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Abstract

This paper focuses on the further development of a previously published semi-empirical method for time
domain simulation of vortex-induced vibrations (VIV). A new hydrodynamic damping formulation is given,
and the necessary coefficients are found from experimental data. It is shown that the new model predicts
the observed hydrodynamic damping in still water and for cross-flow oscillations in stationary incoming flow
with high accuracy. Next, the excitation force model is optimized by simulating the VIV response of an
elastic cylinder in a series of experiments with stationary flow. The optimization is performed by repeating
the simulations until the best possible agreement with the experiments is found. The optimized model is
then applied to simulate the cross-flow VIV of an elastic cylinder in oscillating flow, without introducing
any changes to the hydrodynamic force modeling. By comparison with experiment, it is shown that the
model predicts the frequency content, mode and amplitude of vibration with a high level of realism, and
the amplitude modulations occurring at high Keulegan-Carpenter numbers are well captured. The model is
also utilized to investigate the effect of increasing the maximum reduced velocity and the mass ratio of the
elastic cylinder in oscillating flow. Simulations show that complex response patterns with multiple modes
and frequencies appear when the maximum reduced velocity is increased. If, however, the mass ratio is
increased by a factor of 5, a single mode dominates. This illustrates that, in oscillating flows, the mass ratio
is important in determining the mode participation at high maximum reduced velocities.
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1. Introduction

Slender structures such as pipelines and risers experience vortex-induced vibrations (VIV) when exposed
to external fluid flow (Blevins, 1990). The vibrations are a result of the fluctuating lift and drag forces
associated with flow separation and vortex shedding. Depending on the incoming flow and structural prop-
erties, significant dynamic stress may occur, causing fatigue damage accumulation which over time may lead
to structural failure. Understanding and being able to predict VIV in realistic environmental conditions is
therefore important to ensure the safety of slender structures.

A considerable amount of work has been done to increase the understanding of VIV, as reflected in
the reviews by Sarpkaya (2004), Williamson and Govardhan (2004), Bearman (2011) and Wu et al. (2012).
As the equations of motion governing viscous flow are difficult to solve, experiments have been the most
important source of new insight. Examples of typical experiments are free vibration of elastically mounted
rigid cylinders (Feng, 1968; Vikestad, 1998; Govardhan and Williamson, 2000; Jauvtis and Williamson, 2004)
and cylinders undergoing forced motions (Sarpkaya, 1978; Moe and Wu, 1990; Morse and Williamson, 2009;
Aglen and Larsen, 2011; Yin and Larsen, 2012). Experiments with long flexible structures have also been
performed, both under controlled laboratory conditions (Chaplin et al., 2005; Trim et al., 2005; Huera-
Huarte et al., 2014) and in more realistic field environments (Huse et al., 1998; Vandiver et al., 2006). These
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experiments focused on various flow situations such as uniform, sheared and stepped current, and in all
cases the incoming flow was essentially stationary, i.e. constant in time.

In some situations, the relative current velocity may be non-stationary, either due to movement of the
structure or oscillations in the incoming flow itself. For example, a riser connected to a floating platform
will oscillate as a result of the wave-induced motions of the floater. The relative flow velocity caused by the
riser moving back and forth in the water may cause vortex shedding and VIV if the motion amplitude is
sufficiently large. VIV of an elastic cylinder in oscillating flow was studied experimentally by Fu et al. (2014).
They found that the structure vibrated significantly due to vortex shedding, and noted some important
differences compared to stationary flow VIV. For instance, they observed a characteristic developing process
with vibrations continuously building up and dying out. VIV of spring mounted rigid cylinders in oscillating
flow has previously been studied by several researchers such as Sarpkaya (1979) and Sumer and Fredsøe
(1988).

In light of these experimental studies, and the fact that oscillating flows are relevant in several practical
applications, the need for a mathematical model able to predict VIV in oscillating flows becomes evident.
One possibility is to solve the Navier-Stokes equations numerically, but the required computational effort is
generally large. The semi-empirical frequency domain methods VIVA (Triantafyllou et al., 1999), SHEAR7
(Vandiver and Li, 2005) and VIVANA (Larsen et al., 2009) are more efficient, but can only predict VIV
in stationary flows. As illustrated by Chang et al. (2003), the wake-oscillator can be used to simulate
VIV in time domain for unsteady flow situations, but no comparison with experiment was included in this
study. Liao (2001) was able to predict VIV in unsteady flow based on a relationship between an equivalent
reduced damping and the resulting vibration amplitude. Recently, Resvanis (2014) proposed a dimensionless
parameter which can be used to determine if the response in unsteady flow will be similar to the response
in steady flow.

