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Nonlinear roll motion is one of the main reasons leading to ship stability failures or even capsizing of the vessels 
[1]. The problem of roll motion in random seas has been a demanding challenges in the past decades [2]. For the cases 
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of beam seas, the roll motion is assumed to be decoupled from other motion modes and governed by a single-degree-
of-freedom (SDOF) model in which the nonlinear effects associated with damping and restoring terms, and also the 
random external excitation are incorporated [3]. Due to the randomness of the wave excitation and roll response, 
stochastic methods should be introduced in order to study the roll response as well as to evaluate the associated 
reliability of roll motion. 

Within the scope of stochastic dynamics, the methodology based on the Markov diffusion is attractive because the 
probabilistic properties of the roll motion are governed by the Fokker-Planck (FP) equation. In this work, a second 
order linear filter is applied in order to approximate the stationary wave excitation moment as a filtered white noise 
and then the original SDOF model is extended into a four-dimensional (4D) Markov system [4]. 

For the 4D Markov system, the path integration (PI) method is an efficient approximation for solving the FP 
equation. The principle of the PI lies in the fact that the evolution of the response PDF is computed in short steps via 
a step-by-step solution technique. More specifically, the response probability density function (PDF) at a given time 
instant can be obtained by applying the Chapman-Kolmogorov equation when the response PDF at an earlier closer 
time and the transition PDF are already known [5]. 

Unlike the PI method which provides approximate solution of the FP equation, the stochastic averaging method 
leads to a dimension reduction of the original system, but the essential behavior of the system is retained [6, 7]. Then, 
numerical solution or even analytical solution of the low-dimensional FP equation can be obtained. This convenient 
approximate technique has been widely used in the field of random vibration for predicting the stationary or non-
stationary response of the stochastic systems.  

In this work, both the PI method and the stochastic averaging method will be applied in order to calculate the 
stochastic response of the roll motion in random beam seas. The accuracy and performance of each method are 
evaluated by Monte Carlo simulation (MCS). 

 

2. Mathematical Model 

When the ship is excited by beam wave loads, the roll motion is described by the following SDOF equation: 

3
44 44 1 3( ) ( ) ( ) | ( ) | ( ) ( ) ( )qt b t b t t c t c t m t                                                                                              (1) 

where θ(t) and ( )t are the roll angle and the roll velocity, respectively.  b44 and b44q are the relative linear and quadratic 
damping coefficients, c1 and c3 are the relative linear and nonlinear roll restoring coefficients. m(t) is the relative roll 
excitation moment, it is assumed to be a stationary process and described by the spectrum Smm(ω). It should be noted 
that the roll motion has a softening characteristic since the nonlinear restoring term is negative. For the softening cases, 
ship capsizing would occur when the roll angle exceeds the angle of vanishing stability beyond which the restoring 
moment becomes negative [8]. 

The linear filter technique is widely used in the engineering community due to its simplicity and practicality [4]. 
The driving process m(t) is a stationary Gaussian process which can be approximated quite satisfactorily by a suitable 
linear filter. In this work, a second-order linear is applied in order to approximate the desired spectrum, Smm(ω). 
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in which x3 and x4 are the state variables in the filter equation, x3=m(t). dW(t)=W(t+dt)-W(t) represents an infinitesimal 
increment of a standard Wiener process with E{dW(t)} = 0 and E{dW(t)dW(s)}= 0 for t ≠ s and E{dW(t)2} = dt. The 
spectrum generated by the second-order linear filter (2) is denoted as SFilter(ω) and given as: 
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of beam seas, the roll motion is assumed to be decoupled from other motion modes and governed by a single-degree-
of-freedom (SDOF) model in which the nonlinear effects associated with damping and restoring terms, and also the 
random external excitation are incorporated [3]. Due to the randomness of the wave excitation and roll response, 
stochastic methods should be introduced in order to study the roll response as well as to evaluate the associated 
reliability of roll motion. 

Within the scope of stochastic dynamics, the methodology based on the Markov diffusion is attractive because the 
probabilistic properties of the roll motion are governed by the Fokker-Planck (FP) equation. In this work, a second 
order linear filter is applied in order to approximate the stationary wave excitation moment as a filtered white noise 
and then the original SDOF model is extended into a four-dimensional (4D) Markov system [4]. 

