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Abstract

In this thesis we study the phase diagram of quantum chromodynamics in an effective low-
energy theory at zero baryon chemical potential but finite temperature and isospin density.
We investigate pion condensation at finite temperature and isospin chemical potential µI in
two different approximation schemes of the linear sigma model; the Large-N and Hartree ap-
proximations. While being a simple model, the linear sigma model allows for phase transitions
of both the first and second order, as well as crossover transitions at the physical point. The
large-N approximation yields results typical for mean-field approaches, including a second
order phase transition with critical exponent ν = 1

2 . At the physical point we find that pion
condensation occurs below a threshold temperature Tc(µI) only for µI ≥ mπ. Due to the
symmetry of the O(N) expansion, the large-N approximation also obeys Goldstone’s theorem,
yielding a massless Goldstone mode in the pion condensed phase.

By contrast, we find a large violation of Goldstone’s theorem in the Hartree approxima-
tion, with the Goldstone mode achieving a mass of 200 MeV ≈ 1.4 mπ. It is possible that the
Hartree approximation’s violation of symmetry makes the Goldstone mode tachyonic at low
temperatures. However, it appears that the Hartree approximation yields a phase structure
much more similar to what has been found in lattice studies, with a first order phase transition
at high isospin densities and crossover transitions at lower densities. We have only been able
to study the Hartree approximation under the condition that either the chiral condensate
or the pion condensate is zero, however, and accurate probing of the phase diagram at the
physical point is therefore not possible.
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Conventions

Throughout this thesis we will use a number of conventions which are simply a matter of convenience and
choice. These are as follows.

• We use natural units where h̵ = kb = c = 1.

• Our metric signature is (+,−,−,−).

• We will be utilising sum-integrals and dimensional regularization. As a shorthand we write

⨋ = (Λ2e−γ

4π
)
ε

T ∑
ω=2πinT

∫
ddp

(2π)d
. (1)

In the above, d = 3 − 2ε, Λ is the renormalisation scale in the MS subtraction scheme, T is the
temperature and γ is the Euler-Mascheroni constant. As a shorthand ω = p0 and we write ωn = −iω
in Euclidean space.

• The Einstein summation convention is used throughout this thesis. Repeated indices are summed
over unless stated otherwise. We use Greek indices for four-vectors in spacetime and roman indices
for everything else.

• In Euclidean space, we sometimes use capital letters to describe four-vectors P = (ωn, p⃗).
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Chapter 1

Introduction

The theory of strong interactions – Quantum chromodynamics, or QCD [1] – is at once a startlingly
accurate and mystifyingly complex theory. It describes a wide range of experimental results and has
predicted the existence and properties of a number of exotic particles, later verified in collider experiments.
With regards to complexity, Quantum Chromodynamics describes nuclear matter as a composition of
bound states of six different quarks. The binding force is the strong nuclear force, which is mediated
by eight massless particles, the so-called gluons. This myriad of particles allow us to describe the
behaviour of nuclear matter through a vast number of possible interactions and outcomes between the
different constituents of the theory. The large number of degrees of freedom as well as the nonlinearity
of QCD makes calculations complex both analytically and numerically. Indeed, computer simulations
such as lattice QCD – a computational technique involving a discretised version of QCD suitable for
computer simulation [2] – typically require large supercomputing facilities to make reasonable predictions
of scattering cross-sections.

Suppose now that we could somehow simplify the picture. Indeed, all the chemicals in the periodic
table of elements are composed of only one family of quarks and leptons. The other families are short-lived
due to their tendency to decay to lower-mass particles and radiation. We might simply throw out four
quarks and four leptons. This would be at the price of accuracy and generality, of course. We would be
discarding a number of particles which have been observed to exist, and which have a small but nonzero
effect on the world we inhabit. However, one might hope to simplify QCD sufficiently to come up with
meaningful predictions without having to spend valuable computing time calculating the probabilities of
increasingly unlikely interactions involving a host of exotic particles.

To this end, physicists have developed a number of approximation schemes to simplify calculations
within various quantum field theories. In particular, the study effective field theories provides a systematic
way of constructing simplified models which reproduce the dominant degrees of freedom and symmetries
of a field theory. Some general reviews and an overview of the field can be found in [3–5]. Of course, the
previous paragraph is only an example of how one might simplify QCD. Depending on the situation – the
energies and densities of the system under study – different symmetries may be broken or unbroken, and the
field theory might behave qualitatively very differently. To each situation, its own set of approximations.
In this manner we hope to at least sketch a map of the terrain by stitching together a patchwork quilt of
approximations, each valid in its own regime. We need fabric for the patchwork, however.

In this thesis, we will study processes relevant to the normal hadronic phase of quark matter, as well
as a region referred to as the NQ phase, for normal quark matter . It is known that in the presence of a
nonzero isospin chemical potential – a statistical preference for a certain electrical charge present in the
system – these phases allow for a condensate of elementary particles known as pions [6,7]. To this end we
will study pion condensation in an idealised model with no baryon density, but a statistical preference for
a certain electrical charge. First, however, we must lay out some preliminaries.

1.1 Symmetry and conserved quantities
By symmetry we refer to an operation – some continuous transformation of parameters – which leave the
physics of a system unaltered. Specifically, if the action S of a system is unaltered by a transformation then
the solution to the equations of motion of that system will also be unaltered by the transformation and
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hence we have a symmetry of the system. There is a connection between symmetries of physical systems
and conservation laws which will be of fundamental importance to our treatment of chemical potentials
later in this thesis. This connection is described by Noether’s theorem [8], which states that a continuous
symmetry in the Lagrangian gives rise to a conserved current. Detailed derivations and discussion of
Noether’s theorem can be found in most textbooks on quantum field theory, for instance [9, 10].

As a simplified derivation, assume a transformation of the fields φi, i = 1,⋯, n such that φi → φi+ εiδφi
with no summation implied and where εi are some infinitesimal parameters. Furthermore, assume that the
Lagrangian is invariant with respect to the transformation, in other words L(φi)→ L(φi + εiδφi) = L(φi).
If we vary the Lagrangian according to our transformation, then by our assumption of symmetry we have

0 = δL

= ∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ(∂µφi) = ∂µ [ ∂L

∂(∂µφi)
δφi] + [ ∂L

∂φi
− ∂µ

∂L
∂(∂µφi)

] δφi. (1.1)

We recognise the Euler-Lagrange equation in the rightmost square brackets above, and therefore define
the Noether current jµ by

jµ ≡ ∂L
∂(∂µφi)

δφi. (1.2)

By inserting this definition into Eq. (1.1), we obtain the current conservation equation

∂µj
µ = 0. (1.3)

To see that this is a conservation law, we integrate the above equation over x⃗

0 = ∫ d3x [ ∂
∂t
j0(x⃗, t) −∇j⃗(x⃗, t)] . (1.4)

We now apply Gauss’ theorem to the last term to obtain

d

dt
∫ d3xj0(x⃗) = ∫

∂S
dSj⃗ ⋅ n⃗. (1.5)

The term on the right-hand-side is a surface term, assumed to approach zero as ∣x⃗∣→∞. We define the
charge Q as

Q ≡ ∫ d3xj0(x⃗, t). (1.6)

And Eq. (1.4) thus becomes a conservation law.

d

dt
Q = 0. (1.7)

As mentioned earlier, Noether’s theorem concerns symmetries under which the action is invariant. The
action is invariant even under the addition of surface terms, or equivalently under the addition of a total
divergence ∂µJ µ to the Lagrangian such that L→ L + ∂µJ µ. This alters the above derivation slightly,
adding an extra term to the current [10]

jµ ≡ ∂L
∂(∂µφi)

δφi −J µ. (1.8)

1.1.1 U(1) symmetry
As a familiar example of a symmetry giving rise to a conserved current, consider the Lagrangian of a
single complex scalar field Φ

L = (∂µΦ)†(∂µΦ) −m2Φ†Φ − λ(Φ†Φ)2. (1.9)

The above Lagrangian is invariant under a global phase transformation Φ→ eiαΦ, as can be seen simply
by inserting the transformation and moving eiα past the partial derivatives. We may now attempt to
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derive the Noether current and the corresponding charge. Let α be infinitesimal, then our transformation
rule becomes Φ→ (1 + iα)Φ, which shows that δΦ = iΦ. Taking the complex conjugate of δΦ also yields
δΦ† = −iΦ†. Inserting this into Noether’s theorem yields the conserved current

jµ = i [(∂µΦ†)Φ −Φ†(∂µΦ)] . (1.10)

We now turn our attention to the conserved charge.

Q = i∫ d3x [(∂µΦ†)Φ −Φ†(∂µΦ)] (1.11)

We can interpret this charge by considering Φ in the free field expansion, namely

Φ = i∫
d3p

(2π)3
1√
2Ep

[apeipx + b†
pe

−ipx] (1.12)

Φ† = ∫
d3p

(2π)3
1√
2Ep

[bpeipx + a†
pe

−ipx] (1.13)

a†
p and b†

p are here creation operators for particles and antiparticles, respectively, and Ep = p0 =
√
p2 +m2

is a convenient normalisation. Writing out the charge, we obtain

Q = −1
2 ∫

d3x∫
d3p

(2π)3
d3p′

(2π)3

⎡⎢⎢⎢⎢⎣

¿
ÁÁÀEp′

Ep
(bp′eip

′x − a†
p′e

−ip′x) (apeipx + b†
pe

−ipx)

−

¿
ÁÁÀ Ep

Ep′
(apeipx − b†

pe
−ipx) (bp′eip

′x + a†
p′e

−ip′x)
⎤⎥⎥⎥⎥⎦
. (1.14)

We recall that

∫ d3x ei(p−p
′)x = (2π)3δ3(p − p′). (1.15)

Multiplying out the parentheses and carrying out the integration over x thus yields delta-functions
containing p and p′. We use this to further calculate one of the momentum integrals, and commute
everything to normal ordering by using the relation [ap, a†

p] = 1, the result is

Q = ∫
d3p

(2π)3 (a†
pap − b†

pbp) = N̂a − N̂b. (1.16)

The conserved charge is thus the number of particles minus the number of antiparticles. It is perhaps
particularly apparent what this number represents in the case of charged particles, where Q is the total
charge of the system.

1.1.2 U(1) gauge symmetry
The example of a U(1) symmetry can be extended to describe electromagnetism by making the symmetry
local. This serves to outline a general procedure in quantum field theory by which one may introduce
gauge fields to describe various forces. A more advanced example will be given in the section on quantum
chromodynamics, Sec.1.2.1. We make the U(1) symmetry local by allowing the phase α to be different
for each point in spacetime, i.e.

Φ→ eiα(x)Φ, (1.17)
Φ† → e−iα(x)Φ†. (1.18)

Clearly the Lagrangian density is not invariant under this transformation unless α(x) is constant, otherwise
α(x) does not commute with the partial derivatives. However, we could modify the Lagrangian to include
a gauge field Aµ; a field which for every point in space transforms so as to absorb the extra terms produced
by commuting ∂µ and α(x). This is done by introducing the covariant derivative Dµ defined by

∂µ →Dµ ≡ ∂µ − igAµ. (1.19)
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Here, g is a coupling constant which we may choose. We now observe how the covariant derivative
transforms, we have

DµΦ = (∂µ − igAµ)Φ
→ (∂µ − igA′

µ) eiα(x)Φ, (1.20)

where A′
µ is the transformed gauge field. We use the chain rule to separate out a factor eiα(x) from the

right hand side above

DµΦ→ eiα(x) (∂µΦ + i(∂µα(x))Φ − igA′
µ) (1.21)

We can absorb the extra partial derivative with respect to α(x) by letting Aµ transform as

Aµ → A′
µ = Aµ +

1
g
∂µα(x). (1.22)

This yields the transformation

DµΦ→ eiα(x)DµΦ, (1.23)

and by taking the adjoint we also find

(DµΦ)† → (DµΦ)†e−iα(x). (1.24)

Thus we obtain the gauge invariant Lagrangian

L = (DµΦ)†(DµΦ) −m2Φ†Φ − λ(Φ†Φ)2. (1.25)

The gauge field is currently not propagating. Apart from its appearance in the covariant derivative, there
are no kinetic terms for the field itself. However, we may introduce a kinetic term, provided it preserves
gauge invariance [9]. The electromagnetic field strength tensor is gauge invariant, and defined by

Fµν ≡ ∂νAµ − ∂µAν . (1.26)

The Lagrangian is a Lorentz scalar, and hence we may only insert a contraction of Fµν . The simplest
nonzero contraction of Fµν is FµνFµν We therefore modify the Lagrangian to include a kinetic term
quadratic in the field-strength tensor. The final Lagrangian is

L = (DµΦ)†(DµΦ) −m2Φ†Φ − λ(Φ†Φ)2 − 1
4
FµνF

µν . (1.27)

1.1.3 Symmetry breaking and Goldstone’s theorem
While a Lagrangian might exhibit a symmetry, it is not granted that the ground state is equally
symmetric. This phenomenon – commonly referred to as spontaneous symmetry breaking – has some
general implications, described by Goldstone’s theorem [11]. A practical formulation for relativistic,
Lorentz-invariant field theories – as formulated by Goldstone, Salam and Weinberg [12] – states that

If there is a continuous symmetry transformation under which the Lagrangian is invariant,
then either the vacuum state is also invariant under the transformation or there must exist
spinless particles of zero mass.

The number of such massless fields are determined by the so-called Nielsen-Chadha counting rules, and is
equal to the number of broken symmetry generators [13]. As an example, we follow the derivation in
Ref. [10] and consider the linear sigma model with a negative mass term. We will discuss the linear sigma
model in much greater detail later, for now it will suffice to simply state the Lagrangian. Let φi be N
real scalar fields and consider the Lagrangian

L = 1
2
(∂µφi)(∂µφi) −

1
2
m2φiφi −

λ

4N
(φiφi)2. (1.28)
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φ1

φ2

V(φ1,φ2)

Figure 1.1: A Mexican hat-potential for the case N = 2. The degenerate global minima of V (v) form a
circular well, due to the O(2)-invariance.

This Lagrangian is manifestly O(N) invariant, as can be seen by performing an orthogonal transformation
φi → Rijφj where RijRik = δjk. The transformation is coordinate-independent, and hence we obtain

L→ RijRik
1
2
[(∂µφj)(∂µφk) −m2φjφk] −

λ

4N
(RijRikφjφk)2

= 1
2
(∂µφi)(∂µφi) −

1
2
m2φiφi −

λ

4N
(φiφi)2. (1.29)

Furthermore, if m2 < 0, the ground state of the linear sigma model has a nonzero vacuum expectation
value. To observe this, let φ1 → v + φ1, where v is a classical field. Inserting this into the Lagrangian, we
obtain

L = 1
2
(∂µv)(∂µv) −

1
2
m2v2 − λ

4N
v4 − 1

2
(∂µφi)(∂µφi) − 1

2
m2
iφiφi +Lint (1.30)

The term Lint is an interaction term containing cubic and quartic interactions between φi, in addition,
the classical field v has altered the mass-term such that.

m2
i =m2 +

⎧⎪⎪⎨⎪⎪⎩

3λ
N
v2 if i = 1,

λ
N
v2 otherwise.

(1.31)

The cubic interactions are proportional to v. We will later develop a more formal approach to the effective
potential, for now suffice it to say that the above Lagrangian corresponds to that of a classical field
governed by the potential

V (v) = 1
2
m2v2 + λ

4N
v4. (1.32)

Our choice for the direction of v was arbitrary and was allowed due to the rotational symmetry. The
potential is therefore really rotationally invariant, and in the case of m2 < 0 it has a Mexican hat shape,
as illustrated for the O(2) case in Fig. 1.1. The potential has a minimum for v =

√
−Nm2

λ
, representing

a nonzero expectation value of φ1. We thus have spontaneous symmetry breaking, and should expect
Goldstone bosons. The mass of the fields are defined by the terms in the potential quadratic in the fields,
and can therefore be described by a mass-matrix (m2)ij = ∂2V (φi)

(∂φi)(∂φj) . Having chosen the direction of φ1
for our nonzero expectation value, we observe that the second derivative in the φ1-direction is nonzero,
moving perpendicular to the direction of the well in Fig. 1.1. Conversely, moving along the trough the
second derivative is zero and so we expect that the corresponding fields should be massless. Inserting the
solution for v into Eq.(1.31), we obtain

m2
i =

⎧⎪⎪⎨⎪⎪⎩

−2m2 if i = 1,
0 otherwise.

(1.33)
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Figure 1.2: A table showing the constituents of the standard model divided into families and generations.

What has happened here is entirely according to Goldstone’s theorem. The ground state of the system
is (v,0,0,⋯), which is not rotationally symmetric. However, the fields φ2, φ3,⋯ are still rotationally
symmetric, so the O(N) symmetry has been spontaneously broken and what remains is an O(N − 1)
symmetry. The number of generators in the O(N) group is 1

2N(N − 1). We therefore expect N − 1
massless modes, which is what we have obtained.

1.2 Quantum chromodynamics
Quantum chromodynamics is the theory of strong interactions, and forms part of the standard model of
particle physics along with the Glashow-Weinberg-Salam (GWS) model of electroweak interactions. The
standard model as a whole describes the world as composed of six quarks and six leptons, divided into
three families by their respective masses. In addition there are three forces mediated by twelve different
mediator particles: the strong force, mediated by eight gluons, the weak force, mediated by the Z0 and
W ± bosons, and the electromagnetic force, mediated by the photon. Fig. 1.2 shows a short summary of
these particles according to their “generations”; groupings of the particles according to their masses.

The fundamental particles of QCD are the quarks and gluons. There are six quarks, divided into
three families according to their approximate mass. The up, charm and top quark have a positive charge
of two thirds the electron charge, whereas the down, strange and bottom quark have a negative one-third
electron charge. QCD describes the strong force as being mediated by the gauge field of a local SU(3)
symmetry group. Since SU(3) has eight generators, there are eight such gluon fields. The gluons are
mediators of colour charge and unlike the photon, the gluons carry charge themselves.

The discovery of the quarks and their SU(3) colour charge came about when high-energy collider
experiments started detecting large numbers of new hadronic particles in the 1960s. As physicists
attempted to make sense of the newly discovered particles and their properties, several patterns and
symmetries emerged. One well-known example of this is Gell-Mann and Neeman’s eightfold way, in which
particles were organised according to strangeness and electric charge. The baryon decuplet that Gell-Mann
found was missing a particle which he called Ω−, and predicted would have charge −e, strangeness 3 and a
mass of around 1680 MeV [14]. Ω− was discovered two years later at the Brookhaven National Laboratory
accelerator facility [15]. Gell-Mann and Zweig went on to suggest independently that all baryons were
composed of three smaller spin-1/2 constituents called quarks [16,17].

However, the Ω− would then be a pure triplet of strange quarks, in clear violation of Pauli’s exclusion
principle. It would therefore be necessary to introduce another quantum number. This quantum number
was proposed to be generated by an SU(3) gauge group, a fact which was discovered independently
by Han working with Nambu, and Greenberg in 1965 [18, 19]. SU(3) introduces a quantum number
referred to as colour charge, hence the name chromodynamics. There are three colours, red, green and
blue. Antiquarks similarly have anticolours: antired, antigreen and antiblue. In addition to resolving the
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Figure 1.3: The Cornell potential V (r) with κ = 1 and σ = 100. At large r, V (r) grows linearly and is
therefore unbounded, giving rise to confinement.

conundrum of the apparent violation of the exclusion principle, colour charge also conveniently explains
the subdivision of nuclear particles – or hadrons – into baryons and mesons. Baryons are bound states of
three quarks or antiquarks, whereas mesons are bound states of a quark and an antiquark. Any stable
bound state must be colour neutral. Thus mesons must be composed of the same colour and anticolour,
and baryons must be composed of all three colours or anticolours.

Due to its non-Abelian nature (the SU(3) generators do not commute), QCD has some rather peculiar
properties not found in quantum electrodynamics or the GWS-model1. Asymptotic freedom provides that
whereas most coupling constants increase with increasing energy scales, the coupling constant of QCD
decreases. This means that at high energies (and conversely at small distances) the strong force becomes
negligibly small, allowing for the formation of a quark-gluon plasma which we will discuss in detail when
dealing with the phase diagram of QCD. On the other hand, at low energies (and large distances) the
coupling constant becomes arbitrarily strong, giving rise to what we know as quark confinement. It is well
known from collider experiments that quarks are never observed outside of the hadrons they compose.
When attempting to tear apart a bound state of quarks, the gluon field forms a flux tube tying the quarks
together, with increasing strength as the distance increases [20]. An early effective potential to describe
this behaviour is the so-called Cornell potential V (r) where r is the distance between two quarks [21]:

V (r) = −κ
r
+ σr. (1.34)

In more recent versions of this potential, κ is often taken to be a slowly changing function of r, but
to a first approximation we may take it to be constant. An illustration of the potential is provided in
Fig. 1.3. One may interpret κ as the string tension of the flux tube, giving rise to a term linear in the
distance between the quarks. Such potentials have been studied in lattice QCD for mesons [22,23], and
baryons [24,25]. As r →∞ the linear term dominates and approaches infinity. Therefore, as one attempts
to tear the quarks apart, one needs prohibitively large amounts of energy to do so, eventually enabling
the creation of new quark-antiquark pairs. These new quark-antiquark pairs bind to the quarks already
present to form new particles. Cascades of such behaviour occur in high-energy particle accelerators, and
typically give rise to jets of new particles emerging from the collision centre [26].

1.2.1 The theory
The quarks are fermions, governed by the Dirac Lagrangian.

L = ψ̄ (iγµ∂µ −m)ψ. (1.35)

1This is not entirely true, as SU(2) is also non-Abelian. The GWS-model does not exhibit these properties due to
technicalities surrounding the “breaking” of a gauge symmetry. The gauge fields of the GWS model absorb the Goldstone
modes arising from electroweak symmetry breaking and acquire a mass.
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Furthermore to accommodate colour charge each quark field is a colour triplet, which introduces a global
SU(3) symmetry. SU(3) has eight generators θa which satisfy the commutation relation

[θa, θb] = ifabcθc. (1.36)

fabc is a tensor containing structure constants and is by an appropriate choice of basis completely
antisymmetric. We wish to make the symmetry local by introducing gauge fields. To this end we
introduce a covariant derivative Dµ = ∂µ − igAaµθa and study the local transformation ψ → eiα

aθaψ

L→ ψ̄e−iα
aθa [iγµ(∂µ − igAaµθa) −m] eiα

aθaψ. (1.37)

The mass term commutes with the transformation and is of no importance to what follows. We will
therefore neglect it in further calculations. Assuming αa to be infinitesimal, we expand the transformation
to first order in αa

ψ̄(1 − iαaθa)iγµ(∂µ − igAaµθa)(1 + iαaθa)ψ. (1.38)

Next we attempt to commute the transformation on ψ past the Dirac operator. Term by term, we have

∂µ(1 + iαaθa)ψ = (1 + iαaθa)∂µψ + i(∂µαa)θaψ, (1.39)
igAbµθ

b(1 + iθaαa) = (1 + iαaθa)igAbµθb + igαaAbµfabcθc. (1.40)

Having done this, we multiply together the terms containing α, discarding terms of order α2 we obtain
the transformed Lagrangian

L→ ψ̄iγµ(∂µ − igAaµθa + i(∂µαa)θa − igαaAbµfabcθc)ψ. (1.41)

In order to have gauge invariance, the new terms must vanish in the transformation of the gauge field.
We therefore demand that the gauge fields transform as

Aaµ → Aaµ +
1
g
∂µα

a + fabcAbµαc. (1.42)

In order to complete our derivation of the QCD Lagrangian, we need to add a kinetic term for the gauge
fields. As was the case in our study of U(1) gauge symmetry we would like a term quadratic in the
energy-momentum tensor of the field, 1

4Tr[GµνGµν]. However, the energy-momentum tensor we used for
U(1) is not gauge invariant here due to the noncommuting generators. Dµ on the other hand is gauge
invariant and so we may attempt the following definition

Gµν ≡
i

g
[Dµ,Dν], (1.43)

which should then also be gauge invariant. Calculating this quantity yields

Gµν = (∂µAaν − ∂νAaµ + gfabcAbµAcν)θa (1.44)

We now utilise the property Tr[θaθb] = δab and write Gµν = Gaµνθa to write the QCD Lagrangian

L = ψ̄i(iγµDµ −mi)ψi +
1
4
GaµνG

aµν . (1.45)

A few comments are in order. Firstly, note that we are now summing over i = 1, . . . ,6 quark fields and
their corresponding masses mi. Secondly, we observe that in the case of Abelian gauge theories, fabc = 0
and thus we recover the energy-momentum tensor from the section on U(1) gauge symmetry. The
non-Abelian term gfabcAbµA

c
ν in Gµν gives rise to pure gluon-gluon interactions. We obtain three-gluon

and four-gluon interaction terms of the form

gfabcAbµA
c
ν∂

µAaν , (1.46)
g2fabcfadeAbµA

c
νA

dµAeν . (1.47)

These interactions are illustrated diagrammatically in Figure 1.4.
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(a) Three-gluon interaction vertex (b) Four-gluon interaction vertex

Figure 1.4: Diagrammatic representation of the three- and four-gluon interaction vertices

1.2.2 Chiral symmetry breaking
Of particular interest to the study of pion condensation is chiral symmetry. If the masses of the up and
down quark are exactly zero, QCD allows for a U(2)×U(2) symmetry. The construction of this symmetry
is as follows: take the QCD Lagrangian for the up and down quark (the u and d fields, respectively)

L = ū (iγµDµ −mu)u + d̄ (iγµDµ −md)d +
1
4

Tr[GaµνGaµν]. (1.48)

The kinetic term of the gluon field is of no importance to this derivation, so we will discard it. Suppose
now that mu =md = 0. These quark masses are certainly small compared to the other quark masses – the
u and d mass both being smaller than 5 MeV when the next smallest mass is that of the strange quark at
approximately 104 MeV – and at high energies their masses might become negligible, in this case the
Lagrangian exhibits chiral symmetry. We now rewrite the fields in terms of their left- and right-handed
components, u = uL + uR where

uL = 1 − γ5

2
u, (1.49)

uR = 1 + γ5

2
u. (1.50)

And similarly for the d-field. Due to the fact that (γ5)2 = 1 as well as the anticommutation relation
{γ5, γµ} = 0,

uLγ
µDµuR = 0 (1.51)

What remains in the Lagrangian are the diagonal elements

L = iūLγµDµuL + iūRγµDµuR + id̄LγµDµdL + id̄RγµDµdR. (1.52)

We arrange the left- and right-handed fields into doublets L = (uL
dL

) to obtain

L = iL†γµDµL + iR†γµDµR. (1.53)

The remaining Lagrangian is invariant under unitary transformations of the doublets, thus yielding
a U(2)L × U(2)R symmetry, where the subscripts refer to the L and R doublets. Exploiting that
U(2) ≡ SU(2)×U(1), we may write the overall symmetry as SU(2)L ×SU(2)R ×U(1)A ×U(1)V . The A
and V stand for axial and vector symmetry respectively, and stem from a decomposition of the U(1)L
and U(1)R symmetry into simultaneous phase transformations in either the same or opposite directions
for L and R. The U(1)V symmetry corresponds to conservation of quark number, as seen previously. If
we choose to preserve the U(1)V symmetry, then the U(1)A symmetry is broken by what’s known as the
chiral anomaly.
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Figure 1.5: The triangle diagram, originally studied in connection with the process π0 → γγ. This diagram
gives rise to the chiral anomaly.

The chiral anomaly has been the subject of much study since its discovery in 1969 by Adler, Jackiw
and Bell [27, 28]. Strictly speaking, the word anomaly is a bit of a misnomer since there is no symmetry
in the first place. To be precise, if we choose to preserve the U(1)V symmetry, then the U(1)A symmetry
is only a symmetry of the classical action, not of the quantum field theory. This is due to a change in the
measure Dφ in the generating functional [9] of the path integral formalism (we derive the generating
functional in Sec. 2.2). The chiral anomaly thus seems like a violation of the aforementioned U(1)A
symmetry, corresponding to the phase transformation ψ → eiαγ

5
ψ, which has its root in the dynamics

of QCD. The origin of the anomaly is the triangle diagram, illustrated in Fig. 1.5. This was originally
studied in the context of the decay π0 → γγ, prior to the formulation of QCD, as a consequence of which
the original papers are formulated in a rather different manner to what modern formalism affords us.
Today we view the chiral anomaly as being due to instantons breaking the conservation of the chiral
charge, a view proposed in the late 1970s [29] and elaborated upon over the next decades [30], as well as
tested against lattice QCD calculations [31].

