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1 Preface
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Jo Eidsvik, for his insightful comments and helpful advices. Another thanks
goes to Gabriele Martinelli and Haakon Michael Austad who kindly allowed
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2 Abstract

This papers deals with exploration of binary Markov random fields. Several
different strategies have been tried out, among them the myopic and exact
approach. The latter one computes all paths, which becomes quite computer
intensive for large grids. Due to this a blockwise procedure has been tried
out, conditioning future steps on outcomes in a few adjacent former blocks.
The blockwise partitioning of the field have been tested out on different cases.
While it often performs quite good, the limited memory of the method can
be a source of problems.
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3 Introduction

This paper is concerned with exploration of a Markov Random fields by
means of different methods, sequential and non sequential. This notion of
spatial correlation between different objects (i.e. oil, gas et cetera) is of
huge importance in many industries [6, 7] The goal is to perform as accurate
predictions as possible. Due to the innate complexity in many such spatially
correlated fields, finding the optimal strategy is often impossible. To deal
with this issue many different approaches have been developed. In the case of
Markov Random Field even relatively small grids demands a lot of computing
to perfom optimal sequential routines. To deal with this issue a blockwise
partitioning of the field will be performed. We will start on small grids and
later use them as building blocks for larger grids and make use of modified
sequential strategies to deal with these new and larger grids.
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4 Markov Random Field (MRF)

This section presents the Markov Random Field model and two methods
for sampling realizations from such a field. The first method is outlined in
Section 4.2 and was developed by Reeves and Pettitt [8]. It applies a re-
cursive forward and backward routine to obtain realizations and compute
the marginals respectively. The second method (Section 4.3) gives an ap-
proximation to binary Markov random fields by means of treating a set of
interaction parameters defined later on. This method is used to draw real-
izations from large grids (which cannot be done with the other routine due
to the large computing time involved in exact computations).

4.1 Model formulation

The topic of this text is the Markov Random Field model. Such models
can be viewed as an extension of the simpler Markov chain model. This is
a model for a stochastic process where a future state only depends on the
present state. This memoryless feature is known as a Markov property. For
a Markov sequence of random variables {X1, X2, X3, . . . } this implies that:

p(xn|x1, x2, . . . , xn−1) = p(xn|xn−1) (1)

Usually the sequence of random variables depends on a temporal or spa-
tial property. The Markov random field model can be viewed as an exten-
sion of this model. Instead of having a one dimensional line of progress, it
is extended to a network of interconnected nodes, each one representing a
stochastic variable.

For the purpose of this thesis only a two dimensional rectangular grid
will be considered. The indexing of cells in such grids will be similar to the
one depicted in Figure 1. The number of rows and columns will br n1 and
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Figure 1: A 3× 3 grid. The indexing above will be used to denote cells.

n2 respectively. The total number of cells is defined as n = n1n2. The set
of all indices of a grid is denoted I. The outcome of the grid at point i is
denoted xi. The whole grid can be described as x = (x1, . . . , xn). The full
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conditional distributions (also known as local characteristics) are:

p(xi|x1, x2, . . . , xi−1, xi+1, . . . , xn) = p(xi|xj ; j ∈ ∂i) (2)

For all i ∈ {1, 2, . . . , n}. ∂i is some sort of neighborhood structure. There
are many possible choices of neighborhood structures, but commonly they
consists of the four, eight or twelve closest neighbors. A proper neighborhood
system {∂i; i ∈ I} must fulfill two requirements:

i 6∈ ∂i (3)

j ∈ ∂i ⇔ i ∈ ∂j (4)

These two condition implies that a cell can never be a neighbor to itself
and that there is a mutual neighboring relationship between points in a
neigborhood. For this paper the neighborhood will be chosen such that the
neighborhood for any site is the adjacent cells. If such a neighborhood is
chosen the neighborhood will take nine different forms depending on the
boundaries. This is shown in Figure 2. The grey colored cells represents a
neighborhood with respect to the adjacent black cells. It is tedious to show

Figure 2: Depicts nine different neighborhoods (grey) with respect to nine
sites (black). These nine spatial configurations are the only ones used for a
rectangular grid.

that the resulting set of conditional distributions defines a legitimate joint
probability distribution. The consistency requirements can be checked in the
theory, but it is easier to use the Hammersley-Clifford theorem to arrive at
a proper Markov Random Field. Before introducing this theorem the notion
of cliques must be explained. A clique is a subset c of the grid I such that
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every pair of sites are neighbors, or in a more mathematical form:

u ∈ ∂v
v ∈ ∂i

}
for all u, v ∈ c and u 6= v

The Hammersley-Clifford theorem is defined as:

Hammersley-Clifford 1. A joint probability distribution p(x), such that
p(x) > 0 for all values of x ∈ χ, is a Markov random field if, and only if,
p(x) can be written on the following form:

p(x) =
1

Z
exp(−

∑
c∈C

Φc(xc)) (5)

and the normalising constant is equal to:

Z =
∑
x∈χ

exp(−
∑
c∈C

Φc(xc)) <∞ (6)

C is the set of all cliques and the functions Φc is known as potential functions
and can be chosen arbitarily. χ is the of the set of all possible configurations
of x.

This satisifies the Markov property discussed earlier. This theorem can be
used two ways: (a) defining new Markov fields through appropriate choices
of potential functions or (b) to validate that a certain set of conditional
distributions defines a valid joint probability distribution. For a more com-
prehensive account on this theorem and related topics see [1].

While many highly complex models can be defined by some set of po-
tential functions, the one to be studied closer in this text is the Ising model.
This is obtained by defining the potential functions as follows:

Φc(x) =

{
−β If cells in click c has the same outcome
0 else

(7)

This leads to the following joint probability distribution

p(x) =
1

Z
exp(β

∑
i∼j

I(xi = xj)) (8)

The normalising constant, Z, is equal to:

Z =
∑
x∈χ

exp(β
∑
i∼j

I(xi = xj)) (9)

I(∗) is an indicator function defined as follows:

I(S) =

{
1 if S is true
0 else

(10)
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The first expression in the exponent,
∑

i∼j indicates that every pair of xi
and xj standing adjacent to each other must be summed with respect to
the indicator function. In short this implies that neighbors having the same
outcome will increase the value of the summation. Using the notation from
the grid above this gives n1(n2 − 1) + n2(n1 − 1) pairs of cells (or cliques)
being checked.

Notice that information can be encoded into the field through a point-
wise prior function αi(xi). This is straightforward from Equation 8 since
the exponent can be rewritten as:

∑
c∈C Φc(xc) =

∑
c∈C(φ1

c(xc) + φ2
c(xc)).

The two functions can be chosen arbitarily. Since there are more cliques
than cells for an ordinary rectangular grid (with minimum two rows and
columns), one unique clique (c) can be picked for every cell i (assuming that
i ∈ c) and the corresponding φ2

c(xc)Âă can be defined to only depend on the
value of i φ2

c(xc) = φ2
c(xi). Call this set of cliques for G. Define φ2

c(xc) = 0
∀c /∈ G. If φ1

c(xc) is defined in similar manner as in Equation 7 the new joint
distribution becomes:

p(x) =
1

Z
exp(β

∑
i∼j

I(xi = xj) +

n∑
i=1

αi(xi)) (11)

where φ2
c(xi) has been renamed αi(xi). This is the general form that will be

used in this thesis.
Assuming that β > 0 it follows that an increase in the β-value will in-

crease the likelihood of outcomes where neighboring cells are the same. This
known as the spatial dependency paramter. The second sum in Equation
11 is the sum of the point-wise prior function (αi(xi)). In general it differs
from each cell i and depends only on the outcome of that cell, xi. This func-
tion can be used to add prior information about the field into the model.
Say some information is available from a group of experts, a series of mea-
surements or some other kind of prior knowledge, this can encoded into the
model by defining appropriate values of αi(xi). It should be noted that if
αi(xi) is zero for all cells independent of the outcome, then the marginal
probability of each state is equally likely for all cells. This is also known as
the uninformative case.

It should be stressed that the MRF-model is not limited to rectangualar
grids nor the particular neighborhood relation chosen her. For more on the
model see [5, 4].

4.2 Exact computation

The method to be applied in this section [8] is useful for small grids, but
becomes unfeasible for larger grids due to rapid increase in computational
time. As mentioned the method was developed by Reeves and Pettitt (2004)
and is valid for any factorisable model. A general factorisable model is one
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where the discrete probabaility distribution (p(x) = (x1, x2, . . . , xn)) can be
written as a product of terms taking the following form: qi(yi, yi+1, . . . , yi+j).
This is the case for any discrete Markov random field. The Reeves/Pettitt
model has earlier been applied to the Ising model by by Bhattacharjya et al
[2].

