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Abstract7

A method for simulating electrode reactions in channel flow is developed and

efficiently implemented in the symbolic algebra program MapleTM. The steady-

state convective diffusion equation for fully developed 2-D laminar (Poiseuille)

flow past one or more electrodes in a channel is considered for a charge-transfer

electrode reaction between two soluble species. The case where axial diffusion

(along the channel,  direction) is neglected and the diffusivities are equal has an

exact solution as an infinite series, in which each term is the product of an expo-

nentials in  and a confluent hypergeometric function in  (across the channel).

The practical implementation consists of evaluating a finite number of terms

and numerically evaluating the two parameters in each term. Sturm-Liouville

(eigenfunction) theory is used to reliably find the parameters for arbitrary val-

ues of the rate constants. Comparison is made with results from a commercial

software package that uses a finite-element method.
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Introduction10

The application of eigenfunction methods for the solution of convective-11

diffusion equations relevant to electrochemistry has a long history. The solution12

to the Graetz problem, which solves heat transfer to the walls of a tube with13

laminar flow, was given as an eigenfunction expansion as early as 1883, and an14

extensive treatment of the electrochemical version was given by Newman [1].15

In the context of mass transport in the rectangular channels that we consider16

here, Moldoveanu and Anderson solved the limiting current case in terms of17

a series of parabolic cylinder functions [2]. In these cases, the general case of18

arbitrary rate constants was not attempted, perhaps because a reliable way of19

locating the eigenvalues was not available. Recently, Schmachtel and Kontturi20

used eigenfunction methods to numerically solve chronoamperometry currents21

at the rotating disk electrode [3]. They considered the case of arbitrary rate22

constants and also showed that the case of quasireversible electrode reactions23

could be solved as easily as the case of irreversible reactions.24
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Figure 1: Notation. Flow is from left to right, with one or more embedded electrodes (bold)

in the bottom of the channel. Lower case variables are dimensioned, upper case variables are

nondimensionalized. The dashed line is the velocity profile (extending to infinite height) for

the Lévêque approximation.

Here we apply the eigenfunction expansion method to 2-D steady-state flow25

past electrodes in a channel, and compare with the more conventional finite-26

element (FE) method, as implemented in Comsol Multiphysics
R°
. The eigen-27

function solution is a weighted sum of functions, with the functions spanning28

across the channel and along the electrode. That is, it is a mesh-free method29

and so should give good accuracy at the beginning of the electrode, where there30

is a step change in boundary conditions and the current density is high. Fur-31

thermore, the concentration profile, once determined, can be easily manipulated32

term by term to find local current densities, average current densities, or col-33

lection efficiencies, without significant degradation in accuracy. The accuracy34

is determined by the number of terms processed, and calculation of additional35

terms allows the global error to be estimated. The case where axial diffusion36

(along the channel) is neglected has an exact solution as an eigenfunction ex-37

pansion and is investigated here.38

1. Theory39

We consider a solution of the steady-state diffusion-convection problem in a40

2-D channel with fully developed laminar (Poiseuille) flow. Notation is given in41

Fig. 1.The electrode reaction (1) between two solution species has the current42

density at a particular location at the electrode given by the usual rate law43

(2). The potential at the electrode is fixed, so the rate constants (m s−1) do44

not vary over the electrode surface. However, we allow the possibility of many45

electrodes along the wall of the channel, and the potential and rate constants46

may be different at each. The convective diffusion equation to be solved for47

each species is Eq. (3). We make the common assumption that the diffusivities48

of the two species are equal.49
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R
f
À
b

P+ e− (1)

() = () = fR( 0)− bP( 0) (2)

0 = 
2( )

2
− 4max

2
(− )

( )


  = RP (3)

Matching of the fluxes at the electrode surface to the reaction rate leads to

the boundary conditions (4) at the electrode surface. (The convective flux at

the walls is zero, so only the diffusive part needs to be considered.) The flux

at insulating sections between electrodes and at the top of the channel is zero,

Eqs. (5) and (6). The "initial" condition is that the concentrations take the

bulk values at a location 0 upstream of the first electrode, Eq. (7). In the

absence of axial diffusion, the solution only propagates downstream, and there

is no loss in taking 0 = 0 The measured current density is given by averaging

over the electrode surface, Eq. (8).