The remaining SU(2)L ×SU(2)R chiral symmetry is spontaneously broken by the appearance of what
is referred to as a chiral condensate, retaining only an SU(2) isospin symmetry among the up and down
quarks [32]. Furthermore, since the up and down quark masses are not zero, the symmetry is explicitly
broken. The up and down quark masses are – however – very light, both being below 5 MeV and so
the symmetry is broken softly and we expect to retain some of the behaviour predicted by Goldstone’s
theorem. Specifically, we expect what is known as pseudo-Goldstone bosons, very light bosons which
would be massless if the symmetry were exact. Since there are three generators of SU(2), we expect
three of these pseudo-Goldstone bosons, the pions [26,33].

1.2.3 Pions
Pions are mesons, i.e. bound states of a quark and an antiquark. Specifically pions are the lowest-energy
mesons formed by the up and down quarks. They are spinless, and very light, with the charged pion
masses being approximately 139 MeV. This light mass is surprising when comparing the pions to other
mesons, and is understood to be due to the role of the pions in chiral symmetry breaking.

The existence of pions was predicted prior to their discovery by Yukawa, in an attempt to describe
the properties of the mediator particle of quantum chromodynamics. To account for the short range that
the strong force had been found to have, Yukawa deduced that unlike the photon the messenger particle
of the strong force must be massive. The potential energy of a force mediated by massive particles are
subject to an exponential falloff, roughly behaving as

V (r) = e
−mr

r
. (1.54)

Yukawa predicted the mass of this messenger particle to be nearly 30 times that of the electron [34]. This
was a mass range far larger than the known electron mass, and yet much smaller than the smallest known
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Figure 1.6: Sketch of the magnetization M of a ferromagnet as a function of the temperature T . The
solid line is without the presence of an external magnetic field and reaches zero at a finite temperature
Tc. The dashed line is with an external magnetic field.

baryon masses. Yukawa therefore named his particle a meson, for middle weight. After some confusion
regarding the muon – which it later transpired was a lepton – the best candidate for Yukawa’s meson was
the pion.

Pions were discovered a few years after being predicted by Yukawa. This was prior to particle
accelerator experiments, and so the pions were discovered in the study of cosmic rays by Powell, Lattes,
Occalini et al [35]. Cosmic rays colliding with particles in the atmosphere causes a constant flux of pions
heading towards earth’s surface, and these were captured in experiments in which photographic plates
were placed on high-altitude mountains. By this method, the pions were detected mainly due to their
propensity to decay into muons, which would leave very discernible tracks on the plates [14].

Our interest in pions in this thesis is mainly due to their behaviour as pseudo-Goldstone bosons of
chiral symmetry breaking. In the absence of a baryon chemical potential the up and down quarks will
bind together in pions. Provided the energy scale is sufficiently low to exclude a large production of
strange quarks (which have a mass of roughly 104 MeV), the dynamics of the pions along with another
spinless meson called the sigma meson becomes a good effective theory of QCD. We will examine the
reasoning behind this approximation in greater detail in the beginning of Chapter 3.

1.2.4 A short note on phases and phase transitions
Phase diagrams and phase transitions are well-known concepts from thermal physics. Substances may
be in several distinct states such as solid, liquid, gas and plasma. One may transition between these by
altering, say, the temperature or the pressure the substance is subjected to. In this manner, we may for
instance boil water in order to have it transition from its liquid to its gaseous form.

Nuclear matter may also be in very distinct states, which we may describe in the language of phases
and phase transitions. A phase is defined by certain symmetries being present or broken in the equilibrium
state of nuclear matter, subject to appropriate parameters such as temperature and chemical potential.
Consequently, a phase transition is the restoration or breaking of symmetries in the equilibrium state
when continuously altering the parameters which the equilibrium state is subject to. We define an order
parameter as some parameter which describes the restoration or breaking of a symmetry, for instance by
being zero when the symmetry is present in the equilibrium state and nonzero when the symmetry is
broken. An example of such an order parameter is the magnetisation of a ferromagnetic material. At
zero temperature and external magnetic field, the material possesses a nonzero magnetisation, breaking
O(3) orthogonal2 symmetry by giving the system a preferred direction. However, by increasing the
temperature, the magnetisation of the material becomes zero at some critical temperature Tc and thus
the O(3) symmetry is restored.

If the order parameter at a phase transition is discontinuous, we refer to the transition as being
first order. If – however – the order parameter at a phase transition is continuous, but its derivative

2We will sometimes refer to this as rotational symmetry. It is not entirely correct to do so. The rotation group in three
dimensions is SO(3), O(3) includes reflections of the axes.
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Figure 1.7: The phase diagram of QCD

is not, the phase transition is second order. Finally, if both the order parameter and its derivative
is continuous the transition is referred to as a cross-over. In a cross-over phase transition there is no
distinct critical temperature, but rather a range of temperatures in which the order parameter changes
rapidly. We shall see examples of both first and second order transitions in our study of the linear sigma
model, but an illustration is currently afforded us by the aforementioned magnetisation of a ferromagnetic
material. Without an external magnetic field, the magnetisation goes to zero in a continuous manner, a
second-order phase transition [36]. However, when applying an external magnetic field to the material,
the magnetisation does not transition entirely to zero, but changes rapidly from its high original value to
some small equilibrium value in a cross-over transition. A schematic of this behaviour is illustrated in
Fig. 1.6.

1.2.5 The phase diagram of QCD
Because of the aforementioned asymptotic freedom, QCD scales very differently with energy than the
other components of the standard model. Due to this there has been a large effort to map out the QCD
phase diagram during the past decade [26,32,33,37,38]. In experiments at the Large Hadron Collider one
hopes to be able to probe the so-called quark-gluon plasma phase, a phase in which the strong nuclear
force is sufficiently weakened that the quarks and gluons behave like a “quark soup”, characterised by
the restoration of chiral symmetry. For a long time it was thought that this state was close to an ideal
gas of quarks and gluons, however experiments at the Relativistic Heavy Ion Collider in Brookhaven
seem to indicate that the physics of the quark-gluon plasma close to the critical temperature are better
accommodated by models of a strongly interacting liquid [39]. Another area of high interest is the so
called colour-flavour-locked (CFL) phase. This phase occurs at high densities and low temperatures,
candidate systems for such conditions are the cores of very heavy neutron stars. However, it is as of yet
not known whether the cores of neutron stars reach such high densities [38]. It is believed that under
such extreme conditions, quarks may bind together to form Cooper pairs of colour charge, creating a
colour superconducting superfluid [40]. Very recently, observations of the cooling rate of the neutron star
Cassiopeia A has given the first tentative indications of superfluidity in neutron stars [41].

Fig. 1.7 shows an overview of our current understanding of the phase diagram of QCD. The phase
diagram is here drawn as a function of baryon chemical potential – i.e. baryon density – and temperature.
In the lower left corner – at low temperature and baryon chemical potential – we have hadronic matter.
This phase is characterised by confinement and broken chiral symmetry, allowing the formation of nucleons.
Quarks are bound in baryons and mesons forming droplets of nuclear matter surrounded by vacuum. At
very low chemical potential and temperature we have what is essentially vacuum. Increasing the chemical
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potential to µ ≈ 924 MeV we reach a transition from a gaseous to a liquid phase. Due to the interplay
between repulsive and attractive nuclear forces, the ground state of nuclear matter at T = 0 is at these
densities [32]. Transitioning further into the liquid state we reach the densities of neutron stars [38].

Moving along the temperature axis, the chiral condensate will eventually cross over and we will at some
critical temperature Tc ≈ 170 MeV reach the aforementioned quark-gluon plasma phase. In this phase,
chiral symmetry is restored as asymptotic freedom becomes dominant, we refer to this transition as the
deconfinement transition. At low nuclear chemical potential (and hence low density), this phase transition
is – due to the explicit breaking of chiral symmetry by nonzero quark masses – not discontinuous but
rather a crossover transition [33]. Upon increasing the chemical potential, this crossover period shortens
until we recover a second-order phase transition at a critical point, marked by a dot in Fig. 1.7. Further
increasing the density, Tc decreases, reaching zero at a chemical potential µ ≈ 1100 MeV.

In the lower right corner, at high baryon chemical potential and low temperature we reach the CFL
phase. However, at slightly lower chemical potentials is a deconfined state which is non-superconducting.
This state is referred to as normal quark matter (NQ), and is characterised by hadronic matter having
such high densities that the nuclei overlap and the quarks are deconfined. Fig. 1.7 shows two colour
superconducting states, the Two-colour superconducting (2SC) and CFL phase. The CFL phase is
characterised by colour superconductivity, in which the up, down and strange quark participate in Cooper
pairing of all three colours. By contrast, at slightly lower densities the strange quark’s large mass prohibits
it from participating in Cooper pairing, and thus the up and down quarks form Cooper pairs of two
colours, say red and green [38]. In terms of symmetry, the CFL phase and the 2SC phase are invariant
under simultaneous rotation of quark flavours and colours (SU(3) and SU(2), respectively), but not
independent rotations. The flavours and colours are thus locked to one another in the pairing process,
giving rise to the term colour-flavour locking. The Cooper pairs are spinless pairs of quarks with opposite
momenta, thus the pairs share the same chirality. Due to the locking of colour and flavours, a colour
rotation must be accompanied by a flavour rotation, which gives rise to chiral symmetry breaking [38].

In this thesis we will study something of relevance to the NQ phase, present at high baryon density
but before entering the CFL phase. It is known that in this phase a pion condensate may arise in the
presence of a preference for a certain charge, characterised by an isospin chemical potential. This charge
preference introduces another axis to the phase diagram. With physical pion masses, pion condensation
is known to arise only when the isospin chemical potential is larger than the pion mass [6, 7, 42, 43]. Such
pion condensation at nonzero isospin chemical potential is thought to occur within neutron stars [44],
prompting an interest in this part of the QCD phase diagram. We will study this phenomenon in an
idealised model of zero baryon chemical potential and finite chemical potential. Whereas this is far from
the baryon density of neutron stars, it allows us to compare our results with those of lattice QCD, which
is intractable at nonzero baryon chemical potentials [6, 45]. Thus, the domain of zero baryon chemical
potential and finite isospin chemical potential allows us the opportunity to compare a wide range of
effective approximations with lattice computations, yielding insights into both the phase diagram of QCD
and effective field theories.
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Chapter 2

The basics of thermal field theory

Before proceeding to discuss pion condensation it is necessary to introduce the basic concepts which
will be used throughout our treatment of the linear sigma model. We will start with the partition
function of statistical mechanics, a probabilistic estimator of the most likely state of a system with a
characteristic energy scale T . From there we will move on to quantum field theory and the path-integral
formalism, before combining path-integrals and the partition function to obtain the generating functional
of thermal field theory. We will briefly discuss chemical potentials, before proceeding to derive the effective
potential – a generating functional for connected Green’s functions – and finish by making a few notes on
renormalisation and regularisation.

2.1 Partition function
Arguably the most fundamental quantity in statistical mechanics is the partition function Z. It is based
on a maximum likelihood estimate of probabilities for an ensemble to be in a state j with energy Ej ,
when the system is at the temperature T . For the canonical ensemble it is defined as [36]

Z ≡ Tr [e−βĤ] . (2.1)

Tr denotes a trace over all available states and Ĥ is the Hamiltonan operator. An equivalent formulation
of the partition function is thus that if ∣φ⟩ is a complete set of energy eigenstates with energies Eφ, then

Z = ∫ dφ ⟨φ∣ e−βĤ ∣φ⟩ = ∫ dφe−βEφ (2.2)

β is 1/T , and so T generally describes a characteristic energy scale of the system. For example, the
equipartition theorem states that for every quadratic term in the Hamiltonian of the system, there
corresponds a term 1

2T in the average energy, yielding the average energy 3
2NT for a nonrelativistic ideal

gas with N particles [36]. The probability of finding the system in the state φ is simply

Pj =
e−βEφ

Z
. (2.3)

The ensemble is fully described by the partition function, we can therefore derive any equilibrium quantity
from it. For instance the average energy ⟨E⟩ and Helmholtz free energy F are given by [36]

⟨E⟩ = −∂ lnZ
∂β

, (2.4)

F = − lnZ
β
. (2.5)

If the number of particles in the ensemble is not fixed, we must turn to the grand canonical partition
function Θ. The grand canonical ensemble is characterised by both the temperature and the chemical
potential µ. The latter affects the likelihood of there being a given number of particles Ni of type i in the
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Figure 2.1: Schematic of the double slit experiment.

system. The grand canonical partition function is found by adding a chemical potential term −µiNi to
the Hamiltonian in the canonical partition function as follows

Θ ≡ Tr [e−β(Ĥ−µiNi)] . (2.6)

The above trace is now over both particle types and energy states. In quantum field theory, we generally
abstract the notion of the particle number Ni to be freely chosen charges, as will be shown in the section
on the chemical potential (2.6).

2.2 Path integrals
Turning to quantum field theory, we will be utilising the path-integral formalism. The formalism is
derived in a 1948 paper by Feynman [46], we will here use a more modern approach akin to what can be
found in current textbooks on quantum field theory [9, 10]. Much like the partition function of statistical
mechanics, a system in quantum field theory can be fully described by an integral over all space-time paths
allowed by the system. This behaviour hinges upon the completeness relation of quantum mechanics,
namely that if ∣c⟩ is some complete set of states, then

1 = ∫ dc ∣c⟩ ⟨c∣ . (2.7)

The time evolution of a non-relativistic quantum mechanical state ∣x⟩ is governed by the Schrödinger
equation

∂

∂t
∣x⟩ = Ĥ ∣x⟩ . (2.8)

In the case of relativistic quantum mechanics it is more convenient to work with a quadratic equation
such as the Klein-Gordon equation to avoid the operator Ĥ =

√
−∇2 +m2. We shall restrict ourselves to

the non-relativistic case for this derivation and later generalise our results to include relativistic fields.
If we observe a particle to be in the state ∣xA⟩ at some time t0, then the wave function of the particle at

some later time t1 is e−i ∫
t1
t0
Ĥ dt ∣xA⟩. A further simplification is available if we assume the Hamiltonian to

be time-independent, whereupon the time evolution of the state reduces to eiĤ(t1−t0) ∣xA⟩. The probability
of observing the system in the state ∣xB⟩ at time t1 is then

PAB(t0, t1) = ∣⟨xB ∣ eiĤ(t1−t0) ∣xA⟩∣
2
. (2.9)
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If we recall the famous double-slit experiment (Fig. 2.1) as an example, and let ∣xA⟩ be our initial
state, ∣xB⟩ be the state of a particle present at the detector and ∣c⟩ be a set of states inside the slits.
Furthermore, assume that the particle passes through the slits at some time τ . Our time-dependent
probability of observation at point xB is then

PAB(t0, t1, τ) = ∣∑
c

⟨xB ∣ eiĤ(t1−τ) ∣c⟩ ⟨c∣ eiĤ(τ−t0) ∣xA⟩∣
2

. (2.10)

The above formula is based on the assumption that the states ∣c⟩ that are summed over form a complete
set of available states for the particle at the time τ . One may of course integrate over τ to remove the
dependence on the time when the particle passes through the slit.

There is a straightforward generalisation of the double-slit experiment, namely that the vacuum can be
viewed as an infinitely dense grid of slits. This generalisation forms the basis of the path-integral formalism.
For simplicity, we restrict ourselves to one particle in one dimension, subject to a time-independent
potential V (x̂). The generalisation to several particles and dimensions is straightforward and will be
done when we proceed to quantum field theory. We start from the probability amplitude of Eq. (2.9),
and divide it up into N + 1 intermittent states at equal time intervals δt = t2−t1

N+1 . For the purpose of
illustration, we choose the basis of position eigenstates for the the initial, intermittent and final states.
This yields the formula

PAB = ∣∫ dx1 dx2⋯dxN ⟨xB ∣ e−iĤδt ∣xN ⟩ ⟨xN ∣⋯ ∣x1⟩ ⟨x1∣ e−iĤδt ∣xA⟩∣
2
. (2.11)

The probability amplitude is now governed by the time-evolution from the initial state via all possible
intermediate states at the time intervals δt. Our Hamiltonian is Ĥ = p̂2

2m + V (x̂), we wish to express this
in terms of momentum and position eigenvalues. To this end we insert a complete set of momentum
eigenstates into the intermittent amplitudes

⟨xi∣ e−iδtĤ ∣xi−1⟩ = ∫ dp ⟨xi ∣p⟩ ⟨p∣ e−iδtĤ ∣xi−1⟩ . (2.12)

The inner product between the momentum and position eigenstate is the well known eipxi√
2π . We Taylor

expand the exponential in powers of δt to obtain

⟨xi∣ e−iδtĤ ∣xi−1⟩ = ∫
dp√
2π
eipxi ⟨p∣1 − iδtĤ +O(δt2) ∣xi−1⟩ . (2.13)

It can be shown that Ĥ can always be made normal-ordered, i.e. all products of momentum and position
operators are on the form p̂nx̂m. Given normal ordering, we are at liberty to let Ĥ act on the position
and momentum eigenvectors and recover our exponential,

⟨xi∣ e−iδtĤ ∣xi−1⟩ = ∫
dp√
2π
eip(xi−xi−1)e−iδt(

p2
2m+V (xi+1)). (2.14)

The integral is a simple Gaussian integral which we may now evaluate. Our final result is

⟨xi∣ e−iδtĤ ∣xi−1⟩ =
√

im

δt
e
i[m2

(xi−xi−1)
2

δt −δtV (xi−1)]
. (2.15)

The prefactor is divergent and inifinite in the continuum limit. This reflects a poor choice of normalisation,
and so we discard it [10]. We may now take the continuum limit, this implies xi → x(t), xi−xi−1

δt
→ ẋ,

δt→ dt and so on. Our initial transition amplitude can now be written as

⟨xB ∣ eiĤ(t2−t1) ∣xA⟩ = ∫ dx1⋯dxNei ∫
t2
t1

dtm2 ẋ
2−V (x). (2.16)

The exponent on the right hand side is the time integral of the Lagrangian L(x, ẋ), namely the classical
action S. We write the numerous integrals as a functional integral, utilising the notation ∫ dx1⋯dxN →
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∫ Dx, where it is understood that we integrate over all functions x(t) that satisfy the boundary conditions
x(t1) = xA and x(t2) = xB . The transition amplitude is then

∫ Dxei ∫
t2
t1 dtL(x,ẋ) ≡ ∫ DxeiS[x] (2.17)

We have now arrived at the basis of the path-integral formalism, and an alluringly simple picture presents
itself. The probability amplitude of a system transitioning from one state to another is the result of the
interference of all time evolutions (or paths) of the system which leads to the given outcome. Specifically,
it is the sum of complex numbers of equal magnitude with phase dictated by the action associated with
each path. This description is equivalent to the more usual formulation of quantum mechanics in terms
of the Schrödinger equation [46].

Generalising to quantum field theory is usually done by using the Lagrangian density in the action, i.e.

S[φ] = ∫ d4xL[φ, ∂µφ]. (2.18)

The functional integral is then over all “paths” of the field; all intermittent field configurations which the
field may assume.

2.2.1 Expectation values and the N-point function
The path-integral formalism can be used to calculate transition amplitudes of various operators. This is
clearest in the Heisenberg picture, where states are time-independent, but eigenvectors of time-dependent
operators may be time-dependent. Therefore, let x̂ and O(x̂, t) be Heisenberg picture operators with x̂
having eigenvectors ∣x, t⟩, we then seek to calculate the transition amplitude

⟨xB , t2∣O(x̂, t) ∣xA, t1⟩ . (2.19)

We insert two complete sets of states into the above transition amplitude to obtain

⟨xB , t2∣O(x̂, t) ∣xA, tA⟩ = ∫ dx1 dx2 ⟨xB , t2∣x2, t⟩ ⟨x2, t∣O(x̂, t) ∣x1, t⟩ ⟨x1, t∣xA, ta⟩ . (2.20)

We let O(x̂, t) operate on ∣x1, t⟩, the result is a function O(x1, t)

⟨xB , t2∣O(x̂, t) ∣xA, tA⟩ = ∫ dx1 dx2 ⟨xB , t2∣x2, t⟩O(x1, t) ⟨x2, t∣x1, t⟩ ⟨x1, t∣xA, ta⟩

= ∫ dx1 dx2O(x1, t) ⟨xB , t2∣x2, t⟩ δ(x1 − x2) ⟨x1, t∣xA, ta⟩

= ∫ dx1O(x1, t)∫
x1

xA
DxeiS[x] ∫

xB

x1
Dx′eiS[x

′]

= ∫
xB

xA
DxO(x)eiS[x]. (2.21)

From this we may also obtain the vacuum expectation value of O by requiring normalization and setting
appropriate boundary conditions

⟨O⟩ = ∫
DφO(φ)eiS[φ]

∫ DφeiS[φ]
. (2.22)

Due to the explicit time-dependence of the path integral formalism, any operator expectation value
evaluated is automatically time-ordered [9]. We thus have the general formula

⟨T {O1,O2,⋯,ON}⟩ = ∫
DφO1O2⋯ONeiS[φ]

∫ DφeiS[φ]
. (2.23)

T represents time-ordering; the arrangement of operators according to the time at which they operate on
the fields. From this we arrive at a simple way of calculating N -point correlation functions; transition
amplitudes between field configurations. Let φ̂H(xi) be Heisenberg picture field operators, the time-
ordered N -point correlation function is then [9, 10]

⟨Ω∣T{φH(x1), φH(x2),⋯, φH(xN)} ∣Ω⟩ = ∫
Dφφ(x1)φ(x2)⋯φ(xN)eiS[φ]

∫ DφeiS[φ]
. (2.24)
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We therefore define the generating functional Φ[J]

Φ = ∫ DφeiS[φ]+i ∫ d
4xJ(x)φ(x). (2.25)

The purpose of the current term J(x) is to obtain a manner of generating n-point functions of quantum
fields by means of functional differentiation. For instance, the probability amplitude of a field transitioning
from some state φ(x1) to some later state φ(x2) is

⟨Ω∣T{φH(x1), φH(x2)} ∣Ω⟩ = − 1
Φ

δ2Φ
δJ(x2)δJ(x1)

∣
J(x)=0

. (2.26)

This is the two-point correlation function. In a free field theory it is simply the free propagator of the
fields. In field theories with interaction terms, the two-point function will usually be the sum of the free
propagator, loop corrections to the propagator and various disconnected probability amplitudes. We will
discuss the topic of loop corrections in the following section.

2.3 Feynman diagrams by example
We are now ready to introduce the concept of Feynman diagrams. These diagrams are a useful tool in
bypassing much of the path-integral formalism and proceeding to directly calculate probability amplitudes.
We will introduce these diagrams somewhat indirectly through the example of scalar φ4-theory with one
field. The generating functional of this theory is

Φ[J] = ∫ Dφei ∫ d
4x 1

2φ[◻−m
2]φ+ λ4!φ

4+Jφ. (2.27)

◻ is a shorthand for ∂µ∂µ = ∂2

(∂t)2 − ∇2. With the exception of the interaction term, the generating
functional is Gaussian, and can therefore be evaluated directly. To this end we define the action of the
free theory as

SF [φ] ≡ 1
2 ∫

d4x [φ(x) [◻ −m2]φ(x) + 2J(x)φ(x)]

= 1
2 ∫

d4xd4yφ(x) [◻ −m2] δ(x − y)φ(y) + ∫ d4xJ(x)φ(x). (2.28)

We now series expand the interaction term and use functional derivatives to replace the field φ with the
current, thereby obtaining

Φ[J] = (1 + iλ∫ d4z
δ4

(δJ(z))4 +⋯)∫ DφeiSF [φ]

= eiλ ∫ d
4z δ4
(δJ(z))4 ∫ DφeiSF [φ]. (2.29)

We may now perform the functional integral over φ. To do this, we discretise our functional integral into
N steps such that φ(x)→ φi and J(x)→ Ji. In so doing, we must discretise the Klein-Gordon operator
in the Lagrangian, so let Mij be a Matrix discretisation of i(−◻+m2)δ(x− y). The generating functional
becomes

∫ dφ1 dφ2⋯dφNe−
1
2φiMijφj+iJiφi . (2.30)

In the above we have utilised the Einstein summation convention for all repeated indices. This integral is
a simple product of Gaussian integrals if Mij is diagonal. In general this is not the case, but supposing
Mij is orthonormally diagonaliseable we may write Mij = OkiDklOlj , with D a diagonal matrix and O
an orthonornormal transformation matrix. We now perform a coordinate transform such that our new
variables τi = Oijφj and Ki = OjiJj . If we utilise the diagonal property of Dij ≡ Diδij , our functional
integral becomes

∫ dτ1 dτ2⋯dτNe−
1
2Diτ

2
i +iKiτi . (2.31)
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Figure 2.2: The primitive four-point vertex.

This integral can now be separated into N Gaussians and evaluated separately, after which we may
transform back to our original coordinates. The result is

N

∏
i=1

√
2π
Di
e
− K

2
i

2Di =
√

(2π)N
DetM

e−
1
2JiM

−1
ij Jj . (2.32)

Taking the continuum limit once again, we identify the constant in front of the exponential as Φ[J = 0]
and define

Φ0 ≡ Φ[J = 0] =
√

(2π)N
DetM

. (2.33)

This term represents vacuum energy; it is the sum of all possible interactions in a theory without sources
or sinks. The matrix inverse M−1 becomes the Green’s function of the Klein-Gordon operator in the
continuum limit, identified by the relation

i(◻ −m2)M−1(x, y) = δ(x − y). (2.34)

We write the function M−1(x, y) as D0(x − y) due to Lorentz invariance. It is the propagator of the free
Klein-Gordon theory. Examining the generating functional, it can now be written

Φ[J] = Φ0e
iλ
4! ∫ d

4z δ4
(δJ(z))4 e−

1
2 ∫ d

4xd4yJ(x)D0(x−y)J(y). (2.35)

The two-point function can now be evaluated perturbatively in λ. To zeroth order in the perturbative
expansion we obtain the promised free propagator

⟨Ω∣T{φH(x1), φH(x2)} ∣Ω⟩ =D0(x1 − x2) (2.36)

We will sometimes refer to these lowest-order results as being tree-level results. Proceeding to first order
in λ we obtain two additional terms in the two-point function,

⟨Ω∣T{φH(x1), φH(x2)} ∣Ω⟩ =D0(x1 − x2) + iλ∫ d4zD0(x1 − z)D0(z − z)D0(z − x2)

+ iλ
4 ∫

D0(x1 − x2)D0(z − z)D0(z − z) +O(λ2). (2.37)

A pattern is now presenting itself: as we add more powers of λ we obtain more integrals over z, with
four functional derivatives leading to four propagator arguments being z. The number of propagators
containing terms that are not integrated over is determined by the number of functional derivatives we
start with, for instance there are two in the above formula because we were calculating the two-point
function. This lends itself well to a diagrammatic representation based on a simple principle, for each
propagator D(x, y), draw a line from x to y in your diagram. We see then that each integral over z
implies that there are four lines terminating at z, which yields a primitive vertex like the one in Figure
2.2. Each integral over z also comes with a factor λ. If λ is a small parameter, this series expansion lends
itself well to perturbation theory.