The probability function of the Ising model (Equation 11) can be rewrit-
ten in the following form:

p(x) =
q1(x1|x2, . . . , x1+n1)q2(x2|x3, . . . , x2+n1) . . . qn−1(xn−1|xn)qn(xN )

z
(12)

These n functions of qi above take four different forms depending on position
in the grid (must be adjusted with respect to the boundary conditions. In
short this means that cells not confined to either the easternmost colum
nor the bottom row will take the following form: qi(xi|xi+1, . . . , xi+n1) =
exp(β[I(xi = xi+1) + I(x1 = x1+n1)] + ai(xi)). If it belong to the last row
but not the last column it takes a simplified form: qi(xi|xi, . . . , xi+n1) =
exp(βI(xi = xi+n1) + ai(xi)). Easternmost column bot not on bottom row:
qi(xi|xi, xi+1) = exp(βI(xi = xi+1)+ai(xi)). And then the last case: Bottom
row and last column: qi(xn) = ai(xn)). According to the method outlined by
Reeves and Pettitt for general factorisable models the normalizing constant
can be archieved by applying a recursive formula. The first value computed
is defined as:

z1(x2, . . . , x1+n1) =
d−1∑
x1=0

qi(x1|x2, . . . , x1+n1) (13)

It continues by computing:

zi(x2, . . . , x1+n1) =
d−1∑
x1=0

qi(xi|xi+1, . . . , xi+n1) (14)

These forumlas are adjusted when reaching the final column since the buffer
configuration isn’t defined outside xn. The final value, zn, is equal to the
normalizing constant, i.e.:

z = zn =
d∑

xn=1

q(xn)zn−1(xn) (15)

The process above is just a clever way of summing all possible outcomes
of the nominator of the fraction in 12. The computational efficiency of
computing the values of zi ∀i ∈ {1, . . . , n} depends on the row length, number
of categorical variables, d and the size of the grid. The process outlined above

0For each zi(·) a number of possible buffer configurations are available depending on
the value of d, n and n1. In the case where i ≤ n− n1 there are dn1 buffer configurations
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uses a forward tecnique (Starting in the uppermost left corner, x1 continuing
to cell x2, x3 et cetera), contrary to the next tecnique working backwards. It
utilizes the zi values obtained earlier. Realizations from the grid is obtained
by sampling from the first marginal distribution which is obtained as follows:

pn(xn) =
1

z

d∑
x1=1

· · ·
d∑

xn−1=1

{
n∏
i=1

qi(x)} =
1

z
qn(xn)zn−1(xn) (16)

This process is continued and another value is obtinaed from the distribution
of xn−1 conditioned on xn, i.e.

p(xn−1|xn) =
1

z

∑d
x1=1 · · ·

∑d
xn−2=1{

∏n
i=1 qi(x)}

p(xn)

=
q2(xn−1|xn)zn−2(xn, xn−1)

zn−1(xn)
s

And it continues in the fashion until a whole realization is obtained. In short
this means solving:

p(x1, x2, . . . , xn) = p(x1|x2, . . . , xn) . . . p(xn−1|xn)p(xn) (17)

Note how efficiently this is done by simply storing the values of zi(xi+1, . . . , xi+n1−1xi+n1)
for all buffer configurations. The marginals are obtained straightforwardly
by noticing that:

pi(xi) =
1

z

d∑
x1=1

· · ·
d∑

xi−1=1

d∑
xi+1=1

· · ·
d∑

xxn=1

{
n∏
i=1

qi(x)}

=
1

z

d∑
xn=1

· · ·
d∑

xn−i=1

qn(xn) · · · qi(xi|xi+1, . . . xi+n1)zi−1(x)

This procedure allows us to obtain the conditional probabilities by en-
coding information about the cells into the α-function. For example, assume
that cell j is known to have outcome r, theb this information can be encoded
into the distribution by setting the αj(r) to a high value. Computing the
marginal probability for any grid point i will now for all practical applica-
tion be equal to p(xi|xj = r). This follows since it is extremely unlikely that

- (xi+1, . . . , xi+n1) - to be considered for each i. When i > n − n1 the number of buffer
configurations equals: d(n− i). From this consideration it is obvious that some constraint
must be set on the size of n1, else the procedure becomes to computionally costly. The
paper [ref] advices using a value of n1 less than 20 if d = 2. Note that the effect of
increasing the number of categorical variables have a monementus effect on the running
time
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xj 6= r. A simple proof follows for general d. Say that p(xi|xj = r) is of
interest where r ∈ {0, . . . , d− 1} and i, j ∈ I. Then αj(xi) is set equal to:

aj(xj) =

{
∞ if xj = r

0 else
(18)

This means that p(xj = r)→ 1 and p(xj = h)→ 0 ∀r ∈ {0, . . . , d− 1} \ r.

p(xi) =
d∑

xj=1

p(xi|xj)p(xj) =
∑

xj∈{0,...,d−1}\r

p(xi|xj)p(xj) + p(xi|xj = r)p(xj = r)

→ 0 + p(xi|xj = r) = p(xi|xj = r)

These conditional probabilities are needed to compute sequential paths later
on.

4.3 Approximate computation for large grids

This method is needed in order to sample from large grids. This process
becomes computationally inefficient using the exact algorithm above, hence
this approximate method is utilized in solving this problem. The method
applied was developed by Tjelmland and Austad [9]. For a probability dis-
tribution that can be written on the following form:

p(x) = c exp(−U(x)) (19)

where c is a normalizing constant, can be rewritten in form of interaction
parameters:

U(x) =
∑

Λ∈P(S)

βU (Λ)
∏
k∈Λ

xk (20)

Here P(S) is the powerset, that is P(S) = {Λ|Λ ⊆ S}. Many of these
interaction parameters β = {β(Λ),Λ ⊂ S}. Using this form of representation
in the forward-backward algorithm allows can simplify the computational
effort by removing interaction parameters close to zero. This can be used to
simulate realization from large grids. The details of this is quite complicated
and not relevant apart from the sampling business.
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5 Strategies for small grids

This section deals with strategies for small grids as opposed to large grids
which is the topic of the next Section. To make the principles more tangible
the model is assumed to be a statistical description of an oil field with two
possible outcome (d = 2) for each cell. The cells are either dry or with oil,
the goal is to develope methods for picking cells containing oil. The following
values are assumed known:

• The cost of failure, Ci. This value can vary across the grid. Obviously
some areas might be more expensive to drill due to differences in depth,
geology, logistics etc.

• The profit if oil is found, Ri. This number also includes costs related
to drilling, so potentially the number can be negative.

• The spatial dependency parameter β. This parameter defines the spa-
tial correlation in the field. If set to zero this would imply that there
is no correlation between grid points.

• αi(xi) contains prior knowledge about each cell point/region.

The two possible outcomes are xi = 0 (dry) and xi = 1 (oil).
For a drilling scenario several strategies are possible. One strategy is to

pick all the sites to be drilled simultaneously (joint strategy). Compared
to sequential strategies (i.e. cells are being drilled in a consecutive man-
ner, either one at a time or in groups) this method is inferior. The only
exception is when there is no spatial relation between points, i.e. that the
spatial dependency parameter is equal to zero. In some cases performing a
non-sequential strategy might be the only option, for example if some time
constrain is imposed.

The squential procedures differs from the joint strategy due to their tem-
poral aspect. For each drilling performed more information is available,
information that can be utilized to improve on the selection of the next
drilling site. This allows for multiple strategies ranging from an exact opti-
mal path procedure (see Section 5.3) to more approximate approaches. One
such heuristic strategy is the naive strategy [6] which ignores the spatial re-
lationship between points. Another approximate sequential algorithm is the
myopic strategy which selects the best region of drilling (highest expected
income) dependent on earlier outcomes. In other words for every single step
two possibilities remains, oil or no oil, which affects the next step. In that
way a tree of possible paths opens up. The same goes for the optimal pro-
cedure which similarly offers instructions on which cell to pick conditioned
on earlier outcomes.

It should be stressed that while the methods outlined in this Section (as
well as the next) deals with only two outcomes, they are easily extendable
to more general cases.
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5.1 Joint strategy

The following formulas are a slightly modified form of the formulas pre-
sented in [2]. If all the drilling procedures are performed simultaneously, the
expected value of a drilled cell is:

Vi = max{Ripi(1)− Cipi(0), 0} (21)

pi(xi) is the marginal probability of cell i. The expected income from all
cells, which will be called joint value (JV) from this point on, is hence:

JV =

n∑
i=1

max{Ripi(1)− Cipi(0), 0} (22)

If the decision maker could get information concerning the outcome at each
site (for example by a clairvoyant person), this would radically change the
situation. If this information can be obtained for free the expected income
is known as the value of free clairvoyance or simply VFC. Since we know
beforehand which cells are with oil and which are without the value of free
clairvoyance becomes:

V FC =

n∑
i=1

pi(1) max{Ri, 0} (23)

In the this latter case perfect information is available. To establish how much
this information is worth (i.e. how much one is willing to pay for it) one has
to substract the value of free clairvoyance from the joint value (in the case
of a joint strategy). value. This difference is known as the value of perfect
information (VOPI) and takes the following mathematical form: which takes
the following form: V OPI = V FC−JV . This is the upper limit to the price
one is willing to pay for perfect information if the alternative approach is a
joint strategy. This choice of V OPI depends on the utility function being a
straight-line or exponential.