For the 4D Markov system, the path integration (PI) method is an efficient approximation for solving the FP 
equation. The principle of the PI lies in the fact that the evolution of the response PDF is computed in short steps via 
a step-by-step solution technique. More specifically, the response probability density function (PDF) at a given time 
instant can be obtained by applying the Chapman-Kolmogorov equation when the response PDF at an earlier closer 
time and the transition PDF are already known [5]. 

Unlike the PI method which provides approximate solution of the FP equation, the stochastic averaging method 
leads to a dimension reduction of the original system, but the essential behavior of the system is retained [6, 7]. Then, 
numerical solution or even analytical solution of the low-dimensional FP equation can be obtained. This convenient 
approximate technique has been widely used in the field of random vibration for predicting the stationary or non-
stationary response of the stochastic systems.  

In this work, both the PI method and the stochastic averaging method will be applied in order to calculate the 
stochastic response of the roll motion in random beam seas. The accuracy and performance of each method are 
evaluated by Monte Carlo simulation (MCS). 

 

2. Mathematical Model 

When the ship is excited by beam wave loads, the roll motion is described by the following SDOF equation: 
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where θ(t) and ( )t are the roll angle and the roll velocity, respectively.  b44 and b44q are the relative linear and quadratic 
damping coefficients, c1 and c3 are the relative linear and nonlinear roll restoring coefficients. m(t) is the relative roll 
excitation moment, it is assumed to be a stationary process and described by the spectrum Smm(ω). It should be noted 
that the roll motion has a softening characteristic since the nonlinear restoring term is negative. For the softening cases, 
ship capsizing would occur when the roll angle exceeds the angle of vanishing stability beyond which the restoring 
moment becomes negative [8]. 

The linear filter technique is widely used in the engineering community due to its simplicity and practicality [4]. 
The driving process m(t) is a stationary Gaussian process which can be approximated quite satisfactorily by a suitable 
linear filter. In this work, a second-order linear is applied in order to approximate the desired spectrum, Smm(ω). 
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where α, β, γ are the parameters of the linear filter and they are determined by minimizing the least square error between 
the spectral density of the filtered spectrum SFilter(ω) and the spectral density of the target spectrum, Smm(ω). 

By combining the equation (1) with equation (2), the extended dynamic system is formed. Therefore, the roll motion 
in random beam seas can be described by the following 4D state space equation: 
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where x1=θ(t) and x2= ( )t .  
 

3. 4D Path Integration Method 

The dynamic system represented by equation (4) is a Markov diffusion process and it can be expressed as the 
following stochastic differential equation: 

( , ) ( ) ( )d t dt t d t x a x b W                                                                                                                              (5) 

where x(t)=(x1(t),…, x4(t))T is a 4D state space vector process, the vector a(x, t) is the drift term and b(t)dW(t) 
represents the diffusive term. The vector dW(t)=W(t+dt)-W(t) denotes independent increments of a standard Wiener 
process. 

For the Markov process x(t), its transition probability density function (PDF), p(x,t|x′,t′), is governed by the FP 
equation, which is expressed as [9] : 
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where x′ denotes the state space vector at time t′ and t′< t. 
For the numerical solution of the time continuous stochastic differential equation (5), discretization of the equation 

with respect to time t is required. In this regard, Naess and Moe [10] proposed a fourth-order Runge-Kutta-Maruyama 
approximation: 
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where Δt=t-t′ is the time increment and the vector r(x(t′), t′) which denotes the explicit fourth-order Runge-Kutta 
increment. Since W(t) is a Wiener process, for a short time increment Δt, the independent increment ΔW(t′)=W(t)-
W(t′) is a Gaussian variable for every t′. The time sequence 0{ ( )}ii t 

x is a Markov chain and it can approximate the 
time-continuous Markov solution of the SDE (5) with satisfactory accuracy when the time increment Δt is sufficiently 
small. 

