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Abstract: An explicit integration scheme for rate-dependent crystal plasticity (CP) has been 

developed in this work. Additive decomposition of the velocity gradient tensor into lattice and 

plastic parts is adopted for describing the kinematics; the Cauchy stress is calculated by using a 

hypo-elastic formulation, applying the Jaumann stress rate. This CP scheme has been implemented 

into a commercial finite element code (CPFEM). Uniaxial compression and rolling processes were 

simulated. The results show good accuracy and reliability of the integration scheme. The results 

were compared to simulations using one hyper-elastic CPFEM implementation which involves 

multiplicative decomposition of the deformation gradient tensor. It is found that the hypo-elastic 

implementation is only slightly faster and has a similar accuracy as the hyper-elastic formulation.  
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1. Introduction 

 Crystal plasticity (CP) models originate from the physical aspect of plastic deformation, i.e. slip 

dominated plastic deformation [1]. Constitutive laws of single crystals together with 

homogenization methods across polycrystalline aggregates define the polycrystal plasticity model 

[2, 3]. Mechanical properties, texture evolution and other material phenomena can be simulated 

using CP models [2-5]. The main inputs into CP models are initial texture and material 

parameters.  

One key component of a crystal plasticity model at single grain level is the determination of shear 

strains or shear strain rates on slip systems, which can generally be solved using two different 

approaches, either rate-independent or rate-dependent. For the rate-independent method, the shear 

strain is determined to accommodate the prescribed plastic deformation using a minimum 

dissipation energy assumption [1]. Only the slip systems for which the resolved shear stress equals 

the critical resolved shear stress are considered to be active. It can be implemented numerically by 

solving linear equations or using e.g. the Simplex method with high computational efficiency [6]. 
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However, due to the Taylor ambiguity, an additional criterion is needed [7]. The rate-dependent 

crystal plasticity (RDCP) model assumes that all slip systems are active and uses a viscoplastic 

flow rule. Although without Taylor ambiguity, RDCP could lead to numerical instabilities of 

integration, because most metals exhibit a weak rate dependence at room temperature [8]. Since 

first introduced by PEIRCE et al [9], the crystal plasticity theory implemented in the finite element 

method (CPFEM) has matured into a whole family of constitutive and numerical formulations that 

have been applied to a broad variety of crystal mechanical problems [3]. CPFEM has both 

theoretical and practical advantages. First, grains are represented by single or multiple elements 

while both stress equilibrium and strain compatibility can be fulfilled at boundaries. Second, 

complex boundary conditions are easily specified in the FEM code. Hence, CPFEM is applicable 

to simulations of engineering processes. The main drawback of CPFEM is the huge computational 

cost and the numerical instabilities [2]. Thus, robust and efficient integration schemes are required 

to reduce computational cost and improve the stability [2, 8, 10-14]. 

DUMOULIN et al [2] implemented and evaluated three different integration schemes for RDCP, 

including two forward Euler methods and one implicit integration method. Multiplicative 

decomposition of the deformation gradient tensor F  was used to describe the kinematics and a 

hyper-elastic formulation was used for the calculation of the Cauchy stress. Rotation of the crystal 

lattice was obtained by polar decomposition of the elastic deformation gradient tensor eF . Among 

those three integration methods, the forward Euler integration scheme proposed by GRUJICIC 

and BATCHU (GB) [14] proved to be stable, accurate and the fastest. The RDCP model together 

with the GB forward Euler integration scheme has also been implemented into a commercial finite 

element code, LS-DYNA [15], via a user defined subroutine UMAT. This model implementation 

is referred to as hyper-CPFEM in the following since hyper-elasticity is assumed.  

In the current work, a new explicit integration scheme for rate-dependent viscoplastic crystal 

plasticity has been developed. Different from the constitutive models employed by DUMOULIN 

et al [2], additive decomposition of the velocity gradient tensor L  is employed for the kinematics; 

hypo-elasticity is assumed for the material and Jaumann stress rate is applied. In the crystal 

plasticity theory, the hyper- and hypo- elastic formulations should give the same results in terms 

of the plastic deformation. There is small difference in the elastic part while details about the 

hypo-elastic and hyper-elastic theories can be found in the literature [16]. The hypo-elastic theory 

is commonly applied in the continuum plasticity for metals and alloys due to their small elastic 

strains. Compared with the hyper-elastic crystal plastic framework, the hypo-elastic counterpart 

has a simpler mathematical formulation and is easier to implement. Hence, the hypo-elastic crystal 

plasticity model has a potential to speed up the calculations. However, the accuracy and reliability 

of stress calculation and texture prediction should be evaluated due to the different formulation 

employed.  
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The kinematics, kinetics and crystal plasticity models are described in section 2. A new explicit 

integration scheme is proposed in section 3. The RDCP model has been implemented into LS-