 (R( ))=0 = − (P( ))=0 = () (4)

(R( ))=0 = (P( ))=0 = 0 (5)

(R( ))= = (P( ))= = 0 (6)

(0 ) = b   = RP (7)

ave = ()

Z 

0

(R( ))=0 d (8)

As disscussed below, the quasireversible solution including the back reaction

can be simply derived from the irreversible solution with apparent rate constant

 = f + b, so we need only develop a numerical method for the irreversible

case. We change to dimensionless variables (see Fig. 1):  = ,  = ,

 = , ( ) = R( )
b
R,  = f,  =

¡
bR

¢
 and  =

4max = 6 where = ave = 2max3 is a Péclet number for

mass transfer. The convective diffusion equation and boundary conditions are

now

0 =
2( )

 2
− (1−  )

( )


(9)

(( ) )=0 = ( 0) (at electrode) (10)

(( ) )=0 = 0 (between electrodes) (11)

(( ) )=1 = 0 (top of channel) (12)

(0  ) = 1 (upstream) (13)

Writing ( ) =  ()( ) and rearranging gives Eq. (14), which shows

that the partial differential equation is separable. The general solution, Eq.

(15), is a superposition of products of exponential functions of  and functions
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of  that satisfy the differential equation (16).

1

 (1−  )( )

d2( )

d 2
=



 ()

d ()


= −2 (14)

( ) =

∞X
=1

 exp(−2)( ) (15)

00( )− 2 (1−  )( ) = 0 (16)

Here the prime refers to differentiation with respect to  , and ( ) is an eigen-50

function, i.e., a solution to Eq. (16) for  =  where the 
2
 are the eigenvalues.51

The eigenvalues are values of 2 in Eq. (16) that satisfy boundary conditions52

at the electrode surface. In all cases, the solutions ( ) of Eq. (16) are chosen53

to satisfy the zero-flux boundary condition Eq. (17) at the top of the chan-54

nel, which ensures that the concentration satisfies the zero-flux condition (12).55

The solutions ( ) are given in terms of confluent hypergeometric functions in56

Appendix A.57

0(1) = 0 (17)

Three subcases are considered depending on the type of boundary condition

at the  = 0 surface, i.e., the electrode surface or an insulating surface between

electrodes. Consider first the limiting current boundary condition, where the

concentration is zero at the electrode surface, Eq. (18). Solving this for  leads

to the series of values

(0) = 0 (18)


(∞)
 = 3819 11897 19924  (19)


(∞)
 ∼ (− 1

2
)R 1

0

p
 (1−  )

= 8 (− 12) (20)

where the ∞ denotes an infinite rate constant ( = ∞). Formula (20) for the58

eigenvalues is from Sturm-Liouville theory [4], and although it is an asymptotic59

formula for large , closer inspection shows that it works well also for small 60

This means that these values can be used as initial estimates for the numerical61

solver. More precisely, the solutions are bracketed between successive values of62

8.63

Consider now the boundary condition for an insulating section of the channel64

or for zero current at the electrode, where the flux is zero, Eq. (21). Here the65

eigenvalues are given by Eq. (22).66

0(0) = 0 (21)


(0)
 = 0 9052 17149 25191  ∼ 8(− 1) (22)

The last case is the Robin boundary condition of Eq. (23), where  is the

dimensionless rate constant. Here the eigenvalues satisfy the inequalities of Eq.
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(24).