Furthermore, the conditional PDF of the process, p(x,t|x′,t′), follows a (degenerate) Gaussian distribution, which is 
written as:   
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where 3 3( , | , )p x t x t  is given by the relation: 
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in which ri(x′, t′, Δt) = ri(x(t′), t′, Δt), i=1,2,3,4 are the Runge-Kutta increments for the state space variables.  
For the PI method, the evolution of the response statistics, such as the PDF of the random process x at time t can 

be obtained by the following basic equation: 
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Since the expression for conditional PDF is obtained, the PDF of x(t) can be obtained by the following iterative 

algorithm if an initial PDF (i.e. at time t0) is given: 

4 4

( ) ( 1) (0) (0) ( 1)
1 0

1
( , ) ( , | , ) ( , )

n
s s n

s sR R s
p t p t t p t d d 




   x x x x x x                                                                   (11) 

where x= x(n) = x(tn), t=tn =t0+n·Δt, x(s) = x(ts) and ts = t0+s·Δt.     
Equation (11) describes the mathematical principle of the PI approach. The numerical iterative algorithm and the 

associated computational steps have been systematically described in Refs. [1, 5].   

4. Stochastic Averaging Method 

The stochastic averaging method is focused on the energy envelope process of the roll dynamics and it leads to a 
lower dimensional description of the energy of roll dynamics. By applying the stochastic averaging method, a one-
dimensional SDE for the roll energy process can be obtained and relevant PDFs for the low-dimensional cases can be 
easily calculated. The principle of the energy based stochastic averaging method is presented below. 

Generally, the damping coefficients of the roll motion is small when compared with the restoring coefficients. A 
perturbation parameter ε << 1 is introduced in the SDOF model (1) in order to provide a scaled system for the 
stochastic averaging procedure. The scaled system with tε = εt is given as: 
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where x=x1, y=ε-1x2, α1=ε-2c1, α3=ε-2c3, β1=ε-2b44, β3=ε-1b44q,   υ=ε-5/2, ms(tε)=m(εt). 
Since we are interested in the total energy of the roll dynamics, the Hamilton function H(x, y) is introduced: 
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x is a Markov chain and it can approximate the 
time-continuous Markov solution of the SDE (5) with satisfactory accuracy when the time increment Δt is sufficiently 
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in which ri(x′, t′, Δt) = ri(x(t′), t′, Δt), i=1,2,3,4 are the Runge-Kutta increments for the state space variables.  
For the PI method, the evolution of the response statistics, such as the PDF of the random process x at time t can 
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where x= x(n) = x(tn), t=tn =t0+n·Δt, x(s) = x(ts) and ts = t0+s·Δt.     
Equation (11) describes the mathematical principle of the PI approach. The numerical iterative algorithm and the 

associated computational steps have been systematically described in Refs. [1, 5].   

4. Stochastic Averaging Method 

The stochastic averaging method is focused on the energy envelope process of the roll dynamics and it leads to a 
lower dimensional description of the energy of roll dynamics. By applying the stochastic averaging method, a one-
dimensional SDE for the roll energy process can be obtained and relevant PDFs for the low-dimensional cases can be 
easily calculated. The principle of the energy based stochastic averaging method is presented below. 

Generally, the damping coefficients of the roll motion is small when compared with the restoring coefficients. A 
perturbation parameter ε << 1 is introduced in the SDOF model (1) in order to provide a scaled system for the 
stochastic averaging procedure. The scaled system with tε = εt is given as: 
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where x=x1, y=ε-1x2, α1=ε-2c1, α3=ε-2c3, β1=ε-2b44, β3=ε-1b44q,   υ=ε-5/2, ms(tε)=m(εt). 
Since we are interested in the total energy of the roll dynamics, the Hamilton function H(x, y) is introduced: 
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The contour lines of the Hamilton function, H(x, y) are shown in Fig. 1. The fixed points of system (14) without 
dissipation and random perturbation (i.e. ε=0) are: P1= 1 3( ,0)  ,  P2= 1 3( ,0)   and S= (0, 0). Moreover, the 
change of the total energy is the time derivate of the Hamilton function: 

2
1 2( ) ( )s

d H y y y m t
dt 



                                                                                                       (15) 

 

Fig. 1. Contour lines of H(x, y). 