DYNA and is termed hypo-CPFEM in the following. The accuracy and efficiency of this new 

integration scheme are evaluated through numerical simulations and a comparison with the hyper-

CPFEM which are shown in section 4, while general conclusions are made in section 5.   

2. Kinematics and crystal plasticity models 

 The model employed in this work is briefly given here while more details can be found in the 

literature [17, 18]. It includes anisotropic elastic deformation and assumes that all plastic 

deformation occurs via dislocation slip on {111} <110> crystallographic systems for face centred 

cubic (FCC) crystal metals. 

2.1. Kinematics 

 All the equations described in the following are formulated in the initial crystal frame unless 

specified otherwise. The imposed velocity gradient L  can be additively decomposed into 

symmetric and skew-symmetric parts: 

 L = D + W  (1) 

where D  is the symmetric deformation rate tensor and W  is the skew-symmetric spin tensor. 

Deformation of single crystals has been attributed to a combination of plastic flow due to 

crystallographic slips and lattice distortion. Lattice distortion includes elastic distortion and rigid 

body rotation of the crystal lattice. Thus, for single crystals, the deformation rate D  and spin W  

can be further decomposed into lattice and plastic parts as follows: 

 e pD = D + D  (2) 

 pW = W + W   (3) 

where eD  represents the elastic deformation rate of the lattice, while pD  is the plastic 

deformation rate caused by crystallographic slip. W represents the lattice rigid spin, while pW  is 

the spin due to slip activities. pD  and pW  can be expressed by the shear rates s on all slip 

systems: 
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where sm  is the unit vector defining slip direction, while sn is the unit slip plane normal vector, 

for the slip system s  (where 1 12s    for FCC metals). sm  and sn  are not affected by 

crystallographic slip but will be rotated by the lattice spin W  as: 

 s s m W m  (8) 

 s s n W n   (9) 

2.2. Kinetics 

The resolved shear stress s  on the slip system s  can be expressed as:   

 :s s  σ P  (10) 

where σ is the Cauchy stress tensor. For rate-dependent crystal plasticity, the shear rate on slip 

systems is often calculated using a power-law type equation:  
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where 0  is a reference shearing rate, m  is the instantaneous strain rate sensitivity and sg  

represents the slip resistance which evolves during the plastic deformation of single grains. The 

evolution laws of sg  or hardening models will be discussed in section 2.3. 

During distortion of single crystals, a coordinate system attached to the lattice will co-rotate with 

the lattice. The co-rotational lattice frame is related to the fixed lattice frame by a rotation tensor 

  which is orthogonal and updated by the lattice spin tensor W : 

  W   (12) 

In the co-rotational frame, Hooke’s law can be expressed in the rate form as:  

 eˆ ˆˆ :σ C D  (13) 

where Ĉ  is a fourth-order elastic modulus tensor and eD̂  is the elastic deformation rate tensor, 

both in the co-rotational frame. The fourth-order tensor Ĉ  accounts for the elastic anisotropy of 

the cubic lattice. It is assumed to be invariant to plastic deformation and is kept constant in the co-
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rational lattice frame. Expressed in the orthonormal basis associated with the crystal lattice, it 

reads (in Voigt notation):  
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where 11c , 12c  and 44c  are three independent elastic constants. eD̂  can be computed by 

transforming eD  from the fixed lattice frame to the co-rotational frame as: 

 e eˆ TD D   (15) 

where the upper script T means transpose of a tensor or matrix. Then Jaumann stress rate, Jσ , is 

now defined by transforming σ̂  into the fixed coordinate system: 

 ˆJ T σ σ   (16) 

Finally, the material time derivative of the stress tensor is obtained: 

 J    σ σ W σ σW  (17) 

2.3. Hardening model 

Material hardening is captured at slip system level through sg  in Eq. (11). The hardening law 

used in this work assumes that the critical resolved shear stress, sg , initially equals 0g , evolves 

through: 
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where snh  is the instantaneous strain hardening matrix; s  and n  are indices referring to slip 

systems.  In this work, snh  is described phenomenologically by a saturation-type law [8, 19]: 

 0[ (1 ) ][1 ] sgn[1 ]sn sn n a n
sat sath h q q g g g g      (19) 

where 1sn   for s n  and otherwise zero; 0h , satg and a  are material parameters, representing 

the reference self-hardening coefficient, the saturation values of slip resistance and the hardening 

exponent, respectively. The parameter q  represents latent hardening.  

