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Abstract: The Czochralski process is the only method used commercially for production of
monocrystalline silicon for semiconductor and solar cell applications. This paper explores the
use of mathematical modeling as an aid in estimation of system state variables in the standard
Czochralski process. A state-space model of the process is presented, describing the dynamics
of the crystal radius and meniscus height with crystal radius as measured output. For the
purpose of estimating the actual crystal radius during growth, three types of state estimators
are developed based on the state-space model; the Kalman filter, the extended Kalman filter
and the unscented Kalman filter. It is found that the latter two provide highly accurate state
estimates with excellent noise suppression.

1. INTRODUCTION

The Czochralski (Cz) method is one of the few crystal
growth techniques where the lateral surface shaping is
performed without any contact with container walls. The
principle is based on melting the source material in a
crucible, dipping a rotating seed crystal into the melt, and
pulling it up slowly. As the seed comes in contact with
the melt, the melt solidifies on the seed and takes on the
same crystallographic orientation as the seed. The seed is
then slowly withdrawn from the melt, and surface tension
causes the formation of a meniscus which connects the
crystal to the melt. As the crystal is withdrawn, the melt
solidifies along the top of the meniscus, causing the crystal
to grow. The surface along which the material solidifies
is referred to as the (crystal-melt) interface. The finished
crystal is called an ingot. The crystallization process can be
described mathematically using the conservation of mass
and the heat balance around the meniscus. Jan Czochralski
discovered this method in the early 1900’s, but it has only
found wide practical application during the last decades
because of the development of semiconductor engineering
and the solar industries. After production of the ingot,
it is cut into thin wafers, and each wafer cut into a
specific shape (typically quadratic) depending on the final
application.

This paper investigates and compares the performance of
the Kalman filter, the Extended Kalman filter and the Un-
scented Kalman filter, based on a simulation study using
a physically motivated model for the Czochralski process.
Section 2 will give a brief introduction to the Czochralski
process and present a simplified process model, section
3 will give a brief introduction to Kalman Filter (KF),
Extended Kalman Filter (EKF) and Unscented Kalman
Filter (UKF) and present the implemented estimation
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design methods used for the Czochralski diameter control
problem. Section 4 presents the results of applying the
designed estimators to the process model, whereas section
5 contains discussion and conclusions. Section 1, subsec-
tion 2.1 and some parts of 2.2 in this paper are based on
[Rahmanpour and Hovd, 2012].

2. THE CZOCHRALSKI CRYSTALLIZATION
PROCESS AND A MODEL FOR THE CRYSTAL

RADIUS

2.1 Czochralski Process Description

A sketch of the Czochralski process is shown in Figure 1.

The solid silicon put in a crucible. Electrical heaters are
used both to melt the silicon, and to maintain an ap-
propriate temperature trajectory throughout the crystal-
lization process. A small crystal seed is put in contact
with the molten silicon, and the crystal is produced by
slowly pulling the seed out of the melt. Initially, the crystal
diameter is increased quite quickly, whereas for most of
the duration of the process it is desirable to keep the
crystal diameter constant. A sketch of the region around
the meniscus is shown in Figure 2.

2.2 A Crystal Formation Model for the Czochralski Process

The basic phenomena that need to be covered by a model
for the Czochralski process are the capillary problem and
the thermal conditions. From the theory of hydrostatics,
the equilibrium shape of the liquid surface is described by
the Laplace capillary equation [Tatarchenko, 1993]:

σLV

R1
+
σLV

R2
+ gρLz̃ = const. (1)

where σLV is the liquid surface tension coefficient at the
three-phase boundary, ρL denotes the liquid density, and



Fig. 1. An illustration of the main parts of the Czochralski
crystallization process (This Figure is licensed under
a Creative-Commons BY-NC-SA license).

Fig. 2. A sketch of the crystal and its contact with
the molten metal(This Figure is licensed under a
Creative-Commons BY-NC-SA license).