An alternative method for simulating VIV in time domain was proposed by Thorsen et al. (2014a). In
this semi-empirical method, the fluid forces are calculated based on the incoming flow velocity and the
motion of the cross-section. The special feature is how synchronization between the vortex shedding and
cylinder motion is taken into account. It has been shown that the model provides realistic results for several
different cases, including flexible cylinders in uniform, sheared and stepped current (Thorsen et al., 2014b,
2015). The formulation includes no restriction on the time variability of the incoming flow velocity, which
means it is theoretically suited for simulating VIV in oscillating flows. With this in mind, the outline of
the present paper is as follows: Firstly, the original model (Thorsen et al., 2014a) is slightly modified to
improve the prediction accuracy in stationary flows. Secondly, the improved model is used to simulate a
flexible cylinder in oscillating flow. The experiment by Fu et al. (2014) is used for comparison, allowing for
direct assessment of the prediction accuracy. Finally, the model is used to explore the effect of changing
certain key parameters. For instance, the reduced velocity is increased beyond what was considered in the
actual experiment, resulting in the appearance of complex vibration patterns.

2. Time domain VIV model

2.1. Hydrodynamic force model

A stationary cylinder in an incoming undisturbed flow is subjected to time varying forces. The force
component parallel to the flow is called drag, while the perpendicular component is named lift. Due to the
vortex shedding process, the lift force oscillates with a frequency fs = StU/D called the Strouhal frequency,
where D is the cylinder diameter and U is the velocity of the flow. The Strouhal number St is generally a
function of the Reynolds number and the surface roughness of the cylinder, but in the subcritical Reynolds
number range, St is nearly constant and close to 0.2 (Norberg, 2003). If the cylinder is flexible, it will
vibrate as a result of the oscillating fluid forces, and the movement of the cylinder alters the surrounding
flow and the corresponding fluid forces. One of the most important effects is that the vortex shedding may
synchronize with the cylinder motion, such that the frequency of the lift force deviates from the expected
Strouhal frequency. In addition, there will be fluid resistance (damping) and added mass effects due to the
velocity and acceleration of the cylinder.
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The hydrodynamic force model used here was first presented by Thorsen et al. (2014a). Some minor
modifications were introduced (Thorsen et al., 2015), providing the starting point for the present paper.
In these previous studies, hydrodynamic damping was modeled using a linear and quadratic term, and the
empirical coefficients were found by minimizing the difference between this model and the model given by
Venugopal (1996). Although this was quite successful, a tendency to over-predict the cross-flow vibration
amplitude in uniform flow and under-predict it in linearly sheared flow was seen (Thorsen et al., 2015),
which indicates that the model can still be improved. With this in mind, a new damping model is developed
here, using actual measurements to adjust the empirical coefficients. As the total energy transfer between
fluid and structure is determined from the energy delivered by the vortex shedding process and the energy
subtracted by the hydrodynamic damping, altering the damping model will require a change in the excitation
model to ensure that the net power transfer is physically correct. This is addressed further in section 3.

It should be pointed out that the new developments described in this section are based on data from
experiments performed in stationary incoming flow. Hence, the model is directly tuned to accurately pre-
dict vortex-induced vibrations in stationary flows. As there are no mathematical restrictions on the time-
variability of the incoming flow, it is straightforward to apply the model in oscillating flows as well. However,
an oscillating flow will introduce some physical changes which are not taken into account in the model. Most
importantly, the flow meeting the cylinder is no longer undisturbed, but contains previously shed vortices.
In this context, an interesting question is: Can VIV in oscillating flows be predicted based on data from
stationary flow VIV? An attempt to answer this question is made in section 4.

2.1.1. Cross-flow hydrodynamic force

Hydrodynamic damping (or drag) on circular cylinders has been extensively studied, see e.g. Sarpkaya
(2010). For the present application, trying to develop a model which reproduces the true damping exactly
in every situation would be disadvantageous, because such a model would be very complicated, and perhaps
unrealizable without resorting to direct numerical simulation of the Navier-Stokes equations. A pragmatic
point of view is therefore adopted, trying to find a damping model which is sufficiently accurate to represent
the energy extraction in vortex-induced vibrations, while being applicable in a computationally efficient time
domain simulation.

x

y

U

Figure 1: Cylinder with incoming flow and coordinate system definition.