2.4. Update of grain orientations and the texture  
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If the velocity gradient L  is prescribed in the sample frame, L  in the initial lattice frame is 

obtained by the transformation 

 0 0
TL Q L Q  (20) 

where the transformation matrix 0Q  depends on the Euler angles ( 1 ,  , 2 ). The 

transformation matrix Q  from the global frame to the current co-rotational lattice frame is 

updated by: 

 0
TQ Q  (21) 

Euler angles of single grains during deformation can be calculated from Q and are used to 

represent the texture. 

3. Integration algorithm  

The crystal plasticity model described above has been implemented into LS-DYNA through a user 

defined material subroutine. The key input includes material parameters and initial grain 

orientations. Mechanical response and deformation texture can then be predicted. 

For the time integration, a fully explicit scheme based on the forward Euler method is adopted. 

This method is simple, robust but only conditionally stable and requires small time steps. The 

main steps of the explicit scheme are summarized below, where all variables at time nt  are known 

and the variables at 1n nt t t     are to be determined.  

a) Compute the resolved shear stress n

s  on each slip system using Eq. (10) 

b) Compute the slip rate s
n  using Eq. (11) 

c) Compute p
nD  and p

nW  using Eq. (4) and Eq. (5) 

d) Compute e
nD  and n

W  using Eq. (2) and Eq. (3), where D  and W  are constant during the 

current time step  

e) Compute the Jaumann stress rate J
n
σ  using Eq. (13), Eq. (15) and Eq. (16) 

f) Compute nσ using Eq. (17) and update 1nσ : 

 1n n n t   σ σ σ  (22) 

g) Update 1n using the backward-Euler method: 

   1

1n n nt


    1 W   (23) 
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h) Update internal variables and update the critical resolved stress 1
s
ng   using equations 

described in section 2.3 

i) Update slip direction vectors, 1
s
nm , and slip plane normal vectors, 1

s
nn , using the 

backward Euler method: 

   1

1
s s
n n nt


    m 1 W m  (24) 

   1

1
s s
n n nt


   n 1 W n  (25) 

j) Compute 1
s
nP  and 1

s
nΩ  from 1

s
nm  and 1

s
nn  using  Eq. (6) and Eq. (7) 

k) Update the grain orientation matrix 1nQ  using Eq. (21) 

4. Numerical study and discussion 

To evaluate the hypo-elastic formulation used here and the integration algorithm proposed in this 

work, two numerical studies have been conducted. The first one is the simulation of uniaxial 

compression of OFHC copper with initially random texture while the second one is the texture 

prediction after rolling of the same material. The hyper-CPFEM model implemented by 

DUMOULIN et al [2] with the GB integration scheme has also been used for the above simulation 

cases. Predicted results from the two CPFEM formulations will be compared in order to evaluate 

their performance in terms of accuracy and efficiency.   

The material parameters are given similar values as reported in the work of KALIDINDI et al 

[18], as shown in Table 1. 1000 random orientations are used to represent the initial texture of the 

material and the {111} pole figure is shown in Fig. 1. The representative volume (RVE) has a size 

of 2mm 2mm 2mm  . The RVE is meshed with 1000 equal-sized 8 integration point solid 

elements and each element is assigned one orientation and hence represents one grain, as shown in 

Fig. 2. Mass scaling is used to speed up the simulations with a scaling factor of 810 . All 

simulations were performed on a work-station with Intel Xeon E5620 CPU (2.4 GHz) and 12G 

memory, and 8 threads were used simultaneously for each simulation.  

Table 1 Model parameters used in the simulations. 

0  m  0g  satg  0h  a  q  
11c  12c  44c  

  (MPa) (MPa) (MPa)   (GPa) (GPa) (GPa) 

310  0.012 16 148 180 2.25 1.4 186 93 46.5 
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Fig. 1 Initial {111} equal area pole figure of the 1000 orientations. 