R1 and R2 are the principal radii of curvature of the
meniscus. The value of the constant is defined based on
the selection of the origin of the z̃-coordinate and the
difference between the pressure of the liquid p and gas
pv at the origin. With definition of the capillary constant
a = (2σLV /gρL)1/2, we get a dimensionless coordinate
z̃/a = z where the z̃-axis is directed vertically upwards.
The liquid surface meniscus for cylindrical or tubular
crystals is obtained by rotating the profile curve around
this axis. The shape of the free liquid surface is given
by solution of the Laplace-Young equation [Tatarchenko,
1993]:

z
′′
r + z

′
(1 + z

′2)± 2(d− z)(1 + z
′2)3/2 = 0,

d =
p · a

2σLV

(2)

Here z and r represent the vertical and radial coordinates,
while a is the Laplace constant. For the thermal part of
the model, much research has been devoted to calcula-
tion of the temperature field in the crystal-melt system.
However, because of the variety of growth configurations
and the presence of a great number of elements that must
be considered while studying the thermal conductivity
problems, a complete mathematical description of heat
transfer throughout the process is extremely difficult. An-
alytical solutions are usually achieved by applying many
simplifications [Tatarchenko, 1993].

A heat transfer balance about the interface states that
the heat flow caused by crystallization (Φh) is given by
the difference between the heat flow from the interface to
the crystal (Φs) and the heat flow from the melt to the
interface (Φl) [Winkler et al., 2010, pp. 1007,1012]:

Φh = Φs − Φl (3)

where

Φh = ρsvgAi∆H (4a)

Φs = ksAi∇Ts (4b)

Φl = klAi∇Tl (4c)

Here Ts and Tl denote the temperatures in the solid and
the melt, respectively, ρs is solid state density, ks and kl
are the thermal conductivity coefficients in crystal and the
melt, ∆H is the latent heat of fusion per unit volume, vg
is the growth velocity normal to the interface along with
the pulling direction, and Ai is the interface or meniscus
area. An accurate model for the Czochralski process will
necessarily result in a highly complex model involving cou-
pled PDE’s [Tatarchenko, 1993]. Such simulation models
do exist, but they are typically based on assuming quasi-
stationarity conditions and are anyway too complex for
controller design.

Steel and Hill [1975, p. 49] and Hurle et al. [1990, p. 15]
suggest the following estimate of the melt temperature
gradient under the assumption that the heat radiation
from the meniscus to the environment is negligible

∇Tl ≈
TB − TM

h
(5)

This results in the following expression for the melt-
meniscus heat flow

Φl ≈ klAi
TB − TM

h
(6)

Here TB is the temperature at the base of the meniscus,
TM is the melting temperature (at the lower surface of the
cylindrical crystal). Since, over time, the growth rate (vg)
equals the average pulling rate (vp), the following estimate
of the rate of heat release can be obtained from (4a) by
assuming a flat interface:

Φh ≈ πr2cρs∆Hvp (7)

In describing the dynamics of the crystal radius, the
growth rate is the most important quantity. It can be
calculated from the heat flow caused by crystallization (4a)
as follows

vg =
Φh

πr2cρs∆H
(8a)



where a flat interface has been assumed. By consider-
ing (3), (4b), (6) and (8a), the following expression for
the growth rate is obtained

vg =
1

ρs∆H

(
ks∆Ts −

kl
h

(TB − TM)

)
(9)

where ∆Ts represents the temperature gradient in the
crystal.

During growth, the radius (diameter) of the crystal is
typically measured by a CCD camera aimed at the menis-
cus. In such an approach, the height above the liquid
surface where the camera is focused at is denoted zCCD

and rm(zCCD) is the deviation from the actual meniscus
radius, found trough Hurle’s analytical expression for the
meniscus shape [Duffar, 2010, p. 475]. A mathematical
description of the measured radius can be useful in deter-
mining the true radius based on the measurement. During
stationary growth, this contribution is given by rm,0. The
measured radius can now be written as

rCCD = rc + rm(zCCD)− rm,0 (10)

Here, the stationary contribution of the meniscus has
been subtracted to give a radius measurement as close as
possible to the true radius.

Preferably, the estimators should estimate both states
(rc, h). Since the radius (rc) is the only quantity that is
measured (rCCD), it will allow the estimators to correct
their estimates based on radius measurement. For the
case of the meniscus height (h), there exists no such
measurement to be used for correction of estimates. Two
types of additive noise models have been applied to the
nonlinear system; low-pass filtered white noise on vg,
and white noise on rCCD. The first one represents model
uncertainty (melt turbulence), while the latter acts as
measurement noise.