0(0)−(0) = 0 (23)

8(− 1)  
(0)
  

()
  

(∞)
  8 (− 12) (24)

For all cases,  lies between 8( − 1) and 8( − 12). (For negative , a non-67

physical case, the  values lie between 8(− 12) and 8.)68

The coefficients  are determined by the "initial" concentration profile at69

 = 0, the upstream edge of the electrode. From Eq. (15), a given initial profile70

(0  ) = 0( ) (not necessarily (0  ) = 1) is a linear combination of the71

eigenfunctions ( ) and the coefficients can be found using the orthogonality72

of the eigenfunctions as73

 =

1R
0

 (1−  )0( )( ) d

1R
0

 (1−  )( )2 d

(25)

Once the numerical values of the  and  have been calculated for the chosen74

number of terms  , the series form of the concentration, Eq. (15), is easy to75

manipulate. For example, the dimensionless current density averaged over an76

electrode running from  = 0 to  = is77

ave =
1



Z 

0





¯̄̄̄
=0

d (26)

and may be calculated term by term, giving78

ave =




∞X
=1



2

£
1− exp(−2)

¤
0(0) (27)

where 0(0) may be evaluated using the differentiation rule Eq. (40).79

1.1. Multiple electrodes80

The case of multiple electrodes and gaps between them is handled similarly.81

The solution for the first electrode proceeds as described above, with 0( ) = 1.82

This solution at the downstream edge of the electrode is just used as the initial83

profile that replaces 0( ) in the solution of the next "segment". For example,84

a three-segment configuration might have segment 1 as an electrode between85

 = 0 and  = 1, segment 2 as an insulator between  = 1 and  = 2 with a86

no-flux boundary condition at  = 0 and then segment 3 as an electrode after87

 = 2. The segment 1 solution (1  ) = 1( ) is used as the initial profile88

for segment 2, and the segment 2 solution (2  ) = 2( ) is used as the initial89

profile for segment 3.90
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2. Methods91

2.1. Maple92

A procedure chsolve to implement the above algorithm was written in the93

symbolic algebra system MapleTM [5]. The code and examples of its use are94

available as supplementary material, see Appendix B. The procedure takes as95

inputs: (i) the numerical value of the non-dimensionalized rate constant. As96

above, "0" indicates the zero flux condition and "infinity" indicates the case of97

zero concentration at the electrode surface, (ii) the name of a procedure that98

evaluates the initial concentration profile 0( ), (iii) the value of , and (iv) the99

number of terms  required in the eigenfunction expansion (15). The output100

is a procedure that evaluates the dimensionless concentration as a function of101

 and  , which can then be plotted, differentiated or otherwise manipulated102

to produce derived quantities.103

The case of multiple segments is handled by giving the rate constant as a104

piecewise function of . In the single segment case,  can be left as a symbol,105

and then the output concentration and quantities derived for it can be plotted106

as a function of . For the multisegment case, the numerical value of  must be107

given; this restriction arises from the need to numerically evaluate the integrals108

in Eq. (25) to find the concentration profile at the beginning of second and109

subsequent segments.110

The limiting factor is the efficient numerical calculation of the integrals in111

Eq. (25). When the accuracy requested (via the "Digits" variable) is low,112

Maple works in hardware double precision arithmetic and uses the Numerical113

Algorithms Group routine "d01akc". For higher accuracy, Maple works in ar-114

bitrary precision arithmetic, and uses an adaptive Gaussian quadrature routine115

"_Gquad".116

2.2. Comsol117

The case of a single electrode of width  = 1 under limiting current condi-118

tions was also solved using Comsol Multiphysics
R°
[6], with the conditions cho-119

sen as close as possible to those used in Maple. To effectively non-dimensionalize120

the problem, the problem was solved in base SI units with the parameters , ,121

 and b set to unity. The problem was solved for both species using the PAR-122

DISO solver, and the  value was changed parametrically to get the solution123

at different flow rates. The outlet was put 10 electrode widths downstream of124

the electrode to eliminate the influence of the boundary condition. The outlet125

boundary condition is given in Eq. (??).126






= 0

To solve for the limiting current case, the rate constant  was set to a high127

value (1010) to effectively get a concentration of zero at the electrode. The128

surface concentration was verified post-calculation to be zero. Comsol does not129