Consider a cylinder cross-section with diameter D in an incoming undisturbed flow of velocity U and
density ρ. Let the x-axis point in the direction of the flow, and the y-axis in the direction normal to the
flow, as seen in figure 1. The origin is positioned at the center of the cylinder, such that y corresponds to the
cross-flow displacement away from the position of static equilibrium. In the previous papers on this model,
hydrodynamic damping was modeled using a linear and quadratic term. However, the accuracy is found to
increase if the linear term is dropped, and the cross-flow hydrodynamic damping is now expressed as

Fd,y = −1

2
ρDCd,y|ẏ|ẏ, (1)

where ẏ is the cross-flow velocity of the cylinder. A crucial step is to find an appropriate Cd,y. If U = 0,
we have an oscillating cylinder in still water, which with respect to the drag force is equivalent to a fixed
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cylinder in an oscillating flow. This case has been studied by Sarpkaya (1986), and it is found that Cd,y

depends strongly on the Keulegan-Carpenter number (KC), or equivalently, the ratio between the oscillation
amplitude and the cylinder diameter. For simplicity, it is assumed that the damping coefficient can be
expressed as a linear function of y0/D over the relevant range, i.e. Cd,y = a0 + a1y0/D, where y0 is the
cross-flow amplitude of vibration. To find the appropriate values of a0 and a1, damping coefficients from
still-water decay tests are utilized (Vikestad et al., 2000).

It is essential that the energy loss caused by the drag force given in equation (1) is the same as measured
in experiments. If the energy loss is equal, so is the average power extracted by the damping force over one
oscillation period. This can be expressed as:

Ẇ d,y =
1

T

∫ T

0

Fd,y ẏ dt, (2)

where T = 2π/ω is the period. Inserting the damping force from equation (1) using Cd,y = a0 + a1y0/D
and ẏ = ωy0 cosωt, the following result is obtained:

Ẇ d,y = − 1

2T
ρD(a0 + a1

y0
D

)

∫ T

0

|ẏ|ẏ2dt = − 8

12π
ρD(a0 + a1

y0
D

)ω3y30 . (3)

Vikestad et al. (2000) expresses damping as a linear function of velocity, Fd,y = −cẏ, and reports the
damping coefficient c as a function of oscillation amplitude. Inserting the linear damping formulation in
equation (2) gives

Ẇ d,y = − 1

T

∫ T

0

cẏ2dt = −1

2
cω2y20 . (4)

Ideally, the right hand side of equations (3) and (4) should be equal for all oscillation amplitudes when
c is the amplitude dependent damping measured in experiments. The method of least squares is used to
find the values of a0 and a1 that minimize the sum of the square differences, resulting in a0 = 0.31 and
a1 = 0.89. The power loss based on Vikestad’s measurements and the present model is shown in figure 2.
The results from the old damping model (Thorsen et al., 2014a) is also shown, and it is seen that the new
model provides much better agreement with the experiment.

To investigate the performance when U 6= 0, the model is used to simulate the hydrodynamic damping
force on a cylinder oscillating in the cross-flow direction with frequency f at a reduced velocity, Ur = U/(fD)
of 3 and 10, which is below and above the positive excitation zone respectively. The resulting lift coefficient in
phase with cylinder velocity is compared to forced vibration experiments by Morse and Williamson (2009) in
figure 3. It is seen that the agreement between the model and experiments is very good, which is somewhat
surprising due to the absence of the incoming flow velocity in the model. It is also seen that the new
formulation gives a much better description of the hydrodynamic damping than the old model (Thorsen
et al., 2014a). Based on the results in figures 2 and 3 it is concluded that equation (1) combined with
Cd,y = 0.31 + 0.89y0/D yields a good approximation of the hydrodynamic damping in still water as well as
for cross-flow motion at low and high reduced velocities.

The cross-flow excitation and added mass force is modeled according to Thorsen et al. (2015), and the
total cross-flow hydrodynamic force is thereby given as:

Fy =
1

2
ρDU2Cv cosφexc,y −

1

2
ρDCd,y|ẏ|ẏ − ρ

πD2

4
ÿ. (5)

The magnitude of the excitation force is determined by the dimensionless coefficient Cv, which is a function
of the cross-flow amplitude ratio, y0/D. The fluctuations of the excitation force due to the vortex shedding
process is taken into account through the time variability of the phase φexc,y, which is coupled to the motion
of the cylinder through the equation:

dφexc,y
dt

= H(φẏ − φexc,y). (6)
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Figure 2: Average power loss (in Watts per unit length of cylinder) due to hydrodynamic damping in still water as a function
of non-dimensional vibration amplitude y0/D. The dots represent the measurements (Vikestad et al., 2000) and the solid line
is the present model. The power loss predicted by the old damping model (Thorsen et al., 2014a) is shown with a dashed line.

Here, φẏ is the instantaneous phase of the cylinder’s cross-flow velocity, and H is a function of φẏ−φexc,y, i.e.
the phase difference between the velocity and the excitation force itself. Equation (6) allows the frequency
of the force to vary such that the force may synchronize with the velocity of the cylinder, provided that
the frequency of motion is within the right range. The function H is shown in figure 4 in non-dimensional
frequency form, f̂ = HD/(2πU). It is seen that the non-dimensional frequency of the excitation force may
vary between approximately 0.1 and 0.26, which means that synchronization between the excitation force
and motion can occur only if the frequency of motion is within this range.

