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To my dear Ellen





Abstract

With the continuing demand for miniaturisation from the electronics industry, it becomes in-
creasingly important to understand the physical behaviour of nanometre sized conductors.
State-of-the-art transistors have typical length scales of the order a few tens of nanometres. On
these mesoscopic scales, quantum effects become important in certain semiconductor systems
at low temperature, or in the case of the newly discovered graphene even at room temperature.
The quantum effects can significantly alter the electronic behaviour of a device. Quantum
transport on the mesoscopic scale is also interesting from a fundamental point of view, as it
allows us to study the crossover between the quantum and classical regimes of physics.

The two-dimensional electron gases studied in this thesis can be created at the interface be-
tween a semiconductor and another semiconductor or an insulator. Graphene is another two-
dimensional conductor which holds great promises for use in electronics, due to high mobili-
ties, gate controllable doping, and its intrinsic two-dimensionality.

In the first two papers of this thesis [1, 2] we investigate spin transport in graphene. The
first paper [1] suggests a way of inducing a significant spin polarisation in the non-magnetic
material, while the second paper [2] examines the role of the spin-orbit interaction in highly
doped graphene.

The last two papers [3, 4] study the non-local electronic signal that can be induced between
two normal contacts in the presence of a superconductor. The physical process responsible
for this signal, crossed Andreev reflection, has been suggested as a candidate for generating
entangled electrons in a solid state device. While experimentally such a signal has only been
observed beyond linear response or in the presence of interactions, we show that it is possible
to generate this type of signal also in linear response.
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1 Introduction

Waves surround us everywhere. Sound and light waves enable us to communicate through
speech and gestures, and electromagnetic waves in various outfits provide the physical basis
on which our modern communication society is built.

A wave is defined as the propagation of a disturbance through space and time [5], for example,
due to the density variations caused by a loudspeaker pushing the air with a membrane. The
wave can propagate through a medium as in the case of sound or water waves, or through
vacuum in the case of electromagnetic waves.

A characteristic property of waves is the ability to interfere, whereby the amplitudes of waves
add up to produce a total wave amplitude at a given point. An immediate consequence of
this superposition principle is that waves from different sources can annihilate or amplify
each other at certain points in space or time. The superposition principle, with associated
interference, is the basis for such phenomena as the rainbow-coloured patterns observed in
thin oil films, or the beating pattern that can be heard when two strings on a guitar are slightly
out of tune.

In the presence of boundary conditions, such as when both ends of a guitar string are held
fixed, only standing waves with certain characteristic frequencies can exist, while waves with
other frequencies quickly die out. This “quantisation” gives musical instruments their ability
to produce sound waves with a clear pitch. In general, the sound from an instrument is a
superposition of waves with the fundamental frequency and many of its overtones, where the
geometry and material of the instrument determines the amplitude or weight of each overtone.
This weighting gives each instrument its characteristic timbre.

In classical mechanics a physical body is completely characterised by its position and mo-
mentum, or by the positions and momenta of its constituent particles [5, 6]. Waves transfer
energy and momentum from one particle to another, and can be thought of as the collective
motion of many particles [5]. However, during the development of quantum theory during the
first quarter of the 20th century, it became apparent that this classical picture of matter was
inadequate when trying to explain features of very small bodies such as atoms. Consistency
with experiments could only be achieved by assuming that matter itself has both wave-like
and particle-like properties. The wave-like properties of matter manifest themselves in that
physical bodies can be assigned a wave length called the de Broglie wave length, which is
directly related to the momentum of the body [7].

In quantum theory, the properties of a physical single particle system is described by a complex

1



2 Introduction

valued wave function ψ(r, t), which evolves in time according to the Scrödinger equation,

i�∂tψ(r, t) = Hψ(r, t). (1.1)

Here H is the Hamiltonian operator associated with the total classical energy and � is the
reduced Planck’s constant. To completely specify the state of the system, Eq. (1.1) must also
be supplemented with an initial condition, specifying the known state of the system at an
earlier instant, ψ(r, 0) = f(r). Quantum theory is inherently probabilistic in that we cannot
know with absolute certainty the outcome of a measurement event. However, the absolute
square of the wave function, |ψ(r, t)|2 gives us the probability for observing the particle at the
position r and time t [8].

The wave-like nature of matter manifests itself in that the wave function ψ can be expressed as
a weighted superposition of amplitudes. For example, choosing to expand the wave function
in the eigenstates of the energy operator H , we have

ψ(r, t) =
∑

α

cαφα(r)e−iEαt/�, (1.2)

where the quantum numbers α characterise all the symmetries of the Hamiltonian, and contain
in principle both continuous and discrete labels [9]. Just as for classical waves, the superposi-
tion can lead to constructive or destructive interference such that the probability of observing
the particle certain regions of time and space might be high or low, respectively.

The classical description of electrical conduction in a metal treats the electrons as charged par-
ticles that can be accelerated by an electric field [5]. Collisions with impurities and vibrating
lattice ions leads to a viscous force opposing the acceleration, a picture that correctly yields
Ohm’s law, which states that the current density is proportional to the electric field [5]. Certain
quantum mechanical aspects of the scattering process can be incorporated, yielding a semi-
classical transport theory where the dynamics of the electrons is described by a Boltzmann
transport equation analogous to the dynamic equation for an ideal classical gas [10]. This
semi-classical treatment is adequate for metals at ambient temperatures and also for semicon-
ductors at low temperatures when length and/or time scales are so long that interference effects
are washed out [9, 10].

However, at shorter length scales the wave nature of the conduction electrons become impor-
tant. This is especially true in two-dimensional electron gases, where the de Broglie wave
length of the conduction electrons can easily reach tens of nanometres [11]. If typical sample
dimensions are also of this magnitude, a quantum transport treatment is needed to properly
account for interference effects.

The motivations for studying quantum transport properties in mesoscopic condensed matter
systems can be grouped in two broad categories. First, it allows us to learn about the behaviour
of physical systems governed by quantum mechanics, and especially about the crossover be-
tween the quantum and the classical regime. Second, the field has many technological appli-
cations, the most obvious being due to the continuing demand for miniaturisation of electronic
devices. Characteristic dimensions of state-of-the-art transistors are typically less than 100 nm
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[12]. Quantum effects might therefore soon have to be taken into consideration in the design
of electronic components.

This thesis is divided into two parts: (i) A general introduction to the topic of quantum trans-
port in two-dimensional electron gases, and (ii) a collection of four papers resulting from my
PhD work.

The topic of the two first papers is spin transport in graphene, a recently discovered two-
dimensional carbon material which exhibits exceptional conduction properties.1 The first pa-
per [1] proposes a way of inducing spin polarisation in this non-magnetic material, while
the second paper [2] examines the role of the spin-orbit coupling for spin transport in doped
graphene.

The remaining two papers [3, 4] discuss transport in the presence of crossed Andreev reflec-
tion, a physical process in which electrons in two separate non-superconducting contacts be-
come strongly correlated when connected to a superconductor. Crossed Andreev reflection has
been proposed as a candidate process for creating a solid state entangler, with applications to
cryptography and secure communication. We investigate how crossed Andreev reflection can
be detected by suppressing competing processes, either due to geometric effects in graphene
nanoribbons [3] or by using an external magnetic field [4].

1As I was finishing this thesis, this year’s Nobel Prize in Physics was announced [13]. I was, naturally, de-
lighted to learn that the prize was awarded to the two main scientist behind the first experimental isolation of
graphene.



2 Quantum transport

Mesoscopic physics is the study of condensed matter systems on length scales ranging from
nanometres to micro metres [11]. This is an intermediate or crossover regime between the
microscopic details associated with the individual atoms of a material and the macroscopic
behaviour observed with the bare eye. The prospect for applications in the electronic and
computer industry is an important motivation for understanding the transport properties of
mesoscopic systems. Mesoscopic physics is also interesting from a fundamental point of
view, since many phenomena that originate from the quantum nature of matter can be studied
in mesoscopic samples. Examples of such phenomena are the quantised Hall effects [14–16],
weak localisation [17], artificially engineered energy levels in quantum dots [18], and several
others [11].

Physical processes on macroscopic length scales are well described by the classical theo-
ries due to Newton and Einstein (with contributions by many others). In such processes the
quantum properties of nature can be neglected, although sometimes taken into account phe-
nomenologically, as is the case with friction, for example.

On the atomic scale, classical physical theory has to be replaced by quantum theory to achieve
consistency with experiments. In the atoms, the strong electromagnetic interactions binds the
electrons to the nucleus, and gives rise to discrete energy levels with splitting of the order
of the Rydberg energy 13.6 eV [7]. Together with the Pauli principle, which states that two
electrons cannot occupy the same quantum state, the large splitting between energy levels
leads to the stability evident in the systematic appearance of the periodic table of elements [7].

Contrary to the localised nature of the electrons in atoms, the conduction electrons in metals
and semiconductors are delocalised, and are associated with a particular wave motion in the
material rather than a fixed position [19]. For a mesoscopic sample this can lead to observable
interference effects that strongly influence the conduction properties. Due to the importance
of quantum effects, the quantum nature of a material must therefore be properly accounted for
in the mesoscopic regime.

2.1 Electrons in conductors

When atoms organise into the periodic structures found in crystalline solids, the atomic en-
ergy levels merge into bands where closely spaced energy levels are associated with different
momenta. The number of energy levels in each band is proportional to the number of atoms in

4



2.2 Important length scales in mesoscopic physics 5

the lattice [7]. The Pauli principle prevents two electrons from occupying the same quantum
state, so in the ground state of the conductor all energy levels up to the Fermi energy EF are
filled.

In the simplest picture (the Drude model) electron conduction can be understood as the ac-
celeration of free electrons by an electric field [7]. However, due to the Pauli principle, all
electrons except the ones at the Fermi energy are trapped because of the filled energy levels
above them. Thus, only the electrons at the Fermi energy participate in the transport.

Depending on the symmetries of the crystal, different bands may be separated by forbidden
energy gaps, where there are no available electronic states. If such a band gap occurs right
above the Fermi energy, it will hinder conduction, as an appreciable energy will have to be
supplied to excite the electrons into the next band so that their momenta can change. A solid
with a large band gap above the Fermi energy is called an insulator, while a solid where
the band gap is small enough that electrons can be excited by thermal energies is called a
semiconductor. In a metal there is no band gap at the Fermi level, so only tiny energies are
needed to excite electrons into a state with non-zero momentum [19].

The band theory is a one-electron theory which strictly speaking is only justified when electron-
electron interactions can be neglected. The interaction between a single electron and all other
electrons and nuclei in the lattice are taken into account in an average way. One could there-
fore suspect that electron-electron interactions or other many-body effects would invalidate
this single electron picture [20]. However, in many conductors the lifetimes of fundamental
excitations are so long that they can in practice be treated as free quasi-particles that are in on-
to-one correspondence with the original excitations [9]. This is the basic idea behind Fermi
liquid theory, where interactions between the quasi-particles are suppressed due to constraints
on the available phase space for the scattered particles imposed by the the Pauli principle [20].
The quasi-particle picture of Fermi liquid theory applies to many metals and semiconductor
system, but breaks down for example in one-dimensional conductors, where interactions are
always strong [9].

2.2 Important length scales in mesoscopic physics

In quantum transport, a number of different length scales come into play. These different
length scales are associated with different processes, and determine the types of interference
that can be observed in quantum transport measurements.

The two most fundamental length scales associated with an electron in a crystalline material
are the lattice constant a and the Fermi wave length λF . The lattice constant is determined by
the bonds between lattice atoms and is typically only a few Å. In the terminology of quantum
mechanics λF is the de Broglie wave length of the conduction electrons at the Fermi level –
the length scale of the amplitude variations of the electrons’ wave function. In metals, λF

is typically comparable to the lattice constant [20], while it can reach tens of nanometres in
semiconductors [11]. From classical wave theory we know that manifestations of the wave na-
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ture through diffraction and interference requires physical dimensions (such as the slit width
in a diffraction experiment) to be comparable in magnitude to the wave length. Since the
Fermi wave length in metals is so small, quantum transport phenomena related to wave func-
tion interference is difficult to observe in such systems [9]. However, semiconductor systems
where λF can be comparable to typical sample dimensions are ideal for the study of quantum
transport.

A crucial length scale for quantum transport is the phase coherence length lφ (or phase break-
ing length). This length is the distance over which an electron’s wave function is adequately
described by a one-particle Schrödinger equation [9]. For a simple free electron model in a
static potential the Schrödinger equation is given by

i∂tΨ(r, t) = H(r)Ψ(r, t) =

[
(−i�∇r)

2

2m
+ V (r)

]
Ψ(r, t), (2.1)

with general solution
Ψ(r, t) = ψ(r)eiEt/�. (2.2)

Interactions that lead to a breakdown of the single particle picture are usually associated with
inelastic scattering events, where energy is transferred to or from the single electron system. If
the energyE of the electron is unchanged, the properties of the system at two instances of time
are related through a unitary evolution of the wave function determined by the Schrödinger
equation. When the electron exchanges energy with its surroundings through inelastic scat-
tering events, the evolution of the wave function will be different before and after the event.
After many inelastic collisions the quantum mechanical phase of the electron is therefore ran-
domised, and coherence is lost, a process known as dephasing [9]. If the sample dimensions
L are much larger than lφ, the system effectively behaves as a collection of N = L/lφ � 1
statistically independent subsystems. Observations on the scale of L are therefore given by
the ensemble average of these N systems. Due to this self-averaging when L is much larger
than lφ interference effects associated with the wave nature of the electrons are averaged out
on macroscopic scales [9, 21]. In this regime electron transport is best described as a diffusion
of electrons across the sample, and the system is said to be in the diffusive regime. However,
even in this regime some quantum effects can survive, most notably the weak localisation cor-
rection to the conductivity, in which the interference between time reverse electron paths at
zero magnetic field gives an enhanced probability for back reflection [11]. Weak localisation
is destroyed in a magnetic field, when the time reversal symmetry between the paths is broken.

The most important many-body processes in conducting materials are electron-phonon and
electron-electron interactions. In the electron-phonon interaction the electron interacts with
the quantised collective vibrational modes of the host lattice (called phonons since they are the
carriers of sound in a solid). Lattice vibrations generally increase with temperature, and the
electron-phonon interaction is therefore the dominant scattering mechanism at high temper-
atures (such as room temperature) [22]. At low temperatures, electron-electron interactions
dominate the dephasing. The phase coherence length due to electron-electron interactions
scales as lφ ∝ T−2 [9, 11], and it is therefore possible to create systems with very long phase
coherence lengths by lowering the temperature. Phase coherence lengths in the micrometre
range are common at liquid helium temperatures [9].
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In a perfect lattice the potential is periodic, V (r + R) = V (r), and the wave function of an
electron is described by eigenfunctions of the form [20]

ψnk(r) = unk(r)eik ·r. (2.3)

Here n labels the band and the Bloch functions unk(r) have the same periodicity as the lat-
tice. Impurities and lattice defects can destroy the periodicity, leading to scattering from one
momentum state to another, k → k′. The characteristic distance between such momentum
scattering events is called the mean free path lmfp, and decreases with increasing impurity
density. When typical sample dimensions are much smaller than the mean free path, so that
electrons can traverse the device without scattering, the system is said to be in the ballistic
regime.

When lmfp � lφ, which is possible at low temperatures, scattering off different impurities
can interfere [9]. For a sample of characteristic dimension L � lφ the impurity potential
therefore creates a highly complex, but static, interference pattern. This gives each sample
a unique signature which can be observed when the sample is subject to a magnetic field.
When applying a magnetic field B, the associated vector potential A leads to a change in the
phase of each trajectory through the sample, proportional to the line integral of A along the
trajectory [9]. Changing the magnetic field therefore modifies the overall interference pattern,
as the phases associated with different trajectories are changed differently.

2.3 Scattering theory

A common task in quantum transport is to calculate the conductance pertaining to a specific
geometry or mesoscopic device. To linear response, the relation between the currents and the
voltages in a device connected to, say, three leads is given by

⎛
⎝I1I2
I3

⎞
⎠ =

⎛
⎝ G11 −G12 −G13

−G21 G22 −G23

−G31 −G32 G33

⎞
⎠
⎛
⎝V1

V2

V3

⎞
⎠ . (2.4)

Several formalisms exist that allow one to calculate the conductances Gαβ while properly ac-
counting for the quantum properties of the mesoscopic device in question. This chapter briefly
outlines scattering theory, as developed by Landauer [23] and Büttiker [24], and later applied
by numerous authors to various mesoscopic transport problems. Scattering theory is a conve-
nient tool for studying noise and fluctuations in mesoscopic devices [25], and also provides
the basis for random matrix theory (RMT), which gives insight into the universal properties
of mesoscopic transport [26]. Scattering theory is useful at low temperatures, where inelastic
processes like phonon scattering is of minor importance [11], although inelastic scattering can
be modelled to a certain extent by introducing auxiliary reservoirs [11].

In scattering theory one distinguishes between three sections of the system: The reservoirs, the



8 Quantum transport

Figure 2.1: The elements of scattering theory. Carriers are injected from the reservoirs on the
left and right into the mesoscopic scattering region in the centre via the narrow contacts. Each
contact supports a number of modes which can be populated with carriers from the reservoirs.
The modes are divided into incoming (ai) and outgoing (bi) according to the direction of
propagation in the contact.

leads (or contacts),1 and the scattering region, as illustrated in Fig. 2.1. The reservoirs act as
electron sources and drains, and are characterised only by macroscopic quantities such as tem-
perature, chemical potential, voltage, and possibly magnetisation. The leads are waveguides
for electrons which connect the scattering region to the reservoirs [27]. Each lead supports a
number of current carrying electron modes or channels. These discrete modes are a result of
the transverse confinement of the electrons [11]. Electrons injected from a reservoir traverse
the mesoscopic device without loosing phase coherence. The electronic states are therefore
most appropriately described in terms of scattering states, which represent an incoming elec-
tron in one mode and the resultant scattered waves in all other modes and leads [25]. Crucial to
scattering theory is the assumption that there is no coherent back-reflection of electrons from
the reservoirs to the leads. In other words, there is no phase-coherence between the electrons
that are absorbed and emitted by the reservoir. This is equivalent to assuming that all energy
dissipation occurs entirely in the reservoirs, i.e. that scattering inside the device is elastic [11].

The modes in each lead can be categorised as either incoming (towards the scattering region)
or outgoing (towards the reservoir), depending on their direction of propagation in the lead.
It is customary, as in Fig. 2.1, to denote incoming modes by the letter a and outgoing modes
by letter b. The mode structure determines the available states that can be populated with
electrons from the reservoir. The population of these states depend on the parameters of the
reservoir. If the chemical potential in the reservoir is higher than the energy of the highest
populated state in the lead, electrons are injected from the reservoir to the lead.