allow the concentration at a point to have two values, as is the case for Maple at130
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the upstream edge of the electrode. To solve the problem as closely as possible to131

the Maple solution, the start of the geometry was set to 1/16000 of the electrode132

width upstream of the electrode. Here, the concentration was set to the inlet133

concentration,  = 1. This gives one mesh point (geometry determined) in134

distance between the concentration of 1 at the inlet to the concentration of 0135

at the electrode start. The absence of axial diffusion was achieved by using136

anistropic diffusivities with zero  components.137

The standard triangular meshing was used. A fine mesh was used at the138

inlet and along the electrode surface. This was set to 1/500 of the dimensionless139

diffusion layer thickness ∆ =  estimated in the Lévêque approximation, Eq.140

(28).141

∆ = 283 ()
13

(28)

for  = max, where max is the highest  value that is evaluated. The mesh142

was allowed to grow at a rate of 5% out from the inlet and electrode surface.143

3. Results144

Examples of the capabilities of this method are given here, with the calcu-145

lation details given in a Maple worksheet in the supplementary material, see146

Appendix B.147

3.1. Irreversible Reaction148

The case of  = f = 10 for  = 100 (Péclet number 167) is illustrated149

in Fig. 2. The consumption of the species at the electrode is seen, and its150

variation along the electrode surface. The increasing thickness of the diffusion151

layer is also evident, and by  = 2, the concentration at the top of the channel152

is significantly diminished from its initial value of 1. Small ripples in the 153

direction close to  = 0 are the Gibbs’ phenomenon, well known in Fourier154

theory, which is a special case of the Sturm-Liouville theory applicable here.155

3.2. Flow rate dependence of limiting current156

The limiting current density is found from the flux via Eq. (27), for the case

of the boundary condition ( 0) = 0 or Eq. (18). The series (27) has numer-

ical values of the  and  but  and  are still arbitrary, and so the limiting

current as a function of flow rate may be readily plotted and compared with

the Comsol results as in Fig. 3. For comparison, two approximate relationships

are also shown: (i), the limiting current given by the Levich equation, Eq. (29),

and (ii), the complete consumption or "thin layer" limit, Eq. (30).

ave(Levich) =
³
3432Γ (13)

´
( )

13
(29)

ave(thin layer) = 6 (30)

The Levich equation for limiting current assumes not only the absence of axial157

diffusion, but also the Lévêque approximation for the velocity profile (see Fig.158
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Figure 2: Concentration profile for an irreversible reaction. f = 10,  = 100. Series

evaluated to 40 terms.

Figure 3: Current density dependence on flow rate. Limiting current ( = 0) boundary

condition, for  = 1.  = 6 is a dimensionless flow rate. Comparison of Maple 40 term

eigenfunction solution (black line) and Comsol solution (red triangles). Main figure compares

these with the 13 dependence of the Levich approximation (blue line, Eq. (29)); inset

compares with complete consumption approximation (green line, Eq. (30)).
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1). The latter approximation is valid only when diffusion is confined to close to159

the electrode and this approximation should be approached at high flow rates.160

The current density tends to zero as  tends to zero at fixed  as predicted by161

Eq. (27). At the lowest flow rates, the reactant is completely consumed before162

it reaches the downstream edge of the electrode. In this case the total moles163

reacting per second at the electrode must equal the total moles per second164

entering the channel, which leads to the thin layer limit of Eq. (30). The165

behavior and comparison of the curves is further discussed below.166

3.3. Quasireversible reactions167

For the case where the redox reaction (1) is quasireversible with rate law (2),

we nondimensionalize similarly to before, assuming the diffusivities are equal

and that the product concentration is initially zero.