2.2. Structural model

The elastic cylinder is modeled using finite elements. An example structural model and coordinate system
definition is shown in figure 5. Only cross-flow (y-direction) displacements are considered, and the structure
is modeled using linear beam elements based on classical beam theory. The stiffening effect from tension is
included, such that the element stiffness matrix consists of an elastic (bending) and an initial stress (tension)
contribution. The element mass matrix is established using a consistent mass formulation, including both
the structural and the hydrodynamic added mass term 0.25ρπD2 (see equation 5). Assembling the element
contributions, the equation of motion for the structural system reads

Mr̈ + Cṙ + Kr = F (7)

where M is the mass, C is (structural) damping, K is stiffness, F is the hydrodynamic force vector and
r is the structural degrees of freedom. The vector F is established by evaluating the hydrodynamic force
per unit length at the individual nodes (as described in section 2.1, see equation (5)). Note that the added
mass term is included in the mass matrix, and not in F. Equation (7) is solved step by step in time domain
using the Newmark-β method with coefficients γ = 0.5 and β = 0.25. The time step length corresponds to
100 steps per oscillation cycle, based on the expected vibration frequency. This is found to be sufficient, as
decreasing the time step size does not affect the results.

2.3. Amplitude estimation

The hydrodynamic excitation and damping forces depend on the amplitude of vibration. This will
generally vary along the structure and in time, and must be extracted from the simulated response as the
solution progresses. The vibration amplitude at any node is initially calculated as:

y0 =
1

2

∫ t2

t1

|ẏ|dt, (8)
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Figure 3: Lift coefficient in phase with cylinder velocity as a function of y0/D. The circles and squares are from experiments
by Morse and Williamson (2009), with Ur = 3 and Ur = 10 respectively. The corresponding values predicted by the present
damping model are shown with solid lines, and the results obtained with the old damping model are shown with dashed lines.

where ẏ is the cross-flow velocity of the node, and t1 and t2 is the time of the two previous zero-crossings of
ẏ. The rationale behind equation (8) is that the cylinder travels a distance of 2y0 in the cross-flow direction
between each zero-crossing of ẏ, assuming that the vibration signal is narrow-banded. A problem with this
method is that the amplitude (at a given node) is not a smooth function of time. It can only be updated
when a zero-crossing of the velocity occurs, and remains constant between zero-crossings. The sudden
change occurring when y0 is updated may in turn cause a spurious impulse load on the structure, as the
hydrodynamic forces change. To overcome this numerical problem, a smoothed amplitude y∗0 is calculated
according to the following differential equation:

dy∗0
dt

= ka(y0 − y∗0), (9)

using y∗0(0) = 0. The smoothed amplitude is then used to evaluate the hydrodynamic coefficients, ensuring
that the resulting forces along the structure are smooth, continuous functions of time. The numerical value
of ka determines how rapidly the smoothed amplitude is allowed to change.
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Figure 5: Example of finite element model showing the coordinate system definition and incoming current.

3. Optimizing hydrodynamic excitation force model

In the present hydrodynamic force model, the magnitude of the cross-flow excitation force depends on
the dimensionless coefficient Cv, which is a function of the amplitude ratio y0/D. In the previous papers
(Thorsen et al., 2014a,b, 2015), this function was found using the excitation coefficient from the VIVANA
database (Larsen et al., 2009). However, a better approach may be to directly utilize data from experiments.
Therefore, the strategy used here is to simulate the vortex-induced response of an elastic cylinder in a series
of experiments and modify Cv(y0/D) until the agreement between the simulations and experiments is as
good as possible. For this purpose, data from the Norwegian Deepwater Programme (NDP) Riser High
Mode VIV tests (Braaten and Lie, 2004; Trim et al., 2005) is utilized. In this experimental campaign, a 38
meter long riser model was towed through the Ocean Basin Laboratory at the Norwegian Marine Technology
Research Institute (MARINTEK). The riser was tested in both uniform and sheared flow, where the effective
current velocity increased linearly from zero to maximum along the riser length. The maximum velocity was
varied from 0.3 m/s to 2.4 m/s. The physical properties of the riser model are given in table 1. The riser
was equipped with strain gauges measuring the cross-flow strain at 24 locations along the model, and these
measurements are used for comparison with the present model.