1The words lead and contact are used somewhat inconsistently in the literature. Sometimes the distinction
between the lead and the reservoir is not specified, and both words can refer to either to the lead, the reservoir,
or sometimes both. In this thesis the word contact is always synonymous with lead, and both refer to the
electron waveguide connecting the reservoir and the scattering region.
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The description of the creation and annihilation of electrons in the leads is most conveniently
described in the second quantisation picture of quantum mechanics. Following Ref. [25], we
represent the annihilation and creation of an incoming electron in mode n of lead α at energy
�ω by the operators âαn(ω) and â†αn(ω), respectively. The total current in lead α is given by
the difference between incoming and outgoing current due to all modes in that lead [28],

Iα(t) =
∑

n

Iαn(t) =
e

h

∫
dω dω′ ei(ω−ω′)t

∑
n

〈
â†αn(ω)âαn(ω′)− b̂†αn(ω)b̂αn(ω′)

〉
, (2.5)

where 〈ô〉 denotes the thermal average of the operator ô. Intrinsic quantum states such as spin
(and electron/hole nature in the case of superconductivity) are represented as separate modes.
The scattering matrix relates the outgoing modes in lead α to the incoming modes in any other
lead β [11, 25, 28]:

b̂αn(ω) =
∑
βm

Sαn;βm(ω)âβm(ω). (2.6)

The scattering matrix S (with elements Sαn;βm) is unitary as a consequence of current conser-
vation [11]. Using Eq. (2.6), the current in Eq. (2.5) can be expressed as

Iα(t) =
e

h

∫
dω dω′ ei(ω−ω′)t

∑
n

∑
βm

β′m′

Aαn
βm;β′m′(ω, ω′)

〈
â†βm(ω)âβ′m′(ω′)

〉
,

(2.7)

with

Aαn
βm;β′m′(ω, ω′) = δβαδmnδαβ′δm′n − S∗αn;βm(ω)Sαn;β′m′(ω′). (2.8)

The population of a given incoming lead mode depends only on the adjacent reservoir, so
[25, 28] 〈

â†βm(ω)âβ′m′(ω′)
〉

= δββ′δmm′δ(ω − ω′)f(ω − eVβ), (2.9)

where f(ε) = [1 + exp (ε/(kBT ))]−1 is the Fermi-Dirac distribution function. Combining
Eqs. (2.7) and (2.9), the manifestly time-independent current becomes

Iα =
e

h

∫
dω
∑

β

Āα
β(ω)f(ω − eVβ), (2.10)

where

Āα
β(ω)

def.
=
∑
n,m

Aαn
βm;βm(ω, ω) =

∑
n,m

(
δβαδmn − S∗αn;βm(ω)Sαn;βm(ω)

)
= Tr

[
δβα1α − [S†(ω)]βαSαβ(ω)

]
,

(2.11)

and the trace runs over all modes in α and β. To linear response, we can ignore the explicit
voltage dependence in Āα

β(ω) [29], and the differential conductance becomes

(−1)δαβGαβ
def.
=

∂Iα
∂Vβ

=
e2

h

∫
dε Āα

β(ε+ eVβ)

(
−∂f(ε)

∂ε

)
(2.12)
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At zero temperature the last factor reduces to δ(ε), and we find [29]

(−1)δαβGαβ =
e2

h
Āα

β(eVβ) =
e2

h
Tr
[
δβα1α − [S†(eVβ)]βαSαβ(eVβ)

]
(2.13)

An example of this standard result is for a two terminal system such as that in Fig. 2.1. The
scattering matrix

S =

(
r11 t12

t21 r22

)
, (2.14)

is divided into block matrices describing transitions between the leads. The conductance of
this system is [30]:

G21 = − ∂I2
∂V1

=
e2

h
Tr
[
t†21t21

]
=

2e2

h

∑
n

Tn, (2.15)

where the Tn are the eigenvalues of the square matrix t†21t21, the so-called transmission eigen-
values. We have assumed spin degeneracy in the last step. Equation (2.15) is powerful result,
since it applies to any strength of the scattering and any number of modes. Once the symme-
tries of the system are known, one can often find the distribution of transmission eigenvalues.
The properties of both ballistic and diffusive conductors have been assessed in this way [26].

2.4 Spintronics and magnetism

In addition to charge, electrons also have an intrinsic quantum mechanical property called
spin, which was postulated in 1925 by Goudsmit and Uhlenbeck to explain the experiments
by Stern and Gerlach a few years earlier [7]. The spin is an axial vector quantity analogous to
angular momentum. However, being of quantum nature the spin is quantised so that only two
outcomes are possible in a spin measurement, +�/2 (up or ↑) or−�/2 (down or ↓), regardless
of the direction of the measurement apparatus [7].

The spin degree of freedom leads to a whole range of interesting and complex phenomena
in condensed matter physics. The most obvious manifestation is ferromagnetism, in which
a large number of spins are frozen into alignment due to mutual interactions. The align-
ment arises due to the quantum mechanical exchange interaction, which is a consequence of
the symmetry constraints imposed on the wave function pertaining to two indistinguishable
quantum mechanical particles [19]. The exchange interaction can involve both localised and
itinerant electrons, depending on the detailed interplay of the different energy levels and bands
of the involved materials [19]. The mechanism leading to ferromagnetism is therefore to a cer-
tain extent materials dependent and quite complex, and the microscopic details are not fully
understood even for metals [20].

Spintronics2 is a branch of mesoscopic physics that aims to exploit not only the charge, but
also the spin of the electron [22]. The discovery of the giant magnetoresistance (GMR) effect
2According to Žutić et al. [22], the name spintronics was invented by S. A. Wolf in 1996.
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in the late 1980’s [31, 32], where the resistance through a so-called spin valve can change
dramatically depending on the orientation of two ferromagnets, was a major achievement in
this field. The GMR effect, and later work on magnetic tunnel junctions, is the basic principle
behind the magnetic read heads in modern hard disks [22]. The discoverers of the GMR effect,
Albert Fert and Peter Grünberg, were awarded the Nobel Prize in Physics in 2007 [33] .

The are two main problems that spintronics attempts to address [22]: (i) How do we efficiently
induce and detect spin polarisation, and (ii) how long can a spin polarisation be preserved in a
material?

In a non-magnetic metal or semiconductor, electrons with spin up and spin down contribute
equally to the conductivity of the material, and the two spin populations can be treated as two
parallel channels of conduction. In a ferromagnetic material, there is an excess of electrons
with one spin, and we say that the material is spin polarised.

Spin polarisation can be induced in a non-magnetic material by shining circularly polarised
light on the material. When the light is absorbed, the angular momentum associated with
the polarised light can be transferred to the spin system, creating an imbalance between spin
up and spin down electrons [22]. Furthermore, spin injection into a normal metal can also
be realized by coupling it to a ferromagnetic reservoir. The spin polarisation inherent in the
ferromagnet is then (partially) transferred to the normal conductor, with efficiency highly de-
pendent on the nature of the conductors and the interface between them. It has proven difficult
to inject polarised currents from a ferromagnetic metal into a semiconductor in this way, due
to the mismatch of the resistances of the two materials [34]. This problem has been avoided
either by using a ferromagnetic semiconductor instead of a metal, by using a highly polarised
ferromagnet as the polarising material, or by inserting a tunnel barrier between the ferromag-
net and the semiconductor [22].

In paper [1] we address question (i) above, proposing a way to induce spin polarisation in the
non-ferromagnetic conductor graphene using a ferromagnetic insulator. The two-dimensional
nature of graphene makes it viable to deposit such an insulator directly on top of the graphene
sheet. Spin polarisation in graphene can then induced by a strong exchange interaction be-
tween the localised spins in the insulator and the itinerant electrons in graphene.

The second question (ii) is concerned with over what length or time scales one can expect spin
information to be preserved in a given system. If this information is lost, it becomes difficult
to create spintronic devices with predictable behaviour. The loss of spin coherence is called
spin relaxation, since in a normal conductor a polarisation will gradually relax towards the
non-polarised state at equilibrium.

A number of different spin relaxation mechanisms exist [22]. Here I will only briefly mention
the Elliott-Yafet (EY) and D’yakonov-Perel (DP) mechanisms, both of which are dependent
on the combined action of momentum scattering and the spin orbit (SO) interaction. The EY
and DP mechanisms are the important spin relaxation mechanisms for graphene [35].

The SO interaction is of relativistic origin, and couples the spin and the spatial motion of the
electrons [7]. As a consequence, potential variations due to impurities, phonons or sample
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boundaries can either induce transitions between different spin states (EY mechanism) or lead
to a stabilisation of the spin ensemble (DP mechanism) [22]. Which mechanism dominates
depends on various factors, such as band structure and temperature [22].

The EY mechanism stems from the fact that in the presence of the SO interaction, the elec-
tronic eigenstates are no longer pure spin up or spin down states, but rather superpositions
of the two [22]. Assuming that an electron is found in a pure spin state immediately after a
collision, the wave function evolves according to the Schrödinger equation after the collision,
and the relative amplitude of its spin up and spin down character changes. When the elec-
tron is scattered again, it therefore has a finite probability of being found with the opposite
spin, i.e. of undergoing a spin flip. Spin relaxation by the EY mechanism is characterised by
proportionality between the momentum and spin relaxation rates, as a decrease in momentum
scattering also leads to a decrease in spin relaxation [22].

The DP mechanism contributes in systems with broken inversion symmetry. In this case the
SO gives rise to a momentum dependent effective magnetic field about which the spins pre-
cess between scattering events [22, 35]. Scattering randomly changes the momentum, and
therefore also the direction and magnitude of the effective magnetic field. Provided scatter-
ing is sufficiently frequent, the spin precesses between each scattering by only a small angle
proportional to the time between the momentum scattering events. Therefore, an increase in
momentum scattering will lead on average to a decrease in the amount of change for the spin
direction. It can be shown that this leads to an inverse proportionality between the spin and
momentum scattering rates in the DP mechanism [22]

Paper [2] discusses spin transport in doped graphene, where both of the above mechanisms
can contribute [35]. Due to the weak SO interaction in graphene, long spin relaxation times
are expected. However, so far experiments have yielded relaxation times that are not much
longer that in a normal two-dimensional electron gas (2DEG). Typical room temperature spin
relaxation times in a GaAs-based 2DEGs are τs ≈ 10− 100 ps [22], while the measured times
in graphene are in the range τs ≈ 100− 200 ps [36–38]. We confirm in paper [2] that spin
transport in doped graphene is similar to that in a normal 2DEG with Rashba SO interaction
[35], and find that in doped graphene the intrinsic SO coupling, which arises from intra-atomic
processes, only contributes for large magnetic fields and is then completely masked by the
Zeeman effect.
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For the observation of quantum transport phenomena, semiconducting systems are advanta-
geous over metals. The lower electron densities lead to longer Fermi wave lengths, so inter-
ference effects related to the quantum nature of the carriers are more easily observed [39].

Using a two-dimensional instead of a three-dimensional conductor has apparent benefits, since
the transverse direction effectively becomes an extra dimension to “play with”. Apart from
obvious geometrical advantages related to the ability to easily position gates and contacts,
the two-dimensional structure is important for the observation of certain effects such as the
quantum Hall effect (QHE), where the wave length of the quantum states under observation
is tuned by a transverse magnetic field [39]. In weaker transverse magnetic fields it is also
possible to study quantum ballistic transport in semiconductor 2DEGs via magnetic focusing
of electrons injected through a quantum point contact [40].

This chapter describes the two most common realisations of two-dimensional electron gases
today, namely by transverse confinement of electrons in semiconductor heterostructures or the
electron gas found naturally in the two-dimensional crystal graphene.

3.1 Semiconductor heterostructures

A 2DEG can be artificially created by strong confinement in one direction (conventionally
called the transverse direction or the z direction) of an ordinary electron gas found in a semi-
conductor.

When two semiconductors, or a semiconductor and an insulator, are brought into contact, the
equilibration of charge between the two materials can lead to band bending which creates a
narrow quantum well at the interface [39]. Due to the confinement in the well, a series of
transverse energy bands are generated with energy separation determined by the inverse of the
width of the well [9]. When the energy band separation is much larger than the thermal energy
kBT , only the lowest energy band will be relevant for conduction, and the electron gas in the
well effectively behaves like a two-dimensional conductor. Low temperatures are generally
required to perform such experiments [9, 39].

In several of the early works on two-dimensional transport the 2DEG was realised in a silicon
metal-oxide semiconductor field effect transistor (MOSFET) by applying a relatively large
voltage to a metallic gate separated from the silicon by an oxide layer [39]. This creates an
inversion layer at the interface, acting as an effective quantum well. The quantum Hall effect,
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which allows for very high accuracy measurements of several fundamental physical constants,
was first observed in a silicon based 2DEG [14].

Today, 2DEGs are more commonly realised in semiconductor heterostructures [9], where a
quantum well structure at the interface between two different semiconductors develops due to
band bending because of a difference in band gap between the materials [39]. The most com-
mon heterostructure in use is GaAs/AlGaAs [9], but other combinations of semiconductor
materials can also be used to tailor the properties for specific purposes. GaAs/AlGaAs het-
erostructures have the advantage over siliconMOSFET based 2DEGs that the lattice mismatch
is minimal between the GaAs and the AlGaAs layers [9]. This reduces boundary scattering
and leads to a dramatic increase in the mobility of the 2DEG compared to that usually ob-
served in silicon MOSFET devices [39]. Using or adding other semiconducting materials can
enhance specific properties. For example, indium can be used to tailor spin injection from a
ferromagnetic metal into a 2DEG [41], or to enable good contact between the 2DEG and a
superconductor [42]. Since the quantum well at the heterostructure interface relies only on
the intrinsic band gaps of the materials, no external voltage has to be applied to generate the
2DEG in these materials [39]. Typical mobilities in a GaAs/AlGaAs 2DEG are in the range
102 − 104 cm2V−1s−1 [39], but values up to 107 cm2V−1s−1 have been reported [43, 44].

The low Fermi energy (low density of carriers) in a semiconductor 2DEG compared to a thin
metallic film implies that the carriers have long Fermi wave lengths. Typically, the conduc-
tion electrons have λF ∼ 40 nm in semiconductor 2DEGs [39]. Combined with the high
mobilities that can be achieved, with mean free paths exceeding ten micrometres, this makes
such 2DEGs ideally suited for the study of quantum transport [39]. Finally, by lateral con-
finement of the 2DEG using electrostatic gates one can create electron wave guides so as to
study quasi one-dimensional quantum transport phenomena [39]. Several interesting quantum
phenomena are related to the quantisation of transverse modes in such systems: conductance
quantisation due to the onset of transverse modes, and universal conductance fluctuations due
to the conductance quantum as the fundamental unit of conductance.

Recently, another two-dimensional conductor was realised in an atomically thin carbon layer
known as graphene [45, 46]. The charge carriers in graphene are described by a two-dimensional
Dirac-like Hamiltonian, leading to a linear dispersion relation resembling that of relativistic
electrons. Consequently, several effects, such as the integer Quantum Hall effect and tun-
nelling, are qualitatively different from a regular 2DEG described by a non-relativistic Hamil-
tonian.

3.2 Graphene

Graphene was for the first time produced in 2004 by a research group at the University of
Manchester, UK [47]. No thin film of atomic thickness was known to be electrically conduct-
ing or continuous at room temperature [47]. Although the experiment did not unequivocally
prove that they had produced single layers of graphene, the following year the same group
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Figure 3.1: Hexagonal lattice and first Brillouin zone of graphene. (left) Graphene consists
of a two-dimensional hexagonal lattice of carbon atoms. The hexagonal lattice can be viewed
as two interleaved triangular lattices. Graphene’s pseudospin degree of freedom is associated
with the weight of the electron wave function on either the A or B sublattice. (right) For low
energy transport the dispersion relation can be expanded around the two inequivalent pointsK
andK ′, defining two inequivalent valleys. The dispersion relation of each valley has a conical
shape, giving rise to the relativistic-like linear dispersion relation of the charge carriers.

[45, 48] and a group at Columbia University, New York, USA [46] reported successful exper-
imental realisation and identification of graphene. The leading scientists of the Manchester
group, A. Geim and K. Novoselov, were awarded the 2010 Nobel Prize for the discovery of
graphene, only 6 years after the first publication [13].

The basic theory of graphene had been developed already in 1947 by Wallace [49] when he
described graphite as weakly coupled layers of carbon atoms ordered in a hexagonal lattice.
The two-dimensional hexagonal layer structure of carbon atoms is used as the conceptual
basis for the description of both carbon nanotubes and fullerenes [50]. However, a general
argument (the Mermin-Wagner theorem) suggested that no purely two-dimensional material
would survive in the presence of thermal fluctuations [51, 52]. It was therefore assumed that
graphene would be unable to exist in the free state, being unstable against the formation of
soot, nanotubes, or fullerenes [47].

Producing graphene from high quality graphite was surprisingly simple [47]. Single or mul-
tiple layers from the graphite crystal can be extracted by mechanical exfoliation onto a piece
of regular adhesive tape [48], colloquially known as the “Scotch tape trick”. The graphene
layers are then deposited on a substrate for further experimental studies. The most difficult
and time consuming part of the process is to detect and isolate the single layers. This process
was greatly simplified by the observation that for a specific substrate thickness characteristic
optical colour shifts due to interference could be used to distinguish between the different
numbers of graphene layers [46, 50]. The presence of single layers of graphene can also be
confirmed by correlating data from optical microscopy, scanning electron microscopy (SEM)
and atomic-force microscopy (ATM) [45, 46]. Single and few layer graphene can also be
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identified and distinguished from multi layer graphene by Raman spectroscopy [53].

In graphene, the carrier density can easily be varied over several orders of magnitude by the
application of a back gate voltage [47]. The combination found in graphene of good electric
conduction and a controllable doping through the electric field effect at room temperature was
especially appealing as it had been sought after in thin metal films for a long time without
success [47].

Graphene is one of few candidate materials for creating ballistic transistors, due to the fact that
the mobility of graphene is high even at room temperature and with relatively high doping [50].
Although the highest mobilities that have been reported are at low temperature in suspended
graphene [54, 55], the mobility of graphene on a substrate is generally found to be weakly
dependent on temperature. This indicates that impurity scattering is the dominant scattering
mechanism even at room temperature [47, 50], making graphene a promising material for
probing ballistic transport [55, 56]. The mobility in graphene remains high even for low
carrier densities, in contrast to the behaviour of semiconductor 2DEGs where the mobility
decreases when the density is lowered [55]. High room temperature mobilities for graphene on
a substrate have been achieved by screening the substrate impurities using ionic solvents [57].
The question of the dominant scattering mechanism limiting the mobility in graphene has not
been conclusively settled [58]. Charged impurity scattering is the most probable mechanism,
although scattering due to the intrinsic corrugations of the graphene sheets is also a possible
explanation [58, 59].

Graphene can be characterised as a zero-gap semiconductor [50], where the valence and con-
duction bands touch at two inequivalent points in the Brillouin zone. Transport in graphene
can be adequately described by a tight-binding model taking into account nearest neighbour
hopping between the carbon atoms [49, 60]. Conduction properties are determined by the π
and π∗ bands, arising from the finite overlap of the predominantly out-of-plane 2pz orbitals in
carbon [61]. The σ bands, which arise from the sp2 hybridised 2s, 2px, and 2py orbitals, play
a minor role for the conduction properties, as they are well separated from the Fermi energy
[62]. In undoped graphene, the π and π∗ bands exactly touch at certain symmetry points in
the Brillouin zone. These points are called the Dirac points, since the effective Hamiltonian
found by expanding the dispersion relation around these points resembles the Hamiltonian of
two-dimensional Dirac electrons [63–65],

H = vσ · p̂ + V (r). (3.1)

Here p̂ = −i�∇+eA(r) is the momentum operator, and the pseudospin operators σ are Pauli
matrices associated with the sublattice and valley space (see Fig. 3.1). The Fermi velocity
v ≈ 106 m/s is independent of energy, and can be determined from ab initio calculations or
measured directly [45, 61, 66].