Assuming that the vertical position of the melt level is
kept constant, which means that the crucible lift rate is
such that it compensates for the drop in melt level, leaves
the following simple model [Hurle et al., 1989]:

ẋ = f(x,u) (11a)

y = g(x) (11b)

with

f(x, u) = [f1, f2]
>

= [vg tan θ, vp − vg]
>

(12a)

g(x) = rCCD, x = [rc, h]
>
, u = vp (12b)

where θ defines the growth angle. For most of the crystal,
the growth angle θ is small and nearly constant, but it
cannot be measured during operation. Instead we replace
it with the approximation [Duffar, 2010].

sin(θ) ≈ 1−
(
h

a

)2(
1 +

a

r
√

2

)
≈ θ (13)

Here a, as above, represents the Laplace constant. In
normal operation, the angle θ will stay within a few
degrees from zero. Thus, we can use the approximation
tan(θ) ≈ sin(θ) ≈ θ for θ ≈ 0.

Linearized system dynamics The KF and the EKF
require a linear model. Through Taylor series expansion
of these equations, a standard LTI model is obtained

˙̄x = Ax̄ + Bū+ Ew̄ (14a)

ȳ = Cx̄ +Dū+Hv̄ (14b)

with

w̄ = w −w0 = w = [w1, w2]
>

= [0, vg,noise]
>

(15a)

v̄ = v − v0 = v (15b)

where

A =


∂f1
∂rc

∂f1
∂h

∂f2
∂rc

∂f2
∂h


∣∣∣∣∣∣∣∣
∗

=

vg,0 ∂θ

∂rc

∣∣∣∣
∗
vg,0

∂θ

∂h

∣∣∣∣
∗

0 0



≈

0 −2
h0
a
vg,0

0 0

 (16a)

B =

[
∂f1
∂u

,
∂f2
∂u

]>∣∣∣∣∣
∗

= [0, 1]
>

(16b)

C =

[
∂g

∂rc

∂g

∂h

]∣∣∣∣
∗

=

[
∂rCCD

∂rc

∂rCCD

∂h

]∣∣∣∣
∗

≈
[
1,
∂rCCD

∂h

∣∣∣∣
∗

]
(16c)

D =
∂g

∂u

∣∣∣∣
∗

= 0 (16d)

E =

[
∂f1
∂w1

,
∂f2
∂w2

]>∣∣∣∣∣
∗

=

[
0
−1

]
(16e)

H =
∂g

∂v

∣∣∣∣
∗

= 1 (16f)

and where ∗ indicates the points at which the expressions
are evaluated, i.e., the linearization points. With these
matrices, the observability and controllability matrices are
respectively given by

O ≈

1
∂rCCD

∂h

∣∣∣∣
∗

0 −2
h0
a
vg,0

 , C ≈
[

0 −2
h0
a
vg,0

1 0

]
(17)

Both matrices have full rank, but the observability matrix
has full rank for a positive growth rate, meaning that the
system is structurally always observable, since ∂rCCD/∂h
is always positive. This has been shown numerically in
[Bones and Haugen, 2012].

3. STATE ESTIMATION

The meniscus height is not measurable and the measured
radius is quite noisy. Thus, the actual radius and the
meniscus height are not available during crystal growth.
Therefore, use of feedback from estimators that attempt
to compute these quantities are explored. Three types
of state estimators are investigated: the Kalman filter,
the extended Kalman filter and the unscented Kalman
filter. With the exception of the latter, these estimators
all contain a linear model and use the measured radius
as an input to correct their estimates. It is common to
convert the continuous-time model (f, g) to a discrete-
time model (F,G) in order to implement the model in
a computer. Therefore, the estimator equations in this



section are illustrated in their discrete-time version. The
following notation is used in this section:

• x̄ is the mean value of x
• x̂ is the state estimate
• x̂− is the predicted (a priori) state estimate
• ŷ is the measurement estimate
• P is the estimate covariance
• Q is the covariance of the process noise
• R is the covariance of the observation noise
• Kk is the Kalman gain

3.1 Kalman Filter Design

The Kalman filter (KF) assumes that the process is linear
and can be modeled on the following form

xk+1 = Ad,kxk + Bd,kuk + Ed,kwk

yk = Cd,kxk + Hd,kvk

where the noise vectors w and v are white noise with
zero mean. Its estimates are optimal in the case that the
model is perfect, the noise is white and the covariances of
the noise are known. That is, optimal in the sense that
it minimizes the mean of the squared estimate error. For
more information on KF see [Brown and Hwang, 1997].