From the Hamiltonian, we obtain: 
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Then, combing the first equation of equation (12) with equation (15), the following system is formed: 
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An important property of the reformulated system (17) is that the energy level H changes slowly compared to the 
oscillations of the variable x due to the small value ε. This enables the application of the stochastic averaging method 
to this system since the fast oscillatory dynamics of the roll motion can be averaged over the roll period. For the 
multiple scale model (17), the period T(H) at the energy level H (0 ≤ H ≤ Hc) of one oscillation of the fast variable x 
in the absence of noise and damping (i.e. ε = 0), is given by: 
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where Hc is the energy level corresponding to the roll angle of vanishing stability, which is 
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and the function K(k) is the complete elliptic integral of the first kind with elliptic modulus k given by k=b/a .The 
limits of integration  b(H) are the points where ( , ) 0y Q x H  and the periodic orbit interacts the x-axis, i.e. b(H) 
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is the maximum value of x for each energy level H and it is given by: 
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The process H converges weakly to a diffusion Markov process as the perturbation parameter ε→0, and then the 
corresponding one-dimensional Itô equation for the Markov process is expressed as: 
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with the drift coefficient and the diffusion coefficient:   
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Here,
s sm mR is the autocorrelation function of the stochastic process ms(tε). cn(·, k) and dn(·, k) are the Jacobian 

elliptic functions, the following abbreviations are used: 

: ( , ); : ( , ) and :cn cn qt k dn dn qt k u qt                                                                                                    (24) 

in which, if the substitute τ or τ +tε is used, we refer to the argument qτ or q(τ + tε), respectively. 
As mentioned in Section 2, the roll response can be approximately assumed to be a stationary diffusion process 

when the mean time to capsize is very long. Therefore, a stationary solution of the one-dimensional FP equation which 
governs the equation (21) can be obtained and expressed as: 
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in which, C is a non-dimensional parameter which can be obtained by normality condition.  
In order to get the joint PDF of x, y when the stationary distribution (25) is obtained by the stochastic averaging 

method, the following transformation is introduced: 
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where, X and Y are random variables corresponds to x, y defined by Eq. (13). Following Stratonovich [11], the PDF 
of the displacement x given an energy level value H is inversely proportional to the velocity y and thus 

1 1( | )
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T H Q x H
                                                                                                              (27) 

Using fxH(x, H)=fx|H(x|H)pst(H), the joint PDF of x and y is obtained as: 

1 1

2 2

( , ) ( , ) ( ) ( )XY XH st

g g
x y

f x y f x H p H T H
g g
x y

 
 

 
 
 

                                                                                (28) 



	 Wei Chai  et al. / Procedia Engineering 199 (2017) 1110–1121� 1115
 Wei Chai, Leo Dostal, Arvid Naess, Bernt J. Leira / Procedia Engineering 00 (2017) 000–000 5 

The contour lines of the Hamilton function, H(x, y) are shown in Fig. 1. The fixed points of system (14) without 
dissipation and random perturbation (i.e. ε=0) are: P1= 1 3( ,0)  ,  P2= 1 3( ,0)   and S= (0, 0). Moreover, the 
change of the total energy is the time derivate of the Hamilton function: 

2
1 2( ) ( )s

d H y y y m t
dt 



                                                                                                       (15) 

 

Fig. 1. Contour lines of H(x, y). 

From the Hamiltonian, we obtain: 
4

2 2
1 3( , ) 2

2
xQ x H y H x                                                                                                                  (16) 

Then, combing the first equation of equation (12) with equation (15), the following system is formed: 

1 2

( , )

( , )( ( , )) ( , ) ( )s

d x Q x H
dt
d H Q x H Q x H Q x H m t

dt






    

 

    


                                                                  (17) 

An important property of the reformulated system (17) is that the energy level H changes slowly compared to the 
oscillations of the variable x due to the small value ε. This enables the application of the stochastic averaging method 
to this system since the fast oscillatory dynamics of the roll motion can be averaged over the roll period. For the 
multiple scale model (17), the period T(H) at the energy level H (0 ≤ H ≤ Hc) of one oscillation of the fast variable x 
in the absence of noise and damping (i.e. ε = 0), is given by: 

( ) ( )

0 ( )

4( ) 2 ( )
( , )

T H b H

b H

dxT H dt K k
qQ x H

                                                                                                 (18) 

where Hc is the energy level corresponding to the roll angle of vanishing stability, which is 

2 3
1 3 2

3

44 , ,
2c

HH q a a
b


 