Such diagrams present a simple and alluring physical interpretation. When conducting an experiment,
we are interested in a certain measurable outcome, say a scattering cross-section. Such events would be
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Figure 2.3: The lowest-order correction to the primitive four-point vertex.

the sum of all the terms in the series expansion which has a certain number of external legs, representing
the initial and final states of the experiment. What happens between the initial and final state is not
directly measured, but can involve any number of interactions. The primitive four-point vertex represents
the interaction term in the Lagrangian, and directly describes the ways in which such interactions may
take place. Thus we may give a quasi-physical interpretation of these diagrams as being all the possible
interactions leading to a specific measurable outcome. It should be noted, however, that even in relatively
simple field theories such as our example φ4 theory there exists higher-order terms which are divergent, a
topic which will be discussed in the section on renormalisation (2.8). Such divergences are cancelled by
similar divergent corrections to the perturbation parameters, forcing the conclusion that both the bare
diagrams and the perturbation parameters are non-physical.

Another point worthy of comment is that the perturbation expansion of the two-point function is now
a series of loop corrections, which should be calculated to all orders in λ to yield exact results. We refer
to such loop corrections as self-energies and write

D−1(x − y) =D−1
0 (x − y) +Π[D]. (2.38)

Π[D] is the sum of all such loop- corrections to the propagator, and yields a correction to the the
propagator. This correction may be momentum-dependent, but its momentum-independent component
may be viewed as a correction to the particle masses. The same is true for all N -point functions, in
particular the four-point function yields a perturbative expansion which at lowest order is simply the
four-point vertex. Higher order corrections to the four-point function is referred to as radiative corrections,
the first-order correction is illustrated in Fig. 2.3.

The real power of Feynman diagrams becomes clear with the introduction of drawing rules (or Feynman
rules). These rules vary from theory to theory, depending on what interaction terms are present in the
Lagrangian. The goal of these rules is to make it so one can draw all the diagrams which represent
terms in the perturbation expansion, and no other diagrams. By doing this, we introduce a one-to-one
correspondence between Feynman diagrams and terms in the perturbation expansion, allowing one to
simply draw the possible diagrams corresponding to a desired outcome rather than calculating this
perturbatively. Furthermore, the rules then instruct you on how to read an interaction amplitude from a
diagram. For our simple Lagrangian, the Feynman rules are as follows:

• For each incoming or outgoing particle, draw a point.

• Draw all diagrams that connect these points, using lines and the four-point vertex.

• With each line, associate a propagator.

• With each four-point vertex, associate a factor λ
4! ∫ d

4z.

• Take care of symmetry factors; multiply an amplitude by the number of ways in which two endpoints
can be interchanged without altering the diagram.

The second point above – requiring all points to be connected – is related to normalisation. As an
example, observe that one of the terms in Eq. (2.37) contains a disconnected integral, namely a factor
∫ d4zD(0)D(0). By going to high enough powers in λ, we can add such terms to any other term in our
correlation function. For this reason such disconnected terms add nothing to the probability amplitudes,
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as they will simply disappear upon normalisation. This becomes clearer if we illustrate the various terms in
(2.37) diagrammatically, as is done in Figure 2.4. The last term is a disconnected diagram corresponding
to the vacuum energy from the spontaneous creation and destruction of particle-antiparticle pairs. In
most calculations, such diagrams are of little interest, and hence we exclude them in the Feynman rules
by requiring that all drawn diagrams are connected. In the following chapters we will be resumming large
numbers of diagrams systematically. It will therefore be necessary to develop a generating functional
for such connected Green’s functions. We will elaborate on this concept in the section about effective
potentials (2.7).

= + +

Figure 2.4: Diagrammatic representation of the two-point function to first order in λ

2.4 The partition function of quantum field theory
There is a remarkable similarity between the partition function of statistical mechanics and the generating
functional in the path-integral formalism. Both are essentially summations over all possible states (or
paths of states, in the case of the generating functional), weighted by the exponential of a characteristic
quantity of the theory. The similarity is even clearer if we restrict ourselves to a finite time interval, the
time evolution of a field can then be represented in the path integral formalism as

⟨ρ1∣ e−iĤ(t2−t1) ∣ρ2⟩ = ∫
ρ2

ρ1
DφeiS[φ]. (2.39)

The action now also runs over a finite time interval S[φ] = ∫
t2
t1
dt ∫ d3xL. We observe how the time

interval i(t2 − t1) appears to take the role of β from the partition function on the left-hand side above. In
order to transform the partition function to a more field-theoretical form, assume that ∣φ⟩ is a complete
set of field eigenstates. We may then write the partition function as

Z = Tr[e−βĤ] = ∫ dφ ⟨φ∣ e−βĤ ∣φ⟩ . (2.40)

The integration over φ is here an integration over all possible states of the field φ. What separates the
inner product on the left-hand side of Eq. (2.39) and that of the right-hand side of Eq. (2.40) is simply
i(t2 − t1) ≠ β. If we perform a Wick rotation to imaginary time in the Lagrangian, and fix t1 = 0 and
t2 = β, we may insert our path-integral into the partition function, yielding a path-integral representation
of the partition function. We call the Wick-rotated action the Euclidean action, denoted SE as the Wick
rotation changes the sign of dt2, bringing us from Minkowski space to Euclidean space. The Euclidean
action SE and Lagrangian LE are defined by

SE ≡ ∫
β

0
dτLE , (2.41)

LE ≡ −L(t = −iτ). (2.42)

From now we will work exclusively in Euclidean space with both the action and the Lagrangian. The
trace in the partition function means that φ = ρ1 = ρ2, thus yielding a periodicity requirement in our path
integral

Z = ∫ dφ′ ∫
φ(0,x⃗)=φ(β,x⃗)=φ′

DφeSE[φ]

= ∫
φ(0,x⃗)=φ(β,x⃗)

DφeSE[φ]. (2.43)

The last line above is the partition function of quantum field theory. Quantities from statistical mechanics
carry over to thermal field theory. For instance, the Helmholtz free energy density is given by

F = − 1
βV

lnZ. (2.44)
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In a manner completely analogous to that of Φ, the two-point function in thermal field theory is [47]

D(x − y) = 1
Z
∫ Dφφ(x)φ(y)e−SE[φ]. (2.45)

Like the two-point function from the previous section, the thermal two-point function also includes
disconnected diagrams which we will often need to discard prior to calculating the quantities we are
interested in.

2.5 Matsubara sums
As we saw in the previous section, the temperature scale of the partition function is determined by the
periodicity of the fields. We achieve this periodicity by writing the fields as a Fourier sum of so-called
Matsubara frequencies in energy-momentum space, i.e.

φ =∑
n
∫ d3pcn(p⃗)eiωnt (2.46)

We usually abbreviate the summation and integration using the sum-integral sign ⨋ , and the shorthand
ωn = −iω = −ip0. The sum-integral sign is defined in Eq. (1), and includes some prefactors necessary
for dimensional regularisation, which we will discuss in the section on renormalisation (2.8). Due to
symmetry requirements, ωn = 2πnT for bosons and ωn = π(2n + 1)T for fermions. To see this we follow
Ref. [47] and look once more at the thermal two-point function

D(x − y) = 1
Z

Tr [e−βĤT [φ̂(x), φ̂(y)]] . (2.47)

The time-ordering operator T is different for fermions and bosons, due to the anticommutation relation
of fermion fields. For bosons, the time-ordering operator takes the form

T (φ̂(x), φ̂(y)) =
⎧⎪⎪⎨⎪⎪⎩

φ̂(x)φ̂(y) if x0 > y0

φ̂(y)φ̂(x) if x0 < y0 (2.48)

Assuming that x0 = 0 and 0 < y0 = t < β, we now attempt to arrive at an expression where x0 = β. It is
convenient to express the time component separately, so we write D(x−y) =D(x⃗, y⃗, x0, y0). By exploiting
the cyclic property of the trace we find

D(x⃗, y⃗,0, t) = 1
Z

Tr [e−βĤ φ̂(y)φ̂(x)]

= 1
Z

Tr [φ̂(x)e−βĤ φ̂(y)] = 1
Z

Tr [e−βĤeβĤ φ̂(x)e−βĤ φ̂(y)] (2.49)

= 1
Z

Tr [e−βĤ φ̂(x)x0=βφ̂(y)] =D(x⃗, y⃗, β, t).

In the above we have used the identity

eβĤ φ̂(0, x⃗)e−βĤ = φ̂(β, x⃗), (2.50)

which stems from transforming the equation

∣xA, t = β⟩ = eiβĤ ∣xA, t = 0⟩ (2.51)

to the Heisenberg picture and imaginary time formalism. We see therefore that the two-point function
for bosons is periodic with period β. Thus we can only allow the even Matsubara frequencies in the
wave function, namely ωn = 2πnT . For fermions the time-ordering operator is subtly different due the
anticommutation relation, namely

T (ψ̂(x), ψ̂(y)) =
⎧⎪⎪⎨⎪⎪⎩

ψ̂(x)ψ̂(y) if x0 > y0

−ψ̂(y)ψ̂(x) if x0 < y0 (2.52)
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Im(ω)

Re(ω)
c

(a) A single contour, indexed by c.

Im(ω)

Re(ω)

(b) Summing all the single contours
yields two infinite line integrals.

Im(ω)

Re(ω)

(c) We close the line integrals sep-
arately around the real poles of the
dispersion relation.

Figure 2.5: Diagrammatic illustration of Matsubara sums as contour integrals. The crosses indicate poles
in our integrand.

Through an entirely analogous calculation, this leads us to the conclusion that the fermion two-point
function fulfils

D(x⃗, y⃗,0, t) = −D(x⃗, y⃗, β, t). (2.53)

And thus ωn = π(2n + 1)T for fermions.
In computing the partition function, we will often encounter functional traces involving the propagator.

This usually takes the form

Π ≡ ⨋
p

f(ω, p)
d(ω, p)

. (2.54)

In the above d(ω, p) is the determinant of the inverse propagator, and takes the form of an even polynomial
in ω with real roots which represent the dispersion relations εi(p). f(ω, p) is a polynomial which is two
orders lower in ω than ε. We will restrict ourselves to bosons in what follows, we must therefore evaluate
the sum

T ∑
ω=2πinT

f(ω, p)
d(ω, p)

. (2.55)

We will now calculate this general sum following a procedure which can be found in most textbooks on
thermal field theory [47, 48]. In order to do this, we observe the following: the hyperbolic cotangent
cothx has simple poles with residue 1 at the points 2πni where n is an integer. Since d(ω, p) has only
has real, nonzero roots, we may write our sum as

T ∑
ω=i2πnT

f(ω, p)
d(ω, p)

= 1
4πi∑c

∮
c

f(ω, p)
d(ω, p)

coth ω

2T
. (2.56)

c indexes a rectangular contour around a single pole in the complex ω-plane, as illustrated in Fig. 2.5a.
The overlapping parts of the rectangular contours cancel, leaving only the lines in the imaginary direction.
We now close the two line integrals separately as illustrated in Figure 2.5c The new contours enclose the
poles of the dispersion relation on the real axis. For large ω, the extra orders of ω in d(ω, p) as compared
to f(ω, p) lead to the summand going to zero as 1

ω2 . The contributions from the semicircles are therefore
suppressed by a factor 1

ω
, which is sufficient to ensure that they go to zero in the limit of large ω. We

must now sum over the residues due to the roots of d. As stated earlier, the roots are given by ω2 = εi(p)2,
the residue theorem therefore yields

T ∑
ω=i2πn

f(ω, p)
d(ω, p)

= 1
2∑i

lim
ω→εi

1
ω

(ω2 − ε2i )f(ω, p)
d(ω, p)

coth ω

2T
. (2.57)
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As a simple example, we consider the sum

σ = T∑
n

1
ω2
n + p2 +m2 . (2.58)

We Wick rotate by defining ω = iωn, thereby obtaining

σ = −T ∑
ω=2πnTi

1
ω2 − p2 −m2 . (2.59)

Using the aforementioned trick, we may now write the sum as a contour integral around the contour
illustrated in Fig. 2.5b

σ = − 1
4πi ∮

dω
1

ω2 − p2 −m2 coth 1
2
βω. (2.60)

Apart from the poles of coth 1
2βω on the imaginary axis, there are simple poles at ω = ±

√
p2 +m2. We

now close the contours as illustrated in Fig 2.5c in stead, this yields a minus sign as the orientation of the
semicircles is now counter-clockwise. The residue at ω = ±

√
p2 +m2 is calculated by the formula valid for

all simple poles c

Res (f(z), c) = lim
z→c

(z − c)f(z). (2.61)

Thus our sum-integral becomes

σ = 1
2

⎛
⎜⎜⎜
⎝

coth(
√
p2+m2

2T )

2
√
p2 +m2

−
coth(−

√
p2+m2

2T )

2
√
p2 +m2

⎞
⎟⎟⎟
⎠
. (2.62)

We now use the identities

coth(−x) = − coth(x), (2.63)

coth(x
2
) = 1 + 2

ex − 1
. (2.64)

To write our final result

σ = 1√
p2 +m2

(1
2
+ 1
e
√
p2+m2/T − 1

) . (2.65)

This matches what one obtains by insertion into Eq. (2.57). The last term in the brackets is the thermal
distribution function for bosons,

n(E) = 1
eE/T − 1

. (2.66)

We have thus obtained a thermal distribution of bosons in addition to a vacuum term which is present
also at T → 0, matching what one would obtain by performing the integral

∫
∞

−∞

dω

2π
1

ω2 + p2 +m2 = 1
2
√
p2 +m2

. (2.67)

2.6 Chemical potential
As was mentioned briefly in the section on statistical mechanics, when the number of particles in an
ensemble is unknown it is necessary to introduce a second parameter – the chemical potential – to fully
characterise a system. This is also the case in thermal field theory, although the chemical potential is a
somewhat more general concept. A chemical potential introduces a statistical preference in the system
for a certain type of charge, this charge can be particle number, electric charge, isospin, hypercharge,
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colour charge or indeed any other form of conserved quantity. The basis for this generalisation is the
aforementioned Noether’s theorem, giving rise to a conserved charge Qi ≡ ∫ d4xj0

i . A chemical potential
is introduced in a manner analogous to that of statistical mechanics, we modify the partition function
by making the replacement E → E − µiNi where Ni is a particle number. We may similarly modify the
Hamiltonian of our quantum field theory, making the replacement

Ĥ → Ĥ − µiQ̂i. (2.68)

Qi is here some generalised charge, which we derive from Noether’s theorem.

Qi = ∫ d4xj0. (2.69)

In practice, since we normally operate with the Hamiltonian and Lagrangian densities, we simply introduce
a term µij

0
i in the Hamiltonian density. There is a limit to how many of these potentials we may introduce.

We must require that the symmetries from whence we derive the charges commute. The reason for this is
simply so as not to overdetermine the chemical potentials. Adding more chemical potentials would be
redundant due to the symmetry of the system, and lead to extra equations relating the various chemical
potentials. Equivalently, we may only introduce as many currents as can be simultaneously diagonalised.

2.7 Effective potential
As we have seen in the section on path-integrals, the generating functional gives rise to a large number
of disconnected diagrams of little importance to most calculations. We will be concerning ourselves
with systematic methods of resumming and renormalising large classes of Feynman diagrams in this
thesis, and it is therefore important to exclude these diagrams from our equations a priori. The effective
potential is a generating functional for the connected Green’s functions in quantum field theory. It is a
Legendre transform of the generating functional from the chapter on path-integrals (2.2), and can with no
modification be used in conjunction with the partition function derived in Sec. 2.4. We will be using the
two-particle irreducible (2PI) effective potential, a generating functional which yields gap equations for
both the dressed propagator and mean-field expectation values. The term two-particle irreducible stems
from the role of the class of Feynman diagrams of the same name – all diagrams in which one may cut any
two propagator lines and the diagram remains connected – which play an important role in this formalism,
as we shall see later. The formalism was developed for relativistic field theory by Cornwall, Jackiw and
Tomboulis [49], and has been used extensively in studies of all-order renormalisation [43, 50–54]. We will
follow the derivation of Cornwall et al. [49] in what follows. We start from the generating functional
Φ[J], and modify it to contain a two-field current K(x, y), such that

Φ[J,K] = eiW [J,K] = ∫ DφeiS[φ]+∫ d
4xJ(x)φ(x)+∫ d4xd4yφ(x)K(x,y)φ(y). (2.70)

Note the implicit definition of W [J,K] ≡ −i ln Φ[J,K]. Next we define the new quantities ρ(x) and
D(x, y)

δW [J,K]
δJ(x)

= ρ(x), (2.71)

δW [J,K]
δK(x, y)

= 1
2
[ρ(x)ρ(y) +D(x, y)] . (2.72)

The above definitions are not arbitrary. Our definition of ρ(x) is such that ρ(x) = 1
Φ

δΦ
δJ(x) = ⟨φ⟩. It is

in this manner that we incorporate spontaneous symmetry breaking in the theory; ρ(x) is a classical
field representing the expectation value of the ground state, the value of which is subject to an effective
potential yet to be determined. Furthermore, the definition of D(x, y) is such that the disconnected
diagrams of the two-point function are not present in D. The reason for this is that we have explicitly
extracted the term ρ(x)ρ(y) from the two-point function, thereby removing the disconnected diagrams.
In other words, D(x, y) is the sought-after connected two-point function. We may now determine the
effective potential by Legendre transforming the generating functional W [J,K] to a pure functional of
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Figure 2.6: The double-bubble diagram, central to the Hartree and Large-N approximation

ρ(x) and D(x, y), we define Γ[ρ,D]:

Γ[ρ,D] =W [J,K] − ∫ d4xJ(x)ρ(x)

− 1
2 ∫

d4xd4yρ(x)K(x, y)ρ(y) − 1
2 ∫

d4xd4yD(x, y)K(y, x) (2.73)

It is apparent that

δΓ[ρ(x),D]
δρ(x)

= −J(x) − ∫ d4yK(x, y)ρ(y) (2.74)

δΓ[ρ(x),D]
δD(x, y)

=K(y, x) (2.75)

The purpose of J(x) and K(x, y) are simply to generate N -point functions, after which we set them
to zero. By doing so, we choose to evaluate the effective potential in the classical minimum, with ρ(x)
being the expectation value of the fields and the quantum fields being quantum fluctuations around this
expectation value. Cornwall et al. derived that Γ[ρ,D] is given by [49]

Γ[ρ(x),D] = I[ρ] + 1
2

TrlnD−1 + 1
2

TrD−1
0 D +Φ[D]. (2.76)

Here, I[ρ] is the classical action one obtains when shifting the field φ(x)→ φ(x)+ρ(x), thus incorporating
symmetry breaking, and Φ[D] is the sum of all vacuum diagrams that are still connected after cutting
two propagator lines, the aforementioned two-particle irreducible diagrams. If we now recall the definition
of the self-energy matrix Π[D] =D−1 −D−1

0 , we may write the stationarity condition in Eq. (2.75) in the
absence of sources as

Π[D] = 2δΦ[D]
δD

. (2.77)

Thus the 2PI effective potential yields a set of self-consistent equations for the self-energy, which we refer
to as the gap equations. By solving these gap equations, we can in principle find the dressed propagator to
all orders in perturbation theory. In practice, however, these depend on an infinite number of increasingly
complex 2PI diagrams. A number of different approximation schemes exist which incorporate a subset
of such 2PI diagrams. We will be concerned with two such approximation schemes in our treatment
of the linear sigma model, namely the large-N approximation and the Hartree-approximation. These
approximations include some or all of the double-bubble diagrams illustrated in Fig 2.6, and offer a
tractable set of gap equations and the opportunity to incorporate a large number of corrective terms
to the self-energy of the fields. They are, however, incomplete descriptions of the model, and as such
do not possess all the symmetries and characteristics of the complete model. For instance, the Hartree
approximation is known to violate Goldstone’s theorem, giving mass to fields which are massless in
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the exact results [55]. However, attempts have been made to rectify this by studying various modified
versions of the Hartree approximations, notably by Ivanov et al. [56, 57], Nemoto et al. [58], and Roh and
Matsui [59].

2.8 Renormalisation
The procedure of renormalisation is a systematic way to remove divergences arising in perturbative
expansions. A good introduction to the subject can be found in Ref. [60]. Historically renormalisation
was born when Hans Bethe calculated the Lamb shift of the 2p state of hydrogen in 1947 [61]. It was
believed at the time that the shift – which was not predicted by Dirac theory – was due to the electron
interacting with its own electric field. However, calculations of this self-interaction always turned up a
linearly divergent integral. The spirit of renormalisation is nicely summarised in Bethe’s 1947 paper.

It is possible to identify the most strongly (linearly) divergent term in the level shift with an
electromagnetic mass effect which must exist for a bound as well as for a free electron. This
effect should properly be regarded as already included in the observed mass of the electron,
and we must therefore subtract from the theoretical expression, the corresponding expression
for a free electron of the same average kinetic energy.

In other words the divergent term is part of a physical observable (in this case the mass of the electron),
which is known to be finite. Hence the observed divergence must be cancelled by some other term, leading
to a finite, observed physical mass. Bethe therefore subtracted the same term calculated for a free electron
to obtain a finite correction and the procedure of renormalisation was born1.

Renormalisation is thus a systematic way of removing divergences from quantum field theory, by
comparing the physical observables with experiment. The divergences are viewed as being due to the fact
that the perturbative expansions usually made in quantum field theory are around large, non-physical
quantities. The bare mass of a particle is not directly observable, and similarly the coupling constant is
only measured with all its radiative corrections included. Therefore, if we encounter divergent terms in
the perturbative expansion this is due to our series expanding around a non-physical quantity, and this
quantity must be corrected to account for the divergence.

The procedure of renormalisation is a series of steps to systematically remove divergences by introducing
counterterms in the perturbation parameters. The algorithm is as follows

• Introduce counterterms: if g is a perturbation parameter, let g → g + δg, where δg is a correction,
typically of order g2.

• Regularise the divergence: find some method by which you might make sense of the divergence I by
modifying it I → I(Λ), such that I becomes finite except in some limit, typically Λ→∞ in which
you recover the original divergence.

• Adjust the counterterm δg such that the perturbation expansion matches some observable. The
result is a scale-dependent, but finite expression.

• If necessary, repeat the procedure to higher order.

The choice of method of regularisation is a free one, and how exactly divergences are parametrised
vary greatly. However, all methods of regularisation must yield the same results in the limit in which we
recover the original divergence. Perhaps the simplest method of regularisation is cutoff regularisation, in
which an infinite divergent integral is converted to a finite one simply by introducing a finite integration
limit. For instance we might define

I = ∫
∞

0
dxf(x) (2.78)

I(Λ) = ∫
Λ

0
dxf(x) (2.79)

1This was not the only divergence, however. After removing the linear term, there remained a logarithmic divergence
which needed to be treated by the introduction of a renormalisation scale Λ, which we will discuss shortly.
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This works if the integral is divergent for large x, which we refer to as ultraviolet (UV) divergence.
Conversely, a divergence at small x is referred to as an infrared (IR) divergence. Even if f(x) diverges
for x →∞, I(Λ) will be finite for all finite Λ if the only divergence is a UV divergence. This mode of
regularisation is simple and illustrative of the general idea of regularisation, but we will not be utilising it
in this thesis. Instead we will use dimensional regularisation, a widely used regularisation scheme which
preserves Lorentz- and gauge symmetries [60, 62]. The scheme was initially proposed by ’t Hooft and
Veltman [63], and is based on the following idea. We perform all calculations in d = n + 2ε dimensions
where n is an integer and ε is a small parameter – thus making an analytical continuation to non-integer
dimensions – the divergences then appear as poles when ε→ 0, and we may remove the divergences before
taking said limit. The concept of performing integration in a general number of dimensions involves the
use of some unusual identities. As an example, consider the general integral

I(∆, n,m) = ∫
ddp

(2π)d
∣p∣n

(p2 +∆)m
. (2.80)

The integrand is rotationally invariant, so we transform to polar coordinates

I(∆, n,m) = 1
(2π)d ∫

dΩd ∫
∞

0
dp

pn+d−1

(p2 +∆)m
(2.81)

We will need to use the Gamma and Beta functions to evaluate these integrals, namely

Γ(z) = ∫
∞

0
dttz−1e−t, (2.82)

B(x, y) = Γ(x)Γ(y)
Γ(x + y)

= ∫
∞

0
dt

tx−1

(1 + t)x+y
. (2.83)

We find the angular integral by using the following trick

(
√
π)d = (∫

∞

−∞
dxe−x

2
)
d

= ∫ ddxe−∑
d
i=1 x

2
i

= ∫ dΩd ∫
∞

0
dxxd−1e−x

2
= ∫ dΩd ∫

∞

0
dx2 1

2
x
d
2−1e−x

2
. (2.84)

=
Γ(d2)

2 ∫ dΩd.

And thus

Ωd ≡ ∫ dΩd =
2π d2
Γ(d2)

. (2.85)

The second integral is carried out by the substitution u = p2

∆

∫
∞

0
dp

pn+d−1

(p2 +∆)m
= ∆n+d

2 −m

2 ∫
∞

0

u
n+d

2 −1

(u + 1)m

= ∆n+d
2 −m

2
B(n+d2 ,m − n+d

2 ) = ∆n+d
2 −m

2
Γ(n+d2 )Γ(m − n+d

2 )
Γ(m)

(2.86)

Thus our original integral becomes

I(∆, n,m) = ∆n+d
2 −m

(4π) d2
Γ(n+d2 )Γ(m − n+d

2 )
Γ(d2)Γ(m)

. (2.87)

Two cases of particular interest are

I(∆,0,m) = ∫
ddp

(2π)d
1

(p2 +∆)m
= ∆ d

2−m

(4π) d2
Γ(m − d

2)
Γ(m)

. (2.88)

I(∆,2,m) = ∫
ddp

(2π)d
p2

(p2 +∆)m
= ∆ d

2−m+1

(4π) d2
d

2
Γ(m − 1 − d

2)
Γ(m)

. (2.89)

29



For instance, consider the sum-integral

⨋
1

ω2
n + p2 +m2 . (2.90)

We have already evaluated the Matsubara sum in Sec. 2.5, what remains is the integral

(Λ2eγ

4π
)
ε

∫
ddp

(2π)d
1√

p2 +m2
(1

2
+ 1
e
√
p2+m2/T − 1

) . (2.91)

The last term in the brackets is exponentially suppressed and hence convergent at high p, but the first
term is quadratically divergent for d = 3. We can calculate the first term using Eq. (2.88) with m = 1

2

1
2
(Λ2eγ

4π
)
ε

∫
ddp

(2π)d
1√

p2 +m2
= (Λ2eγ

m2 )
ε
m2

16π 3
2

Γ(ε − 1)
Γ( 1

2)
(2.92)

We now insert the known value Γ( 1
2) =

√
π and use the series expansion Γ(ε − 1) = − 1

ε
− 1 + γ +O(ε) to

write

1
2
(Λ2eγ

4π
)
ε

∫
ddp

(2π)d
1√

p2 +m2
= − m2

(4π)2 ( Λ2

m2 )
ε

[1
ε
+ 1 +O(ε)] . (2.93)

By Taylor expanding ( Λ2

m2 )
ε

around ε = 0, we obtain

− m2

(4π)2 [1
ε
+ ln( Λ2

m2 ) + 1 +O(ε)] . (2.94)

Peculiarly, the divergence that remains is logarithmic. This is a general property of dimensional
regularization: power divergences are automatically regularised away, and what remains is a logarithmic
divergence in ε. The above expansion allows us to add a divergent term m2

(4π)2ε
to the regularised integral,

thereby renormalising it. We will use this integral later when renormalising the large-N approximation in
Chapter 3.4.
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Chapter 3

The linear sigma model

Along with effective models such as the Nambu-Jona-Lassinio (NJL) [64–66] model and chiral perturbation
theory [6, 7, 67], the linear sigma model has garnered a lot of attention in recent years as an effective
theory for studying QCD [43,51–53,58,59,66,68–72]. The literature on the linear sigma model is vast,
and goes back to the work of Gell-Mann and Levy [73] in 1960. The relative simplicity of the model,
along with its applicability to the study of spontaneous symmetry breaking - as we have already seen an
example of in the chapter on Goldstones’ theorem (1.1.3) - makes it well-suited for the study of phase
transitions. For this reason, the linear sigma model has been applied to the study of pion condensation
and chiral symmetry breaking, as well as kaon condensation [52, 53, 74]. The latter two condensates
are relevant to the study of colour-flavour locking at high baryon density, whereas pion condensates are
useful for study of the normal quark matter phase discussed in Sec. 1.2.5, as well as for chiral symmetry
breaking at low baryon density.