 

 

Fig. 2 RVE with 1000 grains. 

 
4.1. Uniaxial compression  

The RVE is compressed along the x-direction with a speed of 0.01 mm/s to 70% thickness 

reduction, i.e. the deformation time is 140 seconds. The surfaces along y- and z- directions are free 

to move. 

The stress-strain curves from simulations using the hypo-CPFEM and the hyper-CPFEM 

respectively are shown in Fig. 3, where the experimental data from literature [19] is also shown. It 

can be seen that the hypo-CPFEM and the hyper-CPFEM give the same stress versus strain 

response. The agreement between the predicted curves and the experiment is reasonable. The CPU 
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time is shown in Table 2. Both CPFEM models have similar time efficiency, but the hypo-CPFEM 

is slightly faster. 

The good agreement between the predictions by the two CPFEM models validates accuracy and 

reliability of the crystal plasticity formulations as well as the integration method used for the 

hypo-CPFEM. Moreover, the fact that the hypo-CPFEM and the hyper-CPFEM give identical 

stress predictions illustrates that both hypo-elasticity and hyper-elasticity are valid assumptions for 

crystal plasticity models of metals. 

 

Fig. 3 Stress-strain curves from CPFEM simulations and experiment. 

Table 2 CPU time for the simulations using two CPFEM models. 

Problem time (s) Hypo-CPFEM (s) Hyper-CPFEM (s) 

140 12580 13971 

 
 
4.2. Rolling texture prediction 

For the rolling simulation, periodic boundary conditions were applied on all faces of the RVE. The 

RVE was compressed along the z-axis with a speed of 0.02 mm/s to a thickness reduction of 70%. 

It was allowed to move along the x-axis freely while the deformation along the y-direction was 

constrained. The Euler angles after deformation in all integration points were output into files, and 

the orientation distribution function (ODF) were computed using the series expansion method with 

max 22l   and 0 7.5   .  
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Fig. 4 shows the ODFs predicted by both hypo-CPFEM and hyper-CPFEM after rolling to 70% 

thickness reduction, while the corresponding CPU times are shown in Table 3. The ODF shows a 

typical rolling texture of FCC metals made of Brass, Goss, S, and Copper texture components [18] 

which qualitatively validates the correctness of the texture updating algorithms employed. 

Furthermore, the ODFs from the two simulations show excellent agreement with each other. It is 

reminded that the texture is updated by the tensor eR  which is obtained from the polar 

decomposition of the elastic deformation gradient tensor in the hyper-CPFEM. However,   

which is updated using W  is employed for updating the texture in the hypo-CPFEM. The 

excellent agreement between the texture predictions demonstrates that both texture updating 

methods are equally accurate. Similar to the uniaxial compression case, the hypo-CPFEM is 

slightly faster (~10%) than the hyper-CPFEM, as shown in Table 3.            

                  

                                    (a)                                                                    (b) 

Fig. 4 Orientation distribution function (ODF) after 70% thickness reduction in rolling predicted by 
(a) hypo-CPFEM, (b) hyper-CPFEM. 

Table 3 CPU time for rolling using two CPFEM models. 

Problem time (s) Hypo-CPFEM (s) Hyper-CPFEM (s) 

70 14581 16223 

 

5. Conclusion 

(1) A new forward Euler integration scheme is proposed for rate-dependent crystal plasticity, 

which employs the additive decomposition of the velocity gradient and uses a hypo-elasticity 

formulation for the stress calculation. The RDCP model with the new integration scheme has 

been implemented into the commercial finite element code LS-DYNA.  

(2) This implementation is validated by comparison with a hyper-elastic formulation through two 

numerical tests. It is shown that the hypo-CPFEM is accurate for stress predictions, and the 
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numerical algorithm for updating texture is validated by comparison to hyper-CPFEM 

predictions.  

(3) Comparison of predictions by the hypo-CPFEM and by the hyper-CPFEM shows that the 

two models have equal accuracy when predicting stress and texture while the hypo-CPFEM 

is slightly more efficient.  

(4) Finally, the current forward Euler integration method, and thereby the hypo-CPFEM, can be 

further improved without loss of accuracy, through e.g. sub-stepping; this is part of an on-

going work.  
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