It is never possible to find a strategy that on average beats the VFC-
value. This is of course because no strategy deals with absolute certainty,
and the penalty for not knowing is that mistakes are done (or likely to be
done). No mistakes are possible when all the outcomes are known. Hence
this value can be used as an upper limit to any strategy, sequential or non-
sequential. Later on in Section 5.5 another boundary is introduced. This
boundary represents the maximum value of any sequential procedure.

5.2 Triplets or duplets

Another strategy is drilling triplets or duplets in order to maximize in-
come. For a triplet this implies finding three sites such that the infor-
mation that becomes available (together with the outcomes of the cells)
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maximizes the expected income. Obviously the joint value for the remain-
ing cells change after the drilling has performed changes due to more in-
formation being available. Let the triplets of cells drilled be named evi-
dence, or e. Evidence is defined as e = {xi, xj , xk} for some i,j and k such
that i, j, k ∈ {1, 2, . . . , n}, The joint value of the remaining cells are hence
JV =

∑
u∈I\{i,j,k}max(Rupu(1|e) + Cupu(0|e), 0). However the evidence

obtained after drilling will also affect the expected income of the strategy
(selection of triplets). This is accounted for by computing the expected value
of the triplet itself. The expected value for some choice of evidence hence
become:

GSi,j,k =
∑

e∈{0,1}3

∑
u∈I\{i,j,k}

max(Rupu(1|e)+Cupu(0|e), 0)p(e)+
∑

e∈{0,1}3
Φ(e)p(e)

The last function Φ(e) simply computes the profit or loss when drilling the
three cells. This is Φ(e) =

∑
r∈{i,j,k}RrI(xr = 1) + CrI(xr = 0). This a

strategy for finding the three best cells offering the best prospects for income.
The best group strategy will be the one(s) satisfying the following condition:

{i, j, k} arg max
{i,j,k}

GSi,j,k (24)

The same procedure as above is applied to duplets, with appropriate mod-
ifications. It should be noted that the number of possible configurations of
cells for a p-tuplet collection is equal to

(
n
p

)
= n!

p!(n−p)! .

5.3 Exact sequential procedure

The most comprehensive apprach is computing the optimal path. This is
done following the dynamic programming to compute all possible paths.
The description here follows the paper of Bickel et al [3].

A state vector ω = (ω1, ω2, · · · , ωn) is defined where n is the number of
possible drilling sites and wi is the present state at grid i. If oil has been
found at grid i the value of wi is 1, while it is equal to 0 if has been drilled
and found dry and denoted ’*’ if no drilling have yet occured. For example a
state vector ω = (∗, ∗, ∗, 1, 0, ∗) implies that only cell four and five have been
drilled, furthermore only grid four resulted in oil being found. The expected
value of the future cash flow with respect to present state is denoted v(ω). If
every well has been subject to drilling (i.e. ω consists only of zeros and ones)
then the expected income must be equal to zero. At state ω the expected
future income, granted the next drilling site is at grid i becomes:

vi(ω) =
µ(ω1

i )

µ(ω)
(Ri + δv(ω1

i ))) +
µ(ω0

i )

µ(ω)
(Ci + δv(ω0

i )) (25)

δ is a discount factor chosen in the range [0, 1]. So if two paths are judged
equally good with δ = 1, a lower δ will make the algorithm pick the path

14



that is expected to offer the income earlier in the stepwise procedure than
the competing paths. µ(ω) is the probability associated with ω, meaning
that the non-drilled sites are summed out of the probability distribution.
If ω = (0, 1, ∗, ∗, 1, ∗) then µ(ω) =

∑1
w3=0

∑1
w4=0

∑1
w6
p(0, 1, w3, w4, 1, w6).

In the equation above ω1
i means that ω1

i is similar to ω apart from site i

being wi = 1. In other words the fraction µ(ωj
i )

µ(ω) is a conditional probability

distribution. Using ω = (0, 1, ∗, ∗, 1, ∗) means µ(ω1
3)

µ(ω) = p(x3 = 1|x1 = 0, x2 =

1, x5 = 1).
To obtain the conditional distributions for each cell, one can, as the au-

thor, use the recursive computations in Section 4.2 to obtain the appropriate
conditional probabilities by changing the α-values. The process follows the
philosophy of Equation: 19.

The optimal continuation value for state ω then becomes { vi(ω), 0}. The
trick is to compute all the values of vi with respect to all states, then com-
pare these to obtain the optimal path. This leads to a tree structure parting
into two different brances for every cell (depending on the outcome of that
cell, oil or no oil). Hence the outcome at a cell will affect the future cells to
be selected, illustrating how the information gained from previous outcomes
affect the way new drilling sites are picked.

Note that for possible outcomes for a cell, each selection will lead to d
different branches. From this the maximum number of possible sequences
equals:

∑n
i=1 d

i−1. But to get this tree all possible combinations must be
computed before arriving at a final desicion tree that shows all the prefered
paths during the sequential run.

The algorithm below can be used to compute all such paths. The input
is a matrix called hashTable. Every row contains n + 2 cells. The first n
cells tells the situation for the present state, i.e. each cell represents a cell
following the indexing from Figure 1 - If one of the cells have the value d+ 1
this implies that no drilling have yet occured. The (n + 1)’th cell in a row
represents the value v for this particular state (i.e. the expected income con-
ditioned on starting in the state specified in the same row). The (n+ 2)’th
value points in the optimal cell to pick next from the present state. 0 means
that no more cells should be drilled. For a 2 × 2 grid with d = 2 a row
(3, 1, 3, 3, 2.3, 1) means that the present state is

( ∗ ∗
1 ∗
)
where ’*’ marks an

undrilled site. Furthermore the expected income from this state with exact
approach is 2.3. The next cell to be drilled is 1. From this list it is obvious
how to compute the next cell to be drilled (if any). The list is computed dy-
namically in the algorithm below. The starting point should be (3, 3, 3, 3) as
one is interested in the complete tree. The table input is a vector containing
all the conditional probabilities obtained using the method from 4.2.
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ω = (3, 3, 3, 3)

[hashTable,v] = computeSequenceExact(ω, table, revenue, cost, δ, hashTable)
if ω has no more undrilled cells then
v = 0
site = 0

Note that v = 0 means that there is no further path to take, at least
that is economically feasible.
if ω is not stored in hashTable then
Store ω, v and site in hashTable.

end if
else
if ω is already stored in hashTable then
Get v and site that corresponds to ω in the hashTable.

end if
else
length← number of undrilled cells
for i = 1 to length do
Compute vi(ω) for the i’th undrilled cell. This is done by calling the
function dynamically. For the i’th undrilled cell compute:

[hashTable,oil]=computeSequence(ω1
i ,table,revenue,cost,δ,hashTable)

[hashTable,dry]=computeSequence(ω0
i ,table,revenue,cost,δ,hashTable)

Get the probability for oil, probOil and probability for no oil, prob-
NoOil from table.

From this compute vNew(i)=probOil*(rev+δ*oil)+probNoOil*(cost+δ*dry)

See equation 25 for reference.
end for
Find the largest vNew(i) computed in the for loop. The value of ω, v
and i is stored in the hashTable. If all values of vNew is negative store
in hashTable with v set to zero.

end if
At this point hashTable contains all v(ω) ∀ω. Thus one can just traverse the
hashTable to obtain the best possible path.

5.4 Myopic sequential procedure

The myopic search computes the best path by stepwise procedure where
the best continuation is chosen at each step conditioned on the previous
outcomes. This means computing a tree with

∑n
i=1 d

i−1 brances. The first
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drilling site is found simply by picking the cell offering the largest expected
income. This site is:

x(1) = arg max
i
{pi(1)Ri − pi(0)Ci, 0} (26)

The outcome at x(1) will determine the future path. The second step must
be conditioned on both outcomes (oil or dry). Hence two paths must be
computed (more generally d paths): x(2)|xx(1) = 0 and x(2)|x(1)

= 1.

x(2)|xx(1) = 0 = arg max
i\xx(1)

{p(xi = 1|xx(1) = 0)Ri − p(xi = 0|xx(1) = 0)Ci, 0}

(27)
Likewise:

x(2)|xx(1) = 1 = arg max
i\xx(1)

{p(xi = 1|xx(1) = 1)Ri − p(xi = 0|xx(1) = 1)Ci, 0}

(28)
And the third step is conditioned on the outcome of the three other steps
(4 configurations if d = 2). This gives the following formulas for expected
income vi at the i’th step:

v1 = max{pi(1)Ri − pi(0)Ci, 0} (29)

Since the next step is computed conditioned on the outcome of x(1) this
becomes:

v2 =
1∑
j=0

[max{p(xx(2) = 0|xx(1) = j)Ri+p(xx(2) = 1|xx(1) = j)Ci})p(xx(1) = j)]

(30)
vi for i > 2 is computed in an analogious manner. δ is the discount factor.
The expected income is hence:

v =
n∑
i=1

δi−1vi (31)

5.5 Upper limit for sequential approaches

It is is possible to find an upper limit for any drilling scheme by noticing
that the conditional probability of any cell only depends on the outcome
of the neighboring cells (can either be 4,3 or 2 neighboring cells depending
on the position of the cell in question). This is an essential feature of the
Markov Random field model. There are all nine spatially distinct neighbor-
hood structures. These were depicted earlier in Figure ??.