With regards to chiral symmetry breaking, a major hindrance in studying the chiral phase transition
at finite baryon density is posed by the fact that at nonzero baryon densities, the Euclidean path-integral
is not positive definite [6,45]. This lack of positivity makes the treatment of QCD at finite baryon density
untractable by lattice gauge theories. However, the introduction of an isospin chemical potential µI does
not violate the aforementioned positivity, and is therefore accessible both to lattice QCD and various
effective field theories. In this manner, QCD at zero baryon chemical potential and finite isospin chemical
potential offers us an opportunity to study the validity of various approximate analytical calculations.

The isospin chemical potential introduces a nonzero electric charge by inducing a statistical preference
for either up or down quarks. Expressed in terms of up and down quark number densities (nu and nd,
respectively), the baryon number density is nB = 1

3(nu + nd), and the isospin density is nI = nd − nu.
Thus the isospin chemical potential introduces another axis to the phase diagram of QCD, and allows the
study of electrically charged matter in the context of QCD. We will therefore study an idealised model in
which µB = 0 for varying temperatures and isospin chemical potential.

Fig. 3.1 shows our current understanding of this phase-diagram. At low isospin chemical potential
and temperature, we have a chiral condensate. Due to the explicit chiral symmetry breaking imposed by
the nonzero quark masses, the chiral condensate never fully evaporates, but rather crosses over to an
approximately deconfined phase for high T . It is possible that for sufficiently high µI , this transition
ceases to be a cross-over [75]. Increasing the isospin chemical potential to a critical value of µc = mπ

allows the excitation of the pion mode, and we obtain a Bose-Einstein condensate of pions [6, 7]. The
phase transition between a chiral condensate and a pion condensate is second order in the pion condensate,
with the global minimum of the effective potential rotating in the direction of the pion mode. In the
nonlinear sigma model, this crossover is a simple rotation of the condensate, however at next-to-leading
order calculations the transition is both a rotation and slight rescaling of the condensates [75]. The
deconfinement transition and the pion condensate transition meet at a tricritical point marked by a dot
in Fig. 3.1, beyond which the pion condensate dominates. In this region, the deconfinement transition
and the evaporation of the pion condensate appear to coincide. Recent studies in lattice QCD indicate
that this high-density melting of the pion condensate might be first order [75], whereas mean-field studies
in various models indicate a second-order transition [6, 7, 76].

Since we will restrict ourselves to pion condensation, we are only considering bound states of up
and down quarks; two-flavour QCD. For higher densities, the strange quark may also participate in
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Figure 3.1: Sketch of the phase diagram of QCD at finite isospin chemical potential and µb = 0

condensation, forming a kaon condensate. This can be studied by adding a third chemical potential µs,
which has been done – among others – in the NJL model [64]. The study of kaon condensation is a key
part of the study of colour-flavour-locking.

The linear sigma model describes the behaviour of N bosonic fields through the Lagrangian of an
O(N)-symmetric φ4-theory. In the case of pions, we recall from the Introduction that pions are the
Goldstone bosons of the spontaneous symmetry breaking of the SU(2)L ×SU(2)R chiral symmetry down
to an SU(2)I . We exploit that SU(2) × SU(2) is locally isomorphic to O(4), and that SU(2) ≡ O(3) to
describe the dynamics of the up and down quark in terms of four bound states: the pions and the sigma
meson [77]. The Euclidean Lagrangian density is

L = 1
2
(∂µφi)(∂µφi) +

1
2
m2(φiφi) +

λ

4N
(φiφi)2 −Hφ1. (3.1)

In the above Lagrangian density, φi describes N scalar fields. H breaks the O(N) symmetry explicitly,
ensuring that all fields obtain a mass, rather than producing N −1 massless Goldstone bosons. In addition,
in order to allow for a chiral condensate in the ground state, m2 is negative, producing a Mexican
hat-shape akin to what we saw in the chapter on Goldstone’s theorem (1.1.3). We should expect to
recover these massless Goldstone bosons in the limit H → 0, which we refer to as the chiral limit.

The massive particle of the theory is called the sigma meson, its mass is believed to be in the range
400 − 1200 MeV and its main decay mode is σ → ππ. The interpretation of the sigma field is somewhat
uncertain. It is a resonance observed in the spectrum of the pions, and has has been taken to be the
s-wave interaction of two pions [47], however Lin and Serot have argued that its mass should be larger
than 1GeV [78], which would rule out this possibility.

Renormalisation of the linear sigma model at finite temperature is nontrivial, as a näıve perturbative
expansion in the coupling constant becomes unstable at high temperatures [79, 80]. For this reason,
several methods have been applied which involve the resummation of some class of diagrams to all orders
in perturbation theory, including the aforementioned 2PI effective potential of Cornwall et.al. [43, 50–54],
optimised perturbation theory [80] and screened perturbation theory [81]. Such techniques provide more
reliable solutions in the high-T limit, but tend to complicate renormalisation. In particular, one is not
guaranteed order-by-order renormaliseability or divergences independent of temperature and chemical
potential. Thus, the renormaliseability of the linear sigma model has been the subject of several studies,
see for instance [50, 82]. We will be utilising the renormalisation scheme proposed by Fejos et.al. [50],
which involves all-order renormalisation through the separate handling of divergences and subdivergences.
The method is equivalent to iterative renormalisation, but offers a simple one-step procedure to determine
the end result of summing counterterms of all orders in the coupling.

The layout of this chapter is as follows: first we will introduce a chemical potential and derive the
2PI effective potential for the model. Following this, we will study two simplified versions of the full
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O(4) linear sigma model: the large-N approximation and the O(2) linear sigma model in the Hartree
approximation. In the large-N approximation, the particle masses receive thermal loop corrections in
which the neutral pions propagate in the self-energy loops. The O(2) model enables us to study in detail
loop corrections with the charged pions propagating in the loops. Finally, we will combine these two
models into an O(N) model in the chiral limit Hartree approximation and perform some numerics to
study pion condensation at low temperatures and finite isospin chemical potential.

These approximations have already been studied in the case of µI = 0 by Lenaghan and Rischke [51],
we will extend these studies to finite isospin chemical potential. In addition, the large-N approximation
has been studied at finite isospin chemical potential in the 2PI formalism by Andersen [53], and the
Hartree approximation at finite isospin chemical potential was considered by Mao et al. [43] without
renormalisation. These studies, along with results from other effective theories and lattice calculations
will be used for comparison with the results found for the Hartree approximation.

3.1 Introducing a chemical potential
An O(N)-symmetric model is invariant under rotations among its fields. There are N(N −1)/2 generators
of the group O(N), and to each there corresponds a conserved Noether current. However, only N/2
generators of the group may be chosen such that they commute, we can therefore at most introduce N

2
currents in our model. One way of choosing these generators is to choose rotations between neighbouring
fields, i.e.

(φ2i−1
φ2i

)→ ( cos θ sin θ
− sin θ cos θ) ⋅ (

φ2i−1
φ2i

) (3.2)

This is equivalent to a phase transformation with complex fields Φi = 1√
2(φ2i−1 + iφ2i), as studied in the

Sec. 1.1.1 on U(1) symmetry. It is in this manner that we introduce a chemical potential which couples
to isospin. Recall that the U(1) gauge symmetry introduces an electrical charge to the fields Φ and Φ†.
By introducing a chemical potential which couples to the Noether current associated with this electrical
charge, we thus induce a statistical preference for one of the charged pions over the other. Since the pions
form an isospin triplet according to their charge, the chemical potential induces a statistical preference
for a certain isospin. Noether’s theorem gives us the conserved currents

jµk ≡ ∂L
∂(∂µφi)

δφi = φ2k(∂µφ2k−1) − φ2k−1(∂µφ2k). (3.3)

We may introduce a chemical potential associated with a current like this, we do so by modifying the
Hamiltonian density

H →H − µj0
k. (3.4)

We could in principle introduce several chemical potentials at once, but we will restrict ourselves to
introducing one. The way we have chosen our O(N) generators is such that the introduction of several
chemical potentials would affect separate pairs of fields, and thus our Lagrangian with one chemical
potential can easily be generalised to as much as N

2 separate chemical potentials. Should we wish for
some different combination of these potentials we may utilise the original O(N) symmetry and rotate
the fields to some more desired configuration. In order to obtain the Hamiltonian density, we perform a
Legendre transform of the Lagrangian.

H = πi(∂0φi) −L, (3.5)

πi is the canonical momentum, defined by

πi ≡
∂L

∂(∂0φi)
= ∂0φi. (3.6)

We obtain the Hamiltonian and subtract the density term in order to introduce the chemical potential,
this yields

H = 1
2
πiπi −

1
2
(∇φi) ⋅ (∇φi) −

1
2
m2(φiφi) −

λ

4N
(φiφi)2 − µ(φ2k−1π2k − φ2kπ2k−1). (3.7)
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We can now find the new canonical momenta from Hamilton’s equation

∂0φi =
∂H
∂πi

. (3.8)

This yields

π2k−1 = ∂0φ2k−1 − µφ2k, (3.9)
π2k = ∂0φ2k + µφ2k−1, (3.10)
πi = ∂0φi, if i ≠ (2k − 1),2k. (3.11)

Performing the inverse Legendre transform, we obtain the Lagrangian

L = 1
2
(∂µφi)(∂µφi) +

1
2
m2(φiφi) −

1
2
µ2(φ2

2k−1 + φ2
2k)

+ λ

4N
(φiφi)2 −Hφ1 + µ(φ2k−1∂0φ2k − φ2k∂0φ2k−1). (3.12)

The introduction of a chemical potential has added new terms to the Lagrangian which, upon inspection
could be obtained by the transformations

∂0φ2k−1 → (∂0 ± µ)φ2k−1, (3.13)
∂0φ2k → (∂0 ± µ)φ2k. (3.14)

The substitution above is made such that the product (∂µφi)(∂µφi) contains both one term where µ is
added and one where it is subtracted. The significance of this transformation is somewhat clearer in
terms of a complex scalar field Φ = 1√

2(φ2k−1 + iφ2k), where it is simply

∂0Φ→ (∂0 + iµ)Φ (3.15)
∂0Φ† → (∂0 − iµ)Φ† (3.16)

(3.17)

Recalling our discussion of gauge symmetries and gauge fields in Sec. 1.1.2, we thus see that we may
interpret the chemical potential as a constant gauge field Aµ = (µ, 0⃗), inducing a statistical preference for
a certain charge. For our O(4) model, we introduce the chemical potential corresponding to the conserved
current given by

jµ = φ3∂
µφ2 − φ2∂

µφ3. (3.18)

In terms of a complex field Φ = 1√
2(φ2 + iφ3), the Noether current corresponds to the one found in the

chapter on U(1) symmetry (1.1.1), namely

jµ = i (Φ†(∂µΦ) − (∂µΦ)†Φ) . (3.19)

These fields couple to a gauge field as particles and antiparticles, as can be seen from Eq. (1.27). We
therefore identify the charged pions as

π± = φ2 ± iφ3√
2

. (3.20)

As promised, the recently introduced chemical potential therefore couples to the charge of the pions and
we label the isospin chemical potential µI .

3.2 Propagator and effective potential
The O(N) symmetry of the original Lagrangian is now broken explicitly in two ways. The term Hφ1,
present to ensure physical pion masses breaks down the O(N) symmetry to O(N − 1). Furthermore, the
introduction of a chemical potential has added several terms coupling to φ2 and φ3 in the Lagrangian,
isolating them in their own internal O(2)-symmetry. What remains is an O(2) ×O(N − 3) symmetry,
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(a) Same-particle four point vertex (b) Mixed four-point vertex

φ0σ or ρ0π1

(c) Three-point vertex, the incom-
ing particle must be a φ1 or φ2

Figure 3.2: The primitive interaction vertices after symmetry breaking. The different types of lines
indicate that different particles are allowed for these vertices. The single leg in the three-point vertex
must be a φ1 or φ2

which in the case of N = 4 is simply an O(2) symmetry. We therefore allow for the breaking of the O(N)
symmetry by introducing the classical, constant fields φ0 and ρ0. The global minimum of the potential
these fields will be subject to is governed by the symmetry-breaking terms in the Lagrangian. H and
µI serve to shift the global minimum in the directions of φ1 and the O(2)-invariant group of φ2 and φ3,
respectively. Thus we make the substitutions

φ1 → φ0 + φ1, (3.21)
φ2 → ρ0 + φ2. (3.22)

The field φ0 now represents the chiral condensate, which is present in the vacuum state at T = µI = 0, and
yields a nonzero mass for the σ particle in the vacuum. ρ0 is related to the symmetry breaking induced
by µI , and thus represents a Bose condensate of charged pions. What mixture of ρ0 and φ0 is present at
tree-level is thus decided by a tug-of-war between H and µ2

I , shifting the direction of the global minimum.
Furthermore, the presence of either condensate implies the breaking of chiral symmetry. We thus take ρ0
and φ0 to be order parameters of chiral symmetry breaking, and identify the field φ1 with the σ particle
and the fields φ4, φ5,⋯ with neutral pions.

The full Lagrangian is now

L = 1
2
(∂µφi)(∂µφi) +

1
2
m2
iφ

2
i +

2λ
N
ρ0φ0φ1φ2

+ λ

4N
(φiφi)2 −Hφ1 + µI(φ3∂0φ2 − φ2∂0φ3) (3.23)

+Lc +LI +LT .

Lc ≡
1
2
m2(φ2

0 + ρ2
0) −

1
2
µ2
Iρ

2
0 +

λ

4N
(φ2

0 + ρ2
0)2 −Hφ0 (3.24)

LI ≡
λ

N
φ0φ1(φiφi) +

λ

N
ρφ2(φiφi) (3.25)

LT ≡ (m2 + λ

N
φ2

0)φ0φ1 + (m2 + λ

N
ρ2

0)ρ0φ2 (3.26)

We have introduced new mass terms mi in order to simplify notation, they are

m2
1 = m2 + 3λ

N
φ2

0 +
λ

N
ρ2

0, (3.27)

m2
2 = −µ2

I +m2 + λ

N
φ2

0 +
3λ
N
ρ2

0, (3.28)

m2
3 = −µ2

I +m2 + λ

N
φ2

0 +
λ

N
ρ2

0, (3.29)

m2
4 = m2 + λ

N
φ2

0 +
λ

N
ρ2

0. (3.30)
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By introducing the symmetry breaking terms, we have obtained the classical Lagrangian, Lc, which
provides the classical action I[ρ] in the 2PI effective potential. In addition, we have obtained two new
primitive interactions – codified in LI – from the cross terms between the newly introduced classical
fields and their corresponding quantum fluctuations. All the primitive interaction vertices are illustrated
in Fig. 3.2. We have obtained tadpoles, one-point interaction functions as given by LT . When evaluating
φ0 and ρ0 at the classical minimum, the tadpoles vanish, as can easily be seen at the tree level. Thus we
take the vanishing of these terms as a resummation condition. The terms quadratic in the fields yield the
inverse tree-level Euclidean propagator D−1

0 (ωn, p)

D−1
0 =

⎛
⎜⎜⎜
⎝

ω2
n + p2 +m2

1
2λ
N
φ0ρ0 0 0

2λ
N
φ0ρ0 ω2

n + p2 +m2
2 −2µIωn 0

0 2µIωn ω2
n + p2 +m2

3 0
0 0 0 ω2

n + p2 +m2
4

⎞
⎟⎟⎟
⎠
, (3.31)

where ωn = 2πnT is the nth Matsubara frequency. The 2PI effective potential can now be extracted from
the Lagrangian, following the steps in Chapter 2.7 we find

Γ[φ0, ρ0,D] = 1
2
m2(φ2

0 + ρ2
0) +

λ

4N
(φ2

0 + ρ2
0)2

−1
2
µ2
Iρ

2
0 −Hφ0 +

1
2

Tr lnD−1 (3.32)

+1
2

TrD−1
0 D +Φ[D].

As before, Φ[D] is the sum of all 2PI vacuum diagrams, and we will later restrict ourselves to approxima-
tions of Φ[D] by including only a selection of these. The stationarity conditions from Eqs. (2.74) and
(2.75) become

δΓ[φ0, ρ0,D]
δφ0

= 0, (3.33)

δΓ[φ0, ρ0,D]
δρ0

= 0, (3.34)

δΓ[φ0, ρ0,D]
δD

= 0. (3.35)

The thermal behaviour of the linear sigma model is incorporated through calculating self-energies Π[D]
emerging from the above stationarity conditions Φ[D]. Once more, using that Π[D] ≡D−1 −D−1

0 , it is
desirable to rewrite Eq. (3.35) as

Π[D] = 2δΦ[D]
δD

. (3.36)

Thus the self-energy can be found by cutting one propagator line in Φ[D], this yields an efficient way of
constructing the mass corrections diagrammatically without taking a detour via functional differentiation.
The upshot of the stationarity condition for D is thus a set of self-consistent gap equations which can be
solved for the dressed propagator.

3.3 Tree-level masses
Before taking loop corrections into account in our calculations, we can evaluate the tree-level masses.
Upon differentiation, the stationarity conditions of Eqs. (3.33) and (3.34) become

φ0 [m2 + λ

N
(φ2

0 + ρ2
0)] = H, (3.37)

ρ0 [m2 + λ

N
(φ2

0 + ρ2
0) − µ2

I] = 0. (3.38)

For large enough µI , the global minimum will lie in the direction of φ2, if we therefore assume ρ0 ≠ 0,
the expression within the bracket of Eq. (3.38) must be zero. Identifying this expression as m2

3, we thus
obtain the condition

m2
3 = 0. (3.39)
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Applied to the other mass modes, we similarly obtain

m2
1 = 2λ

N
φ2

0 + µ2
I , (3.40)

m2
2 = 2λ

N
ρ2

0. (3.41)

Inserting (3.39) into (3.37), we see that

φ0 = H

µ2
I

, (3.42)

ρ2
0 = N

λ
(µ2
I −m2) − H

2

µ4
I

. (3.43)

The charged pions are linear combinations of φ2 and φ3. To find their masses, we utilise the dispersion
relations εi. We find the dispersion relation by analytical continuation ωn → iω, and then solving the
equation Det[D−1

0 (ω, p)] = 0 with respect to ω. The roots of this equation are the dispersion relations
εi(p), yielding the quasiparticle masses mip at p = 0 through the identity

εi(p) ≡
√
p2 +m2

ip. (3.44)

Doing this we find the quasiparticle masses

m1p,2p =

¿
ÁÁÁÀ7

2
µ2
I −m2 ± 1

2

¿
ÁÁÀ(2m2 − 5µ2

I)2 − 24 λ
N

H2

µ2
I

, (3.45)

m3p = 0, (3.46)
m4p = µI . (3.47)

The π+ is thus a massless Goldstone mode, as we expect since ρ0 breaks the O(2) symmetry of φ2 and
φ3. As a check, for H = µI = 0, the masses become

m2
1p = −2m2, (3.48)

m2
2p = 0, (3.49)

m2
3p = 0, (3.50)

m2
4p = 0. (3.51)

In this limit we have a three-fold mass degeneracy, as we found when discussing Goldstone’s theorem in
Sec. (1.1.3).

3.4 Large-N approximation
Whilst not at all valid for the case of pions – where N = 4 – it is illustrative to study the case where
N ≫ 1. This mode of approximation, a series expansion in powers of 1

N
has the virtue of retaining the

symmetries associated with the O(N) group for each order in the perturbation theory, thus preserving
Goldstone’s theorem. We will limit our discussion to leading order, yielding a relatively simple derivation
of the self-energy associated with the diagonal elements of the inverse propagator.

For large N , we have N − 3 diagonal terms in the inverse propagator with mass m2
4. These terms

dominate the self-energy of all the particles in the limit of large N . To leading order in N , the dominating
contribution to the self-energy will thus be N diagrams like those in Fig. 3.3. The dressed propagator of
the particles propagating in the loop of Fig. 3.3 can be written as

D−1(ωn, p) = P 2 +m2
4 +Π[D], (3.52)

where Π[D] is the self energy of the same particle. Since this loop correction is independent of external
momentum, it must be a constant. We can therefore write the inverse propagator as

D−1(ωn, p) = P 2 +M2, (3.53)
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π0

Figure 3.3: Leading-order contribution to the sigma particle self-energy in the large-N approximation.
The particle propagating in the loop is the π0.

where M is a constant yet to be determined. The inverse propagator is diagonal to this order in 1
N

, and
so inversion is trivial, we find a diagonal self-energy matrix

Π[D]ii = λ⨋
Q

1
Q2 +M2 . (3.54)

In the above, no summation is implied over i. Using the relation M2 =m2
4 +Π[D]44, we thus obtain a

gap equation for M
M2 =m2

4 + λ⨋
Q

1
Q2 +M2 . (3.55)

We have already calculated the Matsubara sum in Chapter 2.5, and regularised the remaining integral in
Chapter 2.8. Further to the regularisation, what remains is fixing the counterterms necessary to remove
divergences to all orders, see Appendix A for details on how this is carried out. We end up making the
substitutions

m2 → m2

1 − λ
16π2ε

, (3.56)

λ→ λ

1 − λ
16π2ε

. (3.57)

What remains is the renormalised gap equation

M2 =m2 + λINf(M2)

=m2 + λ

2N
(φ2

0 + ρ2
0) −

λM2

16π2 (1 + ln Λ2

M2 ) (3.58)

+ λ∫
d3q

(2π)3
1√

q2 +M2

1
e
√
q2+M2/T − 1

.

The integral INf(M2) is defined in Eq. (A.10). The self-energy matrix Π[D] is now a diagonal matrix
with entries

Π[D]ii = λINf(M2). (3.59)

The stationarity conditions are altered by the inclusion of loop corrections. By using the identity
D =D−1

0 +Π[D], the term 1
2Tr [D−1

0 D] in the effective potential can be written
1
2

Tr [D−1
0 D] = 1

2
Tr [1] + 1

2
Tr [D−1

0 Π[D]]. (3.60)

The masses in D0 depend on φ0 and ρ0 and thus the self-energy matrix Π[D] enter the stationarity
conditions for the condensates

φ0 [m2 + λ

N
(φ2

0 + ρ2
0) + λΠ[D]11] = φ0M

2 =H, (3.61)

ρ0 [m2 + λ

N
(φ2

0 + ρ2
0) +Π[D]22 − µ2

I] = ρ0(M2 − µ2
I) = 0. (3.62)
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The stationarity conditions yield two different sets of solutions, corresponding to different phases. If
ρ0 ≠ 0, this implies

M2 = µ2
I (3.63)

φ0 =
H

µ2
I

(3.64)

ρ0 =

¿
ÁÁÀN

λ
(µ2
I −m2) − H

2

µ4
I

−NINf(µ2
I) (3.65)

Since the fields φi, ρ0 and φ0 are real fields, this solution is only consistent as long as Eq. (3.65) yields
a real ρ0. If the expression within the square root becomes negative, we are forced to conclude that
ρ0 = 0. In that case, we are obliged to solve the gap equation to find M and φ0. We may now once again
evaluate the quasiparticle masses as we did at tree level in Eqs. (3.45), (3.46), and (3.47). However, the
inverse dressed propagator is given by D−1 =D−1

0 +Π[D]. Since we know the structure of the self-energy
matrix, we see that for every instance of m2 in the tree-level propagator we now find an instance of
m2 + λINf(M2) in the dressed propagator. We can therefore immediately write the new quasiparticle
masses in the phase ρ0 ≠ 0 as

M1p,2p =

¿
ÁÁÁÀ7

2
µ2
I −m2 − λINf(M2) ± 1

2

¿
ÁÁÀ(2m2 + 2λINf(M2) − 5µ2

I)2 − 24 λ
N

H2

µ2
I

, (3.66)

M3p = 0, (3.67)
M4p = µI . (3.68)

If ρ0 = 0, the off-diagonal terms λ
N
φ0ρ0 in the dressed propagator are zero and hence there is no mixing

between the modes of M1 and M2. In this limit, we find the quasiparticle masses

M1p =
√
M2 + 2λ

N

H2

M4 , (3.69)

M2p,3p =M ± µI , (3.70)
M4p =M. (3.71)

Note that whereas M3p was massless when ρ0 ≠ 0, all particles are now massive. The reason for this is
Goldstone’s theorem, which provides that when the residual O(2) symmetry is spontaneously broken
by a pion condensate, the π+ becomes a massless Goldstone mode. When ρ0 = 0 the O(2) symmetry is
restored and thus all the particles become massive, and we have a three-fold mass degeneracy in the pion
modes.

Before proceeding, we may at this point determine the critical potential µc, defined as the minimum
isospin chemical potential for which there is a nonzero pion condensate in the equilibrium state. To see
this, observe that at µI = 0, the stationarity condition for ρ in Eq. (3.62) reduces to the requirement

ρ0M
2 = 0. (3.72)

Thus, for M ≠ 0 we conclude that ρ0 = 0. Since µI = 0, M can only be zero when H = 0, namely in the
chiral limit. At the physical point we choose H such that M = mπ in the vacuum. Next we observe
that INf(M2) increases monotonically with T , Eq. (3.65) implies that ρ0 decreases monotonically with
increasing T . This gives rise to a second order phase transition at some critical temperature Tc(µI),
determined by the equation

N

λ
(µ2
I −m2) − H

2

µ4
I

−NINf(µ2
I , Tc) = 0. (3.73)

In addition to implying the condition for Tc, we conclude that µc is found at T = 0. Finally, we observe
that in the phase where ρ0 = 0, INf is independent of chemical potential. Thus the region of T = 0 and
µI < µc is governed by the same gap equation, and hence M = mπ in the entirety of this region. The
stationarity condition for ρ0 in this domain is then simply

ρ0(m2
π − µ2

I) = 0 (3.74)
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Nonzero ρ0 is therefore first allowed at µc =mπ. This is in accordance with theoretical predictions, and
stems from the fact that it first becomes energetically favourable to excite the pion condensate when µI
surpasses the minimum excitation quantum, mπ [6].

3.5 O(2) Model with chemical potential
In the preceding section we handled the renormalisation of the diagonal terms in the propagator. We now
turn our attention to the fields φ2 and φ3, the O(2) doublet connected to the isospin chemical potential.
To this end, we isolate this doublet in a simplified O(2) model and study its renormalisation. In this
model, we set H = 0, and introduce a chemical potential by coupling to the current jµ1 = φ2∂

µφ1 −φ1∂
µφ2.

Letting φ1 → φ0 + φ1, where φ0 is a classical field, we obtain the 2PI effective potential

Γ[φ0,D] = 1
2
(m2 − µ2

I)φ2
0 +

λ

8
φ4

0 +
1
2

Tr lnD−1 + 1
2

TrD−1
0 D +Φ[D], (3.75)

and the tree-level masses

m2
1 =m2 − µ2

I +
3λ
2
φ0, (3.76)

m2
2 =m2 − µ2

I +
λ

2
φ0. (3.77)

At tree-level, φ0 must satisfy the stationarity condition

φ0 [(m2 − µ2
I) +

λ

2
φ2

0] = 0. (3.78)

For µI >m2, the solution φ0 = 0 is a local maximum of the potential and so the lowest-energy solution to
the stationarity condition is

φ0 =
⎧⎪⎪⎨⎪⎪⎩

0 if m2 > µ2
I ,√

2(µ2
I
−m2)
λ

if m2 ≤ µ2
I .

