to a paramagnetic Meissner effect. It is also important to em-
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FIG. 3: (Color online) The magnetization profile, M(z), as a func-
tion of position inside N for T/Tc = 10−3, αξS = 0.75 and (a)
h/∆0 = 0.025, (b) 0.05, and (c) 0.1. In each case, we show two
different magnetic field orientations, θ = π/2 and θ = 0, which
demonstrate the switching between a diamagnetic and paramagnetic
Meissner responses. We underline that the positive magnetization
M(z) shown in panel (b) is consistent with Fig. 2(a) because χ is
positive at very low temperatures T/Tc < 0.03 when h/∆0 = 0.05.
Inset: the spectral supercurrent for θ = 0, demonstrating how triplet
pairing is present (positive current near ε/∆0 ' 0.005) whereas the
diamagnetic contribution is larger (negative current near ε/∆0 '
0.02).

phasize that metastable paramagnetic Meissner effects have
been shown to originate from other types of effects which are
not related to unconventional superconductivity, but instead to
flux capturing at the surface for small superconductors [37].
In this case, the conventional Meissner state is restored by ex-
ternal noise. This scenario are distinct from that of the present
paper, where the paramagnetic Meissner effect occurs due to
an exotic type of odd-frequency superconductivity.

The effects predicted in this work require a local magneti-
zation probe. This could be accomplished using low-energy
muon spin-spectroscopy which offers a very high sensitiv-
ity to magnetic fields (< 0.1 G) [11]. Alternatively, one
could use a nano-SQUID technique which is known to fea-
ture single-spin sensitivity [38]. Finally, we note that odd-
frequency triplet pairing has recently been predicted to occur
in S/N systems with SOC [39] where the case of strong SOC
was included. It would be of interest to study the Meissner
effect in this regime, which goes beyond the quasiclassical
approximation.

Conclusion. Summarizing, we have shown that SOC
in the normal metal fundamentally alters its Meissner re-
sponse when placed in proximity to a superconductor. The
supercurrent-induced magnetization displays anisotropic be-
havior depending on the orientation of the applied field, and
can even switch the sign. This provides a way to control
the electromagnetic response of superconducting structures,
swapping between a conventional and an inverse Meissner re-
sponse. In addition, we have shown that a re-entrant effect of
the magnetic susceptibility can occur in S/N-structures in the
presence of very small exchange fields h � ∆0. From our
simulations, we find that for such fields, triplet pairing can
play an important role in determining the magnetic properties

of a material when its length greatly exceeds ξS .
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