The eigenstates in graphene have a definite chirality associated with the eigenvalues of the
operator σ ·p/p, analogous to the chirality inherent in the relativistic Dirac theory [67]. How-
ever, in graphene the chirality is not coupled to the electron spin, but rather to the pseudospin
arising from the directionally dependent amplitude of a given momentum state on each of the
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two sublattices [50]. The chirality of the charge carriers manifests itself in peculiar tunnelling
properties, named Klein tunnelling after a related effect in relativistic quantum theory [67].
Contrary to the behaviour of electrons in a regular 2DEG, where the transmission probability
T through a potential barrier decays exponentially with the length of the barrier, the chiral
Dirac fermions in graphene can tunnel through a barrier with absolute certainty (T = 1) for
certain angles, most notably in the forward direction. The conservation of chirality for po-
tentials that are smooth on the scale of the lattice constant leads to a strict suppression of
backscattering. An important implication of this Klein tunnelling property is that the Dirac
fermions in graphene cannot be confined by an electrostatic potential [67]. However, bound-
ary scattering which is naturally abrupt on the scale of the lattice constant does of course
provide confinement. Due to the analogies between carriers in graphene and relativistic elec-
trons, it has been suggested that the material could be used as a means to perform quantum
electrodynamics experiments in a solid state environment [68].

As a consequence of the Dirac-like spectrum, the integer QHE in graphene is qualitatively
different from that in a normal 2DEG described by non-relativistic quantum theory. The QHE
filling factor is shifted by half an integer compared to the normal case [46], and most notably,
the QHE in graphene has been observed at room temperature, while the observation of this
effect normally requires liquid-helium temperatures [69].

Numerous applications have already been suggested for graphene [50]. The material is a very
attractive candidate for electronics due to high mobilities which are not significantly affected
by doping [50]. Transistor functionality at room temperature has already been demonstrated
in graphene based quantum dots, that were created by carving out the desired geometry in
a single graphene sheet [70]. Few layer graphene devices that respond to the absorption of
single molecules have been demonstrated, making graphene interesting for use as a solid state
gas detector [58]. Strains alter the hopping amplitude between neighbouring carbon atoms and
thereby induce changes in the conduction properties. This feature makes graphene interesting
for applications of graphene in mechanical transducers [71].

Graphene is also a promising material for spintronics. The low atomic number of carbon is
expected to give a weak SO coupling [62, 72, 73], and hence long spin relaxation lengths
[66, 74]. However, the spin relaxation found in experiments [36–38, 74, 75] is much stronger
than the theoretical estimates [35, 76]. The discrepancy might be due to the role of the disorder
[76], with experiment indicating that the dominant mechanisms need not be the same for
momentum and spin relaxation [75]. The strength of the SO coupling in graphene and its role
for spin relaxation is also still subject to debate [77].

Paper [1] discusses the possibility of inducing a large spin polarisation in graphene by means
of contact with a ferromagnetic insulator. In a series of experiments where ferromagnetic
insulators based on europium were coupled to superconducting aluminium, it was found that
the itinerant electrons in the superconductor experienced a large exchange splitting [78–80].
The effect was attributed to a finite overlap of the wave function of the localised moments
and the itinerant electrons in the metal [81]. The wave function of the itinerant electrons in
thin films of Al is expected to have an atomic-like character in the transverse direction [82].
A very attractive feature of graphene is that one can easily contact it to other materials by
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direct deposition on top of the graphene sheet. The bands relevant for electronic transport in
graphene arise from electrons in the 2pz orbital of the carbon atom [49], which are expected
to have a similar spatial range as that of electrons in Al [1]. Based on these observations,
we estimate in paper [1] that a ferromagnetic insulator as that used in the experiments of
Refs. [78–80] can lead to a strong exchange splitting experienced by the charge carriers in
graphene. Inducing a comparable Zeeman splitting by means of an external magnetic field
would require strong fields of the order 10− 20 T.

As previously stated, in the lowest order the σ bands do not contribute to electronic transport
in graphene. However, if the atomic SO of carbon is taken into account, second order intra-
atomic processes involving the σ bands will lead to an effective intrinsic SO interaction in
graphene [62, 73]. Also, if inversion symmetry of the graphene layer is broken, a Rashba-like
extrinsic SO interaction arises [72]. The inversion symmetry can be broken by applying an
electric field transverse to the graphene plane or by bending of the graphene layer [62]. Initial
estimates [62, 73] of the SO coupling constants suggested that the extrinsic mechanism would
be dominant [35]. This was recently challenged by a first principles calculation, which found
that the two mechanisms would be comparable [77].

In paper [2] we study the spin dynamics in doped graphene in the presence of both types of SO
interactions, including the effect of a transverse magnetic field. We show that at high doping
the extrinsic SO creates a non-vanishing momentum dependent magnetic field in the plane,
analogous to the Rashba SO interaction in normal 2DEG. At high doping, the intrinsic SO
coupling of graphene only contributes at large magnetic fields, and will then be masked by the
Zeeman effect.
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Building computers capable of exploiting the quantum properties of nature has been on the
wish list of scientist and engineers for a long time [83]. A computer that could invoke the su-
perposition principle of quantum mechanics would have have access to modes of computation
which could vastly outperform classical logic devices, simultaneously performing the equiva-
lent of a large number of classical computations [83]. Quantum computation algorithms have
been developed for solving certain problems exponentially faster [84] or factor large numbers
much more efficiently [85] than is possible on a classical computer. An implementation of
these algorithms on a quantum computer could invalidate or seriously reduce the usefulness of
current computer cryptography schemes. Efficient simulation of quantum systems is another
field where a quantum computer would provide a huge gain [83]. This becomes especially
important as materials are increasingly being tailored to specific applications even down to the
mesoscopic scale.

Two crucial properties of quantummechanics are of particular interest for quantum computing,
namely the superposition principle and entanglement. The former was discussed the previous
chapters, while this section gives a brief introduction to the latter. In an entangled state two
(or more) quantum particles have become intertwined in such a way that measuring the state
of one particle has immediate consequences for measurements done on the other. For a very
readable introduction to entanglement, see Alain Aspect’s introduction to the book [86], which
also contains Bell’s insightful paper [87] discussing the measurable consequences of quantum
versus classical correlations.

In classical physics, nothing travels faster than the speed of light. It is therefore slightly sur-
prising that quantum mechanics seems to provide us with processes where spatially well sep-
arated particles can immediately “sense” the behaviour of other particles. This entanglement
is an immediate consequence of the non-locality of quantum theory, by which in principle the
entire state of the universe should be simultaneously accounted for. However, as our daily ex-
perience tells us, the influence of an individual electron in Antarctica on the atoms in Europe is
so small that it can safely be ignored. However, under certain circumstances where two parti-
cles have been brought close enough to interact, their properties can become coupled together
in such a way that they cannot any more be thought of as separate particles [86]. Entanglement
does not in fact break the causality demanded by classical physics, since entangled particles
can only be made by first bringing the particles close enough to interact. Furthermore, the cor-
relations between measurements made on the two particles can only be detected by comparing
the measured results. This comparison requires a classical communication link [86].

As and illustration of entanglement, consider two electrons at positions labelled 1 and 2. The
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superposition principle states that the total spin state of the compound system of two electrons
is given by a linear combination of the tensor product |s1s2〉 = |s1〉 ⊗ |s2〉, where |si〉 is the
state where the electron at i has spin si ∈ {↑, ↓}. The total spin state of the two-electron
system must therefore be of the form

|ψ12〉spin = c↑↑ |↑↑〉+ c↑↓ |↑↓〉+ c↓↑ |↓↑〉+ c↓↓ |↓↓〉 =
∑
s1,s2

cs1s2 |s1s2〉 . (4.1)

This exhausts all possible combinations of the two spins. The absolute squares of each am-
plitude is the probability to measure that particular combination of spins, i.e. |c↓↑|2 is the
probability that electron 1 is measured to have spin ↓ and electron 2 to have spin ↑ simulta-
neously. The interpretation of |c↓↑|2 as probabilities leads to the constraint that the sum of
squares of the amplitudes add to 1. The value of each amplitude is determined by the initial
conditions that are imposed on the two-electron system.

The states |s1s2〉 above can be traded for any another complete set of quantum states. For the
two-spin system a useful set is

|ψ12〉spin = a0
(|↑↓〉 − |↓↑〉)√

2
+ b1,−1 |↓↓〉+ b1,0

(|↑↓〉+ |↓↑〉)√
2

+ b1,+1 |↑↑〉 . (4.2)

Due to the way spins (and angular momenta in general) are added in quantum mechanics, the
state corresponding to a0 has total spin 0 and is known as the singlet state of the two-spin
system. The three states corresponding to the b’s all have total spin �, are normally degenerate
in energy and are therefore known as the triplet states.

Suppose that we have somehow prepared our two-spin system in the singlet state, i.e. all the b’s
in Eq. (4.2) are zero. If the two electrons in the singlet state are now spatially separated from
each other, e.g. by separating them into separate electrical contacts, a peculiar situation arises.
If the spin of electron 1 is measured to be ↑ (for example by detection with a ferromagnet), we
know immediately that electron 2 will have spin ↓whenmeasured. This phenomenon is known
as entanglement, and has no classical analogue. In classical physics, entities always interact
locally or subject to constraints given by the propagation of light (which is the maximum speed
with which information can travel).

Entanglement has been observed with photons, but has so far not been observed with massive
electrons, due to the difficulty of combined creation and detection of electron entanglement
in a solid state environment [88, 89]. However, the long spin dephasing times seen in semi-
conductors has led to the proposal of using such materials for the detection of electron entan-
glement [88, 89]. Two promising schemes for the generation of spin entangled electron pairs
are with quantum dots [90], or using a superconductor [89]. In the first proposal an effective
exchange interaction will couple electrons on two nearby quantum dots, so that the spin state
of the two-electron system is of the singlet type [90].

The use of a superconductor in a solid state entangler relies on exploiting the natural spin
entanglement of the Cooper pairs in a singlet superconductor to generate spatially correlated
electrons in two normal conductors [89]. This is the topic of the last two papers [3, 4] of this
thesis. The rest of this chapter therefore gives an introduction to the associated physics.
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4.1 Superconductivity

Superconductivity is possibly the physical phenomenon which most strikingly displays the
quantum nature of materials. At a certain material dependent (low) critical temperature Tc,
the system undergoes a phase transition into a state where a weak attractive attraction between
the electrons leads to the formation of bound pairs, called Cooper pairs [91]. In conventional
superconductors, the attractive interaction between the electrons is mediated by the electron-
phonon interaction [92]. The Cooper electron pairs have bosonic character, i.e. they easily
condense into the same quantum state [93]. This leads to the hallmark effects associated with
superconductivity: dissipation-less currents and the Meissner effect [92].

Superconductivity was discovered experimentally in 1911 by Kamerlingh Onnes [94], and
although phenomenological theories were able to explain important properties of supercon-
ductors such as the Meissner effect [95, 96] and the correct scaling behaviour near the phase
transition at Tc [97], it took almost half a century before a satisfactory microscopic theory
was developed by Bardeen, Cooper and Schrieffer (BCS) [98]. The BCS theory brought great
insight into the microscopic mechanisms behind superconductivity, and is one of the most
important early applications of many-body quantum theory to a condensed matter problem
[99].

Superconductors that can be described by BCS theory are called conventional superconduc-
tors, and are usually elemental metals such as mercury, tin, lead, or aluminium. The transition
temperature is typically below 10 K for these superconductors [93], and the phase transition
to the superconducting phase is usually first order (abrupt) . In contrast, unconventional su-
perconductors are not very well described by BCS theory [93]. These superconductors, which
include the high Tc superconductors discovered in 1986 [100] and later, are usually charac-
terised by a second order (smooth) phase transition to the superconducting state [92]. High Tc

superconductivity is normally found in compound materials like alloys or ceramics.

A superconductor can be understood as a system where where quantum mechanical phase
coherence of the bosonic Cooper pairs is maintained over macroscopic distances [92]. The
system has a minimal uncertainty in the quantum mechanical phase, trading it for a high
uncertainty in the number of particles [92]. The superconducting coherence length ξ charac-
terises the maximal separation of the quasi-particles bound in a Cooper pair, with typically
ξ ∼ 10− 100 nm for many superconductors [101]. In most conventional superconductors, a
spin-singlet state for the Cooper pair is energetically favoured [9, 102].

The important part of the mean field BCS Hamiltonian can be written compactly as [103]

Ĥ =

∫
dr Ψ̌†↑(r)Ȟ(r)Ψ̌↑(r) =

∫
dr Ψ̌†↑(r)

[H(r) Δ(r)
Δ∗(r) −H∗(r)

]
Ψ̌↑(r), (4.3)

whereH(r) is the normal state single particle Hamiltonian, and the field operator is [104]

Ψ̌(r) =

(
ψ̂↑(r)

ψ̂†↓(r)

)
. (4.4)
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The pair potential Δ(r) is proportional to the effective attractive electron-electron interaction
V (r), typically arising from electron-phonon interactions [93], and is defined as

Δ(r) = V (r)
〈
ψ̂↓(r)ψ̂↑(r)

〉
. (4.5)

In systems with only one superconductor, the phase of Δ(r) is rendered irrelevant by gauge
invariance, and the pair potential can be treated as a real variable [105, 106].

The formulation in Eq. (4.3) describes the superconducting system as a set of non-interacting
quasi-particles obeying the Bogoliubov-de Gennes (BdG) equations,[H(r) Δ(r)

Δ∗(r) −H∗(r)

](
u(r)
v(r)

)
= ε

(
u(r)
v(r)

)
, (4.6)

and is therefore suitable as a starting point for the scattering matrix description of transport
in systems involving superconductivity [103, 106]. The quantities u(r) and v(r) describe,
respectively, the electron-like and hole-like character of the quasi-particles, as can be seen by
letting Δ(r) → 0.

4.2 Basic processes in multiterminal devices
containing a superconductor

The spin-singlet nature of the Cooper pairs in conventional superconductors make them attrac-
tive as a source for spin entangled electrons [89, 90]. A key requirement for a useful entangler
is the ability to generate non-local correlations, i.e. the entangled electrons must be spatially
separated. This can be achieved by contacting two (or more) non-superconducting conductors
to a superconductor [107–109]. In this section we discuss the various conduction processes
that can be expected in such a multiterminal device.

4.2.1 Andreev reflection

Andreev reflection (AR) is a process occurring at a normal–superconductor (NS) interface
[110]. The process is especially important at subgap energies, where single electrons are
prohibited entry into the superconductor, and thus no single electron transport from the normal
to the superconducting side can occur.

As illustrated in Fig. 4.1, AR occurs when an electron from the normal contact N travels
towards the NS interface at subgap energy ε < Δ. The electron can only enter the super-
conductor if an electron in the corresponding time reverse state (at energy −ε measured with
respect to the Fermi level of the superconductor) is also transferred to the superconductor
[106]. The two electrons then enter the superconducting condensate as a Cooper pair without
exciting the superconductor. In AR, a total charge of 2e is therefore transferred from N to S
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Figure 4.1: Schematic illustration of Andreev reflection (AR) at a normal-superconductor
(NS) interface. An electron from the normal conductor N at energy ε = eV < Δ can only
enter the superconducting condensate if it manages to find another electron at energy −ε (be-
low the Fermi level of the superconductor) to form a Cooper pair. The process leads to a hole
being reflected on the normal side, hence the name Andreev reflection.

for each incident electron. The removal of the negative-energy electron on the normal side of
the interface is equivalent to a back-reflected hole in N .

Since AR is an elastic scattering process (one single energy determines the scattering), the
scattering matrix formalism can be applied. The scattering matrix in the presence of super-
conductivity has the general form in the extended electron-hole space [29]

Š(ε) =

(
See(ε) Seh(ε)
She(ε) Shh(ε)

)
, (4.7)

where the superscripts in Seh(ε) are used to indicate scattering from hole-like to electron-like
states.

The leakage of electron-hole correlations into the normal conductor due to AR is called the
superconducting proximity effect [111, 112]. There is also an inverse proximity effect, where
the pair correlation is suppressed in a thin layer on the superconductor side of the NS junction.
In the case of a superconductor coupled to a ferromagnetic conductor, AR will be suppressed
on the ferromagnetic side due to the deficit of electrons of minority spin [113].

The description of the scattering process involving a superconductor simplifies if the normal
scattering can be spatially separated from the AR process [114], as illustrated in Fig. 4.2. The
scattering in the normal region is determined by the scattering matrix [115]

ŠN(ε) =

(
S(ε) 0

0 S∗(−ε)
)

=

(
S(ε) 0

0 S̄(ε)

)
, (4.8)

which captures the fact that there is no intrinsic coupling between electron-like and hole-like
states in the normal metal N . The notation f̄(ε)

def.
= f ∗(−ε) is used to denote time reversed

quantities.
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Figure 4.2: When normal scattering and Andreev reflection (AR) can be spatially separated,
the scattering matrix in the presence of AR can be expressed in terms of the normal scattering
matrix by identifying corresponding modes to the left and the right of the NS interface, as
discussed in Ref. [114].

For subgap energies, ε < Δ, no single electrons can enter the superconductor, so AR is the
only allowed scattering process. The scattering matrix associated with AR at the NS interface
converts between electrons and holes without influencing the mode structure, so it can be
written [29, 114, 115]

ŠAR(ε) =

(
0 ν1
ν1 0

)
, (4.9)

where the electron-hole conversion amplitude ν for subgap energies is1 [29]

ν =
ε

Δ
− i

√
1−
( ε

Δ

)2

. (4.11)

For energies close to the Fermi level, ε → 0, each AR leads to a phase shift of −π/2 due to
the fact that ν → −i [116]. At ε � Δ, the electron-hole conversion amplitude goes to zero,
ν → 0, and we recover normal conduction.

Combining the scattering matrices in Eqs. (4.8) and (4.9) in a standard way by identifying
corresponding modes on the two sides of the NS interface gives the following scattering matrix
elements for the N side [29, 115]:

See
NN = rNN + tNSνr̄SSνMtSN , (4.12)

She
NN = t̄NSνMtSN , (4.13)

1There is a misprint in Eq. (14) of paper [3], the general expression should be [29]

ν =

⎧⎨
⎩

ε
Δ − sign (ε)

√(
ε
Δ

)2 − 1, |ε| > Δ,

ε
Δ − i

√
1− ( ε

Δ

)2
, |ε| < Δ.

(4.10)
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Figure 4.3: Basic transport processes in a multiterminal device with two normal metal con-
tacts N1 and N2 and a superconducting contact S.

where the matrix
M = [1− νrSSνr̄SS]−1 (4.14)

encodes the fact that AR must be taken into account to all orders at the NS interface. Using
Eqs. (4.12) and (4.13) together with the unitarity of the scattering matrix, Beenakker [115]
derived the following expression for the two terminal conductance of the NS junction in the
presence of AR,

GAR
NS =

4e2

h

∑
n

T 2
n

(2− Tn)2
. (4.15)

Here Tn are the transmission eigenvalues associated with the normal state matrix t†1St1S . This
is the analogue of the standard formula of Eq. (2.15) for the conductance in a normal conductor
when AR is taken into consideration.

From Eq. (4.15) it can be seen that for a good NS contact, in which the transmission eigenval-
ues of the M contributing modes are close to 1, the NS conductance doubles compared with
the situation without a superconductor [105]:

GAR
NS ≈

4e2

h

M∑
n=1

=
4e2

h
M = 2GN . (4.16)

This doubling is due to the extra current carried by the Andreev reflected holes [106]. On the
other hand, for a tunnel contact between N and S, the conductance (4.15) in the presence of a
superconductor goes to zero faster than in the normal case, reflecting the vanishing density of
states in the superconductor [117].

4.2.2 Crossed Andreev reflection

If two (or more) normal conductors are coupled to the superconductor, a non-local variant
of AR can also occur in which the two electrons participating in AR originate from different
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contacts. Non-local AR of this kind is called crossed Andreev reflection (CAR), and is key to
using spin singlet superconductors as sources of entanglement [90].