 = P
b
R (31)

− (( ) )=0 = (( ) )=0

= (f)( 0)− (b)( 0)

= f( 0)−b( 0) (32)

For the case of equal diffusivities, the principle of unchanging total concentration

applies [7], which means that R + P = bR everywhere in the channel, or

equivalently ( ) = 1−( ). Under this condition, it is possible to easily

derive the quasireversible solution from the irreversible one [8]. This means

that only one mass-transport problem needs to be solved. The quasireversible

concentrations are given by Eqs. (33) and (34), where 
(f+b)
ir means the

solution to the irreversible problem with rate constant f +b.

( ) = (f
(f+b)
ir ( ) +b)(f +b) (33)

( ) = 1− ( ) (34)

That is, the eigenfunction solution is found for boundary condition (23) with168

 = f +b and then substituted into these equations. Eq. (26) then gives169

the quasireversible current density. Examples of steady-state current potential170

curves calculated in this way are given in Fig. 4. The fast reaction case of o =171

100 can be checked against the behaviour expected for a reversible reaction, and172

the current density is indeed half the limiting value at 12 = o.173

If the product is initially present with concentration bP, then bR is replaced174

by bP+
b
R in the definitions of  and  and the revised rule is given by Eq. (35),175

where  = bR(
b
P + bR). An example is given in the supplementary material.176

( ) =

(f+b)
ir ( ) (f − (1− )b) +b

f +b

(35)
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Figure 4: Steady-state current potential curves. Quasireversible reaction,  = 05  = 1,

 = 100, 40 terms.

3.4. Collection efficiency177

The collection efficiency may be calculated as the ratio of the current at an178

upstream electrode where the reaction occurs under limiting current conditions,179

to the current at a downstream electrode where the reverse reaction occurs180

under limiting current conditions. First a two-segment calculation is carried181

out for the concentration  with boundary condition  = ∞ ( = 0) for the182

first segment (upstream electrode) and = 0 (zero-flux) for the second segment183

(gap between the two electrodes). The concentration  at the end of the second184

segment is calculated as 1 −  under the assumption that the diffusivities are185

equal, and this is then used as the initial concentration profile for the calculation186

of the concentration  for the third segment (second electrode) with boundary187

condition =∞ ( = 0). Integration of the local current densities over the two188

electrodes gives the two currents, whose ratio is the collection efficiency. Fig.189

5 shows an example where the electrode widths and the gap are all equal and190

 = 100. This collection efficiency here, 0.295, is higher than the value using191

the standard calculation, 0.250, which assumes the Lévêque approximation [9].192

This is because at this flow rate, a significant amount of the product has diffused193

across the channel, and its reflection back enhances the collection efficiency.194

10



Figure 5: Collection efficiency calculation. (a) Concentration of product. Limiting current

production at electrode between  = 0 and  = 1 and limiting current consumption at

electrode between  = 2 and  = 3 (40 term calculation). Contours are at 0.05, 0.15, ...,

0.95. (b) Local dimensionless current density along the channel, and calculation of efficiency

from the shaded areas.

11



4. Discussion195

4.1. Accuracy and convergence196

The limiting current case is the most difficult of the cases from a numerical197

point of view, and so we begin with a discussion of the results in Fig. 3. The198

Comsol results, intended as a verification strategy, do not agree with the Maple199

results using 40 terms. Increasing to 100 terms makes only a 0.3% difference200

at the highest flow rate shown on the plot. There appears to be a constant201

systematic error in the Comsol results. This is confirmed by looking at the low202

flow rate regime, where the Maple behaviour correctly gives ave = 6, but203

Comsol has a constant offset, and does not go to zero at zero flow rate, which204

is the correct limit in the absence of axial diffusion. This is attributed to the205

use of triangle meshes that do not align with the  and  directions, and lead206

to a small amount of "numerical diffusion" in the  direction even when axial207

diffusion was nominally precluded. Use of a rectangular mesh aligned with the208

 and  directions was attempted to solve this problem, but expanding meshes209

do not maintain alignment and fixed fine meshes run into memory limitations,210

and so this was strategy was not pursued further.211

Convergence issues of the eigenfunction method did become significant at212

higher flow rates than shown in Fig. 3, where the separation from the Levich213

line increased. Increasing the number of terms improved the situation, in that214