This suggests a natural estimate for the upper bound of sequential al-
gorithms, in short the more neighbors we know the better descision can be
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taken concerning the outcome of a cell. It is the spatial relationship between
points that makes the sequential procedures reasonable as each new cell adds
important information about the field. Without any spatial correlation the
joint strategy would produce the same results as any of the two sequential
algorithms defined so far. But as the spatial dependency increases it allows
the sequential algorithms to make more informed choices. Deciding to drill
conditioned on the outcome of all neighboring cell is the upper limit for
any sequential algorithm. This limit can be obtained through Monte Carlo
simulation. If M realizations are obtained by sampling and xm denotes re-
alization m, then the approximation of upper boundary is obtained from
Monte Carlo by computing the following expression:

UP =
1

M

M∑
m=1

n∑
i=1

max{Rip(xi = 1|xm−i)− Cip(xi = 0|xm−i), 0} (32)

Here n is the number of cells in the grid and xm−i means the outcome of the
neighboring cells to i (known!). The value of p(xi = 1|xm−i) is:

p(xi = 1|xm−i) = p(xi = 1|xmj ; j ∈ ∂i)

=
exp(β

∑
j∈∂i I(1 = xmj ) + αi(1))

exp(β
∑

j∈∂i I(1 = xmj ) + αi(1)) + exp(β
∑

j∈∂i I(0 = xmj ) + αi(0))

5.6 Cases

5.7 asf

In this Section four cases will be studied closer, the first two cases are defined
in Table 1. These are both 3×3 grids offering different revenues at each cell,
but with the same cost for drilling at a dry site.

Case: αi(0) αi(1) Revenue Cost

C1

0 0 0
0 0 0
0 0 0

 0 0 0
0 0 0
0 0 0

 1.1 2 0.9
0.2 1.4 1.9
0.7 0.1 0.4

 1 1 1
1 1 1
1 1 1



C2

0 0 0
0 0 0
0 0 0

 0 0 0
0 10 0
0 0 0

 1.1 0.6 0.1
0.4 0.3 1.5
0.2 0.2 1.7

 1 1 1
1 1 1
1 1 1



Table 1: Case C1 and C2

The first case to be treated is C1. It is uninformative in the sense that
the α-value is zero for any cell and outcome. This leads to the marginal
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probabilities having values pi(0) = pi(1) = 1, 5 for all cells in I. This makes
the joint value quite easy to compute. It follows from Equation 22 that a
cell i is drilled conditioned on Ri > Ci. From this one can conclude that
cells numbered 1, 4, 5 and 8 will be subjected to drilling. Since the marginal
probability for each cell i is pi(0) = pi(1) = 0.5, both the joint value (JV)
and value of free clairvoayance (VFC) is independent of the β-value. This
property follows directly from Equation 22 and 23, none of them depend on
the spatial dependency parameter. With any choice of β the expected value
of the joint strategy is 1

2

∑n
i=1 max(Ri − 1, 0) = 1.2.

The expected income would be 1
2

∑n
i=1 max(Ri, 0) = 4.35 (VFC). The

value of this information is hence: VOPI=VFC-JV=3.15. This is confirmed
by performing Monte Carlo sampling. The average income earned at each
cell for β = 0.0 and β = 0.5 and β = 1.5 is depicted in table 2. The number
of realizations used is 50000 in all three cases.

β = 0.0 β = 0.50.0540 0.5148 0
0 0.1944 0.4507
0 0 0

 0.0466 0.4949 0
0 0.2046 0.4450
0 0 0


β = 1.50.0516 0.5068 0

0 0.2072 0.4550
0 0 0



Table 2: Expected income from each cell for a joint strategy. The obtained
values are Monte Carlo estimates obtained from running 50000 samples.
Case run: C1.

The joint value (JV), the value of free clairvoyance (VFC) and value of
information (VOI) are all given in table 3. These results are coherent with

β = 0.0 β = 0.5 β = 1.5

JV 1.2139 1.1910 1.2205
VFC 4.3559 4.3447 4.3676
VOI 3.1420 3.1537 3.1471

Table 3: Joint value, value of free clairvoyance and value of information for
three different values of β (0.0, 0.5 and 1.5). The obtained values are Monte
Carlo estimates obtained from running 50000 samples. Case run: C1.

the results predicted from Equation 22 and 23. Though the value of β has
no direct effect on the expected value of the joint strategy, it does affect the
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variance of the strategy. This is clearly seen by comparing the income of all
realizations following the joint strategy as shown in histograms in figure 5a
(β = 0), 5b (β = 0.5) and 5c (β = 1.5). The variance seem to increase as the
value of β becomes larger. This property is caused by the spatial correlation
forcing neighboring cells to have the same values, in short making it easier
to get more extreme results.
When the value β becomes large, only two outcomes are likely to happen,
i.e. either all points dry or all points with oil. Then the limit approached is:

σ2
JV →

1

2
((
∑
i∈I

Ri − E[JV ])2 + (
∑
i∈I

Ci − E[JV ])2) (33)

This means that the σ2
JV will approach 1

2((6.4−1.2)2+(−4−1.2)2) = 27.0400.
The variance of the data is obtained for different values of β using Monte
Carlo:

ˆσJV =
1

B − 1

B∑
i=1

(JVi − JV )2 (34)

Where JVi is the value of the joint strategy for sample i, JV = 1
B

∑B
i=1 JVi

and B is equal to the number of samples. The result on running this for
10000 samples over 31 different values of β evenly spaced between 0 and 3
is depicted in Figure 3. This show that the the standard deviation of the
joint strategy converge towards the value in equation 33 when β values are
increased.
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Figure 3: Shows how the standard deviation of the joint value increases
in case C1 as a function of β. The values are obtained using Monte Carlo
estimation using 10000 samples for each value of β. The upper line represents
the value of 33.
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Figure 4: Shows how the standard deviation of the joint value decreases
in case C2 as a function of β. The values are obtained using Monte Carlo
estimation using 10000 samples for each value of β.
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−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5
x 10

4 Histograms depicting the value of the realizations

Value

N
u

m
b

e
r 

o
f 

re
a

liz
a

ti
o

n
s

(b) C1, β = 0.5
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(c) C1, β = 1.5
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(d) C2, β = 0
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(e) C2, β = 0.5
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(f) C2, β = 1.5

Figure 5: Depicts histograms for the joint strategy value running 50000
realizations for cases C1 and C2. Figure 5a, 5b, 5c is case C1 with β = 0,
β = 0.5 and β = 1.5 respectively. Figure 5d, 5e, 5f similarily case C2 for
β = 0,untitled β = 0.5 and β = 1.5.
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Another case to be studied is C2. A noticable property of this field is the
high value of α5(1), which indicates that that this particular spot is higly
likely to be an oil reservior. No other prior information is given through the
αi(xi) parameter. For very low β-values one would expect cell 1, 5, 8 and 9
to be the only cells drilled in a joint strategy: cell 5 due to the α-parameter,
the other ones because Ri > Ci (for small values of β the value of p(xi) for
all cells but the middle one will be fairly close to 1

2 as this is the limiting
case for β = 0). This tendency is confirmed by Table 4 which depicts the
average income earned for different cells as β increases (0,0.5,1.5). It shows
that cell four is included in the drilling strategy when β reaches 0.5. As β
reaches 1.5 all cells but the one in the upper right corner is drilled. Knowing
with almost certainty that the middle cell indeed is an oil site, increases the
likelihood of the neighboring cells cointaining oil too.

β = 0.0 β = 0.50.0512 0 0
0 0.2999 0.2465
0 0 0.3474

 0.1854 0.0218 0
0 0.2999 0.5959
0 0 0.5187


β = 1.50.8935 0.5087 0

0.3213 0.3000 1.3553
0.0831 0.1339 1.4352



Table 4: Expected income from each cell for a joint strategy. The obtained
values are Monte Carlo estimates obtained from running 50000 samples.
Case run: C2.

The joint value (JV), the value of free clairvoyance (VFC) and value of
information (VOI) are all given in Table 5. For β = 0 all cells, apart from
the middle one has a equal probability of being eiter dry or with oil. The
middle cell is however known to be with oil, hence the expected outcome for
β = 0 is JV = 1

2((R1 + C1) + (R8 + C8) + (R9 + C9) + R5) = 0.95 This is
in corresponcende with both Table 4 and 5. The joint value increases as a
function of β. As the spatial correlation increases the oil field in the middle
becomes paramount, in short it is very unlikely that neighboring cells are
dry.

Interestingly the value with free clairvoyance is close to zero. The value
of JV is showed as a function of β in Table ??, likewise with VFC. For high
values of β they approach each other. In other words the value of information
becomes zero. It can phrased as saying that the economic difference between
knowing something for sure and knowing something with almost certainty is
about the same. It could be compared to playing an inverse lottery where
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β = 0.0 β = 0.5 β = 1.5

JV 0.9450 1.6217 5.0293
VFC 3.1974 3.7685 5.6416
VOI 2.2524 2.1468 0.6123

Table 5: Joint value, value of free clairvoyance and value of information for
three different values of β (0.0, 0.5 and 1.5. The obtained values are Monte
Carlo estimates obtained from running 50000 samples. Case run: C2.

you have to pick a number that’s not picked in the lottery. The likelihood
for doing so is staggering. The value of knowing the exact number picked
beforehand compared to not knowing is insignificant. The mathematical
reason for this is evident from equation 22 and 23 since max{0, Ripi(1)} →
pi(1) max{0, Ri} when pi(1)→ 1.