A schematic illustration of CAR in a system with two normal contactsN1 andN2 and a super-
conductor S shown in Fig. 4.3. There are now two possible ways that AR can occur. If the two
electrons involved in the production of a Cooper pair both originate from N1 (Fig. 4.3a) the
process is called direct Andreev reflection (DAR), or often simply AR. This process is analo-
gous to regular AR occurring at a single NS interface, as discussed in Sec. 4.2.1. Alternatively,
the two electrons can be taken from different contacts, N1 and N2 (Fig. 4.3b). This process,
CAR, produces a current of incoming electrons inN2 in response to the injected current inN1.

An important condition for observing CAR when the two normal contacts are connected di-
rectly to the superconductor is that contacts N1 and N2 must be closer than the supercon-
ducting coherence length ξ [108], the length scale over which the superconducting coherence
between the electrons in the Cooper pair decays [118]. With direct contact between N1 and
N2, as in Fig. 4.3, CAR can be observed without this restriction.

4.2.3 Electron transfer

In a device with no direct contact between N1 and N2, as considered by many previous works
[107–109, 113, 119, 120], electrons can be transferred through the superconductor via a virtual
excitation in the superconductor, a process known as electron co-tunnelling (EC) [108, 111].
While spin is conserved in EC, CAR requires the spin of the electron in N2 to be opposite to
that of the incoming electron from N1. The competition between CAR and EC can therefore
be controlled by using ferromagnetic contacts [107, 119]. This was used experimentally by
Beckmann et al. [113] to tune between CAR and EC by manipulating the relative magneti-
sation of two ferromagnets connected to the superconductor. With parallel alignment of the
magnetisations, CAR is suppressed due to a deficit of minority spins for the spin singlet pairs.
On the other hand, EC is suppressed for anti-parallel magnetisations [107, 119].

Calculations find that if bothN1 andN2 are coupled to S by tunnel contacts, the contributions
from CAR and EC will cancel exactly to linear response in the applied voltage [108]. At
arbitrary coupling between the normal contacts and the superconductor, EC generally domi-
nates CAR [111], although experiments demonstrate that CAR can also dominate [120, 121].
However, CAR domination only occurs beyond the regime of linear response, and theoretical
suggestions suggest the effect could be due to either Coulomb interactions [101], the presence
of an external AC bias [122], or quantum interference [123].

EC is of marginal relevance in geometries like those sketched in Fig. 4.3, where there is direct
contact between N1 and N2. Instead, the incoming electron in N1 can be transferred to N2

either directly or via multiple Andreev reflections at the superconductor in a more general
process called electron transfer (ET), as sketched in Fig. 4.3c. As illustrated in Fig. 4.3c, ET
competes with CAR by producing an outgoing electron current in N2 in exactly the same way
as EC. We find in papers [3, 4] that it is possible to have CAR dominated linear response
transport when ET is suppressed.
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4.3 Scattering formulation

The relative importance of CAR and ET can be analysed using a generalisation of the approach
by Beenakker [115], as discussed in Sec. 4.2.1. For the device sketched in Fig. 4.3, the normal
state scattering matrix which describes scattering in the non-superconducting (non-shaded)
region of Fig. 4.3, can be written

S =

⎛
⎝r11 t12 t1S

t21 r22 t2S

tS1 tS2 rSS

⎞
⎠ . (4.17)

Under assumptions similar to those leading to Eqs. (4.12) and (4.13), the non-local elements
connecting N1 and N2 in the full scattering matrix of the three-terminal device, are

See
21 = t21 + t2Sνr̄SSνMtS1, (4.18)

She
21 = t̄2SνMtS1, (4.19)

where, as before, M = [1− ν2rSSr̄SS]
−1 describes multiple back-reflection from the normal

region to the superconductor with associated AR. The overbar notation denotes time reversal,
as previously mentioned. At the Fermi level (ε = 0), the normal scattering matrix fulfils
S̄ij = S†ji, where i, j are contact labels.

The non-local differential conductance between N1 and N2, [124]

G21 = − ∂I2
∂V1

= GET
21 −GCAR

21 , (4.20)

can be expressed with the help of the scattering matrix by the relations [27, 105, 125]

GET
21 = Tr

[
See

21(eV1)S
ee†
21 (eV1)

]
, (4.21)

GCAR
21 = Tr

[
She

21 (eV1)S
he†
21 (eV1)

]
, (4.22)

which can be derived as explained in Sec. 2.3. The negative sign for the CAR term in Eq. (4.20)
reflects the fact that CAR induces an outgoing current in terminal N2, while ET produces an
incoming current in N2. Inserting Eqs. (4.18) and (4.19), we get [3]

GET
21 = Tr

[
t21t

†
21

]
+ 2Re Tr

[
ν2t2Sr̄SSMtS1t

†
21

]
+ |ν|4 Tr

[
t2Sr̄SSMtS1t

†
S1M

†r̄†SSt†2S

]
,

(4.23)

GCAR
21 = |ν|2 Tr

[
t̄2SMtS1t

†
S1M

†t̄†2S

]
. (4.24)

These expressions illustrate the dependence the different processes involved in the transport on
the electron-hole conversion amplitude ν. When AR is negligible, for example when ε � Δ,



28 Crossed Andreev reflection

the transport between N1 and N2 reduces to the first term in GET
21 , which describes direct ET.

However, for subgap energies |ν| = 1 (see Eq. (4.11)), and both CAR and the processes in ET
involving the superconductor contribute.

In paper [3] we find that a device which is symmetric in the normal state, such as the one
shown in Fig. 4.3, will always be dominated by ET. However, it is possible to suppress ET in
asymmetric devices, so that CAR dominated non-local transport can occur. We demonstrate
ET suppression in paper [3] by engineering the geometry of the device. In paper [4] we show
that one can also use a weak magnetic field to suppress ET and thereby achieve a clear CAR
signal. The set-up proposed in paper [4] also has the benefit that the distance between N1 and
N2 no longer has to be limited by the superconducting coherence length ξ [126], since the
transport is not required to go through the superconductor as in the majority of earlier works.
A somewhat similar set-up was proposed in Refs. [126, 127] where, however, a complicated
dependence on quantum interference limits the possibility to distinguish between the signal
due to AR and that due to quantum interference effects.



5 Conclusion

Transport in mesoscopic devices is a fascinating subject, due to the interplay between quantum
and classical properties. It is also a field of research which is very close to applications, with
current transistor technology operating with length scales of the same order that quantum
effects are seen in experiments. The work in this thesis is concerned with two topics of general
interest in the vast field of mesoscopic transport.

In papers [1] and [2], we study spin transport properties in graphene, a new and very promising
two-dimensional carbon material. We find that spin polarisation can be induced in graphene
using a ferromagnetic insulator [1]. In paper [2] we find that the spin-orbit coupling in highly
doped graphene leads to behaviour similar to that found in a normal two-dimensional electron
gas. The effect of the intrinsic spin-orbit coupling in graphene is dominated by the Zeeman
effect at high doping. Since graphene was experimentally realized only six years ago, there
is still much to be understood regarding the conduction properties of this material. Regarding
spin transport in graphene, there is currently a discrepancy between theoretical and experimen-
tal results for the spin relaxation mechanism in graphene. Future work aimed at understanding
the interplay of spin-orbit coupling and impurity scattering in graphene would therefore be of
great value.

The second topic of this thesis is the use of superconducting correlations to create spatially
separated spin entangled electron pairs. We have demonstrated in papers [3] and [4] the pos-
sibility of creating a detectable non-local signal between two normal contacts mediated by
Andreev reflection (so called crossed Andreev reflection) in the linear response regime. Such
a signal has previously only been detected at finite bias voltage. A natural next step from
paper [4] would be to calculate the noise in the proposed set-up, as the broken time reversal
symmetry due to the transverse magnetic field probably also modifies the noise spectrum.
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Ferromagnetic insulators deposited on graphene can induce ferromagnetic correlations in graphene. We
estimate that induced exchange splittings ��5 meV can be achieved by, e.g., using the magnetic insulator
EuO. We study the effect of the induced spin splittings on the graphene transport properties. The exchange
splittings in proximity-induced ferromagnetic graphene can be determined from the transmission resonances in
the linear response conductance or, independently, by magnetoresistance measurements in a spin-valve device.
The spin polarization of the current near the Dirac point increases with the length of the barrier, so that long
systems are required to determine � experimentally.
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I. INTRODUCTION

The two-dimensional honeycomb lattice of graphene is a
conceptual basis for describing carbon structures such as
fullerenes, carbon nanotubes, and individual layers of graph-
ite. The fabrication of free and stable monolayers of
graphene a few years ago transformed this concept into an
experimental reality that has attracted a tremendous interest
from the research community.1–3 The low energy excitations
of charge carriers in graphene are similar to massless relativ-
istic Dirac �or rather Weyl� particles. The Hamiltonian is4,5

H = − i�v� · � + U�r� , �1�

where the velocity v�106 m /s is the analog of the Dirac
electron speed of light �in the sense of limiting velocity� in
graphene and �= ��x ,�y� is a two-dimensional vector of
Pauli matrices acting on two-spinor states related to the two
triangular sublattices constituting graphene’s honeycomb lat-
tice. The approximate Hamiltonian �1� is valid near the Dirac
points K and K� in the reciprocal lattice. The two inequiva-
lent Dirac points introduce a twofold valley degeneracy.6

The carrier concentrations are typically in the range
1011–1012 cm−2, corresponding to a Fermi wavelength of
�F�50–100 nm.3,7 The mean free path �mfp� has been re-
ported to be of the order lmfp�0.4 �m.1 With improved con-
trol over the fabrication process of graphene, we expect to
see the realization of even cleaner samples with longer mean
free paths.

Spintronics aim to inject, manipulate, and detect spins in
electronic devices. Electrical spin injection in normal metals
is routinely achieved by contacting ferromagnets like Fe, Ni,
and Co with normal metals such as Cu and Al, and driving a
current through the system. In semiconductors, electrical
spin injection is more challenging because of the resistance
mismatch between the semiconductor and possible ferromag-
netic metal contacts.8 Nevertheless, spin injection into a
semiconductor is feasible from a conventional ferromagnet
when the interface resistance between the semiconductor and
the ferromagnet is sufficiently large, as recently demon-
strated by using Fe Schottky contacts in Ref. 9. Spin injec-
tion detected via the giant magnetoresistance effect in nano-
tubes contacted to ferromagnets has also been reported.10

Graphene is clearly an interesting candidate for spintron-
ics applications since the carrier concentration can be con-
trolled by gate voltages. Also, it has a very weak spin-orbit
interaction, leading to the possibility of relatively long spin
flip lengths.11,12 In a recent experiment on spin injection in
single layer graphene, the spin flip �sf� length is found to be
lsf�1 �m at room temperature in dirty samples.13 Cleaner
samples are expected to have even longer spin flip lengths.

We explore another possibility of spin dependent transport
by envisioning that graphene is put in close proximity to a
magnetic insulator. Via the magnetic proximity effect, ex-
change splittings will be induced in graphene. Strong prox-
imity induced exchange splittings due to ferromagnetic insu-
lators have been observed at EuO /Al interfaces.14–16 The
effect was attributed to the nonvanishing overlap between the
wave functions of the localized moments in the magnetic
insulator and the itinerant electrons in the metal.17 The elec-
tronic wave functions can be described by atomiclike wave
functions at the surface of thin Al films.18 The spatial range
is similar for the atomic wave functions in Al and graphene,
so we expect the overlap between the localized moments and
itinerant electrons in graphene at EuO/graphene interfaces to
induce exchange interactions comparable to those observed
for EuO /Al. Based on the results reported in Refs. 15–17
and 19, we roughly estimate that exchange splittings in
graphene due to the ferromagnetic insulator EuO could be of
the order of 5 meV �see Appendix A for details�.

In this paper, we show that proximity-induced splittings
can be observed in the tunneling conductance associated
with a tunable barrier created by the ferromagnetic insulator
gate on top of graphene. First, for highly doped barriers, we
demonstrate that the splitting � can be directly observed
from the transmission resonances in the conductance.7,20,21

Moreover, for low doping of the barrier, we show that the
spin polarization of the tunneling current, directly related to
the spin splitting �, increases with increasing length of the
barrier. The spin polarization can be studied by magnetore-
sistance �MR� measurements in a spin-valve device where
two magnetic gates are deposited in series. Such MR mea-
surements could also allow us to independently determine
the induced spin splitting �.

This paper is organized as follows: We present a model of
a magnetic gate in Sec. II. Section III reminds the reader of
the results obtained in Refs. 7 and 22 for the conductance of

PHYSICAL REVIEW B 77, 115406 �2008�

1098-0121/2008/77�11�/115406�8� ©2008 The American Physical Society115406-1



a square barrier in graphene. Then we discuss how to obtain
analytical expressions for the conductance both far from and
close to the Dirac point. We extend the spinless situation to a
spin dependent barrier with an exchange splitting � between
the two spin channels in Sec. IV. First, we discuss the pos-
sibilities for extracting the splitting � directly from the con-
ductance of a single highly doped barrier. Second, we study
the dependence of the current spin polarization on the barrier
height and length. Section V discusses the MR effect in a
double barrier spin-valve device and discusses how it can be
used to extract �. Finally, our conclusions are in Sec. VI.

II. MODEL

A possible way to construct a ferromagnetic gate is to
deposit a magnetic insulator, such as EuO, on top of a
graphene sample with a metallic gate above it �see Fig. 1�.
So far, experimental efforts have focused on depositing non-
magnetic gates on graphene.23,24 The presence of a magnetic
insulator will induce an exchange splitting in graphene. The
normal metal gate allows us to control the Fermi level lo-
cally, i.e., to create a tunable barrier in graphene. In this way,
both control of the charge and spin carrier concentrations can
be achieved.

We assume in this paper that the normal metal gate in-
duces a sharp potential barrier below it. This is a reasonable
assumption provided the distance d between the gate and the
graphene layer is much shorter than the Fermi wavelength
�F, which is relatively long in graphene, �F�50–100 nm.7

Recently, a method for manufacturing top gates where the
distance from the gate to the graphene layer is of the order of
�F has been demonstrated.23 Observation of resonance ef-
fects due to sharp potential steps, therefore, seems feasible in
graphene.

The exchange interaction between the localized magnetic
moments in the ferromagnetic insulator and the spins of the
electrons creates an additional spin dependent offset of the
barrier potential, leading to the possibility of spin dependent
tunneling. We estimate in Appendix A that the exchange
splitting due to the magnetic insulator EuO can be around
5 meV. Here, we assume that the exchange interaction is not
affected by the gate voltage of the top metallic gate.

III. TUNNELING PROBABILITY

For completeness, we first review the results for tunneling
through a square barrier in graphene, and follow the deriva-

tion in Refs. 7 and 22. We will later extend this discussion to
a spin dependent barrier. The charge carriers we consider are
Dirac quasiparticles, described by the Hamiltonian �1�. These
quasiparticles originate from reservoirs to the left and to the
right of the ballistic graphene sample. EF is the Fermi energy
measured with respect to the Dirac point of the undoped
graphene layer. At zero temperature, the transport properties
are governed by quasiparticles that approach a square barrier
of height U and length L �see Fig. 2� at energy EF. We
assume ballistic transport across the barrier, and also that the
spin flip length lsf is much longer than the other length scales
of the problem. Given the values for lmfp and lsf reported for
graphene,1,11,13 this regime should be realistic.

The Hamiltonian �1� has the following plane wave solu-
tions in regions I, II, and III of Fig. 2, respectively:7,22

��I� = �� 1

	ei
 �eikxx + r� 1

− 	e−i
 �e−ikxx	eikyy , �2�

��II� = �a� 1

�ei� �eiqxx + b� 1

− �e−i� �e−iqxx	eiqyy , �3�

��III� = � 1

	ei
 �eikx�x−L�eikyy . �4�

The momentum of the incident particle makes an angle 

=arctan�ky /kx� with the x axis. The angle of refraction, i.e.,
the corresponding angle inside the barrier, is �
=arctan�qy /qx�. We consider only elastic scattering at the in-
terfaces and define

kF 
 �kx
2 + ky

2�1/2 = ��v�−1�EF� �5�

and qF 
 �qx
2 + qy

2�1/2 = ��v�−1�EF − U� . �6�

The parameters 	=sign�EF� and �=sign�EF−U� determine
the wave function in the corresponding regions as either
electronlike �positive sign� or holelike �negative sign�. Trans-
lational invariance in the transverse �y� direction implies
conservation of transverse momentum:

ky = qy ⇒ kF sin 
 = qF sin � . �7�

It is convenient to introduce the dimensionless variable

 =
EF − U

EF
�8�

as a measure of the gate voltage U. =1 corresponds to the
case of no barrier. Throughout the rest of the paper, we will

L

d

FIG. 1. A ferromagnetic insulator on top of graphene induces an
exchange splitting in graphene. A metallic gate on top of the insu-
lator controls the electrostatic potential.

L

I II III

EF
U

FIG. 2. Square barrier of length L.
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make the substitution u=sin 
, and we recall that by defini-
tion 	kF=EF /�v and �qF= �EF−U� /�v.

Matching the wave functions at the interfaces, ��I��x=0�
=��II��x=0� and ��II��x=L�=��III��x=L�, and solving for t
give the transmission probability T
�t�2 for a given incom-
ing angle7,22 
:

T�u� =
�2 − u2��1 − u2�

�2 − u2��1 − u2� + u2�1 − �2 sin2�qxL�
, �9�

where

qxL = kFL�2 − sin2 
 . �10�

Both t and T are invariant under the transformation ky→
−ky as a consequence of the continuity condition �7�.

In a real device, the sample has a finite width W. The
allowed incoming angles 
 are, therefore, determined by the
channel index n, due to the quantization of the transverse
modes. This quantization condition is, for the infinite mass
boundary condition, ky→kn= �n+ 1

2
� /W, where n are integers

in the range 0–Nmax= �kFW /�−1 /2�, and the transverse
states are superpositions of states with positive and negative
ky.

22,25 Provided that the transverse momentum is conserved
across the barrier interfaces, Eq. �9� is valid for systems of
both finite and infinite width.22

The conductance through the barrier for each spin inde-
pendent channel is given in the Landauer-Büttiker formalism
as

G = gv
e2

h 
n=0

Nmax

Tn, �11�

where gv=2 is the valley degeneracy and Tn is the transmis-
sion probability �Eq. �9�� for a given transverse channel kn.
When the number of channels N becomes large, i.e., kFW
�1, we can replace the summation over channels with an
integration over transverse momenta, such that the conduc-
tance becomes

G = G0�
0

1

duT�u� = G0g , �12�

with G0 defined as

G0 =
2e2

h

kFW

�
. �13�

The dimensionless conductance g in Eq. �12� is plotted in
Fig. 3 as a function of the dimensionless gate voltage .

From Eq. �10�, we see that the longitudinal momenta in
the barrier region, qx, can be either purely real �2�u2� or
purely imaginary �2�u2�, corresponding to propagating and
evanescent modes, respectively.22 The contribution to the
conductance from the evanescent modes becomes dominant
around =0, and the scaling of the conductance with length
at this point resembles that of a diffusive system.22,26 For
���1, the conductance �12� can be split into the contribu-
tions from propagating and evanescent modes:

g = �
0

��

duT�u� + �
��

1

duT�u� = gprop + gevan, �14�

from which it is readily seen that the evanescent modes
dominate in the region near =0 as long as T�u��0 for at
least some u� �� �see Appendix B for details�. For kFL�1
and setting =0 in Eq. �9�:

T�u� �
1

cosh2�kFLu�
. �15�

This corresponds to the limit Nmax�W /L in Ref. 22. Upon
insertion of Eq. �15� into the integral �12�, we find that the
conductance at the Dirac point is inversely proportional to
the system length:

g �
1

kFL
. �16�

This corresponds to the so-called minimal conductivity gsG
�L /W=gsgve2 /h�,22 gs=2 being the spin degeneracy.