(3.79)

We see that as µI increases, it drives the minimum of the effective potential away from the origin in
a continuous manner, transforming the shape of the potential from an increasing curve to a Mexican
hat-shape like the potential encountered in the section on Goldstone’s theorem, Sec. 1.1.3. This behaviour
starts when µ2

I =m2, changing the sign of the quadratic term in the effective potential. We recall from
our treatment of the large-N approximation that the onset of pion condensation was found to be at
µI =mπ at the physical point. Similarly we here see that when m2 > 0, the mass at µI = 0 is m2, and a
condensate forms when µ2

I > m2, indicating a density-driven phase transition. Fig. 3.4 illustrates this
µI -dependence. For φ0 = 0, the inverse tree-level propagator is

D−1
0 = (−ω

2 +m2 − µ2
I −2µiω

2iµiω −ω2 +m2 − µ2
I
) . (3.80)

From this we obtain the tree-level masses as we did in Sec. 3.3

m1 = m + µI , (3.81)
m2 = m − µI . (3.82)

For m ≤ µI , φ0 is nonzero, this gives the inverse tree-level propagator

D−1
0 = (−ω

2 − 2(m2 − µ2
I) −2iµIω

2iµIω −ω2 ) . (3.83)

This leads to the tree-level quasiparticle masses

m1 =
√

6µ2
I − 2m2, (3.84)

m2 = 0. (3.85)

Fig. 3.5 shows that φ0 is continuous, but has a discontinuous second derivative at µ2
I =m2. Thus, we

conclude that at tree level, we have a second order density-driven phase transition at this point. As we
saw with the large-N approximation, φ0 ≠ 0 breaks the O(2) symmetry of the charged pions, and thus
Goldstone’s theorem provides that m2

2 = 0.
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Figure 3.4: Plots of Γ[φ0] at tree level with λ = 4 for two different values of µI .
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Figure 3.5: Plot of mi and φ0 at tree level as a function of chemical potential, everything is in units of m,
and λ = 1.

41



(a) Double bubble. (b) Mixed double bubble.

Figure 3.6: Two diagrams contributing to Φ[D] in the Hartree approximation.

Figure 3.7: The setting-sun diagram, excluded from the Hartree approximation.

3.5.1 Hartree approximation
The Hartree approximation is defined by including all the double-bubble diagrams (Fig. 3.6) in Φ[D].
We thus include all diagrams from the large-N approximation, along with loop diagrams containing the
charged pions and the sigma meson. As was the case in the large-N approximation, these diagrams
have the virtue of being independent of external momenta, thus making the mass correction a constant.
However, while Goldstone’s theorem is fulfilled order-by-order in the 1

N
expansion [54], the Hartree

approximation may violate Goldstone’s theorem. This is due to the exclusion of some diagrams necessary
to fulfil the symmetry, such as the so-called setting sun diagram, illustrated in Fig. 3.7 [58,72,83]. Nemoto
et. al. have suggested that this violation is not a consequence of the effective potential, but rather by the
definition of the quasiparticle masses in a manner which breaks the O(N) symmetry [58], however we
will not be utilising their approach in this thesis.

Using the primitive four-point vertices to construct Φ[D], we arrive at

Φ[D] = λ
8
(δabδcd + δacδbd + δadδbc)DabDcd (3.86)

Each product of two Kronecker deltas in Eq. (3.86) correspond to an O(2) invariant. Like the O(4) case,
the self-energy loops are independent of external momentum, which means that the self-energies must be
constant. Thus we can write the inverse dressed propagator as

D−1(ωn, p) = (ω
2
n + p2 +m2

1 +Π11 −2µIωn +Π12
2µIωn +Π21 ω2

n + p2 +m2
2 +Π22

) . (3.87)

Πij is the sum of loop corrections to the inverse propagator, arising from cutting a propagator line in the
diagrams contributing to Φ[D], as prescribed by Eq. (3.36). The sigma meson corrections are illustrated
in Fig. 3.8. We invert (3.87) and obtain the dressed propagator

D(ωn, p) =
1

Det[D−1(ωn, p)]
(ω

2
n + p2 +m2

2 +Π22 2µIωn −Π12
−2µIωn −Π21 ω2

n + p2 +m2
1 +Π11

) , (3.88)
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λ
(a) Sigma particle propagating in the loop.

λ
3

(b) Pion propagating in the loop.

Figure 3.8: Loop corrections to the self-energy of the sigma particle derived from the double-bubble
diagrams in Fig. 3.6

The above determinant is

Det[D−1(ωn, p)] = (ω2
n + p2 +M2

1 )(ω2
n + p2 +M2

2 ) + (2µIωn −Π12)(2µIωn +Π21). (3.89)

We have introduced the notation

M2
i =m2

i +Πii, (3.90)

with no summation over the index i in the self-energy term. Mi is thus the corrected mass of mode i.
Turning now to Π12 and Π21, we get contributions from two terms in Φ[D], namely DabDab and DabDba.
Thus we only get contributions to these self-energies from the off-diagonal terms in the inverse propagator
of Eq. (3.87). This leads to the gap equations

Π12 = −
λ

4 ⨋
Π12 +Π21

Det[D−1(ωn, p)]
, (3.91)

Π21 = −
λ

4 ⨋
Π21 +Π12

Det[D−1(ωn, p)]
. (3.92)

The equations are symmetric, since they get equal contributions from the two diagrams in Fig. 3.6. This
should be expected, since the two diagrams are essentially equivalent, the choice of direction in the loop is
arbitrary. More fundamentally, this stems from the O(2) symmetry of the Lagrangian. We conclude that

Π21 = Π12. (3.93)

Isolating the terms proportional to Π12 in Eq. (3.91) yields

Π12 (1 + λ
2 ⨋

1
Det[D−1(ωn, p)]

) = 0 (3.94)

The expression in the brackets can not generally be expected to be zero, especially not as it depends on
temperature and isospin chemical potential. We conclude that

Π12 = Π21 = 0. (3.95)

This can be intuitively understood from considering the perturbative expansion in λ. In order to simplify
the notation somewhat, let ε0(ωn, p) be the determinant of the dressed propagator evaluated at Π12 = 0.
If we Taylor expand the right-hand side of Eq. (3.91) around Π12 = Π21 = 0, we obtain

Π12 = −
λ

2
Π12 ⨋

1
ε0(ωn, p)

(1 + Π2
12

ε0(ωn, p)
+ Π4

12
ε0(ωn, p)2 +⋯) . (3.96)

We now expand Π12 in powers of λ

Π12 = Π(1)
12 +Π(2)

12 +Π(3)
12 +⋯. (3.97)

To lowest order in λ, we obtain the following equation

Π(1)
12 = 0. (3.98)
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Figure 3.9: Feynman diagrams contributing to the lowest-order off-diagonal self-energies.

Π
(1)
12

Figure 3.10: Feynman diagram corresponding to Eq. (3.99).

We might also derive the above equation directly by applying the Feynman rules to the diagrams in Fig.
3.9. To second order in λ, we obtain the equation

Π(2)
12 = −λ

2
Π(1)

12 ⨋
1

ε0(ωn, p)
= 0. (3.99)

Π(2)
12 is proportional to Π(1)

12 , and therefore zero. Any subsequent iteration to higher order would also be
proportional to the lower-order corrections, again leading to the conclusion that Π12 = 0. If we examine
this diagrammatically, Eq. (3.99) corresponds to the diagram in Fig. 3.10. If we insert for Π(1)

12 in this
diagram, it becomes a double loop, and since the outermost loop is zero, then so is the inner loop. This
continues to all orders, since the primitive one-loop diagram is zero, and all higher-order diagrams depend
on this one-loop diagram, we conclude that Π12 is zero to all orders in λ.

The diagonal self-energy terms are generally nonzero. We recall the O(2) invariant combinations of
Kronecker deltas in Eq.(3.86) Only the first of these Kronecker delta terms give rise to diagrams like
those of Fig. 3.8b, whereas all terms give rise to a diagram like that of Fig. 3.8a. We write Πii =M2

i −m2
i .

Eq. (3.36) then yields the following gap equations

M2
1 −m2

1 =
3λ
2 ⨋

ω2
n + p2 +M2

2
4µ2ω2

n + (ω2
n + p2 +M2

1 )(ω2
n + p2 +M2

2 )

+ λ
2 ⨋

ω2
n + p2 +M2

1
4µ2ω2

n + (ω2
n + p2 +M2

1 )(ω2
n + p2 +M2

2 )
, (3.100)

M2
2 −m2

2 =
3λ
2 ⨋

ω2
n + p2 +M2

1
4µ2ω2

n + (ω2
n + p2 +M2

1 )(ω2
n + p2 +M2

2 )

+ λ
2 ⨋

ω2
n + p2 +M2

2
4µ2ω2

n + (ω2
n + p2 +M2

1 )(ω2
n + p2 +M2

2 )
. (3.101)

The gap equations require renormalisation, see Appendix B for details.
Once renormalisation has been carried out, we obtain the renormalised gap equations

M2
1 =m2

1 +
3λ
2
If(M2

1 ,M
2
2 ) +

λ

2
If(M2

2 ,M
2
1 ), (3.102)

M2
2 =m2

2 +
λ

2
If(M2

1 ,M
2
2 ) +

3λ
2
If(M2

2 ,M
2
1 ). (3.103)

The integral If(M2
i ,M

2
j ) is defined in Eq. (B.31). With the renormalisation of the O(2) gap equations and

our results from the large-N approximation, we may now renormalise the O(N) Hartree approximation
in the chiral limit. We will therefore not study the stationarity conditions of the O(2) model, but rather
proceed to the O(N) model.
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3.6 The O(N) Hartree approximation
The results from the O(2) model, combined with what we have discovered about the large-N approximation
can readily be used to study the O(N)-model under the Hartree approximation, provided that either φ0
or ρ0 is zero. To see this, we begin by studying the inverse propagator,

D−1 =

⎛
⎜⎜⎜⎜⎜
⎝

ω2
n + p2 +M2

1
2λ
N
φ0ρ0 +Π12 0 0 ⋯

2λ
N
φ0ρ0 +Π21 ω2

n + p2 +M2
2 −2µIωn +Π23 0 ⋯

0 2µIωn +Π32 ω2
n + p2 +M2

3 0 ⋯
0 0 0 ω2

n + p2 +M2
4 ⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

. (3.104)

As in the case of the O(2) model, Π23 = Π32 = 0. Following the same method, we derive the following
equation for Π12

Π12 = −
3λ
N
⨋

( 2λ
N
φ0ρ0 +Π12)(P 2 +M2

3 )
Det[D−1(P )]

(3.105)

If we assume φ0 = 0 or ρ0 = 0, we may rewrite this as

Π12 [1 + 3λ
N
⨋

P 2 +M2
3

Det[D−1(P )]
] = 0. (3.106)

Again, the term in the brackets is temperature dependent and generally nonzero, and we therefore
conclude that Π12 = Π21 = 0 if φ0 = 0 or ρ0 = 0. Under such conditions, D12 =D21 = 0, thus reducing the
inverse dressed propagator to diagonal elements and an O(2) block matrix like the one we inverted and
renormalised in the previous section. We will therefore study solutions to the gap equations where φ0 or
ρ0 is zero.

We know that at µI = 0, we may choose a solution where ρ0 = 0 from symmetry, and thus we may
attempt to reproduce the results of Lenaghan and Rischke [51] or Petropoulos [72] at µI = 0 as a way of
checking the correctness of our numerical results.

The solution φ0 = 0 matches what is found in the chiral limit of the large-N approximation and at
tree-level, along with findings from the NJL model [76]. This stems from the term − 1

2µ
2ρ2 at tree level,

which, when unhindered by H serves to make φ2 the direction the global minimum. We will therefore
attempt to find a minimum of the effective potential in the chiral limit of the Hartree approximation
by assuming that φ0 = 0. Since all off-diagonal self-energies are zero, we write Πi ≡ Πii to simplify the
notation. The stationarity conditions for φ0 and ρ0 in the chiral limit of the Hartree approximation are

φ0 [m2 + λ

N
(φ2

0 + ρ2
0) +Π1] = 0, (3.107)

ρ0 [m2 + λ

N
(φ2

0 + ρ2
0) − µ2

I +Π2] = 0. (3.108)

At T = µI = 0, the bracket in Eq. (3.108) is equal to M2
2 which is zero in the vacuum in the chiral

limit. Thus we are already at the critical chemical potential necessary to have a pion condensate and we
conclude that µc = 0. As we saw in the large-N approximation, we once more observe that the critical
chemical potential is equal to the pion mass in the vacuum. This is as expected, since H = µI = 0 yields
a rotationally symmetric Lagrangian, and thus a degenerate set of minima of the effective potential.
At φ0 = 0, the first derivative of the effective potential in the direction of φ0 is zero, as can be seen by
the stationarity condition. If a minimum of the effective potential is not in the direction of φ2, then
we expect that the second derivative of the effective potential should be negative in the direction of φ1.
Calulating this second derivative, we see that it is simply equal to M2

1 , as was mentioned in the section
on Goldstone’s theorem. We therefore see that unless we find a tachyonic sigma particle upon solving the
gap equations with φ0 = 0, it is reasonable to assume that the minimum of the effective potential is in the
φ2-direction.

It should be noted – however – that the stationarity conditions also allow for solutions where φ0 and
ρ0 are both nonzero, subtracting the brackets of (3.107) and (3.108) yields

Π2 −Π1 = µ2
I . (3.109)
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We note that this is true for µI = T = 0, since mπ = 0 assures that (3.108) is fulfilled. Increasing µI breaks
the rotational invariance of the effective potential, directly affecting the effective potential along with the
charged pion propagators. In particular, the limit of large µI is characterised by small φ0 even at the
physical point in the large-N approximation [53], the NJL-model [76] and lattice simulations [75]. It is in
this limit that we expect the chiral limit to be a good approximation to the physical point, since the scale
of µI ≫mπ dominates in this region.

A consequence of choosing φ0 = 0 is that the σ and π0 are degenerate. Due to the Vafa-Witten
theorem [84], a charged pion condensate cannot arise in the vacuum, and hence we must choose ρ0 = 0
and φ0 ≠ 0 at µI = 0. The moment the isospin chemical potential is increased from zero, we transition
from a chiral condensate to a pion condensate, in agreement with our finding that µc = 0. This transition
is abrupt in the sense that for µI ≠ 0 we have ρ0 = 0. Were H > 0, this crossover would happen at some
finite isospin chemical potential, and the crossover would be somewhat softened. In the chiral limit,
however, there is no incentive to retain the chiral condensate once the O(N) symmetry of the effective
potential is broken. The chemical potential deepens the effective potential in the φ2-direction, resulting
in pion condensation. This discontinuity in the transition is characteristic of the chiral limit. Choosing
therefore to use solutions where φ0 = 0 should be expected to yield a phase diagram akin to what we see
in the chiral limit of the large-N approximation. Pion condensation occurs then even at zero chemical
potential, with a critical temperature on the order of 150 MeV.

Since the sigma and neutral pion masses are degenerate, we rewrite the inverse tree-level propagator
as

D−1
0 =

⎛
⎜⎜⎜
⎝

ω2
n + p2 +m2

1 −2µIωn 0 ⋯
2µIωn ω2

n + p2 +m2
2 0 ⋯

0 0 ω2
n + p2 +m2

3 ⋯
⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟
⎠
, (3.110)

with the tree-level masses

m2
1 = −µ2 +m2 + 3λ

N
ρ2

0, (3.111)

m2
2 = −µ2 +m2 + λ

N
ρ2

0, (3.112)

m2
3 =m2 + λ

N
ρ2

0. (3.113)

As in the case of the O(2) model, Φ[D] is given by Eq. (3.86)

Φ[D] = λ

4N
(δabδcd + δacδbd + δadδbc)DabDcd. (3.114)

From the stationarity condition in Eq. (3.35), we obtain the following gap-equations

M2
1 −m2

1 =
λ

N
⨋ [3D11 +D22 + (N − 2)D33]

= 3λ
N
I(M2

1 ) +
λ

N
I(M2

2 ) + (N − 2) λ
N
IN(M2

3 ), (3.115)

M2
2 −m2

2 =
λ

N
⨋ [D11 + 3D22 + (N − 2)D33]

= λ

N
I(M2

1 ) +
3λ
N
I(M2

2 ) + (N − 2) λ
N
IN(M2

3 ), (3.116)

M2
3 −m2

3 =
λ

N
⨋ [D11 +D22 +ND33]

= λ

N
I(M2

1 ) +
λ

N
I(M2

2 ) + λIN(M2
3 ). (3.117)

I(M2
i ) is the sum-integral defined in Eq. (B.1), and likewise IN(M2

i ) is defined in Eq. (A.1) Using
our results from the preceding chapters, we may split the integrals in the gap equations into finite and
divergent parts

I(M2
i ) = If(M2

i ,M
2
j ) + IdM̃2

i , (3.118)

IN(M2
i ) = INf(M2

i ,M
2
j ) + IdM̃2

i . (3.119)
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Note that the divergent parts of the two integrals are exactly the same. Moreover, m̃2
2 =m2

3, so in terms
of renormalisation, we might expect that since the divergences are independent of µI , our results should
be the same as those of Fejos et al. [50] and Lenaghan and Rischke [51], who studied the linear sigma
model at zero isospin chemical potential. Following the same method as we did when renormalising the
O(2)-model in Appendix B, Eq. (3.115) yields the following three conditions

δλA + 2δλB = − λ
N
Id [(N + 2)δλA + 6δλB + (N + 8)λ] , (3.120)

δλA = − λ
N
Id [(N + 2)δλA + 2δλB + (N + 4)λ] , (3.121)

δm2 = −m
2

N
Id [NδλA + 2δλB + (N + 2)λ] . (3.122)

Solving these equations for δλA and δλB yields

δλA = −λ2Id
N(N + 4) + 2λId(N + 2)

(N + 2λId)(N + λId(N + 2))
, (3.123)

δλB = − 2λ2Id
N + 2λId

. (3.124)

As we saw when renormalising the O(2) model, the gap equations of the other particles yield the same
counterterms. Note that in the large N limit the counterterms reduce to δλB → 0 and δλA → − λ2Id

1+λId . This
leads to the substitution λ → λ

1− λ
16π2ε

, the same substitution we made when renormalising the large-N
limit. Similarly, inserting N = 2 in the above counterterms we recover the counterterms found in the O(2)
model. What remains are the renormalised gap-equations

Π1 =M2
1 −m2

1 =
3λ
N
If(M2

1 ,M
2
2 ) +

λ

N
If(M2

2 ,M
2
1 ) + (N − 2) λ

N
INf(M2

3 ) (3.125)

Π2 =M2
2 −m2

2 =
λ

N
If(M2

1 ,M
2
2 ) +

3λ
N
If(M2

2 ,M
2
1 ) + (N − 2) λ

N
INf(M2

3 ) (3.126)

Π3 =M2
3 −m2

3 =
λ

N
If(M2

1 ,M
2
2 ) +

λ

N
If(M2

2 ,M
2
1 ) + λINf(M2

3 ) (3.127)

Finally, we have the stationarity condition for ρ0

0 = δΓ
δρ0

= ρ0 [m2 − µ2 + λ

N
ρ2

0 +
λ

N
⨋ (3D11 +D22 + (N − 2)D33)]

= ρ0 [m2 − µ2 + λ

N
ρ2

0 +Π1] (3.128)

= ρ0 [M2
1 −

2λ
N
ρ2

0]

We will solve these equations numerically with respect to the mass modes and ρ0.

3.7 Numerics and starting parameters
We will use Wolfram Matehematica’s [85] built-in numerical equation solver to solve the gap-equations.
Unavoidably when performing numerics there will be some limitations to the accuracy of our results due
to inaccuracies stemming from the 64-bit representation of floating-point numbers. Our chosen method
of renormalisation for the O(2)-model involves subtracting some large terms in the integrand of I(M2),
this is particularly vulnerable to numerical noise, since we are subtracting two very large floating point
numbers. For this reason, we have introduced a cutoff in the integrals determined by the condition that
the integrand divided by the momentum must be larger than 10−16. This is simply to remove the region
where we get numerical noise due to large momenta in the integrand, which only happens when the
integral and the counterterms are both almost equal in magnitude and very large.

We now tune our parameters to fit the masses of the pions and the sigma particle in the vacuum. At
µ = T = 0, φ0 = fπ = 93 MeV by definition of the pion coupling constant fπ, and we use M4 =mσ = 600 MeV,
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and M1 = M2 = M3 = mπ = 139 MeV at the physical point. The insertion of these values into the gap
equations and stationarity conditions at T = µI = 0 yields conditions which may be used to determine m,
λ and H.

3.7.1 Large-N approximation
At T = 0, we have

INf(M2) = − M2

16π2 ln Λ2e

M2 . (3.129)

By inserting M1 =mσ and M =mπ in the renormalised gap equation for M (3.58), and the corresponding
equation for M1 we obtain the following conditions for T = µI = 0

m2
σ =m2 + 3λ

N
f2
π −

λm2
π

16π2 ln Λ2e

m2
π

, (3.130)

m2
π =m2 + λ

N
f2
π −

λm2
π

16π2 ln Λ2e

m2
π

. (3.131)

We see from the above that it is convenient to choose Λ =mπe
− 1

2 , thereby eliminating the above logarithmic
terms. This corresponds to choosing there to be no quantum corrections to the tree-level masses at
T = µI = 0. The stationarity condition for φ0, Eq.(3.61), yields the additional requirement

fπm
2
π =H. (3.132)

We see that when H = 0, we must have mπ = 0 as one might deduce from Goldstone’s theorem. We solve
Eqs. (3.130) and (3.131) for λ and m2 to obtain

m2 = 3m2
π −m2

σ

2
(3.133)

λ = N
2
m2
σ −m2

π

f2
π

. (3.134)

At the physical point we find the parameters H = 1796853 MeV3, m2 = −151018.5 MeV2 and λ = 78.7788.
In the chiral limit, we find H = 0, m2 = −180000 MeV2 and λ = 83.2466.

3.7.2 Hartree approximation
Since If = INf and M1 =M2 =mπ at T = µ = 0 the renormalised gap equations – Eqs. (3.125), (3.126),
and (3.127) – for the pion and sigma mass become

m2
σ =m2 + 3λ

N
f2
π −

3λ
N

m2
σ

16π2 ln Λ2e

m2
σ

− (N − 1) λ
N

m2
π

16π2 ln Λ2e

m2
π

, (3.135)

m2
π =m2 + 3λ

N
f2
π −

λ

N

m2
σ

16π2 ln Λ2e

m2
σ

− (N + 1) λ
N

m2
π

16π2 ln Λ2e

m2
π

. (3.136)

The stationarity condition for the sigma particle can be written as

fπ [m2 + λ

N
f2
π −

3λ
N

m2
σ

16π2 ln Λ2e

m2
σ

− (N − 1) λ
N

m2
π

16π2 ln Λ2e

m2
π

] =H. (3.137)

We anticipate that mπ = 0 in the chiral limit of the Hartree approximation, and so we choose Λ =mπe
− 1

2

in order to once more remove all quantum corrections at T = µI = 0. In the chiral limit, H = 0, and we
insert Eq. (3.136) into the brackets of the stationarity condition to obtain

fπm
2
π [1 + 2λ

N

1
16π2 ln m

2
π

m2
σ

] = 0. (3.138)
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(b) The pion condensate density ρ.

Figure 3.11: Quasiparticle masses and pion condensate density as a function of temperature in the chiral
limit of the large-N approximation at µI = 100 MeV.

We see that taking the limit mπ → 0 satisfies this condition and conclude that mπ = 0 in the chiral limit
of the Hartree approximation. Note that this was dependent upon our choice of renormalisation scale,
and that for other renormalisation scales, mπ = 0 is not a valid solution. This is in agreement with
Lenaghan and Rischke [51], who found that there is only one consistent renormalisation scale for the
Hartree approximation in the chiral limit. Eqs. (3.135) and (3.136) are now

m2
σ =m2 + 3λ

N
f2
π , (3.139)

0 =m2 + λ

N
f2
π . (3.140)

Our choice of Λ has eliminated the quantum corrections from Eqs. (3.135) and (3.136). They now coincide
with the corresponding equations in the chiral limit of the large-N approximation. We therefore obtain
the same parameters, namely m2 = −180000 MeV2 and λ = 83.2466.

At the physical point, the choice of renormalisation scale becomes less obvious. In order to verify our
results against those of Lenaghan and Rischke [51], we have used their renormalisation scale, namely

Λ = exp [m
2
σ(lnm2

σ − 1) −m2
π(lnm2

π − 1)
2(m2

σ −m2
π)

] (3.141)

This renormalisation scale preserves the value of λ found at the physical point in the large-N approximation.
By solving Eqs. (3.135), (3.136), and (3.137) numerically, we obtain the parameters H = 1.79685⋅106 MeV3,
m2 = −106331 MeV2 and λ = 78.7788.

3.8 Results and discussion
Fig. 3.11 shows the quasiparticle masses and pion condensate density as a function of temperature
in the chiral limit of the large-N approximation. As predicted, the transition to a pion condensate is
second order for all temperatures and chemical potentials. We find the critical exponent ν – defined by
ρ ≈ C ∣T − Tc∣ν for T close to Tc and some constant C – to be 0.49902 with 300 samples and a variance of
10−4, this is consistent with the expected 0.5 characteristic of mean-field theory. The slight deviation is
due to our inability to sample ln ∣T −Tc∣ too close to Tc with sufficient precision. The quasiparticle masses
and condensate densities at the physical point and zero temperature is plotted as a function of chemical
potential in Fig. 3.12, and as a function of temperature at µI = 100 MeV in Fig. 3.13. In addition, we plot
the pion condensate density ρ0 as a function of T and µI in Fig. 3.14 As predicted, ρ0 remains zero up to
the critical chemical potential µc =mπ, after which pion condensation occurs. This phase transition is
second order in the pion condensate, whereas the chiral condensate decreases abruptly following the onset
of pion condensation in the manner of a crossover. These results reproduce those found by Andersen [53].

The masses in Fig. 3.13 behave peculiarly in the area around Tc. Near the critical temperature, the
mass of the π− rises abruptly, while Mσ declines. The reason for this is the transition to ρ0 = 0, which
implies Mπ− =Mπ0 + µI =Mπ+ + 2µI . At the same time, Mσ must approach Mπ0 when T →∞, since we
expect φ0 → 0 in this limit. Thus Mσ and Mπ− must cross near T = Tc.
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(b) The condensate densities.

Figure 3.12: Quasiparticle masses and condensate densities at the physical point of the large-N approx-
imation as a function of µI at T = 0
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Figure 3.13: The quasiparticle masses as a function of temperature at the physical point of the large-N
approximation as a function of T with µI = 200.

Figure 3.14: The pion condensate ρ0 as a function of T and µI in the large-N approximation at the
physical point.
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Figure 3.15: Quasiarticle masses and condensate density in the chiral limit of the Hartree approximation
as a function of temperature at µI = 0.

Fig. 3.15 shows the masses and condensate density as a function of temperature at zero chemical
potential in the Hartree approximation. It matches exactly the results of Lenaghan and Rischke [51]. In
this plot, since µI = 0 we have

M1 =Mπ− , (3.142)
M2 =M3 =Mπ0 =Mπ+ . (3.143)

It is apparent that Goldstone’s theorem is not obeyed in the Hartree approximation. Were it obeyed,
we would expect M2 = 0, however M2 manages to reach a mass M2(235) ≈ 200 MeV >mπ. The reason for
this violation is the incompleteness of the approximation, which fails to take into account the setting-sun
diagram [58,72,83]. As mentioned before, the 1

N
expansion obeys Goldstone’s theorem order by order [54].

Increasing the potential to µI = 100, the mass modes and particle masses are plotted as a function
of temperature in Fig. 3.16. The slight kink in M2 is likely due to this mode becoming tachyonic at
low temperatures, at which point the numerics become unstable. It is important to note that M2 ≠Mσ,
thus this is not an indication that φ ≠ 0 as discussed in the previous section. A possible explanation
for this low-temperature behaviour is that it is due to to the exponential eε±(p)/T in the distribution
function, which in the low-T limit is highly dependent upon the behaviour of ε±. For M2 < µI , ε− becomes
imaginary, producing poles which break the stability of our numerical methods. Thus the numerics
become unstable at low temperatures, but should be correct for T ≥ µI . Another possible explanation
for this behaviour is that the Hartree approximation at finite isospin density breaks the residual O(2)
symmetry. As discussed for the sigma particle, a negative M2

2 indicates that the second derivative of the
effective potential is negative in the direction of φ2, and would thus suggest that the true minimum of
the effective potential lies in the plane spanned by φ1 and φ2, in spite of the fact that the Lagrangian is
O(2)-symmetric with respect to these fields. Clearly this is not possible, and we are forced to conclude
that if so, the violation of the O(2) symmetry in the Hartree approximation leads to large inconsistencies.
By not including the setting sun diagram for φ2, we have already observed a violation of Goldstone’s
theorem, implying the absence of the residual O(2) symmetry even at µI = 0. Further increasing µI , and
hence also ρ0 might serve to exacerbate the matter. However, Nemoto et. al. have shown that M2

2 does
not entirely coincide with the second derivative of the effective potential [58]. If so, this means that the
effective potential might still retain its symmetry in spite of the somewhat unusual quasiparticle masses,
and its second derivatices might yield more sensible physical masses as a result.