From C1 and C2 a few interesting observations should be noted:

• If the prior information in zero, i.e. αi(xi) = 0 ∀i ∈ I, xi ∈ {0, 1},
changes in β have no effect on the expected outcome following a joint
strategy. However it affects the variability of the outcomes, in turn
increasing the risk of huge reward or huge loss. If the drilling company
is risk averse, this is certainly a factor that needs to be taken into
account. For large values of β the method can be likened to throwing
a coin, either all cells are with oil or without oil. This view offers
a clear insight into why the sequential method is preferable. In that
case, picking one cell and investigating the outcome would be enough
to make a descision to continue drilling or not.

• If prior information is available, as in the case of C2, this information
will affect the outcome as the spatial dependency between points grow.
In C2 one point is known to contain oil (or known with great certainty).
The spatial dependency forces the adjacent points to be similar in
outcome, in turn reducing the variability of the joint strategy. This is
shown in figure 3 and 4. This is simply because the cells were forced
toward one particular outcome, while in C1 the outcomes for all cells
fluctuated between two extremes (offering either max income or max
loss).

• It can be shown by performing a mirror image of C2 (that is middle
cell is known to be dry) that the variance is reduced, but also that JV
and VFC decreases as a function of β, eventually becoming close to
zero.

Another interesting approach is computing duplets and triplets of cells in
accordance with Equation 5.2. These are depicted graphically below for the
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case C1 (Figure: 6) and C2 (7). The value of β is chosen equal to 0 and 0.5
in both configurations.
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(c) β = 0.5, Duplet
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Figure 6: Triplets and duplets for C1 for β equal to 0 and 0.5.
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Figure 7: Triplets and duplets for C2 for β equal to 0 and 0.5.

In the case of C1 with β = 0 all the cells that offers the maximum prospect
of income are combinations of the cells indexed 1,4,5 and 8. It doesn’t matter
which three are chosen, this peculiarity is caused by β being equal to zero,
in other words there are no spatial relationships between points. The proba-
bility of outcome at one point won’t affect another point, in other words the
chances for earning future money on the remaining cells is unaffected by the
two (duplet) or three (triplet) first choices, i.e. no information is gained nor
lost with respects to the unknown cells. This limits the number of optimal
choices to be a subset of all points i such that (Ripi(1) − Cipi(0)) > 0. In
C1 four different cells have this property. If five points were chosen (quin-
tuplet!) this would have a negative effect on the expected value as opposed
to only picking four (this is because a fifth value would have to be picked on
a point with negative expected value). In practice, this means performing a
joint strategy (no spatial information is obtained with respect to non-selected
points), but including one point such that Ri−Ci < 0. The highest expected
value for both a duplet and a triplet is 1.2 as is the case for a joint strategy
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on similar input.
For C2 a similar logic can be applied for β = 0. Apart from this case the

middle cell is know to contain oil. If it is picked immediately as part of the
duplet/triplet, or not, doesn’t matter. The number of points that gives the
best expected income is hence any combination of cells such that Ri−Ci > 0
and cells known to contain oil. In case Let N denote the number of cells
such that Ripi(1)− Ci(1)pi(0) > 0. Assume that the number of cells picked
(nc) is less than N , then the number of optimal evidence groups equal

(
N
nc

)
.

This is valid when β = 0. N is 4 for both C1 and C2. This means that(
4
2

)
= 6 and

(
4
3

)
= 4 for duplets and triplets respectively for β = 0. This

is confirmed in figure 6a, 6b, 7a and 7b. The particular groups of evidence
that maximizes the outcome is given in Table 7. Note that Table 7 confirms
that the groups of cells offering the highest expected income when β equals
zero indeed is combinations of cells picked using the joint approach.

For increasing values of β both cases get a higher expected income, see
Table 6. For the uninformative case this is due to stronger correlation be-
tween points such that duplets and triplets reveal more information about
the field. For C2 there is an additional positive effect since the middle cell
is with oil, forcing this property over on the other cells as well.

Duplet Triplet
β = 0.0 β = 0.5 β = 1.5 β = 0.0 β = 0.5 β = 1.5

C1 1.2000 1.5293 2.8856 1.2000 1.4213 2.5433
C2 0.9500 1.7153 5.1066 0.9500 1.7153 5.1284

Table 6: Shows the optimal value for duplets and triplets for case C1 and
C2 with varying β (0, 0.5 and 1.5).

It is also possible to run a case similar to C2, but with middle cell being
dry. In such a case an opposite effect will be observed. Triplets will then be
worse than duplets for high β-values, since it in most cases means picking
three dry cell instead of two.

The best outcome for different values of triplet and duplets are depicted
in Figure 8. Not that in case of C running triplets and duplets give about
the same results. Note how both value converges for high values of β. For
C1 there are two alternating outcomes that dominates; all cells are either
with oil or dry. Hence the duplets are preferred to triplets. I.e. if three
cells are picked showing oil, all the remaining cells will be picked afterwards.
Likewise is the case for duplets. However, if the cells picked are dry, there is
no continuation in the drilling. In other words triplet forces the user to drill
thrice instead of twice. The best strategy would of course be to drill only
once, and from this single result decide to drill all remaining points or not.
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Duplet Triplet
C1 β = 0.0 β = 0.5 β = 1.5 β = 0.0 β = 0.5 β = 1.5

(1, 4) (4, 8) (1, 5) (1, 4, 5) (4, 5, 8) (3, 4, 8)
(1, 4) (1, 4, 8)
(1, 8) (1, 5, 8)
(4, 5) (4, 5, 8)
(4, 8)
(5, 8)

C2 Duplet Triplet
β = 0.0 β = 0.5 β = 1.5 β = 0.0 β = 0.5 β = 1.5

(1, 5) (1, 5) (4, 9) (1, 5, 8) (1, 5, 8) (2, 4, 9)
(1, 8) (1, 8) (1, 5, 9) (1, 5, 9)
(1, 9) (1, 9) (1, 8, 9) (1, 8, 9)
(5, 8) (5, 8, 9)
(5, 9)
(8, 9)

Table 7: Shows the best pick of cells for triplets and duplets for three different
values of β (0, 0.5 and 1.5).

From this the two limiting cases for C1 (for high β’s) is:

GS(p, β =∞) =
1

2
(

n∑
i=1

Ri −
p∑
i=1

C∗i ) (35)

Where C∗i denotes the cost for the i’th cell smallest cost. p is the number of
cells picked in group. This is valid as long as β is large and αi(xi) = 0. The
limiting case for duplets are hence: 3,375 for duplets, 2.875 for triplets. In
the special case of C2 there will only be one limiting outcome when β →∞,
i.e. all cells are with oil. In this respect the outcome for both the duplet
and triplet strategy is the same: pick points (with oil) and pick the rest
afterwards. In other words the limiting case is simply:

∑n
i=1Ri=6.1.

The upper limit, complete search algorithm and myopic algorithm is
applied to the two cases above for different values of β. The results are
given in the Table 8 (These are Monte Carlo estimates obtained with 25000
realizations). The upper limit used is the one defined by equation 32. No
sequential procedure utilizing the spatial information available can give an
average expected value larger than this. points alone is enough to determine
the outcome of a cell with extremely good probability.

For β equal to zero both method reduces to a joint strategy. Each point
is picked independent of every other points picked earlier, in other words
the sequential procedure cannot add more information about the remaining
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Figure 8: Value of duplets and triplets for C1 (left) and C2 (right) for differ-
ent values of beta. The value given is the expected value for the best duplet
og triplet of cells.

C1 Myopic (MC) Myopic (Th) Exact (MC) Exact (Th) Upper Limit (UL)
β = 0.0 1.1792 1,2 1.1792 1.2 1.1792
β = 0.5 1.5113 1.5303 1.5236 1.5425 1.8072
β = 1.5 3.3128 3.2928 3.3424 3.3270 3.8993

Table 8: Shows values the myopic, exact and upper limit for C1 when β = 0,
β = 0.5 and β = 1.5. The Monte Carlo estimates are obtained for all three
cases. The theoretical values for 31 and 25 are also given (denoted by th). δ
is set equal to 1.0.

undrilled cells. Hence the result is the same of both myopic and exact.
The upper limit condition also becomes simplified by only (in the univariate
case) picking points such that Ri > Ci. This also becomes similar to a
joint procedure. All methods discussed so far will hence converge toward
the same sum, this being a limiting case for all procedures duscussed so
far. As expected all the three approaches show increasing values as the β-
value increase. This effect will happen for all uninformative cases. Table
9 for C2 (Monte Carlo, 25000 realizations) gives estimates for the myopic,
exact and upper limit. Comparing the expected values for different β-values
shows a slight difference in expected values for myopic and exact approach
for both C1 and C2. But compared to the joint strategy there is considerable
difference. While the expected value remains 1.2 (C1) for all values of β, the
myopic and exact approach shows considerable improvement compared to
this. For β = 1.5 the expected values are almost thrice as good. Clearly this
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kind of strategy is far superior to the joint strategy.