For ���1 and kFL�1, we can approximate the conduc-
tance by the expression

g � �a1 + a2��� +
1

kFL
exp�− kFL��� , �17�

with a1=0.79 and a2=0.21 �see Appendix C for details and
Fig. 3 for a comparison with the exact solution�. Equation
�17� reduces to Eq. �16� when →0.

For ���1, corresponding to a well or a large barrier, only
propagating modes contribute, and we would expect to see
resonances in the conductance due to quasibound27 states in
the barrier region. In the limit ���1, using that u2�1, the
tunneling probability �9� becomes

T�u� �
1 − u2

1 − u2 cos2�kFL�
, �18�

resulting in the expression

g

ξ

FIG. 3. �Color online� Conductance g=G /G0 as a function of
= �EF−U� /EF normalized to one spin channel when kFL=14. The
solid �blue� line shows the numerical result using Eq. �12�, while
the dashed �red� line is computed using the approximation �17�.
G0=2e2kFW /h�.
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g �
�cos�kFL�� − sin2�kFL�arctanh��cos�kFL���

�cos�kFL��3
�19�

for the dimensionless conductance �see Appendix B for de-
tails�. The period of g as a function of  is � /kFL. Also g
oscillates between 2 /3 and 1. The transmission probability
analogous to Eq. �9� for a square barrier in a nonchiral two-
dimensional system,7

Tnonchiral =
4�2 − u2��1 − u2�

4�2 − u2��1 − u2� + �1 − 2�2 sin2�qxL�
, �20�

also gives oscillation with the same periodicity, but, in this
case, the conductance oscillates between 0 and 1. The fact
that the conductance given by Eq. �19� oscillates between
2 /3 and 1 is due to the perfect tunneling of carriers near
normal incidence in graphene. Another difference between
graphene and a nonchiral system is that the transmission
probability of the latter �Eq. �20�� is symmetric around =0,
while the transmission probability for graphene �Eq. �9�� de-
pends also on the sign of  through the �1−� factor in the
denominator. The asymmetry for the case of graphene can
readily be seen in Fig. 3.

IV. SPIN DEPENDENT BARRIER

We now turn to a situation where the two spin channels
see barriers of different heights, i.e., the bottom of the con-
duction band at the barrier is shifted differently according to
spin. Such a shift can arise through a Zeeman interaction due
to an in-plane magnetic field or exchange field.

The exchange term � splits the system into two separate
subsystems according to spin. For an external magnetic field
B, the splitting is given by ��2�BB. We introduce the spin
dependent variables

� =  � � =
EF − U

EF
�

�

EF
, �21�

where � denotes spins parallel ��� or anti parallel ��� to the
exchange field �see Fig. 4�. In the following, we will let g+�−�

denote the spin resolved conductance for spins parallel �an-
tiparallel� to the exchange field. Assuming no spin flip, lsf
�L, the total conductance gT across the barrier is given by
the sum:

gT = g+ + g− = g�+� + g�−� . �22�

Because � /B�5.8�10−2 meV /T, a direct interaction of
the spins with an external magnetic field gives only a very
weak effect �about 1 meV per 20 T�, and one will have to
rely on more indirect effects to observe such spin splittings.

We propose depositing a ferromagnetic insulator, e.g.,
EuO, on top of the graphene sample to induce an exchange
splitting in graphene. A normal gate on top of the insulator
allows us to control the Fermi level in the same region. The
resulting potential profile is sketched in Fig. 4. A rough es-
timate suggests that the splitting energy can be of order �
�5 meV at EuO/graphene interfaces �see Appendix A�.

As can be seen from Fig. 5, the effect of the splitting is
simply to shift the conductance of each spin channel with
respect to the other, leading to a broadening of the dip in the
total conductance gT near the Dirac point =0. To be able to
observe the splitting directly in the gT near the Dirac point,
the magnitude of the splitting must be larger than the width
of the dip of each spin resolved conductance, g+�−�. A mea-
sure w= �kFL�−1 of the width of the dip is discussed in Ap-
pendix C, leading to the condition

L �
�v
���

�23�

for observation of the splitting directly in gT at the Dirac
point. However, the broadening of the dip due to a spin split-
ting would be difficult to distinguish from a broadening due
to other effects.

From Fig. 5, it is apparent that the spin splitting has a
more dramatic effect on the total conductance gT at large
barrier doping, since, due to the transmission resonances, g+

and g− can differ substantially at a given . The asymptotic
expression �19� for ���1 implies that gT has periodicity
� /kFL in  for �=0, as shown at the bottom of Fig. 6. With
increasing �, each peak of gT gradually splits into two spin
resolved peaks. The splitting measured from the conductance
2� equals 2� /EF �see Fig. 6�, so, in principle, � can be
determined directly from the total conductance across the
barrier in this way.

L

2Δ
EF

U

U−

U+

FIG. 4. Ferromagnetic proximity effect splits the barrier accord-
ing to spin such that U�=U��.

ξ

gT = g+ + g−
g+
g−

g

FIG. 5. �Color online� Spin resolved conductance through a
square barrier for kFL=14 and �=� /EF=0.05. The normalization
of conductance is chosen as in Fig. 3 to correspond to g�1�=1 for
each spin channel.
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On the other hand, it is also possible to study the splitting
by examining the spin polarization across the barrier.

We define a normalized spin polarization p along the di-
rection of the exchange field as

p =
g+ − g−

g+ + g−
. �24�

Inserting the approximate expression for the conductance
from Eq. �17� and comparing to exact numerical calcula-
tions, we find good agreement in the whole region ���1
�see Fig. 7�.

Equation �17� implies that the polarization becomes more
pronounced with increasing barrier length L �see Fig. 8�,
owing to the fact that the evanescent modes are increasingly
suppressed as L increases.

V. MAGNETORESISTANCE

Placing two magnetic gates a distance D apart in the
graphene sample is a possible way to probe the polarization
p in Eq. �24�. We assume either that D is much larger than
the mean free path lmfp �but still much shorter than lsf�, or
that the experimental setup is realized as a three-terminal
experiment, where the middle terminal completely random-
izes the momenta between the two barriers �see Fig. 9�.

Assuming that no spin flip processes take place in the
sample, the conductance for each spin channel is found by
treating the two barriers as resistors connected in series. Ar-
ranging the magnetizations of the ferromagnetic barriers par-
allel or antiparallel to each other gives different conduc-
tances g⇑⇑ and g⇑⇓, corresponding to the two situations in
Fig. 9, respectively. We study the polarization using the “pes-
simistic” definition of the magnetoresistance: MR= �g⇑⇑
−g⇑⇓� /g⇑⇑. For the general case of different left �L� and right
�R� barriers, we obtain

MR =
4pLgLpRgR

�gL + gR�2 − �pLgL − pRgR�2
, �25�

assuming that the resistance of the region D between the
barriers is negligible compared to the typical resistances of
the barriers. For clarity, we have suppressed the subscript T
denoting total conductance of the left �right� barrier: gL�R�

gL�R�

+ +gL�R�
− .

For identical barriers, MR reduces to the simple expres-
sion

MR = p2. �26�

The combination of Eqs. �17�, �24�, and �25� allows us to
experimentally determine � from magnetoresistance mea-
surements. The change of sign in the polarization, shown in

2δ

δ = 0.02

δ = 0.03

δ = 0.04

δ = 0.05

δ = 0

δ = 0.01

π/kFL

ξ

g

FIG. 6. �Color online� Total conductance gT=g++g− when ��
�1 for a range of different splittings �=� /EF. For clarity the
curves are shifted upward in steps of 0.5 with increasing �.

FIG. 7. �Color online� The polarization p from the approxima-
tion �17� compared to the exact numerical result obtained directly
from Eq. �12�. Both plots are for kFL=14 and �=0.05.

kFL = 38

kFL = 24

kFL = 10
kFL = 3

kFL = 17

kFL = 31

kFL = 45
kFL = 52
kFL = 59
kFL = 66

ξ

p

FIG. 8. �Color online� Polarization p as a function of = �EF

−U� /EF for different barrier lengths L with �=0.05.

L D L

L D L

EF

EF

U+

U−

U+

U−

U+

U− U+

U−

U U

U U

FIG. 9. Measuring tunneling magnetoresistance by placing two
short barriers a distance D� lmfp apart.
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Fig. 8, is directly related to the relative shift of the conduc-
tances corresponding to each spin channel. The coefficient
MR is proportional to p2, which produces the double peak
structure seen in Figs. 10 and 11. The condition for observ-
ing MR effects is also given by Eq. �23�, L��v / ���. How-
ever, since the MR signal is only sensitive to the spin degree
of freedom, we expect MR experiments to be a more direct
probe of a spin induced splitting. Any broadening of the dip
introduced by sources other than � will also be less impor-
tant, since the polarization p changes sign around =0.

For a splitting of �=5 meV, the condition in Eq. �23�
gives L�110 nm �or, equivalently, kFL�20�. As can be seen
in Fig. 8, the features in the polarization becomes sharper
when increasing the length above this value. This also trans-
lates into a clearer signal in the magnetoresistance, which is
plotted in Figs. 10 and 11 for barriers of equal and unequal
heights, respectively.

Finally, even if the top gate creates a smooth tunable bar-
rier, far from the perfectly square potential discussed here,
magnetoresistance measurements should still provide an ex-
perimental demonstration of proximity-induced ferromag-
netism in graphene, as the magnetic insulator still creates a
sharp splitting of the spin up and spin down states in the
region underneath the magnetic insulator. The exact depen-
dence of the polarization p on the splitting � may be differ-
ent in this case than the one presented here.

VI. CONCLUSIONS

We suggest using magnetic insulators deposited on top of
graphene to create ferromagnetic graphene. The exchange

interaction between electrons in graphene and the localized
magnetic moments in the insulator will give rise to a
proximity-induced exchange splitting �. We have estimated
that the graphene exchange splitting due to the magnetic in-
sulator EuO in close proximity can be around �=5 meV.

We have studied how the conductance of a square barrier
in graphene is modified by the presence of a ferromagnetic
insulator. We show that for large barriers or deep wells, ��
�1, the splitting � can be determined directly from the total
conductance across the barrier, provided that the barrier is
sharp enough for transmission resonances to appear. For a
barrier of length L��v / ���, where v is the Fermi velocity of
the charge carriers in graphene, � should be observable in
the polarization of the tunneling current near the Dirac point
of the barrier, irrespective of whether the barrier is smooth or
sharp.

Demonstration of proximity-induced ferromagnetism in
graphene should be possible through magnetoresistance mea-
surements both for smooth and sharp barriers.

Note added. Recently, we became aware of a related work
by Semenov et al.,28 where a similar system with a magnetic
gate is considered. Their work discusses the possibility of a
spin field effect transistor, the feasibility of which relies on
variations of the spin splitting across the sample of the same
order of magnitude as our estimate for the splitting itself.
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APPENDIX A: ESTIMATION OF EXCHANGE SPLITTING
AT EuO/ GRAPHENE INTERFACES

Experiments on depairing at EuO /Al interfaces suggest
that the superconducting quasiparticles of Al experience an
exchange field due to the Eu2+ moments.14,19 This interaction
is short ranged; essentially, only the nearest layer of Eu2+

ions contributes. It has be shown that the exchange interac-
tion between Eu2+ ions and charge carriers can be described
as a Zeeman splitting14–17,19

� � cJ�Sz� , �A1�

where c is the fractional density of Eu2+ ions to that of itin-
erant electrons in Al at the interface, J is the spatial average
of the exchange integral, and �Sz� is the average spin of Eu2+

ions at a given temperature.
Perpendicular to the surface of thin Al films, the elec-

tronic wave functions can be well approximated by atomic-
like wave functions.18 The spatial range of an atomic wave
function is determined by the ratio Z /n,29 where Z is the
atomic number and n is the energy level. Since this ratio is
approximately the same for the 3s and 3p orbitals in Al
�Z /n=13 /3�4.3� and the 2p orbitals in graphene �Z /n
=6 /2=3�, we expect the overlap between the wave functions
of localized moments and itinerant electrons at EuO/

kFL = 59

kFL = 45

kFL = 31

kFL = 17

kFL = 3

M
R

ξ

FIG. 10. �Color online� Magnetoresistance for two barriers of
equal height. The curves are shifted upward in steps of 0.25 for
clarity.

kFL = 17

kFL = 31

kFL = 45

kFL = 59

kFL = 3

M
R

ξ

FIG. 11. �Color online� Same as in Fig. 10, with one barrier
being lower than the other ��L−R�=0.1�.
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graphene interfaces to be comparable to those for EuO /Al.
Accordingly, we assume that the exchange interaction be-
tween Eu2+ ions and itinerant electrons are the same at
EuO /Al and EuO/graphene interfaces. Reference 17 reports
the value J=15 meV for Eu /Al interfaces, which also agrees
with the exchange energy hex=0.1 meV estimated in Ref. 19.

Using a nearest neighbor distance in graphene of
1.42 Å,30 we obtain for the areal density of itinerant elec-
trons nC�40 nm−1. Similarly, the areal density of Eu2+ ions
at the surface of EuO is nEu2+�4 nm−1. Together this gives
c=nEu2+ /nC�10−1.

The temperature dependence of the average spin of Eu2+

ions in EuO is calculated in Ref. 31, showing that 3.5
� �Sz��3 for 0�T�30 K.

Collecting all together, we arrive at the estimate

� � 5 meV �A2�

for the exchange splitting in graphene due to EuO. We stress
that this is a very rough estimate which needs to be tested
experimentally.

APPENDIX B: LIMITING CASES FOR THE
CONDUCTANCE

1. Large potential

For large barriers or deep wells, �EF−U�� �EF�, −1�1.
The transmission probability �9� then becomes

T�u� �
1 − u2

1 − u2 cos2�kFL�
. �B1�

The conductance in this case is

g � �
0

1

du
1 − u2

1 − u2 cos2�kFL�

=
�cos�kFL�� − sin2�kFL�arctanh��cos�kFL���

�cos�kFL��3
,

�B2�

which oscillates between the values 2 /3 and 1 with period
� /kFL as a function of .

2. Evanescent modes

When �EF−U�� �EF�, the evanescent modes dominate the
transport so we neglect the contribution from the propagating
modes. Using that ���u for evanescent modes, and that
���1, we find

T�u� �
1

cosh2�kFLu�
, �B3�

which is valid for kFL�1. The conductance then becomes

g � �
0

1 1

cosh2�kFLu�
�

1

kFL
. �B4�

APPENDIX C: DIP OF THE TUNNELING CONDUCTANCE
AROUND THE DIRAC POINT

We study how the width of the dip in the conductance
around the Dirac point scales with barrier length L. The con-
tributions from both evanescent and propagating modes must
be considered when ���1.

The conductance due to propagating modes can be written
as

gprop = f���� , �C1�

where

f�� = �
0

1

dv
1

1 +
v2�1 − �2

�1 − v2��1 − 2v2�
sin2�kFL�1 − v2�

.

�C2�

When kFL�1, f�� is well approximated by a linear curve
a1+a2 for all ���1. The function f�� deviates from linear-
ity in an oscillatory fashion in a small region around ��=0,
but f�� is allways of order unity. For kFL�1, the conduc-
tance due to propagating waves in the region ���1 can,
therefore, be approximated by

gprop � �a1 + a2��� , �C3�

where the value of the constants a1=0.79 and a2=0.21 de-
pend weakly on kFL when kFL�1, and are found by fitting
Eq. �C3� to numerical calculations.

We have not been able to obtain an analytical expression
for the contribution due to evanescent modes. However, we
note that the contribution from T�u� in Eq. �9� to evanescent
modes can be well approximated by a decaying exponential
function. We have fitted our numerical calculations of gevan
=���

1 duT�u� to an exponentially decaying function of ��:

gevan � Ae−B��. �C4�

The constant A is found to be 1 /kFL by letting →0 and
comparing with Eq. �16�. Numerical evidence suggest that
B=CkFL, with C of order unity.

We define the width w of the dip in the conductance at the
Dirac point as w=2�c�, where �c� is the value of �� for
which gprop�c�=gevan�c�. Taking advantage of the fact that
gevan decays rapidly away from ��=0, we ignore the second
order term in the expression for gprop for the purpose of es-
timating the width w. We find that

w = 2�c� �
1

kFL
, �C5�

using 2W�1 /a1��1, where W is the Lambert W function.
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We study spin transport in graphene and find an effective kinetic equation for highly doped
graphene with intrinsic and Rashba-like spin-orbit interaction. The kinetic equation incorporates
precession about a spin-orbit induced field, analogous to the situation in two-dimensional electron
gases with Rashba spin-orbit interaction, as well as the spin precession induced by a transverse
magnetic field. At high doping, the effects of the intrinsic spin-orbit coupling are small compared to
that induced by the extrinsic Rashba coupling of graphene. In a perpendicular magnetic field, the
intrinsic spin-orbit coupling, which contributes to the spin precession around an out-of-plane axis,
is masked by the Zeeman effect.

PACS numbers: 71.70.Ej, 73.23.-b

I. INTRODUCTION

The low dimensionality and gate-controllable doping
makes graphene a promising material for electronics
applications.1 Graphene exhibits high mobilities over a
wide range of carrier densities and temperatures, lead-
ing to ballistic transport on sub-micron scales.2 Due to
the low atomic number of carbon, the spin-orbit (SO)
interaction in graphene is rather weak, making graphene
also a promising candidate for spintronics applications,3,4
where the aim is to exploit the spin of the electrons in
addition to the charge.5

Crucial to the application of graphene for spintron-
ics is a clear understanding of spin dynamics and re-
laxation. The relevant spin relaxation mechanisms in
graphene are the Elliot-Yafet (EY) and D’yakonov-Perel
(DP) mechanisms.6 In the EY mechanism there is a finite
probability of spin flip in an impurity scattering event,
since in the presence of SO coupling the electronic eigen-
states are mixtures of spin up and spin down states.5 The
DP mechanism is present in crystals lacking inversion
symmetry. In these systems the SO coupling introduces
a momentum dependent effective magnetic field about
which the spins precess. When momentum changes in a
scattering event, the effective magnetic field also changes,
leading eventually to a loss of spin coherence.5 Theo-
retical works on spin relaxation in graphene have con-
cluded that the main source of intrinsic spin relaxation
is through the DP mechanism,7 although scattering at
extrinsic defects could lead to EY scattering.

Experiments with relatively dirty graphene sam-
ples find spin relaxation times τs in the range
100− 200 ps.3,4,8 These times are much shorter than the-
oretically estimated values.6,9,10 In several experiments,
the spin relaxation time is found to be proportional to
the momentum scattering time τ , indicating that the EY
mechanism is dominating spin relaxation.4,11 However, a
recent experimental work, addressing the role of charged
impurities for spin transport, reports that the spin and
momentum relaxation rates are not proportional, indi-
cating that charged impurity scattering is not necessarily
the dominant factor in spin relaxation.12 The relaxation

time in this work was still found to be comparable to
those in earlier experiments.

A recent first-principles calculation10 suggests that the
intrinsic SO coupling is stronger by an order of magni-
tude than was previously assumed,6,13 making the intrin-
sic and the Rashba-like SO coupling in graphene compa-
rable in magnitude for typical experimental conditions.10.

The aim of this work is to investigate spin transport
in doped graphene in the presence of both intrinsic and
Rashba-like SO coupling. We focus on the ballistic limit,
discussing the influence of a finite intrinsic SO coupling
on the spin dynamics in the presence of a perpendicular
magnetic field.