the point of divergence was delayed to higher flow rates, but ultimately it is215

simply more accurate to use the Levich fomula.216

For the more general case of finite rate constants, the accuracy of the method217

was investigated over a wide parameter space. A criterion for adequate conver-218

gence was taken as less than 0.1% change on increasing the number of terms219

by 10. It is difficult to prove that this represents absolute convergence, but it220

enables the trends to be found, and gives reasonable confidence that the results221

are correct at the 1% level. Parameters investigated were: (i)  from 101 to222

107 by factors of 10, and∞, (ii) numbers of terms from 10 to 100 in steps of 10,223

(iii)  values from 1 to 105 in a 1-3-10 sequence. This study led to the following224

conclusions:225

1. Convergence is easier to reach (at a lower number of terms) for lower 226

values.227

2. Convergence is faster at lower  values and/or lower .228

3. For  ≥ 105, the results for 10 or more terms are all within 0.1 % of the229

 =∞ value.230

4. For a given  value, the change from 90 to 100 terms leads to less than231

0.1 % change for all  values except for the two largest. The two largest232

 values only reach this criteria for the two smallest  values.233

5. The calculation time is mainly dependent on the number of terms used234

(and less on the  or  value), but this effect is small enough that 100235

terms can be practically calculated as a matter of routine. The calculation236

time for 100 terms was comparable to the Comsol calculation time.237
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Although Maple allows for arbitrary precision calculations, the hardware238

double precision calculations were found to be sufficient for 100 term calcula-239

tions, i.e., the accuracy is limited by the number of terms and not the accuracy240

of the calculation engine.241

For multisegment calculations, the calculation time for second and subse-242

quent segments was significantly higher than for the first segment, because of243

the large number of hypergeometric function evaluations needed in the integrals244

in the  coefficients, Eq. (25). This can be remedied by numerically fitting245

the concentration profile at the end of a segment to a suitable function, and246

using that as the initial concentration profile for the next segment. Strictly,247

this means that the guarantee of higher accuracy with more terms (provided248

by Sturm-Liouville theory) is invalidated. However, least-squares fitting of the249

concentration profile at 101 points across the channel to a degree 10 polyno-250

mial decreased the calculation time for the second segment to approximately251

the same time as the first segment without a noticeable change in accuracy (see252

the collection efficiency calculation in the supplementary material).253

4.2. Method assessment254

Most analytical solutions for concentrations or currents in channel electrodes255

have used the Lévêque approximation, and neglected axial diffusion, e.g., these256

are standard approximations in calculating collection efficiencies [9—11]. These257

approximations work best at fast flow rate and large channel heights. There258

has been some consideration of the effects of axial diffusion [1, 12—14], and more259

recently Amatore and coworkers [15] have mapped out the zone diagram for260

the various limiting and intermediate cases in terms of the parameters  and261

. The present work neglects axial diffusion but goes beyond the Lévêque262

approximation and considers the full velocity profile across the channel. This263

approximation works well for intermediate flow rates and small channel heights.264

[Need more comparison with literature here, or more specifiy crite-265

rion?]. The collection efficiency calculation above indicates that the error in266

using the Lévêque approximation for small channel heights can be significant.267

The present work indicates that extending the solution all the way across268

the channel is not significantly more difficult than the Lévêque approximation.269

Like the semidifferentiation approach of Oldham for planar electrodes [16] or270

the Laplace transform method that implements the far boundary condition, the271

present method exactly solves the problem across the channel and the reduces272

the problem to solving along the near surface of the channel. It is to be em-273

phasized that the eigenfunction expansion is an exact solution to the problem274

without axial diffusion, and the only approximation arises from the need to solve275

for the eigenvalues and coefficients numerically, and to terminate the series after276

a finite number of terms. There are standard methods for using eigenfunction277

expansions that may be used in problems that include axial diffusion, i.e., for278

elliptic partial differential equations [17], which will be explored in subsequent279