It is important to recall that the actual vortex-induced response consists of a fundamental frequency
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Table 1: Physical properties of the NDP riser

Length (L) 38 m
Diameter (D) 0.027 m
Mean tension (T ) 4000− 6000 N
Bending stiffness (EI) 599 Nm2

Mass per unit length (m) 0.933 kg/m

component, as well as higher harmonic frequencies (Vandiver et al., 2006; Modarres-Sadeghi et al., 2010).
As the model includes only the fundamental frequency response, the higher harmonic components in the
experimental data are removed by filtering, such that the simulations are compared to the measured funda-
mental frequency response only. An example of the measured cross-flow strain before and after removing the
higher harmonic components is shown in figure 6. To quantify the prediction error for a given measurement,
the maximum value of the root-mean-square (r.m.s.) of strain in each test is used. Thereby, the prediction
error for a specific test is

ei = σ̂max,i − σmax,i, (10)

where σmax,i is the maximum r.m.s. of strain in test number i, and σ̂max,i is the corresponding prediction.
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Figure 6: Example of measured strain before and after removal of higher harmonic components. The time series is from a
uniform flow test with U = 2.0 m/s, measured at the position of maximum r.m.s. strain.

To find the best possible Cv(y0/D), the curve is parametrized such that the problem is reduced to finding
the optimal set of parameters. The parameters are the coordinates of the maximum point (p1) and the zero-
crossing point (p2). Between the specified points, the curve is described by second order polynomials. It
is also assumed that Cv(y0/D) is either positive or zero (not negative). An optimization task may then be
formulated, where the goal is to minimize the sum of the square errors,

∑
e2i . This is done by simulating all

the test cases (22 uniform and 22 sheared flow tests), and systematically varying the coordinates of p1 and p2
until the minimum error sum is found. The MATLAB implementation of the Nelder-Mead simplex method
(Lagarias et al., 1998) is used to search for the optimal parameters. The curve which is found to provide the
minimum prediction error is shown in figure 7, and the predicted maximum r.m.s. of the cross-flow strain
is compared to the measurements in figure 8a (uniform flow) and 8b (sheared flow). The maximum r.m.s.
of the measured total strain (including higher harmonics) is also shown for comparison.

With reference to figures 8a and 8b it is evident that the model is not perfect, even though an optimal
excitation curve has been applied. The optimization of Cv(y0/D) was performed considering 44 cases
simultaneously, but the resulting curve is not necessarily the best for each case. This suggests that the
underlying physical process may be viewed as stochastic, such that the optimal excitation curve found
here represents an average, or expected value of Cv(y0/D). However, considering the simple formulation of
the model and the complicated problem at hand, the overall agreement is satisfactory. To illustrate more
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Figure 7: Optimal Cv as a function of y0/D.

thoroughly how the model performs, the r.m.s. of the cross-flow strain along the riser is shown for three
selected cases in figure 9 (uniform flow) and 10 (sheared flow). The spectrum of the measured and simulated
strain (at the location of the maximum r.m.s. of strain) is also shown. It is seen that the measurements
contain higher harmonics around 3 times the fundamental frequency. These are not included in the model,
but the fundamental frequency is predicted with good accuracy.
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(b) Sheared flow

Figure 8: Maximum r.m.s. of cross-flow strain for all cases included in the optimization, shown as a function of the incoming
flow velocity (for shear flow, U is the maximum flow velocity). The results based on measured total strain are shown as circles
and those based on fundamental frequency strain as squares. The simulated results are shown as dots connected with a solid
line.
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(a) U = 0.5 m/s
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(b) U = 1.0 m/s
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Figure 9: Uniform flow results: To the left is the r.m.s. of cross-flow strain along the riser for three different cases. Red circles:
total measured strain, blue squares: measured fundamental frequency strain, solid line: strain from simulation. To the right is
the power spectrum of cross-flow strain at the location of maximum r.m.s. strain. Red is measured and blue is simulated.
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(b) U = 1.0 m/s
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Figure 10: Sheared flow results: To the left is the r.m.s. of cross-flow strain along the riser for three different cases. Red circles:
total measured strain, blue squares: measured fundamental frequency strain, solid line: strain from simulation. To the right is
the power spectrum of cross-flow strain at the location of maximum r.m.s. strain. Red is measured and blue is simulated.
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4. Flexible cylinder in oscillating flow

4.1. Overview

An experimental investigation of VIV in oscillating flow was performed by Fu et al. (2014). These
experiments were conducted in the ocean basin at Shanghai Jiao Tong University (SJTU), and consisted of
a flexible cylinder being towed horizontally with a prescribed oscillating motion. The oscillation amplitude
and period was varied, such that the cylinder experienced oscillating flow with different combinations of
KC numbers and maximum reduced velocities, Ur,max. Denoting the amplitude of the prescribed oscillating
motion as Am, the KC number may be defined as

KC =
UmaxT

D
=

2πAm

D
, (11)

where Umax is the maximum velocity of the incoming oscillating flow and T is the corresponding period.
The maximum reduced velocity may then be expressed as

Ur,max =
Umax

f1D
=

2πAm

Tf1D
=

KC

Tf1
, (12)

where f1 is the lowest natural frequency of the cylinder in still water. Key properties of the test cylinder are
given in table 2, and a simplified overview of the experimental set up is shown in figure 11. At both ends,
the cylinder was attached to universal joints, allowing free rotation around the x- and y-axis (ref. figure
5). A large number of cases were included in the experiments, with KC numbers between 26 and 178 and
maximum reduced velocities between 4 and 7.9. The model was equipped with strain gauges measuring
the cross-flow strain at 7 equally spaced positions along the length. As only lower modes (mode 1-2) were
excited, the number of measuring points are sufficient to perform modal reconstruction of the displacements,
as described by e.g. Lie and Kaasen (2006).