II. HAMILTONIAN

The low energy Hamiltonian of graphene with SO in-
teraction is

H = H0 +HR +HI +HZ + V, (1)

where V is the impurity potential and14–16

H0 = vσ · p̄ (2)

HR =
ΔR

2
(σ × s)z = −ΔR

2
σ ·η (3)

HI = ΔIσzsz (4)

HZ = −gμB

2
szB, (5)

with η = ẑ × s. The form of the Hamiltonian (1) can
be derived from symmetry considerations alone14 or ex-
plicitly from a tight binding model of graphene taking
into account hybridization and atomic SO coupling.15
The Pauli matrices σ and s operate on sublattice and
spin space, respectively, and p̄ = −i�∇ + eA is the
momentum operator. We consider a magnetic field
pointing out of the plane, and choose the symmet-
ric gauge, A(r) = 1

2 (B × r), which simplifies the
derivation of the kinetic equation.17,18 The Hamilto-
nian (1) acts on spinors of the type Ψ = (ΨK , ΨK′)T ,
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with ΨK = (ψKA↑, ψKA↓, ψKB↑, ψKB↓)T and ΨK′ =
(ψK′B↑, ψK′B↓,−ψK′A↑,−ψK′A↓)T .19 In the absence of
intervalley scattering the K and K ′ valleys are degener-
ate. Note that the roles of the B and A sublattices are
reversed at K ′ compared to K. In this paper we consider
long range impurity scattering, which typically arises
due to charged impurities trapped near the graphene
layer.20,21 Since the momentum transfer associated with
long range scatterers is small, the two valleys K and K ′
are not coupled by impurity scattering, and V can be
treated as a scalar potential for each valley.

The intrinsic SO interaction ΔI is dominated by the
coupling between d and pz orbitals of neighboring carbon
atoms in the graphene lattice.10 The intrinsic SO interac-
tion was previously assumed to be small compared to the
extrinsic interaction ΔR,15,16 and calculations of spin re-
laxation have therefore focused mainly on the effect of the
latter.6 The extrinsic Rashba SO interaction ΔR arises
from σ − π band mixing induced by local curvature of
the graphene sheet or a transverse electric field.10,15 The
values inferred from the first-principles calculation10 in-
dicates that ΔI and ΔR can be of comparable magnitude
for realistic experimental conditions.

A recent calculation suggests that the spin relaxation
time can be determined from a generalized EY mech-

anism due to the intrinsic spin-orbit coupling.22 How-
ever, the value of ΔI found by fitting to experiments
is two orders of magnitude larger than what the theory
reports.10 Furthermore, short-range impurities seem to
have been implicitly assumed by Ref. 22, although never
explicitly stated. It has been suggested that hybridiza-
tion due to adsorbed impurities can lead to a large in-
crease in the SO coupling,23 consistent with observations
of large anisotropic spin splitting observed for graphene
on a substrate.24,25

To study the spin transport in doped graphene, we gen-
eralize the procedure of Ref. 13 by including the intrinsic
SO interaction. We consider the stationary situation, and
expand the Schrödinger equation explicitly in sublattice
space at the Fermi energy εF ,(

εF − V (r)− Λ−sz −vp̄− − iΔRs−
−vp̄+ + iΔRs+ εF − V (r) + Λ+sz

)(
ψKA

ψKB

)
= 0.

(6)
Here Λ± = ΔI±ΔZ and the Zeeman energy is defined as
ΔZ = g

2μBB. We have used the definitions p̄± = p̄x± ip̄y

and s± = (sx ± isy) /2. The energy εF is measured from
the charge neutrality (Dirac) point of graphene. Rear-
ranging the two equations in Eq. (6), we get effective
Hamiltonians for ψKA and ψKB which depend paramet-
rically on εF :

Heff
K(A/B) =

v2

εF − V (r)± Λ±sz

[
p̄2 ± e�B

]− vΔR

εF − V (r)± Λ±
η · p̄ +

Δ2
R

εF − V (r)± Λ±
(1∓ sz)

2
± Λ∓sz

+ V (r)− i�v [∂∓V (r)]
[εF − V (r)± Λ±sz]

2 (vp̄± ∓ iΔRs±) ,

(7)

where the upper and lower sign corresponds to the A and
B sublattice, respectively. These expressions for the ef-
fective Hamiltonians are exact and valid when none of
the denominators in (7) vanish. The quadratic momen-
tum dependence and the presence of a Rashba SO term
proportional to η · p̄ is analogous to a normal 2DEG with
SO coupling.26

III. KINETIC EQUATION

We express the kinetic equation in terms of the Wigner
function ǧpε(R, T ), which is related to the two point
Green’s functions through a Fourier transform over the
fast variables,18

Ǧ (r1t1, r2t2) =
∫

dp dε

(2π)3
e

i
�
[(p−eA(R)) · r−εt]ǧpε(R, T ).

(8)
The Wigner coordinates are defined in a standard way as

x1(2) =
1
2
X + (−)x (9)

where x is either a position or time coordinate. We con-
sider a stationary system,

Ǧ (r1t1, r2t2) = Ǧ (r1, r2; t1 − t2) (10)

so

ǧpε (R, T ) = ǧpε (R) . (11)

The kinetic equation is derived from the Keldysh
formalism,18,26

[GR]−1GK −GK [GA]−1 = ΣKGA −GRΣK , (12)

where convolution products are implied between the fac-
tors. The superscripts R, A, and K denote, respectively,
the retarded, advanced, and Keldysh component of the
Green’s function. Collecting the self energy terms on the
right hand side, we get an equation of the form

[
G−1

0

]
GK −GK

[
G−1

0

]†
= ΣRGK −GKΣA + ΣKGA −GRΣK ,

(13)
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where the bare Green’s function G0, obeys[
εF −Heff

AK(r1)
]
G0(r1, r2) = δ(r1 − r2) (14)

in the position representation.
The impurity potential V (r) enters non-linearly in the

effective Hamiltonian (7) and will, especially at low dop-
ing where εF ∼ V (r), lead to non-perturbative behavior.
However, at high doping such that εF � V (r), we can
expand terms of the type [εF − V (r)± Λ±sz]

−1 in pow-
ers of u(r) = V (r)/εF . To lowest order, the effective
Hamiltonian is linear in V (r). In this linearized regime,
the effect of impurity scattering can be taken into ac-
count by a standard self energy method based on the
the Dyson equation.18 The dominant terms in the self
energies on the right hand side of in Eq. (13) are propor-
tional to the impurity density nimp. We focus here on the
clean limit, nimp ≈ 0, in which case the self energy terms
in Eq. (13) vanish. Ballistic transport has been demon-
strated in suspended graphene27 Suppression of charged
impurity scattering in graphene on a substrate has been
achieved by ionic screening of the graphene layer.28,29 We
briefly discuss the implications of impurity scattering in
Appendix A.

In the clean limit the kinetic equation is

1
2

[
vA/B

a , ∇̃gK
]
+

+ i
[
ωA/B , gK

]
−

∓ i
4�

[
Λ±sz,

�
2v2

ε2F − Λ2±
∇̃2gK

]
−
≈ 0.

(15)

Following a previous calculation of the spin dynamics in a
normal 2DEG,26 we have defined the anomalous velocity

vA/B
a = v

(
2εp

εF ± Λ±sz
p̂− ΔR

εF ± Λ±
η

)
(16)

and the precession vector

�ωA/B = − εpΔR

εF ± Λ±
η · p̂

∓
(

ε2p ±Δ2
B

ε2F − Λ2±
Λ± +

1
2

Δ2
R

εF ± Λ±
− Λ∓

)
sz,

(17)

where εp = vp, ΔB =
√

e�v2 |B| ≈ √|B| /T × 25 meV,
and p̂ is the unit vector in the direction of p.

The last term in the generalized gradient operator in
Eq. (15),

∇̃ = ∇R − e (B ×∇p) (18)

generates the Lorentz force.
In the high doping limit εF � ΔI , ΔR, ΔZ , where εp ≈

εF , the velocity is independent of the SO coupling,

vA/B ≈ 2vp̂. (19)

However, the precession vector still depends on the SO
parameters

�ωA/B = −ΔRη · p̂

−
[
2ΔZ +

(
ΔB

εF

)2

(ΔI ±ΔZ)

]
sz.

(20)

The spin precession governed by ΔR is proportional to
the direction of momentum. This is analogous to a nor-
mal 2DEG with Rashba SO interaction,26 and in the
presence of scattering will lead to spin relaxation by the
DP mechanism. The out-of-plane component of the pre-
cession vector is governed by the Zeeman effect at low
magnetic fields. At higher magnetic fields, there is a
competition between the Zeeman energy ΔZ and the in-
trinsic spin-orbit coupling. From the exact dispersion
relation of graphene with SO coupling,9,14 one sees that
at high doping the intrinsic SO coupling ΔI contributes
to second order, while ΔR is a first order effect. This is
reflected in Eq. (20), where ΔI only contributes to the
precession for strong magnetic fields at high doping.

Assuming that density variations occur on a length
scale much longer than the Fermi wavelength, we can
approximate the last term of Eq. (15) by

i
4�

[
Λ±sz,

�
2v2

ε2F − Λ2±
∇̃2gK

]
−

≈ i
4

[
Λ±sz,

�v2e2B2

ε2F
∇2

pgK

]
−

=
i

4�

(
ΔB

εF

)2

Λ±

[
sz,

�
2

l2B
∇2

pgK

]
−

,

(21)

where lB =
√

�/e |B| ∼ (|B| /T)−1/2×25 nm is the mag-
netic length. The contribution in Eq. (21) describes how
the behavior of the system is modified for high magnetic
fields when the magnetic length lB becomes comparable
to the Fermi wave length λ2

F gK ∼ �
2∇2

pgK , i.e. at the
onset of Landau level quantization.

As can be seen from Eq. (20), the Zeeman energy

ΔZ =
gμB

2
B ≈ B

T
× 0.06 meV, (22)

competes with the intrinsic SO coupling for high mag-
netic fields. For a reasonable Fermi energy in doped
graphene, εF ≈ 100 meV,30 we get (ΔB/εF ) ≈ 0.25 ×
|B| /T. This means that the competition between the
intrinsic SO coupling and the Zeeman effect will be dif-
ficult to detect, since ΔZ will dominate ΔI for magnetic
fields where the competition between the two is notice-
able. However, it is worth noting from Eq. (20) that
in a strong magnetic field, spin precession is different
on the two sublattices. The Zeeman energy and the in-
trinsic SO coupling are comparable in magnitude when
B ≈ 0.4 T, if the value ΔI ∼ 24 μeV from the first-
principles calculation is correct.10 To get a a large contri-
bution from this competition in the precession one needs
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ΔB/εF ∼ 1, which corresponds to |B| ≈ 4 T with the
above Fermi energy. In this case the Zeeman energy is
ΔZ ∼ 0.24 meV ≈ 10ΔI , so it is unlikely that the ef-
fect of ΔI can be distinguished at high magnetic fields in
doped graphene.

IV. CONCLUSION

In summary, the effect of SO coupling in highly doped
graphene has several similarities with that in normal
2DEGs. As was discussed in Ref. 6, the Rashba spin-
orbit coupling induces an in-plane component to the spin
precession axis, which in the presence of scattering will
lead to spin relaxation by the DP mechanism. We pro-
vided a way to see these effects directly by devoloping an
effective 2× 2 kinetic equation in spin space.

We find that the Rashba spin-orbit coupling ΔR is the
dominant contribution to the spin dynamics at high dop-
ing, while the intrinsic spin-orbit coupling ΔI only con-
tributes at large magnetic fields as a minor correction
to the spin precession induced by the Zeeman splitting.
These conclusions are based on effective stationary ki-
netic equations derived for the two sublattices in highly
doped graphene, where we have taken into account both
intrinsic and extrinsic spin-orbit coupling, and also the
effect of a perpendicular magnetic field through the Zee-
man effect and an orbital contribution. We assume val-
ues for the spin-orbit coupling constants as reported in a
recent first-principles calculation.10

Further work is needed to clarify the respective roles of
the two spin-orbit mechanisms in graphene at low densi-
ties. At such densities, the formalism used here becomes
cumbersome, and it would be better to start directly from
the 8×8 Hamiltonian in spin, sublattice and valley space
(1). A detailed calculation of the self energy in the pres-
ence of spin-orbit coupling, comparing short-range and
long-range disorder potentials, would provide valuable in-
sight into the possible importance of the EY mechanisms
in graphene.
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Appendix A: Effect of impurities

In this appendix we briefly outline the effect of impuri-
ties in the kinetic equation. We consider the dilute limit,
and evaluate the self energy matrix in the Born approx-
imation for the situation without a magnetic field. The
terms containing the gradient of the impurity potential in
Eq. (7) are seen to give rise to an anisotropic momentum
relaxation rate.

The Fermi wave length λF in doped graphene is typ-
ically 50 – 100 nm.31 Impurity scattering in graphene is
dominated by charged impurities trapped a small dis-
tance L away from the graphene layer.9,20,32 This corre-
sponds to a quasi short-range regime, where the charac-
teristic length scale L ∼ Q−1 associated with impurity
scattering is smaller than the Fermi wave length, but still
larger than the lattice constant, so that

kF � Q � K, (A1)

where K ∼ a−1 is the momentum transfer associated
with inter-valley scattering, and a = 2.461 Å is the lat-
tice constant of graphene.33 In the regime of Eq. (A1), we
can model the impurities as short-range scatterers on the
scale of the Fermi wave length, V (r) =

∑
i αδ(r −Ri),

neglecting any valley mixing.34 We also neglect the mod-
ulation of ΔR induced by the local electric field variations
due to the impurities,9 assuming that the back gate which
is used to adjust the doping dominates ΔR.

The self energy in the self-consistent Born approxima-
tion is35,36

Σ̌(1, 2) =
〈
U(r1)Ǧ(1, 2)U(r2)

〉
imp

, (A2)

where U(r) = UV (r) + U∂V (r) has contributions from
the two last terms in Eq. (7). The first term UV (r) =
V (r) gives rise to the regular self energy,

Σ̌[V V ]
ε (R) = nimp |α|2

∫
dq

(2π)2
ǧqε(R), (A3)

which is independent of momentum.

The term proportional to the derivative of the impurity
potential,

U∂V (r) =
−i�v [∂∓V (r)]
[εF ± Λ±sz]

2 (vp̄± ∓ iΔRs±) , (A4)

leads in general to an anisotropic self energy through the
term vp̄±, and to spin flip processes due to ΔRs±. The
latter will contribute to EY relaxation. At high doping,
however, the spin flip contribution is highly suppressed
due to the small prefactor ΔR/εF .

In the absence of a magnetic field at high doping, and
neglecting gradients of gqεF

(R), we find that the contri-
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butions to the anisotropic part of the self energy are

Σ̌[∂V ∂V ]
qεF

=
〈[

U∂V ǦU∂V

]
qεF

〉
imp

≈ nimp |α|2

×
∫

dk

(2π)2
(�v)4

[
(q − k)2k2

]
ε4F

ǧkεF
,

(A5)

Σ̌[V ∂V ]
qεF

=
〈[

UV ǦU∂V

]
qεF

〉
imp

≈ nimp |α|2

×
∫

dk

(2π)2
(�v)2 [(q − k) ·k ∓ i(q × k)]

ε2F
ǧkεF

,

(A6)

Σ̌[∂V V ]
qεF

=
〈[

U∂V ǦUV

]
qεF

〉
imp

≈ nimp |α|2

×
∫

dk

(2π)2
(�v)2 [(q − k) ·k ± i(q × k)]

ε2F
ǧkεF

.

(A7)

The dominant contribution to the self energy at high
doping is therefore

Σ̌qεF
= Σ̌[V V ]

qεF
+ Σ̌[V ∂V ]

qεF
+ Σ̌[∂V V ]

qεF
+ Σ̌[∂V ∂V ]

qεF

≈ nimp |α|2
∫

dk

(2π)2
f(q, k)ǧkεF

,
(A8)

with

f(q, k) = 1 + 2
(

�v

εF

)2

(q − k) ·k

+
(

�v

εF

)4

(q − k)2k2.

(A9)

With the Hamiltonian in Eq. (7), the retarded Green’s
function has the general structure

gR
kεF

= AεF
(k) + BεF

(k)η ·k + CεF
(k)sz, (A10)

where k = |k|. We can perform the angular integrals in
Eq. (A8), finding

[
IA

IC

]
(k, q) =

∫
dΩ(k)
(2π)2

f(q, k)
[
AεF

CεF

]
(k)

=
1
2π

[
1 + ν2

k

(
ν2

k + ν2
q − 2

)] [AεF

CεF

]
(k),

(A11)

IB(k, q) =
∫

dΩ(k)
(2π)2

f(q, k)BεF
(k)η ·k

=
1
2π

[
ν2

k

(
1− ν2

k

)]
BεF

(k)η · q,

(A12)

where νq and νk are defined as νk = εk/εF = �vk/εF .
The term in Eq. (A12) shows that the curvature terms
in the effective Hamiltonian (7) lead to an anisotropic
momentum relaxation rate. The spin dependence of the
scattering rate associated with the anisotropy will lead
to spin relaxation via the EY mechanism.
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5 I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys.,
76, 323 (2004).

6 D. Huertas-Hernando, F. Guinea, and A. Brataas, Phys.
Rev. Lett., 103, 146801 (2009).

7 Y. Zhou and M. W. Wu, Phys. Rev. B, 82, 085304 (2010),
1004.0638.

8 N. Tombros, S. Tanabe, A. Veligura, C. Jozsa, M. Popin-
ciuc, H. T. Jonkman, and B. J. van Wees, Phys. Rev.
Lett., 101, 046601 (2008).