                                                                                               (19) 

and the function K(k) is the complete elliptic integral of the first kind with elliptic modulus k given by k=b/a .The 
limits of integration  b(H) are the points where ( , ) 0y Q x H  and the periodic orbit interacts the x-axis, i.e. b(H) 

y 0
P2 S P1

0
x

1
3

1
3

2
1

2 3

2
1

2 3

6 Wei Chai, Leo Dostal, Arvid Naess, Bernt J. Leira/ Procedia Engineering 00 (2017) 000–000 

is the maximum value of x for each energy level H and it is given by: 

2
1 1 3

3

4 H
b

  


  
                                                                                                                             (20) 

The process H converges weakly to a diffusion Markov process as the perturbation parameter ε→0, and then the 
corresponding one-dimensional Itô equation for the Markov process is expressed as: 

( ) ( ) ( )dH m H dt H dW t                                                                                                                (21) 

with the drift coefficient and the diffusion coefficient:   

0 ( )2
1 20 0

4 1( ) ( ) ( ( ), )( ( ( ), ))
s s

K k Tt t
m m

t t

cn dn
m H R dud Q x t H Q x t H dt

Tq cn dn T
 

 

 
       


                             (22) 

2 ( )2 2

0

4( ) ( )
s s

K k

m m t t t t
b qH R cn dn cn dn dud
T        



 
                                                                     (23) 

Here,
s sm mR is the autocorrelation function of the stochastic process ms(tε). cn(·, k) and dn(·, k) are the Jacobian 

elliptic functions, the following abbreviations are used: 

: ( , ); : ( , ) and :cn cn qt k dn dn qt k u qt                                                                                                    (24) 

in which, if the substitute τ or τ +tε is used, we refer to the argument qτ or q(τ + tε), respectively. 
As mentioned in Section 2, the roll response can be approximately assumed to be a stationary diffusion process 

when the mean time to capsize is very long. Therefore, a stationary solution of the one-dimensional FP equation which 
governs the equation (21) can be obtained and expressed as: 

2 20

( )( ) exp 2
( ) ( )

H

st
C m hp H dh

H h 
 

  
 
                                                                                                             (25) 

in which, C is a non-dimensional parameter which can be obtained by normality condition.  
In order to get the joint PDF of x, y when the stationary distribution (25) is obtained by the stochastic averaging 

method, the following transformation is introduced: 

1
2 2 4

1 3 2

( , )

( , )
2 2 4

X X g X Y

Y X XH g X Y 

 



   

                                                                                                            (26) 

where, X and Y are random variables corresponds to x, y defined by Eq. (13). Following Stratonovich [11], the PDF 
of the displacement x given an energy level value H is inversely proportional to the velocity y and thus 

1 1( | )
( ) ( , )X Hf x H

T H Q x H
                                                                                                              (27) 

Using fxH(x, H)=fx|H(x|H)pst(H), the joint PDF of x and y is obtained as: 

1 1

2 2

( , ) ( , ) ( ) ( )XY XH st

g g
x y

f x y f x H p H T H
g g
x y

 
 

 
 
 

                                                                                (28) 



1116	 Wei Chai  et al. / Procedia Engineering 199 (2017) 1110–1121 Wei Chai, Leo Dostal, Arvid Naess, Bernt J. Leira / Procedia Engineering 00 (2017) 000–000 7 

5. Numerical Results 

In this work, a fisher research vessel is selected to study the rolling behavior in random beam seas. The main 
parameters of the vessel, the restoring arm and the information of wave excitation moment spectrum, Smm(ω) are given 
in Ref. [12]. In order to have a detailed study of the performance for the PI method and the stochastic averaging 
method, Gaussian white noise and filtered white noise are selected as the driving process for the SDOF model (1).     

5.1. System excited by Gaussian white noise 

Under the excitation of Gaussian white noise, the 4D state space equation (4) can be simplified as: 

1 2
3

2 44 2 44 2 2 1 1 3 1 0( | | )q

dx x dt

dx b x b x x c x c x dt dW


      

                                                                                (29) 

where σ0 is the noise level. In addition, for the two-dimensional (2D) system (29), the principles of the 2D PI method 
and the stochastic averaging method have been described in Chai et al. [13] and Dostal et al. [7] respectively. 