Table 2: Physical properties of the test cylinder

Length, L 4 m
Diameter, D 0.024 m
Mass per unit length, m 0.69 kg/m
Mass ratio, m/(0.25ρπD2) 1.53
Bending stiffness, EI 10.5 Nm2

Pretension, T 500 N
Structural damping (in air) 1.5 %

4.2. Simulation and comparison with experiment

To test how the present simulation model performs at predicting VIV in oscillating flows, the model is
used to recreate the SJTU experiments. Some simplifications are introduced: The small displacements due
to mean drag and weight are neglected. Furthermore, the oscillatory motion is transformed to an oscillating
incoming current, meaning that the boundary conditions of the model is zero displacement (but free rotation)
at both ends. This is possible because the inertial forces associated with the oscillatory motion are small
compared to the vortex-induced forces. In addition, the small fluctuations in tension are neglected and a
constant T = 500 N is used. Recall that the model was tuned to stationary flow measurements, and no
changes in the hydrodynamic modeling are introduced. The results will therefore clearly show whether or
not it is reasonable to predict VIV in oscillating flow based on data from stationary flow VIV.

To investigate the model performance at different KC numbers and reduced velocities, four cases are
considered as shown in table 3. In Case 1 and 2 the KC number is low, meaning the cylinder travels a
relatively short distance in one direction, before it turns back into its own wake. Hence it is expected that
previously shed vortices are still present in the wake, which will affect the lift force on the cylinder. Also,
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x = Am sin(2πt/T )

L

D

Figure 11: Simplified overview of the SJTU experimental set up.

the number of generated vortices per flow period is low. In case 3 and 4 the KC number is increased to 178.
In these cases, the cylinder travels significantly longer between each flow reversal, meaning the situation is
more similar to a steady flow. In addition, different values of the reduced velocity are considered. The higher
value (Ur = 6.5) corresponds to the point where the maximum vibration amplitude is expected, based on
stationary flow observations (see e.g. Sumer and Fredsøe (1997)). The lower value is included to see how
the model performs when the lock-in situation is less perfect.

Table 3: Test cases used for comparison.

Case No. Am T KC Ur,max

1 0.12 m 2.5 s 31.4 4.7
2 0.12 m 1.8 s 31.4 6.5
3 0.68 m 16.5 s 178 4.0
4 0.68 m 10.2 s 178 6.5

The simulation results are shown in figures 12-15 together with the corresponding experimental results.
Starting with case 1, it is seen that the cylinder vibrates at mode 1, i.e. one half-wave along the cylinder
span. The measured response consists mainly of a single dominating frequency component at approximately
2.5 Hz, but lower frequencies are also present, causing the overall response to appear slightly irregular. The
simulated response is more regular, but the dominating frequency and amplitude is well captured. Due to
the low KC number, there is not much time for the vibration amplitude to diminish between periods with
high flow velocity. Therefore, the response appears almost stationary, which is also seen in the simulation.

For case 2, the response is similar to case 1, but the amplitude is larger as a result of the increased
reduced velocity. As the reduced velocity is close to the ideal value for synchronization between the vortex
shedding and the natural frequency of the structure, the measured response is more regular than in case
1, and contains essentially only a single frequency component around 2.8 Hz. This is also seen in the
simulations, which reproduces both the amplitude and frequency with good accuracy. Again, the response is
almost stationary in time, as the flow velocity increases to a level sufficiently high for positive power transfer
between the fluid and structure, before the vibration amplitude has decreased notably.

Moving on to case 3, the effect of increasing the KC number is clearly illustrated. The flow velocity now
changes slowly compared to the vibration frequency, causing the amplitude to decay significantly during
periods of low incoming flow velocity. This is seen both in the experiment and the simulation. The frequency
and amplitude are rather accurately predicted, although the amplitude is slightly larger than measured. The
building-up and dying-out effect is realistically reproduced in the simulations.
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In case 4, the KC number is the same as for case 3, but the maximum reduced velocity is closer to the
point of maximum vibration amplitude. This means the incoming flow velocity is large enough to cause
positive excitation a larger fraction of the time. It is seen that as the flow velocity increases, the vibration
amplitude builds up rapidly, before a maximum value is reached. The vibration continues at this constant
amplitude for some time, before the flow velocity reduces to a level where vortex shedding no longer can
excite the structure. The ongoing process of ”building-up”, ”lock-in” and ”dying out” was described by Fu
et al. (2014), and is clearly seen in both the experiment and simulation. An interesting feature is that the
amplitude builds up faster than it decays, which is also captured by the model.