9 C. Ertler, S. Konschuh, M. Gmitra, and J. Fabian, Phys.
Rev. B, 80, 041405 (2009), 0905.0424.

10 M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl,
and J. Fabian, Phys. Rev. B, 80, 235431 (2009).
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We investigate the transport properties of three-terminal graphene devices, where one terminal is supercon-
ducting and two are normal metals. The terminals are connected by nanoribbons. Electron transfer �ET� and
crossed Andreev reflection �CAR� are identified via the nonlocal signal between the two normal terminals.
Analytical expressions for ET and CAR in symmetric devices are found. We compute ET and CAR numeri-
cally for asymmetric devices. ET dominates CAR in symmetric devices, but CAR can dominate ET in asym-
metric devices, where only the zero-energy modes of the zigzag nanoribbons contribute to the transport.
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I. INTRODUCTION

Graphene, a two-dimensional honeycomb lattice of car-
bon atoms, has recently been experimentally realized.1–3 It
exhibits intriguing electron transport properties such as a
very high mobility,1–3 gate-voltage tunable electron doping,1

anomalous quantum Hall effect,3 Klein tunneling,4 “relativ-
istic” Dirac-like linear energy-momentum dispersion,5 and
possible integration with other adatoms and electrical
contacts.6,7 Graphene can be contacted to superconductors
and a supercurrent in graphene Josephson junctions has been
measured.8–10

Nonlocal transport in three-terminal devices with one
superconducting lead and two normal metals has been
extensively studied, both theoretically11–16 and
experimentally.17–20 At energies lower than the superconduct-
ing gap, the current in one normal terminal caused by a volt-
age applied between another normal terminal and the super-
conductor is governed by a competition between electron
transfer �ET� and crossed Andreev reflection �CAR�. ET is
the emission of an electron from one normal metal terminal
to another normal metal terminal, possibly after interacting
with the superconductor. In CAR, an electron from one nor-
mal terminal enters the superconductor together with an elec-
tron from a second normal terminal or, equivalently, an elec-
tron is emitted into one normal terminal while a hole is
emitted into another normal terminal. This process creates a
spatially entangled electron-hole pair which has a fundamen-
tal interest and can be used as an entangler.21–23 The relative
magnitude of ET and CAR can be tuned by using ferromag-
netic contacts,14,24 but our focus here is on their intrinsic
relative value when normal metals are used. The ET and
CAR processes contribute with opposite signs to the nonlo-
cal current. Experimentally, it has been measured that ET
often dominates CAR, but at finite bias voltage a CAR domi-
nated signal20 was also seen. First theories in the lowest or-
der tunneling limit predict that ET and CAR exactly cancel
each other.14 Also, relaxing the assumption of tunneling bar-
riers by allowing barriers of arbitrary strength in semiclassi-
cal N-S circuits, ET generally dominates CAR.15 Recent the-
oretical suggestions to explain the experiment in Ref. 20 are
Coulomb interaction effects,25 an external ac bias,26 and
quantum interference effects.27

Theoretically, graphene-superconductor junctions have
been investigated by several workers.28–30 In graphene there
is an additional new quasiparticle to supercurrent conversion
process denoted specular Andreev reflection, where states
above and below the Dirac point are coupled by Andreev
scattering �interband coupling�.28 In specular Andreev reflec-
tion, the holes emitted from the superconductor no longer
follow the parallel time-reversed path of the incoming elec-
tron as they do in direct Andreev reflection, but are specu-
larly reflected at an angle which equals the angle of inci-
dence. Although fundamentally interesting, as it could
enhance CAR processes,31,32 specular Andreev reflection is
only visible in ultra clean and homogeneous systems, since
the Dirac point must be well-defined throughout the region
of interest, or the superconducting pair potential � must be
much larger than the typical variation in the Dirac point.
Also, it is necessary to control the doping such that the Fermi
energy is considerably smaller than the superconducting gap.
The small magnitude of the proximity induced superconduct-
ing gap in graphene, ��0.1 meV,8 means this could only
be realized in ultra small structures at very low doping level
in well controlled systems.

In this paper we investigate the influence of a supercon-
ducting terminal on devices built from graphene zigzag rib-
bons. We are interested in studying how ET and CAR depend
on the features of the nanoribbons e.g. on their widths, num-
ber of terminals, and relative angle where ribbons connected
to various terminals intersect. The choice of zigzag ribbons is
the most relevant one, as the boundary conditions for ribbons
with generic boundaries have been shown to reduce to the
boundary conditions for zigzag terminations in most
cases.33,34 Such nanoribbons have some unique electronic
features, such as supporting current carrying zero-modes lo-
calized along the edges.34–36 Also, for low energies, states
carrying current in opposite directions along the zigzag rib-
bon is associated with different eigenstates, and there is an
absence of backscattering due to the small overlap between
the states carrying current in opposite directions.37

The paper is organized as follows: in Sec. II we define our
model and in Sec. III we express the scattering matrix in
terms of the normal-state scattering matrix. This enables us
to identify the ET and CAR contributions to the nonlocal
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signal. Section IV describes the properties of symmetric
three-terminal devices, and in Sec. VI we present numerical
results showing a dominance of CAR over ET in an asym-
metric device. Finally we conclude our paper in Sec. VII.

II. MODEL AND METHOD

Our description of superconducting ribbons starts with the
nearest-neighbor hopping Hamiltonian of graphene,

H = − 
�i,j�,�

�ci�
† cj� − EF

i,�
ci�
† ci�, �1�

where ��2.7 eV is the nearest-neighbor hopping
energy,7,38,39 and ci�

† creates an electron with spin � at site i.
In the superconducting terminal, we assume a supercon-
ductor on top of the graphene sheet which by proximity in-
duces superconducting properties in graphene. We consider

spin singlet pairing described by the BCS Hamiltonian Ĥ.40

The superconducting pair potential �i is local to site i and
chosen to be real since we only have one superconductor. We

write Ĥ in Nambu form

Ĥ = 
i,j

� j
†��Hij 0

0 − Hij
� � + �ij� 0 �i

�i 0
�	�i, �2�

where �i
†= �ci,↑

† ,ci,↓� and Hij are elements of the normal-state
Hamiltonian in Eq. �1�.

We are interested in the transport properties which can be
expressed via the scattering matrix of the system. Following
Ref. 41, we find that the differential conductance matrix is42

Gab�eVb� = �− 1��1−�ab�� �Ia

�Vb
�

Vb

= �Nb − Gbb
ER + Gbb

DAR, b = a

Gab
ET − Gab

CAR, a � b ,
� �3�

where Nb��� is the number of propagating modes in lead b at
energy �, and the conductance matrix elements are defined in
terms of the Nambu space scattering matrix

S = �See Seh

She Shh� �4�

as

Gbb
ER = Tr�Sbb

ee�eVb�Sbb
ee†�eVb�� , �5�

Gbb
DAR = Tr�Sbb

he�eVb�Sbb
he†�eVb�� , �6�

Gab
ET = Tr�Sab

ee�eVb�Sab
ee†�eVb��, �a � b� , �7�

Gab
CAR = Tr�Sab

he�eVb�Sab
he†�eVb��, �a � b� . �8�

The conductances in Eqs. �5�–�8� describe, respectively, local
electron reflection �ER�, direct Andreev reflection �DAR�,
nonlocal ET, and CAR.

All energies are measured with respect to the equilibrium
chemical potential of the superconductor, and all conduc-

tances in this paper are in units of two times �for spin� the
conductance quantum 2G0=2e2 /h. The current Ia is defined
as incoming from reservoir a.

III. SCATTERING MATRIX OF A THREE-TERMINAL
DEVICE WITH ONE SUPERCONDUCTING TERMINAL

In the following we will study the nonlocal signal in a
three-terminal device, where terminal 1 is superconducting
and terminals 2 and 3 are normal metals. The nonlocal
conductance14,15

G32�eV2� = G32
ET�eV2� − G32

CAR�eV2� �9�

is positive when dominated by ET and negative when
dominated by CAR.

We compute G32
CAR and G32

ET in two ways: �i� See and She

are computed directly in Nambu space using the Hamiltonian
�2�, and G32

CAR and G32
ET are found from Eqs. �7� and �8�. We

refer to this as the Nambu approach. �ii� We relate See and
She to the scattering matrix s in the normal state and numeri-
cally compute the latter using the Hamiltonian �1�. We call
this the Normal approach. Our results using both methods
agree when applicable. Let us first review how the scattering
matrix can be related to the normal-state properties.

Following Ref. 43, if the scattering region is well sepa-
rated from the superconducting terminal, we can express the
scattering matrix S when terminal 1 is superconducting in
terms of the scattering matrix

s = �s11 s12 s13
s21 s22 s23
s31 s32 s33

� = �r11 t12 t13
t21 r22 t23
t31 t32 r33

� �10�

when the whole device is in the normal state. As long as the
device is appreciably smaller than the superconducting co-
herence length , the normal approach is applicable. For
graphene, the induced superconducting gap is small,
��0.1 meV,8 so that the coherence length  is on the order
of micrometers.

With terminal 1 superconducting, the scattering matrix be-
tween the normal metal terminals 3 and 2 is43,44

S32ee = t32 + t31�
2r̄11Mt12, �11�

S32he = t̄31�Mt12, �12�

where the matrix M is

M = �I − �2r11r̄11�−1. �13�

The amplitude �, associated with electron-hole conversion at
the normal-superconducting interface, is44

� =
�

�
− sgn����� �

�
�2 − 1, �14�

and the bar �ḡ� corresponds to time reversal, defined for an
arbitrary quantity g��� as

ḡ = ḡ��� = g��− �� . �15�

The matrix M corresponds to all orders of the process
where a hole emitted from the superconductor returns to the
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superconductor. At zero energy, holes propagating with am-
plitude r̄11 between successive interactions with the super-
conductor retrace exactly the reverse path of the electrons
with amplitude r11. Thus, at zero energy, holes and electrons
do not acquire a phase relative to each other upon interacting
with the scattering region. However, at nonzero energy, there
is a mismatch between the wave vectors of electronlike and
holelike states, so the time reverse paths described by the
scattering matrices r11 and r̄11 will not be exactly opposite to
each other. This means that the term r11r̄11 in M contains
many different phases, which will depend strongly on the
disorder configuration. There is therefore some loss of coher-
ence at nonzero energy due to phase randomization.

For the ET process, described by the scattering matrix
element in Eq. �11�, there is an interference of two types of
processes: �1� Going directly from 2 to 3 without interacting
with the superconductor, and �2� processes involving any
number of electron-hole-electron conversions at the interface
to the superconductor. Similarly, the Andreev process de-
scribed by Eq. �12� involves an odd number of electron-hole
conversions at the NS interface.

In the absence of a magnetic field, time-reversal symme-
try dictates45

s̄ab��� = sab
� �− �� = sba

† �− �� . �16�

The energy scale of the normal-state scattering matrix sab is
the subband energy, which is determined by the hopping en-
ergy � and the width of the ribbon. For the ribbons consid-
ered in this paper, the subband energy is larger than the su-
perconducting pair potential � by several orders of
magnitude. The Fermi energy is comparable to the subband
energies in magnitude. Since, in the regime we consider, sab
is independent of energy on the scale of �, we write
sab���=sab�0�=sab and s̄ab=sba

† .
The nonlocal ET and CAR conductances therefore sim-

plify to

G32
ET = Tr�t32t32

† � + 2 Re �2 Tr�t12t32
† t31r11

† M�

+ ���4Tr�r11t31
† t31r11

† Mt12t12
† M†� , �17�

G32
CAR = ���2Tr�t13t13

† Mt12t12
† M†� , �18�

where all energy dependence is due to the electron-hole con-
version amplitude �.

When ���, Eq. �14� gives �→0, and we recover the
normal-state behavior where only the first term of Eq. �17�
contributes. However, in the subgap limit ���, �→ i, and
the interaction with the superconductor contributes. The sec-
ond term in Eq. �17� is due to interference between processes
involving direct transfer of electrons from 2 to 3, and inter-
action with the superconducting terminal 1.

In our numerical studies, we calculate the retarded

Green’s-function matrix G= �EÎ− Ĥ− �̂R�−1 and extract the el-
ements Gab involving the terminals a and b. The calculation
of G uses the recursive method described in Ref. 46. In this
method, the Green’s function of the whole system is found
by adding the sites of the Hamiltonian �1� to the system one
by one, updating all relevant Green’s-function elements via
the Dyson equation. The method has the advantage that it

can easily be applied to structures of arbitrary geometry and
any number of terminals. After the Green’s function has been
found, the scattering matrix Sab is extracted via the Fischer-
Lee relations,45,47

Sab = − Ia�ab + i�a
1/2Gab�b

1/2. �19�

Here Ia is the identity matrix �operator� and �a= i��a−�a
†� is

the linewidth matrix which depends on the self energy �a of
terminal a.

IV. SYMMETRIC THREE-TERMINAL DEVICE

The simplest three-terminal device is completely symmet-
ric where the normal-state scattering matrix �Eq. �10�� sim-
plifies to

s = �r t t

t r t

t t r
� . �20�

Unitarity of s gives rise to the relations

I = rr† + 2tt† �21�

and

0 = tr† + rt† + tt† �22�

that we make use of in Eqs. �17� and �18� to find the nonlocal
conductance. We can express the conductance matrix of such
a symmetric device in terms of the eigenvalues 0�Rn�1 of
the reflection probability matrix rr†,

G32
ET = 

n

�1 − Rn�
4�1 + Rn�2

�3 + 5Rn� , �23�

G32
CAR = 

n

�1 − Rn�2

4�1 + Rn�2
. �24�

It follows from this that the nonlocal conductance of a sym-
metric structure,

G32 = G32
ET − G32

CAR = 
n

�1 − Rn�
2�1 + Rn�2

�1 + 3Rn� , �25�

is always ET dominated �positive�. By a completely analo-
gous calculation we also find that the local conductance,

G22 = 
n

�1 − Rn�
2�1 + Rn�2

�3 + Rn�2 − Rn�� , �26�

is naturally also positive.
A few simple conclusions can be drawn from these ex-

pressions. First, when the device is perfectly transparent for
the N2 contributing modes at the Fermi energy, the contrib-
uting modes have Rn�0, the others have Rn�1. The local
and nonlocal conductances become

G22 �
3

2
N2, �27�
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G32 �
1

2
N2, �28�

where N2 is the number of modes contributing to the current
at the Fermi energy. These results have the following simple
explanation: when the voltage is raised in terminal 2, N2
conducting modes are injected into the structure via this ter-
minal. Since the device is symmetric, half of these modes go
directly to terminal 3, producing a current N2 /2 in this ter-
minal. The other half of the N2 incoming modes interact with
the superconductor at terminal 1, and are Andreev reflected
back to terminal 2 as holes. These modes contribute 2�N2 /2�
to the current in terminal 2. The total current in terminal 2 is
therefore �2+1��N2 /2�=3 /2N2. At low bias the Andreev re-
flected holes retrace exactly the trajectory of the incoming
electrons because of time-reversal symmetry, and they there-
fore only contribute to the current in terminal 2.

When all the terminals are connected to the central device
with tunnel contacts, we can expand the local and nonlocal
conductances in the �= �1−Rn� /2�1 for the contributing
modes. We find that

G22 = N2� + O��2� , �29�

G32 = N2� + O��2� , �30�

so we recover the normal-state results, where both the local
and nonlocal signals vanish linearly with �. Transport be-
tween terminals 2 and 3 involving the superconductor in-
volves higher orders in � and does therefore not contribute in
this limit.

We check the consistency between eigenvalue expressions
�25� and �26� and our numerical routines by calculating the
local and nonlocal conductances G22 and G32 in a symmetric
three-terminal graphene device, as explained further in Sec.
V. As can be seen from Fig. 1, where the conductances are
plotted as a function of the width nW of the nanoribbons, we
have excellent agreement between the eigenvalue expres-
sions �symbols� and the results found directly from Eq. �3�
�lines�. Note that Eq. �3� is valid for any width nW, while
only even nW give a truly symmetric device when built from

zigzag nanoribbons, so only such data points are shown.
However, we find that the results found from using the ei-
genvalue expressions when nW is odd are also very close to
the numerical results. This is not surprising since as long as
many modes contribute to the current, small alterations of
the geometry should not have a big impact on the total cur-
rent.

V. ASYMMETRIC THREE-TERMINAL DEVICE

Having found that ET dominates nonlocal transport in a
symmetric device, we turn our investigation to asymmetric
devices. We do this numerically, by calculating the scattering
matrix in a three-terminal device obtained by joining three
semi-infinite zigzag graphene nanoribbons as shown in
Fig. 2.

The width of a zigzag graphene nanoribbon,
W=�3anW /2, is determined by the minimal number of bonds
nW that must be broken to cut the ribbon.35 a is the lattice
constant of graphene, a=2.46 Å.39

For a wide ribbon, nW�1, the energy of the mth trans-
verse subband is to a good approximation48

Em = �m +
1

2
���

nW
, m = 1,2, . . . , �31�

where � is the nearest-neighbor hopping energy on the
graphene lattice. The superconducting coherence length

 =
�vF

�
=

�3
2

�

�
a �32�

will typically be of the order of micrometers, so the normal
approach should be applicable for nanoribbons up to 1 �m
wide or nW�104.

A. Consistency checks

In Fig. 3 we compare the conductance extracted from the
normal-state scattering matrix s to that found by direct evalu-
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FIG. 1. �Color online� Local and nonlocal conductance of a
symmetric device as a function of the ribbon width nW. Comparing
calculations done directly from the scattering matrix �lines� with
calculations using the eigenvalues of the reflection matrix
�symbols�, we see that the two methods give identical results.

2
3

1

FIG. 2. Three-terminal graphene fork consisting of three semi-
infinite graphene zigzag nanoribbons connected together. The top
lead is allowed to become superconducting by inserting a nonzero
pair potential � in this region, according to the Hamiltonian in
Eq. �2�.
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ation of the full scattering matrix S in Nambu space. The
calculations are done for a device of the type shown in Fig.
2. The leads are all semi-infinite zigzag ribbons, and we set
�=0 everywhere except in terminal 1 �shaded area in Fig. 2�.
As can be seen from Fig. 3, where we show the ratio between
the conductance calculated with the two methods,
Gij
Normal /Gij

Nambu, the agreement between the two methods is
excellent as long as W /�10−1, where W is the width of the
ribbons and  is the superconducting coherence length.

Also, since �W, the exact position of the boundary be-
tween the normal ��=0� and superconducting ���0� re-
gions does not influence our results. This can be seen explic-
itly from Figs. 4�a� and 4�b�, where we compare the
conductance matrices for systems when the scattering region
is, respectively, entirely mixed with, or separated from, the
superconducting region. There is no dependence on the exact
position of the NS interface, as should be expected.

B. Varying the width of the superconductor

We now turn to the numerical calculations of the local and
nonlocal conductances for an asymmetric device. We first
vary the width W1 of the superconducting lead, keeping the
width of the normal terminals fixed, W2=W3. The doping
throughout the device is set to a high value to ensure that
many modes contribute to the transport. The conductances
involving the normal terminals are calculated when the top
terminal is superconducting �superscript S� and compared for
reference to the conductance when the whole device is in the
normal state �superscript N�. As seen in Fig. 5, when the

superconducting lead is very narrow, there is very little cou-
pling via the induced superconducting order parameter, so
G22

S �G22
N . However, as the width of the superconducting

lead increases, more of the incoming quasiparticles are
coupled via the induced superconducting order parameter,
and the local conductance asymptotically approaches twice
the normal-state conductance, G22

S �2G22
N . In other words,

the interaction with the superconductor essentially involves
all the incoming modes, which are therefore Andreev re-
flected. This resembles the situation in a strongly coupled
two-terminal NS junction.43 From Fig. 5 we see that the con-
tribution of Andreev reflection to the local conductance has
reached its asymptotic value when W1 /W2,3�2.

The picture is essentially unchanged if we allow for dif-
ferent doping levels in the central device and the terminals
�see Fig. 5�b��, as long as the number of contributing modes
in the central region is still large. Contrary to what is seen for
the local conductance, the nonlocal conductance G32 is only
weakly influenced by the presence of the superconductor.
Except for a slight enhancement of the signal around
W1 /W2,3�2, the nonlocal conductance remains essentially
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FIG. 3. �Color online� Ratio of conductance calculated with the
normal method �extracted from the normal-state scattering matrix�
to conductance calculated directly with the Nambu space Hamil-
tonian. When W� the two methods give identical results. The
situation considered in this paper corresponds to W /�10−4. Upper
�lower� panel: local �nonlocal� conductance.
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unchanged when turning on the superconductor. This is in
accordance with what was found for the symmetric device in
Sec. IV, namely, that the Andreev reflected holes retrace the
path of the incoming electrons, giving a negligible contribu-
tion to the nonlocal conductance. Again, different doping
levels in the central device and the terminals do not change
the picture qualitatively, as seen from Fig. 5�b�.

C. Varying the width of normal terminal 3

We also vary the width W3 of the normal terminal 3, keep-
ing the widths of the voltage terminal 2 and the supercon-
ducting terminal 1 fixed. As can be seen from Fig. 6 the
nonlocal conductance, G32, is �nearly� zero when terminal 3
is very narrow. This is natural since the subband energies in
terminal 3 increase as the terminal is made narrower, hinder-
ing any modes from carrying current at the Fermi energy. As
the normal lead 3 widens, more and more channels in this
lead are opened, and we get an increase in the conductance
due to the opening of new subbands. The current in terminal
3 saturates when all available subbands participate in the
transport. We observe that the superconductor has very little
influence on the nonlocal conductance. As in Sec. V B, these
results persist if we allow for different doping levels in the
central device and the terminals, demonstrating the robust-
ness of the results.