In this case, the noise level σ0=0.067 and the stochastic responses can be obtained by applying the PI method and 
the stochastic averaging method. The joint PDFs of the roll angle process and the roll velocity process provided by 
the two different methods are presented in Figs. 2 and 3, respectively. Fig. 4 shows the contour lines of the joint PDFs 
and Fig. 5 presents the marginal PDFs of the roll angle process calculated by the two methods . Moreover, the marginal 
PDFs of the roll angle process plotted on a logarithmic scale are presented in Fig. 6.     
 

 
 

Fig. 2. Joint PDF of the roll response of the 2D system, calculated 
by the PI method. 

Fig. 3. Joint PDF of the roll response of the 2D system, obtained 
by the stochastic averaging method

In addition to the joint PDF and marginal PDFs, the mean upcrossing rate is an important parameter for the response 
statistics and it is also a key parameter for estimation of the extreme response statistics and the associated reliability 
of the structures [14]. Basically, the mean upcrossing rate is a time-dependent parameter for the roll motion with 
softening restoring characteristics. Nevertheless, in this work and for current ship model, the mean time to capsize is 
long enough and the dynamic system can be regarded as a highly reliable system. The corresponding roll response 
reaches stationary in an approximate sense [4, 15]. Based on the Rice formula (30), the mean upcrossing rate is given 
as:  

0
( ) ( , )f d     

   
                                                                                                                              (30) 
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where ν+(ζ) denotes the expected (or average) number of upcrossing for the ζ-level per unit time and ( , )f  
 is the 

joint PDF of the roll response which can be provided by the PI method and the stochastic averaging method. The mean 
upcrossing rates calculated by the two methods are presented in Fig. 7 on a logarithmic scale.   
 

 
Fig. 4. Contour lines of the joint PDFs for the roll response of the 
2D system, calculated by the PI method and the stochastic averaging 
method. 

Fig. 5. Marginal PDFs of the roll angle process for the 2D system, 
calculated by the PI method and the stochastic averaging method. 

 
Fig. 6. Marginal PDFs of the roll angle process for the 2D system, 
given in a logarithmic scale 

Fig. 7. Mean upcrossing rates of the roll motion for 2D system, 
calculated by the PI method and the stochastic averaging method 

In order to evaluate the performance of these two methods, MCS is introduced and relevant response statistics are 
plotted in Figs. 5-7. It is seen in Figures 2-7 that both of the PI method and the stochastic averaging method can 
provide good results for the response statistics of the roll motion excited by Gaussian white noise. Especially, from 
the comparisons given in Figs. 6 and 7, it is seen that both of the two methods are able to provide satisfactory 
estimation of the response statistics, even in the tail region with very low probability levels.    

5.2. System excited by filtered white noise 

In this part, the performance of the PI method and the stochastic averaging method for the 4D system (4) is studied. 
The sea state with the significant wave height Hs = 4.0 m and the peak period Tp =11.0 s is selected in order to obtain 
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In this part, the performance of the PI method and the stochastic averaging method for the 4D system (4) is studied. 
The sea state with the significant wave height Hs = 4.0 m and the peak period Tp =11.0 s is selected in order to obtain 
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the wave excitation spectrum Smm(ω) [1]. After the work of spectrum fitting, the parameters in the filter (2) and the 
4D system are determined. Therefore, the PI method and the stochastic averaging method can be applied in order to 
calculate the response statistics. 

The joint PDFs of the roll response calculated by the 4D PI method and the stochastic averaging method are shown 
in Figs. 8 and 9, respectively. The contour lines of the joint PDFs are shown in Fig. 10 and the marginal PDF of the 
roll angle process provided by these two methods are presented in Fig. 11.       

 

 
 
Fig. 8. Joint PDF of the roll response for the 4D system, calculated 
by the PI method. 

Fig. 9. Joint PDF of the roll response for the 4D system, provided 
by the stochastic averaging method

 
 

Fig. 10. Contour lines of the joint PDFs for the roll response of the 
4D system, calculated by the PI method and the stochastic averaging 
method. 

Fig. 11. Marginal PDFs of the roll angle process for the 4D system, 
calculated by the PI method and the stochastic averaging method. 