C2 Myopic (MC) Exact (MC) Upper Limit (MC)
β = 0.0 0.9107 0.9107 0.9107
β = 0.5 1.7127 1.7127 1.8642
β = 1.5 5.1510 5.1766 5.2260

Table 9: Shows values the myopic, exact and upper limit for C2 when β = 0,
β = 0.5 and β = 1.5. The Monte Carlo estimates are obtained for all three
cases. δ is set equal to 1.0.

To illustrate the sequential effect of optimal path algorithm, it is more
convenenient to use a smaller grid, not because of the computational effi-
ciency (A 3 × 3 grid can be solved for optimal solution within a reasonable
timeframe), but it becomes very hard to depict graphically by a tree struc-
ture. Hence in the interest of clarity two smaller grids are used to depict the
effect of the exact tree method. These grids belong to Table 10.

Case: αi(0) αi(1) Revenue Cost

C3
(

0 0 0
0 0 0

) (
0 0 0
10 0 0

) (
0.4 0.9 0.7
0.5 0.6 0.8

) (
1.2 1.1 1
0.9 1 1.1

)

C4
(

0 0 0
10 0 0

) (
0 0 0
0 0 0

) (
7 5 2
4 6 7

) (
1 1 1
1 1 1

)

Table 10: Case C3 and C4

C3 offers small rewards if oil is found, but on the other hand it is almost
certain to be oil at cell 2. By computing an exact procedure it is possible
to say something about which path is preferable, that is, which path utilizes
the information obtained at each step in the most profitable manner. In
case C4 all cells offers great economic rewards in the case of oil. The case
is a mirrorimage of C4: One cell is highly unlikely to contain oil according
to the prior information available (the α-function). The second method for
computing sequential paths is the myopic approach. The results for different
beta values are computed (25000 samples) results are given in Table 11.

For β = 0 and β = 0.2 too little spatial information is available for there
to be feasible to perform on the other points. This obvious for β = 0 as
there are no spatial correlation between points, but even for β-values as high
as 0.2, no strategy will be performed apart from picking the south-eastern
cell known to contain oil (with high probability) from prior information.
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C3 Exact (MC) Exact (Th) Myopic (MC) Myopic (Th)
β = 0.0 0.4999 0.5000 0.4999 0.5000
β = 0.2 0.4999 0.5000 0.4999 0.5000
β = 0.3 0.5445 0.5468 0.5000 0.5000
β = 0.5 0.8075 0.8154 0.8029 0.8096
β = 1.5 2.8998 2.8987 2.8946 2.8913

Joint(MC) Joint (Th) Upper limit
β = 0.0 0.4999 0.5000 0.4999
β = 0.2 0.4999 0.5000 0.5825
β = 0.3 0.5000 0.5000 0.7091
β = 0.5 0.5740 0.5742 1.0017
β = 1.5 2.7106 2.7003 3.0751

Table 11: This tables depicts theoretical values for the exact, myopic and
joint approach. Similar values are also obtained through Monte Carlo es-
timation including the upper value limit. Number of realizations used is
25000. δ is equal to 0.99.

When β reaches 0.3 the exact procedure starts to pick cells outside cell 2.
This is however not done for the myopic approach, only cell 2 is picked.
For the exact approach the nighbor adjacent to cell 2 is picked as a second
step. Conditioned on the outcome of this cell, more cell might be visited.
For β = 0, 5 and higher values of β the myopic approach starts to perform
similar runs through the grid (defined as.

The average number of visits to each cell is given below for the two
sequential approaches, the cell number being the ratio of visits, i.e.
Number of times drilling at cell i

Total number realizations . Table 12 shows how many times different cells
are visited with respect to the exact and myopic strategy. Note that that the
myopic and exact approach is superior to the joint strategy when β is equal
to 0.5. For very low and very high values of β the methods approach each
other in value. It should be noted that for very high values of the spatial
dependency parameter the value of the joint strategy will converge towards∑6

i=1Ri = 3.9 which actually is better than the sequential algorithms due
to the δ parameter.

Similar values for C4 is given in Table 13.
For β = 0 the joint method is preferred. This is obvious because no

spatial correlation exists and that a penalty paramter δ = 0.99 is enforced on
the sequential procedures. In other words the two sequential procedures are
reduced to a joint strategy with the added disadventage of being ’punished’
for every cell being picked. For all other values of β apart from β = 1.5
the exact approach is better than the myopic. Interestingly at β = 0.5 the
myopic method is incapable of finding the best path as opposed to the other
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β ≤ 0.2(
0 0 0

1.0000 0 0

) (
0 0 0

1.0000 0 0

)
β = 0.3(

0 1.0000 0.1956
1.0000 0.5224 0.3384

) (
0 0 0

1.0000 0 0

)
β = 0.5(

0.4127 0.6284 0.2641
1.0000 1.0000 0.6284

) (
0.5624 1.0000 0.4138
1.0000 0.5624 0.4127

)
β = 1.5(

0.8477 0.8960 0.7733
1.0000 1.0000 0.8960

) (
0.8730 1.0000 0.7823
1.0000 0.8730 0.8730

)

Table 12: Shows the number of times cells are visited with respect to myopic
(left) and exact (right) algorithm for varying β-values in the case of C3.

C4 Exact (MC) Exact (Th) Myopic (MC) Myopic (Th)
β = 0.0 0.2084 0.1985 0.2084 0.1985
β = 0.2 0.2007 0.1929 0.1924 0.1827
β = 0.3 0.1986 0.2101 0.1644 0.1838
β = 0.5 0.2429 0.2378 0.0000 0.0000
β = 1.5 0.0000 0.0000 0.0000 0.0000

Joint(MC) Joint (Th) Upper limit
β = 0.0 0.2101 0.2000 0.2101
β = 0.2 0.0714 0.0683 0.3144
β = 0.3 0.0158 0.0282 0.3591
β = 0.5 0.0000 0.0000 0.4937
β = 1.5 0.0000 0.0000 0.3233

Table 13: This tables depicts theoretical values for the exact, myopic and
joint approach. Similar values are also obtained through Monte Carlo es-
timation including the upper value limit. Number of realizations used is
25000. δ is equal to 0.99.

method. For β = 1.5 the effect of the lower right cell is too strong, forcing
neighbors to be negative with very high probability. At this level neither the
myopic nor exact approach work.

The expected value from for the myopic, exact and the joint approach is
depicted in Figure 10 and ?? for C3 and C4 respectively.. The upper limit
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β = 0(
1 1 0
0 0 1

) (
1 1 0
0 0 1

)
β = 0.2(

0.4886 1.0000 0.7375
0 0.3692 0.8890

) (
0.3899 0.7755 0.4978

0 0.1502 1.0000

)
β = 0.3(

0.2740 0.4936 1.0000
0 0.1542 0.4936

) (
0.1542 0.2729 0.4823

0 0.1542 1.0000

)
β = 0.5(

0.2750 0.4773 1.0000
0 0.1714 0.4773

) (
0 0 0
0 0 0

)
β = 1.5(

0 0 0
0 0 0

) (
0 0 0
0 0 0

)

Table 14: Shows the number of times cells are visited with respect to myopic
(left) and exact (right) algorithm for varying βvalues in the case of C4.
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is obtained from Monte Carlo estimation using 10000 samples.
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Figure 9: Two plots showing the expected value of myopic, exact and joint
strategy for different values of β ranging from zero to three. The upper limit
(UL) is obtained through Monte Carlo using 10000 samples for each value
of β. The figure on the left is running case C3, right is case C4.

Judging from the graph, case C3 have the greatest divergence in expected
income for small values of β. This is caused by the fact that the complete
search starts processing other cells earlier than the myopic algorithm, in turn
offering better rewards. But as β increases these values converge. Then it
converges with the other two methods. This being forced by the fact that
every cell is forced to be equal to cell i as the spatial dependence between
points increase. Both methods (and the upper limit) have the same value
for zero spatial correlation.