To summarize the comparison in figures 12-15, it has been shown that the model is able to predict cross-
flow VIV of a flexible cylinder for KC numbers 31 and 178. For KC = 31, the number of vortex shedding
periods between flow reversals is low, approximately 3. Hence, one would expect the incoming flow to be
significantly disturbed by previously shed vortices. It is therefore somewhat surprising that the simulations
are seen to reproduce the observed behavior quite accurately, even though the hydrodynamic force model
was initially adjusted according to data from stationary flow VIV experiments. This suggests that the effect
of the disturbed incoming flow is small (at least for the KC numbers considered here), and that the relevant
hydrodynamic forces can be found using the same mathematical description as in stationary flows, if the
time variability of the incoming flow velocity is taken properly into account.
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Figure 12: Case 1 results. The top row shows the incoming current velocity U as a function of time. The row below shows the
normalized cross-flow displacement y/D in time and space. The next row shows y/D at the mid-span, i.e. at z = 2 m. At the
bottom is a wavelet contour plot of the vibration energy at the mid-span, showing the frequency content over time.
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Figure 13: Case 2 results. The top row shows the incoming current velocity U as a function of time. The row below shows the
normalized cross-flow displacement y/D in time and space. The next row shows y/D at the mid-span, i.e. at z = 2 m. At the
bottom is a wavelet contour plot of the vibration energy at the mid-span, showing the frequency content over time.
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Figure 14: Case 3 results. The top row shows the incoming current velocity U as a function of time. The row below shows the
normalized cross-flow displacement y/D in time and space. The next row shows y/D at the mid-span, i.e. at z = 2 m. At the
bottom is a wavelet contour plot of the vibration energy at the mid-span, showing the frequency content over time.
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Figure 15: Case 4 results. The top row shows the incoming current velocity U as a function of time. The row below shows the
normalized cross-flow displacement y/D in time and space. The next row shows y/D at the mid-span, i.e. at z = 2 m. At the
bottom is a wavelet contour plot of the vibration energy at the mid-span, showing the frequency content over time.
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4.3. Effect of reduced velocity and mass ratio

The comparison in the previous section indicates that the hydrodynamic force model includes the most
relevant physical effects, and it is therefore fair to assume that this remains true when external parameters
such as incoming flow velocity and structural mass are changed. In the experiments by Fu et al. (2014),
the magnitude of the relative flow velocity was such that mainly the first natural mode of the structure was
excited by vortex shedding (some participation of mode 2 was also seen). Increasing the velocity further could
reveal some interesting phenomena. For instance, if the maximum flow velocity corresponds to excitation of
a high mode, then a number of lower modes may be excited before the maximum flow velocity is reached.
In such cases it is not clear how the response will look like, and the present model is utilized to investigate
this.

4.3.1. Example 1: High reduced velocity

The KC number and other parameters are the same as in the previously shown case 3 and 4, except the
maximum reduced velocity, which is increased to Ur,max = 32 to excite higher modes of vibration. Before
moving on to the simulation results, it is illustrated how the expected excitation frequency varies with time,
due to the oscillating flow velocity. A simple way to estimate the excitation frequency would be to assume
a constant non-dimensional frequency, and according to experiments (Gopalkrishnan, 1993), the energy

transfer is largest around f̂ = fD/U ≈ 0.17. Hence, the expected vibration frequency can be found from
the instantaneous flow velocity as f(t) = 0.17|U(t)|/D. This is shown in figure 16, where the 5 first natural
frequencies of the structure (in still water) are shown with dashed lines. As the flow velocity increases, it is
seen that the expected vibration frequency passes the three lowest natural frequencies, and finally exceeds
the fourth before it starts reducing. Hence one would expect the response to consist of modes 1-4.
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Figure 16: Expected vibration frequency, f = 0.17|U |/D, as a function of time (solid line). The dashed lines are the first 5
natural frequencies of the cylinder.