In both of the above plots, the density (and hence M1) curve back on themselves, so that from some
temperature T ≈ 130 MeV and upwards there exists three solutions to the gap equations. The reason for
this becomes apparent in Fig. 3.17, where we plot the effective potential as a function of ρ0 for selected
values of T . At T = 220 MeV the global minimum of the effective potential is for ρ0 ≈ 77 MeV. In addition
there is a local maximum at ρ0 ≈ 35 MeV and a local minimum at ρ = 0, yielding a total of three solutions
to the stationarity condition for ρ0. At T = 230 MeV, while there is still a local minimum present at
ρ0 ≠ 0, the global minimum is now at ρ0 = 0. Thus the order parameter ρ0 jumps discontinuously from
ρ0 ≥ 60 MeV to ρ0 = 0, indicating a first order phase transition, as opposed to the second order phase
transition found in the large-N approximation.
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Figure 3.16: Mass modes and quasiparticle masses as a function of temperature at µI = 100 in the chiral
limit of the Hartree approximation.
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Figure 3.17: The effective potential as a function of condensate density at µI = 100 and different
temperatures.

Tc must thus be found for a given µI by finding the point at which the two minima of the effective
potential are equal. The phase diagram in the Hartree approximation is plotted alongside the results
found for the large-N approximation in Fig. 3.18. In the Hartree approximation, Tc(µI = 0) = 224.1 MeV,
larger than that of the large-N approximation. This is a drastic change, however for N = 4 we should
expect a correction to the large-N approximation on the order of 1

N
= 0.25. The ratio between Tc(µI = 0)

in the Hartree and large-N approximation is roughly 1.4, this is a bit larger than the expected 1.25,
but seems within reason. It is also consistent with the results found at next-to-leading order in the 1PI
large-N approximation by Andersen and Brauner [68].

However, Tc ascends much slower than in the large-N case due to the corrections imposed by the loop
integrals containing π±. As the large-N approximation only takes into account the mass of the neutral
pion, which is largely unaffected by the chemical potential, we can only expect this approximation to be
valid for small µI . The low rate of ascent is similar to that found by Andersen and Kyllingstad in the
Nambu-Jona-Lasinio model [76]. Based on this, we may speculate that Tc in the Hartree approximation
at the physical point will grow more quickly than the large-N approximation around µI =mπ, but will
since flatten, asymptotically approaching the results found in the chiral limit for µI ≫mπ.

The results of Kogut and Sinclair for lattice simulations [75], along with the chiral perturbation
studies performed by Splittorff et. al. [86] predict that µI close to µc =mπ is characterised by a second
order transition in the pion condensate, which for increasing µI becomes a first order transition from a
condensate phase to the symmetry restored phase. Kogut and Sinclair predict that this critical point is
at µI ≈ 4

3mπ = 185 MeV. At higher µI , Tc is predicted to increase much slower than below the critical
point. The first order nature of the Hartree approximation, along with its slow growth matches this
prediction well for high µI , the domain in which the chiral limit is expected to be close to the results for
the physical point. However, the introduction of a nonzero H is known to soften the phase transition
from a chiral condensate at µI = 0 [87], as can be seen in the results of Lenaghan and Rischke [51]. It is
unknown whether this will also affect the transition from the pion condensate, seeing as H couples to the
chiral condensate. However, it is possible that a nonzero H will produce a crossover between the chiral
condensate and the pion condensate, and that the Hartree approximation might then have a tricritical
point. Results from the NJL model [76, 88], along with results from chiral perturbation theory [6, 7]
have found only second-order transitions. As mentioned by Andersen and Kyllingstad, the second-order
behaviour might be due to the nature of mean-field approximations, if so it is curious that the Hartree
approximation might yield a first-order phase transition.
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Figure 3.18: The phase diagram in the Hartree and large-N approximations. The solid line shows the
critical temperature Tc as a function of µI in the Hartree approximation chiral limit. The dashed line
shows the results from the large-N approximation in the chiral limit, and the dash-dotted line shows the
results of the large-N approximation at the physical point.

Without further study of the physical point – and in particular without allowing for a crossover phase
where both φ0 and ρ0 are nonzero – we will not be able to study the nature of the phase transition in the
region where it is expected to be of first order. It is possible that the off-diagonal terms λ

N
φ0ρ0 in the

tree-level propagator along with a nonzero value of H is sufficient to ensure a first-order phase transition
between a chiral and a pion condensate.

For completeness, we have also reproduced the results of Lenaghan and Rischke at the physical point,
these are plotted in Fig. 3.19. It is clear that a nonzero H has softened the deconfinement transition,
turning it into a gradual crossover transition for increasing temperatures.
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Figure 3.19: Quasiparticle masses and chiral condensate density at the physical point in the Hartree
approximation for µI = 0.
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Chapter 4

Conclusions and outlook

In this thesis we have studied pion condensation at finite temperature and isospin chemical potential in
the context of the linear sigma model. While being a simple model, the sigma model allows for many
of the features of low-energy QCD. In particular, we have seen how the explicit symmetry breaking at
the physical point turns the melting of the chiral condensate into a crossover transition. Similarly, we
have seen examples of the phase transition to a pion condensate being both first and second order. The
Hartree and Large-N approximations have been studied and were found to yield very different results.
The Large-N approximation yields results typical for mean-field approaches, including a second order
transition from a pion condensate beginning at µc =mπ and a critical exponent ν = 0.5. In comparison
with results from other models and particularly lattice QCD, however, the Large-N approximation
displays an unbounded increase in the critical temperature of pion condensation for increasing isospin
chemical potentials, limiting its validity to low µI . We have only been able to fully describe the Hartree
approximation when either the pion or chiral condensate is zero. In particular we have been able to study
the phase diagram of the Hartree approximation in the chiral limit of mπ = 0, and have observed a much
slower growth rate in Tc than in the large-N approximation. In the chiral limit, the transition from a
pion condensate is first order, in agreement with the lattice QCD results of Kogut and Sinclair at high µI .
It is therefore possible that the Hartree approximation at the physical point allows for a tricritical point,
with a crossover transition to the quark-gluon plasma at low isospin chemical potentials, a second order
transition to pion condensation at high isospin chemical potential, and a first order phase transition at
high temperatures and chemical potential. The validity of the Hartree approximation is compromised,
however, by its lack of adherence to symmetries. We have seen a large violation of Goldstone’s theorem,
and tachyonic behaviour which may or may not be due to this lack of symmetry in the model.

A natural next step would be to apply the condition of charge neutrality to the linear sigma model,
complementing the work done in the NJL model by Ebert and Klimenko [65], Abuki et al. [88] and
Andersen and Kyllingstad [76]. The condition of charge neutrality provides that nuclear matter should
be electrically neutral. The reason behind this is the large energetic cost of a net electrical charge, due to
Coulomb forces [89].

Since a pion condensate has a net electrical charge, there must be a background field of charged
particles to compensate for the excess electrical charge in the pion condensate. A simple way to accomplish
this is by introducing a non-interacting electron field to the Lagrangian. The electron and quark fields are
connected through the weak process of β decay, we therefore require the system to be in β-equilibrium. β
decay stems from the process

d↔ ν + e + u, (4.1)

and we assume that this is as likely to happen in both directions. Neutrinos only participate in weak
interactions, and will therefore escape the interior of a quark star after being produced, contributing
to cooling of the neutron star. We will therefore make no assumption about conservation of neutrino
numbers, but will include an ideal electron gas in the Lagrangian by adding the term

Le = ψ̄e [iγµ∂µ − γ0µQ −me]ψe (4.2)

We have introduced the electric chemical potential µQ = −µe – where µe is the chemical potential coupling
to preservation of electron numbers, jµ = ψ̄eγµψe – by adding a static gauge field coupling to the electron
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field ψe. To a first approximation, we let the electrons be massless, me = 0. The isospin chemical potential
contributes to µQ through the chemical potentials µu and µd

µI = µu − µd. (4.3)

β-equilibrium implies

µd = −µQ + µu. (4.4)

Which leads to the relation

µI = µQ, (4.5)
(4.6)

We could have deduced this directly from the quark charges Qu = 2
3e and Qd = − 1

3e, the result is a
consequence of charge-conservation in β decay. In order to introduce charge neutrality, we use the
relation [36]

Q = − ∂F
∂µQ

. (4.7)

The electron field contributes to the free energy through the term

Ωe = Tr lnD−1
e = ⨋ ln(γµpµ − µQ). (4.8)

We have calculated and renormalised the corresponding term Ωp for the charged pions in Appendix B,
they are given by (B.60)

Ωp =
1
2

Tr lnD−1 =
M̃4

1
32π2 (ln Λ2

M2
1
+ 3

2
) +

M̃4
2

32π2 (ln Λ2

M2
2
+ 3

2
)

+ T

π2 ∫ dpp2 (ln(1 − e
ε+
T ) + ln(1 − e

ε−
T )) . (4.9)

Following the same procedure for Ωe, we calculate the Matsubara sum in Eq. (4.8)

Ωe = −2∫
ddp

(2π)d
[∣p∣ + T ln (1 + e−β(∣p∣−µQ)) + T ln (1 + e−β(∣p∣+µQ))] . (4.10)

The first term in the square brackets is a power divergence and vanishes in dimensional regularisation.
We find

Ωe = −
µ4
Q

12π2 −
µ2
QT

2

6
− 7π2

180
T 4. (4.11)

Charge neutrality is imposed by requiring
∂Ω
∂µQ

=
∂Ωp
∂µQ

+ ∂Ωe
∂µQ

= 0. (4.12)

The above requirement puts an additional constraint on the phase diagram, reducing it to a point. For
every temperature there is only one chemical potential which results in charge-neutrality, and it is this
dependence which determines whether pion condensation may or may not occur. Abuki studied the
charge-neutral pion condensate in the NJL model as a function of the physical pion mass and found that
pion condensation can only occur for low pion masses, far from the physical point [88].

Another avenue of interest would be the study of the Hartree approximation with the possibility of
both φ0 and ρ0 being nonzero. This will make renormalisation even more complex, as the determinant of
the inverse propagator becomes sixth order in ωn, but will allow one to study the nature of the transition
from a chiral to a pion condensate, possibly confirming the existence of a tricritical point. It would also
be of interest to study the mass modes stemming from the second derivatives of the effective potential,
proposed by Nemoto et. al. [58]. An even more promising vein would be to study the next-to-leading
order 1

N
expansion, which would include all the diagrams of the Hartree approximation and adhere

to symmetries. However, this will include the setting sun diagrams, turning the gap equations into
momentum-dependent integral equations and further increasing the complexity of the calculations.
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Appendix A

Renormalising the Large-N
approximation

We recall the gap equation, Eq. (3.55)

M2
4 =m2

4 + λ⨋
Q

1
Q2 +M2

4
.

The sum-integral will require renormalisation, we define

IN(M2
4 ) ≡ ⨋

Q

1
Q2 +M2

4
(A.1)

We have already calculated the Matsubara sum and regularised this integral in chapters 2.5 and 2.8, but
we will outline the process here once more for continuity. Renormalisation has been carried out iteratively
by Andersen [53], here we will utilise a method outlined by Fejos et al. [50] which is equivalent to the
iterative method. We introduce counterterms by making the substitutions

m2 →m2 + δm2, (A.2)
λ→ λ + δλ. (A.3)

Inserting this into the gap equation, we obtain two counterterms

M2
4 −m2

4 = (λ + δλ)IN(M2
4 ) + δm2 + δλ

N
(φ2

0 + ρ2
0). (A.4)

The sum in IN can be carried out as a contour integral in the complex plane. By inserting the poles
ω = ±

√
p2 +M2

4 into our general formula for Matsubara sums, Eq. (2.57) we obtain

IN(M2
4 ) = (e

γΛ2

4π
)
ε

∫
ddp

(2π)d
1√

p2 +M2
4
[1

2
+ 1
e
√
p2+M2

4 /T − 1
] . (A.5)

The first term is UV-divergent, calculating it using dimensional regularisation yields

IN(M2
4 ) = −

M2
4

16π2 ( Λ2

M2
4
)
ε

[1
ε
+ 1] + ∫

ddq

(2π)d
1√

q2 +M2
4

1
e
√
q2+M2

4 /T − 1
. (A.6)

We Taylor expand ( Λ2

M2
4
)
ε

around ε = 0 in the above equation to obtain a logarithmic term in the limit of
ε→ 0

IN(M2
4 ) = −

M2
4

16π2 [1
ε
+ ln( Λ2

M2
4
)] + ∫

d3q

(2π)3
1√

q2 +M2
4

1
e
√
q2+M2

4 /T − 1
. (A.7)
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We may now isolate the divergent and convergent parts of the integral by making the following definitions

IN(M2
4 ) = IdM2

4 + INf(M2
4 ), (A.8)

Id = −
1

16π2ε
, (A.9)

INf = −
M2

4
16π2 ln( Λ2

M2
4
) + ∫

ddq

(2π)d
1√

q2 +M2
4

1
e
√
q2+M2

4 /T − 1
. (A.10)

We may now require the cancellation of all divergences in the gap equation, this yields the requirement

0 = λIdM2
4 + δλ (INf(M2

4 ) + IdM2
4 ) + δm2 + δλ

N
(φ2

0 + ρ2
0). (A.11)

The renormalised gap equation is

M2
4 =m2

4 + INf(M2
4 ). (A.12)

A key step in this renormalisation process, is to insert the renormalised gap equation into (A.11) in order
to obtain two conditions for the cancellation of divergences and subdivergences.

0 = INf(M2
4 ) (δλ + λ2Id + λδλId) + λIdm2

4 + δλIdm2
4 + δm2 + δλ

N
(φ2

0 + ρ2
0). (A.13)

The cancellation of subdivergences is achieved by requiring the term proportional to INf(M2
4 ) to be zero.

We therefore obtain two equations

0 = (δλ + λ2Id + λδλId) , (A.14)

0 = δm2 + Idm2(λ + δλ) + δm2 + φ
2
0 + ρ2

0
N

[δλ + λId(λ + δλ)] . (A.15)

Solving these for δλ and δm2 yields

δλ = −λ λId
1 + λId

, (A.16)

δm2 = −m2 λId
1 + λId

. (A.17)

Thus, in the gap equations we end up making the substitutions

λ→ λ

1 − λ
16π2ε

, (A.18)

m2 → m2

1 − λ
16π2ε

. (A.19)

Interestingly, we see that λ
m2 is unaltered by these substitutions. These results agree with those found by

Andersen [53].
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Appendix B

Renormalising the O(2) model

We wish to calculate and renormalise the gap equations, Eqs. (3.100) and (3.101). Once more, we will do
this by following the method of Fejos et al. [50] utilising O(2)-invariants to renormalise simultaneously to
all orders in λ. We define

I(M2
i ,M

2
j ) ≡ ⨋

Q

Q2 +M2
j

4µ2
IQ

2
0 + (Q2 +M2

1 )(Q2 +M2
2 )
, (B.1)

where j ≠ i The gap equations can then be rewritten as

M2
1 −m2

1 =
3λ
2
I(M2

1 ,M
2
2 ) +

λ

2
I(M2

2 ,M
2
1 ), (B.2)

M2
2 −m2

2 =
λ

2
I(M2

1 ,M
2
2 ) +

3λ
2
I(M2

2 ,M
2
1 ). (B.3)

We need to introduce counterterms for each O(2) invariant. The Kronecker delta-terms of Eq. (3.86) each
represent such an invariant, and we should thus in general introduce a counterterm for each of them. In
the case of the Hartree approximation, however, the last two terms in the brackets of Eq. (3.86) give rise
to the same Feynman diagrams, and it thus suffices to introduce one counterterm for these two invariants.
We therefore introduce the counterterms δm2, δλA and δλB in the following manner

m2 →m2 + δm2, (B.4)
λδabδcd → (λ + δλA)δabδcd, (B.5)

λ(δacδbd + δadδbc)→ (λ + δλB)(δacδbd + δadδbc). (B.6)

By making these substitutions in Eqs. (B.2) and (B.3), we find

M2
1 −m2

1 =
3λ + δλA + 2δλB

2
I(M2

1 ) +
λ + δλA

2
I(M2

2 ) + δm2 + δλA + 2δλB
2

φ2
0, (B.7)

M2
2 −m2

2 =
λ + δλA

2
I(M2

1 ) +
3λ + δλA + 2δλB

2
I(M2

2 ) + δm2 + δλA
2
φ2

0. (B.8)

We now need to calculate the divergent terms of I(M2
i ,M

2
j ). The result should be symmetric with respect

to interchanging i and j, so let i = 2 and j = 1. The Matsubara sum can be carried out as a contour
integral in the complex energy plane. We find the poles of the summand by solving the following equation
for ω

0 = −4µ2
Iω

2 + (−ω2 + p2 +M2
1 )(−ω2 + p2 +M2

2 ). (B.9)

This is a quadratic equation in ω2, and we obtain the poles

ω2 = ε2± = a ± b, (B.10)

a ≡ M
2
1 +M2

2
2

+ p2 + 2µ2
I , (B.11)

b ≡

¿
ÁÁÀ(

M2
1 −M2

2
2

)
2

+ 4µ2
I(
M2

1 +M2
2

2
+ µ2

I + p2). (B.12)
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Inserting these poles into the general formula for Matsubara sums, Eq. (2.57) yields

I(M2
2 ,M

2
1 ) =K+ +K−, (B.13)

where

K± ≡
1
2
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
∓ M

2
1 + p2 − (a ± b)

2b
√
a ± b

(1 + 2
e
√
a±b/Ti − 1

) . (B.14)

It will be convenient to describe this integral in terms of µI -independent constants, to make explicit
any dependence on the chemical potential. We recall that both M2

1 and M2
2 contains the summand −µ2

I ,
bearing that in mind we now introduce the new constants

k2
1 ≡

M2
1 +M2

2
2

+ µ2
I , (B.15)

k2
2 ≡

M2
1 −M2

2
2

. (B.16)

The distribution function in the brackets of Eq. (B.14) is exponentially suppressed and does not give rise to
divergences, while the first term is UV-divergent and corresponds to a vacuum term. For convenience, we
omit the convergent last term in further calculations. We will recover it before we derive the counterterms.
There are several divergent terms in K±, so we will split it by defining

K± = d± + e±, (B.17)

d± ≡
1
4
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
∓

k2
2 − 2µ2

I
√
k4

2 + 4µ2
I(k2

1 + p2)
√
p2 + k2

1 + µ2
I ±

√
k4

2 + 4µ2
I(k2

1 + p2)
, (B.18)

e± ≡
1
4
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
1

√
p2 + k2

1 + µ2
I ±

√
k4

2 + 4µ2
I(k2

1 + p2)
. (B.19)

In d±, we extract a factor p2 + k2
1 + µ2

I from the quotient

d± =
1
4
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
∓

k2
2 − 2µ2

I

2µI(p2 + k2
1 + µ2

I)
1

(1 + x) 1
2
, (B.20)

x ≡
k4

2 − 4µ4
I

(p2 + k2
1 + µ2

I)
±

(4µ2
I(p2 + k2

1) + k4
2)

3
2

4µ2
I(p2 + k2

1 + µ2
I)2 . (B.21)

In the limit of large momenta, we have x≪ 1 and hence we Taylor expand the square root around x to
isolate the UV-divergent terms

d± =
1
4
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
∓

k2
2 − 2µ2

I

2µI(p2 + k2
1 + µ2

I)
(1 − x +O(x2)) . (B.22)

When we sum over d+ and d−, only those terms which do not change signs will remain, and hence, the
remaining divergent term stems from the second term in x. Upon summing d+ and d− we therefore obtain
the logarithmically divergent term dd:

dd ≡
k2

2 − 2µ2
I

4
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
∣p∣3

(p2 + k2
1 + µ2

I)3

=
k2

2 − 2µ2
I

(4π)2 ( Λ2

k2
1 + µ2

I

)
ε

[1
ε
+ 1

2
− 2 log 2 +O(ε)] . (B.23)
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Similarly, we expand e± around p2 + k2
1 + µ2

I to obtain

e± =
1
4
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
1√

p2 + k2
1 + µ2

I

⎛
⎜
⎝

1 ±
2µI(p2 + k2

1 +
k4

2
4µ2
I
) 1

2

p2 + k2
1 + µ2

I

⎞
⎟
⎠

− 1
2

=1
4
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
1√

p2 + k2
1 + µ2

I

×
⎛
⎜
⎝

1 ∓
µI(p2 + k2

1 +
k4

2
4µ2
I
) 1

2

p2 + k2
1 + µ2

I

+ 3
2
µ2
I(p2 + k2

1 +
k4

2
4µ2
I
)

(p2 + k2
1 + µ2

I)2 ∓⋯
⎞
⎟
⎠
. (B.24)

The second term in the bracket cancels when summing over e+ and e−. From summing these we obtain
the two divergent terms ed1 and ed2

ed1 =
1
2
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
1√

p2 + k2
1 + µ2

I

= − 1
(4π2)

(k2
1 + µ2

I)(
Λ2

k2
1 + µ2

I

)
ε

[1
ε
+ 1 +O(ε)] , (B.25)

ed2 =
3µ2

I

4
(e

γΛ2

4π
)
ε

∫
ddp

(2π)d
p2

(p2 + k2
1 + µ2

I)
5
2

=
µ2
I

(4π)2 ( Λ2

k2
1 + µ2

I

)
ε

[3
ε
− 2 +O(ε)] . (B.26)

We now combine all the divergences, and separate the renormalisation scale from the divergence by series
expansion. We find

dd + ed1 + ed2 = −
1

(4π)2 (M
2
2 + µ2

I)
1
ε

+ 1
(4π)2 [(1

2
− 2 ln 2)(k2

2 − 2µ2
I) − k2

1 − 3µ2
I − (M2

2 + µ2
I) ln( Λ2

k2
1 + µ2

I

)] . (B.27)

Similarly, the divergent part of I(M2
1 ,M

2
2 ) can be found by substituting M2

1 for M2
2 in the above equation.

We now split I(M2
i ,M

2
j ) into a finite part and a divergent part

I(M2
i ,M

2
j ) = IdM̃2

i + If(M
2
i ,M

2
j ), (B.28)

where

Id ≡ −
1

(4π)2ε
, (B.29)

M̃2
i ≡M

2
i + µ2

I , (B.30)

If(M2
i ,M

2
j ) = ⨋

ω2
n + p2 +M2

j

ε(ωn, p)
−
M2
j −M2

i − 4µ2
I

16π2 ∫
∞

0
dp

p5

(p2 + M2
i +M

2
j

2 + 2µ2
I)3

− 1
4π2 ∫

∞

0
dp

p2
√
p2 + M2

i +M
2
j

2 + 2µ2
I

−
3µ2

I

8π2 ∫
∞

0
dp

p4

(p2 + M2
i +M

2
j

2 + 2µ2
I)

5
2

(B.31)

+ 1
(4π)2

⎡⎢⎢⎢⎢⎢⎣
(1

2
− 2 ln 2)(

M2
i +M2

j

2
− µ2

I) −
M2
i +M2

j

2
− 4µ2

I − (M2
i + µ2

I) ln
⎛
⎜
⎝

Λ2

M2
i +M

2
j

2 + 2µ2
I

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦
.

Since M2
i contains the summand −µ2

I , the constant M̃2
i is independent of the chemical potential µI .

Hence the divergence of I is the same as the one we found in the simpler, µI -independent sum-integral
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from the large-N approximation. Recalling the gap equations of Eqs. (B.7) and (B.8), we insert the finite
parts to obtain the renormalised gap equations

M2
1 −m2

1 =
3λ
2
If(M2

1 ,M
2
2 ) +

λ

2
If(M2

2 ,M
2
1 ), (B.32)

M2
2 −m2

2 =
λ

2
If(M2

1 ,M
2
2 ) +

3λ
2
If(M2

2 ,M
2
1 ). (B.33)

We now require the cancellation of all the counterterms, this leads to the conditions

0 = 3λ
2
IdM̃2

1 +
δλA + 2δλB

2
(If(M2

1 ,M
2
2 ) + IdM̃2

1 )

+ λ
2
IdM̃2

2 +
δλA

2
(If(M2

2 ,M
2
1 ) + IdM̃2

2 ) (B.34)

+ δm2 + δλA + 2δλB
2

φ2
0,

0 = λ
2
IdM̃2

1 +
δλA

2
(If(M2

1 ,M
2
2 ) + IdM̃2

1 )

+ 3λ
2
IdM̃2

2 +
δλA + 2δλB

2
(If(M2

2 ,M
2
1 ) + IdM̃2

2 ) (B.35)

+ δm2 + δλA
2
φ2

0.

Once more we substitute the renormalised equations for M̃2
i into the terms proportional to Id, thus

producing equations for the cancellation of the main divergence as well as subdivergences caused by
renormalisation

0 = δm2 + δλA + 2δλB
2

φ2
0 + Id [

3λ + δλA + 2δλB
2

m̃2
1 +

λ + δλA
2

m̃2
2]

+ If(M2
1 ,M

2
2 ) [

δλA + 2δλB
2

+ λ
2
Id (

δλA
2

+ 3δλA + 2δλB
2

+ 5λ)] (B.36)

+ If(M2
2 ,M

2
1 ) [

δλA
2

+ λ
2
Id (

3δλA
2

+ δλA + 2δλB
2

+ 3λ)] ,

0 = δm2 + δλA
2
φ2

0 + Id [
λ + δλA

2
m̃2

1 +
3λ + δλA + 2δλB

2
m̃2

2]

+ If(M2
1 ,M

2
2 ) [

δλA
2

+ λ
2
Id (

3δλA
2

+ δλA + 2δλB
2

+ 3λ)] (B.37)

+ If(M2
2 ,M

2
1 ) [

δλA + 2δλB
2

+ λ
2
Id (

δλA
2

+ 3δλA + 2δλB
2

+ 5λ)] .

The conditions for the vanishing of subdivergences are that the terms proportional to If(M2
i ,M

2
j ) are

zero. These conditions are the same in both Eqs. (B.36) and (B.37) and what remains are the two
conditions

δλA + 2δλB = −λId (2δλA + 3δλB + 5λ) , (B.38)
δλA = −λId (2δλA + δλB + 3λ) . (B.39)

We can use Eq. (B.39) to eliminate δλA from Eq. (B.38), this yields

δλA = −λ2Id
3 + 2λId

(1 + λId)(1 + 2λId)
, (B.40)

δλB = −λ λId
1 + λId

. (B.41)
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We are now ready to calculate δm2. Requiring once more that Eqs. (B.36) and (B.37) are fulfilled, we
write m̃2

i in terms of φ2
0 and m2 to obtain

0 = δm2 + Idm2(δλA + δλB + 2λ)

+ φ
2
0

2
[δλA + 2δλB + λId(2δλA + 3δλB + 5λ)] , (B.42)

0 = δm2 + Idm2(δλA + δλB + 2λ)

+ φ
2
0

2
[δλA + λId(2δλA + δλB + 3λ)] . (B.43)

The brackets next to φ2
0 are zero due to Eqs. (B.38) and (B.39). What remains is

δm2 = −Idm2(δλA + δλB + 2λ). (B.44)

This demonstrates that it is possible to choose the counterterms in a consistent manner such that all
divergences are removed from the gap equations.

Next, we should study the terms in the 2PI effective potential, to make sure they are also sufficiently
renormalised. For reference, the 2PI effective potential is

Γ[ρ0,D] = 1
2
(m2 − µ2

I)ρ2
0 +

λ

8N
ρ4

0 +
1
2

Tr lnD−1 + 1
2

TrD−1
0 D +Φ[D].