Figure 11 and 11b shows the effect of running with running on a field
with prioer information encoded into it through the αi(xi) parameter.
The variability of the data can be deduced from the histograms of outcomes
for the realizations. These are depicted for both C3 and C4 in Figure 12 and
13. Note how the realization gets less and less varied as β increases. This is
of course what one should expect when all cells are of one type.
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(******)

(*1****)

(*1*1**) End

(*111**)

i=2

i=4

i=3

i=5

i= 1

(*111*2)

(*111*1)

(*11121)

v=0234

(*11111)

(211111)

(111111)

(211121)

(111121)

End

v=0.235

v=0.3498

v=0,0235

v=0.4990

v=0.3186

v=0−8154

v=0.689

(*121**)

i=4

End

End

End

End

End

Figure 10: Shows the exact sequence tree for C3, β set to 0.5. This is the
optimal path choosing cells.’*’ denotes undrilled cells. i denotes the index
to be drilled. 1 represents oil and 2 represents lack of oil.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

β

E
x
p
e
c
te

d
 i
n
c
o
m

e

C4

 

 

Upper limit

Exact

Myopic

Joint

(a) Case: C4
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(b) Case: C4 (αi(xi) = 0)

Figure 11: The expected value of myopic and exact path are given for the
C4 as a function of beta in both graps, though the right plot is modified by
setting αi(xi) = 0 ∀i, xi.
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Figure 12: The plot above shows the outcome of running Monte Carlo simu-
lations. Each row represents case C3 for some specified β (0.2, 0.3, 0.5 and 2)
for exact algorithm (left), myopic (middle) and upper limit etsimate (right)
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Figure 13: The plot above shows the outcome of running Monte Carlo simu-
lations. Each row represents case C3 for some specified β (0.2, 0.3, 0.5 and 2)
for exact algorithm (left), myopic (middle) and upper limit etsimate (right)
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6 Strategies for large grids

This Section introduces different methods for dealing with the problems re-
lated to dealing with large grids. For smaller grids it is possible to use use
the sequential and joint approaches, but for larger grids heuristic approaches
are needed.

6.1 Horizontal partitioning of blocks

So far methods used have been limited to rather small cases, running a 2×2
and 3× 3 grid. Running on even larger grids becomes increasingly difficult.
This is particularly true for the case of the exact approach. Computing
every possible path becomes a hugely limiting factor. Due to this three
heuristic approaches to this problem will be considered, all are concerned
with partitioning the grid into blocks. The two first cases to be intoduced
will be used in the special case where the grid have many columns but few
rows (or opposite!). Such a grid can be partioned into smaller blocks along
the horizontal direction. This can be illustrated by a 2×6 grid:

(
1 3 5 7 9 11
2 4 6 8 10 12

)
.

This can be partitioned into three (or two) smaller blocks of equal length;(
1 3
2 4

)
,
(

5 7
6 8

)
and

(
9 11
10 12

)
. Within reasonably small blocks both the exact

and myopic sequential approach can be computed, likewise with the joint
strategy. There are different ways in which these blocks can be solved. The
two methods used here are:

Independent blockwise approach This approach starts at lefternmost
block. It runs the exact, myopic and joint strategy in this block alone.
After completion it continues in the same manner of the adjacent block
to the right. In this way the spatial relationship between blocks are ig-
nored. For the grid above this means running the sequential and joint
strategies on

(
1 3
2 4

)
,
(

5 7
6 8

)
and

(
9 11
10 12

)
in turn as if they were indepen-

dent fields. It should be duly noted that the expected outcome of any
strategy is not the sum of the expected outcome of each block inde-
pendently. This is obvious as the original field itself has no blockwise
boundaries in the spatial correlation.

Dependent blockwise approach The first block to be solved is the left-
ernmost. This is solved independently of all the other blocks. When
the next block is computed all probabilities are conditioned on the out-
comes of the former block. For example the probability of p(x5) in the
independent procedure would be analogious to p(x5|x1, x4) if say cell
one and cell four was picked in the former block. In this way former
information is propegated forward. It is possible to condition on more
blocks than the last one, but only one block have been used in this
thesis.
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Both metods are shown graphically in figure 14 (independent) and 15 (de-
pendent).

Solve each grid independently

Break up the grid into smaller grids

Original grid

Figure 14: The graph above shows how the grid is partioned horizontally
into smaller grids, each being solved independently of each other. Different
drilling strategies can then be applied to every such block independently.

In short smaller blocks are used to solve a larger grid. The case above
was for a matrix consisting of two rows and six columns, but it can also be
applied to cases where there are many rows but only two or three columns.
This is done by simple rotating the grid 90 degrees or using the same ap-
proach starting at the bottom block and working upwards.

Both methods have advantages and disadvantages. The independent
strategy has the advantage of being quite fast compared to the dependent
strategy. This is obvious since only one descision tree (sequential) or group of
cells (joint) is used for every block. However the dependent approch is more
complex as the descisions taken in a future block depends on the outcomes
of the former block. Let b denote the number of grid points in each block.
In short this means that there are (d + 1)b possible sequential paths that
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Solve each grid independently

Break up the grid into smaller grids

Original grid

(i)(i−1)

i is conditioned on i−1

Figure 15: The graph above shows how the grid is partioned horizontally into
smaller grids, each being solved dependent of each other. Different drilling
strategies are then applied to every grid conditioned on the outcome of the
adjacent block to the left, can also include more blocks in this conditioning

needs to be computed. Anoter option is of course not to store the decision
paths beforehand, but then one would need to compute each path anew for
every realization, quickly becoming expensive as the number of realization
increase. Another disadvantage with the dependent approach is that the
probabilities needs be computed in a grid that is 2b cells larger than the case
for the independent approach. The advantage of the dependent approach is
that information from earlier blocks are carried over to new blocks, allowing
to make more informed choices. In short the dependent approach is likely
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(not always) to give better estimates but at a higher computational cost.
In the future exact, myopic and joint strategies will be referred to as

conditional exact, conditional myopic and conditional joint when used in the
context of solving partitions of the grid. This should be stressed since it is
fully possible to use these strategies for larger grids too, if only in theory.
Whether conditional exact/myopic/joint strategy refers to an independent
or dependent blockwise approach should be clear from the context it is used
in.

6.2 Large grid, many rows and columns

The limitation of the method presented in the preceding Subsection was
the need for having either few rows or columns in the grid to be studied.
The soulution to this problem is to partition not only horizontally but also
vertically, creating a two dimensional grid of blocks. While both a dependent
and independent approach can be studied in this case too, the focus here
will be on the dependent version. Two questions need answering: (a) in
which order will the blocks be solved and (b) how do the blocks depend on
eachother. The order of the blocks chosen here is from left to right. Starting
at the upper row at the lefternmost corner and working all the way to the
end of the row. After finishing the first row the second row below is chosen,
continuing all the way to the last column. And it continues in this fashion
until all rows have been traversed. The ending point is then the bottom right
corner. As for block dependency, the following rules have been chosen:

• First block (upper left) will be solved independently of other blocks.

• All blocks on the upper row (apart from the one in upper left corner)
will depend on the adjacent block to the left. This is in essence doing
the same as in the dependent blockwise approach.

• All blocks on the first column (apart from the one in the upper left
corner) will depende on the adjacent block above. Rotating the two
blocks 90 degrees and they can be solved using the dependent blockwise
approach.

• All blocks in neither the first row or first column will depend on the
adjacent block to the left and above.

The whole procedure is shown graphically in figure 16.
The most computer intensive part of the computations is computing

blocks that are neither belonging to the first row nor column. While the
dependent blockwise approach demanded (d+1)b decision paths for the con-
ditional exact strategy, the blocks depending on two other blocks demands a
total of (d+ 1)2b, not to mention that the (conditional) probabilities needed
for computation of sequential paths must be computed on a larger grid with
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at least 3b cells (Can choose between a square grid - upper leftern corner
unknown - or a ’shoe’ formed grid, only including the block of interest and
the two adjacent blocks that’s been solved in advance). The code used in
this thesis is square formed.

Break up the grid into smaller grids

Corner (upper left)
First row

First column

Neither first column
nor first row

Original grid

Figure 16: The graph above shows how the grid is partioned horizontally
and vertically into smaller grids, each being solved dependent of each other.
Different drilling strategies are then applied to every grid conditioned on the
outcome of the adjacent block to the left and above

6.3 Cases

The two cases to be studied closer in this section are the ones defined below,
C5 and C6. Both cases have the same revenues and costs associated with
each cell. The difference is that C5 is uninformative while C6 is known to be
dry at the bottom left corner. As β increases in value the cells in C6 are also
expected to be dry, offering an interesting situation for both the dependent
and independent block approach as the one of the method only retains a
memory from the last block while the other is completely memoryless with
respect to earlier outcomes in other blocks.
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Case: C5

αi(j), j ∈ {0, 1}
(

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

)

Revenue
(

0.5 0.2 0.3 0.2 1.2 0.7 1.1 0.3 1.5 3
0.9 1.1 0.9 0.8 0.6 0.5 0.6 0.9 0.1 0.5

)

Cost
(

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

)

Case: C6

αi(j), j ∈ {0, 1} αi(0) = 0 ∀ i ∈ {1, 3, 4, . . . , 20}, α2(0) = 10,
αi(1) = 0 ∀ i ∈ {1, 2, . . . , 20}

Revenue
(

0.5 0.2 0.3 0.2 1.2 0.7 1.1 0.3 1.5 3
0.9 1.1 0.9 0.8 0.6 0.5 0.6 0.9 0.1 0.5

)

Cost
(

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

)

C5 and C6 gives values for the blockwise independent and dependent pro-
cedure for for case C5 and C6 respectively. The values are Monte Carlo
estimates obtained running 25000 samples. C5 shows that the exact ap-
proach is better than myopic, but both estimates are very good compared
to the joint strategy. While the joint values remains about constant for all
values of β. This is exactly what one would expect for an uninformative case.
This is because all the univariate marginal probabilites are equally likely to
contain oil as not containing oil. Since equation 22 is independent of β the
expected outcome also have to be independent of the increase in β. Note
that the values of the joint strategy varies more and more as β increases,
this is caused only extreme results being available, increasing the variance of
JV as discussed in Section 5.7. This argument is valid for all the estimates.