The simulation results are shown in figure 17. The complex pattern resulting from the continuously
changing mode and frequency is easily seen. The modal weight factors wn(t) for the first 5 modes are also
shown, giving a clearer picture of how the dominating mode varies with time. The modal weights are related
to the cross-flow displacement through the following equation:

y(z, t) =

∞∑
n=1

wn(t)ψn(z) =

∞∑
n=1

wn(t) sin(nπz/L). (13)

As seen in figure 17, mode 1 dominates in periods of low flow velocity. When the velocity increases, a
transition to mode 3 is seen, before mode 4 finally takes over. When the velocity has decreased sufficiently,
mode 3 and 4 dies out, and mode 1 starts to dominate once more. It is also seen that each oscillation
cycle (from one flow reversal to the next) is slightly different from the previous, meaning the response is not
periodic. Because the duration of one flow cycle is short relative to the first natural frequency, the response
at mode 1 does not have time to decay significantly, even when the flow velocity is too high to excite this
mode. Hence, the response in periods with high flow velocity is a superposition of the previously activated
mode 1 together with mode 3 or 4 which is currently being excited. This causes the maximum cross-flow
displacement to become somewhat larger than in the previously considered cases containing only mode 1.
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4.3.2. Example 2: High reduced velocity combined with high mass ratio

The mass ratio m∗ = m/(0.25ρπD2) of the cylinder studied by Fu et al. (2014) was 1.53. As mass ratio
is identified as one of the dimensionless parameters important to the VIV response of cylinders in stationary
flow (Williamson and Govardhan, 2004), it is of interest to investigate how this parameter affects VIV in
oscillating flows. With this in mind, another simulation is performed, where the mass of the cylinder is
increased by a factor of 5. This gives a mass ratio of 7.65, corresponding to a solid steel cylinder. The KC
number and maximum reduced velocity are kept the same as in example 1, meaning that the flow may still
potentially excite modes 1-4, as illustrated in figure 16 (although the numerical values of the frequencies are
changed due to the increased mass).

The simulation results are shown in figure 18. In comparison to the low mass ratio case, the response
appears less complicated. The cross-flow displacement is almost single-moded with mode 3 clearly dominat-
ing. The amplitude varies only slightly, with maximum values occurring around the time of maximum flow
velocity, and minimum values when U is close to zero. The frequency content as seen in the wavelet contour
plot is nearly constant in time, with the energy concentrated around 4.7 Hz, which is close to the 3rd natural
frequency. The maximum vibration amplitude is smaller than in the previous example, and the maximum
y/D is approximately 0.7. These results, and particularly the differences between example 1 and 2 can be
qualitatively explained as follows. Due to the increased mass and inertia, the cylinder is more resistant to
change in the vibration state, and therefore continues at the same mode and frequency even when this is no
longer being excited by vortex shedding. Furthermore, as the vibration frequency is almost constant, there
will be periods of time when the vortex shedding is unable to synchronize with the cylinder motion, and the
energy transfer from fluid to structure will hence be reduced compared to example 1. This explains why the
maximum vibration amplitude is smaller for the high mass ratio case.
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Figure 17: Simulation results for example 1. At the top: incoming flow velocity U as a function of time. Below is a contour
plot of the normalized cross-flow displacement y/D in time and space. The next figure shows the modal weight factors, wn(t),
for mode 1 to 5. At the bottom is the wavelet contour plot of the energy-density of the cross-flow displacement at z = 0.5 m.
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Figure 18: Simulation results for example 2. At the top: incoming flow velocity U as a function of time. Below is a contour
plot of the normalized cross-flow displacement y/D in time and space. The next figure shows the modal weight factors, wn(t),
for mode 1 to 5. At the bottom is the wavelet contour plot of the energy-density of the cross-flow displacement at z = 0.5 m.
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5. Conclusions

The hydrodynamic force model developed by Thorsen et al. (2014a) has been improved by introducing
a new damping formulation, with parameters obtained from experimental data. It is demonstrated that the
predicted damping corresponds well with actual measurements in still water and for cross-flow oscillations
in stationary flow at low and high reduced velocity. Furthermore, the excitation force model is optimized
through comparison with a series of tests with a flexible cylinder in uniform and sheared flow. In these
tests, the incoming flow was stationary, meaning that no information from VIV in oscillating flow was used
to construct the hydrodynamic force model.

The optimized model was used to simulate the cross-flow VIV of an elastic cylinder in oscillating flow
at different KC numbers and maximum reduced velocities. Comparison with experiments shows that the
model provides realistic results in terms of important characteristics such as frequency content, mode and
amplitude of vibration. For high KC numbers, the vibrations continuously build up and die out, which is
well captured by the simulations. This indicates that the relevant hydrodynamic forces in oscillating flow
can be found from empirical relationships obtained from experiments in stationary flow, at least for the KC
numbers considered in this study (31 and 178).

The model was also used to investigate the effect of increasing the maximum reduced velocity and mass
ratio of the flexible cylinder. When Ur,max = 32 and m∗ = 1.53, the dominating mode and frequency changes
continuously as the vortex shedding excites different natural frequencies depending on the velocity of the
incoming flow. This results in the appearance of a complex response pattern. In contrast, when the mass
ratio is increased by a factor of 5, the response is almost stationary with a single dominating mode. A
possible explanation is that the heavy cylinder is more resistant to change in the vibration state due to the
larger inertia.
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