We follow the steps in Ref. [52], taking the terms in reverse order we have

Φ[D] = λ

4N
(⨋ D11 + ⨋ D22)

2

+ λ

2N
((⨋ D11)

2
+ (⨋ D22)

2
) . (B.45)

The above sum-integrals are the same as the ones we just renormalised in the gap equations, namely
⨋ D11 = I(M2

1 ) and ⨋ D22 = I(M2
2 ). Upon applying the same counterterms, we find

Φ[D] = λ

4N
[If(M2

1 ,M
2
2 ) + If(M2

2 ,M
2
1 )]

2

+ λ

2N
[If(M2

1 ,M
2
2 )2 + If(M2

2 ,M
2
1 )2] . (B.46)

The term TrD−1
0 D can be rewritten as

TrD−1
0 D = Tr[1 −ΠD] (B.47)

The first term – the trace of the identity matrix – is a constant term which is zero in dimensional
regularisation. Recalling that Πii =M2

i −m2
i , we write

TrD−1
0 D = −(M2

i −m2
i )⨋ Dii. (B.48)

Again we see the same sum-integral as we saw in the gap-equations. Inserting the same counterterms, we
find

TrD−1
0 D = −(M2

i −m2
i )If(M2

i ,M
2
j ). (B.49)

In the above formula we are summing over i, and j is always the opposite of i. Finally, we come to the
term 1

2Tr[lnD−1]. Using the identity Tr lnM = ln DetM , this term becomes

Tr lnD−1 = ⨋ ln[(ω2
n + ε2+)(ω2

n + ε2−)] = ⨋ ln(ω2
n + ε2+) + ⨋ ln(ω2

n + ε2−). (B.50)

We now differentiate with respect to ε2± in order to get the sum-integrals on a more familiar form.

⨋ ln(ω2
n + ε2±) = ∫ dε2± ⨋

1
ω2
n + ε2±

(B.51)
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The sum-integral has poles at ω = ±ε±. Inserting this into (2.57) yields

⨋ ln(ω2
n + ε2±) = ∫

ddp

(2π)d ∫
dε2±

1
ε±

(1
2
+ 1

1 − e ε±T
)

=∫
ddp

(2π)d ∫
dε± (1 + 2

1 − e ε±T
) = ∫

ddp

(2π)d
(ε± + 2T ln(1 − e−

ε±
T )) . (B.52)

The logarithmic term is clearly convergent. The term proportional to ε, however, is not. Let us examine
this term in some detail. From dimensional analysis, we expect to find divergences behaving like M4

1
ε

.
That is, we expect divergent terms like

√
p2 + M̃2

1 . Let us therefore study the term ε++ε−
2 in some detail.

ε+ + ε−
2

= 1
2
⎛
⎝

√

p2 + M̃2
1 −

M̃2
1 − M̃2

2
2

+ µ2
I + b +

√

p2 + M̃2
1 −

M̃2
1 − M̃2

2
2

+ µ2
I − b

⎞
⎠

(B.53)

b is the same term as we found when calculating the Matsubara sums in the gap equations, and is hence
defined in Eq. (B.12). We extract a term E1 ≡

√
p2 + M̃2

1 from each of the square roots and series expand
to obtain

ε+ + ε−
2

= E1

⎛
⎜⎜
⎝

1 +
1
2(M̃

2
2 − M̃2

1 ) + µ2
I

2E2
1

− 1
8
( 1

2(M̃
2
2 − M̃2

1 ) + µ2
I)

2
+ b2

E4
1

+O (E−5
1 )

⎞
⎟⎟
⎠

(B.54)

Lower orders in E1 are convergent, with the exception of one term which we will discuss later. We now
do the same for E2 ≡

√
p2 + M̃2

2 and write

ε+ + ε− = E1 +E2 −
1
4
(M̃2

1 − M̃2
2 ) (

1
E1

− 1
E2

) +
µ2
I

2
( 1
E1

+ 1
E2

)

− 1
8
[1

4
(M̃2

1 − M̃2
2 )

2 ( 1
E3

1
+ 1
E3

2
) − (M̃2

1 − M̃2
2 )µ

2
I (

1
E3

1
− 1
E3

2
) (B.55)

+µ4
I (

1
E3

1
+ 1
E3

2
) + b2 ( 1

E3
1
+ 1
E3

2
)] .

The first two terms are the expected divergent terms, the rest we expect to cancel. By utilising that
E2

2 = E2
1 − (M̃2

1 − M̃2
2 ) to series expand E2, we see that 1

E3
1
= 1
E3

2
+O(E−5

1 ). Inserting this into the terms
we expect to cancel, we obtain.

1
E3

1

⎡⎢⎢⎢⎣

1
16

(M̃2
1 − M̃2

2 )2

E3
1

+ µ2
I (p2 + 1

2
(M̃2

1 + M̃2
2 )) +

1
4
µ2
I (M̃2

1 − M̃2
2 ) −

1
4
µ4
I −

1
4
b2

⎤⎥⎥⎥⎦
= −1

4
µ4
I

E3
1
. (B.56)

What remains is a µI -dependent term. This term is to counter the p-dependent term in b. To order E−5
1 ,

there is a term in (B.54) behaving like

3
8
µ2
Ib

2

E5
1

= 3
2
µ4
I

E3
1
+O(E−7

1 ). (B.57)

To the next order, there will be yet another term

− 5
64

b4

E7
1
= −5

4
µ4
I

E3
1
+O(E−7

1 ). (B.58)

Altogether, these terms cancel. What remains are the original divergences, which are readily calculated
in dimensional regularization.

∫
ddp

(2π)d
√
p2 + M̃2

1 =
M̃4

1
32π2

⎛
⎝

Λ2

M̃2
1

⎞
⎠

ε

(1
ε
+ 3

2
) . (B.59)
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The divergence is also here removed by the original counterterms, what remains is

1
2

Tr lnD−1 = T

π2 ∫ dpp2 (ln(1 − e
ε+
T ) + ln(1 − e

ε−
T ))

+
M̃4

1
32π2 (ln Λ2

M2
1
+ 3

2
) +

M̃4
2

32π2 (ln Λ2

M2
2
+ 3

2
) . (B.60)

The effective potential is now fully renormalised.
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Appendix C

Mathematica numerics

The following pages contain the Mathematica [85] notebook “on numerics.nb”, which performs all the
numerics used to obtain the graphs and results herein.
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H* Some parameters *L

M = 4.

4.

m = 424.26406871192853 ä

0. + 424.264 ä

L = 600 � Exp@0.5D
363.918

Λ = 83.24661810613944`

83.2466

H = 0

0

fpi = 93.

93.

msigma = 600.

600.

mpi = 139.

139.

H* Dispersion relations *L

Disp1@p_, M1_, M2_, M3_, T_, Μ_D := Sqrt@H1 � 2L * HM1^2 + M2^2L + p^2 +

Μ^2 + Sqrt@H1 � 4L * HM1^2 - M2^2L^2 + 4 * Μ^2 * HH1 � 2L * HM1^2 + M2^2L + p^2LDD

Disp2@p_, M1_, M2_, M3_, T_, Μ_D := Sqrt@H1 � 2L * HM1^2 + M2^2L + p^2 +

Μ^2 - Sqrt@H1 � 4L * HM1^2 - M2^2L^2 + 4 * Μ^2 * HH1 � 2L * HM1^2 + M2^2L + p^2LDD

Disp3@p_, M1_, M2_, M3_, T_, Μ_D := Sqrt@p^2 + M3^2D

H* Integrands for the propagator *L
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f1c@p_, M1_, M2_, M3_, T_, Μ_D :=

1

2 Π2
p2 -

p3 J 1

2
I-M12 + M22M - 2 Μ2N

4 J 1

2
IM12 + M22M + p2 + Μ2N3

-
3 p2 Μ2

4 J 1

2
IM12 + M22M + p2 + Μ2N5�2

-
1

2
1

2
IM12 + M22M + p2 + Μ2

+

H1 � 4L * HH1 � Disp1@p, M1, M2, M3, T, ΜDL + H1 � Disp2@p, M1, M2, M3, T, ΜDLL +

H1 � 4L * HH1 � Disp1@p, M1, M2, M3, T, ΜDL - H1 � Disp2@p, M1, M2, M3, T, ΜDLL *

HH1 � 2L * HM1^2 - M2^2L + 2 Μ^2L �

Sqrt@H1 � 4L * HM1^2 - M2^2L^2 + 4 * Μ^2 * HH1 � 2L * HM1^2 + M2^2L + p^2LD
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f1t@p_, M1_, M2_, M3_, T_, Μ_D :=

1

2 Π2
p2 2 � -1 + ã

1

2
IM12+M22M+p2+Μ2-

1

4
IM12-M22M2+4

1

2
IM12+M22M+p2 Μ2

T M22 +
1

2
I-M12 - M22M -

2 Μ2 +
1

4
IM12 - M22M2

+ 4
1

2
IM12 + M22M + p2 Μ2 �

4
1

4
IM12 - M22M2

+ 4
1

2
IM12 + M22M + p2 Μ2

1

2
IM12 + M22M + p2 + Μ2 -

1

4
IM12 - M22M2

+ 4
1

2
IM12 + M22M + p2 Μ2 -

2 � -1 + ã

1

2
IM12+M22M+p2+Μ2+

1

4
IM12-M22M2+4

1

2
IM12+M22M+p2 Μ2

T

M22 +
1

2
I-M12 - M22M - 2 Μ2 -

1

4
IM12 - M22M2

+ 4
1

2
IM12 + M22M + p2 Μ2 �

4
1

4
IM12 - M22M2

+ 4
1

2
IM12 + M22M + p2 Μ2

1

2
IM12 + M22M + p2 + Μ2 +

1

4
IM12 - M22M2

+ 4
1

2
IM12 + M22M + p2 Μ2

H* The special case M1 = M2 *L
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f1dc@p_, M1_, M2_, M3_, T_, Μ_D :=

1

8 Π2
p2

2 p3 Μ2

IM12 + p2 + Μ2M3
-

3 p2 Μ2

IM12 + p2 + Μ2M5�2
-

2

M12 + p2 + Μ2

+
1

M12 + p2 + Μ2 - 2 IM12 + p2M Μ2

+

1

M12 + p2 + Μ2 + 2 IM12 + p2M Μ2

+

Μ2 -
1

M12 + p2 + Μ2 - 2 IM12 + p2M Μ2

+
1

M12 + p2 + Μ2 + 2 IM12 + p2M Μ2

�

IM12 + p2M Μ2

f1dt@p_, M1_, M2_, M3_, T_, Μ_D :=

p2 -Μ2 + IM12 + p2M Μ2 � -1 + ã
M12+p2+Μ2-2 IM12+p2MΜ2

T M12 + p2 + Μ2 - 2 IM12 + p2M Μ2 +

Μ2 + IM12 + p2M Μ2 �

-1 + ã
M12+p2+Μ2+2 IM12+p2MΜ2

T M12 + p2 + Μ2 + 2 IM12 + p2M Μ2 � 4 Π2 IM12 + p2M Μ2

H* Counterterms *L

c1c@M1_, M2_, M3_, T_, Μ_D :=

1

16 Π2

1

2
I-M12 - M22M - 3 Μ2 +

1

2
I-M12 + M22M - 2 Μ2

1

2
- 2 Log@2D - M12 LogB

L2

1

2
IM12 + M22M + Μ2

F

c1dc@M1_, M2_, M3_, T_, Μ_D := -

M12 - Μ2 H-4 + Log@16DL + M12 LogB L2

M12+Μ2
F

16 Π2

c2c@M1_, M2_, M3_, T_, Μ_D := c1c@M2, M1, M3, T, ΜD

f2c@p_, M1_, M2_, M3_, T_, Μ_D := f1c@p, M2, M1, M3, T, ΜD
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f2t@p_, M1_, M2_, M3_, T_, Μ_D := f1t@p, M2, M1, M3, T, ΜD

H* Similar definitions for the Μ-indepentend part *L

f3t@p_, M1_, M2_, M3_, T_, Μ_D :=

H1 � H2 * Π^2LL * Hp^2 � Sqrt@p^2 + M3^2DL * H1 � HExp@Sqrt@p^2 + M3^2D � TD - 1LL

c3c@M1_, M2_, M3_, T_, Μ_D := -HM3^2 � H16 * Π^2LL * H-Log@M3^2 � L^2D + 1L

c3c@M1_, M2_, 0., T_, Μ_D := 0.

H* The thermal integrals *L

i1t@M1_, M2_, M3_, T_, Μ_D :=

NIntegrate@f1t@p, M1, M2, M3, T, ΜD, 8p, 0, Infinity<, AccuracyGoal ® 8D

i1t@M1_, M2_, M3_, 0., Μ_D := 0.

i1dt@M1_, M2_, M3_, T_, Μ_D :=

NIntegrate@f1dt@p, M1, M2, M3, T, ΜD, 8p, 0, Infinity<, AccuracyGoal ® 8D

i1dt@M1_, M2_, M3_, 0., Μ_D := 0.

i2t@M1_, M2_, M3_, T_, Μ_D :=

NIntegrate@f2t@p, M1, M2, M3, T, ΜD, 8p, 0, Infinity<, AccuracyGoal ® 8D

i2t@M1_, M2_, M3_, 0., Μ_D := 0.

i3t@M1_, M2_, M3_, T_, Μ_D :=

NIntegrate@f3t@p, M1, M2, M3, T, ΜD, 8p, 0, Infinity<, AccuracyGoal ® 8D

i3t@M1_, M2_, M3_, 0., Μ_D := 0.

H* Some functions which calculate when to do a cutoff.

This is to avoid numerical noise in the counterterm-part

of the integral *L

cutoff1@M1_, M2_, M3_, T_, Μ_, steplength_D := H
q = 0;

quot = 1;

While@quot > 10^H-16L,

q = q + steplength;

k = f1c@q, M1, M2, M3, T, ΜD;

quot = Abs@k � qD
D;

Return@qDL

cutoff2@M1_, M2_, M3_, T_, Μ_, steplength_D := cutoff1@M2, M1, M3, T, Μ, steplengthD

H* Same for M1=M2 *L
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cutoff1d@M1_, M2_, M3_, T_, Μ_, steplength_D := H
q = 0;

quot = 1;

While@quot > 10^H-16L,

q = q + steplength;

k = f1dc@q, M1, M2, M3, T, ΜD;

quot = Abs@k � qD
D;

Return@qD
L

H* T-independent integrals *L

i1c@M1_, M2_, M3_, T_, Μ_D := H
NIntegrate@f1c@p, M1, M2, M3, T, ΜD,

8p, 0, cutoff1@M1, M2, M3, T, Μ, 100 000D<, AccuracyGoal ® 8D + c1c@M1, M2, M3, T, ΜD
L

i2c@M1_, M2_, M3_, T_, Μ_D := H
NIntegrate@f2c@p, M1, M2, M3, T, ΜD,

8p, 0, cutoff2@M1, M2, M3, T, Μ, 100 000D<, AccuracyGoal ® 8D + c2c@M1, M2, M3, T, ΜD
L

i1dc@M1_, M2_, M3_, T_, Μ_D := H
NIntegrate@f1dc@p, M1, M2, M3, T, ΜD,

8p, 0, cutoff1d@M1, M2, M3, T, Μ, 100 000D<, AccuracyGoal ® 8D + c1dc@M1, M2, M3, T, ΜD
L

H* Tr Log D¯¹ in the effective potential *L

lfc@p_, M1_, M2_, M3_, T_, Μ_D := HH1 � H2 * Π^2LL * p^2 *

HDisp1@p, M1, M2, M3, T, ΜD + Disp2@p, M1, M2, M3, T, ΜD + HM - 2L * Disp3@p, M1, M2, M3, T, ΜD -

Sqrt@p^2 + M1^2D - Sqrt@p^2 + M2^2D - HM - 2L * Sqrt@p^2 + M3^2DLL

cutoff3@M1_, M2_, M3_, T_, Μ_, steplength_D := H
q = 0;

quot = 1;

While@quot > 10^H-8L,

q = q + steplength;

k = lfc@q, M1, M2, M3, T, ΜD;

quot = Abs@k � qD
D;

Return@qDL

lcc@M1_, M2_, M3_, T_, Μ_D := -HM1^4 � H32 * Π^2LL * HLog@L^2 � M1^2D + H3 � 2LL -

HM2^4 � H32 * Π^2LL * HLog@L^2 � M2^2D + H3 � 2LL -

HM - 2L * HM3^4 � H32 * Π^2LL * HLog@L^2 � M3^2D + H3 � 2LL

liic@M1_, M2_, M3_, T_, Μ_D :=

NIntegrate@lfc@p, M1, M2, M3, T, ΜD, 8p, 0, cutoff3@M1, M2, M3, T, Μ, 100D<D +

lcc@M1, M2, M3, T, ΜD
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liit@M1_, M2_, M3_, T_, Μ_D :=

HHT � Π^2L * NIntegrate@p^2 * HLog@1 - Exp@-Disp1@p, M1, M2, M3, T, ΜD � TDD +

Log@1 - Exp@-Disp2@p, M1, M2, M3, T, ΜD � TDD +

HM - 2L * Log@1 - Exp@-Disp3@p, M1, M2, M3, T, ΜD � TDDL, 8p, 0, Infinity<DL

liit@M1_, M2_, M3_, 0., Μ_D := 0.

ldii@M1_?NumericQ, M2_?NumericQ, M3_?NumericQ, T_?NumericQ, Μ_?NumericQD :=

Hliic@M1, M2, M3, T, ΜD + liit@M1, M2, M3, T, ΜDL

H* Propagator *L

d11@M1_?NumericQ, M2_?NumericQ, M3_?NumericQ, T_?NumericQ, Μ_?NumericQD :=

Hi1t@M1, M2, M3, T, ΜD + i1c@M1, M2, M3, T, ΜDL

d22@M1_?NumericQ, M2_?NumericQ, M3_?NumericQ, T_?NumericQ, Μ_?NumericQD :=

Hi2t@M1, M2, M3, T, ΜD + i2c@M1, M2, M3, T, ΜDL

d33@M1_?NumericQ, M2_?NumericQ, M3_?NumericQ, T_?NumericQ, Μ_?NumericQD :=

Hi3t@M1, M2, M3, T, ΜD + c3c@M1, M2, M3, T, ΜDL

H* M1=M2-Degenerate propagator *L

dd11@M1_?NumericQ, M2_?NumericQ, M3_?NumericQ, T_?NumericQ, Μ_?NumericQD :=

Hi1dt@M1, M2, M3, T, ΜD + i1dc@M1, M2, M3, T, ΜDL

H* Ρ^2 and masses calculated from the stationarity condition *L

dens@M1_, Μ_D := HM � H2 * ΛLL * HM1^2 - Μ^2L

m1@M1_, pot_D := Re@m^2D + 1.5 * HM1^2 - pot^2L

m2@M1_, pot_D := Re@m^2D + 0.5 * HM1^2 - pot^2L

m3@M1_, pot_D := m2@M1, potD

H* the masses calculated from Ρ *L

m1@density_D := Re@m^2D + H3 * Λ � ML * density^2

m2@density_D := Re@m^2D + HΛ � ML * density^2

m3@density_D := m2@densityD

H* Perturbation theory, Iterate@xD==x implies a solution to

the gap equations. vec is a vector of the form 8M1,M2,M3<
The stationarity condition is implied here. weight says

how slowly to step in the new direction. This is necessary

as our theory is highly non-perturbative *L
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Iterate@vec_, temp_, pot_, weight_D := H
l1 = d11@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD;

l2 = d22@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD;

l3 = d33@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD;

new = 8Re@Sqrt@m1@vec@@1DD, potD + H3 * Λ � ML * Hl1L + HΛ � ML * Hl2L + HΛ � ML * HM - 2L * l3DD,

Re@Sqrt@m2@vec@@1DD, potD + HΛ � ML * l1 + H3 * Λ � ML * l2 + HΛ � ML HM - 2L * l3DD,

Re@Sqrt@m3@vec@@1DD, potD + HΛ � ML * l1 + HΛ � ML * l2 + Λ * l3DD<;

Return@H1 � weightL * HHweight - 1L * vec + newLD
L

H* A similar function, but here given some Ρ, this is

useful for drawing a graph of the effective potential *L

RhoIterate@vec_, temp_, pot_, density_, weight_D := H
l1 = Round@d11@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD, 10^-3D;

l2 = Round@d22@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD, 10^-3D;

l3 = Round@d33@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD, 10^-3D;

new = 8Re@Sqrt@m1@densityD + H3 * Λ � ML * Hl1L + HΛ � ML Hl2L + HΛ � ML * HM - 2L * l3DD,

Re@Sqrt@m2@densityD + HΛ � ML * l1 + H3 * Λ � ML * l2 + HΛ � ML HM - 2L * l3DD,

Re@Sqrt@m3@densityD + HΛ � ML * l1 + HΛ � ML * l2 + Λ * l3DD
<;

Return@H1 � weightL * HHweight - 1L * vec + newLD
L

PhiIterate@vec_, temp_, pot_, density_?NumericQ, weight_D := H
l1 = d33@vec@@1DD, vec@@2DD, vec@@1DD, temp, potD;

l2 = dd11@vec@@2DD, vec@@2DD, vec@@3DD, temp, potD;

l3 = d33@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD;

new = 8Re@Sqrt@m1@densityD + H3 * Λ � ML * Hl1L + H2 * Λ � ML Hl2L + HΛ � ML * HM - 3L * l3DD,

Re@Sqrt@m2@densityD + HΛ � ML * Hl1L + H4 * Λ � ML Hl2L + HΛ � ML * HM - 3L * l3DD,

Re@Sqrt@m2@densityD + HΛ � ML * Hl1L + H2 * Λ � ML Hl2L + HΛ � ML * HM - 1L * l3DD
<;

Return@H1 � weightL * HHweight - 1L * vec + newLD
L

H* A function which solves the gap equations for a range of

densities, produces a table with masses for each density *L

TrackRho@startvec_, temp_, pot_, rho0_, rho1_, rhostep_D := H
curr = startvec;

tmp = 8<;

r = rho0;

While@r £ rho1,

curr = 8p1, p2, p3< �. FindRoot@RhoIterate@8p1, p2, p3<, temp, pot, r, 10D � 8p1, p2, p3<,

88p1, curr@@1DD<, 8p2, curr@@2DD<, 8p3, curr@@3DD<<D;

Print@8r, curr<D;

tmp = Append@tmp, 8r, curr<D;

r += rhostep

D;

Return@tmpD
L
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H* Solves the gap equations using Iterate@vecD�vec as its condition,

p1max is used to set the maximum value which M1 is allowed to take.

This is to find the highly unstable second solution to the gap

equations in the second-order phase transition *L

FinalRun@start_, temp_, pot_, OptionsPattern@DD :=

Return@8p1, p2, p3< �. FindRoot@Iterate@8p1, p2, p3<, temp, pot, 10D � 8p1, p2, p3<,

88p1, start@@1DD, 0, OptionValue@p1maxD<, 8p2, start@@2DD, 0, Infinity<,

8p3, start@@3DD, 0, Infinity<<, AccuracyGoal ® 4, PrecisionGoal ® 4DD

FinalPhi@start_, temp_?NumericQ, pot_?NumericQD :=

Return@8p1, p2, p3, r< �. FindRoot@8PhiIterate@8p1, p2, p3<, temp, pot, r, 10D � 8p1, p2, p3<,

r * Hp1^2 - H2 * Λ � ML * r^2L � H<,

88p1, start@@1DD, 0, Infinity<, 8p2, start@@2DD, 0, Infinity<, 8p3, start@@3DD, 0,

Infinity<, 8r, start@@4DD, 0, Infinity<<, AccuracyGoal ® 4, PrecisionGoal ® 4

DD

Options@FinalRunD = 8p1max ® Infinity<
8p1max ® ¥<

H* Solves the gap-equations for a range of different temperatures,

producing a table with the results. *L

TempSweep@vec_, t1_, t2_, step_, pot_, OptionsPattern@DD := H
tmp = 8<;

curr = vec;

etemp = t1;

While@etemp <= t2, H
curr = FinalRun@curr, etemp, pot, p1max -> OptionValue@p1maxDD;

Print@etemp, " ", currD;

tmp = Append@tmp, 8etemp, curr<D;

etemp += step;

LD;

Return@tmpD
L

Options@TempSweepD = 8p1max ® Infinity<
8p1max ® ¥<

H* Same as above, but in reverse. *L
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RevTempSweep@vec_, t1_, t2_, step_, pot_, OptionsPattern@DD := H
tmp = 8<;

curr = vec;

etemp = t1;

While@etemp >= t2, H
curr = FinalRun@curr, etemp, pot, p1max ® OptionValue@p1maxDD;

Print@etemp, " ", currD;

tmp = Append@tmp, 8etemp, curr<D;

etemp -= step;

LD;

Return@tmpD
L

Options@RevTempSweepD = 8p1max ® Infinity<
8p1max ® ¥<

PotSweep@vec_, temp_, pot1_, pot2_, step_D := H
tmp = 8<;

curr = vec;

epot = pot1;

While@epot £ pot2, H
curr = FinalRun@curr, temp, epotD;

Print@epot, " ", currD;

tmp = Append@tmp, 8epot, curr<D;

epot += step;

LD;

Return@tmpD
L

H* Calculates the effective potential *L

EffPot@vec_, temp_, pot_, density_D := H
l1 = d11@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD;

l2 = d22@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD;

l3 = d33@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD;

condensate = HH1 � 2L * HRe@m^2D - pot^2L * density^2 + HΛ � H4 * MLL * density^4L;

hartreeloops =

HΛ � H4 * MLL * Hl1 + l2 + HM - 2L * l3L^2 + 2 * HΛ � H4 * MLL * Hl1^2 + l2^2 + HM - 2L * l3^2L;

setrace = -H1 � 2L * HHvec@@1DD^2 - Re@m^2D - H3 * Λ � ML * density^2L * l1 +

Hvec@@2DD^2 - Re@m^2D - HΛ � ML * density^2L * l2 +

HM - 2L * Hvec@@3DD^2 - Re@m^2D - HΛ � ML * density^2L * l3L;

logdressed = 0.5 * ldii@vec@@1DD, vec@@2DD, vec@@3DD, temp, potD;

Return@condensate + hartreeloops + setrace + logdressedD
L

H* Does the same as final run, but for M1=M2 HΡ=0L *L
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DegenFinalRun@M1_, M3_, temp_, pot_D := H
8p1, p3< �. FindRoot@8Hp1^2 � Re@m^2D + H4 * Λ � ML * dd11@p1, p1, p3, temp, potD +

HΛ � ML * HM - 2L * d33@p1, p1, p3, temp, potDL,

Hp3^2 == Re@m^2D + H2 * Λ � ML * dd11@p1, p1, p3, temp, potD +

Λ * d33@p1, p1, p3, temp, potDL<, 88p1, M1, 0., Infinity<, 8p3, M3, 0., Infinity<<D
L

DegenTempSweep@M1_, M3_, t1_, t2_, tstep_, pot_D := H
tmp = 8<;

etemp = t1;

curr = 8M1, M3<;

While@etemp £ t2,

curr = DegenFinalRun@curr@@1DD, curr@@2DD, etemp, potD;

Print@etemp, " ", currD;

tmp = Append@tmp, 8etemp, 8curr@@1DD, curr@@1DD, curr@@2DD<<D;

etemp += tstep

D;

Return@tmpD
L

DegenEffPot@M1_, M3_, temp_, pot_D := H
l1 = dd11@M1, M1, M3, temp, potD;

l2 = l1;

l3 = d33@M1, M1, M3, temp, potD;

density = 0;

hartreeloops =

HΛ � H4 * MLL * Hl1 + l2 + HM - 2L * l3L^2 + 2 * HΛ � H4 * MLL * Hl1^2 + l2^2 + HM - 2L * l3^2L;

setrace = -H1 � 2L * H2 * HM1^2 - Re@m^2DL * l1 + HM - 2L * HM3^2 - Re@m^2DL * l3L;

logdressed = 0.5 * ldii@M1, M1, M3, temp, potD;

Return@hartreeloops + setrace + logdressedD
L

H* Degenerate and Μ=0 *L

DegenZeroFinalRun@M1_, temp_, pot_D := H
p1 �. FindRoot@

p1^2 � Re@m^2D + HHM + 2L � ML * Λ * d33@p1, p1, p1, temp, potD, 8p1, M1, 0, Infinity<D
L
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DegenZeroTempSweep@M1_, t1_, t2_, tstep_D := H
tmp = 8<;

curr = M1;

etemp = t1;

While@etemp <= t2,

H
curr = DegenZeroFinalRun@curr, etemp, 0.D;

Print@etemp, " ", currD;

tmp = Append@tmp, 8etemp, 8curr, curr, curr<<D;

etemp += tstep

L
D;

Return@tmpD
L

DegenZeroEffPot@M1_, temp_, pot_D := H
l3 = d33@M1, M1, M1, temp, potD;

l1 = l3;

l2 = l3;

density = 0;

condensate = 0;

hartreeloops =

HΛ � H4 * MLL * Hl1 + l2 + HM - 2L * l3L^2 + 2 * HΛ � H4 * MLL * Hl1^2 + l2^2 + HM - 2L * l3^2L;

setrace = -H1 � 2L * HHM1^2 - Re@m^2D - H3 * Λ � ML * densityL * l1 +

HM1^2 - Re@m^2D - HΛ � ML * densityL * l2 +

HM - 2L * HM1^2 - Re@m^2D - HΛ � ML * densityL * l3L;

logdressed = 0.5 * ldii@M1, M1, M1, temp, potD;

Return@condensate + hartreeloops + setrace + logdressedD
L

H* Maps out the phase diagram and returns a table with the results.