work. That is, the present confluent hypergeometic functions may be a suitable280

basis set for the more general case, but the complexity of the method will be281

significantly greater, and an iterative method may be required.282
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In terms of a numerical method, the eigenfunction expansion method used283

here has the advantage over FE or finite-difference methods that mesh optimiza-284

tion, with a strategy for finer meshes near electrodes and electrode edges, is not285

required. On the other hand, eigenfunction expansion methods are known for286

slow convergence. Perhaps not surprisingly, we find that the conditions that re-287

quire a fine, adaptive mesh for FE solution such as large flow rates, are also the288

conditions that require more terms for acceptable convergence in our method.289

Accurate convergence was possible for comparable computational expense as290

for the FE method, but the present method is algorithmically much simpler291

and the global error is more easily assessed. An important advantage of the292

present method is that a whole segment is solved at one time, so the complexity293

of the calculation is largely independent of the channel height or width of the294

electrode.295

In principal the present method did not require a symbolic algebra system296

for its implementation. Such systems allow arbitrary precision calculations, but297

this feature was not found to be necessary here. These systems do have an298

important advantage in processing the concentration profile into the required299

measurable quantities, such as average current density or collection efficiency.300

This processing typically involves differentiation or integration, which is done301

exactly by simple rules such as the differentiation rule (40), and does not degrade302

the accuracy of the calculation.303

Another advantage of these systems is that the numerical evaluation of the304

hypergeometric and exponential functions in the solution is deferred until they305

are needed. In Fig. 2, for example, Maple’s plot routine decides where to306

evaluate the concentrations, using more points in steeper regions of the plot.307

The numerical evaluation of these concentrations occurs in the plot routine308

itself, and not in the construction of the series solution. Therefore, there is no309

need for evaluate the solution over a fine grid of points just in case they might be310

required later. This is perhaps seen most clearly in the case of a single electrode,311

where the limiting current can be given as a function of an unspecified , and312

then this function is used to create Fig. 3.313

Coupled with the advances in computing speed, these advantages of sym-314

bolic algebra programs mean that reconsideration of algorithms such as the315

eigenfunction method demonstrated here may lead to competitive numerical316

methods with high accuracy that are simple to implement.317
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A. Solution of ODE for G(Y )324

The differential equation (16) has the general solution Eq. (36) with two325

arbitrary constants 1 and 2.326

( ) = 11( ) + 22( ) (36)

1( ) = exp ( (1−  )2)

× 11
¡
14− 16; 12; (2 − 1)24¢ (37)

2( ) = exp ( (1−  )2) (2 − 1)
× 11

¡
34− 16; 32; (2 − 1)24¢ (38)

Other notations for the confluent hypergeometric functions 11 (; ; ) are327

11
¡


; 
¢
or(  ) [18]. It is evident that 1( ) is symmetric (even) about328

 = 12 and 2( ) is antisymmetric (odd) about this point. Applying the329

no-flux boundary condition at the top of the channel, 0(1) = 0, allows deter-330

mination of one of the constants, and the other is chosen to scale the functions331

so that (1) = 1, with the result Eq. (39).332

( ) =
02(1)1( )−01(1)2( )
02(1)1(1)−01(1)2(1)

(39)

The derivatives with respect to  are readily evaluated using the differentiation333

rule334

11 (; ; ( ))
0
=




11 (+ 1; + 1; ( )) 

0( ) (40)

According to Sturm-Liouville theory, the eigenfunctions ( ) for different335

values of  that satisfy the boundary conditions are orthogonal with respect to336

the weight function  (1−  ):337

1Z
0

 (1−  )( )( ) d = 0  6=  (41)

B. Supplementary material338

Supplementary material consists of a Maple worksheet that implements the339

algorithm here and applies it in several examples, a .pdf file of this worksheet,340

and a text file with the Maple code for the chsolve procedure. This material can341

be found, in the online version, at http://dx.doi.org/10.1016/j.jelechem.XXXX.342
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