In addition to Figs 8-11, Figs. 12 and 13 present the marginal PDFs of the roll angle process and mean upcrossing 
rates on a logarithmic scale, respectively. MCS results are introduced in order to evaluate the performance of the PI 
method and the stochastic averaging method, especially in the tail region with low probability levels. It is seen in Figs. 
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8-11 that the PI method and the stochastic averaging method provides very close results with respect to the PDFs of 
the roll response and some discrepancies can be observed in Figs. 10 and 11. For the marginal PDF of the roll angle 
process, it is seen in Fig. 11 that stochastic averaging method slightly overestimate the roll response in the region 
around θ < 10 degrees, while it is observed in Figs. 12 and 13 that this method underestimate the response in the region 
with θ > 15 degrees when compared with the MCS and the PI method. More importantly, it is seen that the accuracy 
of the PI method is significantly higher than the stochastic averaging method. For current 4D case, the performance 
of the stochastic averaging method, especially in the tail region, is far away from satisfactory when compared with 
the PI method and MCS. 

   

 
Fig. 12. Marginal PDFs of the roll angle process for the 4D system, 
given in a logarithmic scale 

Fig. 13. Mean upcrossing rates of the roll motion for 4D system, 
calculated by the PI method and the stochastic averaging method 

 
5.3. Discussions 

The principles of the PI method and the stochastic averaging method are quite different: the former method is based 
on the Markov property of the dynamical system and the response statistics are obtained by solving the governing FP 
equation, while the latter method is based on the fact that the fast oscillatory roll motion can be averaged over the roll 
period, due to the light roll damping and small external excitation terms. 

For the accuracy of the above two methods, it is seen that the PI method can provide satisfactory results of the 
response statistics, both for the system excited by Gaussian white noise and for the system driven by filtered white 
noise. However, for current vessel and selected excitations, the stochastic averaging method can only provide 
satisfactory results for the 2D system. In fact, the performance and accuracy of the stochastic averaging method depend 
on the ratio between the correlation of the external excitation and the relaxation time of the dynamical system [11] . 
For the white noise case, such ratio is close to 0, which corresponds to the best performance. For 4D system subjected 
to filtered white noise excitation, the performance of the stochastic averaging method decreases with increased value 
of the ratio. 

Another important issue is the computation efficiency. The computation cost of the PI method increases 
dramatically with the dimensions and grid number in each dimension. For the 2D system (29), the computation time 
for one simulation is less than 1 minute, but for the 4D system (4), 1.5 hours is required for one simulation on a laptop. 
On the other hand, the stochastic averaging method reduces the 2D and 4D systems into one-dimensional systems and 
the results can be given by analytical formulas or by numerical calculations. The drift and diffusion coefficients given 
by equations (22) and (23) are obtained analytically, and then the stationary solution (25) can be obtained within 20 
seconds for the 2D system and the 4D system requires about 7 minutes to get the response statistics. Moreover, the 
drift and diffusion coefficients can also be calculated by direct numerical calculations which takes a longer time than 
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For the white noise case, such ratio is close to 0, which corresponds to the best performance. For 4D system subjected 
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Another important issue is the computation efficiency. The computation cost of the PI method increases 
dramatically with the dimensions and grid number in each dimension. For the 2D system (29), the computation time 
for one simulation is less than 1 minute, but for the 4D system (4), 1.5 hours is required for one simulation on a laptop. 
On the other hand, the stochastic averaging method reduces the 2D and 4D systems into one-dimensional systems and 
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the analytical solutions. Therefore, the stochastic averaging method has more advantage than the PI method with 
respect to the computation efficiency. 

 

6. Conclusions 

In this work, two approaches based on different principles were applied in order to calculate the response statistics 
of the ship roll motion excited by Gaussian white noise and filtered white noise. MCS is introduced in order to evaluate 
the performance of the PI method and the stochastic averaging method. 

Based on the numerical results given in Section 5, it is seen that the PI can provide satisfactory results for the 2D 
system as well as for the 4D system. However, the stochastic averaging method is able to provide good accuracy for 
the 2D system and its performance for the 4D system, especially in the tail region is not satisfactory. One the other 
hand, the stochastic averaging method has obvious advantage on the computation efficiency.  
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respect to the computation efficiency. 
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Based on the numerical results given in Section 5, it is seen that the PI can provide satisfactory results for the 2D 
system as well as for the 4D system. However, the stochastic averaging method is able to provide good accuracy for 
the 2D system and its performance for the 4D system, especially in the tail region is not satisfactory. One the other 
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