• Step 1: Predict

Predict new state estimate at time k + 1 based on
information available at time k

x̂−k+1 = Ad,kx̂k + Bd,kuk

Compute the error covariance of the new estimate

P−k+1 = Ad,kPkA>d,k + Ed,kQkE>d,k
• Step 2: Update

Compute the Kalman gain

Kk = P−k C>d,k
(
Cd,kP−k C>d + Rd,k

)−1
Update the state estimates

ŷk = Cd,kx̂−k
x̂k = x̂−k + Kk (yk − ŷk)

Compute the error covariance for the updated esti-
mate

Pk = E
[
eke>k

]
= (I−KkCd,k) P−k (I−KkCd)

>
+ KkRd,kK>k

3.2 Extended Kalman Filter Design

In an attempt to further enhance the estimation accuracy,
simulations have also been carried out using an Extended
Kalman Filter (EKF ). The EKF is quite similar in struc-
ture to the linear version. The main differences are that the
extended Kalman filter uses a nonlinear model to predict
a new state estimate, and that the linear model used for
updating the estimates is re-linearized along the systems
trajectories. In this case, the algorithm takes the following
form [Brown and Hwang, 1997, pp. 343-347]

• Step 1: Predict

Predict new state estimate

x̂−k+1 = F(x̂k,uk)

Compute the error covariance of the new estimate

P−k+1 = Ad,kPkA>d,k + Ed,kQkE>d,k

• Step 2: Update

Compute the Kalman gain

Kk = P−k C>d,k
(
Cd,kP−k C>d + Rd,k

)−1
Update the state estimates

x̂k = x̂−k + Kk

[
yk −G

(
x̂−k ,uk, k

)]
Compute the error covariance for the updated esti-
mate

Pk = E
[
eke>k

]
= (I−KkCd,k) P−k (I−KkCd)

>
+ KkRd,kK>k

where the Jacobian matrices Ad,k and Cd,k are re-
calculated along the systems trajectories according to the
discretization of

Ad,k =
∂f

∂x

∣∣∣∣
x̂k,uk

and Cd,k+1 =
∂g

∂x

∣∣∣∣
x̂−
k+1

,uk

3.3 Unscented Kalman Filter Design

The basic idea behind extension of Kalman filter to un-
scented Kalman filter can be formulated simply by the
following statement: ”We use the intuition that it is easier
to approximate a probability distribution than it is to
approximate an arbitrary nonlinear function of transfor-
mation [Julier and Uhlmann, 2004].”

Although the extended Kalman filter (EKF) is the most
widely applied state estimation algorithm for nonlinear
systems, it can, however, be difficult and exhausting to
tune and often gives unreliable estimates if the system
nonlinearities are severe [Simon, 2006]. This is because in
EKF, propagation of the mean and covariance of the state
relies on linearization. Due to the complex and nonlinear
system dynamics in this case, the unscented Kalman filter
(UKF), as an alternative extension of the Kalman filter, is
used. This is because UKF reduces the linearization error
of the EKF and can provide significant improvements over
the EKF [Simon, 2006].

In UKF, the state distribution is represented by a Gaussian
random variable (GRV) which is specified using a mini-
mal set of carefully chosen sample points (sigma points).
These sample points completely capture the true mean
and covariance of the GRV, and when propagated through
the true nonlinear system dynamics, capture the posterior
mean and covariance accurately to the second order (Tay-
lor series expansion) for any nonlinearity. The statistics of
the transformed points can then be calculated to form an
estimate of the nonlinearly transformed mean and covari-
ance [Haykin, 2001].

It is noticeable that the sigma points are not chosen
randomly; they are deterministically chosen so that they
exhibit certain properties. Furthermore, the sigma points
can be weighted [Julier and Uhlmann, 2004]. Assume
propagating a random variable x of dimension L through
y = f(x) with mean and covariance defined above. To
calculate the statistics of the propagated points (y), a
matrix χ of 2L+ 1 sigma vectors χi is defined as [Haykin,
2001]:

χ0 = x̄,

χi = x̄ + (
√

(L+ λ)Px)i, i = 1, · · · , L
χi = x̄− (

√
(L+ λ)Px)i−L, i = L+ 1, · · · , 2L

(21)



where λ = α2(L + κ) − L is a scaling parameter. The
constant α determines the spread of the sigma points
around x̄, and is usually small (1 ≥ α ≥ 10−4). κ and

β are also scaling parameters. (
√

(L+ λ)Px)i is the ith
column of the lower-triangular Cholesky factorization. The
UKF used in this paper is implemented as described in
[Haykin, 2001], where a full description of how to select
scaling parameters also can be found. The weights applied
to the propagated sigma points are defined as follows:

W
(m)
0 =

λ

L+ λ
,

W
(c)
0 =

λ

L+ λ
+ 1− α2 + β,

W
(m)
i = W

(c)
i =

1

2(L+ λ)
, i = 1, · · · , 2L

(22)

These sigma vectors are propageted through the nonlinear
dynamics to obtain for each sigma vector χi a predicted
next timestep state χ∗k|k−1. These predicted next timestep

states are used to find both the a priori next step state es-
timate x̂−k and the corresponding a priori state covariance

estimate P−k (see step 2 below). Using these new a priori
state and state covariance estimates, new sigma points are
drawn around x̂−k and passed through the measurement
function g(x) to find a corresponding measurement for
each of these new sigma points. These are used both to
calculate the measurement covariance Pykyk

and the cross
covariance between state and measurement Pxkyk

(see step
3 below). With these covariance estimates, the UKF gain
Kk and the a posteriori state covariance Pk follow from the
same equations as for the ordinary discrete-time Kalman
filter.

• Step 1: Initialize

Initialize with

x̂0 = E[x0],

P0 = E[(x0 − x̂0)(x0 − x̂0)>].

For k ∈ {1, · · · ,∞}, calculate the sigma points:

χk−1 = [x̂k−1 x̂k−1 + γ
√

Pk−1 x̂k−1 − γ
√

Pk−1].

• Step 2: Predict

The time-update equations are

χ∗k|k−1 = F(χk−1,uk−1)

x̂−k =

2L∑
i=0

W
(m)
i χ∗i,k|k−1

P−k =
2L∑
i=0

W
(c)
i (χ∗i,k|k−1 − x̂−k )(χ∗i,k|k−1 − x̂−k )> + Q

• Step 3: Update

We redraw a complete new set of sigma points

χk|k−1 = [x̂−k x̂−k + γ
√

P−k x̂−k − γ
√

P−k ]

Yk|k−1 = G(χk|k−1)

ŷ−k =

2L∑
i=0

W
(m)
i Yi,k|k−1

and the measurements-update equations are

Pykyk
=

2L∑
i=0

W
(c)
i (Yi,k|k−1 − ŷ−k )(Yi,k|k−1 − ŷ−k )> + R

Pxkyk
=

2L∑
i=0

W
(c)
i (χi,k|k−1 − x̂−k )(Yi,k|k−1 − ŷ−k )>

Kk = Pxkyk
P−1ykyk

x̂k = x̂−k + Kk(yk − ŷ−k )

Pk = P−k −KkPykyk
K>k

where γ =
√
L+ λ and Wi are the weights as

calculated in (22).

4. SIMULATION RESULTS
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Fig. 3. Estimation performance by Kalman Filter.

Figure 3(a) shows the estimated and actual radius in the
first simulation case with KF, while Figure 3(b) compares
the estimated meniscus height and what the nonlinear
model expected. It is evident that the KF provides a good
estimate in terms of noise reduction. However, since the
process is nonlinear, it would still be possible to improve
the accuracy of the estimate by using a nonlinear model
for prediction of the states. Figure 4 illustrates also the
estimated rc and h. Clearly, the EKF yields a better result
in terms of estimation error when compared to the KF.
The simulation of the UKF is shown in Figure 5. The
performance is about the same as that of the EKF, which
may indicate that the nonlinearity is not strong enough to
benefit very much from using the UKF. However, it should
be noted that the adjustment of the tuning parameters
(α, β, κ) might result in better estimates. Since the EKF
and UKF provide highly accurate estimates and suppress
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(b) Estimation of meniscus height

Fig. 4. Estimation performance by Extended Kalman
Filter.
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Fig. 5. Estimation performance by Unscented Kalman
Filter.

noise very well, they will allow any applied controller to
have higher bandwidth, when using the estimated states
as feedback.

Table 1. Root Mean Square Error of estimates

Observers RMSE of r̂c RMSE of ĥ

KF 0.2404 0.1003
EKF 0.0159 0.0216
UKF 0.0178 0.0208

The overall performance of the estimators have been
summarized in Table 1.

5. DISCUSSION AND CONCLUSIONS

It has been shown in this paper that the Kalman filters
do an excellent job in dealing with measurement noise and
provide acceptable estimates of both states, specially EKF
and UKF. By using the estimate of the meniscus height
and the actual radius rather than the measured radius as
feedback in the conventional control scheme, better control
of the radius should be achievable. Plans for future work
include experimental verification of the simulation results.
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