Comparing the sequential and joint estimates from the dependent with
the independent approach shows that the dependent version is the preferable
method, and the difference becomes larger as β increases. This is expected
as stronger spatial correlation means that the outcomes in the former block
adds increasingly important information to the present block. As β becomes
larger only two outcomes are likely; all cells oil or all cells dry. Thus when
β →∞ the value is expected value of the exact approach for the independent
method is 1

2(
∑n

i=1Ri−nb) = 5.4500. Here nb denotes the number of blocks.

43



Ind, C5 Exact Myopic Joint Upper Limit
β = 0 1.4405 1.4405 1.4405 1.4405
β = 0.2 1.4508 1.4508 1.4327 1.7847
β = 0.5 1.7710 1.7614 1.4524 2.8894
β = 1.0 3.1264 2.8942 1.3875 5.3096
β = 1.5 4.5291 4.0560 1.4253 7.0123
β = 2.0 5.0527 4.5018 1.3780 7.5970
Dep, C5 Exact Myopic Joint Upper Limit
β = 0 1.4897 1.4897 1.4897 1.4897
β = 0.2 1.4749 1.4749 1.4569 1.7529
β = 0.5 1.9562 1.9194 1.5630 2.8877
β = 1.0 3.5341 3.5164 2.3474 5.3148
β = 1.5 5.3080 5.2649 3.8652 7.0784
β = 2.0 6.0809 6.0738 4.7215 7.6905

Table 15: Estimates for the expected income for three different methods and
the upper limit using Monte Carlo simulation with 25000 samples. The case
being run is C5 both for the dependent and independent approach.

For myopic this becomes 1
2(
∑n

i=4Ri +
∑n

i=9Ri− (nb− 1)) = 4.8500 because
points is never picked in the second block (Ri−Ci < 0 for all i in the second
block). For the dependent case information is carried from one block to the
other. If all cells are contains oil this information is propegated from the
first cell to the last. Hence offering

∑n
i=1Ri in income for both sequential

methods. If the first cell drilled is dry no more cells will be drilled in the first
and second block. However when the third block is reached no information
is available in the former block since no drilling have occured there. Hence
it will start to drill once more. Finding this cell to be dry to it will stop
drilling. No drilling will occur in the fourth block since it is known that a
cell in the third block is dry. Fifth block will br drilled once only to drill a
dry cell. This leads to the following formula: 1

2(
∑n

i=1Ri−dnb/2e) = 6.4500.
These limits when β →∞ are depicted in figure 17 together with estimates
for conditional exact, myopic and joint strategy and upper limit. Table 16
shows quite clearly that the dependent approach is superior to the dependent
one. The bad (even negative values) for high β is because the likelihood of
the whole field to be dry increases. The memoryless property of the indepen-
dent approach removes important information. If a cell in the earlier block is
dry there is good reason to believe that cells in the present block is dry too.
This kind of information is snapped up by the dependent procedure. The
combination of a high value of β and (a) dry cell(s) in block i will often lead
to a strategy in block i + 1 where no cells are drilled. However when block
i+2 is drilled block i+1 offers no particular information about the field and
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Figure 17: Shows the estimates for the upper limit, conditional exact, myopic
and joint for varying β-values in the range 0 to 3 for the case of C5. These
values are obtained from Monte Carlo estimation running 100000 samples
for each value of β. The limiting value of conditional exact and conditional
myopic is also shown. The figure on the left represents the independent
procedure, the one on the right the dependent one. In the case of dependent
blocks the conditional exact and myopic have almost the same values. Plots
obtained running 10000 realization for each value of β.

Ind, C6 Exact Myopic Joint Upper Limit
β = 0 1.4395 1.4395 1.4395 1.4395
β = 0.2 1.3877 1.3877 1.3877 1.6837
β = 0.5 1.4963 1.5443 1.3532 2.5215
β = 1.0 1.9972 2.1843 1.1112 4.1203
β = 1.5 0.5402 1.0850 0.3487 3.4772
β = 2.0 -1.7961 -0.9879 -2.2541 1.7458
Dep, C6 Exact Myopic Joint Upper Limit
β = 0 1.4480 1.4480 1.4480 1.4480
β = 0.2 1.3927 1.3927 1.3927 1.6606
β = 0.5 1.6075 1.5832 1.3727 2.5148
β = 1.0 2.3049 2.3013 1.4323 4.0725
β = 1.5 1.5200 1.5125 0.5098 3.4545
β = 2.0 -0.27586 -0.27789 -1.2799 1.7045

Table 16: Estimates for the expected income for three different methods and
the upper limit using Monte Carlo simulation with 25000 samples. The case
being run is C6 both for the dependent and independent approach.
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the knowledge of dry cells in i is lost. Hence the dependent strategy is likely
to drill cells in i + 2 even though the dry cells in i suggests dry cells also
in block i + 2. This is quite contrary to the effect of having oil in the first
block for field with strong spatial correlation. In that case oil on one block
suggest drilling in the next block, the result of which might suggest further
drilling in the next block et cetere. The limit for the conmditional exact
and myopic approach in the case of C5 is d−nb/2e = −2. That is every odd
numbered block will be drilled (apart from the first block) resulting in dry
cell being drilled. The conditional myopic is even worse for an independent
procedure with nb−2 = −3 (the middle block will never be drilled according
to a myopic strategy, nor the first). The conditional exact procedure will
have an expected value equal to nb−1 = −4 (only the first block will not be
drilled). In other words an interesting situation appears for the limiting case.
This tendency for the conditional exact to be worse than the myopic strategy
for high values of β when running an independent approach is confirmed by
table 16. Likewise it is worth noticing that the value expected income of the
sequential methods are quite close to eachother when the spatial correlation
is strong. This seems reasonable considering that the limiting case has the
same values. Figure 18 gives a graphical display of all three methods for
varying β in the range [0 3].
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Figure 18: Shows the estimates for the upper limit, conditional exact, myopic
and joint for varying β-values in the range 0 to 3 for the case of C6. These
values are obtained from Monte Carlo estimation running 100000 samples
for each value of β. The limiting value of conditional exact and conditional
myopic is also shown. The figure on the left represents the independent pro-
cedure, the one on the right the dependent one. For the dependent approach
both the conditional exact and myopic have almost the same values. Plots
obtained running 10000 realization for each value of β.
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Figure 19: Depicts the convergence running case C5 with β = 0.5.
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Figure 20: Depicts the convergence running case C6 with β = 0.5.

47



The next thing to be studied more is the use of conditional myopic, exact
and joint to a grid consisting of many rows and columns. The method to
be used is the one outlined in Section 6.2. The field to be study closer is
a univariate 10 × 10 case. The cost for failure is set to minus -1 for every
cell. The potential revenue matrix consists of the revenue in case C5 copied
five times in downward direction. Let the cells in the revenue matrix for
C5 be indexed by i, j where i denotes row ({1, 2}) and j denotes column
({1, 2, . . . , 10}). Then the revenue matrix, R∗ of this new larger field

R∗i,j = Ri−2b i−1
2
c,j (36)

This method was applied to for a 10× 10 matrix The are promising due

Large Matrix, dependent
β Exact Myopic Joint Upper Limit
β = 0.0 7.2776 7.2776 7.2776 7.2776
β = 0.5 10.4500 10.0070 8.0581 16.2985
β = 0.6 12.1812 11.6461 8.7465 18.9362
β = 0.8 17.6801 17.3020 13.6841 25.8553

Table 17: Shows the value of Exact, myopic, joint and upper limit

to the spatial freedom of the problem, i.e. that there are many unknown
adjacent blocks, still the outcome seem to outperform the joint strategy.
And the difference between the upper limit and the sequential strategies is
relatively small. Running on larger grids (30×30) with smaller samples seem
to suggest the sequential strategies to have a value about half that of the
upper limit.
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7 Concluding remarks

The different methods applied so far shows both weaknesses and strengths of
the blockwise approach. While the blockwise approach do manage to prope-
gate information about oil rather successfully, one of the main weaknesses
is the memoryless property of the blocks, in the sense that important infor-
mation is lost. This was particularly clear in the case of C6 where all three
methods showed negative values. It is not obvious how to deal with this
issue. It is clear that a block approach would suffer from the same problem
as C6 in cases of large β-values.

Both the sequential strategies behaved good on univariate cases. It is also
interesting to note that the sequential method improved relative to the joint
strategy on the larger grid. As β increased the tendency seemed to favour
the sequential approach more than the joint strategy. That even the con-
ditional myopic approach could outperform the conditional blockwise only
(C6, independent) confirms that every method needs to be used with care.

One possibility for future work on this subject might be to adopat a more
flexible blockwise routine, in the sense that new information in future blocks
also can be added to investigate former blocks. It would also be interesting
to run the blockwise method on a non-univariate field.
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