In contrast to the nonlocal conductance G32, the local con-
ductance G22 is strongly affected by the superconductor. G22

S

doubles compared to the normal-state value G22
N when the

other normal lead becomes vanishingly small, W3 /W1,2→0.
This is as expected, since we are effectively left with a
strongly coupled two-terminal NS junction involving only
normal terminal 2 and superconducting terminal 1. In the
opposite limit, when W3 /W1,2�1, the ratio G22

S /G22
N ap-

proaches an asymptotic value due to the fact that only a
certain fraction of the finite number N2 of incoming modes
still interact with the superconductor, although the majority
of these incoming modes are transferred directly to terminal
3 in this limit.

VI. NONLOCAL CONDUCTANCE DOMINATED BY CAR

A. Zero modes of zigzag nanoribbons

A zigzag graphene ribbon supports special current carry-
ing zero-energy modes. When the doping is low �close to the
Dirac point�, the density of the zero-energy modes is local-
ized along the ribbon edges,35,36 while the current is distrib-
uted approximately uniformly across the width of the
ribbon.49–51 Associated with the zero-energy modes is a
quantum number called pseudoparity, arising from the fact
that the unit cell of the honeycomb lattice contains two
atoms.37,52,53 The conservation of pseudoparity in a zigzag
ribbon has dramatic consequences for the transport in a
normal-superconducting �NS� junction when only the zero
modes contribute, i.e., for Fermi energies below the first sub-
band energy E1. In this regime each lead only supports one
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FIG. 5. �Color online� Local and nonlocal conductances as func-
tions of the width W1 of the superconducting lead. W2=W3 is kept
fixed �nW2,3

=20�. For comparison we show the conductance both
when the top lead is in the normal state �dashed� and when it is
superconducting �solid�.
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=20�. Doping levels and numerical method is the same
as in Fig. 5.
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incoming and one outgoing mode. These two modes have
either the same or opposite pseudoparities, depending on
whether nW is even or odd, respectively.37 As a consequence
of this, in a zigzag ribbon NS junction, either normal reflec-
tion or direct Andreev reflection will be entirely suppressed,
depending on the value of nW �modulo 2�.37 In a three-
terminal device, pseudoparity is not a good quantum number,
but when the transport involves only the zero modes, traces
of even/odd effects can still be seen in the contributions due
to Andreev reflection.

B. CAR dominance

Motivated by the results of Refs. 54–56, where it was
found that a 120° kink in a graphene ribbon can in certain
situations completely block the electron flow, we construct a
device as depicted in Fig. 7, consisting of a zigzag ribbon
with a third terminal protruding at an angle of 120°. The top
terminal �1� is superconducting, while the left �2� and lower
right �3� terminals are normal. We define nW

ribbon=nW
1 =nW

2 and
nW
leg=nW

3 and set nW
ribbon=nW

leg=nW in this section. The super-
conductor is heavily doped, while the doping in the nonsu-
perconducting part of the structure is kept close to the Dirac
point. We study the transport properties as a function of back
gate voltage Vg, which specifies the overall doping of the
device, in the regime where only the zero modes contribute
in the normal part of the device, �Vg��E1.

The numerical results in Fig. 8 show that the zero bias
nonlocal conductance G32 changes sign several times in the
regime �eVg��E1. This demonstrates that CAR can in prin-
ciple dominate ET in rather specific geometries. The nonlo-
cal conductance changes sign due to close competition be-
tween ET and CAR. The oscillatory pattern is determined by
the distance between the superconducting terminal and the
scattering centre at the junction between the ribbon and ter-
minal 3. The contribution from Andreev reflection is insen-
sitive to this length, as seen from Fig. 8. Also, we observe
that when �eVg��E1, a new subband starts contributing to
ET, while CAR remains approximately unchanged.

Finally, we also make a short comment on the even or odd
behavior of our three-terminal device. By comparing our re-

sults with the conductance g22=2g22
DAR in a two terminal NS

ribbon �similar to the device in Fig. 7, but without terminal
3�, we see that the even/odd behavior of g22

DAR is reflected in
G32
CAR and G22

DAR, as can be seen from Fig. 9. According to the
results of Ref. 37, incoming carriers at positive and negative
Vg have opposite �identical� pseudoparities in a ribbon with
nW even �odd�. With our chosen doping in the supercon-
ductor, this leads to a blocking of Andreev reflection for
positive Vg in the two-terminal ribbon �solid green line�
when nW is even. This feature is still manifest in the local
DAR �dotted red line� and nonlocal CAR �dashed red line�
contributions to the conductance in the three-terminal device.
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FIG. 7. Zigzag ribbon with a third terminal at 120°, where the
top lead �shaded� be superconducting. The depicted structure corre-
sponds to nW

ribbon=nW
leg=10.
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ductance changes sign due to the competition between ET �dotted
black line� and CAR �dashed red line�. A negative G32 corresponds
to CAR dominating ET. The second subband starts to contribute
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VII. CONCLUSION

In this work we have studied the contribution from
CAR and ET to the nonlocal transport in a devices having
two normal metal terminals and one superconducting
terminal.

ET dominates CAR in a symmetric three-terminal device
when the superconducting coherence length  greatly
exceeds the device dimensions. The Andreev conversion
process then contributes almost exclusively to direct
Andreev reflection due to vanishing wave vector mismatch
between electrons and back-reflected holes. This regime is
relevant for ballistic transport in graphene nanoribbons
devices of dimensions up to the micrometer scale.

Superconductivity can be induced in such structures via the
proximity effect.

For most asymmetric systems ET dominates the nonlocal
conductance. However, for asymmetric devices where the
direct ET contribution can be suppressed, marginal CAR
dominated charge transport is possible. The crossover from
CAR to ET dominated transport in such a device can be
induced by varying the overall doping of the device via a
back gate.
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We consider non-local transport mediated by Andreev reflection in a two-dimensional electron
gas (2DEG) connected to one superconducting and two normal metal terminals. A robust scheme is
presented for observing crossed Andreev reflection (CAR) between the normal metal terminals based
on electron focusing by weak perpendicular magnetic fields. At slightly elevated temperatures the
CAR signature can be easily distinguished from a background of quantum interference fluctuations.
The CAR induced entanglement between electrons can be switched on and off over large distances
by the magnetic field.

PACS numbers: 74.45.+c, 73.23.-b

Andreev reflection (AR) is a signature sub-gap scat-
tering phenomena at normal-superconductor (NS) inter-
faces. Two electrons (at energies symmetrically around
the chemical potential of the superconductor) enter the
superconducting condensate as a Cooper pair, resulting
in a retro-reflected hole on the normal side of the in-
terface. The superconducting coherence length ξ deter-
mines the spatial extent of the Cooper pairs and is there-
fore believed to govern the scale of the largest possible
separation between the incoming electron and the retro-
reflected hole.

When two normal metal contacts N1 and N2 are con-
nected to a superconductor, the Andreev reflected holes
due to incoming electrons in N1 may leave the structure
through N2 [1–4]. This non-local process, called crossed
Andreev reflection (CAR), creates a spatially separated
phase-coherent electron-hole pair, and is therefore a can-
didate for a solid state entangler [5]. In this Letter, we
show that CAR can be enhanced using electron focusing.
In most previous works [1–8], the superconductor is at-
tached to the two normal contacts in such a way that elec-
tron transfer (ET) between the normal electrodes only
happens through co-tunneling via virtual states in the
superconductor. This process normally competes with
CAR and typically dominates in linear response [3, 9]
such that CAR can dominate only beyond linear response
or in the presence of interactions [8, 10, 12, 13]. In con-
trast, we spatially separate the superconductor and nor-
mal contacts, thus suppressing electron co-tunneling be-
tween the normal contacts while magnetic focusing al-
lows to control the respective weights of ET and CAR
processes.

Under direct coupling between the normal contacts and
the superconductor, CAR can only be detected when the
separation between the normal contacts is smaller than

⊗B

W W WL L

N1 S N2

(a) Focused crossed Andreev reflection

⊗B

W W WL L

N1 S N2

(b) Focused electron transfer

FIG. 1. (Color online) Illustration of focused crossed Andreev
reflection in the device sketched in the inset of (a). (a) When
the separation between N1 and N2 is an even multiple of
the cyclotron diameter dc, electron focusing enhances CAR
and leads to a negative non-local conductance. (b) When the
separation is an odd multiple of dc, ET is enhanced and we
expect a positive peak in the non-local conductance.

the superconducting coherence length ξ [2, 3, 5, 7, 11, 14].
Here we use the term CAR to describe all processes
causing electron-hole entanglement between two normal
metal contacts that are mediated by Andreev reflection,
even when the contact separation is much larger than
ξ. In our device, CAR competes with electron transfer



2

(ET), in which electrons travel between the normal con-
tacts either directly (direct ET) or via multiple Andreev
reflections.

Our system of choice is a high-mobility two-
dimensional electron gas (2DEG) [15]. For a similar sys-
tem Refs. [23, 24] reported electron focusing-induced neg-
ative non-local signal produced by resonant enhancement
of AR. The resonances depend on the magnetic field such
that fluctuations in the non-local signal due to AR are
difficult to distinguish from quantum interference effects.
Our approach is shown below to be more robust and bet-
ter suited for entanglement creation.

Andreev reflection in the presence of a magnetic field
has been thoroughly studied in the literature [19–24].
Electron focusing was used for the first direct observa-
tion of Andreev reflection at an NS interface [19, 22].
Recently, an Andreev interferometer was used to demon-
strate phase coherence of CAR and ET [11].

Our scheme is illustrated in Fig. 1, which shows a
2DEG connected to a single superconducting contact S
between two normal contacts N1 and N2. Electrons are
injected from the left contact N1 by a small voltage bias.
For weak magnetic fields, the motion of the electrons
and holes can be understood in terms of semi-classical
cyclotron orbits [15, 19]. For certain magnetic fields
(Fig. 1(a)), the electrons from N1 are focused on the
superconducting center contact S, at which an Andreev
reflected hole is emitted. Since AR changes the sign of
both charge and effective mass, the holes will feel the
same Lorentz force as the electrons and are therefore fo-
cused on contact N2 to the right of S at the same distance
as N1 [19–21]. At these magnetic fields, direct ET is sup-
pressed in favor of CAR. A contribution to ET at these
fields from multiple Andreev reflections is suppressed by
the magnetic field together with back-scattering towards
the superconductor. On the other hand, ET is enhanced
when the incoming electrons are focused on N1 such that
the skipping orbits do not interact with the superconduc-
tor (Fig. 1(b)).

The physics of electron focusing can be best under-
stood in a semi-classical picture. The length scale as-
sociated with the motion of electrons with momentum
�kF in a magnetic field B is the cyclotron diameter,
dc = 2�kF /eB, where we assume ballistic kinetics or
dc � lmf [15]. Electron focusing between the normal
contacts in Fig. 1 occurs when the distance 2L between
N1 and N2 obeys 2L = ndc, where n is a positive integer.
ET is enhanced for odd and CAR for even n. The field
[15]

Bfocus =
2�kF

eL
(1)

determines the scale for which focusing features can be
expected.

For strong magnetic fields the system enters the quan-
tum Hall (QH) regime, in which the charge carriers are

better described as chiral edge states than semi-classical
skipping orbits [16]. The characteristic length scale as-
sociated with the QH regime is the magnetic length lB ,
which is the radius of the disc that encloses one flux quan-
tum, πl2BB = Φ0 = h/2e. In the semi-classical regime
the magnetic flux density nB = 1/(πl2B) should be sub-
stantially lower than the electron density n = k2

F /(2π),
giving B � h

2en ≈ 7 T, for typical values for the electron
density in a 2DEG, n ≈ 3.5× 1015 m−2 (corresponding
to λF ≈ 40 nm) [15]. We expect CAR to be enhanced
also in the QH regime, since the edge states will be forced
to interact with the superconductor on the way from N1

to N2. This regime should be experimentally accessi-
ble since superconductors with upper critical fields above
10 T are readily available [25].

We will now confirm the semi-classical predictions by a
numerical quantum simulation of the non-local transport
properties of the device shown in Fig. 1. The competition
between CAR and ET is studied through the non-local
conductance [3, 9],

G21
def.= − ∂I2

∂V1
= GET

21 −GCAR
21 , (2)

where I2 is the current response in contact N2 due to the
application of a voltage V1 in the normal metal contact
N1 while N2 and S are grounded. The overall minus
sign is due to the definition of the currents to be positive
when electrons leave the reservoirs. The difference in
sign of GET

21 and GCAR
21 in Eq. (2) is due to the fact that

the outgoing current in N2 produced by ET consists of
negatively charged electrons, while CAR contributes with
positively charged holes.

In our calculation we employ the standard 2DEG
Hamiltonian

H(r) =
p2

2m
+ V (r)− μ, (3)

where p = −i�∇ + eA(r) is the momentum and m the
effective mass. The Hamiltonian (3) is extended it to
Nambu space [26]

H =
∫

dr Ψ†(r)
(H(r) Δ(r)

Δ∗(r) −H∗(r)

)
Ψ(r), (4)

where at the contact S the superconducting pair poten-
tial Δ(r) is assumed to vary abruptly on the scale of the
Fermi wavelength λF , and is therefore modelled as step
function which is non-zero only inside the center contact
S. All energies are measured from the chemical potential
μ of the superconductor. The Nambu spinor Ψ is de-
fined in terms of the field operators ψ as Ψ = (ψ, ψ†)T .
A perpendicular magnetic field B = ∇ × A = Bez is
included everywhere except in the superconductor [27].
We consider only elastic scattering.

At zero temperature, quantum interference due to scat-
tering at the sharp boundaries close to the contacts can
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FIG. 2. (Color online) Non-local conductance G21 (solid
black) for a device with quantum point contacts (W ≈ λF /2).
The magnetic field is given in units of the focusing field
Bfocus = 0.406 T. The plot of GCAR

21 (dashed red) demon-
strates that the negative peaks in G21 at integer multiples of
B/Bfocus are a direct consequence of GCAR

21 > GET
21 in Eq. (2).

mask the electron focusing effect [15]. We therefore calcu-
late the non-local differential conductance at finite tem-
perature, using the standard formula,

G21 =
∫

dε G21(ε)
(
−∂nF (ε)

∂ε

)
, (5)

where nF is the Fermi-Dirac distribution function.
We use the knitting algorithm presented in Ref. 28

to calculate the self energies and retarded and advanced
Green functions. Standard expressions relate the con-
ductance and current density to these quantities. The
device used in the simulations is sketched in the inset of
Fig. 1(a), where the two auxiliary contacts N3 and N4

are drains for the electrons that do not contribute to the
resonances. All edges cause specular electron scattering
only.

Figure 2 shows the calculated non-local conductance
from Eq. (5) as a function of perpendicular magnetic field
at a temperature of T = 1 K. The value chosen for the
pair potential Δ corresponds to Pb, which has a critical
temperature of Tc ≈ 7 K � T [29]. Also, since T <
Tc/2, we disregard the temperature dependence of the
pair potential, Δ(T ) ≈ Δ(0) [30].

The injector N1, superconducting S, and collector N2

contacts are point contacts with width W ≈ λF /2, so
that only a single mode contributes to the current [16].
The distance L = 500 nm between the contacts corre-
sponds to a focusing field of Bfocus = (0.39± 0.02) T,
where the uncertainty is due to the finite width W of the
contacts relative to L. The value found in the simulation
agrees with the expectations within this uncertainty.

In Fig. 2 the total non-local conductance G21 is shown
together with the conductance contribution due to CAR.

(a) Non-superconducting center contact (Δ = 0)

(b) Superconducting center contact (Δ �= 0)

FIG. 3. (Color online) Electronic current density in a per-
pendicular magnetic field at T = 1 K. Two skipping orbits,
corresponding to a magnetic field B ≈ 2Bfocus, are clearly
visible. (a) With a non-superconducting center contact S, a
large portion of the current injected through contact N1 leaves
the structure through S. (b) When S is superconducting, the
Andreev reflected holes from S contribute to the current from
S to N2.

The negative peaks in G21 at integer values of the focus-
ing field are consistent with the semi-classical interpreta-
tion presented earlier, and demonstrate that ET is com-
pletely dominated by CAR for such fields. The expected
enhancement of ET at half-integer B/Bfocus is somewhat
masked by quantum interference, but positive peaks in
G21 when B/Bfocus equals 1/2 and 3/2 are clearly vis-
ible. The field associated with focusing can easily be
adjusted to be well separated from the scale of quantum
interference by changing the distance L between the con-
tacts. As the magnetic field increases beyond 2.5 Bfocus,
the system gradually enters the QH regime.

The enhancement of CAR at B/Bfocus = 1, 2 can be
visualized by calculating the charge current density due
to electrons injected from contact N1. This is shown in
Fig. 3, where we have set B ≈ 2Bfocus. A skipping orbit
between N1 and S is clearly visible. Also visible is the
diffraction of the incoming current through N1, which
leads to a broadening of the skipping orbit trajectories.
In Fig. 3(a) the center contact S is normal (Δ = 0) and
a large portion of the injected current leaves through S.
In contrast, when S is in the superconducting state, as
shown in Fig. 3(b), the current density increases substan-
tially between S and N2 due to CAR.

Electron focusing over length scales for which AR me-
diated electron-hole correlations can be observed is lim-
ited by the mean free path lmf rather than the super-
conducting coherence length ξ [23]. For typical super-
conductors, ξ ∼ 10− 100 nm, [12] whereas lmf can reach
several microns in 2DEGs [16]. Very high mobilities have
also been reported for graphene [17, 18], which is an-
other candidate for focused CAR. The tuning between
CAR and ET is possible only below the critical magnetic
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FIG. 4. (Color online) G21 and GCAR
21 at B/Bfocus = 2 as a

function of transmission probability of the interface between
the 2DEG and the superconductor. The conductance is cal-
culated at zero temperature.

field of the superconductor, and should also not introduce
spin selectivity of the contacts. Since electron focusing
clearly discriminates between CAR and ET, our device
can maximize entanglement generation in artificial solid
state devices.

Contacts between superconducting metals and 2DEGs
has been fabricated for several types of heterostructures
[31, 32]. Although experimentally challenging due to the
presence of Schottky barriers, fairly high transparencies
have been reported (for instance transmission probabil-
ity ∼ 0.55 with a critical field of 2T in the In-GaAs het-
erostructures presented in Ref. 32). In Fig. 4, we plot the
height of the CAR peak at B/Bfocus = 2 (at T = 0) as
a function of the transmission probability of the NS con-
tact. The CAR peak diminishes with decreasing quality
of the interface but not dramatically so. We conclude
that the effect should be observable with the available
technology.

In conclusion, we have shown that electron focusing
can be used to enhance CAR relative to quantum inter-
ference effects over the length scale of the mean free path
lmf [23], which can be several orders of magnitude larger
than ξ [12, 15]. CAR is enhanced at the cost of ET for
magnetic fields that are integer multiples of the focusing
field in Eq. (1), producing a clear, negative non-local con-
ductance signal. At half integer multiples of the focusing
field, CAR plays a negligible role since the electron or-
bits avoid the superconducting contact. Instead ET is
enhanced as in normal electron focusing [15]. The neces-
sary magnetic field is relatively weak, and should be an
easily accessible experimental “knob” for controlling the
CAR enhancement.

CAR has been proposed as a means to create a
solid state entangler, using the natural entanglement of
Cooper pairs. However, in most systems quasiparticle
backscattering into the injector contacts is a serious lim-

itation [33]. This difficulty does not exist in our scheme.
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