It assumes that the critical temperature is an increasing function

of potential *L
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MapEffPot@normvec_, degenvec_, temp_, tstep_, pot1_, pot2_, potstep_D := H
tmp = 8<;

epot = pot1;

etemp = temp;

norm = normvec;

dege = degenvec;

While@epot <= pot2,

norm = FinalRun@norm, etemp, epotD;

dege = DegenFinalRun@dege@@1DD, dege@@2DD, etemp, epotD;

While@EffPot@norm, etemp, epot, Sqrt@dens@norm@@1DD, epotDDD £

DegenEffPot@dege@@1DD, dege@@2DD, etemp, epotD,

etemp += tstep;

norm = FinalRun@norm, etemp, epotD;

dege = DegenFinalRun@dege@@1DD, dege@@2DD, etemp, epotD;

D;

tmp = Append@tmp, 8epot, etemp<D;

Print@epot, " ", etempD;

H*Print@norm," ",degeD;*L
epot += potstep;

dege@@1DD += potstep;

D;

Print@norm, degeD;

Return@tmpD
L

H* A filter removing bad solutions returned by FindRoot. *L

FilterSweep@sweep_, pot_, accuracy_D := H
tmp = 8<;

For@i = 1, i <= Length@sweepD, i++,

If@Max@Abs@sweep@@iDD@@2DD - Iterate@sweep@@iDD@@2DD, sweep@@iDD@@1DD, pot, 1DDD <

accuracy,

tmp = Append@tmp, sweep@@iDDDDD;

Return@tmpD
L

FilterRSweep@sweep_, temp_, pot_, accuracy_D := H
tmp = 8<;

For@i = 1, i <= Length@sweepD, i++,

If@
Max@Abs@sweep@@iDD@@2DD - RhoIterate@sweep@@iDD@@2DD, temp, pot, sweep@@iDD@@1DD, 1DDD <

accuracy,

tmp = Append@tmp, sweep@@iDDDDD;

Return@tmpD
L

H* Generates a plot of quasiparticle masses as a function of temperature at Μ=0 *L

H* We start by following the solution up past the turning point*L

ts0 = Quiet@TempSweep@8600., 0., 0.<, 0., 240., 1., 0.DD;
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H* We filter the results so that invalid solutions at large T disappear *L

cleants0 = FilterSweep@ts0, 0., 2.D;

H* We now fill in the second half of the

curve by sweepiing backwards and requiring that M1 < 375 *L

revts0 = RevTempSweep@8352.42460588925564`, 211.71435917141304`, 211.71436284001194`<,

234., 130., 0.01, 0., p1max ® 375D;

H* We filter these results as well to remove bad solutions. We

have to use a coarse filter as these solutions are unstable. *L

cleanrevts0 = FilterSweep@revts0, 0., 5.D;

H* now we map out the solutions where Ρ=0 *L

lowts0 = DegenZeroTempSweep@1., 132., 300., 1.D;

H* Join them together *L

fullsweep0 = Join@cleants0, cleanrevts0, lowts0D;

H* and plot the results. *L

Show@ListPlot@
8Table@8fullsweep0@@iDD@@1DD, fullsweep0@@iDD@@2DD@@1DD<, 8i, Length@fullsweep0D<D,

Table@8fullsweep0@@iDD@@1DD, fullsweep0@@iDD@@2DD@@2DD<, 8i, Length@fullsweep0D<D<,

Joined ® True, PlotRange ® 880, 300<, 80, 620.<<, Frame ® True,

PlotStyle ® 88Black, Thick<, 8Darker@GrayD, Thick, Dashed<<,

FrameLabel ® 8"T HMeVL", Graphics@Text@"Mi HMeVL", 80, 0<, 80, 0<, 80, 1<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<,

BaseStyle ® 8FontSize ® 14<, RotateLabel ® FalseD,

Graphics@Text@"M1", 8231, 510<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

Graphics@Text@"M2", 8120, 180<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D
D

H* To join plot the condensate we calculate it

from the stationarity condition in the two first cases.

It is zero in the results found by DegenZeroTempSweep *L

stat = Join@cleants0, cleanrevts0D;

ListPlot@
Join@Table@8stat@@iDD@@1DD, Sqrt@dens@stat@@iDD@@2DD@@1DD, 0.DD<, 8i, Length@statD<D,

88132., 0.<, 8300., 0.<<D, Joined ® True, PlotRange ® 880, 300<, 80, 96.1<<,

Frame ® True, PlotStyle ® 8Black, Thick<, FrameLabel ® 8"T HMeVL", Graphics@
Text@"Ρ HMeVL", 80, 0<, 80, 0<, 80, 1<D, BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<,

BaseStyle ® 8FontSize ® 14<, RotateLabel ® FalseD

H* Due to the tachyonic behaviour at low T,

we find low-temperature solutions by sweeping backwards from T=50 *L

lowrevts100 = Quiet@RevTempSweep@8620., 110., 60.<, 50., 0., 1., 100.DD;
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cleanlowrevts100 =

Quiet@FilterSweep@Table@lowrevts100@@-iDD, 8i, Length@lowrevts100D<D, 100., 0.001DD

H* And forwards from T=50 *L

ts100 = Quiet@TempSweep@
8615.2804159630317`, 102.49303151708844`, 64.5825666077857`<, 50., 240., 1., 100.DD;

cleants100 = FilterSweep@ts100, 100., 0.001D

H* backwards again *L

hlowrevts100 =

Quiet@RevTempSweep@8368.64928767698467`, 235.47439469801859`, 221.1442956389476`<,

237., 140., 1., 100., p1max ® 400.DD;

cleanhlowrevts100 = Quiet@cleanhlowrevts100 = FilterSweep@hlowrevts100, 100., 0.001DD

H* And forwards with Ρ=0 *L

degents100 =

Quiet@DegenTempSweep@100.1602584636055`, 26.144608461478125`, 140., 300., 1., 100.DD;

fullts100 = Join@cleanlowrevts100, cleants100, cleanhlowrevts100, degents100D;

H* Plot the mass modes *L

Show@ListPlot@8Table@8fullts100@@iDD@@1DD, Re@Sqrt@fullts100@@iDD@@2DD@@1DD^2 - 10 000DD<,

8i, Length@fullts100D<D, Table@8fullts100@@iDD@@1DD,

Re@Sqrt@fullts100@@iDD@@2DD@@2DD^2 - 10 000.DD<, 8i, Length@fullts100D<D,

Table@8fullts100@@iDD@@1DD, Re@Sqrt@fullts100@@iDD@@2DD@@3DD^2DD<,

8i, Length@fullts100D<D<, Joined ® True, PlotStyle ®

88Black, Thick<, 8Darker@GrayD, Thick, Dashed<, 8Lighter@GrayD, Thick, DotDashed<<,

PlotRange ® 880, 300<, 80, 630<<, Frame ® True,

BaseStyle ® 8FontSize ® 14<, RotateLabel ® False,

FrameLabel ® 8"T HMeVL", Graphics@Text@"Mi HMeVL", 80, 0<, 80, 0<, 80, 1<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<D,

Graphics@Text@"M1", 8230, 550<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<,

ImageSize ® 70D,

Graphics@Text@"M2", 8150, 210<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

Graphics@Text@"M3", 8100, 50<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<, ImageSize ® 70DD

H* plot the quasiparticle masses *L
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ShowAListPlot@8Table@8fullts100@@iDD@@1DD,

Re@Disp1@0., fullts100@@iDD@@2DD@@1DD, fullts100@@iDD@@2DD@@2DD, 0., 0., 100.DD<,

8i, Length@fullts100D<D, Table@8fullts100@@iDD@@1DD,

Re@Disp2@0., fullts100@@iDD@@2DD@@1DD, fullts100@@iDD@@2DD@@2DD, 0., 0., 100.DD<, 8i,

Length@fullts100D<D,

Table@8fullts100@@iDD@@1DD, fullts100@@iDD@@2DD@@3DD<, 8i, Length@fullts100D<D<,

Joined ® True, PlotStyle ® 88Black, Thick<, 8Darker@GrayD, Thick, Dashed<,

8Lighter@GrayD, Thick, DotDashed<<, PlotRange ® 880, 300<, 80, 700<<,

Frame ® True, BaseStyle ® 8FontSize ® 14<, RotateLabel ® False,

FrameLabel ® 8"T HMeVL", Graphics@Text@"MΠ HMeVL", 80, 0<, 80, 0<, 80, 1<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<D,

Graphics@Text@"Π-", 8270, 400<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<,

ImageSize ® 70D,

GraphicsATextA"Π0", 8270, 290<, 80, 0<, 81, 0<E,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70E,

Graphics@Text@"Π+", 8270, 140<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D
E

H* Plot the phase diagram *L

fd = Quiet@MapEffPot@8477.2494878304713`, 217.58648328062264`, 217.58673492040526`<,

8164.0583723748556`, 164.0583723748556`<, 220., 0.1, 0.1, 300., 0.1DD;

fdh = ListPlot@fd, Joined ® True, PlotRange ® 880, 300<, 80, 300<<,

Frame ® True, PlotStyle ® 8Black, Thick<, FrameLabel ®

8"Μ HMeVL", Graphics@Text@"T HMeVL", 80, 0<, 80, 0<, 80, 1<D, BaseStyle ® 8FontSize ® 14<,

ImageSize ® 40D<, BaseStyle ® 8FontSize ® 14<, RotateLabel ® FalseD

H* The effective potential *L

H* Solve the gap equations for fixed Ρ *L

m220 = Table@Print@rD;

8r, 8p1, p2, p3< �. FindRoot@RhoIterate@8p1, p2, p3<, 220., 100., r, 10D � 8p1, p2, p3<,

88p1, 200 + 5 * r<, 8p2, 200.1 + r<, 8p3, 100.1 + r<<D<, 8r, 0., 120., 1.<D

m230 = Table@Print@rD;

8r, 8p1, p2, p3< �. FindRoot@RhoIterate@8p1, p2, p3<, 230., 100., r, 10D � 8p1, p2, p3<,

88p1, 200 + 5 * r<, 8p2, 200.1 + r<, 8p3, 100.1 + r<<D<, 8r, 0., 120., 1.<D

m240 = Table@Print@rD;

8r, 8p1, p2, p3< �. FindRoot@RhoIterate@8p1, p2, p3<, 240., 100., r, 10D � 8p1, p2, p3<,

88p1, 200 + 5 * r<, 8p2, 200.1 + r<, 8p3, 100.1 + r<<D<, 8r, 0., 120., 1.<D

H* Filter *L

mc220 = Quiet@FilterRSweep@m220, 220., 100., 0.0003DD;

mc230 = Quiet@FilterRSweep@m230, 230., 100., 0.0003DD;

mc240 = FilterRSweep@m240, 240., 100., 0.0003D;

H* calculate the effective potential from these solutions *L
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ep0220 = Quiet@EffPot@mc220@@1DD@@2DD, 220., 100., mc220@@1DD@@1DDDD;

ep0230 = Quiet@EffPot@mc230@@1DD@@2DD, 230., 100., mc230@@1DD@@1DDDD;

ep0240 = Quiet@EffPot@mc240@@1DD@@2DD, 240., 100., mc240@@1DD@@1DDDD;

H* Plot *L

ShowAQuietAListPlotA
8Table@8mc220@@iDD@@1DD, EffPot@mc220@@iDD@@2DD, 220., 100., mc220@@iDD@@1DDD - ep0220<,

8i, Length@mc220D<D, Table@8mc230@@iDD@@1DD,

EffPot@mc230@@iDD@@2DD, 230., 100., mc230@@iDD@@1DDD - ep0230<, 8i, Length@mc230D<D,

Table@8mc240@@iDD@@1DD, EffPot@mc240@@iDD@@2DD, 240., 100., mc240@@iDD@@1DDD - ep0240<,

8i, Length@mc240D<D<, Joined ® True, PlotStyle ®

88Black, Thick<, 8Darker@GrayD, Thick, Dashed<, 8Lighter@GrayD, Thick, DotDashed<<,

PlotRange ® 880, 100<, 8-2.5 * 10^7, 10^8<<, Frame ® True,

BaseStyle ® 8FontSize ® 14<, RotateLabel ® False,

FrameLabel ® 9"Ρ HMeVL", GraphicsATextA"G@ΡD HMeVL4", 80, 0<, 80, 0<, 80, 1<E,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40E=EE,

Graphics@Text@"T=220", 850, -10^7<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

Graphics@Text@"T=230", 868, 1.5 * 10^7<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

Graphics@Text@"T=240", 878, 8 * 10^7<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D
E

H* Large-N *L

H* Chiral Limit Parameters *L

L = 139 * Exp@-0.5D
84.3078

H* Calculate the density *L

RhoC@temp_, pot_D := Re@Sqrt@HM � ΛL * Hpot^2 - Re@m^2D - Λ * d33@pot, pot, pot, temp, potDLDD

H* Masses *L

MassC@temp_, pot_D := H
r = RhoC@temp, potD;

If@r == 0., Return@
Re@p1 �. FindRoot@p1^2 - m^2 � Λ * d33@p1, p1, p1, temp, potD, 8p1, 150, 0, Infinity<DDD,

Return@Abs@potDDD
L

Mass1C@temp_, pot_D := H
r = RhoC@temp, potD;

If@r � 0., p1 = MassC@temp, potD;

Return@Re@Sqrt@m^2 + Λ * d33@p1, p1, p1, temp, potDDDD, Return@potDD
L
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Mass2C@temp_, pot_D := H
r = RhoC@temp, potD;

If@r � 0., p1 = MassC@temp, potD;

Return@Re@Sqrt@m^2 - pot^2 + Λ * d33@p1, p1, p1, temp, potDDDD,

Re@Sqrt@m^2 - pot^2 + H3 * Λ � ML * r^2 + Λ * d33@pot, pot, pot, temp, potDDDD
L

Mass3C@temp_, pot_D := H
Sqrt@MassC@temp, potD^2 - pot^2D

L

H* Plot the masses *L

Show@Quiet@Plot@8MassC@t, 100.D, Mass2C@t, 100.D, Mass3C@t, 100.D<, 8t, 0, 250<,

PlotRange ® 880, 250<, 80, 700<<, PlotStyle ®

88Black, Thick<, 8Darker@GrayD, Thick, Dashed<, 8Lighter@GrayD, Thick, DotDashed<<,

Frame ® True, BaseStyle ® 8FontSize ® 14<, RotateLabel ® False,

FrameLabel ® 8"T HMeVL", Graphics@Text@"MiHTL HMeVL", 80, 0<, 80, 0<, 80, 1<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<DD,

Graphics@Text@"M1", 8150, 550<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<,

ImageSize ® 70D,

Graphics@Text@"M2", 8180, 150<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

Graphics@Text@"M3", 8230, 50<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D
D

Plot@RhoC@t, 100.D, 8t, 0, 250<, PlotRange ® 880, 250<, 80, 110<<, PlotStyle ®

88Black, Thick<, 8Darker@GrayD, Thick, Dashed<, 8Lighter@GrayD, Thick, DotDashed<<,

Frame ® True, BaseStyle ® 8FontSize ® 14<, RotateLabel ® False,

FrameLabel ® 8"T HMeVL", Graphics@
Text@"ΡHTL HMeVL", 80, 0<, 80, 0<, 80, 1<D, BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<D

H* Finds the critical temperature *L

RhoCritC@pot_D := T �. FindRoot@pot^2 - Re@m^2D - Λ * d33@pot, pot, pot, T, potD, 8T, 155<D

H* Plot the phase diagram *L

fdnc = Plot@RhoCritC@xD, 8x, 0, 300<, PlotRange ® 880, 300<, 80, 300<<,

Frame ® True, PlotStyle ® 8Darker@GrayD, Thick, Dashed<, FrameLabel ®

8"Μ HMeVL", Graphics@Text@"T HMeVL", 80, 0<, 80, 0<, 80, 1<D, BaseStyle ® 8FontSize ® 14<,

ImageSize ® 40D<, BaseStyle ® 8FontSize ® 14<, RotateLabel ® FalseD

H* Calculate the critical exponent by linear fit to a log-log table *L

CritExp@pot_D := H
rhc = RhoCritC@potD;

Return@CoefficientList@Fit@Table@8Log@Abs@t - rhcDD, Log@RhoC@t, potDD<,

8t, 0.99 * rhc, 0.9999 * rhc, 0.0001 * rhc<D, 81, x<, xD, xD@@2DDD
L

ce = Quiet@Table@CritExp@sD, 8s, 1., 300., 1.<DD;

H* some statistics *L
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Mean@ceD
0.49902

StandardDeviation@ceD
0.000139096

H* Physical Point *L

mh = Sqrt@-0.5 * H600^2 - 3 * 139^2LD
0. + 388.611 ä

Λh = M * H600^2 - 139^2L � 93^2

157.558

H = 93 * 139^2

1 796 853

RhoP@temp_, pot_D := HM � ΛL * Hpot^2 - Re@mh^2DL - H^2 � pot^4 - M * d33@pot, pot, pot, temp, potD

RhoCritP@pot_D :=

If@RhoP@0., potD > 0, T �. FindRoot@RhoP@T, potD, 8T, 50., 0., Infinity<D, 0.D

MassP@temp_, pot_D := H
r = Re@Sqrt@RhoP@temp, potDDD;

If@r � 0., Return@
Re@p1 �. FindRoot@p1^2 == mh^2 + HΛ � ML * HH^2 � p1^4L + Λ * d33@p1, p1, p1, temp, potD,

8p1, 150., 0., Infinity<DDD, Return@potDD
L

Mass1P@temp_, pot_D := H
r = Re@Sqrt@RhoP@temp, potDDD;

If@r � 0., p1 = MassP@temp, potD;

Return@Re@Sqrt@mh^2 + H3 * Λ � ML * HH^2 � p1^4L + Λ * d33@p1, p1, p1, temp, potDDDD,

tw = Re@mh^2 + Λ * d33@pot, pot, pot, temp, potDD; Return@
Sqrt@3.5 * pot^2 - tw + 0.5 * Sqrt@H5 * pot^2 - 2 * twL^2 - 24 * HΛ � ML * HH^2 � pot^2LDDDD

L

MassPi1@temp_, pot_D := H
r = Re@Sqrt@RhoP@temp, potDDD;

If@r � 0., Return@MassP@temp, potD + potD,

tw = Re@mh^2 + Λ * d33@pot, pot, pot, temp, potDD; Return@
Sqrt@3.5 * pot^2 - tw - 0.5 * Sqrt@H5 * pot^2 - 2 * twL^2 - 24 * HΛ � ML * HH^2 � pot^2LDDDD

L

MassPi2@temp_, pot_D := H
r = Re@Sqrt@RhoP@temp, potDDD;

If@r � 0., Return@MassP@temp, potD - potD, Return@0.DD
L

H* Masses as a function of Μ *L
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ShowAPlot@8Mass1P@0., tD, MassPi1@0., tD, MassPi2@0., tD, MassP@0., tD<,

8t, 0, 250<, PlotRange ® 880, 250<, 80, 1020<<,

PlotStyle ® 88Black, Thick<, 8Darker@GrayD, Thick, Dashed<,

8Lighter@GrayD, Thick, DotDashed<, 8Gray, Thick, Dotted<<,

Frame ® True, BaseStyle ® 8FontSize ® 14<, RotateLabel ® False,

FrameLabel ® 8"Μ HMeVL", Graphics@Text@"MHΜL HMeVL", 80, 0<, 80, 0<, 80, 1<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<D,

Graphics@Text@"Σ", 8200, 750<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<,

ImageSize ® 70D,

Graphics@Text@"Π-", 8200, 300<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

GraphicsATextA"Π0", 8200, 140<, 80, 0<, 81, 0<E,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70E,

Graphics@Text@"Π+", 8200, 40<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D
E

H* Mass modes at Μ=200 as a function of temperature *L

ShowAPlot@8Mass1P@t, 200.D, MassPi1@t, 200.D, MassPi2@t, 200.D, MassP@t, 200.D<,

8t, 0, 250<, PlotRange ® 880, 250<, 80, 1020<<,

PlotStyle ® 88Black, Thick<, 8Darker@GrayD, Thick, Dashed<,

8Lighter@GrayD, Thick, DotDashed<, 8Gray, Thick, Dotted<<,

Frame ® True, BaseStyle ® 8FontSize ® 14<, RotateLabel ® False,

FrameLabel ® 8"T HMeVL", Graphics@Text@"MHTL HMeVL", 80, 0<, 80, 0<, 80, 1<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<D,

Graphics@Text@"Σ", 850, 650<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<,

ImageSize ® 70D,

Graphics@Text@"Π-", 850, 300<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

GraphicsATextA"Π0", 850, 140<, 80, 0<, 81, 0<E,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70E,

Graphics@Text@"Π+", 850, 50<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D
E

H* The cross-over of the condensates *L
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Show@Plot@8Re@Sqrt@RhoP@0., tDDD, H � HMassP@0., tD^2L<, 8t, 120., 250<,

PlotRange ® 88120, 250<, 80, 100<<, PlotStyle ®

88Black, Thick<, 8Darker@GrayD, Thick, Dashed<, 8Lighter@GrayD, Thick, DotDashed<<,

Frame ® True, BaseStyle ® 8FontSize ® 14<, RotateLabel ® False,

FrameLabel ® 8"Μ HMeVL", Graphics@Text@"ΦHΜL HMeVL", 80, 0<, 80, 0<, 80, 1<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<D,

Graphics@Text@"Ρ", 8135, 15<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

Graphics@Text@"Φ", 8135, 85<, 80, 0<, 81, 0<D, BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D
D

Ρ

Φ

120 140 160 180 200 220 240
0

20

40

60

80

100

Μ HMeVL

Φ
HΜ

LH
M

eV
L

H* Phase diagram *L

fdnp = Quiet@Plot@RhoCritP@xD, 8x, 0, 300<, PlotRange ® 880, 300<, 80, 300<<,

Frame ® True, PlotStyle ® 8Lighter@GrayD, Thick, DotDashed<,

FrameLabel ® 8"Μ HMeVL", Graphics@Text@"T HMeVL", 80, 0<, 80, 0<, 80, 1<D, BaseStyle ®

8FontSize ® 14<, ImageSize ® 40D<, BaseStyle ® 8FontSize ® 14<, RotateLabel ® FalseDD

H* combined phase diagram *L

Show@fdh, fdnc, fdnpD

H* 3d plot of the condensate *L

Plot3D@Re@Sqrt@RhoP@t, pDDD, 8t, 0, 300<, 8p, 0, 300<, ColorFunction ® "PigeonTones",

AxesLabel ® 8"THMeVL", "ΜIHMeVL", "Ρ0HMeVL"<D

H* Hartree approximation at the physical point. *L

L = Exp@0.5 * HHmsigma ^2 * HLog@msigma ^2D - 1L - mpi^2 * HLog@mpi^2D - 1LL � Hmsigma ^2 - mpi^2LLD
395.389

8H, m, Λ< = 8Re@HpD, mp, Re@ΛpD< �. FindRoot@8Hp == fpi * Hmsigma ^2 - H2 * Λp � ML * fpi^2L,

msigma ^2 == mp^2 + H3 * Λp � ML * fpi^2 +

H3 * Λp � ML * d33@0., 0., msigma, 0., 0.D + HM - 1L * HΛp � ML * d33@0., 0., mpi, 0., 0.D,

mpi^2 == mp^2 + HΛp � ML * Hfpi^2L + HΛp � ML * d33@0., 0., msigma, 0., 0.D +

HM + 1L * HΛp � ML * d33@0., 0., mpi, 0., 0.D<, 88Hp, 1 000 000<, 8mp, ä * 400<, 8Λp, 80.<<D
91.79685 ´ 106, 0. + 326.085 ä, 78.7788=

90



H* Starting condition *L

buff = 8600., 139., 139., 93.<
8600., 139., 139., 93.<

H* Table with varying step lengths to make sure we don't lose the solution *L

PhysM0 =

Table@If@Mod@t, 5.D � 0, Print@tDD; buff = FinalPhi@buff, t, 1.D; 8t, buff<, 8t, 0., 200.<D;

PM0Det = Table@If@Mod@t, 5D � 0, Print@tDD;

buff = FinalPhi@buff, t, 1.D; 8t, buff<, 8t, 200.1, 230., 0.1<D;

PM0hp = Table@If@Mod@t, 1D � 0, Print@tDD;

buff = FinalPhi@buff, t, 1.D; 8t, buff<, 8t, 230.02, 244., 0.02<D;

PM0hp = Join@PM0hp,

Table@Print@tD; buff = FinalPhi@buff, t, 1.D; 8t, buff<, 8t, 244.001, 260., 0.001<DD;

PM0end = Table@If@Mod@t, 1D � 0, Print@tDD;

buff = FinalPhi@buff, t, 1.D; 8t, buff<, 8t, 260.01, 265., 0.01<D;

PM0end = Join@PM0end, Table@If@Mod@t, 1D � 0, Print@tDD;

buff = FinalPhi@buff, t, 1.D; 8t, buff<, 8t, 265.1, 300., 0.1<DD;

pm0 = Join@PhysM0, PM0Det, PM0hp, PM0endD;

H* Masses as a function of temperature *L

Show@ListPlot@8Table@8pm0@@iDD@@1DD, pm0@@iDD@@2DD@@1DD<, 8i, Length@pm0D<D,

Table@8pm0@@iDD@@1DD, pm0@@iDD@@2DD@@2DD<, 8i, Length@pm0D<D<,

Joined ® True, PlotRange ® 880, 300.<, 80., 620.<<,

Frame ® True, PlotStyle ® 88Black, Thick<, 8Darker@GrayD, Thick, Dashed<<,

FrameLabel ® 8"T HMeVL", Graphics@Text@"Mi HMeVL", 80, 0<, 80, 0<, 80, 1<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 40D<,

BaseStyle ® 8FontSize ® 14<, RotateLabel ® FalseD,

Graphics@Text@"M1", 8235, 510<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70D,

Graphics@Text@"M2", 8120, 220<, 80, 0<, 81, 0<D,

BaseStyle ® 8FontSize ® 14<, ImageSize ® 70DD

H* Φ as a function of temperature *L

ListPlot@Table@8pm0@@iDD@@1DD, pm0@@iDD@@2DD@@4DD<, 8i, Length@pm0D<D,

Joined ® True, PlotRange ® 880., 300.<, 80., 100.<<,

Frame ® True, PlotStyle ® 8Black, Thick<, FrameLabel ®

8"T HMeVL", Graphics@Text@"Φ HMeVL", 80, 0<, 80, 0<, 80, 1<D, BaseStyle ® 8FontSize ® 14<,

ImageSize ® 40D<, BaseStyle ® 8FontSize ® 14<, RotateLabel ® FalseD
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